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Abstract
In this paperwe consider aminimization problemwhich arises from thermal insulation.
A compact connected set K , which represents a conductor of constant temperature,
say 1, is thermally insulated by surrounding it with a layer of thermal insulator, the
open set �\K with K ⊂ �̄. The heat dispersion is then obtained as

inf

{∫
�

|∇ϕ|2dx + β

∫
∂∗�

ϕ2dHn−1, ϕ ∈ H1(Rn), ϕ ≥ 1 in K

}
,

for some positive constant β.
We mostly restrict our analysis to the case of an insulating layer of constant thick-

ness. We let the set K vary, under prescribed geometrical constraints, and we look for
the best (or worst) geometry in terms of heat dispersion. We show that under perime-
ter constraint the disk in two dimensions is the worst one. The same is true for the
ball in higher dimension but under different constraints. We finally discuss few open
problems.
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746 F. Della Pietra et al.

1 Introduction

As energy saving and noise pollution are growing in importance year after year, insu-
lation represents one of biggest challenge for environmental improvement. Even if
insulation is one of the oldest and most studied problem in mathematical physics, the
mathematics involved is still very tricky especially when one looks at shape optimiza-
tion questions. In this paper wewill consider a domain of given temperature, thermally
insulated by surrounding it with a constant thickness of thermal insulator. As the geom-
etry of the set varies (under prescribed geometrical constraints to be specified later) it
is reasonable to ask for the best (or worst) choice (in terms of heat dispersion).

Let K be a compact set in R
n and let � be a bounded connected open set of Rn ,

with K ⊂ �̄ (here the set K represents a thermally conducting body, surrounded by
an amount of insulating material �\K ). The heat dispersion is given by

Iβ(K ;�) = inf

{∫
�

|∇ϕ|2dx + β

∫
∂∗�

ϕ2dHn−1, ϕ ∈ H1(Rn), ϕ ≥ 1 in K

}
.

(1)

where β > 0 is a fixed parameter depending on the physical characteristics of the
problem, and ∂∗� stands for the reduced boundary of �.

If � has Lipschitz boundary and K ⊂ �, then there exists a minimiser u of (1)
which solves in the weak sense the Robin-Dirichlet problem

⎧⎪⎨
⎪⎩

�u = 0 in �\K ,

u = 1 in K ,
∂u
∂ν

+ βu = 0 on ∂�,

(2)

and it holds that

Iβ(K ,�) = β

∫
∂�

u dx .

In what follows we will use D to denote a bounded open connected subset of � and
in that case the notation Iβ(D,�) stands for Iβ(D̄,�).

If D = � (no insulation), we set

Iβ(D; D) = βP(D),

where P(D) stands for the classical perimeter in R
n . One of the most intriguing

questions in thermal insulation is to study the configurations of D and � for which
Iβ(D,�) is minimal or maximal, under reasonable geometric constraints.

Shape optimization problems of this or similar nature already appeared in several
papers, as for instance in [1–5,7,10,12–14]. Related results are contained in [11].

In Sect. 2 we consider Iβ(D,�) when � is the Minkowski sum

� = D + δB
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An optimal insulation problem 747

(see Sect. 2 for its definition), B is the unit ball centered at the origin, and δ is a positive
number. This corresponds to accomplish the insulation of D by adding an insulation
layer of constant thickness. For the sake of simplicity, we set

Iβ,δ(D) ≡ Iβ(D, D + δB).

In Sect. 3 we consider the planar case and prove that in the class of smooth domains
D with given perimeter P , and fixed δ > 0, the disk maximizes Iβ,δ . Therefore, we
deduce that the worst possible geometry (in terms of heat dispersion) is the symmetric
one.

Thereafter, in Sect. 4, we prove that in higher dimension (n ≥ 3) balls still maximize
Iβ,δ , but our result finds its natural generalization in the class of convex domains D
with samemeanwidth.We remind that thewidth of a convex sets D in a given direction
ν ∈ Sn−1 is the distance of two distinct supporting hyperplanes of D orthogonal to
ν. Denoting by pD the support function of the set D, then the width in the direction
ν is pD(ν) + pD(−ν) and averaging such a quantity over all ν ∈ Sn−1 returns a
quantity commonly denotedmean width. The mean width is also proportional (thanks
to a classical result within the Brunn–Minkowski theory [16, 5.57]) to the so called
(n−1)-quermassintegral, which for our purpose is easier to handle and it is the quantity
that we shall use throughout the paper.

The study of the worst possible shape, the one with the highest heat dispersion, is
justified by the idea that, in designing the optimal insulation, one has an a-priori bound
of the heat dispersion in terms of geometric quantities alone.

However, it is of great interest as well, to study the existence of the best geometries:
those which minimize heat dispersion. In the last section we make some remarks on
that, and discuss few open problems. For instance we consider the minimization of
Iβ,δ(D) in the class of sets of given perimeter or measure. Comparison with classical
Capacitary problem (which corresponds to the case β → ∞) suggests that the mini-
mization of Iβ,δ(D) when we vary D by preserving its measure, occurs when D is a
ball. Even more complicated is the case where both � and D vary among sets of fixed
volume. However such a case requires a careful formulation otherwise the problem
can be ill-posed, in the sense that (against common sense) sometimes insulation might
increase heat dispersion. In particular we show that, when D = BR (open ball of
radius R), and β is small enough, there exists a positive constant δ0 (which depends
on β and R alone) such that for any bounded connected open set �, with � ⊃ BR and
|�\BR | < δ0, then

Iβ(BR;�) > Iβ(BR; BR).

2 Insulating problem

Given an open, bounded, connected set D ⊂ R
n , and � = D + δB, δ > 0, where B

is the unit ball centered at the origin and D+ δB stands for the Minkowski sum of the
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748 F. Della Pietra et al.

two sets, that is

� = D + δB = {x + δy, x ∈ �, y ∈ B},

we are interested in the study of the properties of

Iβ,δ(D) = inf

{∫
�

|∇ϕ|2dx + β

∫
∂∗�

ϕ2dHn−1, ϕ ∈ H1(Rn), ϕ ≥ 1 in D̄

}
(3)

with β > 0.
We denote by W 1,2

D̄
(�) the closure in W 1,2(�) of {ϕ|� : ϕ ∈ C∞

c (Rn) with D̄ ∩
suppϕ = ∅}. If � has Lipschitz boundary, then there exists a unique minimizer u of
(3) such that u − 1 ∈ W 1,2

D̄
(�) which solves

⎧⎪⎨
⎪⎩

�u = 0 in �\D̄,

u = 1 in D̄,
∂u
∂ν

+ βu = 0 on ∂�.

(4)

in the sense that

∫
�\D̄

∇u∇ϕ dx + β

∫
∂�

u ϕ dHn−1 = 0 (5)

for all ϕ ∈ W 1,2
D̄

(�).
Then

Iβ,δ(D) = β

∫
∂�

udHn−1. (6)

We will call Iβ,δ(D) the “heat dispersion” and we observe that if β = 0, the condition
on ∂� in (4) becomes a Neumann condition: ∂u

∂ν
= 0, while if β = +∞, the problem

has to be meant with a Dirichlet condition on ∂�: u = 0.

Remark 2.1 It holds that

Iβ,δ(D) ≤ cap2(D̄,�) = inf

{∫
�

|∇ϕ|2dx, ϕ ∈ H1
0 (�), ϕ ≥ 1 in D̄

}
.

Furthermore, by choosing ϕ = 1 in (3) as test function, we get

Iβ,δ(D) ≤ βP(�),

where P(�) stands for the perimeter of � in Rn .
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An optimal insulation problem 749

3 Maximization of the heat dispersion: the planar case

In this section we consider the two dimensional case. For an open, bounded, connected
set D we denote by D∗ the disk having the same perimeter of D. We consider � =
D + δB and the disk �∗ = D∗ + δ∗B, where B is the unit disk centered at the origin.

If D is convex, the Steiner formulae state that

|�| = |D| + P(D)δ + πδ2, P(�) = P(D) + 2πδ,

|�∗| = |D∗| + P(D∗)δ∗ + πδ2∗, P(�∗) = P(D∗) + 2πδ∗,

If we ask that the area of the insulating material �\D̄ remains constant, then

|�| − |D| = P(D)δ + πδ2 = |�∗| − |D∗| = P(D∗)δ∗ + πδ2∗.

Then, since P(D) = P(D∗) then δ = δ∗ and, as byproduct, P(�) = P(�∗). On the
contrary, if δ = δ∗, then |�| − |D| = |�∗| − |D∗|.

For a general bounded domain with piecewise C1 boundary, it holds that

|�| ≤ |D| + P(D)δ + πδ2, P(�) ≤ P(D) + 2πδ, (7)

hence δ = δ∗ implies

|�| − |D| ≤ |�∗| − |D∗|,

whichmeans that the area of the insulatingmaterial increases keeping fixed the perime-
ter P(D) and the thickness δ.

Theorem 3.1 Let D be an open, bounded, connected set of R2 with piecewise C1

boundary. Then

Iβ,δ(D) ≤ Iβ,δ(D
∗),

where D∗ is the disk having the same perimeter of D, that is P(D∗) = P(D).

Proof Let v be the radial minimizer of Iβ,δ(D∗). We denote by R be the radius of D∗,
�∗ = D∗ + δB, vm = v(R + δ) = min�∗ v and by max�∗ v = v(R) = 1. Being v

radial, the modulus of the gradient of v is constant on the level lines of v.
Let us consider the function

g(t) = |Dv|v=t , vm < t ≤ 1.

Let d(x) be the distance of a point x from D and set

w(x) = G (R + d(x)) , x ∈ �, where G−1(t) = R +
∫ 1

t

1

g(s)
ds.
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750 F. Della Pietra et al.

By construction w ∈ H1(�) and, being G decreasing, it results:

max� w = w|∂D = 1 = G(R);
wm = min� w = w|∂� = G(R + δ) = vm

|Dw|w=t = |Dv|v=t = g(t) wm ≤ t ≤ 1.

(8)

Hence w is a test function. Then

Iβ,δ(D) ≤
∫

�\D̄
|∇w|2dx + β

∫
∂�

w2dH1

Let

Et = {x ∈ � : w(x) > t} = {x ∈ � : d(x) < G−1(t)} = D + G−1(t)B,

and let

Bt = {x ∈ �
 : v(x) > t}.

By Steiner formula (7) we get

P(Et ) ≤ P(D) + 2πG−1(t) = P(D∗) + 2πG−1(t) = 2π(R + G−1(t)) = P(Bt )

(9)

for every wm < t ≤ 1. Hence, by (9),

∫
w=t

|Dw| dH1 = g(t)P(Et ) ≤ g(t)P(Bt ) =
∫

v=t
|Dv| dH1, wm < t ≤ 1

then, by co-area formula and (8),

∫
�\D̄

|Dw|2 dx =
∫ 1

wm

g(t)P(Et ) dt

≤
∫ 1

wm

g(t)P(Bt ) dt =
∫ 1

vm

g(t)P(Bt ) dt

=
∫

�∗\D̄∗
|Dv|2 dx .

As regards the boundary terms, since by construction w = wm = vm on ∂� (see
(8)), and P(�) = P(�∗), we have

∫
∂�

w2 dH1 = w2
m P(�) = v2m P(�∗) =

∫
∂�∗

v2 dH1
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An optimal insulation problem 751

Hence

Iβ,δ(D) ≤
∫

�\D
|∇w|2dx + β

∫
∂�

w2dH1

=
∫

�∗\D∗
|∇v|2dx + β

∫
∂�∗

v2dH1 = Iβ,δ(D
∗).

��

4 The n-dimensional case

4.1 Preliminaries on convex sets

Here we list some basic facts on convex sets. All the notions and results can be found,
for example, in [6,16]. Let K be a nonempty, bounded, convex set inRn and let δ > 0.
Then the Steiner formulas for the volume and the perimeter read as

|K + δB| =
n∑
j=0

(
n

j

)
Wj (K )δ j

= |K | + nW1(K )δ + n(n − 1)

2
W2(K )δ2 + · · · + ωnδ

n . (10)

P(K + δB) = n
n−1∑
j=0

(
n − 1

j

)
Wj+1(K )δ j

= P(K ) + n(n − 1)W2(K )δ + · · · + nωnδ
n−1, (11)

where B is the unit ball in Rn centered at the origin, whose measure is denoted by ωn .
The coefficients Wj (K ) are the so-called quermassintegrals of K .

It immediately follows that

lim
δ→0+

P(K + δB) − P(K )

δ
= n(n − 1)W2(K ). (12)

If K has C2 boundary, with nonzero Gaussian curvature, the quermassintegrals are
related to the principal curvatures of ∂K . Indeed, in such a case

Wi (K ) = 1

n

∫
∂K

Hi−1(x)dHn−1, i = 1, . . . n. (13)

Here Hj denotes the j-th normalized elementary symmetric function of the principal
curvatures of ∂K , that is H0 = 1 and

Hj (x) =
(
n − 1

j

)−1 ∑
1≤i1≤...≤i j≤n−1

κi1(x) · · · κi j (x), j = 1, . . . , n − 1,
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752 F. Della Pietra et al.

where κ1(x), . . . , κn−1(x) are the principal curvatures at a point x ∈ ∂K . In particular,
by (12) and (13) we get also that

lim
δ→0+

P(K + δB) − P(K )

δ
= (n − 1)

∫
∂K

H1(x)dHn−1,

where H1(x) is the mean curvature of ∂K at a point x .
The Aleksandrov–Fenchel inequalities state that

(
Wj (K )

ωn

) 1
n− j ≥

(
Wi (K )

ωn

) 1
n−i

, 0 ≤ i < j ≤ n − 1, (14)

where the inequality is replaced by an equality if and only if K is a ball.
In what follows, we use the Aleksandrov–Fenchel inequalities for particular values

of i and j . When i = 0 and j = 1, we have the classical isoperimetric inequality:

P(K ) ≥ nω
1
n
n |K |1− 1

n .

Moreover, if i = k − 1, and j = k, we have

Wk(K ) ≥ ω
1

n−k+1
n Wk−1(K )

n−k
n−k+1 .

Let us denote by K ∗ a ball such thatWn−1(K ) = Wn−1(K ∗). ThenbyAleksandrov–
Fenchel inequalities (14), for 0 ≤ i < n − 1

(
Wi (K ∗)

ωn

) 1
n−i = Wn−1(K ∗)

ωn
= Wn−1(K )

ωn
≥

(
Wi (K )

ωn

) 1
n−i

.

hence

Wi (K ) ≤ Wi (K
∗), 0 ≤ i ≤ n − 1 (15)

4.2 Maximization of the heat dispersion in convex domains

Theorem 4.1 Let D be an open, bounded, convex set of Rn. Then

Iβ,δ(D) ≤ Iβ,δ(D
∗),

where D∗ is the ball having the same Wn−1 quermassintegral (same mean width) of
D, that is Wn−1(D) = Wn−1(D∗).

Proof Let be �∗ = D∗ + δB, and v the radial minimizer of Iβ,δ(D∗). Since � =
D + δB, Steiner formula (11) and (15) imply P(�) ≤ P(�∗).

We denote by vm = v(R + δ) = min�∗ v and by max�∗ v = v(R) = 1. Being v

radial, the modulus of the gradient of v is constant on the level lines of v.
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An optimal insulation problem 753

Let us consider the function

g(t) = |Dv|v=t , vm < t ≤ 1.

Let d(x) be the distance of a point x ∈ � from D and set

w(x) = G (R + d(x)) , x ∈ �, where G−1(t) = R +
∫ 1

t

1

g(s)
ds.

By construction w ∈ H1(�) and being G decreasing it results:

max� w = w|∂D = 1 = G(R);
wm = min� w = w|∂� = G(R + δ) = vm
|Dw|w=t = |Dv|v=t = g(t) wm ≤ t ≤ 1,

(16)

Then

Iβ,δ(D) ≤
∫

�\D
|∇w|2dx + β

∫
∂�

w2dHn−1

Let

Et = {x ∈ � : w(x) > t} = {x ∈ � : d(x) < G−1(t)} = D + G−1(t)B,

and

Bt = D{x ∈ �∗ : v(x) > t}.

Being Wn−1(D) = Wn−1(D∗), using the Steiner formula and (15), we get for wm <

t ≤ 1 and ρ = G−1(t)

P(Et ) = P(D + ρB) = n
n−1∑
k=0

(
n − 1

k

)
Wk+1(D)ρk

≤ n
n−1∑
k=0

(
n − 1

k

)
Wk+1(D

∗)ρk = P(D∗ + ρB) = P(Bt ).

Hence

∫
w=t

|Dw| dHn−1 = g(t)P(Et ) ≤ g(t)P(Bt ) =
∫

v=t
|Dv| dHn−1, wm < t ≤ 1
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754 F. Della Pietra et al.

then, by co-area formula and (16),

∫
�\D

|Dw|2 dx =
∫ 1

wm

g(t)P(Et ) dt

≤
∫ 1

wm

g(t)P(Bt ) dt ≤
∫ 1

vm

g(t)P(Bt ) dt

=
∫

�∗\D∗
|Dv|2 dx .

As regards the boundary behavior, since by construction w = wm = vm on ∂�

(see (16)), and P(�) ≤ P(�∗), we have
∫

∂�

w2 dHn−1 = w2
m P(�) ≤ v2m P(�∗) =

∫
∂�∗

v2 dHn−1.

��
Remark 4.1 Let us observe that wheneverWn−1(D) = Wn−1(D∗), then by the Steiner
formula and the Aleksandrov–Fenchel inequalities then |�| − |D| ≤ |�∗| − |D∗|.

5 Remarks and open problems

As regards the infimum of Iβ,δ(D) among sets with fixed perimeter, it is easy to show
that, without any geometrical restriction, such an infimum is zero. For example, for
n = 2, even limiting the analysis to open connected sets is not enough to bound the

infimum away from zero. To this aim we consider the sequence of sets Qk = ]
0, 1

k

[2
.

Then we construct the set Dk by removing from Qk k2 disjoint closed squares of side
1
4k2

− 1
k3

each (k ≥ 5). Then for k sufficiently large, it holds that Iδ,β(Dk) = Iδ,β(Qk).
Hence

Iβ,δ(Dk) → 0 as k → +∞,

while for any k

P(Dk) = 1.

The class of simply connected sets suffers the same problem. However, among pla-
nar convex sets of given perimeter, any minimising sequence for Iβ,δ(D) admits, by
Blaschke-Santaló Theorem, a subsequence which converges (possibly degenerating
into a segment) to some convex body of same perimeter (to be understood as twice
its length, or Minkowski content, in case of a segment). Since the functional Iβ,δ(·)
is continuous under converging sequence of convex bodies, a minimum is achieved.
This leads to the following
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An optimal insulation problem 755

Open Problem 1 Find the minimum of Iβ,δ(·) in the class of convex planar sets of
given perimeter.

Another closely related question is

Open Problem 2 Prove or disprove in any dimension that the minimum of Iβ,δ(·)
among sets of given volume exists.

For β → ∞ the functional Iβ,δ(D) converges to the capacity of the set D̄ with respect
to D + δB. For the capacity one can employ standard techniques, like the Schwarz
symmetrization, to deduce that a minimum is achieved on balls. This suggests that, at
least for large β, balls might provide a positive answer to Open Problem 2.

Yet another important question is

Open Problem 3 Prove or disprove in any dimension that for positive constants β and
0 < m < M, there exists a minimum of

{Iβ(D;�) : D ⊆ �, |D| = m, |�| ≤ M}.

Again, comparison with Capacitary problem and common sense suggest that the min-
imum is achieved when � and D are concentric balls. The fact that one can not
prescribe the exact volume of � but only an upper bound is due to the some counter-
intuitive behaviour of the functional Iβ(D;�) which is very peculiar and that can be
summarised in next two Propositions.

Proposition 5.1 Ifβ ≥ 1
R then Iβ,δ(BR) is decreasing in δ.Whenβ < 1

R then Iβ,δ(BR)

is increasing when δ ≤ 1
β

− R and decreasing when δ ≥ 1
β

− R (see also [15, Sect.
3.3.1–3.3.2]).

Proof If D = BR is a ball with radius R, then obviously � = BR + δB = BR+δ , and
the minimum of (3), v(x) = v(r), is

v(r) =

⎧⎪⎨
⎪⎩
1 − c2(β, δ) log

r

R
, if n = 2

1 − cn(β, δ)

(
1 − Rn−2

rn−2

)
if n > 2,

r ∈ [R, R + δ]

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2(β, δ) = β

1
R+δ

+ β log R+δ
R

,

cn(β, δ) = β

(n − 2) Rn−2

(R+δ)n−1 + β
(
1 − Rn−2

(R+δ)n−2

) (n > 2).

In particular, if n = 2, computing the heat dispersion Iβ,δ(BR), we have

Iβ,δ(BR) =
∫

∂BR

∂u

∂ν
dH1 = 2πc2(β, δ).
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756 F. Della Pietra et al.

We recall that ν is the outer normal to BR+δ\B̄R .
Let us observe that

Iβ,δ(BR)
∣∣
β=0 = 0, Iβ,δ(BR)

∣∣
β=+∞ = 2π

log
(
1 + δ

R

) .

We have

∂δ [c2(β, δ)]

[
1

R + δ
+ β log

R + δ

R

]
= c2(β, δ)β

(R + δ)2

(
1

β
− R − δ

)

that is

∂δ

[
Iβ,δ(BR)

]
< 0 ⇐⇒ δ >

1

β
− R.

��
Therefore in the regime β “small”, insulation increases the heat dispersion if the

insulator thickness is below a certain threshold value. A more careful analysis brings
to a sharper result.

Proposition 5.2 Let D = BR(0) and β < 2
R . Then there exists a positive constant δ0

such that for any bounded domain �, with D ⊂ � and |�| − |D| < δ0, then

Iβ(BR;�) > Iβ(BR; BR).

To prove this result, we first need the subsequent Lemma 5.1. We introduce first the
following notation.

Let D = BR ⊂ �, and denote by

P = P(BR) = nωn R
n−1, V = |BR |

= ωn R
n, �P = P(�) − P(BR), �V = |�| − |BR |.

We first need the following Lemma.

Lemma 5.1 Let be D = BR, and BR ⊂ �. For any δ0 > 0, there exists a constant

C = nωn Rn−1

δ0

[(
1 + δ0

ωn Rn

)1− 1
n − 1

]
(17)

such that if �V ≤ δ0 it holds that

�P ≥ C�V .
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An optimal insulation problem 757

Proof By the isoperimetric inequality it holds that

n
n

n−1 ω
1

n−1
n = P

n
n−1

V
≤ (P + �P)

n
n−1

V + �V
.

Hence

�P ≥ nω
1
n
n

(
ωn R

n + �V
)1− 1

n − nωn R
n−1

and then, if �V ≤ δ0, we have that

�P

�V
≥ nωn Rn−1

�V

[(
1 + �V

ωn Rn

)1− 1
n − 1

]
≥ C,

where C is the constant in (17), and this complete the proof. ��
Proof of Theorem 5.2 Let u be the minimizer of Iβ(BR;�). Let us consider

� = �\BR, �m = ∂�\∂BR, �t = ∂{u > t}\∂BR, �1 = ∂BR ∩ �,

and

p(t) = P({u > t} ∩ �), for a.e. t > 0.

We want to show that

Iβ(BR; BR) = βP(BR) < Iβ(BR;�) =
∫

�

|∇u|2dx + β

∫
∂�

u2dHn−1,

or equivalently

Hn−1(�1) <
1

β

∫
�

|∇u|2dx +
∫

�0

u2dHn−1, (18)

Then, using coarea formula and Fubini theorem we have

∫ 1

0
tp(t)dt =

∫ 1

0
tHn−1(�1)dt +

∫ 1

0
tHn−1(�t ∩ �)dt +

∫ 1

0
tHn−1(�t ∩ ∂�)dt

= Hn−1(�1)

2
+

∫
�

u|∇u| dx + 1

2

∫
�0

u2 dHn−1. (19)

By Lemma 5.1 it holds that if fixed δ0 > 0, if |�| < δ0 then

p(t) − 2Hn−1(�1) ≥ Cμ(t),
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where C is the constant given in (17). Hence, substituting in (19) we get

Hn−1(�1) + C

2

∫
�

u2dx ≤ Hn−1(�1)

2
+

∫
�

u|∇u| dx + 1

2

∫
�0

u2 dHn−1.

On the other hand,

∫
�

u|∇u|dx ≤ 1

2ε

∫
�

u2dx + ε

2

∫
�

|∇u|2dx .

Choosing ε = 1
β
it holds that

Hn−1(�1) + (C − β)

∫
�

u2dx ≤ 1

β

∫
�

|∇u|2dx +
∫

�0

u2 dHn−1. (20)

Therefore, being R < 1
β
, for δ0 sufficiently small the constant C is larger than β.

Hence the inequality (20) implies (18).
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