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Abstract
We investigate the existence of classical solutions to second-order quadratic Mean-
Field Games systems with local and strongly decreasing couplings of the form−σmα ,
α ≥ 2/N , wherem is the population density and N is the dimension of the state space.
We prove the existence of solutions under the assumption that σ is small enough. For
large σ , we show that existence may fail whenever the time horizon T is large.

Mathematics Subject Classification 35Q89 · 35K40 · 35B33

1 Introduction

We consider in this paper systems of PDEs of the form

⎧
⎪⎨

⎪⎩

−ut − �u + 1
2 |∇u|2 = − f (m) + V (x) in RN × (0, T ),

mt − �m − div(∇um) = 0 in RN × (0, T ),

m(0) = m0, u(T ) = uT in RN ,

(MFG)

where m0 is a smooth probability density, uT a smooth final cost, V is a bounded
potential, and − f is a monotone non-increasing coupling. As a model problem, we
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consider

− f (m) = −σmα, α ≥ 2

N
, σ > 0. (1)

Such a system arises in the theory of Mean Field Games (MFG), a set of methods
inspired by statistical physics to study Nash equilibria in (differential) games with a
population of infinitely many identical players. TheMFG toolbox has been introduced
in the mathematical community by the seminal papers [16–18], and by a series of
lectures at Collège de France by Lions [19]. A peculiarity of the present paper’s
setting, is that the couplingm �→ − f (m) is assumed to have a decreasing character in
m (theminus sign in front of f is to emphasize this fact). Since− f (m)models the cost
of a single agent in terms of the densitym of the population, (MFG) captures situations
in which agents aim at maximizing aggregation. When the particular form (1) of f is
chosen, σ and α are then related to the aggregation force. While (MFG) is known to
enjoy uniqueness and long-time stability of solutions whenm �→ − f (m) is increasing
(see e.g. [22] and references therein), the picture is less clear when m �→ − f (m) is
not increasing. Different phenomena have been observed in this framework, such as
non-uniqueness of solutions [3,13], periodic solutions [7,11], and instability in the
long-time horizon [20]. The main objective of this work is to investigate the existence
of solutions when the coupling − f has a strong decreasing character, that is when α

in (1) satisfies

α ≥ 2

N
.

The coefficient 2
N turns out to be crucial if one looks at the variational side of

the problem. The system (MFG) is indeed known to be the optimality conditions of
a minimization problem with PDE constraints (or Mean Field type optimal control
problem). Global minimizers of this problem have been shown to exist only if α < 2

N
[13] (and these yield classical solutions [10]); when α ≥ 2

N , the variational problem
is not even bounded from below. For this reason, the latter regime poses structural
difficulties even for the existence of solutions to (MFG).

Without assumptions on the growth of f (and for very general MFG systems),
solutions are known to exist under “smallness” assumptions, that is: when the norms
of the initial/final data are small enough or both H and f are multiplied by a small
constant, see [2] and references therein, or when the time-horizon T is small [2,9]. It
is worth noting that previous works treat the system as a perturbation of two coupled
heat equations. Here, we aim at developing techniques that are more specific to the
MFG variational structure, in order to obtain existence without requiring T , the data
or the quadratic Hamiltonian term to be small.

A first main result of this paper is that for T large, solutions to (MFG)may not even
exist. Our main assumption on f , involving its anti-derivative F(m) := ∫ m

0 f (s) ds
also, reads as follows:

f ∈ C2((0,+∞)) and N f (m)m − (N + 2)F(m) ≥ 0. (2)
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Note that (2) implies F(m) ≥ cm
N+2
N for some c > 0. When f has the form (1), then

(2) holds for all σ > 0. Regarding the initial/final data and the potential V , we assume
that

V ∈ C2
b (R

N ), and 2(V − inf
RN

V ) + ∇V · x ≥ 0 on RN , (3)

uT ∈ C4
b(R

N ), and ∇uT · x ≥ 0, (4)

m0 ∈ C4
b(R

N ), m0, |x |m0, x
2m0,∇m0 ∈ L1(RN ) and

∫

RN
m0 dx = 1,m0 ≥ 0.

(5)

Note that the condition on V is not much restrictive, and allows even for radially
decreasingpotentials (up to somedegree). Thenwe show that, if an additional condition
involving m0, f , V is satisfied, then (MFG) has no solutions if T is large.

Theorem 1.1 Assume that (3), (4), (5) and (2) hold. Suppose that

e0 := −1

2

∫

RN

|∇m0|2
m0

dx +
∫

RN
F(m0) dx −

∫

RN
(V − inf

RN
V )m0 dx > 0. (6)

Then, if

T >
N

2e0
+
√∫

RN x2m0 dx

2e0
,

the system (MFG) has no classical solutions.

Let us stress that the condition e0 > 0 may be realized or not depending on m0
and f (and the oscillation of V ). When f (m) = σmα , note that for any fixed m0,
replacing it by ε−Nm0(ε

−1x) into (6) yields

ε−Ne0 = −ε−(N+2)

2

∫

RN

|∇m0|2
m0

dx + σε−N (α+1)

α + 1

∫

RN
mα+1

0 dx

−ε−N
∫

RN
(V (εx) − inf

RN
V )m0(x)dx,

hence e0 > 0 when the second term in the right-hand side is dominating, that is when
ε is small enough or σ is large enough. In other words, non-existence is triggered
by “concentration” of the initial datum, or “strength” of the aggregation force. The
proof of Theorem 1.1 involves the study of the evolution of second order moments
h(t) = ∫

x2m(x, t) dx . The core identity in Lemma 2.5 shows that under the standing
assumptions, h has to be strictly convex, but given the information at t = 0, t = T ,
this forces h to be negative when T is large, which is impossible. Lemma 2.5 is based
on two structural estimates: the first one is the well-known conservation of energy (a
quantity which stems from the Hamiltonian nature of (MFG)). The second one is a
new identity which is obtained by testing the equations by projections of∇m,∇u over
the direction x , and is in some sense related to dilations properties of the variational
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problem. We mention that a similar approach was used to obtain non-existence in
[8] for stationary problems (for α > 2

N−2 ), but the analysis developed here for the
evolutive case is more involved (and heavily related to the quadratic dependence with
respect to the gradient in the first equation, see Remark 2.7).

By the very same procedure, we obtain also non-existence results for the so-called
Planning Problem in MFG. In such a framework, one wants to drive agents from an
initial configuration m0 to a final one mT , optimizing some cost. This problem is
related to a PDE system of the form (MFG), where there is no fixed final condition uT
for u, but rather a final condition m(T ) = mT . Our results on the planning problem
are described in Sect. 2.1.

Theorem 1.1 leaves open the question, for a fixed m0, of the existence of solutions
to (MFG)when f is “small” (that is for small σ in themodel case). Let us then describe
the second main result of this paper. Assume that for some σ > 0,

f ∈ C2(R+), f (0) = 0, f ≥ 0, | f ′(m)| ≤ σαmα−1, α <

{
+∞ N = 1, 2
2

N−2 N ≥ 3.
(7)

Note that we are not requiring f to be increasing, but rather that f grows at most like
σmα . The model case (1) perfectly falls into this setting. We also suppose that

V ∈ C2
b (R

N ),m0, uT ∈ C4
b(R

N ),

m0, |x |m0 ∈ L1(RN ) and
∫

RN
m0 dx = 1,m0 ≥ 0. (8)

Then, we prove existence of solutions for σ small.

Theorem 1.2 Assume (7) and (8). Then, there exists σ0 > 0 depending on N, α,
‖m0‖Lα+1(RN ), ‖uT ‖C2(RN ), T ||�V ||L∞(RN ), such that for any

σ ≤ σ0

(σ appearing in (7)), the system (MFG) has a classical solution (u,m). Note that if
�V = 0, then σ0 is independent of T .

We stress that σ0 is affected by T only when the potential V is non-trivial. When
there is no spatial potential, i.e. V ≡ 0, and f is fixed, solutions are proven to exist
for all T (and will probably “disappear” as T → ∞, see Remark 3.3). Note also that
we require rather smooth initial/final data, but existence restrictions depend only on
‖m0‖Lα+1(RN ) and ‖uT ‖C2(RN ) (thus allowing to relax the smoothness assumptions
via approximation arguments). As we previously observed, the only known existence
results require T small, and approach (MFG) as a perturbation of two heat equations;
due to the presence of the non-linear term |∇u|2, this strategy does not allow to
analyze the “small” σ regime. The key step here is an a priori estimate which is
obtained heavily relying again on the MFG structure. We use a combination of the
conservation of energy, so-called second-order estimates, and parabolic regularization
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to get an inequality of the form

(∫ T

0

∫

RN
m2α+1

)β

� σ 2
∫ T

0

∫

RN
m2α+1 + T ||�V ||L∞(RN ) + 1 β ∈ (0, 1).

Note that in view of its super-linear nature, the previous estimate ismeaningful only for
σ small. In that case it is possible to set up a Schaefer’s fixed point procedure revolving
around the boundedness of

∫∫
m2α+1. Since α < 2

N−2 , this yields boundedness of

f (m) in L
N+2
2 , which is enough to set up a bootstrap procedure. We point out that the

restriction 2
N−2 on α might be structural; we do not know at this stage how to construct

solutions for α ≥ 2
N−2 and arbitrary T .

We finally mention that our existence scheme does not seem to apply easily to the
Planning Problem. To our knowledge, when− f is not increasing, existence is an open
problem even in the short-time horizon regime.

Existence versus non-existence. For the sake of clarity, we summarize below, for
fixed initial-final datam0, uT and potential V , existence and non-existence regimes as
σ and T vary. These are sketched in Fig. 1, for V ≡ 0 and V �= 0 (we again consider
the model coupling (1)).

First, we note that for any σ > 0, there exists T = T (σ ) such that (MFG) has
solutions provided that T ≤ T . Though this existence result is not stated explicitly
anywhere, it can be derived via a straightforward adaptation of [13, Theorem 1.4]
from the flat torus to the euclidean setting R

N . This (standard) short-time existence
situation is light-blue coloured in Fig. 1.

Regarding our existence theorem, it says that there exists σ0 = σ0(T ) such that
(MFG) has solutions for all σ ≤ σ0. If V ≡ 0, σ0 is proven to be T -independent, as
shown in Fig. 1 (green region).

Finally, we prove that (MFG) has no solutions whenever

C1σ − C2 > 0, where C1 = 1

α + 1

∫

RN
mα+1

0 ,

C2 = 1

2

∫

RN

|∇m0|2
m0

+
∫

RN
(V − inf

RN
V )m0,

and

T >
N

2(C1σ − C2)
+
√∫

RN x2m0 dx

2(C1σ − C2)
.

Equivalently, for all T > 0 there exists σ∗ = σ∗(T ) such that (MFG) has no solutions
for any σ > σ∗. This is the orange region in Fig. 1. Note that the upper bound σ∗(T )

on σ for which existence is expected goes to +∞ as T → 0, while σ∗(T ) → C2C
−1
1

as T → ∞. Unfortunately, σ0 and C2C
−1
1 are obtained in completely different ways

here, and in general they do not coincide (though the non-existence condition can be
in some sense optimized, see Remark 2.6).
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Fig. 1 Green and light blue are existence regions, while the orange one is the non-existence region as the
coupling strength σ and the time horizon T vary. On the left V ≡ 0, while on the right V �= 0 (color figure
online)

Notations. We will denote by Ck
b (�), � ⊆ R

M , the space of bounded continuous
functions with bounded continuous derivatives up to order k ∈ N (if k = 0, then k is
omitted). For a > 0, C2a,a will be the standard parabolic Hölder space. C([0, T ]; X)

will denote the space of continuous functionswith valuesf in aBanach space X . Finally,
the standard L2 parabolic energy spacewill beV2(�×(0, T )) = L∞((0, T ); L2(�))∩
L2(0, T ;W 1,2(�)), andm ∈ V2,loc(RN ×(0, T ))will mean thatm ∈ V2(�′ ×(0, T ))

for all �′ with compact closure in �. For R > 0, BR = {x ∈ R
N : |x | < R}, and

n = n(x) = x/|x | will denote the outer normal vector field to ∂BR .

2 Non-existence

This section is devoted to the proof of Theorem 1.1, which will be based on several
lemmas. Before we start, let us comment on the assumptions on u,m we will work
with.

Remark 2.1 Throughout the section we will assume that ut ,∇u, ∇ut ,�u, m,mt ,
∇m,∇mt , �m belong to Cb(R

N × [0, T ]). This degree of regularity is coher-
ent with the one coming from the existence theorem that will be proven in the
next section. Such a regularity can be obtained starting from any classical solution
(u,m) ∈ C2,1, by means of parabolic Schauder estimates (and the standing assump-
tions onm0, uT , f , V ). All the arguments below actually need only polynomial growth
in the x-variable for u,m and their derivatives, and that |Du|2m, F(m) ∈ L1.

We stress that the assumption that (u,m) is a classical solution is not really crucial
to get non-existence. For example, arguing as in the proof of existence, a bootstrap
procedure shows thatweak solutions in a suitable (energy) sense have to be smooth, and
thus Theorem 1.1 applies. In other words, one can formulate the same non-existence
result for a large class of weak solutions.

First, we show that if m is bounded and smooth, it has to be a continuous flow of
probability densities.
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Lemma 2.2 Let m be a non-negative classical solution to (the second equation in)
(MFG) such that m,mt ,∇m,�m,∇u ∈ Cb(R

N × (0, T )), and m0 ∈ L1(RN ). Then
m is non-negative, m ∈ C([0, T ]; L1(RN )), and ‖m(t)‖L1(RN ) = ‖m0‖L1(RN ) for all
t ∈ [0, T ].
Proof First, m is non-negative by the maximum principle.

To control the L1-norm of m(t), we multiply second equation in (MFG) by φε :=
e−ε

√
|x |2+1, ε > 0, and integrate over (0, t) × R

N to obtain

∫ t

0

∫

RN
mtφε dxdt =

∫ t

0

∫

RN
�mφε dxdt +

∫ t

0

∫

RN
div(∇um)φε dxdt .

Since m,mt ,∇m,�m,∇u are bounded, and φε,∇φε,�φε are in L1(RN ), we can
use Lemma A.2 to integrate by parts, to get

∫

RN
m(t)φε dx −

∫

RN
m(0)φε dx

=
∫ t

0
∂t

∫

RN
mφε dx =

∫ t

0

∫

RN
m�φε dxdt −

∫ t

0

∫

RN
∇um · ∇φε dxdt . (9)

Therefore,

∫

RN
m(t)φε dx ≤

∫

RN
m(0)φε dx + Kε

∫ t

0

∫

RN
mφε dxdt,

where Kε = supRN×[0,T ](|�φε | + |∇u||∇φε |)φ−1
ε . By Gronwall’s Lemma,

∫

RN
m(t)φε dx ≤ eKε t

∫

RN
m0φε dx ∀t ∈ [0, T ].

By a straightforward computation, Kε → 0, ε → 0, and φε ↗ 1, hence theMonotone
Convergence Theorem yields ‖m(t)‖L1(RN ) ≤ ‖m(0)‖L1(RN ) for all t . To prove the
equality, it is sufficient to go back to (9), and pass to the limit ε → 0. Indeed, now we
now that sup[0,T ] ‖m(t)‖L1(RN ) is bounded, and�φε ,∇φε converge uniformly to zero
as ε → 0. Finally, since ‖m(t)‖L1(RN ) = ‖m0‖L1(RN ) for all t , and m(t) → m(t0)
a.e. on R

N as t → t0 (for any fixed t0), one can conclude m ∈ C([0, T ]; L1(RN )). ��
The following lemma describes the evolution of second order moments of m, and

concerns integrability properties of |∇m|2
m and the crossed quantity |∇u||∇m|.

Lemma 2.3 In addition to the assumptions of previous Lemma 2.2, suppose that
|x |m0, x2m0 ∈ L1(RN ). Then,

(i) t �→ ∫

RN x2m(t) dx is Lipschitz continuous, and

d

dt

∫

RN
m(t)x2 dx = 2N

∫

RN
m0(x)dx −

∫

RN
m(t)∇u(t) · x dx for a.e. t .
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1292 M. Cirant, D. Ghilli

(ii) |∇m|2
m , |∇u||∇m| ∈ L1(RN × (0, T )).

Proof To prove (i), we employ Lemma A.5. First, m ∈ C([0, T ]; L1(RN ))

by Lemma 2.2, so |∇u|m ∈ L1(RN × (0, T ). By Lemma A.5 (i) we get
supt∈[0,T ]

∫

RN |x |m dx < ∞, and therefore |∇u · x |m ∈ L∞((0, T ); L1(RN )). By
Lemma A.5 (ii), we obtain

∫

RN
x2m(t) dx =

∫

RN
x2m0 dx + 2Nt

∫

RN
m0(x)dx −

∫ t

0

∫

RN
m∇u · x dxdt,

which is the desired statement.
Item (ii) follows by results in [6]. Indeed, in view of our standing assump-

tions and previous results, |∇u|2m, (ln max(|x |, 1))2m ∈ L1(RN × (0, T )) and
m0 max(0, lnm0) ∈ L1(RN ). Therefore, by Theorem 2.1 and Remark 2.1 in [6],
|∇m|2
m ∈ L1(RN × (0, T ). Finally, Hölder’s inequality yields

∫ T

0

∫

RN
|∇u||∇m| dxdt ≤

(∫ T

0

∫

RN
|∇u|2m dxdt

) 1
2
(∫ T

0

∫

RN

|∇m|2
m

dxdt

) 1
2

< ∞.

��
The following lemma shows that some quantity involving ∇u,m is conserved in

time. This conserved quantity is related to the Hamiltonian nature of the MFG system
(see [11] for further comments about that).

Lemma 2.4 Let (u,m)be a classical solution of (MFG). In addition to the assumptions
of previous Lemma 2.2, suppose that ut ,∇ut ,�u,∇mt ∈ Cb(R

N × [0, T ]). Then,
the following statements hold:

(i)
∫

RN ∇u · ∇m dx + 1
2

∫

RN |∇u|2m dx + ∫

RN F(m) dx − ∫

RN Vm dx = E ∈
R for a.e. t

(ii) assuming in addition that ∇m0 ∈ L1(RN ),

E ≥ −1

2

∫

RN

|∇m0|2
m0

dx +
∫

RN
F(m0) dx −

∫

RN
Vm0 dx .

Proof We start with claim (i). The (standard) idea is to multiply the second equation
in (MFG) by ut and the first one bymt , and perform several integration by parts. Since
nothing is assumed regarding the integrability of mt ,∇m, . . . on RN , we multiply the

second equation in (MFG) by utφε and the first one by mtφε , where φε = e−ε
|x |2
2 ,

ε > 0, and integrate over RN to get

∫

RN
[−�umtφε −�mutφε + 1

2
|∇u|2mtφε −div(∇um)utφε + f (m)mtφε −Vmtφε ] dx = 0.

(10)
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Since φε,∇φε,�φε ∈ L1(RN ), by the boundedness in sup-norm of ut ,∇u,∇ut ,�u,
m,mt ,∇m,∇mt ,�m overRN×[0, T ], all the integrations by parts (usingLemmaA.2
below) are justified. Then, we will let ε → 0.

We start with the first two terms in (10), integrating repeatedly by parts to obtain

∫

RN
−�umtφε − �mutφε dx

=
∫

RN
∇u∇mtφε + ∇umt∇φε + ∇m∇utφε + ∇mut∇φε dx

=
∫

RN
∂t
(∇u∇mφε

) + ∇umt∇φε − m∇ut∇φε − mut�φε dx

=
∫

RN
∂t
(∇u∇mφε

) + ∂t
(∇um∇φε

) − 2m∇ut∇φε − mut�φε dx . (11)

Then,

∫

RN

1

2
|∇u|2mtφε − div(∇um)utφε

=
∫

RN

1

2
|∇u|2mtφε + ∇um∇utφε + ∇um ut∇φε dx

=
∫

RN
∂t

(1

2
|∇u|2mφε

)
+ ∇um ut∇φε dx . (12)

Finally,

∫

RN
f (m)mtφε − Vmtφε dx =

∫

RN
∂t

(
F(m)φε − Vmφε

)
dx . (13)

Thus, plugging (11), (12) and (13) into (10) yields

∫

RN
∂t
(∇u∇mφε + 1

2
|∇u|2mφε + F(m)φε − Vmφε + ∇um∇φε

)
dx

=
∫

RN
2m∇ut∇φε + mut�φε − ∇um ut∇φε dx .

Again by the presence of φε,∇φε ∈ L1(RN ), and boundedness of u,m and their
derivatives, we have

∂t

∫

RN
∇u∇mφε + 1

2
|∇u|2mφε + F(m)φε − Vmφε + ∇um∇φε dx

=
∫

RN

(
2∇ut∇φε + ut�φε − ∇u ut∇φε)m dx,
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and for all t1 ≤ t2,

∫

RN
∇u∇mφε + 1

2
|∇u|2mφε + F(m)φε − Vmφε + ∇um∇φε dx

∣
∣
∣
t=t2

t=t1

=
∫ t2

t1

∫

RN

(
2∇ut∇φε + ut�φε − ∇u ut∇φε)m dxdt .

Note now that
∫

RN m(t) dx = 1 for all t , and m ∈ Cb(R
N × [0, T ]). Therefore,

∇utm, utm,∇u utm ∈ L1(RN ×(0, T )), and |∇u|2m(t), F(m(t)), Vm(t) ∈ L1(RN )

for all t . Furthermore, ∇u∇m(t) ∈ L1(RN ) for a.e. t ∈ (0, T ) by Lemma 2.3. Then,
since φε → 1 and ∇φε,�φε → 0 uniformly on R

N as ε → 0, by the Dominated
Convergence Theorem one obtains

∫

RN
∇u∇m + 1

2
|∇u|2m + F(m) − Vm dx

∣
∣
∣
t=t2

t=t1
= 0.

for a.e. t1, t2 ∈ (0, T ). Then, there exists E ∈ R such that for a.e. t

∫

RN
∇u∇m(t) + 1

2
|∇u|2m(t) + F(m(t)) − Vm(t) dx = E .

Note that if ∇m0 ∈ L1(RN ), then ∇u(0)∇m0 ∈ L1(RN ), and therefore the previous
equality holds also for t = 0.

Now we prove claim (ii). By the Young’s inequality, we have

∫

RN
∇u(0) · ∇m0 dx + 1

2

∫

RN
|∇u(0)|2m0 dx

≥ −1

2

∫

RN

|∇m0|2
m0

dx − 1

2

∫

RN
|∇u(0)|2m0 dx + 1

2

∫

RN
|∇u(0)|2m0 dx

= −1

2

∫

RN

|∇m0|2
m0

dx .

Then by claim i), we obtain

E ≥ −1

2

∫

RN

|∇m0|2
m0

dx +
∫

RN
F(m0) dx −

∫

RN
Vm0 dx,

which is equivalent to ii). ��

The next lemma is crucial. Exploiting the structure of theMFG system, it is possible
to evaluate the second derivative in time of second order moments of m in terms of
integral quantities related to f , V and m.
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Lemma 2.5 Let (u,m) be a classical solution of (MFG). Under the assumptions of
Lemmas 2.2, 2.3 and 2.4, t �→ ∫

RN x2m(t) dx is of class C2, and for all t ,

d2

dt2

(∫

RN
x2m(t) dx

)

= 4E + 2N
∫

RN
f (m)m dx − 2(N + 2)

∫

RN
F(m) dx

+ 4
∫

RN
Vm dx + 2

∫

RN
∇V · xm dx .

Proof Wemultiply the second equation in (MFG) by x ·∇u and the first one by x ·∇m,
and integrate over BR × (t1, t2) to get

∫ t2

t1

∫

BR

[mt − �m − div(∇um)] x · ∇u

+
[

−ut − �u + 1

2
|∇u|2 + f (m) − V

]

x · ∇m dxdt = 0,

which is equivalent to
∫ t2

t1

∫

BR

mt x · ∇u − ut x · ∇m dxdt

=
∫ t2

t1

∫

BR

�mx · ∇u dxdt +
∫ t2

t1

∫

BR

�ux · ∇m dxdt

+
∫ t2

t1

∫

BR

div(∇um)x · ∇u dxdt − 1

2

∫ t2

t1

∫

BR

|∇u|2x · ∇m dxdt

−
∫ t2

t1

∫

BR

f (m)x · ∇m dxdt +
∫

BR

V x · ∇m dxdt . (14)

We start with the first two terms of the right-hand side. Integrating by parts, one has
∫

BR

�mx · ∇u dx +
∫

BR

�ux · ∇m dx

= −
∫

BR

∇m · ∇(x · ∇u) dx −
∫

BR

∇u · ∇(x · ∇m) dx

+
∫

∂BR

[∇m(x · ∇u) + ∇u(x · ∇m)] · n dx .

Note that
∫

BR
x · ∇(∇m · ∇u) = ∫

∂BR
x(∇m · ∇u) · n − ∫

BR
∇m · ∇u divx , so

∫

BR

∇m · ∇(x · ∇u) + ∇u · ∇(x · ∇m) dx

=
∫

BR

mxi ∂xi (xkuxk ) + uxi ∂xi (xkmxk ) dx

=
∫

BR

2mxi uxi + mxi xkuxk xi + uxi xkmxk xi dx
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= 2
∫

BR

∇m · ∇u dx +
∫

BR

x · ∇(∇m · ∇u) dx

=
∫

BR

∇m · ∇u(2 − N ) dx +
∫

∂BR

x(∇m · ∇u) · n dx,

and therefore

∫ t2

t1

∫

BR

�mx · ∇u dxdt +
∫ t2

t1

∫

BR

�ux · ∇m dxdt

=
∫ t2

t1

∫

BR

∇m · ∇u(N − 2) dxdt

+
∫ t2

t1

∫

∂BR

[
∇m(x · ∇u) + ∇u(x · ∇m) − x(∇m · ∇u)

]
· n dxdt . (15)

To handle the third and fourth term of the right-hand side of (14), the following
formula will be useful

1

2
∇(|∇u|2) · x = ∇u · ∇(∇u · x) − |∇u|2.

Then, integrating by parts

−1

2

∫

BR

|∇u|2x · ∇m dx = −1

2

∫

∂BR

|∇u|2mx · n dx + 1

2

∫

BR

div
(|∇u|2x)m dx

= −1

2

∫

∂BR

|∇u|2mx · n dx + N

2

∫

BR

|∇u|2m dx

+
∫

BR

∇u · ∇(∇u · x)m dx −
∫

BR

|∇u|2m dx .

Since

∫

BR

∇u · ∇(∇u · x)m dx =
∫

∂BR

∇u(∇u · x)m · n dx −
∫

BR

div(∇um)∇u · x dx,

we obtain

∫ t2

t1

∫

BR

div(∇um)∇u · x dxdt − 1

2

∫ t2

t1

∫

BR

|∇u|2x · ∇m dxdt

=
(
N

2
− 1

)∫ t2

t1

∫

BR

|∇u|2m dxdt

+
∫ t2

t1

∫

∂BR

[

∇u(∇u · x)m − 1

2
|∇u|2mx

]

· n dxdt . (16)
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Regarding the last two terms in the right hand side of (14), by the definition of F
and by integrating by parts we have

−
∫ t2

t1

∫

BR

f (m)∇m · x dxdt +
∫ t2

t1

∫

BR

V x · ∇m dxdt

= N
∫ t2

t1

∫

BR

F(m) dxdt −
∫ t2

t1

∫

BR

∇V · xm dxdt − N
∫ t2

t1

∫

BR

Vm dxdt

+
∫ t2

t1

∫

∂BR

[ − F(m) + Vm
]
x · n dxdt . (17)

We now manipulate the left-hand side of (14). We perform a first integration by
parts to have

−
∫

BR

ut x · ∇m dx =
∫

BR

∇ut · xm dx + N
∫

BR

utm dx −
∫

∂BR

utmx · n dx .

Then,

∫ t2

t1

∫

BR

mt x · ∇u − ut x · ∇m dx

=
∫ t2

t1

∫

BR

∂t
(
m∇u

) · x dxdt + N
∫ t2

t1

∫

BR

utm dxdt

−
∫ t2

t1

∫

∂BR

utmx · n dxdt .

The equation for u yields

N
∫ t2

t1

∫

BR

utm dxdt = N
∫ t2

t1

∫

BR

[

−�u + 1

2
|∇u|2 + f (m) − V

]

m dxdt

= N
∫ t2

t1

∫

BR

∇u · ∇m + 1

2
|∇u|2m + f (m)m − Vm dxdt − N

∫ t2

t1

∫

∂BR

∇um · n dxdt,

and therefore

∫ t2

t1

∫

BR

mt x · ∇u − ut x · ∇m dxdt

=
∫

BR

[m(t2)∇u(t2) − m(t1)∇u(t1)] · x dx

+ N
∫ t2

t1

∫

BR

∇u · ∇m + 1

2
|∇u|2m + f (m)m − Vm dxdt

−
∫ t2

t1

∫

∂BR

[N∇um + utmx] · n dxdt . (18)
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By plugging (15), (16), (17) and (18) into (14), we obtain

∫

BR

[m(t2)∇u(t2) − m(t1)∇u(t1)] · x dx

= −2
∫ t2

t1

∫

BR

∇m · ∇u dxdt −
∫ t2

t1

∫

BR

|∇u|2m dxdt

+ N
∫ t2

t1

∫

BR

F(m) − f (m)m dxdt −
∫ t2

t1

∫

BR

∇V · xm dxdt + GR, (19)

where

GR =
∫ t2

t1

∫

∂BR

[ − F(m) + Vm
]
x · n + [

N∇um + utmx
] · n

+ [∇m(x · ∇u) + ∇u(x · ∇m) − x(∇m · ∇u)
] · n

+
[

∇u(∇u · x)m − 1

2
|∇u|2mx

]

· n dxdt .

Since V ,∇u, ut ∈ L∞(RN × (0, T )) and m, |∇u| |∇m| ∈ L1(RN × (0, T )), by
Lemma A.1 we have

lim
R→∞GR = 0.

Then, since m,∇u · ∇m ∈ L1(RN × (0, T )) and ∇u,m,∇V ∈ L∞(RN × (0, T )),
we obtain

∫

RN
[m(t2)∇u(t2) − m(t1)∇u(t1)] · x dx

= −2
∫ t2

t1

∫

RN
∇m · ∇u + 1

2
|∇u|2m dxdt

+ N
∫ t2

t1

∫

RN
F(m) − f (m)m dxdt −

∫ t2

t1

∫

RN
∇V · xm dxdt . (20)

We now use Lemma 2.3 (i) to rewrite the left-hand side, and Lemma 2.4 (i) to replace
the first two terms of the right hand side to obtain for a.e. t1, t2

d

dt

1

2

(∫

RN
x2m(t1) dx

)

− d

dt

1

2

(∫

RN
x2m(t2) dx

)

= −2E(t2 − t1) − 2
∫ t2

t1

∫

RN
Vm dxdt

+
∫ t2

t1

∫

RN
(N + 2)F(m) − N f (m)m dxdt −

∫ t2

t1

∫

RN
∇V · xm dxdt . (21)
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Then, dividing by t2 − t1 and taking the limit t2 → t1 we obtain the desired equality
for a.e. t . Note that m ∈ C(L1) and m is bounded, so d

dt

∫

RN x2m(t) dx agrees a.e.
with a C1 function in t . Hence, t �→ ∫

RN x2m(t) dx is of class C2. ��

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 Define h(t) := ∫

RN x2m(t) dx , which is of class C2 in view of
Lemma 2.5. We first claim that

h(0) = h0 > 0, h′(T ) ≤ 2N , h′′(t) ≥ 4e0 > 0 ∀t ≥ 0.

Indeed, h(0) = ∫

RN x2m0 dx =: h0 > 0, by Lemma 2.3 and ∇uT · x ≥ 0, we obtain
h′(T ) ≤ 2N . Note that by Lemma 2.4 ii) and the assumptions (3), (2), (6) (and the
fact that

∫
m(t)dx = 1 for all t) we have

4E + 2N
∫

RN
f (m)m dx − 2(N + 2)

∫

RN
F(m) dx + 4

∫

RN
Vm dx + 2

∫

RN
∇V · xm dx

≥ 4

[

−1

2

∫

RN

|∇m0|2
m0

dx +
∫

RN
F(m0) dx −

∫

RN
(V − inf

RN
V )m0 dx

]

+ 2
∫

RN
N f (m)m dx − (N + 2)F(m) dx + 2

∫

RN
[2(V − inf

RN
V ) + ∇V · x]m dx

≥ 4e0 > 0. (22)

Then, by Lemma 2.5 and (22), we obtain h′′(t) ≥ 4e0 > 0 for all t .
Now we define v(t) = 2e0t2 + (2N − 4e0T )t + h0 and observe that

v(0) = h0, v′(T ) = 2N , v′′(t) = 4e0.

Then, by comparison, we derive

h(t) ≤ v(t) ∀t ∈ [0, T ]. (23)

Let now t̄ = T − N
2e0

. We have t̄ ∈ [0, T ] if T ≥ N
2e0

. Moreover,

v(t̄) = −2e0T
2 + 2NT − N 2

2e0
+ h0 = −

(
√
2e0T − N√

2e0

)2

+ h0 < 0

provided that T > N
2e0

+
√

h0
2e0

=: T∗. Therefore, if T > T∗,

h(t̄) ≤ v(t̄) < 0,

that leads to a contradiction since 0 ≤ h(t) = ∫

RN x2m(t) dx for all t ∈ [0, T ]. ��
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Remark 2.6 (Minimizing the non-existence time horizon) We observe that the lower
bound on the time horizon T yielding non-existence

N

2e0
+
√∫

RN m0x2dx

2e0

can be “optimized”. We exploit in particular the obvious fact that non-existence to
(MFG) holds if and only if non-existence holds for the translated system

⎧
⎪⎨

⎪⎩

−ut − �u + 1
2 |∇u|2 = − f (m) + Vy

mt − �m − div(∇um) = 0

m(0) = m0,y, u(T ) = uT ,y

for all y ∈ R
N , (24)

where

Vy(x) = V (x + y), m0,y(x) = m0(x + y), uT ,y(x) = uT (x + y).

Assume that there exists � ⊂ R
N such that

2(V (x + y) − inf
RN

V ) + ∇V (x + y) · x ≥ 0, ∇uT (x + y) · x ≥ 0 for all y ∈ �.

Then, if m0, uT , V satisfy (2), (3), (4), (5), (6), then m0,y, uT ,y, Vy also satisfy (2),
(3), (4), (5), (6) for all y ∈ � (note in particular that (6) is translation invariant). Since
Theorem 1.1 guarantees non-existence of solutions to (24) for

T >
N

2e0
+
√∫

RN m0,yx2dx

2e0
for all y ∈ �,

we can conclude that the original MFG system (MFG) has no classical solutions
whenever

T >
N

2e0
+

√
√
√
√
√

inf
y∈�

∫

RN
(x − y)2m0(x)dx

2e0
.

As a simple illustration, consider uT ≡ V ≡ 0. It is clear that the quantity y �→∫

RN (x − y)2m0(x)dx might be minimized by y = 0, but this may be not the case for
non-radially symmetric m0.
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Remark 2.7 (The non-quadratic case) Consider a more general MFG system with
power-like Hamiltonian H(p) = 1

γ
|p|γ , γ > 1, i.e.

⎧
⎪⎨

⎪⎩

−ut − �u + 1
γ
|∇u|γ = − f (m) + V (x) in RN × (0, T ),

mt − �m − div(|∇u|γ−2∇um) = 0 in RN × (0, T ),

m(0) = m0, u(T ) = uT on R
N .

We observe that though the procedures described above yield meaningful identities
also when γ �= 2, it is not clear how to conclude similar non-existence results. First,
since the Hamiltonian nature of the MFG system is independent of γ > 1, one still
has a conservation of energy of the form

∫

RN
∇u · ∇m dx + 1

γ

∫

RN
|∇u|γm dx +

∫

RN
F(m) dx −

∫

RN
Vm dx = E (25)

for all t . Moreover, arguing as in Lemma 2.3,

d2

dt2

∫

RN
m(t)x2 dx = − d

dt

∫

RN
m(t)|∇u|γ−2∇u · x dx . (26)

Finally, testing the equations by x · ∇m and x · ∇u respectively, and reasoning as in
Lemma 2.5, one obtains

d

dt

∫

RN
m∇u · x dx = −2

∫

RN
∇m · ∇u + 1

γ
|∇u|γm dx

+ N
∫

RN
F(m) − f (m)m dx −

∫

RN
∇V · xm dx

+
(
2

γ
− 1

)∫

RN
|∇u|γm dx, (27)

which is basically (20) with an additional term
(
2
γ

− 1
) ∫ |∇u|γm (that has a sign!).

While for anyγ it is possible to plug the energy identity (25) into (27), it is not clear how
to couple (26)with (27) to get an identity for d2

dt2
∫
m(t)x2 (or other similar quantitities)

that give information on its sign when γ �= 2 (and therefore strict convexity of t �→∫
m(t)x2, which is the key point in the non-existence argument).

2.1 The Planning Problem

The Planning Problem in MFG gives rise to the following system

⎧
⎪⎨

⎪⎩

−ut − �u + 1
2 |∇u|2 = − f (m) + V (x) in RN × (0, T ),

mt − �m − div(∇um) = 0 in RN × (0, T ),

m(0) = m0, m(T ) = mT in RN ,

(28)
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where
∫

RN m0 dx = ∫

RN mT dx = 1,m0,mT ≥ 0. Roughly speaking, in a typical
planningproblem, onewants to drive the density of players froman initial configuration
m0 to a target final one mT . In [19], existence and uniqueness of smooth solutions
to (MFG) is discussed. In [21], it is proven the existence of weak solutions when the
Hamiltonian is not necessarily quadratic in∇u. Note that both references consider the
monotone case (− f (m) increasing) only.

We apply similar arguments as in the proof of Theorem 1.1 to prove non existence
for large time for the problem (28).

Theorem 2.8 Assume (3), and that (5) holds both for m0 and mT . Then, if

T >

√
√
√
√2max

{ ∫

RN x2m0dx,
∫

RN x2mT dx
}

e0
,

the system (28) has no classical solutions.

Proof We follow the proof of Theorem 1.1, assuming by contradiction that a solution
exists. The conclusions of Lemmas 2.2, 2.3, 2.4 and Lemma 2.5 hold true, since the
information u(T ) = uT is never invoked throughout their proofs. Therefore, as in
(22), we have

h′′(t) = d2

dt2

∫

RN
x2m(x, t) dx ≥ 4e0 > 0

for all t ≥ 0. The main difference is that we do not have any information on u(T ),
hence we cannot infer any information on the sign of h′(T ). On the contrary now

hT := h(T ) =
∫

RN
x2mT (x) dx ≥ 0, (29)

is a datum of the problem. Therefore, we define v(t) := 2e0t(t − T ) + max{h0, hT }
and remark that

v(0) ≥ h0, v(T ) ≥ hT , v′′(t) = 4e0,

hence by comparison we deduce

h(t) ≤ v(t) ∀t ∈ [0, T ].

Noting that

h
(T

2

)
≤ v

(T

2

)
= −e0

2
T 2 + max{h0, hT } < 0

whenever T > T̂ :=
√

2max{h0,hT }
e0

, we obtain the desired contradiction, since h has

to be nonnegative. Note that one could choose v in a way that it satisfies v′′(t) = 4e0
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and agrees with h0 and hT at time t = 0 and t = T respectively, to improve T̂ when
h0 �= hT (but we avoid writing the computations here for the sake of simplicity). ��

3 Existence

In this section we prove the existence Theorem 1.2. Note first that (7) implies

0 ≤ f (m) ≤ σmα, 0 ≤ F(m) ≤ σ

α + 1
mα+1.

We will use a generalization of the Schauder fixed point theorem, that we recall here
for completeness (see Theorem 5.1 of [1]).

Theorem 3.1 Let X be a Banach space, C ⊂ X closed and convex. Let U be an open
subset of C and p ∈ U. Consider a map F : U �→ C continuous and compact.
Suppose that

u = ηF(u) + (1 − η)p, for some η ∈ (0, 1) ⇒ u /∈ ∂U .

Then F has a fixed point in U.

In order to prove Theorem 1.2, we will need the following crucial a priori estimate.

Theorem 3.2 Under the assumptions of Theorem 1.2, suppose that

(η, v, μ) ∈ (0, 1) × C([0, T ];C4
b (R

d)) × C([0, T ];C1
b ∩ L1(Rd))

solve ⎧
⎪⎨

⎪⎩

−ut − �v + 1
2 |∇v|2 = − f (μ) + V (x) in RN × (0, T ),

μt − �μ − div(∇vμ) = 0 in RN × (0, T ),

μ(0) = ηm0, v(T ) = uT in RN .

(30)

Then there exists δ ∈ (1, 2) depending on α and C > 0 depending on
N , α, ‖m0‖Lα+1(RN ), ‖uT ‖C2(RN ) such that

Dδ ≤ C
(
σ 2D2 + T ||�V ||L∞(RN )D + 1

)
,

where

D =
∫ T

0

∫

RN
μ2α+1 dxdt .

Proof Step 1: regularity of μ given by the equation.Wemultiply the second equation
of (30) by μα and integrate by parts on a ball BR to obtain

1

α + 1

∫

BR

μα+1(t) dx + α

∫ t

0

∫

BR

μα−1|∇μ|2 dxdt
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= −α

∫ t

0

∫

BR

∇v · ∇μμα dxdt

+ 1

α + 1

∫

BR

μα+1(0) dx + GR, (31)

where

GR =
∫ t

0

∫

∂BR

∇μμα · n dxdt +
∫ t

0

∫

∂BR

∇vμμα · n dxdt .

Since μ,∇μ,∇v are bounded, and μ ∈ C(L1), we can apply Lemma A.1 and the
monotone convergence theorem to pick a sequence R = Rk → ∞ as k → ∞ and
pass to the limit in (31), and obtain

1

α + 1

∫

RN
μα+1(t) dx + α

∫ t

0

∫

RN
μα−1|∇μ|2 dxdt

= −α

∫ t

0

∫

RN
∇v · ∇μμα dxdt

+ 1

α + 1

∫

RN
μα+1(0) dx (32)

for any t ∈ [0, T ], showing in particular thatμα−1|∇μ|2 ∈ L1(RN × (0, T )). Writing
∇μμα = 1

α+1∇μα+1, we can integrate by parts again (Lemma A.2, μ,∇μ,∇v, D2v

are bounded and μ ∈ C(L1)) and use Hölder inequality to get

− α

∫ t

0

∫

RN
∇v · ∇μμα dxdt

= α

α + 1

∫ t

0

∫

RN
�vμα+1 dxdt

≤ α

α + 1

(∫ t

0

∫

RN
|D2v|2μ dxdt

) 1
2
(∫ t

0

∫

RN
μ2α+1 dxdt

) 1
2

. (33)

By writing μα−1|∇μ|2 = 4
(α+1)2

|∇μ
α+1
2 |2, and putting (33) into (32), we obtain

(letting t vary in [0, T ])
[

sup
t∈[0,T ]

∫

RN
μα+1 dx + 4α

α + 1

∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt

]2

≤ 4
∫

RN
μα+1(0) dx

+ 4α2
(∫ T

0

∫

RN
|D2v|2μ dxdt

)(∫ T

0

∫

RN
μ2α+1 dxdt

)

. (34)
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Step 2: parabolic interpolation. By Proposition 3.1, inequality (3.2) of [14] with
v = μ

α+1
2 , p = 2, q = 2(2α+1)

α+1 and N+m
N = 2α+1

α+1 , there exists some C̃ > 0 depending
on N and α (but not on T ), such that

(∫ T

0

∫

RN
μ2α+1 dxdt

) 2
q

≤ C̃

⎡

⎣

∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt +

(

sup
t∈[0,T ]

∫

RN
μβ dx

) 2
m
⎤

⎦ ,

where β = m α+1
2 = αN

2 and

2

q
= α + 1

2α + 1
∈
(
1

2
, 1

)

.

Moreover, note that if N ≤ 2 and α ≥ 2
N or if N > 2 and 2

N ≤ α ≤ 2
N−2 , then

1 ≤ β ≤ α + 1. By the interpolation inequality

||μ(t)||Lβ(RN ) ≤ ||μ(t)||1−θ

L1(RN )
||μ(t)||θLα+1(RN )

,
1

β
= 1 − θ + θ

α + 1
,

and by recalling that ||μ(t)||L1(RN ) ≤ 1 for all t (since ||μ(t)||L1(RN ) =
||μ(0)||L1(RN ) ≤ ||m0||L1(RN )), we get

(∫ T

0

∫

RN
μ2α+1 dxdt

) 2
q

≤ C̃

[∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt +

(

sup
t∈[0,T ]

∫

RN
μα+1 dx

)a]

,

where a = 2θβ
m(α+1) . Since a < 1, we have

(∫ T

0

∫

RN
μ2α+1 dxdt

) 4
q

≤ 2C̃2

[∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt + sup

t∈[0,T ]

∫

RN
μα+1 dx

]2

+ 2C̃2. (35)

Therefore, plugging this inequality into (34) gives

(∫ T

0

∫

RN
μ2α+1 dxdt

) 4
q

+
[∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt + sup

t∈[0,T ]

∫

RN
μα+1 dx

]2

≤ c

[∫

RN
μα+1(0) dx +

(∫ T

0

∫

RN
|D2v|2μ dxdt

)(∫ T

0

∫

RN
μ2α+1 dxdt

)

+ 1

]

(36)

for some c depending on N , α.
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1306 M. Cirant, D. Ghilli

Step 3: “second order” estimates for the MFG system. Computing the Laplacian
of the equation for v yields

−∂t�v − ��v + |D2v|2 + ∇(�v) · ∇v = −div( f ′(μ)∇μ) + �V .

Recall that μ,∇μ, and space derivatives of v are bounded up to the fourth order, and
μ ∈ C(L1). Hence, we multiply by μ and integrate by parts using Lemma A.2 to
obtain

−
∫ T

0

∫

RN
∂t�vμ dxdt −

∫ T

0

∫

RN
�v

(
�μ + div(∇vμ)

)
dxdt

+
∫ T

0

∫

RN
|D2v|2μ dxdt

=
∫ T

0

∫

RN
f ′(μ)|∇μ|2 dxdt +

∫ T

0

∫

RN
�Vμ dxdt .

From (7) it follows

∫ T

0

∫

RN
f ′(μ)|∇μ|2 dxdt ≤ σα

∫ T

0

∫

RN
μα−1|∇μ|2 dxdt .

Using the equation for μ in the left-hand term

−
∫ T

0

∫

RN
∂t�vμ dxdt −

∫ T

0

∫

RN
�v

(
�μ + div(∇vμ)

)
dxdt

=
∫

RN
�v(0)μ(0) dx −

∫

RN
�v(T )μ(T ) dx

and plugging the previous inequalities implies

∫ T

0

∫

RN
|D2v|2μ dxdt

≤ 4σα

(α + 1)2

∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt+

∫

RN
�v(T )μ(T ) dx+

∫

RN
∇v(0)∇μ(0) dx

+
∫ T

0

∫

RN
�Vμ dxdt . (37)

We now control the term
∫ ∇v(0)∇μ(0) dx . By Lemma 2.4 (i) and integration by

parts we have

∫

RN
∇v(0)∇μ(0) dx + 1

2

∫

RN
|∇v(0)|2μ(0) dx +

∫

RN
F(μ(0)) dx −

∫

RN
Vμ(0) dx

=
∫

RN
∇v(T )∇μ(T ) dx + 1

2

∫

RN
|∇v(T )|2μ(T ) dx +

∫

RN
F(μ(T )) dx −

∫

RN
Vμ(T ) dx
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≤ −
∫

RN
�v(T )μ(T ) dx + 1

2

∫

RN
|∇v(T )|2μ(T ) dx

+ σ

α + 1

∫

RN
μα+1(T ) dx −

∫

RN
Vμ(T ) dx

Since the second and third term in the left-hand side of the previous equality are
positive and since the last term in the right-hand side is negative, we get

∫

RN
∇v(0)∇μ(0) dx ≤ ||�v(T )||L∞(RN ) + 1

2
||∇v(T )||2L∞(RN )

+ σ

α + 1

∫

RN
μα+1(T ) dx + 2||V ||L∞(RN )

and back to (37) we obtain

∫ T

0

∫

RN
|D2v|2μ dxdt

≤ 4σα

(α + 1)2

∫ T

0

∫

RN
|∇μ

α+1
2 |2 dxdt + 2||�v(T )||L∞(RN ) + 1

2
||∇v(T )||2L∞(RN )

+ σ

α + 1

∫

RN
μα+1(T ) dx + T ||�V ||L∞(RN ) + 2||V ||L∞(RN ). (38)

Step 4: conclusion. Finally, we adopt the following notation for simplicity:

A := sup
t∈[0,T ]

∫

RN
μα+1 dx, B :=

∫ t

0

∫

RN
|∇μ

α+1
2 |2 dxdt,

D =
∫ T

0

∫

RN
μ2α+1 dxdt,

F := 2||�v(T )||L∞(RN ) + 1

2
||∇v(T )||2L∞(RN )

+ 2||V ||L∞(RN ).

By plugging (38) into (36), we have

D
4
q + (A + B)2

≤ c

[∫

RN
ηmα+1

0 dx + σD

(
1

α + 1
A + 4

(α + 1)2
B

)

+ FD + T ||�V ||L∞(RN )D + 1

]

,

and Young’s inequality implies

D
4
q ≤ c

[∫

RN
mα+1

0 (0) dx + FD + T ||�V ||L∞(RN )D + 1

]

+ ĉσ 2D2

for some ĉ > 0 depending on c. Since 4
q > 1, by a further application of Young’s

inequality we can absorb the term involving FD in the right-hand side into the left-
hand side, to get the conclusion. Note that the constant C in the statement of the
theorem depends on ||m0||Lα+1(RN ), and on c, F , hence on N , α, ||uT ||C2(RN ). ��
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1308 M. Cirant, D. Ghilli

Nowwe prove Theorem 1.2. Our aim is to apply the fixed-point Theorem 3.1. First,
we exploit the presence of a quadratic Hamiltonian to employ the standard Hopf-Cole
change of variables w = e−u/2. In the unknowns w,m the MFG a system reads as
system of coupled linear equations in divergence form

⎧
⎪⎨

⎪⎩

−wt − �w = (
f (m) − V (x)

)
w in RN × (0, T ),

mt − �m + 2div
(∇w

w
m
) = 0 in RN × (0, T ),

m(0) = m0, w(T ) = e−uT /2 on R
N .

Weare going to prove the existence of a smooth couplew,m solving this linear system,
which yields immediately a solution to (MFG).

Proof of Theorem 1.2 Let X = L2α+1((0, T ) × R
N ), endowed with the topology of

the strong convergence, and let U = UM be the open subset

U =
{

m ∈ X :
∫ T

0

∫

RN
m2α+1 dxdt < M

}

.

The constant M > 0 will be fixed later on. We define the operator F : U �→ C as

F(m) = μ, m ∈ U ,

where (w,μ) is the solution of the system

⎧
⎪⎨

⎪⎩

−wt − �w = ( f (m) − V (x))w in RN × (0, T ),

μt − �μ + 2div
(∇w

w
μ
) = 0 in RN × (0, T ),

μ(0) = m0, w(T ) = e−uT /2 on R
N .

(39)

F is well-posed and compact. For any m ∈ U , since α < 2
N−2 , then mα ∈

L p(RN × (0, T )) for p = 2α+1
α

> N+2
2 , which implies

f (m) ∈ L p(RN × (0, T )), p = 2α + 1

α
>

N + 2

2
.

Since w(T ) ∈ L∞(RN ), the existence of a weak solution w ∈ V2,loc(RN × (0, T )) ∩
L∞(RN × (0, T )) is standard (see, e.g. [15, Chapter 3]). For the sake of self-
containedness, we remark that the bound in L∞(RN ) of w can be inferred from
Lemma A.3 with f1 = −V , f2 = f (m), g1 ≡ g2 ≡ h ≡ η ≡ 0. Moreover, by the
comparison principle (recall that f ≥ 0),

w ≥ w := e−T max
RN×[0,T ] V min

RN
e−uT /2 > 0,

and ∇w ∈ L2p(RN × (0, T )) by Lemma A.3 with g1 = Vw and g2 = f (m)w. Note
thatμ(0) ∈ L1(RN )∩L∞(RN ) so it belongs in particular to L2(RN ), and since ∇w

w
∈
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L2p(RN × (0, T )), 2p > N + 2, the existence of a solution μ ∈ V2(RN × (0, T )) ∩
L∞(RN × (0, T )), which is also Hölder continuous, is again standard. Moreover,
μ(t) ∈ L1(RN ) is bounded as t varies in [0, T ] (see for example [4]), and in particular∫

RN μ(t) dx = 1 for all t by Lemma A.5. By interpolation, μ ∈ L2α+1(RN × (0, T )),
so that F(m) ∈ X .

It will be useful to note that the estimates mentioned above imply that there exist
K , θ > 0 depending on M, N , T , σ, α, ||uT ||C2(RN ), ||m0||L∞(RN ), ||m0||L1(RN ),

||xm0||L1(RN ), such that for any m ∈ U

‖w‖L∞(RN×(0,T )),

∥
∥
∥
∇w

w

∥
∥
∥
L2p(RN×(0,T ))

, ‖μ‖L∞((0,T );Lq (RN )) ≤K for all q ∈ [1, +∞],

and

sup
t∈[0,T ]

∫

RN
|x |μ(x, t)dx, sup

z∈RN
‖μ‖Cθ,θ/2(B1(z)×[0,T ]) ≤ K .

The latter inequalities are crucial to deduce compactness of F(U ) in X . Indeed, let
mn be a sequence in Ū . We have, for R > 0,

sup
n

sup
t∈[0,T ]

∫

|x |≥R
μn(x, t) dx ≤ K

R
.

Since mn is bounded in L∞(RN × (0, T )), by interpolation between L1 and L∞ we
have that for all ε > 0 there exists R large such that

sup
n

‖μn‖L∞((0,T );L2α+1(RN \BR)) ≤ ε. (40)

On the other hand, the sequence μn is bounded in Cθ,θ/2(BR). Hence, by the Ascoli-
Arzelà Theorem we can extract a subsequence μnk uniformly converging to μ on
BR × [0, T ]. Note that (40) holds for μ as well by the same considerations as above.
Therefore, for any nk large enough,

‖μnk − μ‖L∞((0,T );L2α+1(BR)) ≤ ε.

A standard diagonalization arguments yields convergence of subsequences in
L∞((0, T ); L2α+1(RN )), and therefore in L2α+1(RN × (0, T )).

F is continuous.This is a standard stability argument. Pick any sequence {mn} ⊂ U
converging to m in X . Then, mα

n → mα in L p(RN × (0, T )), which by (7) implies
f (mn) → f (m) in L p(RN × (0, T )). Denoting by (mn, wn, μn) the triple solving
(39), w̃ = w − wn satisfies

−w̃t − �w̃ = w( f (m) − f (mn)) + ( f (mn) − V )w̃, w̃(T ) = 0.
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1310 M. Cirant, D. Ghilli

Then we can apply Lemma A.3 with z = w̃, f1 = −V , f2 = f (mn), g1 ≡ 0, g2 =
w( f (m) − f (mn)), and h ≡ η ≡ 0 to get

||w − wn||L∞(RN×(0,T )) ≤ C ||w( f (m) − f (mn))||L p(RN×(0,T ))

≤ CK || f (m) − f (mn)||L p(RN×(0,T )),

where C depends on K , N , T , p, σ , and again by Lemma A.3 with g1 ≡ 0, g2 =
w( f (m) − f (mn)) + ( f (mn) − V )w̃,

||∇w − ∇wn ||L2p(RN×(0,T )) ≤ C ||w( f (m) − f (mn)) + ( f (mn) − V )w̃||L p(RN×(0,T ))

≤ C(K || f (m) − f (mn)||L p(RN×(0,T )) + (σM
1
p + ‖V ‖∞)||w − wn ||L∞(RN×(0,T ))).

Therefore, wn → w in L∞(RN × (0, T )) and ∇wn → ∇w in L2p(RN × (0, T )).
Note that since w,wn ≥ w > 0 and

∇wn

wn
− ∇w

w
= 1

w
(∇wn − ∇w) + ∇wn

(
w − wn

wnw

)

,

then we also have ∇wn
wn

→ ∇w
w

in L2p(RN × (0, T )). Setting μ̃ = μ − μn , it satisfies

μ̃t − �μ̃ = −2div
(∇w

w
μ̃
) − 2div

((∇w

w
− ∇wn

wn
)μn

)
, μ̃(0) = 0,

so Lemma A.3 with f1 ≡ f2 ≡ g1 ≡ g2 ≡ 0, h = ∇w
w

and η =
(∇w

w
− ∇wn

wn

)
μn

implies

||μ − μn||L∞(RN×(0,T )) ≤ C

∥
∥
∥
∥

(∇w

w
− ∇wn

wn
)μn

∥
∥
∥
∥
L2p(RN×(0,T ))

≤ CK

∥
∥
∥
∥
∇w

w
− ∇wn

wn

∥
∥
∥
∥
L2p(RN×(0,T ))

,

where C depends on K , N , T , p, which shows that μn → μ in L∞(RN × (0, T )).
Since μn, μ are equi-bounded in L∞(0, T ; L1(RN )) we get that F(mn) = μn →
F(m) = μ in X .

F satisfies: μ = ηF(μ) for some η ∈ (0, 1) ⇒ μ /∈ ∂U . In other words, we need
to prove that if (w,μ) satisfies

⎧
⎪⎨

⎪⎩

−wt − �w = ( f (μ) − V )w in RN × (0, T ),

μt − �μ + 2div
(∇w

w
μ
) = 0 in RN × (0, T ),

μ(0) = ηm0, w(T ) = e−uT /2 on R
N .

for some η ∈ (0, 1), then
∫ T
0

∫

RN m2α+1 dxdt �= M (with v = −2 logw). To this aim,
we applyTheorem3.2.Note that Theorem3.2 requires (w,μ) to be a classical solution,
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sowe need first to set up a (standard) bootstrap procedure involving parabolic Schauder
estimates. Starting from the fact that μ = ηF(μ) belongs to Cθ,θ/2 (locally), then w

belongs to C2+θ,1+θ/2 and it is a classical solution of the first equation. Computing
the divergence term in the second equation shows that μ solves a linear equation with
coefficients in Cθ,θ/2, so μ itself belongs to C2+θ,1+θ/2. Going back to the equation
for w and iterating the procedure, one can reach any desired regularity of (w,m) that
is compatible with the regularity of uT and m0.

Theorem 3.2 gives Dδ ≤ C(σ 2D2+T ||�V ||L∞(RN )D+1) for some δ > 1, which
by the Young’s inequality implies Dδ ≤ C(σ 2D2 + 1) where C depends now also on

T ||�V ||L∞(RN ). Then, setting Y =
(∫ T

0

∫

RN m2α+1
)2
, Y δ/2 ≤ C(σ 2Y + 1) for some

δ/2 < 1, that is
Y

δ
2

C
− σ 2Y ≤ 1. (41)

Since Y �→ Y
δ
2

C − σ 2Y is concave, vanishing at Y = 0 and unbounded from below as

Y → ∞, it achieves a unique positivemaximum point (Y ∗)
δ
2

C −σ 2Y ∗. If that maximum
is bigger than one, that is when

σ ≤ σ0 =
(

δ

2C

) 2
δ
(
2

δ
− 1

) 2−δ
2

,

then (41) implies

Y < Y ∗ or Y > Y ∗,

that is
(∫ T

0

∫

RN m2α+1
)2 �= Y ∗. Note that σ0,Y ∗ depend on C and δ, that is, on N , α,

||uT ||C2(RN ), and ||m0||Lα+1(RN ). It is now clear that setting M = √
Y ∗ yields the

desired property.
We are now in the position to apply Theorem 3.1 (with C = X , p = 0), that gives

the existence of a fixed pointμ = F(μ), i.e. a couple (m, w) solving the linear system
in the classical sense. A classical solution to the MFG system can be then recovered
via the reverse change of variables u = −2 logw. ��

Remark 3.3 (Thoughts on the long-time behavior of solutions) In case V ≡ 0, Theo-
rem 1.2 states, for any fixed coupling f sufficiently “small”, the existence of solutions
to the MFG system for all T > 0. This opens the way to the study of the long-time
behavior ofm and u. Though this analysis is beyond the scopes of this paper, the proof
of Theorem 1.2 suggests that m should “vanish” as T → ∞. Indeed, m satisfies

∫ T

0

∫

RN
m2α+1(x, t) dxdt < M
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1312 M. Cirant, D. Ghilli

for some M > 0 that does not depend on T . Therefore,

∫ 1

0

∫

RN
m2α+1(x,

t

T

)
dxdt → 0 as T → ∞,

indicating thatm dissipates as T → ∞ (and hence there is no ergodic behavior). Note
also that stability of the L2α+1-norm of m as T → ∞ is sufficient to produce global
bounds on ‖m‖∞ and ‖Du‖∞; arguing as in [12], a possibly stronger “smallness”
condition on the coupling (i.e. a smallness condition on σ ) guarantees then uniqueness
of the couple (u,m) for all T .
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Appendix A. Some useful estimates

We collect in this appendix some results that are used throughout the paper. We begin
with some facts that are useful to integrate by parts on R

N .

Lemma A.1 Let t1, t2 ∈ [0, T ] and h ∈ L1(RN ×[t1, t2]). Then there exists a sequence
Rk → ∞ such that

Rk

∫ t2

t1

∫

∂BRk

|h(x, t)| dxdt → 0 as n → ∞.

Proof The proof follows the same arguments of the proof of Lemma 3.2 of [8]. We
repeat it for completeness. By the coarea formula, it holds true that

∫ t2

t1

∫

RN
|h(x, t)| dxdt =

∫ t2

t1

∫ ∞

0

∫

∂BR

|h(x, t)| dxdRdt

=
∫ ∞

0

∫ t2

t1

∫

∂BR

|h(x, t)| dxdt dR < ∞. (42)
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If, by contradiction

lim inf
R→∞ R

∫ t2

t1

∫

∂BR

|h(x, t)| dxdt = α > 0

then

R �→
∫ t2

t1

∫

∂BR

|h(x, t)| dxdt

would not be in L1(0,∞), which is not compatible with (42). ��
Lemma A.2 Suppose that Y , f ∈ C1(RN × [t1, t2]), and

f divY , Y · ∇ f ,
f |Y |

1 + |x | ∈ L1(RN × [t1, t2]).

Then, the following equality holds:

∫ t2

t1

∫

RN
divY f dxdt = −

∫ t2

t1

∫

RN
Y · ∇ f dxdt .

Note that an analogous formula holds on R
N with the Lebesgue measure dx .

Proof The integration by parts formula holds on any bounded domain of the form
BR × (t1, t2), i.e.

∫ t2

t1

∫

BR

divY f dxdt = −
∫ t2

t1

∫

BR

Y · ∇ f dxdt +
∫ t2

t1

∫

∂BR

f Y · ν dxdt .

By the previous Lemma A.1 (applied with h = f |Y |
1+|x | ), there exists a sequence R =

Rk → ∞ such that

∫ t2

t1

∫

∂BRk

f |Y | dxdt → 0 as Rk → ∞,

so that it suffices to pass to the limit Rk → ∞ in the first equality to obtain the
assertion. ��

The following lemma is a (standard) regularity result for linear parabolic equations.
Since we have not been able to find it in this precise form in the literature, we sketch
its proof for the reader’s convenience.

Lemma A.3 Suppose that z is a (bounded) weak solution of the following linear equa-
tion

zt − �z = ( f1 + f2)z + g1 + g2 + div(hz) + div(η),
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1314 M. Cirant, D. Ghilli

where f1, g1 ∈ L∞(RN × (0, T )), f2, g2 ∈ L p(RN × (0, T )) and h, η ∈ L2p(RN ×
(0, T )), for some

p >
N + 2

2
.

Then

||z||L∞(RN×(0,T ))

≤ C
(
||g1||L∞(RN×(0,T )) + ||g2||L p(RN×(0,T )) + ||η||L2p(RN×(0,T )) + ||z(0)||L∞(RN )

)
,

(43)

where C depends on f1, f2, h, N , T , p, and remains bounded for bounded values of
|| f1||L∞(RN×(0,T )), || f2||L p(RN×(0,T )), ||h||L2p(RN×(0,T )).

Suppose f1 ≡ f2 ≡ h ≡ η ≡ 0. Then

||∇z||L2p(RN×(0,T )) ≤ C
(
||g1||L∞(RN×(0,T )) + ||g2||L p(RN×(0,T )) + ||∇z(0)||L2p(RN )

)
,

(44)
where C depends on N , T , p.

Remark A.4 Note that a similar result applies to the backward equation

−zt − �z = f1z + f2z + g1 + g2 + div(hz) + div(η).

More specifically, under the same assumptions of Lemma A.3, we have the same
estimates with z(T ) in place of z(0).

Proof We start with (43). For simplicity of exposition, suppose first f1 ≡ g1 ≡ 0 and
set f2 := f , g2 := g. Denote by F = f z+g+div(hz)+div(η). We use the Duhamel
representation formula, that is

z(·, t) = z(0) ∗ G(·, t) +
∫ t

0
G(·, t − s) ∗ F(·, s) ds,

where we denote by ∗ the convolution (in space) and G(x, t) = 1

(4π t)
N
2
e− |x |2

4t is the

heat kernel. By the definition of F we have
∫ t

0
G(·, t − s) ∗ F(·, s) ds

=
∫ t

0
[G(·, t − s) ∗ ( f z + g)(·, s) + ∇G(·, t − s) ∗ (hz + η)(·, s)] ds.

Using Young’s inequality with

1

p
+ 1

q
= 1,

1

2p
+ 1

r
= 1 (45)
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we get

||z(t)||L∞(RN ) ≤ ||z(0)||L∞(RN ) +
∫ t

0
||G(t − s)||Lq (RN )[|| f z(s)||L p(RN ) + ||g(s)||L p(RN )] ds

+
∫ t

0
||∇G(t − s)||Lr (RN )[||hz(s)||L2p(RN ) + ||η(s)||L2p(RN )] ds. (46)

Denoting by S = Sτ = supt∈[0,τ ] ||z(t)||L∞(RN ), for τ > 0, the last inequality reads
for all t ∈ [0, τ ]

||z(t)||L∞(RN )

≤ ||z(0)||L∞(RN ) +
∫ t

0
||G(t − s)||Lq (RN )[S|| f (s)||L p(RN ) + ||g(s)||L p(RN )] ds

+
∫ t

0
||∇G(t − s)||Lr (RN )[S||h(s)||L2p(RN ) + ||η(s)||L2p(RN )] ds. (47)

By the Hölder inequality,

||z(t)||L∞(RN ) ≤ ||z(0)||L∞(RN ) + ||G||Lq (RN×(0,t))[S|| f ||L p(RN×(0,t)) + ||g||L p(RN×(0,t))]
+ ||∇G||Lr (RN×(0,t))[S||h||L2p(RN×(0,t)) + ||η||L2p(RN×(0,t))]. (48)

It is now standard to verify (e.g. using spherical coordinates) that, since p > N+2
2 ,

||G||Lq (RN×(0,t)) = C1t
N
2q − N

2 + 1
q =: C1t

β1 ,

||∇G||Lr (RN×(0,t)) = C2t
N
2r − N+1

2 + 1
r =: C2t

β2 , (49)

where β1, β2,C1,C2 > 0 depend on N and q, r (and therefore on p). By plugging
the above equalities into (48), we get

S ≤ ||z(0)||L∞(RN ) + S[C1τ
β1 || f ||L p(RN×(0,τ )) + C2τ

β2 ||h||L2p(RN×(0,τ ))]
+ C1τ

β1 ||g||L p(RN×(0,τ )) + C2τ
β2 ||η||L2p(RN×(0,τ )). (50)

Pick now τ = τ̄ small so that

C1τ
β1 || f ||L p(RN×(0,T )) + C2τ

β2 ||h||L2p(RN×(0,T )) ≤ 1

2
,

so that

sup
t∈[0,τ ]

||z(t)||L∞(RN ) ≤ 2||z(0)||L∞(RN ) + 2C1τ̄
β1 ||g||L p(RN×(0,τ ))

+2C2τ̄
β2 ||η||L2p(RN×(0,τ )),

which is the desired estimate (43) if T ≤ τ̄ . If T > τ̄ , it is sufficient to iterate the
estimate n times, where n is the integer part of T

τ̄
, to get the result.
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Finally, if f1 ≡/0 or g1 ≡/0, then analogous argument applies, by using in (46) the
Young’s inequality with p = ∞, q = 1, r = ∞ for the term f1z and g1.

Inequality (44) can be obtained similarly. Again we prove it in the case g1 ≡ 0
(and denoting g2 := g), the proof in the general case being easily adaptable using
Young’s inequality with 1

2p = 1
r − 1 with r ≤ 2p for the term g1 ∗ ∗∇G below. It

is convenient to rewrite the Duhamel representation formula as follows (recall that
f1 ≡ f2 ≡ h ≡ η ≡ 0),

∇z(t) = ∇z(0) ∗ G(t) + g ∗ ∗∇G(t),

where by ∗∗ we denote the convolution in space-time. By the Young inequality with
r such that (as before)

1

2p
= 1

r
+ 1

p
− 1,

we get

||∇z||L2p(RN×(0,T )) ≤ ||∇z(0) ∗ G||L2p(RN×(0,T )) + ||g ∗ ∗∇G||L2p(RN×(0,T )

≤ T
1
2p ||∇z(0)||L2p(RN ) + ||g||L p(RN×(0,T ))||∇G||Lr (RN×(0,T )).

(51)

We plug (49) into (51) and we get

||∇z||L2p(RN×(0,T )) ≤ T
1
2p ||∇z(0)||L2p(RN ) + C2T

β2 ||g||L p(RN×(0,T )),

which is the desired estimate. ��
Finally, we recall some facts on distributional solutions (and their moments) to

Fokker-Planck equations.

Lemma A.5 Let {μ(x, t)dx}t∈[0,T ] be a family of probability measures on R
N , and

b(x, t) be a measurable vector field which is μ(x, t)dxdt-integrable on RN × (0, T ).
Let μ be a distributional solution of the Fokker-Planck equation with drift b (and
diffusion), i.e.

∫

RN
ζ(x)μ(x, t) dx =

∫

RN
ζ(x)μ(x, 0) dx

+
∫ t

0

∫

RN

(
�ζ(x) + b(x, t) · ∇ζ(x)

)
μ(x, t) dxdt (52)

for all t ∈ [0, T ], ζ ∈ C∞
0 (RN ). We have

(i) If |x |μ(0) ∈ L1(RN ), then |x |μ(t) ∈ L1(RN ) for all t , and

sup
t∈[0,T ]

∫

RN
|x |μ(t, x) dx ≤ C
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for some C > 0 depending on
∫

RN |x |μ(0)dx,
∫ T
0

∫

RN |b|μdxdt, T .
(ii) In addition, if x2μ(0) ∈ L1(RN ) and |b · x |μ ∈ L1(RN × (0, T )), then x2μ(t) ∈

L1(RN ) for all t , and

∫

RN
x2μ(x, t) dx =

∫

RN
x2μ(x, 0) dx + 2Nt

∫

RN
μ(x, 0)dx

+
∫ t

0

∫

RN
b(x, t) · x μ(x, t) dxdt .

Proof (i) and (ii) heuristically follow by using |x | and x2 respectively as test functions;
since they do not belong to C∞

0 (RN ), one has to implement (standard) approximation
procedures.
To get (i), it is sufficient to use [5, Lemma 2.2] with � ∈ C∞(RN ), �(x) = |x |
outside B1(0).
As for (ii), notefirst that by [5,Lemma2.2] (with�(x) = x2), supt∈[0,T ]

∫

RN x2μ(t)dx
< ∞. To obtain the identity, note that (52) remains true for all ζ ∈ C2

b (R
N ) such that

ζ is constant outside some ball. Then, for R > 0 take any ϕR ∈ C2(R) such that
ϕR(r) = r if r ∈ [0, R], |ϕ′

R |, |ϕ′′
R | ≤ 1 and ϕR(r) = ϕR(R) for all r ≥ R + 1. Then,

using ζ(x) = ϕR(x2) in (52) reads

∫

RN
ϕR(x2)μ(x, t) dx

=
∫

RN
ϕR(x2)μ(x, 0) dx + 2

∫ T

0

∫

RN
ϕ′
R(x2)

(
N + b(x, t) · x)μ(x, t) dxdt

+ 4
∫ T

0

∫

RN
ϕ′′
R(x2)x2μ(x, t) dxdt,

and the conclusion follows taking the limit R → ∞. ��
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