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Abstract
The present paper is concerned with the half-space Dirichlet problem

−�v + v = |v|p−1v, in R
N+ ,

v = c, on ∂R
N+ , lim

xN→∞ v
(
x ′, xN

) = 0 uniformly in x ′ ∈ R
N−1, (Pc)

where R
N+ := { x ∈ R

N : xN > 0 } for some N ≥ 1 and p > 1, c > 0 are constants.
We analyse the existence, non-existence andmultiplicity of bounded positive solutions
to (Pc). We prove that the existence and multiplicity of bounded positive solutions to
(Pc) depend in a striking way on the value of c > 0 and also on the dimension N .
We find an explicit number cp ∈ (1,

√
e), depending only on p, which determines the

threshold between existence and non-existence. In particular, in dimensions N ≥ 2,
we prove that, for 0 < c < cp, problem (Pc) admits infinitely many bounded positive
solutions, whereas, for c > cp, there are no bounded positive solutions to (Pc).

1 Introduction

Due to its relevance within several models arising in physics and biology, the nonlinear
stationary Schrödinger equation

− �v + v = |v|p−1v, in R
N , (1.1)
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received extensive attention in the last four decades. In particular, let us mention that
the study of solitary wave solutions for the (focusing) NLS

i∂tϕ + �ϕ + |ϕ|p−1ϕ = 0, (t, x) ∈ R × R
N ,

is reduced to problem (1.1) via a time-harmonic ansatz. For classic existence and
multiplicity results, we refer the reader e.g. to the seminal papers [2,3,6,8,9,30,31]
and the monographs [32,34]. We also recall the fundamental works [16,24] where
the radial symmetry and uniqueness, up to translations, of positive solutions to (1.1)
satisfying the decay condition

v(x) → 0, as|x | → ∞, (1.2)

are proved in the case 1 < p < 2∗−1. Here and in the following 2∗ denotes the critical
Sobolev exponent, i.e. 2∗ = 2N

N−2 for N ≥ 3 and 2∗ = 2∗ − 1 = ∞ for N = 1, 2.
In particular, these results imply the uniqueness, up to translations, of positive finite
energy solutions u ∈ H1(RN ). In contrast, for N ≥ 2, (1.1) admits an abundance
of sign-changing finite energy solutions satisfying (1.2), see e.g. [2,3,27,28] and the
references therein.Moreover,more recent geometric constructions of different solution
shapes highlight the rich structure of the set of positive solutions which do not satisfy
the decay assumption (1.2), see e.g. [1,11,26,28] and the references therein.

Whereas it seems impossible to provide an exhaustive list of references for the full
space problem (1.1), much less is known regarding the half-space Dirichlet problem

{ −�v + v = |v|p−1v, in R
N+ ,

v = c, on ∂R
N+ ,

(1.3)

where R
N+ := {x ∈ R

N : xN > 0} for some N ≥ 1 and c ≥ 0 is a constant. In the
case c = 0, general nonexistence results are available for (1.3). More precisely, the
non-existence of finite energy solutions u ∈ H1

0 (RN+) to (1.3) in the case c = 0 follows
from [14, Theorem I.1], while [4, Corollary 1.3] yields, in particular, the non-existence
of positive solutions to (1.3) with c = 0 and the the decay property

lim
xN→∞ v(x ′, xN ) = 0, uniformly in x ′ ∈ R

N−1. (1.4)

The aim of the present paper is to analyse the existence, non-existence and multi-
plicity of bounded positive solutions v to the problem (1.3)–(1.4) in the case c > 0,
for which we are not aware of any previous result in general dimensions N . As we
shall see below, the multiplicity of positive solutions depends in a striking way on the
value c > 0 and, somewhat surprisingly, also on the dimension N . Let us stress that
we cannot expect the existence of finite energy solutions u ∈ H1(RN+) to (1.3) in the
case N ≥ 2. Actually, we cannot expect solutions to (1.3) belonging to L p(RN+) for
any 1 ≤ p < ∞. The one-dimensional decay condition (1.4) therefore seems natural.

The consideration of inhomogeneous Dirichlet boundary conditions as in (1.3)
is to some extend motivated by recent works on pattern formation in biological and
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chemical models. For instance, in [23], the authors numerically show that, for different
types of reaction-diffusion systems, the pattern formation can be isolated away from
the boundary using this type of boundary conditions. Moreover, within a rigorous
analysis of some of these models in an asymptotically small diffusivity ratio, one may
expect that the equation of the limiting profile is precisely (1.3) with c > 0. This
is indeed the case for the Gierer–Meinhardt system considered in [19]. As one can
observe in [19, Sect. 2], the homoclinic solution w0( · + tc,p) (see (1.6) and (1.7)
below) plays a key role in the construction of multi-spike patterns for this model.

Not surprisingly, problem (1.3) is completely understood in the case N = 1. This
is due to the fact that the one-dimensional equation

− w′′ + w = w p, (1.5)

admits a first integral, and from this one can easily deduce that, for 1 < p < ∞,
(1.5) admits, up to sign and translation, a unique global non trivial solution satisfying
w(t) → 0 as t → ±∞. See e.g. [8, Theorem 5], [34, Theorem 3.16] and [22, Theorem
1.2] where, in addition, the Mountain-Pass characterization of this unique solution is
established. By direct computations, one can verify that this solution is precisely given
by

t 
→ w0(t) = cp

[
cosh

(
p − 1

2
t

)]− 2
p−1

,

with cp :=
(
p + 1

2

) 1
p−1 = w0(0) = sup

t∈R
w0(t).

(1.6)

As we shall see below, the value cp will be of key importance also for the higher
dimensional version of (1.3). The following complete characterization of the one
dimensional case is an immediate consequence of these facts.

Proposition 1.1 Let N = 1, p > 1 and c > 0. Then:

(i) If 0 < c < cp, problem (1.3)–(1.4) admits exactly two positive solutions given by
t 
→ w0(t + tc,p) and t 
→ w0(t − tc,p), where

tc,p := 2

p − 1
ln

(√
p + 1

2cp−1 +
√

p + 1

2cp−1 − 1

)

. (1.7)

(ii) If c = cp, the function w0 is the unique positive solution to (1.3)–(1.4).
(iii) If c > cp, problem (1.3)–(1.4) does not admit solutions.

Our main results concern dimensions N ≥ 2. In this case, problem (1.3)–(1.4) is
invariant under translations and rotations parallel to the boundary ∂R

N+ = R
N−1. In

particular, if N ≥ 2 and v is a positive solution to (1.3)–(1.4), then the functions
x 
→ v(x ′ + τ, xN ), τ ∈ R

N−1 are also solutions to (1.3)–(1.4), where, here and in
the following, we write x = (x ′, xN ) for x ∈ R

N+ with x ′ ∈ R
N−1. In the following,
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we call two solutions geometrically distinct if they do not belong to the same orbit of
solutions under translations and rotations in R

N−1.
Our first main result reads as follows.

Theorem 1.2 Let N ≥ 2, p > 1 and c > 0. Then:

(i) If 0 < c < cp, there exist at least three geometrically distinct bounded positive
solutions to (1.3)–(1.4).

(ii) If c > cp, there are no bounded positive solutions to (1.3)–(1.4).

Remark 1.1 (a) By a bounded positive solution to (1.3)–(1.4), we mean a positive

function v ∈ C2(RN+)∩C(RN+)∩ L∞(RN+) satisfying (1.3) in the pointwise sense
and such that (1.4) holds.

(b) The nonexistence part (ii) of Theorem 1.2 is proved with a variant of the sliding
method based on a comparison with xN -translates of the function x 
→ w0(xN ).
We shall comment on this in more detail further below.

(c) Aswehave indicated above already, Theorem1.2 (i) highlights the rich structure of
solutions to (1.3)–(1.4) in the case N ≥ 2, 0 < c < cp, which is in striking contrast
to the case N = 1. Indeed, Theorem 1.2 (i) yields, in addition to the two one-
dimensional profile solutions x 
→ w0(xN + tc,p) and x 
→ w0(xN − tc,p) at least
one further geometrically distinct solution which is not merely a function of the
xN -variable. Hence, by the remarks above, this one solution gives rise to an infinite
number of positive solutions via translations parallel to the boundary ∂R

N+ =
R

N−1. In Corollary 1.4 below, we shall derive more precise lower estimates on
the number of geometrically distinct solutions depending on the exponent p and
the dimension N .

(d) It suffices to prove Theorem 1.2 (i) in the case N = 2 since every positive solution
v to (1.3)–(1.4) in the case N = 2 gives rise to a corresponding solution ṽ to (1.3)–
(1.4) in general dimension N ≥ 3 by simply setting ṽ(x) = v(x1, xN ).

(e) It remains as an interesting open question whether the function x 
→ w0(xN ) is
the unique bounded positive solution to (1.3)–(1.4) in the case c = cp. At first
glance, it seems natural to establish such a uniqueness result also with the help of
a sliding argument as mentioned in (b) above, but additional difficulties appear in
the case c = cp, and non-uniqueness remains a possibility for now.

The following result provides some information on the shape of the solutions we
construct.

Theorem 1.3 Let N ≥ 2, 1 < p < 2∗ −1 and 0 < c < cp. Then there exists a positive
solution to (1.3)–(1.4) of the form

x 
→ w0
(
xN + tc,p

) + u(x), (1.8)

with a nonnegative function u ∈ H1
0 (RN+)\{0}.

By the remarks above and since all exponents p < ∞ are subcritical in the case
N = 2, Theorem 1.3 implies Theorem 1.2 (i) in the case N = 2 and therefore for all
N ≥ 2. It also allows us to distinguish different solution orbits under translations and
rotations in R

N−1.
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Corollary 1.4 Let N ≥ 3, 1 < p < M+2
M−2 for some M ∈ {3, . . . , N } and 0 < c <

cp. Then problem (1.3)–(1.4) admits at least M + 1 geometrically distinct positive
solutions.

This result is a rather immediate corollary of Theorem 1.3. Indeed, under the given
assumptions, for every dimension Ñ ∈ {2, 3, . . . , M}, Theorem 1.3 yields the exis-
tence of a solution to (1.3)–(1.4) of the form

x 
→ w0
(
xÑ + tc,p

) + u
(
x1, . . . , xÑ−1, xÑ

)

with a nonnegative u ∈ H1
0 (RÑ+)\{0}. Clearly, theseM−1 solutions are geometrically

distinct, and they are also geometrically distinct from the two one-dimensional profile
solutions.

It is natural to guess that the change of the solution set when passing from c > cp to
c < cp is a bifurcation phenomenon. More precisely, one may guess that the solutions
constructed in Theorem 1.3 have the property that u = uc → 0 ∈ H1

0 (RN+) as c ↗ cp
for the functions u in the ansatz (1.8). This remains an open question, and the answer
could even depend on the value of p. We note that standard results from bifurcation
theory do not apply here since the linearized problem

{ −�v + v − p|w0(xN )|p−1v = 0 in R
N+ ,

v = 0 on ∂R
N+ ,

at the parameter value c = cp has purely essential spectrum due to its invariance with
respect to translations in directions parallel to the boundary ∂R

N+ = R
N−1. Bifurcation

from the essential spectrum has been observed successfully in other contexts (see e.g.
the survey paper [33] and the references therein), but there is still no general functional
analytic framework which provides sufficient abstract conditions.

We now give some ideas of the proof of Theorem 1.3. For this we fix c ∈ (0, cp)
and define the functions

t 
→ zc(t) := w0
(
t + tc,p

)
and t 
→ z̃c(t) := w0

(
t − tc,p

)
,

where tc,p is given in (1.7). We recall that zc and z̃c are the unique positive solutions

to (1.5) such that zc(0) = z̃c(0) = c. Moreover, we define uc : R
N+ → R and

ũc : R
N+ → R as

uc(x) := zc(xN ) and ũc(x) := z̃c(xN ), (1.9)

and we directly notice that uc and ũc are both solutions to (1.3)–(1.4). Furthermore, it
follows that

uc(x) = O
(
e−xN

)
and ũc(x) = O

(
e−xN

)
, as xN → ∞. (1.10)
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Proving Theorem 1.3 now amounts to find a nonnegative solution u ∈ H1
0 (RN+)\{0}

to the non-autonomous Schrödinger type equation

− �u + u = f (x, u), u ∈ H1
0 (RN+), (1.11)

with
f (x, s) := |uc(x) + s| p−1 (uc(x) + s) − (uc(x))

p , (1.12)

because in this case v = uc + u is of the form (1.8), solves (1.3) and it is easy to see
that also satisfies (1.4). Since we are interested in finding non-negative solutions to
(1.11), we truncate the nonlinearity and define

g(x, s) := (
uc(x) + s+) p − (uc(x))

p =
{

f (x, s), if s ≥ 0,

0, if s ≤ 0,
(1.13)

with f given in (1.12). We then consider the auxiliary problem

− �u + u = g(x, u), u ∈ H1
0 (RN+). (1.14)

Considering u− ∈ H1
0 (RN+) as test function in (1.14), one can easily check that every

solution to (1.14) is non-negative and so, that every solution to (1.14) is a non-negative
solution to (1.11). It might be worth pointing out that the one-dimensional function
ũ := ũc − uc ∈ C2(RN+) is a positive solution to the equation in (1.14) and also
satisfies ũ = 0 on ∂R

N+ . However, ũ /∈ H1
0 (RN+) since it only depends on the xN

variable. Hence, ũ is not a solution to (1.14).
We shall look for a non-trivial solution to (1.14) as a critical point of the associated

functional

E : H1
0 (RN+) → R, E(u) = 1

2

∫

R
N+

(
|∇u|2 + u2

)
dx −

∫

R
N+
G(x, u)dx, (1.15)

where

G(x, u) :=
∫ u

0
g(x, s)ds = 1

p + 1

((
uc + u+)p+1 − u p+1

c − (p + 1)u p
c u

+)
.

(1.16)
More precisely, we are going to prove the existence of a non-trivial critical point of
mountain pass type. This requires new and subtle estimates. The key difficulties in the
variational approach are the non-standard shape of the nonlinearity g in (1.14) and the
lack of compactness due to the unboundedness of R

N+ . To overcome these difficulties,
we need new estimates within the analysis of Cerami sequences and for comparing
the mountain pass energy value for E with the corresponding one of the limit energy
functional

E∞ : H1(RN ) → R, E∞(u) = 1

2

∫

RN

(
|∇u|2 + u2

)
dx− 1

p + 1

∫

RN
|u| p+1dx .

(1.17)
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In particular, we shall use the asymptotic decay properties of the unique positive radial
solution to (1.1) in order to build suitable test functions.

We wish to mention two further open problems at this stage. First, one may ask
whether Theorem 1.3 extends to the critical case N ≥ 3, p = 2∗ − 1. In this case, the
mountain pass geometry of the functional E remains, but the lack of compactness is
more severe as it is not only caused by the unboundedness of R

N+ but also by possible
point concentration of bounded Cerami sequences. Indeed, while the limit energy
functional E∞ in (1.17) does not admit critical points in the case p = 2∗ by Pohozaev’s
identity (see e.g. [34, Corollary B.4]), rescaling bounded Cerami sequences around
possible concentration points leads to critical points of the Yamabe functional u 
→
1
2

∫
RN |∇u|2 dx− 1

2∗
∫
RN |u|2∗

dx . It therefore seemsnatural to build test functions from

translated and concentrated instantons x 
→ [N (N −2)ε2] N−2
4

(
ε2+|x−x∗|2

)− N−2
2 in

order to estimate the mountain pass energy. However, since our estimates rely on the
precise exponential decay rate of the unique positive radial solution to (1.1) as given
in (4.6), they do not apply to instantons. Hence the case p = 2∗ remains a problem
for future research.

The second open problem concerns the existence of solutions of the form x 
→
w0(xN − tc,p)+ u(x) with u ∈ H1

0 (RN+)\{0}. In this case, uc has to be replaced by ũc
in the definition of the nonlinearity G in (1.16). One may observe that the mountain
pass geometry is lost in this case, and the presence of essential spectrum leads to
additional difficulties which seem hard to deal with.

We now comment on the proofs of the non-existence part (ii) of Theorem 1.2. We
argue by contradiction and use a suitable modification of the so-called sliding method
introduced by H. Berestycki and L. Nirenberg and further developed by H. Berestycki,
L. Caffarelli and L. Nirenberg among others. Specifically, our proofs are inspired by
[15, Sect. 2] and [7, Sect. 4].

We finally comment on the boundedness of positive solutions to (1.3)–(1.4). As
stated in the following proposition, all the positive solutions to (1.3)–(1.4) are bounded
in the case where 1 < p < 2∗ − 1. Hence, the fact that we are considering bounded
solutions is not a restriction in this case.

Proposition 1.5 Let N ≥ 2, 1 < p < 2∗ − 1 and c > 0. Any positive v ∈ C2(RN+) ∩
C(RN+)-solution to (1.3)–(1.4) belongs to L∞(RN+).

The proof of Proposition 1.5 follows by a rather standard blow up argument based
on the doubling lemma by P. Poláčik, P. Quittner and P. Souplet in [29]. For the
convenience of the reader, we include the proof in Sect. 5 below.

Organization of the paper

In Sect. 2, we collect estimates related to the nonlinearity g in (1.13) and the functional
E associated with (1.14). With the help of these estimates, we establish the mountain
pass geometry of E in Sect. 3, and we show that Cerami sequences at nontrivial
energy levels are bounded and admit nontrivial weak limits after suitable translation.
In Sect. 4, we then prove a key energy estimatewhich shows that, in dimensions N ≥ 2,
the mountain pass energy of the functional E is strictly smaller than the corresponding

123



368 A. J. Fernández, T. Weth

one for the limit energy functional E∞ given in (1.17). With the help of this energy
estimate, we then complete the proof of Theorem 1.3 in Sect. 5. Finally, we give the
proof of Theorem 1.2 (ii) in Sect. 6.

Notation

For 1 ≤ p < ∞, we let ‖ · ‖L p(RN+ ) denote the standard norm on the usual Lebesgue

space L p(RN+). The Sobolev space H1
0 (RN+) is endowed with the standard norm

‖u‖2 =
∫

R
N+

(
|∇u|2 + |u|2

)
dx .

Also, for a function v, we define v+ := max{v, 0} and v− := max{−v, 0} and we
write x = (x ′, xN ) for x ∈ R

N+ with x ′ ∈ R
N−1. We denote by ′ →′, respectively

by ′⇀′, the strong convergence, respectively the weak convergence in corresponding
space and denote by BR(x) the open ball in R

N of center x and radius R > 0. Also,
we shall denote by Ci > 0 different constants which may vary from line to line but
are not essential to the analysis of the problem. Finally, at various places, we have
to distinguish the cases p ≤ 2 and p > 2. For this it is convenient to introduce the
special constant

1{p>2} :=
{
0, p ≤ 2,

1, p > 2.

2 Preliminaries

In this section we collect some estimates related to the transformed nonlinearity g
defined in (1.13), its primitive G and the functional E defined in (1.15). For this we
fix, throughout Sects. 2–5, c ∈ (0, cp), p ∈ (1, 2∗ − 1), and we let uc be given in
(1.9). We recall that we have the uniform estimate

0 ≤ uc ≤ cp in R
N+ . (2.1)

We start with an elementary inequality for nonnegative real numbers which will be
used in the energy estimates in Sect. 4 below.

Lemma 2.1 For every q > 2 there exists κq > 0 with

(a + b)q − aq − bq ≥ qaq−1b + κqab
q−1 for all a, b ≥ 0. (2.2)

Remark 2.1 If q ≥ 3, then (2.2) holds in symmetric form with κq = q, see e.g. [20,
Theorem 1]. If q ∈ (2, 3), it is easy to see that one has to choose κq < q.
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Proof We first note that, since q − 1 > 1, we have, by convexity of the function
τ 
→ (1 + τ)q−1,

(s + t)q−1 −
(
sq−1 + tq−1

)
= sq−1

[(
1 + t

s

)q−1

−
(

1 +
(
t

s

)q−1
)]

≥ sq−1

(

(q − 1)
t

s
−

(
t

s

)q−1
)

= (q − 1)tsq−2 − tq−1 (2.3)

for s ≥ t > 0. Now, to prove the claim, it suffices to consider a, b > 0, since the
inequality holds trivially if a = 0 or b = 0. Moreover, it suffices to prove that the
inequality holds for b ≥ a > 0 with some κq ∈ (0, q], since then it also follows for
arbitrary a, b > 0. For fixed a > 0, we consider the function

	 : [0,∞) → R, 	(t) = (a + t)q − aq − tq − qaq−1t

Then we have 	(0) = 0 and

	′(t) = q
[
(a + t)q−1 −

(
aq−1 + tq−1

)]

Consequently, by (2.3) we have, for b ≥ a,

	(b) =
∫ a

0
	′(t) dt +

∫ b

a
	′(t) dt ≥ q

[∫ a

0

(
(q − 1)taq−2 − tq−1

)
dt

+
∫ b

a

(
(q − 1)atq−2 − aq−1

)
dt

]

= qa
(
κq,1a

q−1 + bq−1 − aq−2b
)

with κq,1 := q − 1

2
− 1

q
> 0.

Since, by Young’s inequality,

aq−2b ≤ q − 2

q − 1
aq−1 + 1

q − 1
bq−1,

we deduce that

	(b) ≥ qa

[(
κq,1 − q − 2

q − 1

)
aq−1 + q − 2

q − 1
bq−1

]
.
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If κq,1 ≥ q−2
q−1 , we conclude that 	(b) ≥ q(q−2)

q−1 abq−1. On the other hand, if 0 <

κq,1 <
q−2
q−1 , we use again that b ≥ a and conclude that

	(b) ≥ qa

[(
κq,1 − q − 2

q − 1

)
bq−1 + q − 2

q − 1
bq−1

]
= qκq,1ab

q−1.

Hence, (2.2) holds for b ≥ a > 0 with κq = q min{ q−2
q−1 , κq,1} ∈ (0, q). The proof is

finished. ��
Next we provide basic but important estimates for the nonlinearity g defined in

(1.13) and its primitive G.

Lemma 2.2

(i) For (x, s) ∈ R
N+ × R we have

0 ≤ g(x, s) − s+ puc(x)
p−1 ≤ C1,p

[
s+] p + 1{p>2}C2,p

[
s+]2

, (2.4)

and

0 ≤ G(x, s)− p

2

[
s+]2

uc(x)
p−1 ≤ C1,p

p + 1

[
s+]p+1 +1{p>2}

C2,p

3

[
s+]3

, (2.5)

with C1,p := 1 + 2p−3 p(p − 1) and C2,p := p(p − 1)2p−3cp p−2.
(ii) Let

H(x, s) := 1

2
g(x, s)s − G(x, s) for x ∈ R

N+ , s ∈ R.

Then we have

H(x, s) ≥ max

{
0 ,

p − 1

2(p + 1)

[
s+]p+1 − uc(x)

p−1D1,p
[
s+]2

−uc(x) 1{p>2}D2,p
[
s+]p}

(2.6)

with D1,p := p(p−1)
p+1

(
1 + 2p−2

)
and D2,p := p2p−2

p+1 .

Moreover, the function H(x, ·) is non-decreasing in s for every x ∈ R
N+ .

Remark 2.2 The constants Ci,p and Di,p, i = 1, 2, are not optimal. However, this
choice simplifies the presentation. Moreover, they do not play an important role in our
proofs below.

Proof of Lemma 2.2 (i) Since g(·, s) ≡ 0 and G(·, s) ≡ 0 for s ≤ 0, it suffices to
consider s > 0. Fix x ∈ R

N+ . Since g(x, ·) is of class C1 on (0,∞), we have
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The nonlinear Schrödinger equation in the half-space 371

g(x, s) = (uc(x) + s)p − uc(x)
p (2.7)

= spuc(x)
p−1 + p

∫ s

0

[
(uc(x) + τ)p−1 − uc(x)

p−1
]
dτ, for s > 0.

We now distinguish two cases. If p ∈ (1, 2], we have

0 ≤ (a + τ)p−1 − a p−1 ≤ τ p−1 for τ > 0, a ≥ 0,

and therefore, if p ∈ (1, 2],

0 ≤ g(x, s) − spuc(x)
p−1 ≤ p

∫ s

0
τ p−1 dτ ≤ s p, for s ≥ 0. (2.8)

If p > 2, we have

0 ≤ (a + τ)p−1 − a p−1 ≤ (p − 1)τ (a + τ)p−2, for τ > 0, a ≥ 0,

by the convexity of the function a 
→ (a + τ)p−1 and therefore, using also (2.1),

0 ≤ g(x, s) − spuc(x)
p−1 ≤ p

∫ s

0

[
(uc(x) + τ)p−1 − uc(x)

p−1
]
dτ

≤ p(p − 1)
∫ s

0
τ(uc(x) + τ)p−2 dτ ≤ p(p − 1)

2
s2 (uc(x) + s)p−2

≤ p(p − 1)

2
s2

(
cp + s

)p−2
.

Note also that, since p > 2,

(cp + s)p−2 ≤ (
2max{cp, s}

)p−2 ≤ (2cp)
p−2 + (2s)p−2, for s ≥ 0. (2.9)

Consequently, if p > 2,

0 ≤ g(x, s)−spuc(x)
p−1 ≤ 2p−3 p(p−1)s p+ p(p−1)2p−3cp

p−2s2, for s ≥ 0.
(2.10)

Now (2.4) follows by combining (2.8) and (2.10). Moreover, (2.5) follows by inte-
grating (2.4).

(ii) We first note that H(x, s) ≡ 0 for all s ≤ 0. Thus, we just have to prove the
result for s > 0. Directly observe that, for all x ∈ R

N+ , we have H(x, ·) ∈ C1(R) and

∂

∂s
H(x, s) = p

2
(uc(x) + s)p−1 s + 1

2
(uc(x) + s)p − 1

2
u p
c (x) − (uc(x) + s)p + u p

c (x)

= 1

2

[
p (uc(x) + s)p−1 s − (uc(x) + s)p + u p

c (x)
]

for (x, s) ∈ R
N+ × (0, +∞).

On the other hand, since p > 1, we have, by the mean value theorem,

(uc(x) + s)p − u p
c (x) ≤ p (uc(x) + s)p−1 s for (x, s) ∈ R

N+ × (0,+∞).
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Hence ∂
∂s H(x, s) ≥ 0 for all s > 0, so the function H(x, ·) is non-decrasing in

s ∈ [0,∞). This also implies that H(x, s) ≥ 0 for s ≥ 0. It thus remains to prove
(2.6) for s ≥ 0. For this we first note that

H(x, s) = g(x, s)s

2
− G(x, s) = 1

2

(
(uc(x) + s)p − uc(x)

p) s

− 1

p + 1

(
(uc(x) + s)p+1 − uc(x)

p+1 − (p + 1)uc(x)
ps

)

=
(
1

2
− 1

p + 1

) (
(uc(x) + s)p − uc(x)

p) s

− 1

p + 1

(
(uc(x) + s)p − uc(x)

p − puc(x)
p−1s

)
uc(x)

≥ p − 1

2(p + 1)
s p+1 − 1

p + 1
uc(x)

(
g(x, s) − spuc(x)

p−1) .

It therefore remains to show that

uc(x)
(
g(x, s) − spu p−1

c (x)
)

≤ (p + 1)
(
u p−1
c (x) D1,ps

2

+uc(x) 1{p>2}D2,ps
p) , for s > 0.

(2.11)

By (2.7) and integration by parts we have

uc(x)
(
g(x, s) − spu p−1

c (x)
)

= puc(x)
∫ s

0

[
(uc(x) + τ)p−1 − uc(x)

p−1
]
dτ

= p(p − 1)uc(x)
∫ s

0
(s − τ)

[
(uc(x) + τ)p−2

]
dτ.

(2.12)

If p ∈ (1, 2], we have (uc(x) + τ)p−2 ≤ uc(x)p−2 for τ > 0 and therefore

uc(x)
(
g(x, s) − spuc(x)

p−1
)

≤ p(p − 1)u p−1
c (x)

∫ s

0
(s − τ) dτ ≤ p(p − 1)u p−1

c (x)s2. (2.13)

If p > 2, arguing as (2.9), we have

(uc(x) + τ)p−2 ≤ 2p−2
(
u p−2
c (x) + τ p−2

)
, for τ ≥ 0,

and therefore (2.12) yields
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uc(x)
(
g(x, s) − spuc(x)

p−1
)

≤ 2p−2 p(p − 1)uc(x)
∫ s

0
(s − τ)

[
u p−2
c (x) + τ p−2

]
dτ

= 2p−2 p(p − 1)uc(x)

(
u p−2
c (x)

∫ s

0
(s − τ)dτ +

∫ s

0
(s − τ)τ p−2dτ

)

≤ 2p−2 p(p − 1)u p−1
c (x) s2 + 2p−2 puc(x) s

p, for s > 0. (2.14)

Now (2.11) follows by combining (2.13) and (2.14). The proof is finished. ��
Remark 2.3 (a) From the growth estimates given in Lemma 2.2 (i) and the fact that

g is continuous, it follows in a standard way that the functional E is well-defined
on H1

0 (RN+) and of class C1.
(b) Part (ii) of Lemma 2.2 will be useful in the analysis of Cerami sequences of the

functional E , see Sect. 3 below.

Next, we consider the quadratic form qc : H1
0 (RN+) → R given by

qc(u) :=
∫

R
N+

(
|∇u|2 + Vc(x)u

2
)
dx, (2.15)

with
Vc(x) := 1 − pu p−1

c (xN ) ∈ L∞(RN+). (2.16)

As we show in the following lemma, qc is positive definite on H1
0 (RN+).

Proposition 2.3 We have

q̃c := inf
u∈H1

0

(
R
N+

)\{0}
qc(u)

‖u‖2 > 0. (2.17)

Remark 2.4 (a) Recall that we are using the shortened notation ‖u‖2 = ∫
R
N+

(|∇u|2+
|u|2) dx .

(b) From Proposition 2.3 it follows that (qc(·))1/2 is an equivalent norm to ‖ · ‖ in
H1
0 (RN+).

Proof of Lemma 2.2 Since Vc ∈ L∞(RN+), it suffices to show there exists C > 0 such
that

qc(u) ≥ C‖u‖2
L2(RN+ )

for all u ∈ H1
0

(
R

N+
)

. (2.18)

Indeed, if (2.18) holds, then for δ ∈ (0, 1) we have

qc(u) ≥ δqc(u) + (1 − δ)C‖u‖2
L2

(
R
N+

) ≥ δ‖u‖2 + [(1 − δ)C

−δ
(
1 + ‖Vc‖L∞(

R
N+

)
)]

‖u‖2
L2

(
R
N+

).

Choosing δ sufficiently small, we have (1 − δ)C − δ
(
1 + ‖Vc‖L∞(RN+ )

) ≥ 0 and
therefore (2.17) holds with q̃c ≥ δ.
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To show (2.18), we first consider the case N = 1. Arguing by contradiction, we assume
that

λ := inf
{
qc(u) : u ∈ H1

0 (R+) and ‖u‖L2(R+) = 1
}

≤ 0,

(note that λ > −∞ since Vc ∈ L∞(R+)). Then, there exists a sequence (un)n such
that ‖un‖L2(R+) = 1 for all n ∈ N and qc(un) → λ as n → ∞. Hence, (un)n is a
bounded sequence in H1

0 (R+), and thus un⇀u∗ weakly in H1
0 (R+) after passing to a

subsequence. Moreover, with vn := un −u∗, we have vn⇀0 in H1
0 (R+) and therefore

vn → 0 in L2
loc(R+). Since Vc(t) → 1 as t → ∞, this implies that

qc (vn) ≥
∫

R+
Vc(t)v

2
n dt ≥ ‖vn‖2L2(R+)

+ o(1), as n → ∞,

and therefore

λ + o(1) = qc(un) = qc(u∗) + qc(vn) + o(1)

≥ λ‖u∗‖2L2(R+)
+ ‖vn‖2L2(R+)

+ o(1)

= λ
(
‖u∗‖2L2(R+)

+ ‖vn‖2L2(R+)

)

+ (1 − λ)‖vn‖2L2(R+)
+ o(1)

= λ + (1 − λ)‖vn‖2L2(R+)
+ o(1)

It thus follows that vn → 0 in L2(R+) and hence un → u∗ in L2(R+), which yields
that ‖u∗‖L2 = 1. Moreover, by weak lower semicontinuity of qc and the definition
of λ, it follows that qc(u∗) = λ, so u∗ is a constrained minimizer for qc. A standard
argument (based on replacing u∗ by |u∗|) shows that u∗ ∈ H1

0 (R+) is a positive or
negative solution of

−u′′∗ + Vc(t)u∗ = λu∗ inR+, u∗(0) = 0.

Without loss of generality, we may assume that u∗ is positive, which implies that
u′∗(0) > 0. We also recall that w∗ := −u′

c satisfies

−w′′∗ + Vc(t)w∗ = 0 inR+, w∗ > 0 inR+.

Consequently, we have

0 ≤ −λ

∫

R+
w∗u∗ dx =

∫

R+

(
w∗u′′∗ − u∗w′′∗

)
dx = −w∗(0)u′∗(0) < 0,

a contradiction. Hence, we conclude that (2.18) holds in the case N = 1. To show
(2.18) for general N ≥ 2, we remark that, by density, we only have to show it for
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u ∈ C∞
c (RN+). For any such function we then have, writing x = (x ′, t) ∈ R

N+ with
x ′ ∈ R

N−1, t > 0:

qc(u) ≥
∫

R
N+

(
|∂t u|2 + Vcu

2
)
dx

=
∫

RN−1

∫

R+

(
|∂t u(x ′, t)|2 + Vcu

2(x ′, t)
)
dtdx ′

≥ C
∫

RN−1

∫

R+
u2(x ′, t) dtdx ′ = C‖u‖2

L2
(
R
N+

).

Here we have used the result in the case N = 1 and the fact that u(x ′, ·) ∈ C∞
c (R+) ⊂

H1
0 (R+) for every x ′ ∈ R

N−1. We thus have proved (2.18) for general N ≥ 1, and
the proof is complete. ��

Having at hand Proposition 2.3, we prove a lower estimate on the functional E
given in (1.15) that will be useful at several points below.

Corollary 2.4 We have

E(u) ≥ q̃c
2

‖u‖2 − C1,p

p + 1
‖u‖p+1

L p+1(RN+ )
− 1{p>2}

C2,p

3
‖u‖3

L3(RN+ )
for all u ∈ H1

0 (RN+).

with q̃c given in (2.17) and C1,p,C2,p given in Lemma 2.2 (i).

Proof For all u ∈ H1
0 (RN+), we have, by (2.5) and Proposition 2.3,

E(u) = 1

2
‖u‖2 −

∫

R
N+
G(x, u)dx

≥ 1

2
‖u‖2 − 1

2

∫

R
N+
pu p−1

c
(
u+)2

dx − C1,p

p + 1
‖u+‖p+1

L p+1(RN+ )
− 1{p>2}

C2,p

3
‖u+‖3

L3(RN+ )

≥ 1

2
qc(u) − C1,p

p + 1
‖u‖p+1

L p+1(RN+ )
− 1{p>2}

C2,p

3
‖u‖3

L3(RN+ )

≥ q̃c
2

‖u‖2 − C1,p

p + 1
‖u‖p+1

L p+1(RN+ )
− 1{p>2}

C2,p

3
‖u‖3

L3(RN+ )
.

��

3 Mountain-pass geometry and boundedness of the Cerami
sequences

This section is devoted to show that the functional E has a Mountain-pass geometry
and that, for any d ∈ R, the Cerami sequences for E and level d are bounded. We
keep using the notation of the introduction and of Sect. 2, which depends on the fixed
quantities c ∈ (0, cp) and p ∈ (1, 2∗ − 1). We begin by proving that the functional E
has indeed a Mountain-pass geometry.
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Lemma 3.1 The functional E has the following properties.

(i) E(0) = 0.
(ii) There exist ρ0 > 0 and δ0 > 0 such that E(u) ≥ δ0 for all u ∈ H1

0 (RN+) such
that ‖u‖ = ρ0.

(iii) There exists ψ ∈ H1
0 (RN+) such that ‖ψ‖ > ρ0 and E(ψ) < 0.

Proof Since (i) is obvious, we concentrate on proving (ii) and (iii). We first prove (ii).
Let u ∈ H1

0 (RN+) with ‖u‖ = ρ0. By Corollary 2.4, we have

E(u) ≥ q̃c
2

ρ2
0 − C1,p

p + 1
‖u‖p+1

L p+1(RN+ )
− 1{p>2}

C2,p

3
‖u‖3

L3(RN+ )
.

Applying then Sobolev embeddings, we deduce that

E(u) ≥ q̃c
2

ρ2
0 − C

(
ρ
p+1
0 + 1{p>2}ρ3

0

)
,

with a constant C > 0. Since p > 1, Claim (ii) follows by taking ρ0 sufficiently
small. It then remains to prove (iii). Let ϕ ∈ C∞

c (RN+) with ϕ � 0 and ψ := tϕ with
t ∈ (0,+∞). Directly observe that

E(ψ) = t2

2
‖ϕ‖2 + t

∫

R
N+
u p
c ϕdx − 1

p + 1

∫

R
N+

(
(uc + tϕ)p+1 − u p+1

c

)
dx

Then, since

∫

R
N+

(
(uc + tϕ)p+1 − u p+1

c

)
dx ≥ t p+1‖ϕ‖p+1

L p+1(RN+ )
,

we have that

E(ψ) ≤ t2

2
‖ϕ‖2 + tcp‖ϕ‖L1(RN+ ) − t p+1

p + 1
‖ϕ‖p+1

L p+1(RN+ )
.

Claim (iii) follows taking t sufficiently large and thus the proof is complete. ��
We now prove the boundedness of Cerami sequences of the functional E .

Proposition 3.2 Cerami sequences for E at any level d ∈ R are bounded.

Remark 3.1 (a) Recall that (ϕn)n ⊂ H1
0 (RN+) is a Cerami sequence for E at level

d ∈ R if

E(ϕn) → d and (1 + ‖ϕn‖) ‖E ′(ϕn)‖H−1(RN+ ) → 0.

(b) The proof of Proposition 3.2 is inspired by [21, Sect. 3]. However, since our
problem is not invariant under translations in R

N and our nonlinearity g has a
non-standard shape, several difficulties appear.
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Proof of Proposition 3.2 Let d ∈ R be an arbitrary but fixed constant and let (un)n ⊂
H1
0 (RN+) be a Cerami sequence for E at level d ∈ R. First of all, observe that

‖u−
n ‖2 = −〈E ′(un), u−

n 〉 → 0, as n → ∞.

In particular, we deduce that (u−
n )n is bounded. It then remains to prove that (u+

n )n is
bounded. We assume by contradiction that ‖un‖ → ∞ and we set vn := un / ‖un‖
for all n ∈ N. Since (vn)n and (u−

n )n are bounded, up to a subsequence if necessary,
we have

vn⇀v in H1
0 (RN+), vn → v in Lq

loc(R
N+) for 1 ≤ q < 2∗ and vn → v a.e. inR

N+ ,

(3.1)
for some v ∈ H1

0 (RN+) with v ≥ 0. We have now two possible cases:

Case 1 (Vanishing): For all R > 0, it follows that

lim
n→∞ sup

y∈RN+

∫

BR(y)∩RN+
v2ndx = 0. (3.2)

Case 2 (Non-vanishing): There exist R > 0, δ > 0 and a sequence of points (yn)n ⊂
R

N+ such that

lim
n→∞

∫

BR(yn)∩RN+
v2ndx ≥ δ. (3.3)

We shall prove that none of these cases may happen. This will prove the boundedness
of the sequence Cerami sequence (un)n .

Case 1 (Vanishing): First of all, observe that, by (3.2) and Lions’ Lemma [25, Lemma

I.1], vn → 0 in Lq(RN+) for all 2 < q < 2∗, and so, by uniqueness of the limit we have
v ≡ 0. We define then the sequence (zn)n ⊂ H1

0 (RN+) by zn := tnun with tn ∈ [0, 1]
satisfying

E(zn) = max
t∈[0,1] E(tun),

(if, for n ∈ N, tn is not unique, we choose the smallest value) and we split the proof
in the vanishing case (Case 1) into three steps.
Step 1.1: limn→∞ E(zn) = +∞.

We argue by contradiction. Suppose there exists M < +∞ such that

lim inf
n→∞ E(zn) ≤ M,

and define (kn)n ⊂ H1
0 (RN+) as

kn :=
(
4M

q̃c

) 1
2

vn =
(
4M

q̃c

) 1
2 1

‖un‖un, for all n ∈ N,
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where q̃c > 0 is the constant given by Proposition 2.3. First, observe that

kn⇀0 in H1
0 (RN+), kn → 0 in Lq(RN+), for 2 < q < 2∗, and kn → 0 a.e. in R

N+ .

(3.4)
Then, by Corollary 2.4 and (3.4), we obtain that

E(kn) ≥ q̃c
2

‖kn‖2 − C

(
‖kn‖p+1

L p+1(RN+ )
+ 1{p>2}‖kn‖3L3(RN+ )

)
= 2M + o(1). (3.5)

Taking M bigger if necessary, we have that, for all n ∈ N large enough,

E(kn) >
3

2
M .

On the other hand, observe that, for n ∈ N large enough,
(
4M
q̃c

) 1
2 1

‖un‖ ∈ [0, 1].Hence,
we have that

3

2
M ≤ lim inf

n→∞ E (kn) ≤ lim inf
n→∞ E (zn) ≤ M,

which is a contradiction. Thus, the Step 1.1 follows.

Step 2.1: 〈E ′(zn), zn〉 = 0 for all n ∈ N large enough.

By Step 1.1 we know that E(zn) → ∞ as n → ∞. On the other hand, E(0) = 0 and
E(un) → d as n → ∞. Hence, for n ∈ N large enough, tn ∈ (0, 1) and so, by the
definition of zn , the Step 2.1 follows.
Step 3.1: Conclusion Case 1.

Observe that, by Step 2.1, for all n ∈ N large enough,

E (zn) = E (zn) − 1

2
〈E ′ (zn) , zn〉 =

∫

R
N+
H (x, zn) dx,

where H is given in Lemma 2.2 (ii). By Step 1.1, we have that

lim
n→∞

∫

R
N+
H (x, zn) dx = +∞. (3.6)

On the other hand, since (un)n is a Cerami sequence,

d + o(1) = E(un) − 1

2
〈E ′(un), un〉 =

∫

R
N+
H (x, un) dx .
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Then, using the definition of zn and the fact that H(x, s) is non-decreasing in s by
Lemma 2.2 (ii), we obtain

∫

R
N+
H (x, zn) dx ≤

∫

R
N+
H (x, un) dx = d + o(1),

which clearly contradicts (3.6). Hence, Case 1 (vanishing) cannot happen.
Case 2 (Non-vanishing): We split the proof into two steps.

Step 1.2: There exists M > 0 such that ynN := dist(yn, ∂R
N+) ≤ M for all n ∈ N.

We assume by contradiction that ynN → +∞ as n → +∞. Then, for all n ∈ N, we
introduce wn := vn(· + yn) and observe that

wn⇀w in H1(RN ), wn → w in Lqloc(R
N ) for 1 ≤ q < 2∗, and wn → w a.e. in R

N ,

(3.7)
for some w ∈ H1(RN ) with w �≡ 0 (by (3.3)) and w ≥ 0. Now, observe that, since
(un)n is a Cerami sequence, Lemma 2.2 (ii) implies that

o(1) = 1

‖un‖p+1

(
E (un) − 1

2
〈E ′ (un) , un〉

)

= 1

‖un‖p+1

∫

R
N+
H (x, un(x)) dx

≥ 1

‖un‖p+1

[
p − 1

2(p + 1)
‖u+

n ‖p+1
L p+1(RN+ )

−
∫

R
N+

(
u p−1
c (x)D1,p

[
u+
n

]2 + uc(x) 1{p>2}D2,p
[
u+
n

]p)
dx

]

≥ 1

‖un‖p+1

[
p − 1

2(p + 1)
‖u+

n ‖p+1
L p+1(RN+ )

−max{cp p−1, cp}
(
D1,p‖u+

n ‖2
L2(RN+ )

+ 1{p>2}D2,p‖u+
n ‖p

L p(RN+ )

)]

≥ p − 1

2(p + 1)
‖v+

n ‖p+1
L p+1(RN+ )

− C

‖un‖p+1

(
‖un‖2 + 1{p>2}‖un‖p

)
≥ p − 1

2(p + 1)
‖v+

n ‖p+1
L p+1(RN+ )

+ o(1),

where C > 0 is a constant independent of n. Here we also used Sobolev embeddings
and the fact that ‖un‖ → ∞ as n → ∞. Since p > 1, we thus conclude by Fatou’s
Lemma that

0 = lim
n→∞ ‖v+

n ‖p+1
L p+1(RN+ )

= lim inf
n→∞

∫

{xN≥−ynN }
(w+

n )p+1dx ≥
∫

RN
(w+)pdx .

Hence w = w+ ≡ 0, which clearly is a contradiction. Thus, Step 1.2 follows.
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Step 2.2: Conclusion Case 2.

By Step 1.2 we know there exists M > 0 such that ynN ≤ M for all n ∈ N. We then
define, for all n ∈ N, w̃n := vn(· + ξn), where ξn = (yn1 , . . . , ynN−1, 0). Again by
(3.3), we have

w̃n⇀w̃ in H1
0 (RN+), w̃n → w̃ in Lq

loc(R
N+) for 1 ≤ q < 2∗, and

w̃n → w̃ a.e. in R
N+ , (3.8)

for some w̃ ∈ H1
0 (RN+) with w̃ �≡ 0 and w̃ ≥ 0. For n ∈ N, let ϕn := w̃(· − ξn) ∈

H1
0 (RN+). Since (un)n is a Cerami sequence with ‖un‖ → ∞ as n → ∞, we have

o(1) = 〈E ′(un), ϕn〉
‖un‖

= 1

‖un‖
∫

R
N+

(∇un∇ϕn + unϕn − g(x, un)ϕn) dx

=
∫

R
N+

(∇vn∇ϕn + vnϕn
)
dx

−
∫

R
N+

(
(uc + u+

n )p − u p
c

‖un‖
)

ϕndx

=
∫

R
N+

(∇w̃n∇w̃ + w̃nw̃) dx

−
∫

R
N+

(
(uc + ‖un‖w̃+

n )p − u p
c

‖un‖
)

w̃dx

= ‖w̃‖2 + o(1) −
∫

R
N+

( (uc + ‖un‖w̃+
n )p − u p

c

‖un‖
)

w̃dx .

On the other hand, since p > 1, we have that

lim inf
n→∞

(
uc + ‖un‖w̃+

n

)p − u p
c

‖un‖w̃+
n

w̃+
n w̃ = +∞, a.e. in {w̃ > 0}

and therefore, since w̃ ≥ 0 and w̃ �≡ 0,

lim inf
n→∞

∫

R
N+

((
uc + u+

n (· + ξn)
)p − u p

c

‖un‖

)

w̃dx

= lim inf
n→∞

∫

{w̃>0}

((
uc + u+

n (· + ξn)
)p − u p

c

‖un‖

)

w̃dx = +∞

by Fatou’s Lemma. This yields a contradiction. Hence, Case 2 (non-vanishing) cannot
happen either and thus the result follows. ��
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Lemma 3.3 Let (un)n be a Cerami sequence for E at level d ∈ R\{0}. Then, there
exist R > 0, δ > 0 and a sequence of points (yn)n ⊂ R

N+ such that

lim inf
n→∞

∫

BR(yn)∩RN+
u2n dx ≥ δ.

Proof We assume by contradiction that, for all R > 0,

lim inf
n→∞ sup

y∈RN+

∫

BR(y)∩RN+
u2ndx = 0.

Then, by Lions’ [25, Lemma I.1], we have that un → 0 in Lq(RN+) for all 2 < q < 2∗.
Now, since (un)n is a Cerami sequence, using Lemma 2.2 (i), we get

o(1) = 〈E ′(un), un〉 = ‖un‖2 −
∫

R
N+
g(x, un(x))un dx

≥ ‖un‖2 −
∫

R
N+
pu p−1

c (u+
n )2dx − C1,p‖u+

n ‖p+1
L p+1(RN+ )

− 1{p>2}C2,p‖u+
n ‖3

L3(RN+ )

≥ qc(un) − C1,p‖un‖p+1
L p+1(RN+ )

− 1{p>2}C2,p‖un‖3L3(RN+ )

≥ q̃c‖un‖2 − C1,p‖un‖p+1
L p+1(RN+ )

− 1{p>2}C2,p‖un‖3L3(RN+ )
.

Hence, since un → 0 in Lq(RN+) for all 2 < q < 2∗, we deduce that ‖un‖ → 0.
Since E is continuous, this implies that E(un) → 0 as n → ∞, contradicting our
assumption that d �= 0. The proof is finished.

4 Energy estimates

We keep using the notation of the introduction and of Sect. 2, which depends on the
fixed quantities c ∈ (0, cp) and p ∈ (1, 2∗ − 1). Moreover, we will assume N ≥ 2
throughout this section, which will be of key importance in order to derive the energy
estimates we need. The mountain pass value associated to (1.14) is given by

b := inf
γ∈�

max
t∈[0,1] E(γ (t)), (4.1)

where

� :=
{
γ ∈ C

(
[0, 1], H1

0 (RN+)
)

: γ (0) = 0, E(γ (1)) < 0
}

.

We note that b > 0 by Lemma 3.1. We also note that the functional E (given in (1.15))
can be written as
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E(u) = E+∞(u)

− 1

p + 1

∫

R
N+

((
uc + u+)p+1 − u p+1

c − (
u+)p+1 − (p + 1)u p

c u
+)

dx, (4.2)

where E+∞ : H1
0 (RN+) → R is given by

E+∞(u) = 1

2
‖u‖2 − 1

p + 1

∫

R
N+

(
u+)p+1

dx .

Now, we introduce the auxiliary (limit) problem

− �u + u = |u|p−1u, u ∈ H1(RN ), (4.3)

and its associated energy E∞ : H1(RN ) → R given by

E∞(u) = 1

2

∫

RN

(
|∇u|2 + u2

)
dx − 1

p + 1

∫

RN
|u| p+1dx . (4.4)

Also, we define

b∞ := inf
K∞

E∞, where K∞ :=
{
u ∈ H1(RN )\{0} : E ′∞(u) = 0

}
. (4.5)

According to [8, Theorem 1], [6, Théorème 1] and [16, Theorem 2], there exists a
ground-state solution ψ ∈ C2(RN ) to (4.3) which is positive, radially symmetric, and
such that

ψ(x) ≤ CGS|x |− N−1
2 e−|x | and |∇ψ(x)| ≤ CGS|x |− N−1

2 e−|x |, as |x | → ∞,

(4.6)
for some CGS > 0 depending only on N and p. Moreover,

ψ is strictly decreasing in the radial variable. (4.7)

Let us also emphasize that

0 < b∞ = E∞(ψ) =
(
1

2
− 1

p + 1

)
‖ψ‖p+1

L p+1(RN )
= p − 1

2(p + 1)
‖ψ‖p+1

L p+1(RN )

= p − 1

2(p + 1)
inf

u∈K∞
‖u‖p+1

L p+1(RN )
. (4.8)

The aim of this section is to show, based on the assumption N ≥ 2, that

b < b∞. (4.9)
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This strict inequality will be crucial to prove the existence result to (1.14) contained
in Sect. 5. To this end, let us recall that uc(x) ∼ e−xN as xN → ∞. More precisely,
it follows from (1.6) and the definition of uc that

mc,1 e
−xN ≤ uc(x) ≤ mc,2 e

−xN , for x ∈ R
N+ , with

mc,1 := cpe
−tc,p , mc,2 := cp2

2
p−1 e−tc,p . (4.10)

Moreover, for r > 0, we introduce the function

x 
→ ψr (x) := (ψ (x − reN ) − εr )
+ ,

where eN = (0, . . . , 0, 1) is the N -th coordinate vector and εr > 0 is uniquely defined
by (4.7) and the property that

ψ > εr in Br (0) and ψ ≤ εr inR
N\Br (0).

We note that, as a consequence of (4.6), we have

εr ≤ CGSr
− N−1

2 e−r (4.11)

We also note that ψr ∈ H1
0 (RN+) for every r ≥ 0.

The rest of the section is devoted to prove the following result from which (4.9)
immediately follows.

Proposition 4.1 There exists R > 0 and k > 0 with the following properties:

(i) E(tψr ) < b∞ for all r ≥ R, t ∈ [0, k].
(ii) E(kψr ) < 0 for all r ≥ R.

We split the proof of this proposition into several lemmas.

Lemma 4.2 There exists C1 > 0 with

E+∞(tψr ) ≤ b∞ + C1e
−r r− N−1

2 t p+1 for all t, r > 0. (4.12)

Proof Let t, r > 0. Directly observe that, by the definition of ψr ,

E+∞ (tψr ) = t2

2
‖ψr‖2 − t p+1

p + 1

∫

R
N+

ψ
p+1
r dx

= t2

2

∫

Br (0)

(
|∇ψ |2 + (ψ − εr )

2
)
dx − t p+1

p + 1

∫

Br (0)
(ψ − εr )

p+1 dx .

(4.13)

123



384 A. J. Fernández, T. Weth

On the other hand, since ψ is a solution to (4.3) and (ψ − εr )
+ ∈ H1(RN ), using

(ψ − εr )
+ as test function in (4.3), we obtain that

∫

Br (0)
|∇ψ |2dx =

∫

RN
∇ψ∇ (ψ − εr )

+ dx

=
∫

RN

(−ψ (ψ − εr )
+ + ψ p (ψ − εr )

+)
dx

=
∫

Br (0)

(−ψ(ψ − εr ) + ψ p(ψ − εr )
)
dx .

Substituting the above identity into (4.13) and using the mean value theorem, we find
that

E+∞ (tψr ) = t2

2

∫

Br (0)

(
−ψ (ψ − εr ) + ψ p (ψ − εr ) + (ψ − εr )

2
)
dx

− t p+1

p + 1

∫

Br (0)
(ψ − εr )

p+1 dx

= −εr t2

2

∫

Br (0)
(ψ − εr ) dx

+ 1

p + 1

∫

Br (0)
(ψ − εr )

[
p + 1

2
t2ψ p − t p+1 (ψ − εr )

p
]
dx

≤ 1

p + 1

∫

Br (0)
(ψ − εr )

[
p + 1

2
t2ψ p − t p+1(ψ − εr )

p
]
dx

= 1

p + 1

(
p + 1

2
t2 − t p+1

) ∫

Br (0)
(ψ − εr ) ψ pdx

+ t p+1

p + 1

∫

Br (0)
(ψ − εr )

[
ψ p − (ψ − εr )

p] dx

≤ p − 1

2(p + 1)

∫

Br (0)
(ψ − εr ) ψ pdx + εr p t p+1

p + 1

∫

Br (0)
(ψ − εr ) ψ p−1dx

≤ p − 1

2(p + 1)

∫

RN
ψ p+1dx + εr p t p+1

p + 1

∫

RN
(ψ − εr )

+ ψ p−1dx .

Using (4.8) and (4.11), we deduce that

E+∞ (tψr ) ≤ b∞ + εr p t p+1

p + 1

∫

RN
(ψ − εr )

+ ψ p−1dx ≤ b∞

+ p

p + 1
CGSr

− N−1
2 e−r t p+1

∫

RN
ψ pdx .

Hence (4.12) holds with C1 = pCGS
p+1

∫
RN ψ pdx . ��
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Lemma 4.3 There exists R′ ≥ 1 and C2 > 0 with

E+∞ (tψr ) − E (tψr ) ≥ C2e
−r t p for all t > 0, r ≥ R′. (4.14)

Proof Let t > 0 be arbitrary but fixed. Using Lemma 2.1with q = p+1, κ := κq > 0,
the identity (4.2), the lower bound in (4.10) and the mean value theorem, we deduce
that, for all r ≥ 1,

E+∞ (tψr ) − E (tψr ) = 1

p + 1

∫

R
N+

(
(uc + tψr )

p+1 − u p+1
c

− (tψr )
p+1 − (p + 1)u p

c tψr

)
dx ≥ κt p

∫

R
N+
ucψ

p
r dx

= κt p
∫

R
N+
uc

(
(ψ (· − reN ) − εr )

+)p
dx

= κt p
∫

Br (0)
uc (· + reN ) (ψ − εr )

p dx

≥ κt p
∫

Br (0)
uc (· + reN )

(
ψ p − εr pψ

p−1
)
dx

≥ κt p
(∫

B−
r (0)

uc (· + reN ) ψ pdx − εr pcp

∫

RN
ψ p−1dx

)

≥ κt p
(
mc,1e

−r
∫

B −
r (0)

ψ pdx

−pcpCGSr
− N−1

2 e−r
∫

RN
ψ p−1dx

)

≥ κt pe−r
(
mc,1

2

∫

Br (0)
ψ pdx − pcpCGSr

− N−1
2

∫

RN
ψ p−1dx

)

≥ κt pe−r
(
mc,1

2

∫

B1(0)
ψ pdx − pcpCGSr

− N−1
2

∫

RN
ψ p−1dx

)

where we have set B −
r (0) := {x ∈ Br (0) : xN ≤ 0}. Since N ≥ 2, we may choose

R′ ≥ 1 sufficiently large to guarantee that

pcpCGSr
− N−1

2

∫

RN
ψ p−1dx ≤ mc,1

4

∫

B1(0)
ψ pdx, for r ≥ R′,

and therefore

E+∞(tψr ) − E(tψr ) ≥ C2e
−r t p, for r ≥ R′, with C2 := κmc,1

4

∫

B1(0)
ψ pdx .

Hence the claim follows. ��
Lemma 4.4 Let R′ ≥ 1 be given as in Lemma 4.3. Then there exist k > 0 with
E(kψr ) < 0 for all r ≥ R′.
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Proof Let k > 0. For r ≥ R′ ≥ 1 we have, by Lemma 4.3 and since the map r 
→ εr
is strictly decreasing by (4.7),

E(kψr ) ≤ E+∞(kψr ) = k2

2
‖ψr‖2 − k p+1

p + 1

∫

R
N+

ψ
p+1
r dx

≤ k2

2
‖ψ‖2H1(RN )

− k p+1

p + 1

∫

Br (0)
(ψ − εr )

p+1 dx

≤ k2

2
‖ψ‖2H1(RN )

− k p+1

p + 1

∫

B1(0)
(ψ − ε1)

p+1 dx

Since
∫
B1(0)

(
ψ − ε1

)p+1
dx > 0 by (4.7), we may choose

k >

(
(p + 1)‖ψ‖2

H1(RN )

2
∫
B1(0)

(ψ − ε1)
p+1 dx

) 1
p−1

which implies that E(kψr ) < 0 for r ≥ R′, as claimed. ��
Proof of Proposition 4.1 Let R′ ≥ 1 be given by Lemma 4.3, and let k > 0 be given
by Lemma 4.4. For r ≥ R′ and t ∈ [0, k] we then have, by Lemmas 4.2 and 4.3,

E (tψr ) = E+∞ (tψr ) − (
E+∞ (tψr ) − E (tψr )

) ≤ b∞ + e−r
(
t p+1C1r

− N−1
2 − t pC2

)

≤ b∞ + e−r t p
(
kC1r

− N−1
2 − C2

)
.

Since N ≥ 2, we may fix R ≥ R′ with the property that kC1r− N−1
2 ≤ C2

2 for r ≥ R,
which implies that

E (tψr ) ≤ b∞ − C2

2
e−r t p < b∞ for t ∈ (0, k], r ≥ R.

Since also E(0) = 0 < b∞, we thus obtain that E(tψr ) < b∞ for t ∈ [0, k], r ≥ R.
Moreover, by Lemma 4.4 we have E(kψr ) < 0 for all r ≥ R since R ≥ R′. The proof
is finished. ��

5 The existence result

We keep using the notation of the introduction and of Sect. 2, which depends on the
fixed quantities c ∈ (0, cp) and p ∈ (1, 2∗ − 1). Moreover, we will assume N ≥ 2
throughout this section, which will allow us to prove the existence of a non-trivial
solution to (1.14). This will conclude the proof of Theorem 1.3.

Theorem 5.1 Let N ≥ 2. Then there exists a non-trivial solution u ∈ H1
0 (RN+) to

(1.14) which, in particular, is a positive solution to (1.11).
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The strategy of the proof is as follows: using the strict inequality (4.9), we will
manage to prove the existence of a Cerami sequence whose weak limit is non trivial
and thus we will obtain a non trivial solution to (1.14).

Proof of Theorem 5.1 Since the functional E has a mountain pass geometry (see
Lemma 3.1), there exists a Cerami sequence for E at the corresponding mountain
pass level b defined in (4.1) (see e.g. [10] or [13, Theorem 6, Sect. 1, Chapter IV]),
i.e. there exists (un)n ⊂ H1

0 (RN+) such that

E(un) → b and (1 + ‖un‖) ‖E ′ (un) ‖H−1(RN+ ) → 0, as n → ∞.

By Proposition 3.2 we know that (un)n is bounded in H1
0 (RN+). Moreover,

‖u−
n ‖2 = 〈E ′(un), u−

n 〉 → 0 as n → ∞. (5.1)

Let (yn)n ⊂ R
N+ be the sequence of points obtained in Lemma 3.3 applied to (un)n ,

i.e., we have

lim inf
n→∞

∫

BR(yn)∩RN+
u2n dx ≥ δ for some δ > 0. (5.2)

We split the argument into two steps.

Step 1: There exists M > 0 such that ynN = dist(yn, ∂R
N+) ≤ M for all n ∈ N.

We assume by contradiction that

lim
n→∞ ynN = +∞. (5.3)

Then, let us define, for all n ∈ N, wn := un(· + yn). By Lemma 3.3 and (5.1), it
follows that

wn⇀w in H1(RN ), wn → w in Lq
loc(R

N ) for 1 ≤ q < 2∗, and

wn → w a.e. in R
N , (5.4)

for some w ∈ H1(RN ) with w ≥ 0, w �≡ 0. We also observe that

b + o(1) = E(un) − 1

2
〈E ′(un), un〉 =

∫

R
N+
H(x, un(x)) dx

=
∫

{xN≥−ynN }
H

(
x + yn, w

+
n (x)

)
dx, as n → ∞, (5.5)

with the function H defined in Lemma 2.2 (ii). Next, we note that

H
(
x + yn, w

+
n (x)

) ≥ 0, for x ∈ {xN ≥ −ynN },
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and

lim inf
n→∞ H(x + yn, w

+
n (x)) ≥ lim inf

n→∞

(
p − 1

2(p + 1)

[
w+
n (x)

]p+1 − uc (x + yn)
p−1 D1,p

[
w+
n (x)

]2

−uc (x + yn) 1{p>2}D2,p
[
w+
n (x)

]p
)

= p − 1

2(p + 1)

[
w+(x)

]p+1

= p − 1

2(p + 1)
w p+1(x), for x ∈ {xN ≥ −ynN },

by Lemma 2.2 (ii) and (4.10). Thus, (5.5) and Fatou’s Lemma imply that

p − 1

2(p + 1)
‖w‖p+1

L p+1(RN )
≤ b. (5.6)

Next we claim that w ∈ K∞, i.e., w is a nontrivial solution of (4.3). To see this, we
fix an arbitrary ϕ ∈ C∞

c (RN ), and we show that

∫

RN
(∇w∇ϕ + wϕ) dx =

∫

RN

(
w+) p

ϕ dx . (5.7)

Since (5.3) holds, we have that supp(ϕ) ⊂ {xN ≥ −ynN } for n ∈ N sufficiently large.
Hence, for n ∈ N large enough, we have that

o(1) = 〈E ′(un), ϕ(· − yn)〉
=

∫

{xN≥−ynN }
(∇wn∇ϕ + wnϕ) dx

−
∫

{xN≥−ynN }
(
uc(· + yn) + w+

n

)p
ϕdx −

∫

{xN≥−ynN }
u p
c

(· + yn
)
ϕdx

=
∫

RN
(∇wn∇ϕ + wnϕ) dx

−
∫

RN

(
uc(· + yn) + w+

n

)p
ϕdx + o(1)

=
∫

RN
(∇wn∇ϕ + wnϕ) dx −

∫

RN
(w+

n )pϕdx

−
∫

RN

((
uc

(· + yn
) + w+

n

)p − (w+
n )p

)
ϕdx + o(1)

=
∫

RN
(∇wn∇ϕ + wnϕ) dx −

∫

RN

(
w+
n

)p
ϕdx + o(1)

=
∫

RN
(∇w∇ϕ + wϕ) dx −

∫

RN
(w+) pϕ dx + o(1), as n → ∞.

(5.8)
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Hence (5.7) follows, and therefore w ∈ K∞. Together with (4.8) and (5.6) it then
follows that b ≥ b∞, but this contradicts (4.9). Hence, (5.3) cannot happen and Step
1 follows.

Step 2: Conclusion.
Let us define, for all n ∈ N, vn := un(· + ξn) with ξn := (yn1 , . . . , ynN−1, 0) and

observe that, after passing to a subsequence

vn⇀v in H1
0 (RN+), vn → v in Lq

loc(R
N+) for 1 ≤ q < 2∗ and vn → v a.e. in R

N+ ,

(5.9)
for some v ∈ H1

0 (RN+). Also, note that (vn)n ⊂ H1
0 (RN+) is a Cerami sequence for

E at level b. Hence, if v �≡ 0, we will have that v is a non-trivial solution to (1.14).
Since vn → v in Lq

loc(R
N+) and ynN ≤ M for all n ∈ N, the lower integral bound (5.2)

implies that v �≡ 0, and the result follows. ��
Proof of Theorem 1.3 (Completed) Let u ∈ H1

0 (RN+) be the non-negative and non-
trivial solution to (1.11) obtained in Theorem 5.1. By standard elliptic regularity we

have that u ∈ C2(RN+) ∩ C(RN+) ∩ L∞(RN+) and v := uc + u is a bounded positive
solution to (1.3)–(1.4) of the form (1.8). ��
Remark 5.1 As explained in the introduction, Theorem 1.2 (i) and Corollary 1.4 are
direct consequences of Theorem 1.3.

In the remaining of this sectionwe prove Proposition 1.5. Let us first state a technical
lemma due to Poláčik, Quittner and Souplet that will be key to prove this result.

Lemma 5.2 (Particular case of [29, Lemma 5.1]) Let (X , d) be a complete metric
space and let M : X → (0,+∞) be continuous. For any δ < supX M and any k > 0
there exists y ∈ X such that

• M(y) ≥ δ.
• M(z) ≤ 2M(y) for all z ∈ X with d(z, y) ≤ k

M(y) .

The following proof is inspired by [12, Lemma 2.5].

Proof of Proposition 1.5 We assume by contradiction that there exists v ∈ C2(RN+) ∩
C(RN+) unbounded solving (1.3)–(1.4). By Lemma 5.2 applied with X = R

N+ and

M = v
p−1
2 , there exits a sequence (yk)k ⊂ R

N+ such that

M(yk) → ∞, as k → ∞, (5.10)

M(z) ≤ 2M(yk), for all z ∈ R
N+ with d(z, yk) ≤ k

M(yk)
and all k ∈ N.

(5.11)

Note that, without loss of generality, we can suppose that M(yk) ≥ 1 for all k ∈ N.
We then define, for all k ∈ N, dk := ykN M(yk), the half-space Hk := {

x ∈ R
N+ :

xN > −dk
}
and

vk : Hk → R
N+ given by vk(z) := 1

v(yk)
v
(
yk + z

M(yk)

)
.
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Note that, for all k ∈ N, vk is a positive solution to

⎧
⎪⎪⎨

⎪⎪⎩

−�vk + 1

M2(yk)
vk = (vk)p, in Hk,

vk = c

M
2

p−1 (yk)
, on ∂Hk,

(5.12)

and, by its definition and (5.11), it satisfies

vk(0) = 1 and vk(z) ≤ 2
2

q−1 for all z ∈ Hk ∩ Bk(0). (5.13)

We now consider two cases separately.

Case 1: dk → ∞ as k → ∞.
Using standard Lq estimates (see e.g. [18, Chapter 9]), (5.12) and (5.13), we get

(taking a subsequence if necessary) that (vk)k is locally W 2,q -bounded in R
N for

arbitrarily large q < +∞. Hence, up to a subsequence, vk → v in C1
loc(R

N ), where
v ∈ C1(RN ) is a non-trivial positive solution to

�v + v p = 0, in R
N . (5.14)

By (5.13) we infer that v is bounded in R
N with v(0) = 1. Hence v ∈ C2(RN ) by

standard elliptic regularity. Then, since by [17, Theorem 1.2] we know that the only
C2(RN ) non-negative solution to (5.14) is v ≡ 0, we obtain a contradiction and deduce
that Case 1 cannot happen.

Case 2: dk → d ≥ 0 as k → ∞.
Let us define, for all k ∈ N,

wk : R
N+ → R as wk(z) = vk (z − dkeN ) , (5.15)

where eN := (0, . . . , 0, 1) is the N -th coordinate vector. Note that, for all k ∈ N, wk

is a positive solution to

⎧
⎪⎪⎨

⎪⎪⎩

−�wk + 1

M2(yk)
wk = (wk)p, in R

N+ ,

wk = c

M
2

p−1 (yk)
, on ∂R

N+ ,
(5.16)

and satisfies

wk (dkeN ) = 1 and wk(z) ≤ 2
2

p−1 for all z ∈ R
N+ ∩ Bk (dkeN ) . (5.17)

Now, arguing as in the proof of [18,Theorem9.13] (with auxiliary functionsϕk = wk−
c M− 2

p−1 (yk)) and taking into account (5.16) and (5.17), we get (taking a subsequence
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if necessary) that (wk)k is locally W 2,q -bounded in R
N+ for arbitrarily large q < +∞

and therefore also locally C1,β -bounded in R
N+ for all β ∈ (0, 1). In particular, |∇wk |

remains bounded pointwise independently of k in a neighbourhood of the origin.
Taking into account (5.10), the boundary conditions in (5.16) and (5.17), we infer
that d = limk→∞ dk > 0. Hence, up to a subsequence, wk → w in C1

loc(R
N+) with

w ∈ C1(RN+) a non-trivial positive solution to

{
�w + w p = 0, in R

N+ ,

w = 0, on ∂R
N+ .

(5.18)

By (5.17) we have thatw is bounded withw(deN ) = 1. Hencew ∈ C2(RN )∩C(RN+)

by standard elliptic regularity. Then, since by [17, Theorem 1.3] we know that the only

C2(RN+)∩C(RN+) non-negative solution to (5.18) isw ≡ 0 , we obtain a contradiction
and deduce that Case 2 cannot happen either. Hence, the result follows. ��

6 The non-existence result

In this section we prove Part (ii) of Theorem 1.2, which is concerned with the non-
existence of bounded positive solutions to (1.3)–(1.4) in the case c > cp. Recall that

w0(t) = cp

[
cosh

(
p − 1

2
t

)]− 2
p−1

,

is the unique even non-trivial positive solution to (1.5). Throughout this section, we
will use the following notation. We define v0 : R

N → R as

v0(x) = w0 (xN ) , for x ∈ R
N . (6.1)

Also, recall that for a bounded positive solution to (1.3)–(1.4), we mean a function

v ∈ C2(RN+) ∩ C(RN+) ∩ L∞(RN+), positive, satisfying (1.3) in the pointwise sense
and such that (1.4) holds.

Theorem 6.1 For N ≥ 1, p > 1 and c > cp, there are no bounded positive solutions
to (1.3)–(1.4).

Proof Let us fix an arbitrary c > cp. We assume by contradiction that there exists a
boundedpositive solutionv to (1.3)–(1.4) andwedefine, for all t ∈ R,vt := v0(·+teN )

where v0 is given in (6.1) and eN = (0, . . . , 0, 1) is the N -th coordinate vector. We
split the proof into three steps.

Step 1: There exists t0 > 0 such that v > vt in R
N+ for all t ≥ t0.

First of all, fixed an arbitrary x ∈ R
N+ , observe that

vt (x) → 0, as t → ∞, and vt1(x) > vt2(x), for all 0 < t1 < t2.
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Hence, there exists t0 > 0 such that, for all t ≥ t0,

vt ≤
(

1

2p

) 1
p−1

in R
N+ . (6.2)

We fix t0 > 0 such that (6.2) holds and we are going to prove the Step 1 for this t0.
To that end, we fix an arbitrary t ≥ t0 > 0. First, we are going to prove that v ≥ vt in

R
N+ . Since c > cp ≥ maxx∈R vt (x), we have that

{ −�(v − vt ) + (v − vt ) = |v|p−1v − |vt |p−1vt , in R
N+ ,

v − vt > 0, on ∂R
N+ ,

(6.3)

or equivalently

{ −�(v − vt ) + ct (x)(v − vt ) = 0, in R
N+ ,

v − vt > 0, on ∂R
N+ ,

(6.4)

where

ct (x) :=
⎧
⎨

⎩
1 − (v(x))p − (vt (x))p

v(x) − vt (x)
, if v(x) − vt (x) �= 0,

1, if v(x) − vt (x) = 0.
(6.5)

We assume by contradiction that

{
x ∈ R

N+ : v(x) < vt (x)
}

�= ∅. (6.6)

Then, using the mean value theorem and (6.2), we deduce that, for all x ∈ {x ∈ R
N+ :

v(x) < vt (x)},
ct (x) ≥ 1 − p(vt (x))

p−1 ≥ 1

2
. (6.7)

Hence, in each connected component D of {x ∈ R
N+ : v(x) < vt (x)} we have that

{
−�(v − vt ) + ct (x)(v − vt ) = 0, in D,

v − vt = 0, on ∂D,
(6.8)

with ct satisfying (6.7). Then, applying the weak maximum principle [5, Lemma 2.1],
we obtain that v ≥ vt in D which contradicts the fact that D ⊂ {x ∈ R

N+ : v(x) <

vt (x)}. Hence, we conclude that {x ∈ R
N+ : v(x) < vt (x)} = ∅ and so, that v ≥ vt in

R
N+ . Having this at hand and substituting in (6.3), we deduce that

{ −�(v − vt ) + (v − vt ) ≥ 0, in R
N+ ,

v − vt > 0, on ∂R
N+ ,

(6.9)
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and so, the Step 1 follows from the strong maximum principle and the fact that t ≥ t0
is arbitrary.

Step 2: v > vt in R
N+ for all t ∈ R.

Note that, if we prove that v ≥ vt in R
N+ for all t ∈ R, then the claim follows from

the Strong Maximum principle. Also, by the Step 1, we know that

{
t ∈ R : v ≥ vs in R

N+ for all s ≥ t
}

�= ∅.

Hence, we can define

t� := inf
{
t ∈ R : v ≥ vs in R

N+ for all s ≥ t
}

∈ [−∞, t0] . (6.10)

We argue by contradiction and suppose that t� > −∞. First note that, by continuity,
v ≥ vt� in R

N+ . Also, t� > −∞ implies the existence of M > 0 such that

vt (x
′, xN ) ≤

(
1

2p

) 1
p−1

, for all t ∈ [t�−1, t�], x ′ ∈ R
N−1 and xN ≥ M . (6.11)

We now consider separately two cases.

Case 1: infx∈RN−1×[0,M]
(
v − vt�

) =: δM > 0.
First, taking into account that ‖w′

0‖L∞(R) ≤ cp, we infer that, for all t ≤ t� and
x ∈ R

N−1 × [0, M],

v(x ′, xN ) − vt (x
′, xN ) = v(x ′, xN ) − vt� (x

′, xN ) + (
vt� (x

′, xN ) − vt (x
′, xN )

)

≥ δM − ∣∣w0(xN + t�) − w0(xN + t)
∣∣

≥ δM − cp|t� − t |.

Hence, there exists η0 ∈ (0, 1) such that, for all t� ≥ t ≥ t� − η0,

v
(
x ′, xN

) − vt
(
x ′, xN

)
> 0, for all x ′ ∈ R

N−1 and xN ∈ [0, M]. (6.12)

In particular, if we define �M := {x ∈ R
N : xN > M}, we have

v − vt > 0, on ∂�M , for all t ∈ [t� − η0, t�] .

Next, we are going to prove that, for all t ∈ [t� − η0, t�], it follows v ≥ vt in �M . To
that end, we fix an arbitrary t ∈ [t� − η0, t�]. Arguing as in Step 1, we have that

{
−�(v − vt ) + ct (x)(v − vt ) = 0, in �M ,

v − vt > 0, on ∂�M ,
(6.13)
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where

ct (x) :=
⎧
⎨

⎩
1 − (v(x))p − (vt (x))p

v(x) − vt (x)
, if v(x) − vt (x) �= 0,

1, if v(x) − vt (x) = 0.
(6.14)

We assume by contradiction that

{x ∈ �M : v(x) < vt (x)} �= ∅. (6.15)

Then, using the mean value theorem and (6.11), we deduce that, for all x ∈ {x ∈ �M :
v(x) < vt (x)},

ct (x) ≥ 1 − p(vt (x))
p−1 ≥ 1

2
. (6.16)

Hence, in each connected component D of {x ∈ �M : v(x) < vt (x)} we have that
{

−�(v − vt ) + ct (x)(v − vt ) = 0, in D,

v − vt = 0, on ∂D,
(6.17)

with ct satisfying (6.16). Then, applying the weak maximum principle [5, Lemma
2.1], we obtain that v ≥ vt in D which contradicts the fact that D ⊂ {x ∈ �M :
v(x) < vt (x)}. Hence, we conclude that {x ∈ �M : v(x) < vt (x)} = ∅ and so, that
v ≥ vt in �M . Taking into account (6.12), we infer that, for all η ∈ [0, η0], v ≥ vt�−η

in R
N+ . This is in contradiction with the definition of t�. Hence, Case 1 cannot happen.

Case 2: inf x∈RN−1×[0,M]
(
v − vt�

) = 0.
In this case there exists a sequence of points (xn)n ⊂ R

N−1 × [0, M] such that

v
(
xn

) − vt� (x
n) → 0, as n → ∞. (6.18)

Up to a subsequence, it follows that xnN → xN for some xN ∈ [0, M]. We define then

vn(x) = v
(
x ′ + (

xn
)′

, xN
)

, for all n ∈ N,

and, for all n ∈ N, we have vn ≥ vt� in R
N+ and

{ −�vn + vn = (vn)p, in R
N+ ,

vn = c, on ∂R
N+ .

Moreover, for all n ∈ N, it follows that

{ −�
(
vn − vt�

) + (vn − vt� ) ≥ 0, in R
N+ ,

vn − vt� > 0, on ∂R
N+ ,
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and so, by the Strong Maximum principle, we have that

vn − vt� > 0, in R
N+ , for all n ∈ N.

Now, arguing as in [15, Proof of Theorem 2.1, Step 1], we deduce that the sequence
(vn)n admits a subsequence, still denoted by (vn)n , converging to a function v in
C2
loc(R

N+). This function v still solves

{ −�v + v = v p, in R
N+ ,

v = c, on ∂R
N+ ,

and satisfies v ≥ vt� , in R
N+ , and

v
(
0′, xN

) = vt�
(
0′, xN

)
. (6.19)

Note that (6.19) and v = c > cp ≥ vt� on ∂R
N+ imply xN > 0. Since v ≥ vt� in R

N+ ,
we have { −�

(
v − vt�

) + (
v − vt�

) ≥ 0, in R
N+ ,

v − vt� > 0, on ∂R
N+ ,

Hence, by the Strong Maximum principle, it follows that v > vt� in R
N+ which gives a

contradiction with (6.19). Case 2 cannot happen either and hence the Step 2 follows.

Step 3: Conclusion.
Observe that v > vt in R

N+ for all t ∈ R implies that v ≥ v0(0) = cp in R
N+ . This

gives a contradiction with (1.4) and so the proof is complete. ��
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