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Abstract
We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal
models such that the middle cohomology of their reductions realizes the local Lang-
lands correspondence and the local Jacquet–Langlands correspondence for the simple
supercuspidal representations. The reductions of the formal models are isomorphic to
the perfections of someArtin–Schreier varieties, whose cohomology realizes primitive
Galois representations. We show also the Tate conjecture for Artin–Schreier varieties
associated to quadratic forms.

Introduction

Let K be a non-archimedean local field with residue field k. Let p be the characteristic
of k. We write OK for the ring of integers of K , and p for the maximal ideal of OK .
We fix an algebraic closure kac of k. The Lubin–Tate spaces are deformation spaces of
the one-dimensional formalOK -module over kac of height n with level structures. We
take a prime number � that is different from p. The local Langlands correspondence
(LLC) and the local Jacquet–Langlands correspondence (LJLC) for supercuspidal
representations of GLn are realized in the �-adic cohomology of Lubin–Tate spaces.
This is proved in [4] and [9] by global automorphic arguments. On the other hand, the
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relation between these correspondences and the geometry of Lubin–Tate spaces is not
well understood.

In this direction, Yoshida constructs a semi-stable model of the Lubin–Tate space
with a full level p-structure, and studies its relation with the LLC in [27]. In this case,
the Deligne–Lusztig varieties appear as open subschemes in the reductions of the
semi-stable models, and their cohomology realizes the LLC for depth zero supercus-
pidal representations. In [5], Boyarchenko–Weinstein construct a family of affinoids
in the Lubin–Tate perfectoid space and their formal models so that the cohomology
of the reductions realizes the LLC and the LJLC for some representations which are
related to unramified extensions of K (cf. [25] for some special case at a finite level). It
generalizes a part of the result in [27] to higher conductor cases. In the Lubin–Tate per-
fectoid setting, the authors study the case for the essentially tame simple supercuspidal
representations in [12], where simple supercuspidal means that the exponential Swan
conductor is equal to one. See [1] for the notion of essentially tame representations.
The result in [12] is generalized to some higher conductor essentially tame cases by
Tokimoto in [24] (cf. [14] for some special case at a finite level).

In all the above cases, Langlands parameters are of the form IndWK
WL

χ for a finite
separable extension L over K and a character χ ofWL , whereWK andWL denote the
Weil groups of K and L respectively. Further, the construction of affinoids directly
involves CM points which have multiplication by L . In this paper, we study the case
for simple supercuspidal representations which are not essentially tame. In this case,
the Langlands parameters can not be written as inductions of characters. Hence, we
have no canonical candidate of CM points which may be used for constructions of
affinoids.

We will explain our main result. All the representation are essentially tame if n is
prime to p. Hence, we assume that p divides n.We say that a representation ofGLn(K )

is essentially simple supercuspidal if it is a character twist of a simple supercuspidal
representation. Let q be the number of the elements of k and D be the central division
algebra over K of invariant 1/n. We write q = p f and n = pen′, where n′ is prime
to p. We put m = gcd(e, f ). The main theorem is the following:

Theorem For r ∈ μq−1(K ), there is an affinoidXr in the Lubin–Tate perfectoid space
and its formal model Xr such that

• the special fiber Xr of Xr is isomorphic to the perfection of the affine smooth
variety defined by

z p
m − z = y p

e+1 − 1

n′
∑

1≤i≤ j≤n−2

yi y j in A
n
kac ,

• the stabilizer Hr ⊂ GLn(K ) × D× × WK of Xr naturally acts on Xr , and

• c-IndGLn(K )×D××WK
Hr

Hn−1
c (Xr , Q�) realizes the LLC and the LJLC for essentially

simple supercuspidal representations.

See Theorem 2.6 and Theorem 6.5 for precise statements. As we mentioned, we
have no candidate of CM points for the construction of affinoids. First, we consider
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a CM point ξ which has multiplication by a field extension of K obtained by adding
an n-th root of a uniformizer of K . If we imitate the construction of affinoids in
[12] using the CM point ξ , we can get a non-trivial affinoid and its model, but the
reduction degenerates in some sense, and the cohomology of the reduction does not
give a supercuspidal representation. What we will do in this paper is to modify the
CM point ξ using information of field extensions which appear in the study of our
simple supercuspidal Langlands parameter. The modified point, which is constructed
in Proposition 2.2, is no longer a CM point, but we can use this point for a construction
of a desired affinoid. Since the modification comes from the study of the Langlands
parameter,we expect that such constructionswork also for otherLanglands parameters.

In the above mentioned preceding researches, the Langlands parameters are induc-
tions of characters, and realized from commutative group actions on varieties. In
the case for Deligne–Lusztig varieties, they come from the natural action of tori. In
our simple supercuspidal case, they come from non-commutative group actions. For
example, the restriction to the inertia subgroup of a simple supercuspidal Langlands
parameter factors through a semidirect product of a cyclic group with a Heisenberg
type group, which acts on our Artin–Schreier variety in a very non-trivial way.

In the following, we briefly explain the content of each section. In Sect. 1, we collect
known results on the Lubin–Tate perfectoid space, its formal model and group action
on it.

In Sect. 2, we construct a family of affinoids and their formal models. Further we
determine the reductions of them. The reduction is isomorphic to the perfection of
some Artin–Schreier variety.

In Sect. 3, we describe the group action on the reductions. In Sect. 4, we show
that the Tate conjecture holds for Artin–Schreier varieties of associated to quadratic
forms. Further, we study the action of some special element on cycle classes in the
etale cohomology of the Artin–Schreier variety. This becomes a key ingredient for the
proof of the main theorem.

In Sect. 5, we give an explicit description of the LLC and the LJLC for essentially
simple supercuspidal representations, which follows from results in [13] and [17]. In
Sect. 6, we give a geometric realization of the LLC and the LJLC in the cohomology
of our reduction.

Notation

For a non-archimedean valuation field F , its valuation ring is denoted by OF . For a
non-archimedean valuation field F and an element a ∈ OF , its image in the residue
field is denoted by ā. For a ∈ Q and elements f , g with valuation v that takes values in
Q, we write f ≡ g mod ≥ a if v( f − g) ≥ a, and f ≡ g mod > a if v( f − g) > a.
For a topological field extension E over F , let Gal(E/F) denote the group of the
continuous automorphisms of E over F . For an ideal I of a topological ring, let I−
denote the closure of I .

123
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1 Lubin–Tate perfectoid space

1.1 Lubin–Tate perfectoid space and its formal model

Let K be a non-archimedean local field with residue field k of characteristic p. Let q
be the number of the elements of k. We write p for the maximal ideal of OK . We fix
an algebraic closure K ac of K . Let kac be the residue field of K ac.

Let n be a positive integer. We take a one-dimensional formal OK -module G0
over kac of height n, which is unique up to isomorphism. Let K ur be the maximal
unramified extension of K in K ac. We write K̂ ur for the completion of K ur. Let
{Spf Am}m≥0 be the tower of Lubin-Tate formal schemes defined by Drinfeld level
pm-structure as explained in [12, §1.1]. Note that the generic fibers of these formal
schemes are connected components of usual Lubin-Tate spaces. Let I the ideal of
lim−→ Am generated by the maximal ideal of A0. Let A be the I -adic completion of
lim−→ Am . We put MG0,∞ = Spf A.

Let K ab be the maximal abelian extension of K in K ac. We write K̂ ab for the
completion of K ab. Let ∧G0 denote the one-dimensional formalOK -module over kac

of height one. Then we haveM∧G0,∞ � Spf OK̂ ab by the Lubin–Tate theory. We have
a determinant morphism

MG0,∞ → M∧G0,∞ (1.1)

by [26, 2.5 and 2.7] (cf. [8]). Then, we have the ring homomorphism OK̂ ab → A
determined by (1.1).

We fix a uniformizer � of K . Let M∞ be the open adic subspace of Spa(A, A)

defined by |�(x)| �= 0 (cf. [10, 2]). We regardM∞ as an adic space over K̂ ur. Let C
be the completion of K ac. For a deformation G of G0 over OC, we put

Vp(G) = (
lim←−G(OC)[pm]) ⊗OK K ,

where G(OC)[pm] denotes theOK -module of the pm-torsion points of G(OC) and the
transition maps are multiplications by � . By the construction, each point ofM∞(C)

corresponds to a triple (G, φ, ι) that consists of a formal OK -module G over OC,
an isomorphism φ : Kn → Vp(G) and an isomorphism ι : G0 → G ⊗OC kac (cf. [5,
Definition 2.10.1]).

We put η = Spa(K̂ ab,OK̂ ab). By the ring homomorphism OK̂ ab → A, we
can regard M∞ as an adic space over η, for which we write M∞,η. We put
η̄ = Spa(C,OC) and M∞,η = M∞,η ×η η. Then, M∞,η is a perfectoid space
over C in the sense of [21, Definition 6.15] by [26, Lemma 2.32]. We call M∞,η the
Lubin–Tate perfectoid space.

In the following, we recall an explicit description of A◦ = A⊗̂OK̂ abOC given in

[26, (2.8)]. Let Ĝ0 be the formal OK -module over OK whose logarithm is

∞∑

i=0

Xqin

� i
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(cf. [5, 2.3]). Let G0 be the formal OK -module over kac obtained as the reduction of
Ĝ0. We putOD = End G0 and D = OD ⊗OK K , which is the central division algebra
over K of invariant 1/n. Let [ · ] denote the action ofOD on G0. Let ϕ be the element
of D such that [ϕ](X) = Xq . Let Kn be the unramified extension of K of degree n.
We consider the K -algebra embedding of Kn into D determined by

[ζ ](X) = ζ̄ X for ζ ∈ μqn−1(Kn).

Then we have ϕn = � and ϕζ = ζ qϕ for ζ ∈ μqn−1(Kn). Let ∧̂G0 be the one-
dimensional formal OK -module over OK whose logarithm is

∞∑

i=0

(−1)(n−1)i X
qi

� i
.

We choose a compatible system {tm}m≥1 such that

tm ∈ K ac (m ≥ 1), t1 �= 0, [� ]̂∧G0
(t1) = 0, [� ]̂∧G0

(tm) = tm−1 (m ≥ 2).
(1.2)

We put

t = lim
m→∞(−1)q(n−1)(m−1)tq

m−1

m ∈ OC.

Let v be the normalized valuation of K such that v(�) = 1. The valuation v naturally
extends to a valuation on C, for which we again write v. Note that v(t) = 1/(q − 1).
For an integer i ≥ 0, we put

tq
−i = lim

m→∞(−1)q(n−1)(m−1)tq
m−i−1

m .

Let WK be the Weil group of K . Let ArtK : K× ∼−→ W ab
K be the Artin reciprocity

map normalized such that a uniformizer is sent to a lift of the geometric Frobenius
element. We use similar normalizations also for the Artin reciprocity maps for other
non-archimedean local fields. Let σ ∈ WK . Let nσ be the image of σ under the
composite

WK � W ab
K

Art−1
K−−−→ K× v−→ Z.

Let aK : WK → O×
K be the homomorphism given by the action of WK on {tm}m≥1. It

induces an isomorphism aK : Gal(K̂ ab/K̂ ur) � O×
K .

For m ≥ 0, we put

δm(X1, . . . , Xn) = ∧̂G0
∑

(m1,...,mn)

sgn(m1, . . . ,mn)X
qm1−m

1 · · · Xqmn−m

n (1.3)
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in OK [[X1/q∞
1 , . . . , X1/q∞

n ]], where
• the symbol ∧̂G0 ∑

denotes the sum under the additive operation of ∧̂G0,
• we take the sum over n-tuples (m1, . . . ,mn) of integers such thatm1+· · ·+mn =
n(n − 1)/2 and mi �≡ m j mod n for i �= j ,

• sgn(m1, . . . ,mn) is the sign of the permutation on Z/nZ defined by i �→ mi+1.

We put

δ = lim
m→∞ δ

qm
m ∈ OC[[X1/q∞

1 , . . . , X1/q∞
n ]].

For l ≥ 1, we put

δq
−l = lim

m→∞ δ
qm−l

m .

The following theorem follows from [26, (2.8)] and the proof of [5, Theorem 2.10.3]
(cf. [23, Theorem 6.4.1]).

Theorem 1.1 ([12, Theorem1.3]) Letσ ∈ Gal(K̂ ab/K̂ ur).Weput Aσ = A⊗̂OK̂ ab ,σOC.
Then, we have an isomorphism

Aσ � OC[[X1/q∞
1 , . . . , X1/q∞

n ]]/(δ(X1, . . . , Xn)
q−m − σ(tq

−m
))−m≥0. (1.4)

For σ ∈ Gal(K̂ ab/K̂ ur), letM∞,η̄,σ be the base change ofM∞,η by η̄ → η
σ−→ η.

For σ ∈ Gal(K̂ ab/K̂ ur) and α = aK (σ ) ∈ O×
K , we write Aα for Aσ and M(0)

∞,η̄,α for

M(0)
∞,η̄,σ . We put

M(0)
∞,OC

=
∐

α∈O×
K

Spf Aα, M(0)
∞,η̄ =

∐

α∈O×
K

M∞,η̄,α. (1.5)

Then M(0)
∞,η̄ is the generic fiber of M(0)

∞,OC
, and M(0)

∞,η̄(C) = M∞(C).

Let +Ĝ0
and +

̂∧G0
be the additive operations for Ĝ0 and ∧̂G0 respectively.

Lemma 1.2 ([12, Lemma 1.5])

(1) We have X1 +Ĝ0
X2 ≡ X1 + X2 modulo terms of total degree qn.

(2) We have X1 +
̂∧G0

X2 ≡ X1 + X2 modulo terms of total degree q.

Let Xi be (Xq− j

i ) j≥0 for 1 ≤ i ≤ n. We write δ(X1, . . . , Xn) for the q-th power

compatible system (δ(X1, . . . , Xn)
q− j

) j≥0.

For q-th power compatible systems X = (Xq− j
) j≥0 and Y = (Yq− j

) j≥0 that take
values in OC, we define q-th power compatible systems X + Y , X − Y and XY by
the requirement that their j-th components for j ≥ 0 are

lim
m→∞(Xq−m + Yq−m

)q
m− j

, lim
m→∞(Xq−m − Yq−m

)q
m− j

, and Xq− j
Y q− j
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respectively. For such X = (Xq− j
) j≥0, we put v(X) = v(X). We put

δ′
0(X1, . . . , Xn) =

∑

(m1,...,mn)

sgn(m1, . . . ,mn)X
qm1

1 · · · Xqmn

n ,

where we take the sum in the above sense and the index set is the same as (1.3).

Lemma 1.3 ([12, Lemma 1.6])] Assume that n ≥ 2 and v(Xi ) ≥ (nqi−1(q − 1))−1

for 1 ≤ i ≤ n. Then, we have

δ(X1, . . . , Xn) ≡ δ′
0(X1, . . . , Xn) mod >

1

n
+ 1

q − 1
.

1.2 Group action on the formal model

We define a group action on the formal scheme M(0)
∞,OC

, which is compatible with
usual group actions on Lubin–Tate spaces with finite level (cf. [5, 2.11]). We put

G = GLn(K ) × D× × WK .

Let G0 denote the kernel of the following homomorphism:

G → Z; (g, d, σ ) �→ v
(
det(g)−1NrdD/K (d)Art−1

K (σ )
)
.

Then, the formal scheme M(0)
∞,OC

admits a right action of G0. We write down the
action. In the sequel, we use the following notation:

For a ∈ μqn−1(Kn)∪{0}, let aq−m
denote the qm-th root of a inμqn−1(Kn)∪{0}

for a positive integerm, andwe simplywrite a also for the q-th power compatible
system (aq

−m
)m≥0.

For q-th power compatible systems X = (Xq− j
) j≥0 and Y = (Yq− j

) j≥0 that take
values inOC, we define a q-th power compatible system X +Ĝ0

Y by the requirement
that their j-th components for j ≥ 0 are

lim
m→∞(Xq−m +Ĝ0

Yq−m
)q

m− j
.

The symbol Ĝ0
∑

denotes this summation for q-th power compatible systems.
First, we define a left action of GLn(K ) × D× on the ring

Bn = OC[[X1/q∞
1 , . . . , X1/q∞

n ]].
For a = ∑∞

j=l a j�
j ∈ K with l ∈ Z and a j ∈ μq−1(K ) ∪ {0}, we set

[a] · Xi = Ĝ0
∞∑

j=l

a jX
q jn

i .
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for 1 ≤ i ≤ n. Let g ∈ GLn(K ). We write g = (ai, j )1≤i, j≤n . Then, let g act on the
ring Bn by

g∗ : Bn → Bn; Xi �→ Ĝ0
n∑

j=1

[a j,i ] · Xj for 1 ≤ i ≤ n. (1.6)

Let d ∈ D×.Wewrite d−1 = ∑∞
j=l d jϕ

j ∈ D× with l ∈ Z and d j ∈ μqn−1(Kn)∪{0}.
Then, let d act on Bn by

d∗ : Bn → Bn; Xi �→ Ĝ0
∞∑

j=l

d jX
q j

i for 1 ≤ i ≤ n. (1.7)

Now, we give a right action ofG0 onM(0)
∞,OC

using (1.6) and (1.7). Let (g, d, 1) ∈ G0.
We set

γ (g, d) = det(g)NrdD/K (d)−1 ∈ O×
K .

We put t = (tq
−m

)m≥0. Let (g, d, 1) act on M(0)
∞,OC

by

Aα → Aγ (g,d)−1α; Xi �→ (g, d) · Xi for 1 ≤ i ≤ n,

where α ∈ O×
K . This is well-defined, because the equation

δ((g, d) · X1, . . . , (g, d) · Xn) = ArtK (α)(t)

is equivalent to δ(X1, . . . , Xn) = ArtK (γ (g, d)−1α)(t). Let (1, ϕ−nσ , σ ) ∈ G0 act
onM(0)

∞,OC
by

Aα → AaK (σ )α; Xi �→ Xi , x �→ σ(x) for 1 ≤ i ≤ n and x ∈ OC,

where α ∈ O×
K . Thus, we have a right action of G

0 onM∞,OC , which induces a right

action on M(0)
∞,η̄(C) = M∞(C).

Remark 1.4 For a ∈ K×, the action of (a, a, 1) ∈ G0 on M∞,OC is trivial by the
definition.

1.3 CM points

We recall the notion of CM points from [5, 3.1]. Let L be a finite extension of K of
degree n inside C.

Definition 1.5 AdeformationG ofG0 overOC has CMby L if there is an isomorphism
L

∼−→ End(G)⊗OK K as K -algebras such that the inducedmap L → End(LieG)⊗OK

K � C coincides with the natural embedding L ⊂ C.
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We say that a point ofM∞(C) has CM by L if the corresponding deformation over
OC has CM by L .

Let ξ ∈ M∞(C) be a point that has CM by L . Let (G, φ, ι) be the triple corre-
sponding to ξ . Then we have embeddings iM,ξ : L → Mn(K ) and iD,ξ : L → D
characterized by the commutative diagrams

Kn φ

iM,ξ (a)

Vp(G)

Vp(a)

Kn φ
Vp(G)

and

G0 ι

iD,ξ (a)

G ⊗OC kac

a⊗id

G0 ι G ⊗OC kac

in the isogeny category for a ∈ L . We put iξ = (iM,ξ , iD,ξ ) : L → Mn(K ) × D. We
put

(GLn(K ) × D×)0 = {(g, d) ∈ GLn(K ) × D× | (g, d, 1) ∈ G0}.

Lemma 1.6 ([5, Lemma 3.1.2]) The group (GLn(K ) × D×)0 acts transitively on the
set of the points of M∞(C) that have CM by L. For ξ ∈ M∞(C) that has CM by L,
the stabilizer of ξ in (GLn(K ) × D×)0 is iξ (L×).

2 Good reduction of affinoids

2.1 Construction of affinoids

We take a uniformizer � of K . Let r ∈ μq−1(K ). We put �r = r� . We take
ϕr ∈ C such that ϕn

r = �r . We apply results in Sect. 1 replacing � with �r . We put
Lr = K (ϕr ). By the OK -algebra embedding OLr → OD defined by ϕr �→ ϕ, we
view G0 as a formalOLr -module of height 1. Let Gr be a lift of G0 toOL̂ur

r
as a formal

OLr -module. We take a compatible system {tr ,m}m≥1 in C such that

tr ,1 �= 0, [ϕr ]Gr (tr ,1) = 0, [ϕr ]Gr (tr ,m) = tr ,m−1

for m ≥ 2. We put

ϕM,r =
(

0 In−1
�r 0

)
∈ Mn(K )

and ϕD,r = ϕ ∈ D. For ξ ∈ M(0)
∞,η(C), we write (ξ1, . . . , ξn) for the coordinate of ξ

with respect to (X1, . . . , Xn), where ξ i = (ξ
q− j

i ) j≥0 for 1 ≤ i ≤ n.

Lemma 2.1 There exists ξr ∈ M(0)
∞,η(C) such that

ξ
q− j

r ,i = lim
m→∞ tq

m−i− j

r ,m ∈ OC
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760 N. Imai, T. Tsushima

for 1 ≤ i ≤ n and j ≥ 0. Further, we have the following:

(1) ξr has CM by Lr .
(2) We have iξr (ϕr ) = (ϕM,r , ϕD,r ) ∈ Mn(K ) × D.
(3) ξ r ,i = ξ

q
r ,i+1 for 1 ≤ i ≤ n − 1.

(4) v(ξr ,i ) = 1/(nqi−1(q − 1)) for 1 ≤ i ≤ n.

Proof This is proved in the same way as [12, Lemma 2.2]. ��
We take ξr as in Lemma 2.1. We can replace the choice of (1.2) so that

δ(ξ1, . . . , ξn) = t . Then we have ξr ∈ M(0)
∞,η̄,1. Let Dn,perf

C be the generic fiber

of Spf OC[[X1/q∞
1 , . . . , X1/q∞

n ]]. We consider M(0)
∞,η,1 as a subspace of Dn,perf

C by

(1.4). We put ηr = ξ
q−1
r ,1 and write ηr = (η

q− j

r ) j≥0. Note that v(ηr ) = 1/n. We write
n = pen′ with gcd(p, n′) = 1. We assume that e ≥ 1 in the sequel, since the case
where e = 0 is already studied in [12]. We put

ε0 =
{

(n′ + 1)/2 if pe = 2,

0 if pe �= 2.

We take q-th power compatible systems θr = (θ
q− j

r ) j≥0 and λr = (λ
q− j

r ) j≥0 in C
satisfying

θ
p2e
r + η

pe−1
r (θr + 1) = 0, λ

q
r − η

q−1
r (λr − θ

pe
r (θr + 1) + ε0ηr ) = 0. (2.1)

Note that

v(θr ) = pe − 1

np2e
, v(λr ) = 1

n

(
1 − 1

qpe

)
.

We define ξ ′
r ∈ Dn,perf

C by

ξ ′
r ,1 = ξ r ,1(1 + θr ), ξ ′

r ,i+1 = ξ ′ 1q
r ,i for 1 ≤ i ≤ n − 2,

ξ ′
r ,n = ξ ′ 1q

r ,n−1

(
(1 + θr )

−n(1 + n′λr )
) 1
qn−1 .

Proposition 2.2 There uniquely exists ξ0r ∈ M(0)
∞,η,1 satisfying

ξ0r ,i = ξ ′
r ,i for 1 ≤ i ≤ n − 1, ξ0r ,n ≡ ξ ′

r ,n mod >

q2 − q + 1

nqn−1(q − 1)
.

Proof We have

δ(ξ ′
r ) ≡ t mod >

1

q − 1
+ 1

n
.

Hence, we see the claim by Newton’s method. ��
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Remark 2.3 The key ingredients for the construction of ξ0r are the elements θr and
λr defined by (2.1). Up to some difference of normalizations, these elements are
analogues of βζ and γζ in [13, §2.2], which are generators of a field extension used
in a construction of a Langlands parameter there.

We take ξ0r as in Proposition 2.2. We put xi = Xi/ξ0r ,i for 1 ≤ i ≤ n. We define

Xr ⊂ M(0)
∞,η,1 by

v

(
xi
xi+1

−
( xn−1

xn

)qn−1−i )
≥ 1

2nqi
for 1 ≤ i ≤ n − 2,

v(xi − 1) ≥ 1

nqn−1(pe + 1)
for n − 1 ≤ i ≤ n.

(2.2)

The definition ofXr is independent of the choice of θr and λr . We define Br ⊂ Dn,perf
C

by the same condition (2.2).

2.2 Formal models of affinoids

Let (X1, . . . , Xn) be the coordinate of Br . We put h(X1, . . . , Xn) = ∏n
i=1 X

qi−1

i .
Further, we put

f (X1, . . . , Xn) = 1 − δ(X1, . . . , Xn)
h(X1, . . . , Xn)

, (2.3)

f0(X1, . . . , Xn) =
n−1∑

i=1

(
Xi
Xi+1

)qi−1(q−1)

+
(
Xqn
n

X1

) q−1
q

. (2.4)

We simply write f (X) for f (X1, . . . , Xn), and f (ξ r ) for f (ξ r ,1, . . . , ξ r ,n). We will
use the similar notations also for other functions. We put

S = f0(X) − f0(ξ
0
r ). (2.5)

Lemma 2.4 We have

f (X) ≡ f0(X) mod >

q − 1

nq
and S ≡ f (X) − f (ξ0r ) mod >

1

n
.

Proof We put

f1(X1, . . . , Xn) =
n−3∑

i=1

n−1∑

j=i+2

(
Xi
Xi+1

)qi−1(q−1)( Xj

Xj+1

)q j−1(q−1)

+
(
Xqn
n

X1

) q−1
q

n−3∑

i=1

(
Xi+1

Xi+2

)qi (q−1)

.
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We note that (X1, . . . , Xn) satisfies the assumption of Lemma 1.3 by the definition of
Br and Lemma 2.1 (4). Then we see that

f (X) ≡ 1 − δ′
0(X)

h(X)
≡ f0(X) − f1(X) mod >

1

n

using Lemma 1.3 and the definition of δ′
0. The claims follow from this, because

v( f1(X)) ≥ 2(q − 1)

nq
and v

(
f1(X) − f1(ξ

0
r )

)
>

2(q − 1)

nq

hold. ��

We put si = (xi/xi+1)
qi (q−1) for 1 ≤ i ≤ n − 1, and

si s
−1
n−1 = 1 + Yi for 1 ≤ i ≤ n − 2, sn−1 = 1 + Yn−1. (2.6)

We put m = gcd(e, f ) and

z =
e
m −1∑

i=0

(
θ
pe
r Yn−1

ηr

)pim

− 1

n′

f
m −1∑

i=0

(
S
ηr

)pim

. (2.7)

We put f = m0 and e = m1. We definem2, . . . ,mN+1 by the Euclidean algorithm
as follows: We have

mi−1 = nimi + mi+1 with ni ≥ 0 and 0 ≤ mi+1 < mi for 1 ≤ i ≤ N ,

mN = m, mN+1 = 0.

We put

T0 = θ
pe
r Yn−1

ηr
, T1 = −S

n′ηr
(2.8)

and define T2, . . . , TN by

Ti+1 = Ti−1 +
ni−1∑

j=0

T p jmi+mi+1

i for 1 ≤ i ≤ N − 1.

Then we see that

z =
mi+1
m −1∑

j=0

T p jm

i +
mi
m −1∑

j=0

T p jm

i+1 for 1 ≤ i ≤ N − 1
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inductively by (2.7). We see also that

(−1)N−iTi =
mi
m −1∑

j=0

T p jm

N + Pi (z) (2.9)

with some Pi (x) ∈ Z[x] for 0 ≤ i ≤ N − 1. We put

Y = (−1)Nηr

θ
pe
r

T p f −m

N . (2.10)

Then we have

Y ≡ Yn−1 mod >

1

n(pe + 1)
(2.11)

by (2.9) and (2.10). We define a subaffinoid B′
r ⊂ Br by v(z) ≥ 0.We choose a square

root η
1/2
r = (η

q− j /2
r ) j≥0 and a (pe + 1)-st root η

1/(pe+1)
r = (η

q− j /(pe+1)
r ) j≥0 of ηr

compatibly. We set

Yi = η
1/2
r yi with yi = (yq

− j

i ) j≥0 for 1 ≤ i ≤ n − 2,

Y = η
1/(pe+1)
r y with y = (yq

− j
) j≥0

(2.12)

on B′
r . Let B be the generic fiber of Spf OC〈y1/q∞

, y1/q
∞

1 , . . . , y1/q
∞

n−2 , z1/q
∞〉. The

parameters y, y1, . . . , yn−2, z give the morphism � : B′
r → B. We simply say an

analytic function on B for a q-th power compatible system of analytic functions on B.
We put

1 + θ ′
r = (1 + θr )

−n(1 + n′λr )
(

ξ0n

ξ ′
n

)qn−1

.

Lemma 2.5 The morphism � is an isomorphism.

Proof We will construct the inverse morphism of �. We can write Yn−1 and S as
analytic functions on B by (2.8), (2.9), (2.10) and (2.12). Then we can write xi/xi+1
as an analytic function on B by (2.6). By (2.4) and (2.5), we have

η
−(q−1)
r Sq

(1 + θr )(q−1)2
=

n−2∑

i=1

(si − 1) + sn−1 − 1

(1 + θ ′
r )

q−1

+ (1 + θ ′
r )

q(q−1)
(
x(q−1)(qn−1)
n

n−1∏

i=1

(x−1
i xi+1) − 1

)
.

By this equation, we can write xn as an analytic functions on B. Hence, we have the
inverse morphism of �. ��
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We put

δB(y, y1, . . . , yn−2, z) = (δ|B′
r
) ◦ �−1

equipped with its q j -th root δq
− j

B for j ≥ 0. We put

Xr = Spf OC〈y1/q∞
, y1/q

∞
1 , . . . , y1/q

∞
n−2 , z1/q

∞〉/(δq− j

B − tq
− j

)−j≥0.

Let Xr denote the special fiber of Xr .

Theorem 2.6 The formal scheme Xr is a formal model of Xr , and Xr is isomorphic to
the perfection of the affine smooth variety defined by

z p
m − z = y p

e+1 − 1

n′
∑

1≤i≤ j≤n−2

yi y j in A
n
kac . (2.13)

Proof Let (X1, . . . , Xn) be the coordinate of Br . By Lemma 2.4, we have

v( f (X)) ≥ q − 1

nq
and v(S) >

q − 1

nq
. (2.14)

We have

h(X)q−1 =
(
Xqn
n

X1

) n−1∏

i=1

(
Xi
Xi+1

)qi

. (2.15)

We have

(
Xqn
n

X1

)q−1

=
(
ηr (1 + θr )

q−1(1 + θ ′
r )

q
)q−1

(
h(X)

h(ξ0r )

)(q−1)2 n−1∏

i=1

s−1
i (2.16)

by (2.15). We put

R(X) = 1 − f (ξ0r )

1 − f (X)
− (1 + S). (2.17)

Then we have v(R(X)) > 1/n by Lemma 2.4 and (2.14). The equation δ(X) = δ(ξ0r )

is equivalent to

(
Xqn
n

X1

)q−1

=
(
ηr (1+ θr )

q−1(1+ θ ′
r )

q
)q−1(

1 + S + R(X)
)(q−1)2

n−1∏

i=1

s−1
i (2.18)

by (2.3), (2.16) and (2.17). We put

F(X) = (1 + θ ′
r )

q(q−1)(1 + S + R(X)
)(q−1)2

n−1∏

i=1

s−1
i .
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The equation (2.18) is equivalent to

f0(X)q = η
q−1
r (1 + θr )

(q−1)2
(n−2∑

i=1

si + sn−1

(1 + θ ′
r )

q−1
+ F(X)

)
. (2.19)

The equation (2.19) is equivalent to

Sq = η
q−1
r (1 + θr )

(q−1)2
(n−2∑

i=1

(si − 1) + sn−1 − 1

(1 + θ ′
r )

q−1
+ F(X) − F(ξ0r )

)
. (2.20)

We put

R1(X) = (1 + θr )
(q−1)2

(n−2∑

i=1

(si − 1) + sn−1 − 1

(1 + θ ′
r )

q−1
+ F(X) − F(ξ0r )

)

−
(
S +

∑

1≤i≤ j≤n−2

YiY j − n′(Y pe+1
n−1 + (1 + θr )Y

pe

n−1 + θ
pe
r Yn−1

))
.

Then we have v(R1(X)) > 1/n. The equation (2.20) is equivalent to

Sq = η
q−1
r

(
S+

∑

1≤i≤ j≤n−2

YiY j −n′(Y pe+1
n−1 + (1+θr )Y

pe

n−1+θ
pe
r Yn−1

)
+ R1(X)

)
.

(2.21)
The equation (2.21) is equivalent to

z p
m − z = η−1

r

(
Y pe+1
n−1 − 1

n′
∑

1≤i≤ j≤n−2

YiY j − R1(X)

n′

)
. (2.22)

As a result, δ(X) = δ(ξ L) is equivalent to (2.22) on Br . By Lemma 2.4 and (2.22),
we have v(z) ≥ 0 on Xr . This implies Xr ⊂ B′

r . We have the first claim by Lemma
2.5 and the construction of Xr . The second claim follows from (2.11) and (2.22). ��

Remark 2.7 If n = p = 2, then the smooth compactification of the curve over k
defined by (2.13) is the supersingular elliptic curve, which appears as an irreducible
component of a semi-stable reduction of a one-dimensional Lubin–Tate space in [15]
and [11].

3 Group action on the reductions

Action of GLn and D× Let I ⊂ Mn(OK ) be the inverse image under the reduction
map Mn(OK ) → Mn(k) of the ring consisting of upper triangular matrices in Mn(k).
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Lemma 3.1 Let (g, d, 1) ∈ G0. We take the integer l such that dϕ−l
D,r ∈ O×

D. Let
(X1, . . . , Xn) be the coordinate of Xr . Assume v((g, d) · Xi ) = v(Xi ) for 1 ≤ i ≤ n
at some point of Xr . Then we have (g, d) ∈ (ϕM,r , ϕD,r )

l(I× × O×
D).

Proof This is proved in the same way as [12, Lemma 3.1]. ��
We put

gr = (ϕM,r , ϕD,r , 1) ∈ G. (3.1)

We put

ε1 =
{
1 if pe = 2,

0 if pe �= 2.
(3.2)

For a ∈ kac, we simply write a also for the q-th power compatible system (aq
− j

) j≥0.

Proposition 3.2 (1) The action of gr stabilizes Xr , and induces the automorphism of
Xr defined by

(z, y, ( yi )1≤i≤n−2)

�→
(
z + ε1( yn−2 + 1), y,−

n−3∑

i=1

yi − 2 yn−2 + ε1, ( yi−1 − yn−2 + ε1)2≤i≤n−2

)
.

(3.3)
(2) Assume pe �= 2. Let gr ∈ GLn−1(k) be the matrix corresponding to the action of

gr on ( y, ( yi )1≤i≤n−2) in (3.3). Then, det(gr ) = (−1)n−1.

Proof By (1.6) and (1.7), we have

g∗
r X1 = Xqn−1

n , g∗
r X i = X

1
q
i−1 for 2 ≤ i ≤ n. (3.4)

By (3.4), we have g∗
r (h(X)) = h(X). Hence, we have

g∗
r S ≡ S mod >

1

n
(3.5)

by (2.3), (2.5) and Lemma 2.4. By (2.18) and (3.4), we have

g∗
r s1 ≡

n−1∏

i=1

s−1
i mod >

1

2n
. (3.6)

We have also

g∗
r si = si−1 for 2 ≤ i ≤ n − 2, g∗

r sn−1 = sn−2(1 + θ ′
r )

1−q (3.7)

by (3.4). We have

g∗
rY1 ≡ (1 + θr )

n(1 + Yn−2)
−2

n−3∏

i=1

(1 + Y i )
−1 − 1 mod >

1

2n
(3.8)
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by (2.6), (3.6) and (3.7). We have also

g∗
rY i ≡ (1 + θr )

n(1 + Y i−1)(1 + Yn−2)
−1 − 1 mod >

1

2n
for 2 ≤ i ≤ n − 2,

g∗
rYn−1 ≡ (1 + θr )

−n(1 + Yn−2)(1 + Yn−1) − 1 mod >

1

pen
(3.9)

by (3.7). The claim follows from (3.5), (3.8) and (3.9). ��
Let P be the Jacobson radical of the order I, and pD be the maximal ideal of OD .

We put

U 1
I = 1 + P, U 1

D = 1 + pD

and

(U 1
I ×U 1

D)1 = {(g, d) ∈ U 1
I ×U 1

D | det(g)−1 NrdD/K (d) = 1}.

Let prOK /k : OK → k be the reduction map. We put

hr (g, d) = 1

n′ (Trk/Fpm ◦ prOK /k)
(
TrdD/K (ϕ−1

D,r (d − 1)) − tr(ϕ−1
M,r (g − 1))

)

for (g, d) ∈ U 1
I ×U 1

D .

Proposition 3.3 The stabilizer ofXr inGLn(K )×D× is iξr (L
×
r )·(U 1

I×U 1
D)1. Further,

(g, d) ∈ (U 1
I ×U 1

D)1 induces the automorphism of Xr defined by

(z, y, ( yi )1≤i≤n−2) �→ (z + hr (g, d), y, ( yi )1≤i≤n−2).

Proof Assume that (g, d) ∈ GLn(K ) × D× stabilizes Xr . Then we have det(g) =
NrdD/K (d). We will show that

(g, d) ∈ iξr (L
×
r ) · (U 1

I ×U 1
D)1.

We have (g, d) ∈ (ϕM,r , ϕD,r )
l(I× × O×

D) for some integer l by Lemma 3.1, since
(g, d) stabilizesXr and we have v(Xi ) = 1/(nqi−1(q−1)) for 1 ≤ i ≤ n at any point
of Xr by Lemma 2.1 (4) and (2.2). Further, we may assume that (g, d) ∈ I× × O×

D ,
since we already know that (ϕM,r , ϕD,r ) stabilizes Xr by Proposition 3.2 (1).

We write g = (ai, j )1≤i, j≤n ∈ I and ai, j = ∑∞
l=0 a

(l)
i, j�

l
r with a(l)

i, j ∈ μq−1(K ) ∪
{0}. By (1.6), we have

g∗X1 ≡ a(0)
1,1X1 + a(1)

n,1X
qn
n mod >

q

n(q − 1)
,

g∗X i ≡ a(0)
i,i X i + a(0)

i−1,iX i−1 mod >

1

nqi−2(q − 1)
for 2 ≤ i ≤ n.

(3.10)
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We write d−1 = ∑∞
i=0 diϕ

i
D,r with di ∈ μqn−1(Kn) ∪ {0}. We set κ(d) = d1/d0. By

(1.7), we have

d∗X i ≡ d0X i

(
1 + κ(d)Xq−1

i

)
mod >

1

nqi−2(q − 1)
for 1 ≤ i ≤ n. (3.11)

By (2.2), (3.10) and (3.11), we have (g, d) ∈ iξr (O×
K ) · (U 1

I ×U 1
D)1. Conversely, any

element of iξr (L
×
r ) · (U 1

I × U 1
D)1 stabilizes Xr by Remark 1.4, Proposition 3.2 and

the above arguments.
Let (g, d) ∈ O×

KU
1
I × O×

D . We put

�g(X) =
n−1∑

i=1

a(0)
i,i+1

a(0)
i+1,i+1

(
X i

X i+1

)qi

+ a(1)
n,1X

qn
n

a(0)
1,1X1

, �d(X) =
n∑

i=1

κ(d)q
i−1

Xqi−1(q−1)
i .

Then, we acquire

f0
(
(g, d)∗X

) ≡ f0(X) + �g(X) + �d(X) mod >

1

n
. (3.12)

We have

(g, d)∗S ≡ S + �g(X) + �d(X) mod >

1

n
(3.13)

by (2.5) and (3.12). We have

(g, d)∗si ≡ si mod ≥
1

n
(3.14)

for 1 ≤ i ≤ n − 2. Let (g, d) ∈ (U 1
I ×U 1

D)1. We obtain

(g, d)∗z = z + hr (g, d)

by (2.7), (3.13) and (3.14). We can compute the action of (g, d) on y and { yi }1≤i≤n−2
by (2.6), (2.11), (2.12) and (3.14). ��

Action of the Weil group We put ϕ′
r = ϕ

pe
r and Er = K (ϕ′

r ). Let σ ∈ WEr in this
paragraph. We put

aσ = Art−1
Er

(σ ) and uσ = aσ ϕ′
r
−nσ ∈ O×

Er
.

We take

bσ ∈ μq−1(K ) such that b̄ pe
σ = ūσ ∈ k.

We put

cσ = b−n
σ NrEr /K (uσ ) ∈ U 1

K .
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Let

gσ = (ai, j )1≤i, j≤n ∈ O×
KU

1
I

be the element defined by ai,i = bσ for 1 ≤ i ≤ n − 1, an,n = bσ cσ and ai, j = 0 if
i �= j . We put

gσ = (gσ , ϕ
−nσ

D,r , σ ) ∈ G. (3.15)

Then gσ stabilizes each component in (1.5). We choose elements αr , βr , γr ∈ K ac

such that

α
pe+1
r = −ϕ′

r , β
p2e
r + βr = −α−1

r , γ
pm
r − γr = β

pe+1
r + ε0,

α−1
r η

pe

pe+1
r ≡ 1, β−1

r θ
pe
r η

− pe

pe+1
r ≡ 1, γ −1

r

f
m −1∑

i=0

(λrη
−1
r )p

im ≡ 1 mod > 0.

(3.16)
For σ ∈ WEr , we set

ar ,σ = σ(αr )

αr
, br ,σ = ar ,σ σ (βr ) − βr ,

cr ,σ = σ(γr ) − γr +
e
m −1∑

i=0

(bpe
r ,σ (βr + br ,σ ))p

im
.

Then we have ar ,σ , br ,σ , cr ,σ ∈ OC and

ar ,σ ≡
⎛

⎝σ(η
1

pe+1
r )

η
1

pe+1
r

⎞

⎠
pe

, br ,σ ≡
⎛

⎝σ(θr ) − θr

η
1

pe+1
r

⎞

⎠
pe

,

cr ,σ ≡
f
m −1∑

i=0

(
σ(λr ) − λr

ηr

)pim

−
e
m −1∑

i=0

(
(σ (θr ) − θr )σ (θr )

pe

ηr

)pim

mod > 0

(3.17)
by (2.1) and (3.16). Let

Q =
{
g(a, b, c)

∣∣∣ a, b, c ∈ kac, a pe+1 = 1, bp2e + b = 0, cp
m − c + bpe+1 = 0

}

be the group whose multiplication is given by

g(a1, b1, c1) · g(a2, b2, c2) = g

(
a1a2, a1b2 + b1, c1 + c2 +

e
m −1∑

i=0

(a1b
pe

1 b2)
pim

)
.
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Let Q � Z be the semidirect product, where l ∈ Z acts on Q by g(a, b, c) �→
g(aq

−l
, bq

−l
, cq

−l
). Let (g(a, b, c), l) ∈ Q � Z act on Xr by

(z, y, ( yi )1≤i≤n−2) �→
((

z+
e
m −1∑

i=0

(b y)p
im +c

)ql

, (a( y+bpe ))q
l
, (a

pe+1
2 yq

l

i )1≤i≤n−2

)
.

(3.18)
We have the surjective homomorphism

�r : WEr → Q � Z; σ �→ (
g(ār ,σ , b̄r ,σ , c̄r ,σ ), nσ

)
. (3.19)

Proposition 3.4 Let σ ∈ WEr . Then, gσ ∈ G stabilizes Xr , and induces the automor-
phism of Xr given by �r (σ ).

Proof Let P ∈ Xr (C). We have

S(Pgσ ) = f0
(
X(Pgσ )

) − f0(ξ
0
r )

= f0
(
X(Pgσ )

) − f0
(
X(P(1, ϕ−nσ

D,r , σ ))
) + σ−1( f0(X(P))

) − f0(ξ
0
r )

≡ �gσ

(
X(P(1, ϕ−nσ

D,r , σ ))
) + σ−1(S(P) + f0(ξ

0
r )

) − f0(ξ
0
r )

≡ σ−1(S(P)
) + f0(σ

−1(ξ0r )) − f0(ξ
0
r ) mod >

1

n
(3.20)

by (2.5) and (3.12). We have

f0(σ
−1(ξ0r )) − f0(ξ

0
r ) ≡ n′(σ−1(λr ) − λr ) mod >

1

n
. (3.21)

We put si (X) = (X i/X i+1)
qi (q−1) for 1 ≤ i ≤ n − 1. We have

sn−1(ξ
0
r )Yn−1(Pgσ ) = sn−1

(
X(Pgσ )

) − sn−1(ξ
0
r )

= sn−1
(
X(Pgσ )

) − sn−1
(
X(P(1, ϕ−nσ

D,r , σ ))
) + σ−1(sn−1(X(P))

) − sn−1(ξ
0
r )

≡ σ−1(sn−1(ξ
0
r )Yn−1(P)

) + σ−1(sn−1(ξ
0
r )

) − sn−1(ξ
0
r ) mod >

q − 1

n
+ 1

npe

(3.22)

by (2.6) and (3.12). Hence, we have

Yn−1(Pgσ ) ≡ σ−1(Yn−1(P)
) + σ−1(θr ) − θr mod >

1

npe
. (3.23)

We put θr ,σ = σ(θr ) − θr and λr ,σ = σ(λr ) − λr . We have

σ
(
z(Pgσ )

) = σ

( e
m −1∑

i=0

(
θ
pe
r Yn−1(Pgσ )

ηr

)pim

− 1

n′

f
m −1∑

i=0

(
S(Pgσ )

ηr

)pim)
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≡ z(P) +
e
m −1∑

i=0

(
θ
pe
r ,σYn−1(P) − σ(θ

pe
r )θr ,σ

ηr

)pim

+
f
m −1∑

i=0

(
λr ,σ

ηr

)pim

≡ z(P) +
e
m −1∑

i=0

(br ,σ y(P))p
im + cr ,σ mod > 0

by (2.7), (3.17), (3.20), (3.21), (3.22) and (3.23). We see also that

σ

(
Yn−1(Pgσ )

η
1/(pe+1)
r

)
≡ a−pe

r ,σ ( y − b
1
pe
r ,σ ) ≡ ar ,σ ( y + bpe

r ,σ ) mod > 0

by (3.17) and (3.23). By the same argument using (3.11), we have

Y i (Pgσ ) ≡ σ−1(Y i (P)) mod >

1

2n

for 1 ≤ i ≤ n − 1. This implies

yi (Pgσ ) ≡ σ−1(η
1/2
r )

η
1/2
r

σ−1( yi (P)) ≡ a(pe+1)/2
r ,σ yi (P)q

nσ
mod > 0

for 1 ≤ i ≤ n − 1 by (3.17). ��

Stabilizer We put n1 = gcd(n, pm − 1). We put

ϕ′′
r = ϕ′n1

r and Fr = K (ϕ′′
r ).

Let σ ∈ WFr . We put

ζσ = σ−1(ϕ′
r )

ϕ′
r

.

Let ζ 1/pe
σ be the pe-th root of ζσ in μpm−1(K ). We put

ϕr ,σ = ζ 1/pe
σ ϕr .

Let Gr ,σ be the one-dimensional formal OLr -module over OL̂ur
r
defined similarly to

Gr changing ϕr by ϕr ,σ . We take a compatible system {tr , j,σ } j≥1 in C such that

σ−1(tr ,1)

tr ,1,σ
≡ 1 mod > 0, [ϕr ,σ ]Gr ,σ (tr ,1,σ ) = 0, [ϕr ,σ ]Gr ,σ (tr , j,σ ) = tr , j−1,σ

for j ≥ 2. We construct ξr ,σ as in Lemma 2.1 using {tr , j,σ } j≥1. Then ξr ,σ has CM by
Lr .
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Lemma 3.5 For σ ∈ WFr , we have

σ−1(ξr ,i )

ξr ,σ,i
≡ 1 mod ≥

1

qi−1 pe−1(p − 1)
for 1 ≤ i ≤ n,

σ−1(θr ) ≡ θr mod ≥
1

n(pe + 1)
.

Proof We have
σ−1(ϕr )

ϕr
≡ ζ 1/pe

σ mod ≥
1

pe−1(p − 1)
. (3.24)

We obtain the claims by (3.24) and

(
σ−1(θr ) − θr

)p2e + η
pe−1
r

(
σ−1(θr ) − θr

)

+(
1 + σ−1(θr )

)(
σ−1(ηr )

pe−1 − η
pe−1
r

) = 0,

which follows from (2.1). ��
We define jr : WFr → L×

r \(GLn(K ) × D×) as follows:

Let σ ∈ WFr . Since ξr ,σ has CM by Lr , there exists (g, d) ∈ GLn(K ) ×
D× uniquely up to left multiplication by L×

r such that (g, d, 1) ∈ G0 and
ξr ,σ (g, d, 1) = ξr by Lemma 1.6. We put jr (σ ) = L×

r (g, ϕ−nσ

D,r d).

For σ ∈ WLr , we put aσ = Art−1
Lr

(σ ) ∈ L×
r and uσ = aσ ϕ

−nσ
r ∈ O×

Lr
.

Lemma 3.6 For σ ∈ WLr , we have jr (σ ) = L×
r (1, a−1

σ ).

Proof This follows from [5, Lemma 3.1.3]. Note that our action of WK is inverse to
that in [5]. ��

We put

Sr = {(g, d, σ ) ∈ G | σ ∈ WFr , jr (σ ) = L×
r (g, d)}.

Lemma 3.7 The action of Sr onM(0)
∞,η stabilizes Xr , and induces the action on Xr .

Proof We take an element of Sr , and write it as (g, ϕ−nσ

D,r d, σ ), where (g, d, 1) ∈ G0

and σ ∈ WFr . Since ξr ,σ (g, d, 1) = ξr , we have (g, d) ∈ (ϕM,r , ϕD,r )
l(I× ×O×

D) by
Lemma 3.1 and Lemma 3.5.

To show the claims, we may assume that (g, d) ∈ I× ×O×
D by Proposition 3.2 (1).

Wewrite g = (ai, j )1≤i, j≤n ∈ I× and ai, j = ∑∞
l=0 a

(l)
i, j�

l
r with a

(l)
i, j ∈ μq−1(K )∪{0},

and d−1 = ∑∞
i=0 diϕ

i
D,r with di ∈ μqn−1(Kn) ∪ {0}. For 1 ≤ i ≤ n − 1, we have

a(0)
i,i

a(0)
i+1,i+1

= dq−1
0 (3.25)
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by ξr ,σ (g, d, 1) = ξr using (3.10), (3.11), ξr ,σ,i = ξ
q
r ,σ,i+1 and ξr ,i = ξ

q
r ,i+1. The

condition on the first line in (2.2) is equivalent to

v

(
X i

X i+1
−

(Xn−1

Xn

)qn−1−i )
≥ 3

2nqi
for 1 ≤ i ≤ n − 2. (3.26)

We see that the condition (3.26) is stable under the action of (g, ϕ−nσ

D,r d, σ ) using

(3.10) and (3.11), because a(0)
i,i /a(0)

i+1,i+1 is independent of i by (3.25). We see that the

condition on the second line in (2.2) is stable under the action of (g, ϕ−nσ

D,r d, σ ) by
Lemma 3.5 using (3.10) and (3.11). ��

The group Sr normalizes iξr (L
×
r ) · (U 1

I ×U 1
D)1 by Proposition 3.3. We put

Hr = (U 1
I ×U 1

D)1 · Sr ⊂ G.

Then Hr acts on Xr by Lemma 3.7 and the proof of Proposition 3.3.

Proposition 3.8 The subgroup Hr ⊂ G0 is the stabilizer of Xr inM(0)
∞,η.

Proof Assume that (g, ϕ−nσ

D,r d, σ ) ∈ G0 stabilizes Xr . It suffices to show that

(g, ϕ−nσ

D,r d, σ ) ∈ Hr .

By Lemma 3.1, we have (g, d) ∈ (ϕM,r , ϕD,r )
l(I× × O×

D). Hence, we may assume
that (g, d) ∈ I× × O×

D by Proposition 3.2 (1).
First, we show that σ ∈ WFr . We write g = (ai, j )1≤i, j≤n ∈ I×, ai, j =∑∞
l=0 a

(l)
i, j�

l
r and d−1 = ∑∞

i=0 diϕ
i
D,r as in the proof of Lemma 3.7. Since

(g, ϕ−nσ

D,r d, σ ) stabilizes Xr , we have

a(0)
i,i

a(0)
i+1,i+1

= dq−1
0 for 1 ≤ i ≤ n − 1, (3.27)

a(0)
n,nd0σ−1(ξ0r ,n)

ξ0r ,n
≡ 1 mod ≥

1

nqn−1(pe + 1)
(3.28)

by (2.2), (3.10), (3.11) and ξr ,i = ξ
q
r ,i+1. By taking the peqn−1(q − 1)-st power of

(3.28), we see that

d peqn−1(q−1)
0

σ−1(ϕ′
r )

ϕ′
r

≡
(

1 + θr

1 + σ−1(θr )

)pe(q−1)

mod ≥
pe

n(pe + 1)
. (3.29)

This implies that the left hand side of (3.29) is equal to 1. Hence we have
σ−1(ϕ′

r )/ϕ
′
r ∈ μq−1(K ) and σ−1(θr ) ≡ θr mod ≥ 1/(n(pe + 1)), since dq−1

0 ∈
μq−1(K ) by (3.27). These happen only if σ ∈ WFr by the proof of Lemma 3.5 and
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μpe−1(K ur) ∩ μq−1(K ) = μpm−1(K ). Since σ ∈ WFr , we may assume that σ = 1
by Lemma 3.7. Then (g, d, 1) ∈ Hr by Proposition 3.3. ��

4 Artin–Schreier variety

4.1 Tate conjecture

Let m be a positive integer such that Fpm ⊂ Fq . Let N be a positive even integer. We
put n0 = N/2. We consider the affine smooth variety XN ,Fq over Fq defined by

z p
m − z =

n0∑

i=1

u2i−1u2i in A
N+1
Fq

.

Let XN be the base change of XN ,Fq to Fq . For an integer i ≥ 0, we simply write A
i

for the affine space A
i
Fq
.

Remark 4.1 Let Q(y1, . . . , yN ) be any non-degenerate quadratic form on A
N . Then

the affine smooth variety over Fq defined by

z p
m − z = Q(y1, . . . , yN ) in A

N+1

is isomorphic to XN by [22, XII, Proposition 1.2].

For each ζ ∈ F
×
pm , we consider the homomorphism

pζ : Fpm → Fp; x �→ Tr
Fpm /Fp (ζ

−1x).

Then, we consider the quotient XN ,ζ = XN/ ker pζ . Note that the quotient XN ,ζ

depends only on the class [ζ ] ∈ F
×
pm/F

×
p of ζ . The variety XN ,ζ has the defining

equation

ζ(z pζ − zζ ) =
n0∑

i=1

u2i−1u2i in A
N+1, (4.1)

where the relation between z and zζ is given by zζ = ∑m−1
i=0 (ζ−1z)p

i
. Let � �= p be a

prime number. For a topological abelian group A, let A∨ denote the set of the smooth
characters A → Q

×
� . Let Lψ be the Artin–Schreier Q�-sheaf on A

1 associated to
ψ ∈ F

∨
pm , which is F(ψ) in the notation of [6, Sommes trig. 1.8 (i)]. For a polynomial

f ∈ Fq [x1, . . . , xl ], let Lψ( f ) denote the pullback of Lψ under f : A
l → A

1.

Lemma 4.2 We have an isomorphism

⊕

[ζ ]∈F

×
pm /F

×
p

H N (XN ,ζ , Q�) � HN (XN , Q�)
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induced by the pullbacks and dim HN (XN ,ζ , Q�) = p − 1.

Proof For ψ ∈ F
∨
pm \ {1}, we have

Hi
c (A

2,Lψ(xy)) =
{

Q�(−1) if i = 2,

0 otherwise

by [19, Proposition 1.2.2.2] as in the proof of [16, Lemma 2.1]. Hence, by the Künneth
formula, we have isomorphisms

HN
c (XN , Q�) �

⊕

ψ∈F

∨
pm \{1}

HN
c

(
A

N ,Lψ

(
n0∑

i=1

u2i−1u2i

))
�

⊕

ψ∈F

∨
pm \{1}

ψ

as Fpm -representations. By Poincaré duality, we have an isomorphism

HN (XN , Q�) �
⊕

ψ∈F

∨
pm \{1}

ψ

as Fpm -representations. Let ψ ′ : Fp ↪→ Q
×
� be any non-trivial character. Then, for

each ψ ∈ F
∨
pm \ {1}, there exists a unique element ζ ∈ F

×
pm such that ψ = ψ ′ ◦ pζ .

Hence, we know that

HN (XN ,ζ , Q�)[ψ ′] = HN (XN , Q�)[ψ] � ψ

as Fpm -representations. Therefore, the required assertion follows. ��
Consider the fibration

πζ : XN ,ζ → A
n0; (zζ , (ui )1≤i≤N ) �→ ((u2i )1≤i≤n0).

Let 0 denote the origin ofAn0 . The inverse imageπ−1
ζ (0) has p connected components.

For a ∈ Fp, we define Za
ζ to be the connected component ofπ−1

ζ (0) defined by zζ = a.
We know that each Za

ζ is isomorphic to the affine space of dimension n0. Let

cl : CHn0(XN ,ζ ) → HN (XN ,ζ , Q�(n0))

be the cycle class map.

Lemma 4.3 (1) The fibration πζ : XN ,ζ → A
n0 is an affine bundle over A

n0 \ {0}.
(2) The cohomology group HN (XN ,ζ , Q�(n0)) is generated by the cycle classes

cl([Za
ζ ]) for a ∈ Fp with the relation

∑
a∈Fp

cl([Za
ζ ]) = 0.
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Proof For 1 ≤ i ≤ n0, let Ui be the open subscheme of A
n0 defined by the condition

that the i-th coordinate is not zero. Then {Ui }1≤i≤n0 is a covering of A
n0 \ {0}. We can

see that πζ is a trivial affine bundle on eachUi by (4.1). Hence the first claim follows.
We set U = π−1

ζ (An0 \ {0}). We have the long exact sequence

HN−1(U , Q�) → HN
π−1

ζ (0)
(XN ,ζ , Q�) � Q�(−n0)

⊕p

→ HN (XN ,ζ , Q�) → HN (U , Q�)

and HN (U , Q�) � HN (An0 \ {0}, Q�) = 0, which follows from the first claim.
Therefore, HN (XN ,ζ , Q�(n0)) is generated by the cycle classes cl([Za

ζ ]) for a ∈
Fp. On the other hand, we have

∑
a∈Fp

cl([Za
ζ ]) = 0, since

∑
a∈Fp

[Za
ζ ] = 0 in

CHn0(XN ,ζ ). Since dim HN (XN ,ζ , Q�(n0)) = p − 1 by Lemma 4.2, we obtain the
claim. ��

Corollary 4.4 The Tate conjecture in [18, 7.13] holds for the variety XN ,Fq .

Proof By Lemma 4.2, Lemma 4.3 and the commutativity of cycle maps and pullbacks
under XN → XN ,ζ , we have [18, 7.13 Conjecture (A), (B)] for XN ,Fq and the equality

HN (XN , Q�(n0))
Gal(Fq/Fq ) = HN (XN , Q�(n0)).

Then the q-th geometric Frobenius inGal(Fq/Fq) acts on HN (XN , Q�) by q
n0 . Hence

[18, 7.13 Conjecture (C)] for XN ,Fq also follows. ��

4.2 Action on cohomology

In this section, we assume that p = 2. Let n ≥ 4 be an even integer. Letm = gcd(e, f )
as in Sect. 2.2. We consider the affine smooth variety X of dimension n − 2 defined
by

z2
m − z =

∑

1≤i≤ j≤n−2

yi y j in A
n−1.

We take ζ3 ∈ Fq \ {1} such that ζ 3
3 = 1. Then, we define u1, . . . , un−2 by

u4i+1 = ζ3y4i+1 + ζ−1
3 y4i+2 +

n−2∑

j=4i+3

y j , u4i+2 = ζ−1
3 y4i+1 + ζ3y4i+2 +

n−2∑

j=4i+3

y j ,

u4i+3 = y4i+3 +
n−2∑

j=4i+5

y j , u4i+4 = y4i+4 +
n−2∑

j=4i+5

y j .
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Then the variety X is isomorphic to the affine variety Xn−2 defined by

z2
m − z =

n0∑

i=1

u2i−1u2i in A
n−1,

where n0 = (n−2)/2. For ζ ∈ F
×
2m , we simply write Xζ for the variety Xn−2,ζ , which

is defined in Sect. 4.1 where N = n − 2. Recall that Xζ has the defining equation

ζ(z2ζ − zζ ) =
n0∑

i=1

u2i−1u2i in A
n−1.

For a ∈ F2, we consider the other n0-dimensional cycle Z ′a
ζ in Xζ defined by

u1 = 0, u4i−1 = u4i+2, u4i = u4i+1 for 1 ≤ i ≤ [(n0 − 1)/2],
un−3 = un−2 + 1 if e = 1, zζ = a + ε1un−2,

where ε1 is defined at (3.2).

Proposition 4.5 For ζ ∈ F
×
2m and a ∈ F2, we have

[Za
ζ ] = (−1)n0 [Z ′a

ζ ] in CHn0(Xζ ).

Proof We show that [Za
ζ ] − (−1)n0 [Z ′a

ζ ] is rationally equivalent to zero. For 1 ≤ i ≤
[(n0 + 1)/2], let Xζ,i be the (n0 + 1)-dimensional closed subvariety of Xζ defined by

u4 j = 0 for 1 ≤ j ≤ [n0/2],
u4 j−3 = 0 for 1 ≤ j ≤ i − 1, u4 j−2 = 0 for i + 1 ≤ j ≤ [(n0 + 1)/2],

and let Za
ζ,i be the n0-dimensional cycle on Xζ,i defined by u4i−3 = 0 and zζ = a.

We put Za
ζ,0 = Za

ζ . Then we have

div(zζ − a) = [Za
ζ,i−1] + [Za

ζ,i ]

in CHn0(Xζ,i ) for 1 ≤ i ≤ [(n0 + 1)/2], since we have ζ(z2ζ − zζ ) = u4i−3u4i−2 on
Xζ,i . For 1 ≤ i ≤ [(n0 −1)/2], let X ′

ζ,i be the (n0 +1)-dimensional closed subvariety
of Xζ defined by

u1 = 0, u4 j−1 = u4 j+2, u4 j = u4 j+1 for 1 ≤ j ≤ i − 1, u4i = u4i+1,

u4 j = 0 for i + 1 ≤ j ≤ [n0/2], u4 j+1 = 0 for i + 1 ≤ j ≤ [(n0 − 1)/2],

and let Z ′a
ζ,i be the n0-dimensional cycle on X ′

ζ,i defined by u4i−1 = u4i+2 and zζ = a.
We put Z ′a

ζ,0 = Za
ζ,[(n0+1)/2]. Then we have

div(zζ − a) = [Z ′a
ζ,i−1] + [Z ′a

ζ,i ]
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in CHn0(X
′
ζ,i ) for 1 ≤ i ≤ [(n0 − 1)/2], since we have

ζ(z2ζ − zζ ) = u4i (u4i−1 + u4i+2)

on X ′
ζ,i . If e ≥ 2, then Z ′a

ζ,[(n0−1)/2] = Z ′a
ζ , and the claim follows. Assume that e = 1.

Then m = 1. Let X ′′
ζ be the (n0 + 1)-dimensional closed subvariety of Xζ defined by

u1 = 0, u4 j−1 = u4 j+2, u4 j = u4 j+1 for 1 ≤ j ≤ (n0 − 2)/2.

Then we have

div(zζ − un−2 − a) = [Z ′a
ζ,[(n0−1)/2]] + [Z ′a

ζ ]

in CHn0(X
′′
ζ ), since we have

(z − un−2)(z − un−2 − 1) = un−2(un−3 + un−2 + 1)

on X ′′
ζ . Therefore, we obtain the claim. ��

Corollary 4.6 Assume that n ≥ 4. Let g be the automorphism of X defined by

(z, (yi )1≤i≤n−2) �→
(
z + ε1(yn−2 + 1),

n−3∑

i=1

yi + ε1, (yi−1 + yn−2 + ε1)2≤i≤n−2

)
.

Then, g∗ acts on Hn−2(X , Q�) by −1.

Proof Note that g induces an automorphism of Xζ . The condition of Z0
ζ ⊂ Xζ is

equivalent to

y4i−3 + ζ−1
3 y4i−2 + ζ3y4i−1 = 0 for 1 ≤ i ≤ [n0/2],

y4i + ζ3y4i+1 + ζ−1
3 y4i+2 = 0 for 1 ≤ i ≤ [(n0 − 1)/2],

ζ−1
3 yn−3 + ζ3yn−2 = 0 if e ≥ 2, yn−2 = 0 if e = 1, zζ = 0.

For a ∈ F2, the condition of Z ′a
ζ ⊂ Xζ is equivalent to

ζ3y1 + ζ−1
3 y2 +

n−2∑

j=3

y j = 0,

y4i−1 + ζ3y4i + ζ−1
3 y4i+1 = 0, y4i + ζ−1

3 y4i+1 + ζ3y4i+2 = 0

for 1 ≤ i ≤ [(n0 − 1)/2],
yn−3 = yn−2 + 1 if e = 1, zζ = a + ε1yn−2.
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Using the above, we can check that

g−1(Z0
ζ ) =

{
Z ′1

ζ if e = 1,

Z ′0
ζ otherwise.

Therefore, we obtain

g∗(cl([Z0
ζ ])

) = (−1)n0+1(cl([Z ′0
ζ ])) = −cl([Z0

ζ ])

in Hn−2(Xζ , Q�(n0)) using Lemma 4.3 and Proposition 4.5. Hence, the claim follows
from Lemma 4.2 and Lemma 4.3. ��

5 Explicit LLC and LJLC

5.1 Galois representations

Let X be the affine smooth variety over kac defined by (2.13). We define an action of
Q � Z on X similarly to (3.18).

We choose an isomorphism ι : Q� � C. Let q1/2 ∈ Q� be the 2-nd root of q
such that ι(q1/2) > 0. For a rational number r ∈ 2−1

Z, let Q�(r) be the unramified
representation of Gal(kac/k) of degree 1, on which the geometric Frobenius Frobq acts
as scalar multiplication by q−r . We simply write Q for the subgroup Q×{0} ⊂ Q�Z.
We consider the morphisms

� : A
n−1
kac → A

1
kac; (y, (yi )1≤i≤n−2) �→ y p

e+1 − 1

n′
∑

1≤i≤ j≤n−2

yi y j ,

hm : A
1
kac → A

1
kac; z �→ z p

m − z.

Then we have a cartesian diagram

X A
n−1
kac

�

A
1
kac

hm
A
1
kac .

Using the proper base change theorem for the above cartesian diagram, we have a
decomposition

Hn−1
c (X , Q�) �

⊕

ψ∈F

∨
pm \{1}

Hn−1
c (An−1

kac ,Lψ(�)), (5.1)
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since hm∗Q� � ⊕
ψ∈F

∨
pm

Lψ and Hn−1
c (An−1

kac , Q�) = 0. The decomposition (5.1) is

stable under the action of Q � Z, since Fpm � {g(1, 0, c) | c ∈ Fpm } in the center of
Q � Z acts on each direct summand Hn−1

c (An−1
kac ,Lψ(�)) in (5.1) by ψ . We put

τψ,n = Hn−1
c (An−1

kac ,Lψ(�))

(
n − 1

2

)

as a Q � Z-representation for each ψ ∈ F
∨
pm\{1}. We write τ 0r ,ψ for the inflation of

τψ,n by �r in (3.19).

5.2 Correspondence

Definition 5.1 We say that an irreducible supercuspidal representation of GLn(K ) is
simple supercuspidal if its exponential Swan conductor is one.

Remark 5.2 Definition 5.1 is compatible with [17, Definition 1.1] by [17, Proposition
1.3]. The word “simple supercuspidal” comes from [7]. Our “simple supercuspidal”
representations are called “epipelagic” in [2] after [20].

We define ψ0 ∈ F
∨
p by ι(ψ0(1)) = exp(2π

√−1/p). We put ψ ′
0 = ψ0 ◦ Tr

Fpm /Fp .

We take an additive character ψK : K → Q
×
� such that ψK (x) = ψ ′

0(x̄) for x ∈ OK .

In the following, for each triple (ζ, χ, c) ∈ μq−1(K ) × (k×)∨ × Q
×
� , we define a

GLn(K )-representation πζ,χ,c, a D×-representation ρζ,χ,c and a WK -representation
τζ,χ,c.

We use notations in Sect. 2.1, replacing r ∈ μq−1(K ) with ζ ∈ μq−1(K ). We have
the K -algebra embeddings

Lζ → Mn(K ); ϕζ �→ ϕM,ζ , Lζ → D; ϕζ �→ ϕD,ζ .

Set ϕζ,n = n′ϕζ . Let �ζ,χ,c : L×
ζ U

1
I → Q

×
� be the character defined by

�ζ,χ,c(ϕζ ) = (−1)n−1c, �ζ,χ,c(x) = χ(x̄) for x ∈ O×
K ,

�ζ,χ,c(x) = (ψK ◦ tr)(ϕ−1
ζ,n(x − 1)) for x ∈ U 1

I.

We put

πζ,χ,c = c-IndGLn(K )

L×
ζ U

1
I

�ζ,χ,c.

Then, πζ,χ,c is a simple supercuspidal representation of GLn(K ), and every sim-
ple supercuspidal representation is isomorphic to πζ,χ,c for a uniquely determined

(ζ, χ, c) ∈ μq−1(K ) × (k×)∨ × Q
×
� (cf. [2, 2.1, 2.2]).

Let θζ,χ,c : L×
ζ U

1
D → Q

×
� be the character defined by

θζ,χ,c(ϕζ ) = c, θζ,χ,c(x) = χ(x̄) for x ∈ O×
K ,
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θζ,χ,c(d) = (
ψK ◦ TrdD/K

)
(ϕ−1

ζ,n(d − 1)) for d ∈ U 1
D.

We put

ρζ,χ,c = IndD
×

L×
ζ U

1
D
θζ,χ,c.

The isomorphism class of this representation does not depend on the choice of the
embedding Lζ ↪→ D.

Recall that ϕ′
ζ = ϕ

pe

ζ and Eζ = K (ϕ′
ζ ). Let φc : WEζ → Q

×
� be the character

defined by φc(σ ) = cnσ . Let Frobp : k× → k× be the map defined by x �→ x p−1
for

x ∈ k×. We consider the composite

νζ : W ab
Eζ

Art−1
Eζ−−−→ E×

ζ → O×
Eζ

can.−−→ k× Frobep−−−→ k×,

where the second homomorphism is given by E×
ζ → O×

Eζ
; x �→ xϕ′

ζ
−vEζ

(x). We

simply write τ 0ζ for τ 0
ζ,ψ ′

0
. We set

τ 0ζ,χ,c = τ 0ζ ⊗ (χ ◦ νζ ) ⊗ φc, τζ,χ,c = IndWK
WEζ

τ 0ζ,χ,c.

We see that τ 0ζ,χ,c is primitive by [2, 3.2 Proposition] and [13].
The following theorem follows from [13] and [17].

Theorem 5.3 Let LL and JL denote the local Langlands correspondence and the local
Jacquet–Langlands correspondence for GLn(K ) respectively. For ζ ∈ μq−1(K ), χ ∈
(k×)∨ and c ∈ Q

×
� , we have LL(πζ,χ,c) = τζ,χ,c and JL (ρζ,χ,c) = πζ,χ,c.

Definition 5.4 We say that a smooth irreducible representation of GLn(K ) is essen-
tially simple supercuspidal if it is a character twist of a simple supercuspidal
representation.

Let ω : K× → Q
×
� be a smooth character. We put

πζ,χ,c,ω = πζ,χ,c ⊗ (ω ◦ det), ρζ,χ,c,ω = ρζ,χ,c ⊗ (ω ◦ NrdD/K ),

τζ,χ,c,ω = τζ,χ,c ⊗ (ω ◦ Art−1
K ),

and

�ζ,χ,c,ω = �ζ,χ,c ⊗ (ω ◦ det |L×
ζ U

1
I
), θζ,χ,c,ω = θζ,χ,c ⊗ (ω ◦ NrdD/K |L×

ζ U
1
D
),

τ 0ζ,χ,c,ω = τ 0ζ,χ,c ⊗ (ω ◦ NrEζ /K ◦Art−1
Eζ

).

Then we have

πζ,χ,c,ω = c-IndGLn(K )

L×
ζ U

1
I

�ζ,χ,c,ω,
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ρζ,χ,c,ω = IndD
×

L×
ζ U

1
D
θζ,χ,c,ω, τζ,χ,c,ω = IndWK

WEζ
τ 0ζ,χ,c,ω.

Corollary 5.5 We have LL(πζ,χ,c,ω) = τζ,χ,c,ω and JL(ρζ,χ,c,ω) = πζ,χ,c,ω.

Proof This follows from Theorem 5.3, because LL and JL are compatible with char-
acter twists. ��

6 Geometric realization

Recall that n1 = gcd(n, pm − 1). We fix s ∈ μ n1(q−1)
pm−1

(K ). We take an element

r ∈ μq−1(K ) such that r
pm−1
n1 = s. We put

HXr = Hn−1
c (Xr , Q�)

(
n − 1

2

)

as Hr -representations.

Lemma 6.1 The isomorphism class of c-IndGHr
HXr depends only on s.

Proof Assume that r , r ′ ∈ μq−1(K ) satisfy

r
pm−1
n1 = r

′ pm−1
n1 = s.

Then we have Lr = Lr ′ . Hence, there is (g, d) ∈ (GLn(K ) × D×)0 such that
ξr (g, d) = ξr ′ by Lemma 1.6. Then we have Xr (g, d) = Xr ′ . Threfore we obtain
the calim. ��

We put

�s = c-IndGHr
HXr .

For simplicity, we write G1 and G2 for GLn(K ) and D× × WK respectively, and
consider them as subgroups of G. We put

H = {g ∈ U 1
I | det(g) = 1}.

We have H = Hr ∩G1 by Proposition 3.3. Let Hr be the image of Hr inG/G1 � G2.
Let a ∈ μq−1(K ). We define a character �a

r : U 1
I → Q

×
� by

�a
r (x) = (ψK ◦ tr)((aϕr ,n)

−1(x − 1)) for x ∈ U 1
I.

Let π be a smooth irreducible representation of GLn(K ).
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Lemma 6.2 Ifπ is not essentially simple supercuspidal, thenwehaveHomH (�a
r , π) =

0. Further, we have

dimHomH (�a
r , πζ,χ,c,ω) =

{
1 if anr = ζ,

0 otherwise.

Proof We assume that HomH (�a
r , π) �= 0, and show that π is essentially simple

supercuspidal. Let ωπ be the central character of π . Then ωπ is trivial on K× ∩ H by
HomH (�a

r , π) �= 0. Hence, we may assume that ωπ is trivial on K× ∩U 1
I, changing

π by a character twist. Then, there is a character �a
r ,ωπ

: K×U 1
I → Q

×
� such that

�a
r ,ωπ

|U1
I

= �a
r , �a

r ,ωπ
|K× = ωπ .

Then we have

HomH (�a
r , π) � HomK×H (�a

r ,ωπ
, π) � HomK×U1

I

(
Ind

K×U1
I

K×H (�a
r ,ωπ

|K×H ), π
)

(6.1)
by Frobenius reciprocity, since K×U 1

I/(K×H) is compact. We have the natural iso-
morphism

K×U 1
I/(K×H)

det−→ (K×)nU 1
K /(K×)n � U 1

K /(U 1
K )n . (6.2)

For a smooth character φ ofU 1
K /(U 1

K )n , let φ′ denote the character of K×U 1
I obtained

by φ and the isomorphism (6.2). We have a natural isomorphism

Ind
K×U1

I

K×H (�a
r ,ωπ

|K×H ) �
⊕

φ∈(U1
K /(U1

K )n)∨
�a

r ,ωπ
⊗ φ′. (6.3)

Let φ be a smooth character of U 1
K /(U 1

K )n , and regard it as a character of U 1
K . We

extend φ to a character φ̃ of K× such that φ̃(�) = 1 and φ̃ is trivial on μq−1(K ). We
have

HomK×U1
I
(�a

r ,ωπ
⊗ φ′, π) � HomG1

((
c-IndG1

K×U1
I

�a
r ,ωπ

) ⊗ φ̃, π
)

(6.4)

by Frobenius reciprocity. We take χ ′ ∈ (k×)∨ such that χ ′(x̄) = ωπ(x) for x ∈
μq−1(K ). For c′ ∈ Q

×
� , we define the character �a

r ,χ ′,c′ : L×
r U

1
I → Q

×
� by

�a
r ,χ ′,c′ |U1

I
= �a

r , �a
r ,χ ′,c′(ϕM,r ) = c′, �a

r ,χ ′,c′(x) = χ ′(x̄) for x ∈ μq−1(K ).

We put

πa
r ,χ ′,c′ = c-IndG1

L×
r U1

I

�a
r ,χ ′,c′ .
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Then we have
c-IndG1

K×U1
I

�a
r ,ωπ

�
⊕

c′∈Q

×
�

πa
r ,χ ′,c′ . (6.5)

Note that
πa
r ,χ ′,c′ � πanr ,χ ′,χ ′(a)c′ (6.6)

by the constructions. Then we see that π is simple supercuspidal by (6.1), (6.3), (6.4),
(6.5), (6.6) and the assumption HomH (�a

r , π) �= 0.
Let χ ′ ∈ (k×)∨. We use the same notations as above for such χ ′. For an irreducible

supercuspidal representation π of G1, we write a(π) for its Artin conductor exponent
as in [2, 1.2]. We have a(πa

r ,χ ′,c′) = n + 1 by (6.6). Hence, if φ �= 1, we have

a(πa
r ,χ ′,c′ ⊗ φ̃) = na(φ̃) ≥ 2n

by a(φ̃) ≥ 2 and [3, 6.5 Theorem (ii)]. Therefore, we obtain

dimHomG1(π
a
r ,χ ′,c′ ⊗ φ̃, πζ,χ,c) =

{
1 if φ = 1, anr = ζ and χ ′(a)c′ = c,

0 otherwise

by (6.6) and [2, 2.2]. To show the second claim, we may assume that ω = 1. Hence,
we obtain the second claim by the above discussion, using that ωπζ,χ,c is trivial onU

1
K .��

Proposition 6.3 (1) If π is not essentially simple supercuspidal, we have
HomH (HXr , π) = 0. Further, we have

dimHomH (HXr , πζ,χ,c,ω) =
{
pen1 if ζ

pm−1
n1 = s,

0 otherwise.

(2) We have L×
r U

1
D × WEr ⊂ Hr and an injective homomorphism

θr ,χ,c,ω ⊗ τ 0r ,χ,c,ω ↪→ HomH (HXr , πr ,χ,c,ω)

as L×
r U

1
D × WEr -representations.

Proof By (5.1), we have a decomposition

HXr �
⊕

ψ∈F

∨
pm \{1}

τψ,n (6.7)

as representations of Q � Z. By Proposition 3.3 and (6.7), we have

HXr �
⊕

a∈μpm−1(K )

(�−a
r )⊕pe (6.8)
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as H -representations. By (6.8), we have

HomH (HXr , πζ,χ,c,ω) �
⊕

a∈μpm−1(K ), (−a)nr=ζ

HomH (�−a
r , πζ,χ,c,ω)⊕pe .

The cardinality of

{a ∈ μpm−1(K ) | (−a)nr = ζ }

equals n1 if ζ
pm−1
n1 = s and zero otherwise. Hence the first claim follows from Lemma

6.2.
We prove the second claim. We consider the element

(ϕD,r , 1) ∈ L×
r U

1
D × WEr ⊂ G2

and its liftinggr ∈ G in (3.1)with respect toG → G2.Wehavegr ∈ Hr byProposition
3.2 (1). The element (ϕD,r , 1) acts on θr ,χ,c,ω ⊗ τ 0r ,χ,c,ω as scalar multiplication
by cω((−1)n−1�r ), because NrdD/K (ϕD,r ) = (−1)n−1�r . By Proposition 3.2 (2),
Corollary 4.6 and [12, Proposition 4.2.3], the element gr acts onHomH (HXr , πr ,χ,c,ω)

as scalar multiplication by cω((−1)n−1�r ).
Let zd ∈ O×

KU
1
D with z ∈ μq−1(K ) and d ∈ U 1

D . Let g = (ai, j )1≤i, j≤n ∈ U 1
I be

the element defined by a1,1 = NrdD/K (d), ai,i = 1 for 2 ≤ i ≤ n and ai, j = 0 if
i �= j . We have det(g) = NrdD/K (d) and (zg, zd, 1) ∈ Hr . The element (zd, 1) ∈
L×
r U

1
D × WEr acts on θr ,χ,c,ω ⊗ τ 0r ,χ,c,ω as scalar multiplication by

χ(z̄)θr ,χ,c(d)ω(NrdD/K (zd)).

We have the subspace

HomH (τ
ψ ′−1
0 ,n, πr ,χ,c,ω) ⊂ HomH (HXr , πr ,χ,c,ω) (6.9)

by the decomposition (6.7). ByRemark 1.4, Proposition 3.3 and [12, Propositions 4.2.1
and 4.5.1], the element (zg, zd, 1) acts on the subspace in (6.9) as scalar multiplication
by

χ(z̄)θr ,χ,c(d)ω(det(zg)).

Let σ ∈ WEr such that nσ = 1. We take gσ as in (3.15). By Proposition 3.4, the
element gσ acts on the subspace (6.9) by

χ(b̄σ )τ 0r ,ψ ′
0
(σ )ω(det(gσ )).
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On the other hand, the element (ϕ−1
D,r , σ ) ∈ L×

r U
1
D × WEr acts on θr ,χ,c,ω ⊗ τ 0r ,χ,c,ω

by

(χ ◦ νr )(σ )τ 0r ,ψ ′
0
(σ )ω(NrEr /K (uσ )).

Hence, the required assertion follows from νr (σ ) = b̄σ and NrEr /K (uσ ) = det(gσ ).
��

Proposition 6.4 If π is not essentially simple supercuspidal, then we have
HomGLn(K )(�s, π) = 0. Further, we have

HomGLn(K )(�s, πζ,χ,c,ω) �
{

ρζ,χ,c,ω ⊗ τζ,χ,c,ω if ζ
pm−1
n1 = s,

0 otherwise

as D× × WK -representations.

Proof For g ∈ Hr\G/G1, we choose an element g̃ ∈ G2 whose image in Hr\G2
equals g under the natural isomorphism Hr\G/G1 � Hr\G2. We put Hg̃ = g̃−1Hg̃.
Let Hg̃

Xr
denote the representation of Hg̃ which is the conjugate of HXr by g̃. Then,

we have
�s |G1 �

⊕

g∈Hr \G/G1

c-IndG1

Hg̃ H
g̃
Xr

�
⊕

Hr \G2

c-IndG1
H HXr (6.10)

as G1-representations by Mackey’s decomposition theorem, since we have Hg̃ = H

and HXr � Hg̃
Xr

as H -representations.By (6.10) andFrobenius reciprocity,we acquire

HomG1(�s, πζ,χ,c,ω) �
⊕

Hr \G2

HomH (HXr , πζ,χ,c,ω). (6.11)

If ζ
pm−1
n1 �= s, the required assertion follows from (6.11) and Proposition 6.3 (1).

Now, assume that ζ
pm−1
n1 = s. Without loss of generality, we may assume that ζ equals

r by Lemma 6.1. By Proposition 6.3 and Frobenius reciprocity, we obtain a non-zero
map

IndHr

L×
r U1

D×WEr
(θr ,χ,c,ω ⊗ τ 0r ,χ,c,ω) → HomH (HXr , πr ,χ,c,ω). (6.12)

By applying IndG2

Hr
to the map (6.12), we acquire a non-zero map

ρr ,χ,c,ω ⊗ τr ,χ,c,ω → IndG2

Hr
HomH (HXr , πr ,χ,c,ω). (6.13)

We have dim ρr ,χ,c,ω = (qn − 1)/(q − 1) and dim τr ,χ,c,ω = n. Moreover, we have

[G2 : Hr ] = [Fr : K ][D× : L×
r U

1
D] = n′(qn − 1)

n1(q − 1)
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by the exact sequence

1 → L×
r U

1
D → Hr → WFr → 1.

Hence, the both sides of (6.13) are n(qn − 1)/(q − 1)-dimensional by Proposition 6.3
(1). Since ρr ,χ,c,ω⊗τr ,χ,c,ω is an irreducible representation ofG2, we know that (6.13)
is an isomorphism as G2-representations. On the other hand, we have a non-zero map

IndG2

Hr
HomH (HXr , πr ,χ,c,ω) → HomG1(�s, πr ,χ,c,ω) (6.14)

induced by a surjective homomorphism �s |Hr → HXr of Hr -representations and
Frobenius reciprocity. Then (6.14) is an isomorphism, since the left hand side is an
irreducible representation ofG2 and the both sides have the same dimension by (6.11).
Hence, the required assertion follows from the isomorphisms (6.13) and (6.14). ��
Theorem 6.5 Let LJ be the inverse of JL in Proposition 5.3. We put

� =
⊕

s∈μ n1(q−1)
pm−1

(K )

�s .

Let π be a smooth irreducible representation of GLn(K ). Then, we have

HomGLn(K )(�, π) �
{
LJ(π) ⊗ LL(π) if π is essentially simple supercuspidal,

0 otherwise

as D× × WK -representations.

Proof This follows from Proposition 5.3 and Lemma 6.4, because every essentially
simple supercuspidal representation is isomorphic to πζ,χ,c,ω for some ζ ∈ μq−1(K ),

χ ∈ (k×)∨, c ∈ Q
×
� and a smooth character ω : K× → Q

×
� . ��
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