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Abstract

We construct a family of affinoids in the Lubin—Tate perfectoid space and their formal
models such that the middle cohomology of their reductions realizes the local Lang-
lands correspondence and the local Jacquet-Langlands correspondence for the simple
supercuspidal representations. The reductions of the formal models are isomorphic to
the perfections of some Artin—Schreier varieties, whose cohomology realizes primitive
Galois representations. We show also the Tate conjecture for Artin—Schreier varieties
associated to quadratic forms.

Introduction

Let K be a non-archimedean local field with residue field k. Let p be the characteristic
of k. We write Ok for the ring of integers of K, and p for the maximal ideal of Ok.
We fix an algebraic closure k*° of k. The Lubin-Tate spaces are deformation spaces of
the one-dimensional formal Ok -module over k¢ of height n with level structures. We
take a prime number ¢ that is different from p. The local Langlands correspondence
(LLC) and the local Jacquet-Langlands correspondence (LJLC) for supercuspidal
representations of GL,, are realized in the £-adic cohomology of Lubin—Tate spaces.
This is proved in [4] and [9] by global automorphic arguments. On the other hand, the
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relation between these correspondences and the geometry of Lubin—Tate spaces is not
well understood.

In this direction, Yoshida constructs a semi-stable model of the Lubin—Tate space
with a full level p-structure, and studies its relation with the LLC in [27]. In this case,
the Deligne—Lusztig varieties appear as open subschemes in the reductions of the
semi-stable models, and their cohomology realizes the LLC for depth zero supercus-
pidal representations. In [5], Boyarchenko—Weinstein construct a family of affinoids
in the Lubin-Tate perfectoid space and their formal models so that the cohomology
of the reductions realizes the LLC and the LILC for some representations which are
related to unramified extensions of K (cf. [25] for some special case at a finite level). It
generalizes a part of the result in [27] to higher conductor cases. In the Lubin—Tate per-
fectoid setting, the authors study the case for the essentially tame simple supercuspidal
representations in [12], where simple supercuspidal means that the exponential Swan
conductor is equal to one. See [1] for the notion of essentially tame representations.
The result in [12] is generalized to some higher conductor essentially tame cases by
Tokimoto in [24] (cf. [14] for some special case at a finite level).

In all the above cases, Langlands parameters are of the form Indwf x for a finite
separable extension L over K and a character x of Wy, where Wx and W, denote the
Weil groups of K and L respectively. Further, the construction of affinoids directly
involves CM points which have multiplication by L. In this paper, we study the case
for simple supercuspidal representations which are not essentially tame. In this case,
the Langlands parameters can not be written as inductions of characters. Hence, we
have no canonical candidate of CM points which may be used for constructions of
affinoids.

We will explain our main result. All the representation are essentially tame if 7 is
prime to p. Hence, we assume that p divides n. We say that a representation of GL,, (K)
is essentially simple supercuspidal if it is a character twist of a simple supercuspidal
representation. Let g be the number of the elements of k and D be the central division
algebra over K of invariant 1/n. We write ¢ = p/ and n = p®n’, where n’ is prime
to p. We put m = ged(e, f). The main theorem is the following:

Theorem Forr € jug—1(K), there is an affinoid X, in the Lubin—Tate perfectoid space
and its formal model X, such that

o the special fiber X, of %, is isomorphic to the perfection of the affine smooth
variety defined by

m €] 1 .
Zp _Z:yp _; Z Yiyj lI’ZAZaC,

1<i<j<n-2

e the stabilizer H, C GL,(K) x D* x Wg of &, naturally acts on X, and

° c-Indgf" (K)xD¥x Wi ch_l (X,, Q) realizes the LLC and the LILC for essentially
simple supercuspidal representations.

See Theorem 2.6 and Theorem 6.5 for precise statements. As we mentioned, we
have no candidate of CM points for the construction of affinoids. First, we consider
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a CM point £ which has multiplication by a field extension of K obtained by adding
an n-th root of a uniformizer of K. If we imitate the construction of affinoids in
[12] using the CM point £, we can get a non-trivial affinoid and its model, but the
reduction degenerates in some sense, and the cohomology of the reduction does not
give a supercuspidal representation. What we will do in this paper is to modify the
CM point & using information of field extensions which appear in the study of our
simple supercuspidal Langlands parameter. The modified point, which is constructed
in Proposition 2.2, is no longer a CM point, but we can use this point for a construction
of a desired affinoid. Since the modification comes from the study of the Langlands
parameter, we expect that such constructions work also for other Langlands parameters.

In the above mentioned preceding researches, the Langlands parameters are induc-
tions of characters, and realized from commutative group actions on varieties. In
the case for Deligne—Lusztig varieties, they come from the natural action of tori. In
our simple supercuspidal case, they come from non-commutative group actions. For
example, the restriction to the inertia subgroup of a simple supercuspidal Langlands
parameter factors through a semidirect product of a cyclic group with a Heisenberg
type group, which acts on our Artin—Schreier variety in a very non-trivial way.

In the following, we briefly explain the content of each section. In Sect. 1, we collect
known results on the Lubin—Tate perfectoid space, its formal model and group action
on it.

In Sect. 2, we construct a family of affinoids and their formal models. Further we
determine the reductions of them. The reduction is isomorphic to the perfection of
some Artin—Schreier variety.

In Sect. 3, we describe the group action on the reductions. In Sect. 4, we show
that the Tate conjecture holds for Artin—Schreier varieties of associated to quadratic
forms. Further, we study the action of some special element on cycle classes in the
etale cohomology of the Artin—Schreier variety. This becomes a key ingredient for the
proof of the main theorem.

In Sect. 5, we give an explicit description of the LLC and the LJLC for essentially
simple supercuspidal representations, which follows from results in [13] and [17]. In
Sect. 6, we give a geometric realization of the LLC and the LJLC in the cohomology
of our reduction.

Notation

For a non-archimedean valuation field F, its valuation ring is denoted by OF. For a
non-archimedean valuation field F' and an element a € Op, its image in the residue
field is denoted by a. For a € Q and elements f, g with valuation v that takes values in
Q,wewrite f =g modsaifv(f—g)>a,and f =g mod. aifv(f—g)>a.
For a topological field extension E over F, let Gal(E/F) denote the group of the
continuous automorphisms of E over F. For an ideal I of a topological ring, let 1~
denote the closure of /.
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1 Lubin-Tate perfectoid space
1.1 Lubin-Tate perfectoid space and its formal model

Let K be a non-archimedean local field with residue field k of characteristic p. Let g
be the number of the elements of k. We write p for the maximal ideal of Ok . We fix
an algebraic closure K of K. Let £ be the residue field of K?°.

Let n be a positive integer. We take a one-dimensional formal Og-module Gy
over k% of height n, which is unique up to isomorphism. Let K" be the maximal
unramified extension of K in K*. We write K" for the completion of K. Let
{Spf A, }m>0 be the tower of Lubin-Tate formal schemes defined by Drinfeld level
p-structure as explained in [12, §1.1]. Note that the generic fibers of these formal
schemes are connected components of usual Lubin-Tate spaces. Let I the ideal of
lim A,, generated by the maximal ideal of Ag. Let A be the /-adic completion of
=
lim A, We put Mg, o = Spf A.

Let K be the maximal abelian extension of K in K*. We write K® for the
completion of K. Let AGy denote the one-dimensional formal O -module over k%
of height one. Then we have M xg, oo > Spf Oguw by the Lubin-Tate theory. We have
a determinant morphism

Mg, 0o = Msg,.0 (1.1)

by [26, 2.5 and 2.7] (cf. [8]). Then, we have the ring homomorphism Ogw — A
determined by (1.1).

We fix a uniformizer @ of K. Let M, be the open adic subspace of Spa(A, A)
defined by |@ (x)| # 0 (cf. [10, 2]). We regard M, as an adic space over KU Let C
be the completion of K. For a deformation G of Gy over Oc, we put

V(9) = (lim G(O0)[p™]) ®0, K,

where G(Oc¢)[p™] denotes the Og-module of the p” -torsion points of G(O¢) and the
transition maps are multiplications by . By the construction, each point of M, (C)
corresponds to a triple (G, ¢, ¢) that consists of a formal Og-module G over Oc,
an isomorphism ¢: K" — V,,(G) and an isomorphism ¢: Gy — G ®@, k* (cf. [5,
Definition 2.10.1]).

We put n = Spa(fab, Oguw). By the ring homomorphism Ogs — A, we
can regard My, as an adic space over n, for which we write M, ,. We put
n = Spa(C, Oc¢) and My 55 = Mooy x5 0. Then, My 5 is a perfectoid space
over C in the sense of [21, Definition 6.15] by [26, Lemma 2.32]. We call M 5 the
Lubin-Tate perfectoid space.

In the following, we recall an explicit description of A° = A@@Eab Oc given in

[26, (2.8)]. Let éo be the formal Og-module over Ok whose logarithm is

o0 Xqin
w—i
i=0
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(cf. [5, 2.3]). Let Gg be the formal Og-module over k% obtained as the reduction of
@). We put Op = End Gy and D = Op ®p, K, which is the central division algebra
over K of invariant 1/n. Let [ - | denote the action of Op on Gy. Let ¢ be the element
of D such that [¢](X) = X?. Let K,, be the unramified extension of K of degree n.
We consider the K -algebra embedding of K, into D determined by

[C1(X) = ¢X for ¢ € pgn_1(Ky).

Then we have ¢" = @ and ¢ = ¢9¢ for ¢ € pgn_1(Ky). Letfg\obe the one-
dimensional formal Og-module over Og whose logarithm is

o0 i

D o (=ntbi X

o o'
We choose a compatible system {f,, },,,>1 such that

tm € K (m=1), n#0, [@kzn) =0, [@ktn) =tn-1 (m=2).
(1.2)
We put

m—1
t = m@@(—l)““*“’”‘”rﬁ € Oc.

Let v be the normalized valuation of K such that v(zw) = 1. The valuation v naturally
extends to a valuation on C, for which we again write v. Note that v(¢) = 1/(qg — 1).
For an integer i > 0, we put

g _ 1. _ 1yg(—1)(m—1) g
t _mh_r)noo( 1) tm

Let Wk be the Weil group of K. Let Artg: K* 5 W,"‘(b be the Artin reciprocity
map normalized such that a uniformizer is sent to a lift of the geometric Frobenius
element. We use similar normalizations also for the Artin reciprocity maps for other
non-archimedean local fields. Let ¢ € Wg. Let n, be the image of o under the
composite

ab Ay
Wk — W —— K" — Z.

Letag: Wx — OIX( be the homom/(\)rphiﬁm given by the action of W on {ty}>1. It
induces an isomorphism ag : Gal(K*®/K ") ~ O%.
For m > 0, we put

mip—m mpy—m

Sm(X1, ... X)) =AGo Y sen(mi.....m)X] X (1.3)
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in (’)K[[Xi/qoo, el X,l/qoo]], where

e the symbol XQ\OZ denotes the sum under the additive operation of Tg\o,

e we take the sum over n-tuples (m1, ..., m,) of integers such that m+- - -+m, =
n(n—1)/2andm; #m; mod n fori # j,
e sgn(my, ..., m,) is the sign of the permutation on Z/nZ defined by i > m;1.
We put

5= lim 8% e OclX)/", . ... x)971.
m— o0

Forl > 1, we put

1 3 m—l
89 = lim &}
m—0o0

The following theorem follows from [26, (2.8)] and the proof of [5, Theorem 2.10.3]
(cf. [23, Theorem 6.4.1]).

Theorem 1.1 ([12, Theorem 1.3]) Leto € Gal(K 2 /K"). We put A° = A@Ofab,goc.
Then, we have an isomorphism

A% = OcllX) ™ XX LX) = e (1)

Foro € Gal(K®/K"™), let Moo, 5,0 be the base change of Moo , by 7 — 1 L.
Foro € Gal(I/(\ab/I/(\“r) and @ = ag (o) € O, we write A* for A’ and MO for

00,1,a

0 0
MO o, = [] spfa®, MO =[] Meoia. (1.5)

X X
aeOg acOf

Then Mg;),ﬁ is the generic fiber of M(()g) O and ./\/lgg)vﬁ(C) = My (C).
Let 45, and W be the additive operations for @) and Xg\orespectively.

Lemma 1.2 ([12, Lemma 1.5])

(1) We have X +§o X> = X1 + X2 modulo terms of total degree q".
(2) We have X WXZ = X1 + X7 modulo terms of total degree q.

Let X; be (X?ij)jzo for 1 <i < n. We write §(Xq, ..., X,) for the g-th power
compatible system (§(X1, ..., X;)? ') ;>0

For g-th power compatible systems X = (X9 ') ;>0 and ¥ = (Y9 ") 5 that take
values in Oc, we define g-th power compatible systems X + Y, X — Y and XY by
the requirement that their j-th components for j > 0 are

lim (x4 4y ™" lim (x¢" —ye """ and x4y’

m—00 m— 00

@ Springer



Affinoids in the Lubin-Tate perfectoid space and simple... 757

respectively. For such X = (X‘fj)jzo, we put v(X) = v(X). We put

my

SoXi. ... X)= > sea(mi.....m)X{ X

where we take the sum in the above sense and the index set is the same as (1.3).

Lemma 1.3 (/12, Lemma 1.6])] Assume that n > 2 and v(X;) > (ng'~'(g — 1))~
for 1 <i < n. Then, we have

1 1
5(Xi,..., X)) =8)(Xi,...,X,) mod- +T1

1.2 Group action on the formal model

We define a group action on the formal scheme M9 0.0 , which is compatible with
usual group actions on Lubin—Tate spaces with ﬁmte level (cf. [5,2.11]). We put

G = GL,(K) x D* x Wg.
Let GY denote the kernel of the following homomorphism:
G — Z; (g,d,0) > v(det(g) 'Nrdp,k (d)Arty' (0)).
Then, the formal scheme M(O) Oc admits a right action of G°. We write down the

action. In the sequel, we use the following notation:

Fora € pgn_1(K,)U{0}, let a?" denote the ¢”-th root of @ in gn—1(K,)U{0}
for a positive integer m, and we simply write a also for the g-th power compatible
system (a9 " ) =0

For g-th power compatible systems X = (X4 7y j=oand Y = (Y1 7y j>0 that take
values in Oc, we define a g-th power compatible system X +3; Y by the requirement
that their j-th components for j > 0 are

llm (qum +g Yq m)qm J

m—00

The symbol @) > denotes this summation for ¢-th power compatible systems.
First, we define a left action of GL,,(K) x D* on the ring

1/ 1/
By = OclX)"", ..., X,/ 1.
Fora = Y%, a;w/ € K withl € Zand a; € pgy—1(K) U {0}, we set
o0 .
o~ jn
[a]- X =Go ) a; X"
=l
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for1 <i <n.Letg € GL,(K). We write g = (a;, j)1<i,j<n- Then, let g act on the
ring B, by

n
g By— By Xi > Go Y laji1-X; forl <i<n. (1.6)
j=1

Letd € D*. Wewrited ™! = Z;";l djgoj € D* withl € Zandd; € pugn—1(K,)U{0}.
Then, let d act on B, by

o0 .
d*: By — By Xi > Go Y d;X! forl<i<n. (1.7)
j=l

Now, we give aright action of G%on M(()g) Oc using (1.6) and (1.7). Let (g, d, 1) € GO.
We set ’

y(g,d) = det(¢9)Nrdp/k (d) ™" € OF.

We put £ = (14" ")u=0. Let (g, d, 1) act on M o by

A% s AYEDTN o (o gy X forl <i <,
where o € (’),X(. This is well-defined, because the equation
3((g,d)- Xi,...,(g,d) - Xy) = Artg (a)(?)

is equivalent to (X, ..., X,) = Artg(y(g,d) 'a)(t). Let (1, 97" ,0) € G act
on M<(>(<)>)Oc by

AY > A%©@ x5 X, x> o(x) forl <i<nandx e Oc,

where o € Og. Thus, we have a right action of G on Mo, 0> which induces a right
action on /\/lg;),ﬁ(C) = My (C).

Remark 1.4 For a € K*, the action of (a,a, 1) € G° on Mo, 0 is trivial by the
definition.

1.3 CM points

We recall the notion of CM points from [5, 3.1]. Let L be a finite extension of K of
degree n inside C.

Definition 1.5 A deformation G of Gy over O¢ has CM by L if there is an isomorphism

L = End(G) ®oy K as K -algebras such that the induced map L — End(Lie §) ®o,
K =~ C coincides with the natural embedding L C C.
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We say that a point of M (C) has CM by L if the corresponding deformation over
Oc has CM by L.

Let £ € My (C) be a point that has CM by L. Let (G, ¢, t) be the triple corre-
sponding to §. Then we have embeddings iy ¢: L — Mu(K) andipg: L — D
characterized by the commutative diagrams

K" 2 V,(9) Go ——> G @0 k*

img(a) lvp (@) and iD,E(“)\L la@id
¢

K" —— V,(G) Go —— G ®0,. k*

in the isogeny category fora € L. We putiz = (iy¢,ipe): L — Mu(K) x D. We
put

(GLy(K) x D) = {(g,d) € GL,(K) x D* | (g,d, 1) € G°}.

Lemma 1.6 (/5, Lemma 3.1.2]) The group (GL,,(K) x DX)O acts transitively on the
set of the points of Mo (C) that have CM by L. For & € My (C) that has CM by L,
the stabilizer of € in (GL,(K) x D*) is ig(L™).

2 Good reduction of affinoids
2.1 Construction of affinoids

We take a uniformizer w of K. Let r € puy—1(K). We put w, = rw. We take
@r € Csuch that ¢ = w,. We apply results in Sect. 1 replacing = with @,. We put
L, = K(¢r). By the Og-algebra embedding O;, — Op defined by ¢, — ¢, we
view Gy as a formal O, -module of height 1. Let G, be a lift of Gy to Ofur as a formal
Or,-module. We take a compatible system {#, ,,, },,>1 in C such that '

tr1 #0, [§0r]gr (tr,1) =0, [‘Pr]gr (trom) = trm—1

for m > 2. We put
_ 0 I,
QDMJ - <w_r 0 ) S Mn(K)

andgpp ,, =¢ € D.Foré& € Mé%)ﬁ(C), we write (&4, ..., &,) for the coordinate of &

with respect to (X1, ..., X;), where §;, = (f;‘.q_'/)jzo forl <i <n.

1

Lemma 2.1 There exists &, € ./\/lg;)ﬁ(C) such that
m—i—j

—j .
Erqi = lim tf,m € Oc
’ m—0oQ
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for1 <i <nandj > 0. Further, we have the following:

(1) & has CM by L,.

(2) We have ig, (¢;) = (¢m.r, ¥D.r) € Myu(K) x D.
(3) & ;=& forl<i<n-—1

(4) v(& ) =1/(ng'"""(qg— 1) for1 <i <n.

Proof This is proved in the same way as [12, Lemma 2.2]. O

We take & as in Lemma 2.1. We can replace the choice of (1.2) so that
5(&;,...,&,) = t. Then we have & € Mé%)ﬁ’l. Let DZ’perf be the generic fiber
of Spf Oc[[Xll/qm, e, X,i/qoo]]. We consider Mé?,m as a subspace of Dz’perf by

(1.4). We put p, = g?fll and write 5, = (n?ij)jzo. Note that v(y,) = 1/n. We write
n = p°n’ with ged(p, n’) = 1. We assume that ¢ > 1 in the sequel, since the case
where e = 0 is already studied in [12]. We put

oo iepe =2,
o if p¢ £ 2.

We take g-th power compatible systems 6, = (Grqi])jzo and A, = (A?ij)jzo in C
satisfying

2e e_ _ €
0r +uf '@, + D=0, Al -l — 07 @, + D) +eon) =0, (2.1)

Note that

c—1 1 1
v(8,) = pnp2€ , v(x,):;<1—qpe>.

We define &/ € D" by

1

E 1 =E.(1+0,), & .. =§&% forl<i<n-2,

7 1
g;’,n = g;’?n—l((l + 0r)_n(1 + n/)xr)) ",

Proposition 2.2 There uniquely exists E,O S /\/lg()))ﬁ | satisfying

2
0 , 0 _ q°—q+1
Er,i :E;',i fOVl <1 S}’l—l, Er’n =E;,n m0d> m
Proof We have
1 1
S()=t mod- —— + —.
g—1 n
Hence, we see the claim by Newton’s method. O
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Remark 2.3 The key ingredients for the construction of S,O are the elements 0, and
A, defined by (2.1). Up to some difference of normalizations, these elements are
analogues of B; and y, in [13, §2.2], which are generators of a field extension used
in a construction of a Langlands parameter there.

We take Sro as in Proposition 2.2. We put x; = Xi/£9J for 1 <i < n. We define
X, c MY by

00,7, 1

n—1—i
X; Xn—1\4 1
v| = —("1) > _ forl<i<n-—2,
Xit1 Xn 2nq'

o — 1) =

(2.2)
— o forn —1<i <n.
ng"= ' (p¢+1)

The definition of X, is independent of the choice of 8, and A,.. We define B, C DZ’p erf

by the same condition (2.2).
2.2 Formal models of affinoids
i—1

Let (X1, ..., X,) be the coordinate of 5,. We put h(X,...,X;) = H?:l Xl.q
Further, we put

P Xy =1 — S Xn) 23)
hXs o X
n—1 i=1g—1) g\ =1
X; a 9 X! 7
X1, X,) = (_» +C— . (2.4)
Jotki " Z Xt Xi

i=1

We simply write f(X) for f(Xi,..., X,), and f(§,) for f(§,1,...,§, ). We will
use the similar notations also for other functions. We put

S = fo(X) — fo(&2). 2.5)

Lemma 2.4 We have

FOX) = foX) mod. 2

and S = f(X)— f(&%) mm>%.

Proof We put

(N A AN A A AR o)
A, X)) (—) ( ’ )
: i i+1
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762 N. Imai, T. Tsushima

We note that (X1, ..., X,) satisfies the assumption of Lemma 1.3 by the definition of
B, and Lemma 2.1 (4). Then we see that

8

f=1-00

1
= foX) — fi(X) mod.. —

using Lemma 1.3 and the definition of 86. The claims follow from this, because

VA = ZD and (A0 = fieh) = 2L
hold. O
We put s; = (xi/xi+1)‘7i(‘7_1) forl <i<n-—1,and
sis; ' =14+ forl<i<n—2, sp_1=1+Y,_. (2.6)
We put m = ged(e, f) and
. ’ZZ_1<05eYn—1>pim _ i }§<£>pi’" 2.7)
i=0 M ng A\ ' .
We put f = mgp and e = m. We define m», ..., my41 by the Euclidean algorithm

as follows: We have

mi_1 =njm; +mjy; with n; >0 and 0 <m;y; <m; for 1 <i <N,

my =m, mpy4+1 =0.

We put
0r"Y,_ -8
To= """, T\=-— 2.8)
Ny nn,
and define T, ..., Ty by
il Jjm;+m;
T =T+ 17 " forl<i<N-1
j=0
Then we see that
Mitl g mi_q
z= Y 17+ YTl forl<i<N-1
Jj=0 Jj=0

@ Springer



Affinoids in the Lubin-Tate perfectoid space and simple... 763

inductively by (2.7). We see also that

m;

DV = Y 1" + P 2.9)
=0

with some P;(x) € Z[x] for0 <i < N — 1. We put

-V fm
y = S Meppl, (2.10)
0f
Then we have |
Y=Y, d, — 2.11
n—1 1Mod n(pf + 1) ( )

by (2.9) and (2.10). We define a subaffinoid B, C B, by v(z) > 0. We choose a square

root /> = (nf /%) ;20 and a (p¢ + 1)-st root p/ P FY = (f /Py g of g,

compatibly. We set

Yi =0y, with y, =) )jz0 forl<i<n-2, 2.12)
1/(pe+1 . =J ’
Y =5/ Ty with y=07");20

on B).. Let B be the generic fiber of Spf Oc(yl/qw, yll/qoc, e y,i/_q;o, Z1/4%). The
parameters y, yi, ..., ¥,_2, 2 give the morphism ®: B, — B. We simply say an
analytic function on B for a ¢-th power compatible system of analytic functions on 3.
We put

0 qn—l
140, =(1+6,)7"(+ M,)(i-fl) :

Lemma 2.5 The morphism ® is an isomorphism.

Proof We will construct the inverse morphism of ®. We can write ¥,_; and S as
analytic functions on B by (2.8), (2.9), (2.10) and (2.12). Then we can write x; /x; 4|
as an analytic function on B by (2.6). By (2.4) and (2.5), we have

n—2

aet — 1
= (1+6;)0

n—1
_ —D(g"—1 _
+(1+ 0;)4(4 1)<x£lq )(q ) l_[(xi ]xi+1) _ 1)
i=1

”r—(q—l)sq
(1+06,)@-D?

By this equation, we can write x,, as an analytic functions on B. Hence, we have the
inverse morphism of ®. O
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We put

8BV V1o s Yn2.2) = (8lg) 0O~
equipped with its g/-th root 6;’3_'/ for j > 0. We put
% 1/g® 1/g® o0 - i
x" = SPfOC<yl/q 5 yl/q L] yn/_qz ’ Zl/q >/((SZI§ - tq /)120

Let X, denote the special fiber of X,..

Theorem 2.6 The formal scheme %, is a formal model of X;, and X, is isomorphic to
the perfection of the affine smooth variety defined by

m e 1 .
Zp _Z:yp +1 - Z yly] lnAZac. (213)

1<i<j<n-2

Proof Let (X1, ..., X,) be the coordinate of B,. By Lemma 2.4, we have

q— qg—1
v(f (X)) > and v(S) > ——. (2.14)
nq ng
We have | )
an n— X q'
hX)? ! = (L> <—1) . 2.15
X) X ]J X (2.15)
We have
X,‘Z")‘f‘ B a1 (h(X)\V
= (n,(1+6,)77(1+6.) ( ) st 16)
( X ( ) h(E)) 1}
by (2.15). We put
1—f@&)
RX)=—"—""——(1+019). 2.17
X =15 1+ 2.17)

Then we have v(R(X)) > 1/n by Lemma 2.4 and (2.14). The equation §(X) = 5(59)
is equivalent to

—1

X7\ q @127 1
(X ) = (na+o are?) (14 s+ RV s @18)
1 i=1

by (2.3), (2.16) and (2.17). We put

n—1

F(X)::U"+ahq@7”(1*‘S4—R(X)Yq7”2IIs;R

i=1
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The equation (2.18) is equivalent to

Sn—1

n—2
fox) =nf 1+ 0@ (Zs,- +
i=1
The equation (2.19) is equivalent to

n—2
ST =i 140, <Z(si L B oy o F(E?)). (2.20)

P (146;)7-1
We put
2 n2 s —1
Ri(X)=(1+6,)4"" <Z(si -+ W + F(X) - F(&?))

i=1

—<s+ 3 Y,~Y,-—n/(Y,,"le+(1+a,)Y,f’il+0£’eYn_1)).

1<i<j<n—2

Then we have v(R;(X)) > 1/n. The equation (2.20) is equivalent to

s =" (s+ S vy —a (Y ey ey, ) +R1<X>>.
1<i<j<n-2
(2.21)
The equation (2.21) is equivalent to

" fopert 1 Ri(X)
2 —z=n; (an] - > VY - ——). (2.22)

I<i<j<n—2

As aresult, §(X) = §(&;) is equivalent to (2.22) on B,. By Lemma 2.4 and (2.22),
we have v(z) > 0 on X,. This implies A, C B... We have the first claim by Lemma
2.5 and the construction of X,. The second claim follows from (2.11) and (2.22). O

Remark2.7 If n = p = 2, then the smooth compactification of the curve over k
defined by (2.13) is the supersingular elliptic curve, which appears as an irreducible
component of a semi-stable reduction of a one-dimensional Lubin—Tate space in [15]
and [11].

3 Group action on the reductions

Action of GL,, and D* Let 3 C M, (Ok) be the inverse image under the reduction
map M, (Og) — M, (k) of the ring consisting of upper triangular matrices in M, (k).
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Lemma3.1 Ler (g,d, 1) € G°. We take the integer | such that d(pD . € Op. Let
(X, ..., Xp) be the coordinate of X,. Assume v((g,d) - X;) = v(X)for 1<i<n
at some point of X,.. Then we have (g,d) € (¢m.r, (pD,r)l(j>< X (’);;).

Proof This is proved in the same way as [12, Lemma 3.1]. O
We put
g = (em.r9pr, 1) €G. (3.1)
We put
1 ifp®=2
e = o ' (3.2)
0 if p©® #£ 2.

For a € k%, we simply write a also for the g-th power compatible system (a? 7j) j>0-

Proposition 3.2 (1) The action of g stabilizes X;, and induces the automorphism of
X, defined by

z, ¥, )i<i<n-2)

n—3
s (Z e Ouoa+ Dy = D ¥ =20 e Oim = Yaa F 81)25i5n—2> :

i=1
(3.3)
(2) Assume p¢ # 2. Let g, € GL,_ (k) be the matrix corresponding to the action of
g on (¥, (y))1=i=n—2) in (3.3). Then, det(g,) = (—1)"~!

Proof By (1.6) and (1.7), we have

1

n—1
gXx, =X, gX; =X/, for2<i<n. (3.4)

By (3.4), we have g’ (h(X)) = h(X). Hence, we have

1
g'S=S mod. — (3.5)
n

by (2.3), (2.5) and Lemma 2.4. By (2.18) and (3.4), we have

1
g's| = ]_[s mod... . (3.6)

We have also
gisi=s5; for2<i<n—2, g, 1=s,20+0)17 3.7)

by (3.4). We have

n—3
1
A+60)"1+Y, )2 [[a+Y)™' =1 mod. PR
i=1

gy
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by (2.6), (3.6) and (3.7). We have also

1
gY, =(1+60,)"0+Y,_DA+Y, 2" ' =1 mod. > for2<i<n-2,
n

1
gYi1=0+0)"(01+Y,2)(1+Y,-1)—1 mod. Den

3.9
by (3.7). The claim follows from (3.5), (3.8) and (3.9). O

Let B be the Jacobson radical of the order J, and pp be the maximal ideal of Op.
We put

Uy=1+%, Up=1+pp
and
(US x Up)' = {(g,d) e UL x U}, | det(g) ™' Nrdp/k (d) = 1}.

Letpro, i+ Ok — k be the reduction map. We put

1 _ -
hr(8.d) = — (Trie 0 pro, i) (Trd bk (0p),(d = 1) = oy, (g = 1)

for (g, d) € U:]j X U[IJ.

Proposition 3.3 The stabilizer of X, in GL,(K) x D* isig, (L))-(UY xU)Y. Further,
(g,d) € (Uflj X U$)1 induces the automorphism of X, defined by

(z,y, Yi)i<i<n—2) —> (2 + hr(g,d),y, (Yi<i<n-2)-

Proof Assume that (g,d) € GL,(K) x D* stabilizes X,. Then we have det(g) =
Nrdp,k (d). We will show that

(g,d) €ig (L)) - (UL x UD)".

We have (g,d) € (pm,r, <pD,r)l(3X X (9;;) for some integer / by Lemma 3.1, since
(g, d) stabilizes X, and we have v(X;) = 1/(ng' (g — 1)) for 1 <i < n atany point
of X, by Lemma 2.1 (4) and (2.2). Further, we may assume that (g, d) € J* x Og,
since we already know that (¢, ¢p ) stabilizes A, by Proposition 3.2 (1).

We write g = (i j)1<i.j<n € Jand a; j = >y a o] with a", € pig 1 (K) U
{0}. By (1.6), we have

_qa
“nig -1’
1

ng' (g —1)

¢ X1 =a")X1 +al Xy mod
(3.10)
g&'X; = al.(g)X,' +a© X;_1 mod-.

i1 for2 <i <n.
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We write d~' = Y2 dig},  with dj € pgn1(K,) U {0}. We set k(d) = dy /do. By
(1.7), we have

d*x,-zdox,-(1+;<(d)x7‘l) mod - forl<i<n. (3.11)

1
ng'=2(q — 1)
By (2.2), (3.10) and (3.11), we have (g, d) € iz, (OF) - (U} x U})'. Conversely, any
element of ig, (L)) - (Uj1 x U [1))l stabilizes &} by Remark 1.4, Proposition 3.2 and

the above arguments.
Let (g,d) € O;U% x OF,. We put

n—1 0) i 1) yq" n
(l<’< 1 X q a ,IXn i—1 i—1g—1
Ag(X) = E ((;)l+ 1 + )’l(o) , Ad(X) — 2 K(d)q qu ((1 )
—~ )\ Xiq ay X ,
i=1 "i+1,i+1 1,1 i=1

Then, we acquire

1
fo((g,d)*X) = fo(X) + Ag(X) + Ag(X) mod - . (3.12)

We have |
(8, d)*S =84+ Ay(X)+ Ag(X) mod. — (3.13)
n

by (2.5) and (3.12). We have

1
(g, d)*s;=s; mods — (3.14)
n

for1 <i<n—2.Let(g,d) € (U x U})'. We obtain
(g.d)*z=z+h(g,d)

by (2.7), (3.13) and (3.14). We can compute the action of (g, d) on y and {y; }1<i<n—2
by (2.6), (2.11), (2.12) and (3.14). O

Action of the Weil group  We put ¢/ = ¢ and E, = K(¢). Let o € Wy, in this
paragraph. We put

o = Artgr1 (0) and u, =asp. " € Op .
We take
by € g—1(K) suchthat b =ii, € k.
We put

co = b, " Nrg, /x (uy) € Ug.
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Let

8o = (@i )1<i,j<n € OUS
be the element defined by a; ; = by forl <i <n —1,a,, = bscs; and a; ; = 0 if
i # j. We put

g = (&, 9p,,0) €G. (3.15)

Then g, stabilizes each component in (1.5). We choose elements «,, B, y» € K
such that

€] 2e _ m ]
of =g, B +B ==, v~y =BT +en,
. . L1
L e ——b— - 1< pim
o =1 g7 " =y Y e HP =1 mod . 0.
i=0
(3.16)
Foro € Wg,, we set
o (o)
ay o = : s br,a = ar,aa(ﬂr) - Br,
o
i |
cro=0() —vr+ Y ble(Br +bro))”"
i=0
Then we have a, o, b, 5, ¢r.6 € Oc and
A\ r
_ o/ - ) _ o(Or) — 0,
o= —7— v bro=|—7F— J
P poH
r r
%—1 pim %—1 e pim
_ o(Ar) — Ay (0(6r) — 6,)o(0,)F
Cro = Z _— - mod - 0
izo Nr izo Nr
(3.17)

by (2.1) and (3.16). Let
0= {g(a, b, c) ‘ a,b,cek® ab' =1, p" 1 h=0, " —ct bt = o}

be the group whose multiplication is given by

2]

glar, by, cy) - glaz, by, c2) = g<91a2» aby+bi.ci+cr+ Yy (@b} bz)plm).
i=0
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Let QO x Z be the semidirect product, where / € Z acts on Q by g(a,b,c) —
¢@? b7 7). Let (g(a, b, ¢),1) € O x Z act on X, by

! 1

" im 4 ¢ 1 ‘41 !
(2,9, Y)i<i<n—2) = ((z+ Z (by)” +C) (a(y+b" N7, @yl )1§i§n—2)~
i=0
(3.18)
We have the surjective homomorphism

®r: Wg, > QX Z; 0> (8o, bro.Cro)ing). (3.19)

Propositi(ln 3.4 Leto € Wg,. Then, g, € G stabilizes X, and induces the automor-
phism of X, given by ©, (o).

Proof Let P € X,(C). We have

S(Pg,) = fo(X(Pgy)) — fo€Y)
= fo(X(Pg,)) — fo(X(P(1,@p" . o)) + o~ (fo(X(P))) — foE)
= A, (X(P(Lgp" . 0)) + 07 (S(P) + foED)) — fo(ED)

1
=o"(S(P)) + folo ' EY) — fo(§Y) mod - - (3.20)
by (2.5) and (3.12). We have
1
foo ™ ED) — foEY =n'(67'A) —X,) mod- — (3.21)

We put 5;(X) = (X;/Xi11)7 @D for 1 <i <n— 1. We have

i1 (EDYu_1(Pgy) = 501 (X (Pg,)) — sn-1(£))
= s1-1(X(Pg,) = su_1(X(P(1, 01" 0)) + 0~ (50— 1 (X(P))) — sp-1(£))

-1 1
=0 (51 EDY,—1(P)) + 0 (sy—1(ED) — sp—1(D) mod - qT + -
(3.22)
by (2.6) and (3.12). Hence, we have
Yuo1(Pg) =0 (Yuo1(P)) +0'(6,) -0, mod- L (3.23)
np

Weputf,, =0(0,) —0, and A, - = o (A,) — A,. We have

%71 —1 im

07y, 1(Pg)\"" 1 S(Pg,)\"
a(z(ng)):cr(Z( 1(Pg )) L ( (Pg )) )
par n, n =\,
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o " e R | im

(0 Y, 1 (P) =00 )0, 5\ Do\
EZ(P)+Z< r,ofn n r }’0') +Z<;7’0

i=0 r i=0 r

e
m 1

=2(P)+ Y (broyP)"" +¢rp mod- 0
i=0

by (2.7), (3.17), (3.20), (3.21), (3.22) and (3.23). We see also that

(Ynl(Pga)
o 2= 80

L (4
”1/(pe+1) > Ea;g (.Y _brp,(f) = ar,cf(y'i_b}{),a) n¢10d>O
r

by (3.17) and (3.23). By the same argument using (3.11), we have
1 1
Yi(Pg,) =0 (Yi(P)) mod- n

for 1 <i <n — 1. This implies

o' (p°+1)/2
Yi(Pgy) = ——5—0 ' ((P) = Ty (P)T mod - 0
nr
forl <i <n—1by(3.17). O

Stabilizer We put n; = ged(n, p™ — 1). We put
¢/ =¢" and F, = K(¢)).

r

Leto € Wg,.. We put

—1/,.

o~ (¢

lo = ,r-
¢

Let g“;/pg be the p¢-th root of ¢, in ppm_1(K). We put

Pr.o0 = ;;/P Pr-

Let G, » be the one-dimensional formal O, -module over Oz defined similarly to
G, changing ¢, by ¢, ,. We take a compatible system {#, ; };>1 in C such that

Uﬁl(tr,l)

tr,l,cr

=1 mod. 0, [wr,a]g,,o (tr,l,a) =0, [ﬁor,a]gm, (tr,j,a) =1Irj-1.0

for j > 2. We construct &, , as in Lemma 2.1 using {#, j +}j>1. Then §, ; has CM by
L,.
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Lemma3.5 Foro € Wg,, we have

—1 ) 1
a2 NV N
gr,o,i N 6]’_ Pe_ (p - 1)
—1
0.)=6 ds —.
o (8,) r MO Zn(pe—}—l)
Proof We have 1
- e 1
o) _ P mod s ———. (3.24)
or “pi(p—1)

We obtain the claims by (3.24) and

(07" @) —6,)" +0' (o' ®,) —6,)
+H1+ o' @)@ @ =l ) =0,

which follows from (2.1). O

We define j,: Wg, — L\(GL,(K) x D*) as follows:

Let 0 € Wg. Since &, has CM by L,, there exists (g,d) € GL,(K) x
D> uniquely up to left multiplication by L* such that (g,d, 1) € G° and
& 5(g,d, 1) =& by Lemma 1.6. We put j.(0) = L} (g, (prlr"d).

Foro € Wi, we puta, = Artzr1 (0) e L} andu, = a0, "7 € (’)Zr.
Lemma3.6 Foro € Wy, we have j.(0) = L)}(1, a;l).

Proof This follows from [5, Lemma 3.1.3]. Note that our action of W is inverse to
that in [5]. O

We put
S, ={(g.d.o) € G|o € WF,, j (o)=L} (g, d)}.
Lemma 3.7 The action of S, on /\/lgg)’ﬁ stabilizes X, and induces the action on ?r.

Proof We take an element of S,, and write it as (g, (pgflr"d, o), where (g,d, 1) € G°
ando € Wg,. Since &, (g, d, 1) = &, we have (g, d) € (¢p.r, 9p.») (3% x O}) by
Lemma 3.1 and Lemma 3.5.

To show the claims, we may assume that (g, d) € 7% x OIX) by Proposition 3.2 (1).
We write ¢ = (i j)1<i.j<n € 7% anda; j = Y7 o] witha) € 1141 (K)U{0},

andd~' = Y72, dig},  withd; € pugn—1(K,) U{0}. For I <i <n—1, we have

a®

5 =d (3.25)
Git1,i+1
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by & 5(g,d, 1) = & using (3.10), 3.11), & 5; = gra‘l_l’_l and &, ; = Erl-i-l The
condition on the first line in (2.2) is equivalent to

X' X B n—1—i 3
U( i _< " l)q )z _ forl<i<n-2. (3.26)
Xin X, 2nq'

We see that the condition (3.26) is stable under the action of (g, ¢, D.r "od, o) using
(3.10) and (3.11), because a( )/alH it is independent of i by (3.25). We see that the

condition on the second line in (2.2) is stable under the action of (g, ¢, D.r "od, o) by
Lemma 3.5 using (3.10) and (3.11). m]

The group S, normalizes ig, (L)) - (Ué x U $)1 by Proposition 3.3. We put
= Ui xUND'-S, CG.
Then H, acts on X, by Lemma 3.7 and the proof of Proposition 3.3.

Proposition 3.8 The subgroup H, C G is the stabilizer of X, in MO

00,7"

Proof Assume that (g, <pD""d o) € GY stabilizes X,. It suffices to show that
(g, <pD"”d o) € H,.

By Lemma 3.1, we have (g, d) € (¢um.r, wD,r)l(Jx X (’)B). Hence, we may assume
that (g, d) € 3 x O}, by Proposition 3.2 (1).

First, we show that o € Wpg,. We write ¢ = (a; j)i<i j<n € JT%, aij =
el Oa(l)w and d~' = Y °,d;g},, as in the proof of Lemma 3.7. Since
(g, <pD"“d o) stabilizes X, we have

2 ©
l i
O
l-‘rl i+1
0 _
ayndoo ' (€9,) 1

| mods —
£, = ng"L(pe + 1)

=dl™" forl<i<n—1, (3.27)

(3.28)

by (2.2), (3.10), (3.11) and &, ; = gl
(3.28), we see that

e n—l, —1/.,/ 1 ] pé(g—1) e
g e @ O mod> —2—— (3.9
@ 1+o0716,) n(pe+1)

».i+1- By taking the p°q" (g — 1)-st power of

This implies that the left hand side of (3.29) is equal to 1. Hence we have

oY@l /gl € pg—1(K) and 071 (6,) = 6, mod> 1/(n(p® + 1)), since dg_l €
g—1(K) by (3.27). These happen only if o € Wg, by the proof of Lemma 3.5 and
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Mpe—1(K") N pg—1(K) = pupm_1(K). Since 0 € Wg,, we may assume that 0 = 1
by Lemma 3.7. Then (g, d, 1) € H, by Proposition 3.3. O

4 Artin-Schreier variety
4.1 Tate conjecture

Let m be a positive integer such that F,» C F,. Let N be a positive even integer. We
putng = N /2. We consider the affine smooth variety Xy r, over Fy defined by

no
m . N+l
Zp — = E Uzi—1uU2; 1n A]F:_ .

i=1

Let Xy be the base change of Xy , to Fq. For an integer i > 0, we simply write A’

for the affine space A’f .
q

Remark 4.1 Let Q(y1, ..., yn) be any non-degenerate quadratic form on AN . Then
the affine smooth variety over I, defined by

2 —z= 0@, ...,yy) inANT!
is isomorphic to X y by [22, XII, Proposition 1.2].

Foreach ¢ € ]F;m, we consider the homomorphism

pe:Fpm = Fp x = Term/Fp(gflx).

Then, we consider the quotient X ; = Xn/ker p;. Note that the quotient Xy ,
depends only on the class [¢{] € F;m /F; of ¢. The variety Xy ; has the defining

equation
no

() —z) =Y usiquy in AN “.1)
i=1

where the relation between z and z; is given by z; = Y 7' (¢ “1)P Let€ # pbea
prime number. For a topological abelian group A, let A denote the set of the smooth

characters A — @Z . Let £y be the Artin—Schreier Q-sheaf on A! associated to
/S Fzm, which is (1) in the notation of [6, Sommes trig. 1.8 (i)]. For a polynomial

f e Fq [x1,...,x], let Ly (f) denote the pullback of Ly under f: Al 5 AL

Lemma 4.2 We have an isomorphism

D B X Q)=HXN. Q)

[£1€F %, /F
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induced by the pullbacks and dim HY XN, Q)=p-1L
Proof For € F,, \ {1}, we have

Q-1 ifi =2,

H{(A?, Ly (xy)) = {0 otherwise

by [19, Proposition 1.2.2.2] as in the proof of [16, Lemma 2.1]. Hence, by the Kiinneth
formula, we have isomorphisms

10
HCN(XN» Qe) = @ HCN <AN, Ew <Z uzi_luz,-)) = @ W
veF i \{1} i=1 VeFn\(1)

as I ,m -representations. By Poincaré duality, we have an isomorphism

HYXy. Q> @ v

VR, \(1)

as [F m-representations. Let y': F, — @Z be any non-trivial character. Then, for
each ¥ € IF;,,, \ {1}, there exists a unique element { € IF;,,, such that = ¥’ o p;.
Hence, we know that

HY Xy, QI = HY Xy, Qoly] = v
as I ,m -representations. Therefore, the required assertion follows. O
Consider the fibration
e Xy = A" (2, (uid1<i<n) = ((W2i)1<i<ng)-

Let 0 denote the origin of A™. The inverse image 7 ¢ 1(0) has p connected components.

Fora € F,, we define Z ? to be the connected component of 7w c 1(0) defined byz; =a.
We know that each Z? is isomorphic to the affine space of dimension ng. Let

cl: CHyy(Xn.¢) = HY (Xy ¢, Qy(no))

be the cycle class map.

Lemma4.3 (1) The fibration mr; : Xy ; — A"0 is an affine bundle over A" \ {0}.
(2) The cohomology group HN (X N’g,@g(no)) is generated by the cycle classes
cl([Z?])for a € F), with the relation ZaeF,, cl([Z?]) =0.
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Proof For 1 <i < ng, let U; be the open subscheme of A" defined by the condition
that the i-th coordinate is not zero. Then {U; }1 <j <y, is a covering of A0\ {0}. We can
see that 7, is a trivial affine bundle on each U; by (4.1). Hence the first claim follows.

Weset U =, Ao \ {0}). We have the long exact sequence

HYTHU. Q) — H L g, (X.c. Qo) = Qu(=no)®”

— HY Xy Q) — HY (U, Q)

and HN(U,@K) ~ HI_V(A"0 \ {0}, @g) = 0, which follows from the first claim.
Therefore, HN(XN,;, Q¢ (np)) is generated by the cycle classes cl([Z?]) for a €
F,. On the other hand, we have ZaeFP cl([sz]) = 0, since Zae]Fp[Z?] = 0 in

CHyo(X N ¢)- Since dim HN (X ¢, Qy(no)) = p — 1 by Lemma 4.2, we obtain the
claim. O

Corollary 4.4 The Tate conjecture in [18, 7.13] holds for the variety XN F,-

Proof By Lemma 4.2, Lemma 4.3 and the commutativity of cycle maps and pullbacks
under Xy — Xy ., wehave[18,7.13 Conjecture (A), (B)] for XN,]Fq and the equality

HY (Xn, Qq(no) %4 Fa/T0) = HN (X, Qy ().

Then the g-th geometric Frobenius in Gal (Fq /Fy) actson H N (X, Q) by g". Hence
[18, 7.13 Conjecture (C)] for XN,]Fq also follows. O

4.2 Action on cohomology
In this section, we assume that p = 2. Letn > 4 be an even integer. Letm = gcd(e, f)

as in Sect. 2.2. We consider the affine smooth variety X of dimension n — 2 defined
by

2= Z Viyj in A"

1<i<j<n-2

We take {3 € Fq \ {1} such that 4“33’ = 1. Then, we define uy, ..., u,—2 by

n—2 n—2
—1 —1
Ugi+1 = §3Y4iv1 + 83 Yaiv2 + Z Yj» U4i+2 = L3 YVait1 + E3Yai+2 + Z Vi
j=4i+3 j=4i+3
n—2 n—2
U4i+3 = Y4i+3 + Z Vi, Udi+4 = Yai+4 + Z Yj-
j=4i+5 j=4i+5
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Then the variety X is isomorphic to the affine variety X,,_, defined by

no
m . —
2 —z= E upi—quz; in A"

i=1

where ng = (n—2)/2.For { € F,,, we simply write X, for the variety X,,_> , which
is defined in Sect. 4.1 where N = n — 2. Recall that X, has the defining equation

no
C(Zg —z7) = Zuz,’,]uzi in A",

i=1
For a € T, we consider the other np-dimensional cycle Zé" in X, defined by
ur =0, wugi—y =usiy2, w4 =u4iy forl <i <[(ng—1)/2],
Up—3 =up—2+1 ife=1, g =a+e1up—3,
where ¢ is defined at (3.2).
Proposition 4.5 For ¢ € F},, and a € F, we have
[Z?] = (—1)”°[Z2“] in CHyy(X¢).

Proof We show that [Z?] — (=1 [Zg‘] is rationally equivalent to zero. For 1 <i <
[(no+1)/2], let X ; be the (ng + 1)-dimensional closed subvariety of X, defined by

u4j=O fOI'lS]S[nO/Z]f
ugj—3 =0 forl <j<i—1, ugj2=0 fori+1=<j=<[no+1/2],

and let Z?i be the no-dimensional cycle on X, ; defined by u4;—3 = 0 and z; = a.

We put Z?’,o = Z‘g. Then we have

div(ze —a) = [Z{ ;14 [Z ;]
in CHyuy(Xe,i) for 1 < i < [(no + 1)/2], since we have £(zf — z;) = usj—3uai— on

X¢i.Forl <i <[(ng—1)/2],let X! ; be the (ng + 1)-dimensional closed subvariety
of X, defined by

ur =0, wugj1 =u4ji2, u4j =u4jy1 forl <j<i—1, usy =usgy,
ugj =0 fori+1=<j<[no/2], ugjy1 =0 fori+1=<j<[(no—1/2],

andlet Z 2“1. be the no-dimensional cycle on X /{ ; defined by ug; | = ugiy2andz; = a.

We put Zy = Z . Then we have

a
¢.[no+1)/2]

div(z; —a) = [Z,{a’l;]] + [ngi]
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in CHnO(X”l.) for 1 <i <[(ngp— 1)/2], since we have

0(zf — 2¢) = uai(uai 1 + i 42)

on X/{ ;-Ife > 2, then Zé“[(no_l)/z] = Z;“, and the claim follows. Assume that e = 1.

Thenm = 1. Let X 2/ be the (no + 1)-dimensional closed subvariety of X, defined by
ur =0, usj_1 =usji2, usj=usjy; forl < j < (ng—2)/2.
Then we have
div(zg — un—2 — a) = [Z{ 14y 1y/2)] + [Z{']
in CHp, (X Z ), since we have
(z—up-2)@—up—2—1) =up2(up-3+up—2+1)

on X /C/ . Therefore, we obtain the claim. O

Corollary 4.6 Assume that n > 4. Let g be the automorphism of X defined by

n—3
(2, i)1<i<n—2) = (Z terna+ DY yi+en e+ 2+ 81)251'5”—2) .

i=1
Then, g* acts on H"“2(X, Q) by —1.

Proof Note that g induces an automorphism of X,. The condition of Z? C Xgis
equivalent to

Yai—a + &5 ' yaica + Gyaic1 =0 for 1 <i < [ng/2],
Y4i + &3y4i+1 + §3_ly4i+2 =0 forl <i <[(no—1)/2],
G s+ Gy =0 ife>2, y,2=0 ife=1, z =0.

For a € F,, the condition of Zé“ C X is equivalent to

n—2
Gy -+ v+ Z)’j =0,
j=3
Vaic1 4+ G3vai + &3 yaig1 =0, yai + &5 yaiv1 + Gyaiga =0
for1 <i <[(no—1)/2],
Yn3=wo2+1 ife=1, z; =a+e¢ey2.
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Using the above, we can check that

7 ife=1
—1 0 g- ’
70y =
§ () Z;O otherwise.

Therefore, we obtain
g*(elZ{D) = (=" (cl(ZPD) = —cl(Z0D)

in H""2(X o Qy(no)) using Lemma 4.3 and Proposition 4.5. Hence, the claim follows
from Lemma 4.2 and Lemma 4.3. O

5 Explicit LLC and LJLC
5.1 Galois representations

Let X be the affine smooth variety over k% defined by (2.13). We define an action of
0 x Z on X similarly to (3.18).

We choose an isomorphism ¢: Q, ~ C. Let ¢'/?> € Q, be the 2-nd root of ¢
such that L(ql/ 2) > 0. For a rational number r € 277, let @e (r) be the unramified
representation of Gal(k*° /k) of degree 1, on which the geometric Frobenius Frob, acts
as scalar multiplication by g —". We simply write Q for the subgroup Q x {0} C QO X Z.
We consider the morphisms

_ ery |
®: A’ = A (0 O1size2) " T == 3T iy,

1<i<j<n-2

m
Bt Agae = Apacs 20> 20 — 2.
Then we have a cartesian diagram

X —= AL

|

him
A]iac ——— Allcac .

Using the proper base change theorem for the above cartesian diagram, we have a
decomposition

H7'(X. Q> P HI'AE! Ly (@), (5.1)
YeRY,\(1)
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since f,,,Qp ~ @weFV Ly and HC"’I(AZ.QI, Q) = 0. The decomposition (5.1) is
"

stable under the action of Q % Z, since F,m >~ {g(1,0, ¢) | ¢ € Fm} in the center of

Q X Z acts on each direct summand HC"’l(AZ;l, Ly (P)) in (5.1) by ¥. We put

_ n—1
Tyn = H:”(Azacl,ﬁw(cb))( 5 )

as a Q x Z-representation for each v € F;m\{l}. We write tro’ v for the inflation of
Ty.n by ©, in (3.19).

5.2 Correspondence

Definition 5.1 We say that an irreducible supercuspidal representation of GL,(K) is
simple supercuspidal if its exponential Swan conductor is one.

Remark 5.2 Definition 5.1 is compatible with [17, Definition 1.1] by [17, Proposition
1.3]. The word “simple supercuspidal” comes from [7]. Our “simple supercuspidal”
representations are called “epipelagic” in [2] after [20].

We define v € IB‘Z by t(¥o(1)) = exp(2w/—1/p). We put ¥ = g o TR o /F -
We take an additive character ¥ : K — @ZX such that ¥g (x) = w(’) (x) for x € Ok.

In the following, for each triple (¢, x,¢) € pug—1(K) x (k)Y x @Z, we define a
GL, (K)-representation m; ., a D*-representation p; , . and a W -representation

T{»XyC'
We use notations in Sect. 2.1, replacing r € py—1(K) with ¢ € uy—1(K). We have

the K -algebra embeddings

Ly = Mu(K); ¢ = ¢mes Lo — Di ¢c > ¢p e
Set ¢rn = n'g;. Let Ay y ot L} UL — Q; be the character defined by

A yclor) = (=D"e, Agyc(x) = x(X) forx € OF,
Acy.c(x) = (Yk otr)(%j;(x — 1)) forx e UJ.

We put

GL,(K)

T xe = c—IndL? vl

Agy e

Then, m; 4 . is a simple supercuspidal representation of GL,(K), and every sim-
ple supercuspidal representation is isomorphic to m; , . for a uniquely determined

(€. %, €) € ug1(K) x (k)Y x Q; (cf [2,2.1,2.2]).
Let 0 y.c: L7U}, — @; be the character defined by

Qg,x‘c(ﬂﬁg) =, ez,x,c(x) = x(x) forx e 0;;»
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Oc.5.c(d) = (Y o Trdp/k) (<pg}1(d — 1)) ford e U},

We put
=Ind?; |0 .
P, x.c L vl ¢.x.c

The isomorphism class of this representation does not depend on the choice of the
embedding L; < D.

Recall that <p2 = (pge and E; = K((pé). Let ¢.: Wg, — @Z be the character

defined by ¢.(0) = ¢"o. Let Frob, : k* — k* be the map defined by x +— xP™" for
x € k*. We consider the composite

Art
. Wab Eg EX 5 OX
Voo WE, ¢ E;

can. X Frobf, k.
where the second homomorphism is given by E ; — OE;§ X x@é*UE; ©) We

simply write r? for rg " We set

0 0 Wk _0
Ty e =T @ oV)®be, Trye= Indwg{ Te yoor

We see that rg o is primitive by [2, 3.2 Proposition] and [13].
The following theorem follows from [13] and [17].

Theorem 5.3 Let LL and JL denote the local Langlands correspondence and the local
Jacquet—Langlands correspondence for GL,(K) respectively. For § € ugz—1(K), x €

(k)Y and c € @Z, we have LL(7r¢ y ) = T¢,y,c and JL (p¢ y.c) = ¢,y c-

Definition 5.4 We say that a smooth irreducible representation of GL,(K) is essen-
tially simple supercuspidal if it is a character twist of a simple supercuspidal
representation.

Letw: K* — @Z be a smooth character. We put
e xc0 =Tz y,c @ (@odet), pr y.co=pxc® (@oNrdp/k),
-1
T x.cw = Tex.c @ (@o Arty ),

and

A{,x,c,w = ALX»C ® (C() o det |L2.<U~11)’ eg’x’c’w = GCaX»C ® (C() (@) NrdD/K |L2<Ull)),

0 _ .0 —1
T yew = Lo e ® (w ONI’E[/[( OAI'tEZ).

Then we have

_ GL(K)
e xe0 = c-IndL{X”Ujl Agxeo
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_ D* _ Wk _0
Pt x.c.0 = IndL;ULI)QQ,X,c,wv U x.c0 = IndWE{ Tex o

Corollary 5.5 We have LL(77¢ 4 c.0) = T¢,y.c,0 d JL(07 y c.0) = T 1. co0

Proof This follows from Theorem 5.3, because LL and JL are compatible with char-
acter twists. O

6 Geometric realization

Recall that ny = gecd(n, p™ — 1). We fix s € a1 (K). We take an element
p—1

i

r € wg—1(K) such thatr "t =s. We put

N — —1
Hx,=Hc”‘(3er,@z>(”2 )

as H,-representations.
Lemma 6.1 The isomorphism class of c-Indgr Hzx,_ depends only on s.
Proof Assume that r, r’" € pu,—1(K) satisfy

m__ m__
pr=1 Pl

r"o=r " =s.

Then we have L, = L,. Hence, there is (g,d) € (GL,(K) x D*)? such that
&.(g,d) = & by Lemma 1.6. Then we have X,(g,d) = X, . Threfore we obtain
the calim. O

We put
M = c-Ind§ Hy, .

For simplicity, we write G| and G, for GL,(K) and D* x Wk respectively, and
consider them as subgroups of G. We put

H ={g € Uy |det(g) = 1}.

We have H = H, N G by Proposition 3.3. Let H, be the image of H, inG/G| =~ G».
Leta € j1g—1(K). We define a character A : Uj1 — @; by

AL(x) = (g otr)((agyn) ' (x = 1)) forx € U,
Let 7 be a smooth irreducible representation of GL,, (K).
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Lemma 6.2 Ifn isnotessentially simple supercuspidal, then we have Hom gy (A¢, w) =
0. Further, we have

1 ifa"r =¢,

dim Hompy (AY, 707 4 .c.0) = ]
0 otherwise.

Proof We assume that Hompg (A%, w) # 0, and show that 7 is essentially simple
supercuspidal. Let w; be the central character of 7. Then w; is trivial on K* N H by
Homp (AY, ) # 0. Hence, we may assume that wy is trivial on K> N Uflj, changing

7 by a character twist. Then, there is a character Ay, : K™~ Ué — @Z such that
Ao lgy = AL AL, Tk = or.
Then we have

Homy (A%, 7) = Homg (AL, , 7) = Homy. 1 (IndKXH (A% L), n)
6.1)
by Frobenius reciprocity, since K * U%/ (K™ H) is compact. We have the natural iso-
morphism

K*Us/(K* H) 55 (K*'UL/(K*)" = Uk /(UK. (6.2)

For a smooth character ¢ of U } x/U K)" ,let ¢’ denote the character of K*U flj obtained
by ¢ and the isomorphism (6.2). We have a natural isomorphism

K
Ind§. (A%, () = P 4, 04 (6.3)
UL /UMY

Let ¢ be a smooth character of U [1< /(U Il()”, and regard it as a character of U 11< We

extend ¢ to a character q; of K such that ¢(z) = 1 and q} is trivial on py—1(K). We
have

HOmeUjl (A, ® ¢', w) ~ Homg, ((c Indi‘XUI ) R ¢, 7T> (6.4)

by Frobenius reciprocity. We take x’' € (k*)V such that x'(X) = w;(x) for x €
1tg—1(K). For ¢’ € Q; , we define the character A% ot LIUY = Q, by

Af,x’,c"U:lj =A% AL o(omy) = c, AY o) = x'(X) forx € pug—1(K).
We put
T e cIndf‘UlAfX o
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Then we have

Gy a ~ a
cIndll ) AL, = P = o (6.5)
'eQ,
Note that
n:'l,)(/,c’ = Tanr, x/ x' (@) (66)

by the constructions. Then we see that 7 is simple supercuspidal by (6.1), (6.3), (6.4),
(6.5), (6.6) and the assumption Hompg (A¢, ) # 0.

Let x' € (k*)V. We use the same notations as above for such x’. For an irreducible
supercuspidal representation 7 of G, we write a(rr) for its Artin conductor exponent
asin [2, 1.2]. We have a(w? , ,) = n + 1 by (6.6). Hence, if ¢ # 1, we have

r,x ,c
a(ry 1 o ® @) =na(@) = 2n
by a(¢) > 2 and [3, 6.5 Theorem (ii)]. Therefore, we obtain

. ~ 1 ifg=1,a"r =¢and x'(a)c’ =c,
dimHomg, (% ., . @ ¢, 7 =
o e 9 Tex.e) {0 otherwise
by (6.6) and [2, 2.2]. To show the second claim, we may assume that @ = 1. Hence,
we obtain the second claim by the above discussion, using that wy, , . is trivial on U }(
O

Proposition 6.3 (1) If m is not essentially simple supercuspidal, we have
Hompy (Hx,, w) = 0. Further, we have

p—1
e o n J—
. n 1 =gy,
dimHomy (Hx,, ¢ c,0) = pem if¢ .
0 otherwise.

(2) We have L}U 5 x Wg, C H, and an injective homomorphism
0
er,x,c,a} ® Tr,x,c,w — HOI’IlH(er, nr,x,c,w)

as LXU}, x Wg, -representations.

Proof By (5.1), we have a decomposition

Hx,~ P tya (6.7)

YeF\(1)

as representations of Q x Z. By Proposition 3.3 and (6.7), we have

Hy,~ @ (9% (6.8)
dE/me_l(K)
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as H-representations. By (6.8), we have

Hompy (Hx,, ¢ y.c,0) 2 @ Hompg (A, 9, n;,x,c,w)EBp .
ae,upm,l(K), (_a)"r:{

The cardinality of
{aepupm (K| (—a)'r =t}
=l
equalsnyif¢ ™ = s and zero otherwise. Hence the first claim follows from Lemma
6.2.

We prove the second claim. We consider the element
(¢p.r, 1) € LYU x Wg, C Gy

anditsliftingg, € Gin(3.1) withrespectto G — G;. Wehave g, € H, by Proposition
3.2 (1). The element (¢p,,, 1) acts on 6, y ¢ @ r,o’x’c’w as scalar multiplication
by co((—1)""'m,), because Nrdp,k (¢p.r) = (—1)""'m,. By Proposition 3.2 (2),
Corollary 4.6 and [12, Proposition 4.2.3], the element g, actson Homy (Hx, , 7r, y .¢,)
as scalar multiplication by cw ((— D" 'w,).

Letzd € O,X(U5 with z € py—1(K) and d € Ull). Let g = (ai,j)1<i,j<n € U:1I be
the element defined by a1, = Nrdp,x(d), a;; = 1for2 <i <nanda;; = 0if
i # j. We have det(g) = Nrdp,k(d) and (zg, zd, 1) € H,. The element (zd, 1) €
LXU 11) x WE, actson 6, y c.o ® t,q +.c.00 as scalar multiplication by

X (2)6r x,c(d)w(Nrdp,k (zd)).
We have the subspace
HomH(Tw(;*l’n: nr,x,c,a)) C HomH(H%,: nr,x,c,a)) (69)

by the decomposition (6.7). By Remark 1.4, Proposition 3.3 and [12, Propositions 4.2.1
and 4.5.1], the element (zg, zd, 1) acts on the subspace in (6.9) as scalar multiplication
by

X (2)0r x.c(d)w(det(zg)).

Let 0 € Wg, such that n, = 1. We take g, as in (3.15). By Proposition 3.4, the
element g, acts on the subspace (6.9) by

x(bo)T) 1 (@)oo (det(80)).
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On the other hand, the element (goD 0) €L U] x WE, actson 0, y c.0 ® ‘L'r Yoo
by

(X 0 (@), ()0 (NrE, /(1)

Hence, the required assertion follows from v, (o) = by and Nr E. /K (ug) = det(gs).
m}

Proposition6.4 If © is not essentially simple supercuspidal, then we have
Homgy, (k)(Ils, m) = 0. Further, we have

™ =1

Pz x.co0 Ty co0 lfé— o=y,

HomGLn(K) (I, n{,x,c,w) =
0 otherwise

as D* x Wk -representations.

Proof For g € H,\G/G1, we choose an element § € G, whose image in H,\G»
equals g under the natural isomorphism H,\G /G| ~ H,\G,. Weput H® = g~'H3.
Let H ir denote the representation of H¢ which is the conjugate of H x, by g. Then,
we have
Olg, >~ P cInd Hg ~ P oInd§} H, (6.10)
8EH\G/Gy H\G>

as G-representations by Mackey’s decomposition theorem, since we have H8 = H
and Hy, @ H i as H-representations. By (6.10) and Frobenius reciprocity, we acquire

Homg, (T, ¢ y.c.0) ~ €D Hompy (Hzx, . e y.c.0)- (6.11)
ﬁr\GZ

-1

If ¢ m ##s,the requlred assertion follows from (6.11) and Proposition 6.3 (1).

P
Now, assume that ¢ "t = 5. Without loss of generality, we may assume that { equals
r by Lemma 6.1. By Proposition 6.3 and Frobenius reciprocity, we obtain a non-zero
map

IndH’

LX Ul X W, (Qr x.c0 T, r X, w) - HomH(er, nr,x,c,w)o (6.12)

By applying Indf to the map (6.12), we acquire a non-zero map
Pr.x,c.o &® Tr,x,c.o — Ind%iHomH(Hx,: nr,x,c,a))- (613)

We have dim o,y ¢ = (¢" — 1)/(q — 1) and dim 7, . ,, = n. Moreover, we have

n'(g" — 1)

[Gy: H,)=[F : KI[D*: LU\l = =D
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by the exact sequence
1—>LrXUé—>ﬁ,—> Wg, — 1.

Hence, the both sides of (6.13) are n(¢" — 1)/(g — 1)-dimensional by Proposition 6.3
(1). Since pr,y,c,0 @ Tr, x ¢, 1 anirreducible representation of G, we know that (6.13)
is an isomorphism as G»-representations. On the other hand, we have a non-zero map

Ind%Z Hompy (H%,a nr,x,c,w) - HOI’l’lGl (I, ﬂr,x,c,a)) (6.14)

induced by a surjective homomorphism Ilg|y, — Hx, of H,-representations and
Frobenius reciprocity. Then (6.14) is an isomorphism, since the left hand side is an
irreducible representation of G and the both sides have the same dimension by (6.11).
Hence, the required assertion follows from the isomorphisms (6.13) and (6.14). O

Theorem 6.5 Let LI be the inverse of JL in Proposition 5.3. We put

M= ED ;.

S€Un (-1 (K)

p—1

Let  be a smooth irreducible representation of GL, (K ). Then, we have

LI(m) @ LL(w) if w is essentially simple supercuspidal,
HomGLn(K)(l'[,rr) ~ f . Y P P P
0 otherwise

as D* x Wk -representations.

Proof This follows from Proposition 5.3 and Lemma 6.4, because every essentially
simple supercuspidal representation is isomorphic to 7z y ¢, for some ¢ € pgy—1(K),

x € (kX)V,ce @; and a smooth character w: K* — @; O
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