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Abstract
LetR(C) be the function field of a smooth, irreducible projective curve overR. Let X
be a smooth, projective, geometrically irreducible variety equipped with a dominant
morphism f onto a smooth projective rational variety with a smooth generic fibre over
R(C). Assume that the cohomological obstruction introduced by Colliot-Thélène is
the only one to the local-global principle for rational points for the smooth fibres of f
over R(C)-valued points. Then we show that the same holds for X , too, by adopting
the fibration method similarly to Harpaz–Wittenberg.

Mathematics Subject Classification 14G05 · 14P05

1 Introduction

LetC be a smooth, geometrically irreducible projective curve overR. LetR(C) denote
the function field of C , and for every x ∈ C(R) let R(C)x be the completion of R(C)

with respect to the valuation furnished by x . Now let V be a class of geometrically
irreducible projective varieties over R(C). We say that V satisfies the local-global
principle for rational points if for every X in V the following holds:

∏

x∈C(R)

X(R(C)x ) �= ∅ implies that X(R(C)) �= ∅.

There are classes of varieties when this local-global principle holds:
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994 A. Pál, E. Szabó

Theorem 1.1 (Witt) The local-global principle for rational points holds for smooth
quadric hypersurfaces of dimension at least one over R(C).

Proof See [15,16]. ��
There is an even more general result due to Scheiderer:

Theorem 1.2 (Scheiderer) The local-global principle for rational points holds for
smooth compactifications of homogeneous spaces over connected linear groups over
R(C).

Proof See [14]. ��
However similarly to varieties over number fields, there are some reasonably simple

counter-examples to this local-global principle. The following counterexample is due
to Racinet: let C = P

1
R
and letU be the affine surface over R(C) = R(t) given by the

following equation:

a2 + b2 = (c2 + t)(tc2 + c − 1)

in the variables a, b and c, and let X be a smooth projective model of U . Then
X(R(X)x ) is non-empty for every x ∈ C(R), but X(R(C)) is empty. The failure
of the local-global principle for this X was explained using a simple obstruction, anal-
ogous to the Brauer–Manin obstruction in the number field case, by Colliot-Thélène
in [3] around 20years ago, using unramified cohomology groups. He constructed a
subset

⎛

⎝
∏

x∈C(R)

X(R(C)x )

⎞

⎠
CT

⊆
∏

x∈C(R)

X(R(C)x )

which contains X(R(C)). We will review this construction in the next section. Later
Ducros has found a simple topological obstruction equivalent to this obstructionwhich
we will describe next. By resolution of singularities there is an integral, smooth,
projective varietyX equipped with a projective dominant morphism p : X → C over
R whose generic fibre is X → Spec(R(C)). Then we have:

Theorem 1.3 (Ducros) Let X be as above and assume that
∏

x∈C(R) X(R(C)x ) is non-

empty. Then
(∏

x∈C(R) X(R(C)x )
)CT

is non-empty if and only if there is a continuous
semi-algebraic section of p on C(R) whose image lies in the smooth locus of p.

Proof This is Théorème4.3 of [7] on page 86. ��
Let again V be a class of geometrically irreducible projective varieties over R(C).

We say that for V the CT obstruction is the only one to the local-global principle for
rational points if for every X in V the following holds:

⎛

⎝
∏

x∈C(R)

X(R(C)x )

⎞

⎠
CT

�= ∅ implies that X(R(C)) �= ∅.
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The fibration method over real function fields 995

Ducros produced a class of geometrically rational smooth projective surfaces over
the rational function field R(t) for which the local-global principle might fail, in fact
Racinet’s example belongs to this class, but the CT obstruction is the only one to the
local-global principle for rational points:

Theorem 1.4 (Ducros)TheCT obstruction is the only one to the local-global principle
for rational points for smooth projective varieties over R(C) which are fibrations in
Brauer–Severi varieties over P1

R(C)
.

Proof The special case of conic fibrations is proved in [7]. The general case is proved
in [8]. ��

The main result of this article, Theorem 5.3, implies the following generalisation
of the theorem above:

Theorem 1.5 Let f : X → Y be a dominant morphism between smooth, proper,
geometrically irreducible varieties over R(C) with a geometrically irreducible and
smooth generic fibre, and assume that Y is rational. If the CT obstruction is the only
one to the local-global principle for rational points for the smooth fibres of f over all
but finitely many R(C)-valued points, then the same holds for X , too.

Clearly Theorem 1.4 is a consequence of this result by Theorem 1.1. The result
also implies that the CT obstruction is the only one to the local-global principle for
rational points for X when the generic fibre of f is the smooth compactification of a
homogeneous space by a connected linear algebraic group by Theorem 1.2. We will
actually prove a stronger claim incorporating weak approximation (see Theorem5.3).

Remark 1.6 The reader might wonder why we only consider real points in the formu-
lation of the local-global principle. Note that our main interest is the case of rationally
connected varieties (see Conjecture 2.6 below), when by the Graber–Harris–Starr the-
orem (see [10]) we have a rational point over the completion of R(X) with respect to
every complex point of C . So we do not get additional restrictions by considering all
closed points of C . However this is not true in general, genus one curves give easy
counterexamples.

Remark 1.7 It is natural to ask if this result can be applied inductively. The way we
formulate our main result does not lend itself naturally to iteration, since having a
rational point does not guarantee X is rational itself. However see [1], which became
available after our preprint appeared, where a similar idea is pursued.

Contents 1.8 In the next section we will recall the notion of unramified cohomology
and the definition of Colliot-Thélène’s obstruction, then we will show a useful lemma
on the birational invariance of this obstruction. Then we review the work of Ducros on
the topological reinterpretation of the cohomological obstruction in the third section. In
the fourth section we prove a refined version of the Stone–Weierstrass approximation
theorem, which also incorporates interpolation. In the fifth section we formulate a
stronger form of ourmain result, Theorem 5.3, and reduce the general case to fibrations
over the projective line.We use arguments inspired by the work of Harpaz–Wittenberg
in [11] to prove Theorem 5.3 in the sixth section, using the approximation theorem
from the fourth section as a crucial ingredient.

123



996 A. Pál, E. Szabó

2 The local-global principle and Colliot-Thélène’s obstruction

Definition 2.1 Let X be a smooth, irreducible projective variety defined over a field
F . Let F(X) and X(d) denote the function field of X and the set of points of X of
codimension d, respectively. For every x ∈ X(1) letOX ,x and F(x) denote the discrete
valuation ring in F(X) corresponding to x and the residue field ofOX ,x , respectively.
Assume that char(F) �= 2. For the sake of simplicity letZ/2 denote the group of order
two. We will also denote by the same symbol the constant étale sheaf of order 2 over
any scheme. The unramified cohomology group Hi

nr (F(X)/F,Z/2) of X over F is
by definition (see section1.1 of [5] on page 6):

Hi
nr (F(X)/F,Z/2) = Ker

(
Hi
èt(F(X),Z/2)

⊕x∈X(1)∂x−−−−−−→ ⊕
x∈X(1) H

i−1
èt (F(x),Z/2)

)

where

∂x : Hi
èt(F(X),Z/2) −→ Hi−1

èt (F(x),Z/2)

is the residue map associated to the discrete valuation ring OX ,x .

Next we need some basic facts about the Galois cohomology of function fields of
real algebraic curves, and some form of a residue theorem for them.

Definition 2.2 Let C be a smooth, geometrically irreducible projective curve over R.
Let R(C) denote the function field of C , as above, and for every x ∈ C(R) let R(C)x
be the completion ofR(C) with respect to the valuation furnished by x . Then we have
a residue map

∂x : Hi
èt(R(C)x ,Z/2) −→ Hi−1

èt (R,Z/2)

as the residue field R(x) of R(C)x is R. Note that as a graded algebra:

H∗
èt(R,Z/2) ∼= Z/2[t],

where t is the generator of the group H1
èt(R,Z/2) of order two. In particular we have a

canonical isomorphism Hi
èt(R,Z/2) ∼= Z/2. So the residue map is a homomorphism:

∂x : Hi
èt(R(C)x ,Z/2) −→ Z/2.

By slight abuse of notation let ∂x denote also the composition of the pull-back

Hi
èt(R(C),Z/2) −→ Hi

èt(R(C)x ,Z/2)

and this residue map.

The residue theorem, also called the reciprocity law, is the following
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The fibration method over real function fields 997

Proposition 2.3 Let V ⊆ C(R) be a connected component, let i be at least 2, and let
h ∈ Hi

èt(R(C),Z/2). Then

∑

x∈V
∂x (h) = 0.��

Remark 2.4 It is easy to see that all but finitely many terms of the sum above are zero,
so the left hand side is well-defined. For a proof of this fact, and the proposition, see
for example Proposition 3.7 of [3] on pages 157–158.

For the sake of simple notation letAC denote the direct product
∏

x∈C(R) R(C)x . It
is an algebra overR(C). Now let X be a smooth, irreducible projective variety defined
over R(C). Clearly

X(AC ) =
∏

x∈C(R)

X(R(C)x ).

Now we are ready to define Colliot-Thélène’s obstruction.

Definition 2.5 Consider the set

X(AC )CT ⊆ X(AC ),

whose elements

∏

x∈C(R)

Mx ∈
⎛

⎝
∏

x∈C(R)

X(R(C)x )

⎞

⎠
CT

are subject to the following condition:

∑

x∈V
∂x (M

∗
x (h)) = 0

for every h ∈ Hdim(X)+2
nr (R(C)(X)/R(C),Z/2) and for every V ⊆ C(R) connected

component, where

M∗
x : Hi

nr (R(C)(X)/R(C),Z/2) → Hi
èt(R(C)x ,Z/2)

is the pull-back with respect to the map Mx . Note that all but finitely many terms of the
sum above are zero, so the left hand side is well-defined, and the image of X(R(C))

in X(AC ) under the diagonal embedding is in X(AC )CT by Proposition 2.3 above.
One may justify the usage of the more mysterious group Hi

nr (R(C)(X)/R(C),Z/2)
instead of Hi

èt(X ,Z/2) as follows: for proper varieties having a smooth rational point
is a birationally invariant property, so the obstruction should also have birational
invariance. This holds for the former group, but not the latter.
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998 A. Pál, E. Szabó

Now that we made explicit what we mean by the CT obstruction, we can make
the following bold conjecture, which is motivated by theorems of Witt, Scheiderer
and Ducros mentioned in the introduction, and in analogy with Colliot-Thélène’s
celebrated conjecture (see [4]) saying that the Brauer–Manin obstruction is the only
one to the local-global principle for rational points for smooth projective rationally
connected varieties over number fields:

Conjecture 2.6 The CT obstruction is the only one to the local-global principle for
rational points for smooth projective rationally connected varieties over R(C).

All known classes of varieties for which CT obstruction is the only one to the
local-global principle for rational points are rationally connected. Our main result
Theorem 1.5 is a contribution to this conjecture.

We finish this section with a lemma which will be used in the proof of Theorem 5.3.
Let f : X → Y be a morphism between smooth, projective, irreducible varieties over
R(C). The morphism f induces a map X(R(C)x ) → Y (R(C)x ) for every x ∈ C(R),
which in turn induces a map X(AC ) → Y (AC ), which we will denote also by f by
slight abuse of notation.

Lemma 2.7 Assume that f : X → Y is birational and let M ∈ X(AC ). Then

M ∈ X(AC )CT if and only if f (M) ∈ Y (AC )CT .

Proof Let d be the common dimension of X and Y . By assumption the pull-back
with respect to f induces an isomorphism R(C)(Y ) → R(C)(X) and hence an
isomorphism f ∗ : Hd+2

èt (R(C)(Y ),Z/2) → Hd+2
èt (R(C)(X),Z/2). Under this

isomorphism the subgroup Hd+2
nr (R(C)(Y )/R(C),Z/2) maps isomorphically onto

Hd+2
nr (R(C)(X)/R(C),Z/2). Write M as

M =
∏

x∈C(R)

Mx

and let h ∈ Hd+2
nr (R(C)(Y )/R(C),Z/2) be arbitrary. Then

M∗
x ( f

∗(h)) = f (Mx )
∗(h)

for every x ∈ C(R) by naturality, so

∑

x∈V
∂x (M

∗
x ( f

∗(h))) = 0 if and only if
∑

x∈V
∂x ( f (Mx )

∗(h)) = 0

for every connected component V ⊆ C(R). The claim is now clear. ��

3 The topological reinterpretation of the obstruction due to Ducros

Notation 3.1 By resolution of singularities there is an integral, smooth, projective
variety X equipped with a projective dominant morphism p : X → C over R whose
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The fibration method over real function fields 999

generic fibre is X → Spec(R(C)). As usual we will call X a model of X over C . For
every closed point x of C let Ox be the valuation ring of R(C)x , let Xx denote the
fibre of p over x , let Xsm ⊆ X be the smooth locus of p, and let Xx,sm = Xsm ∩ Xx

be the smooth locus of Xx .

Definition 3.2 Equip each connected component of C(R) with an orientation. For
every pair of points x, y ∈ C(R) lying on the same connected component V ⊆ C(R)

the interval ]xy[ is the set of points of V which lies to the right of x and lies to the
left of y with respect to the chosen orientation. We also set [xy] to be the union of
]xy[ and the points x, y. Now let P ∈ Xx,sm(R), Q ∈ Xy,sm(R) and let X ′

x,y ⊆ Xsm

denote the open subscheme which is the complement of the union ofXx,sm andXy,sm .
We say that a connected component V of X ′

x,y(R) touches P on the right and Q on
the left if the image of V under p is ]xy[, and both P and Q lie in the closure of V .

Definition 3.3 For every map f : A → B of schemes over R let f (R) : A(R) →
B(R) denote the map induced by f on R-valued points. Let σ be a set-theoretical
section of themap p(R) : X (R) → C(R).We say that themap σ is weakly continuous
if for every x ∈ C(R) the point σ(x) lies in Xx,sm(R) and if the following holds: let x
and y be two different R-valued points of C lying in the same connected component
of C(R). Then there is a semialgebraic connected component V of X ′

x,y(R) touching
σ(x) on the left and σ(y) on the right such that for every z ∈]xy[ the point σ(z) lies
in V .

This terminology is justified by the fact that every continuous section C(R) →
Xsm(R) is indeed weakly continuous. The converse is not true, because we have the
following

Proposition 3.4 Let σ be a weakly continuous section of p(R). Let σ ′ be another set-
theoretical section of p(R) such that for every x ∈ C(R) the points σ(x) and σ ′(x)
are in the same connected component ofXx,sm(R). Then σ ′ is also weakly continuous.

Proof This is Proposition 3.3 of [7] on page 82. ��
Notation 3.5 By the valuative criterion of properness there is a bijection between the
set of sections of the fibre product X ×C Spec(Ox ) → Spec(Ox ) and the set of
R(C)x -valued points of X . Given an

M =
∏

x∈C(R)

Mx ∈
∏

x∈C(R)

X(R(C)x )

let mx be the special fibre of the section Spec(Ox ) → X ×C Spec(Ox ) associated to
Mx for every x ∈ C(R). Since X is regular, the point mx lies in Xx,sm(R). Whenever
convenient, we will denote the map x �→ mx on C(R) by σ(M).

The topological reformulation of the CT obstruction due to Ducros is the following

Theorem 3.6 (Ducros) The following are equivalent:
(i) we have M ∈ X(AC )CT ,
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1000 A. Pál, E. Szabó

(ii) the map x �→ mx on C(R) is weakly continuous.

Proof This is Théorème3.5 of [7] on page 83. ��
Proposition 3.7 Let σ be a weakly continuous section of p(R). Then there is a contin-
uous semi-algebraic section σ ′ of p(R) such that for every x ∈ C(R) the points σ(x)
and σ ′(x) are in the same connected component of Xx,sm(R).

Remark 3.8 Note that Theorem 1.3 is an immediate corollary of this proposition.

Proof of Proposition 3.7 This is essentially Proposition 4.1 of [7] on page 85, but there
it is stated in aweaker form.However the proof actually shows the stronger form above.
Wewill give an even stronger version incorporating interpolation, see Proposition 3.19
below, using essentially the same methods. ��
Definition 3.9 Let B be a smooth variety over R. For every closed point x of B let
I(x) ⊂ OB be the corresponding ideal sheaf. For every effective zero cycle S =∑

nx x on B the zero-dimensional closed subscheme of B defined by S is the zero
scheme of the ideal sheaf IS = ∏ I(x)nx ⊂ OB . By slight abuse of notation we
will let the symbol S denote this closed subscheme, too. When B is a curve this
construction furnishes a bijective correspondence between the set of zero-dimensional
closed subschemes of B whose closed points are all real and the set of effective zero
cycles on B which are supported on B(R). In this case we will identify these two sets
in all that follow.

Definition 3.10 Let f : A → B be amap of smooth varieties overR. An interpolation
condition (for the map f ) is a section φ : S → A ×B S (of the base change of f ),
defined over R, where S is a zero-dimensional closed subscheme of B defined by an
effective zero cycle supported on B(R). We say that φ is of order ≤ k, where k is a
positive integer, if the coefficient of every point in the effective zero cycle defining S
is at most k + 1. We say that an interpolation condition φ̃ : S̃ → A ×B S̃ subsumes
the interpolation condition φ : S → A ×B S if S is a closed subscheme of S̃ and the
pull-back of φ̃ with respect to the closed immersion S ↪→ S̃ is φ. We say that a set-
theoretical section σ of the map f (R) : A(R) → B(R) and an interpolation condition
φ : S → A×B S areweakly compatiblewith each other if for every x ∈ S(R)we have
σ(x) = φ(x). We say that a section σ : B → A of f and an interpolation condition
φ : S → A ×B S are compatible with each other if the composition of the closed
immersion S ↪→ B and σ is φ.

Definition 3.11 As usual, we say that a function f : M → N between two smooth
manifolds is a Ck-map if it is k-times continuously differentiable. For every M, N as
above and for every point p of M let Ckp(M, N ) denote the set of Ck-maps f : U → N
where U is some open neighbourhood of p in M . For every p ∈ R and for every
f ∈ Ckp(R,R) the k-jet of f at the point x0 is defined to be the polynomial

(J kp f )(z) = f (p) + f ′(p)z + · · · + f (k)(p)

k! zk .
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The fibration method over real function fields 1001

We say that two maps f , g ∈ Ckp(M, N ) are k-equivalent at p if f (p) = g(p) and

for every pair of maps γ ∈ Ck0(R, M) and φ ∈ Ckf (p)(M,R) such that γ (0) = p, we

have J k0 (φ ◦ f ◦ γ ) = J k0 (φ ◦ g ◦ γ ).

Definition 3.12 Now let f : A → B be as in Definition 3.10. Then f (R) : A(R) →
B(R) is a morphism of Nash manifolds. Now let S = ∑

nx x be an effective zero
cycle on B supported on B(R), and let φ : S → A×B S be an interpolation condition
of order ≤ k. Let U ⊂ B be an open, affine subvariety such that there is a section
φ̃ : U → A ×B U compatible with φ. We say that a Ck-section σ : B(R) → A(R)

of f (R) and φ are compatible with each other if σ and φ̃ are (nx − 1)-equivalent at x
for every x ∈ B(R) in the support of S. Since the notion introduced in Definition 3.11
is indeed an equivalence relation, this notion of compatibility is independent of the
choice of φ̃, and so it is well-defined.

Remarks 3.13 A section σ : B → A and an interpolation condition φ : S → A ×B S
are compatible in the sense ofDefinition 3.10 if and only if the underlyingNash section
σ(R) : B(R) → A(R) and φ are compatible in the sense of Definition 3.12. Therefore
the latter is a generalisation of the former. If a section σ : B → A and an interpolation
condition φ : S → A ×B S are compatible then σ(R) : B(R) → A(R) and φ are
weakly compatible. In particular this terminology is justified. Finally note that when
A = B × D for some smooth variety D over R and f : A → B is the projection onto
the first factor, sections of f are in a natural bijection correspondence with morphisms
A → D of schemes over R. Similarly an interpolation condition φ : S → A ×B S is
the same data as a morphism S → D of schemes over R, while Ck-sections of f (R)

can be identified with Ck-maps A(R) → D(R). Therefore we will freely apply the
concepts of Definitions3.10 and 3.12 to such functions in all that follows.

Proposition 3.14 Let σ be a weakly continuous section of p(R) and let φ : S →
X ×C S be an interpolation condition of order ≤ k weakly compatible with σ . Then
there is a Ck-section σ ′ of p(R) such that for every x ∈ C(R) the points σ(x) and
σ ′(x) are in the same connected component of Xx,sm(R) and σ ′ is compatible with φ.

Proof Note that the fibre of p(R) over x is a Nash manifold for all but finitely many
x ∈ C(R). So by the Nash version of the stratification theorem (see Theorem A of
[6] on page 349) there is a finite subset P of C(R), and for every semi-algebraic
connected component U of C(R) − P a Nash manifold FU such that p(R)−1(U ) is
Nash-isomorphic to FU ×U and the restriction of p(R) onto p(R)−1(U ) is, modulo
the given isomorphism, is the projection onto the second coordinate. By the nature of
our construction for every point P in C(R) − P the fibre XP is smooth. By adding
finitely many points to the set P , if it is necessary, we may assume that P has at least
two points in each semi-algebraic connected component of C(R). Similarly we may
assume that P contains every closed point of S without loss of generality.

Set S̃ = (k + 1)
∑

P∈P P and let the same symbol denote the unique closed
subscheme defined by this zero cycle. Since there is an interpolation condition φ̃ :
S̃ → X ×C S̃ which subsumes φ, we may assume without loss of generality that the
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1002 A. Pál, E. Szabó

zero cycle defined by S is indeed (k + 1)
∑

P∈P P . Write S as a coproduct:

S =
∐

P∈P
SP ,

where SP is a closed subscheme of S supported on P for each P ∈ P (possibly
empty). For every such P let φP : SP → X ×C SP be the interpolation condition
which is the pull-back of φ with respect to the closed imbedding SP ↪→ S. Let P, Q
be a pair of consecutive points of P . Since σ(P) and σ(Q) lie in the smooth locus of
p, by the implicit function theorem there are two points P ′, Q′ in the open interval
]PQ[ such that P ′ lies before Q′, and p(R) has a C∞-section σP (resp. σQ) defined
over some open neighbourhood of [PP ′] (resp. of [Q′Q]) such that σP (P) = σ(P)

(resp. σQ(Q) = σ(Q)), and σP is compatible with φP (resp. σQ is compatible with
φQ). Since σ is weakly continuous, there is a semi-algebraic connected component
VP,Q of p(R)−1(]PQ[) which touches P on the right and Q on the left. Clearly
σP (P ′) and σQ(Q′) lie in VP,Q .

On the other hand, because of the way the set P was constructed, the restriction of
p(R) onto p(R)−1(]PQ[) is a projection, up to a Nash isomorphism. Therefore there
is a C∞-section σP,Q of p(R) defined over some open neighbourhood of [P ′Q′] such
that σP,Q and σP are k-equivalent at P ′, and similarly σP,Q and σQ are k-equivalent
at Q′. Therefore the concatenation of σP , σP,Q and σQ (restricted to [PP ′], [P ′Q′]
and [Q′Q], respectively) is a Ck-section σ̂P,Q of p(R) defined over [PQ] such that
σ̂P,Q(P) = σ(P) and σ̂P,Q(Q) = σ(Q).

Now let P, Q, R be three consecutive points ofP (where P = R is allowed). Since
both σ̂P,Q and σ̂Q,R have extensions to an open neighbourhood of their definitions
which are compatible with φQ , we get that their concatenation is Ck at Q. We get that
the concatenation of the different sections σ̂P,Q for all couples P, Q of consecutive
points of P is a Ck-section σ̂ of p(R) defined over all of C(R) such that for each point
x ∈ C(R) the point σ̂ (x) lies in the same connected component of Xx,sm(R) as σ(x),
and σ̂ is compatible with φ. ��

We will need a variant of the claim above with Nash sections, since for technical
reasons it will be more convenient to work with the latter in the next section. In order
to do so we will show two interpolation lemmas first.

Lemma 3.15 Let V ⊆ A
n
R
be a non-singular closed affine subvariety such that V (R) is

compact. Let φ : Y → A
m
R
be an interpolation condition for some subscheme Y ⊆ V .

Then every C∞-function g : V (R) → R
m compatible with φ can be approximated in

the C∞-topology by regular functions V → A
m
R
compatible with φ.

Proof Let π j : A
m
R

→ A
1
R
be the projection onto the j-th coordinate, where j =

1, 2, . . . ,m. It will be sufficient to show the claim for φ j = π j ◦φ and g j = π j ◦g for
each j . In other words we may assume that m = 1 without loss of generality. Since V
is affine there is a regular map ψ : V → A

1
R
compatible with φ. By replacing g with

g − ψ we may assume without loss of generality that φ is the zero map. In this form
the claim is a mild variant of Lemma 12.5.5 of [2] on page 321. We include the proof
for the reader’s convenience. Let h1, h2, . . . , hn be the generators of the defining ideal
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of Y . Since V is non-singular, we can represent the germ of g at a point x ∈ V in the
form gx = λ1,xh1 + · · · + λn,xhn , where the λi,x are the germs of C∞-functions at x .
Using a partition of unity and the compactness of V (R), this allows us to represent g
globally as g = λ1h1 + · · · + λnhn , where λi ∈ C∞(V (R)). Then it suffices to apply
Nachbin’s version of the Stone–Weierstrass theorem to the functions λi (see [13]). ��
Definition 3.16 Let V be a nonsingular variety over R, and let W ⊂ A

m(R) = R
m

be a Nash manifold. An interpolation condition φ : S → W for some subscheme
S ⊂ V of the type considered above is an interpolation condition φ : S → A

m which
is compatible with some smooth functionU → W , whereU is a neighborhood of the
support of S in V (R).

Lemma 3.17 Let V ⊆ A
n
R
be a non-singular closed affine subvariety such that V (R)

is compact, and let W ⊂ R
m be a compact Nash submanifold. Let φ : Y → W be

an interpolation condition of order ≤ k for some subscheme Y ⊆ V . Then every C∞-
function g : V (R) → W compatible with φ can be approximated in the C∞-topology
by Nash functions V (R) → W compatible with φ.

Proof (Compare with Corollary 8.9.7 of [2] on page 200.) By the Nash version of the
tubular neighbourhood theorem (see Corollary 8.9.5 of [2] on page 199) there is an
open semi-algebraic neighbourhoodU ofW inRm and a Nash retraction ρ : U → W .
Since for C∞-functions h : V (R) → R

m the condition of having image in U is open
for the C1-topology, by Lemma 3.15 above any given function g : V (R) → W
compatible with φ can be approximated in the C∞-topology by a sequence gn of Nash
functions V (R) → U compatible with ι ◦ φ, where ι : W → U is the inclusion map.
The compositions ρ ◦ gn are Nash functions V (R) → W compatible with φ. Since
W is compact, each derivative of ρ is bounded in some fixed ε-neighbourhood of W ,
and hence sequence ρ ◦ gn approximates g in the C∞-topology. ��
Remark 3.18 Note that for every pair of conjugate point P, P ∈ C(C) − C(R) the
complement C ′ = C − P − P is an affine curve, and C ′(R) = C(R), so this set
is compact. Therefore we may apply Lemmas 3.15 and 3.17 to C ′. In particular the
conclusion of Lemma 3.17 holds for C , too.

Proposition 3.19 Let σ be a weakly continuous section of p(R) and let φ : S →
X ×C S be an interpolation condition weakly compatible with σ . Then there is a Nash
section σ ′ of p(R) such that for every x ∈ C(R) the points σ(x) and σ ′(x) are in the
same connected component of Xx,sm(R) and σ ′ is compatible with φ.

Proof We may assume that φ is an interpolation condition of order ≤ k, where k
is a positive integer. By Lemma 3.14 there is a Ck-section σ̃ of p(R) such that for
every x ∈ C(R) the points σ(x) and σ̃ (x) are in the same connected component of
Xx,sm(R) and σ̃ is compatible with φ. By the usual approximation theorems in theory
of smooth manifolds the section σ̃ can be arbitrarily well approximated by C∞-maps
s : C(R) → Xsm(R) which are compatible with φ.

Note that if such an s is sufficiently close to σ̃ in the C1-topology then p(R) ◦ s is
a diffeomorphism and its inverse is very close to the identity map of C(R). Therefore
s ◦ (p(R)◦ s)−1 is a C∞-section of p(R)which can be arbitrarily close to σ̃ . Also note
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1004 A. Pál, E. Szabó

that (p(R) ◦ s)−1, if it exists, is Nash if s is. For any smooth section σ ′ : C(R) →
Xsm(R) sufficiently close to σ̃ in the C0-topology and for every x ∈ C(R) the points
σ̃ (x) and σ ′(x) are in the same connected component of Xx,sm(R), and hence the
same holds for σ(x) and σ ′(x). The claim now follows at once from Lemma 3.17, as
we explained in Remark 3.18. ��

We finish this section with a convenient condition for weak continuity.

Definition 3.20 We say that a set-theoretical section σ of the map p(R) is mildly
continuous at x ∈ C(R) if σ(x) lies in Xx,sm(R) and the intersection of the closure of
the image of σ with Xx (R) lies in the connected component of Xx,sm(R) containing
σ(x). Note that σ is mildly continuous at x ∈ C(R) if it is continuous there, since
in the latter case the image of σ is closed, and its intersection with Xx (R) is σ(x).
Therefore the terminology is justified.

Proposition 3.21 Letσ be a semi-algebraic section of p(R)which ismildly continuous
at every x ∈ C(R). Then σ is weakly continuous.

Proof Let x and y be two arbitrary different R-valued points of C lying in the same
connected component of C(R). We will need the following ��
Lemma 3.22 Let V be a semi-algebraic connected component ofX ′

x,y(R) and let V be

its closure in X (R). Then the intersection V ∩Xx,sm(R) (respectively V ∩Xy,sm(R))

is the union of connected components of Xx,sm(R) (respectively of Xy,sm(R)).

Proof We may assume without loss of generality that V lies in p(R)−1(]xy[); other-
wise we only need to reverse the roles of x and y. It is also enough to prove the claim
for the fibre above x ; the proof for the fibre above y is similar. Since V is closed,
the intersection V ∩ Xx,sm(R) is closed in Xx,sm(R). Therefore it will be enough to
show that it is also open inXx,sm(R). Let n be the relative dimension ofX over C and
let z ∈ V ∩ Xx,sm(R) be arbitrary. By the implicit function theorem there is a small
connected open neighbourhood I ⊂ C(R) of x , a connected open set O ⊂ R

n , an
open neighbourhood U ⊂ Xsm(R) of z, and a diffeomorphism φ : I × O → U such
that the composition p(R) ◦ φ is the projection I × O → I onto the first factor.

Let J ⊂ I be the set of points in I lying to the right of x . By shrinking I , if it is
necessary, we may assume that J = I∩]xy[. By assumption

φ(J × O) ∩ V = φ(I × O) ∩ p(R)−1(]xy[) ∩ V = φ(I × O) ∩ V = U ∩ V

is non-empty. Since both J and O are connected, the product J ×O is also connected,
and hence φ(J × O) is connected, too. Moreover φ(J × O) lies in p(R)−1(]xy[),
so the connected component V must contain it. Therefore V contains the closure of
φ(J × O), which contains φ({x} × O). The latter is an open neighbourhood of z in
Xx,sm(R). ��

Since σ is semi-algebraic, it is continuous at all but finitely many points of C(R).
Therefore there is a finite sequence of points z1, z2, . . . , zn ∈ [xy] such that σ is
continuous at every z ∈]xy[ not on this list. We may even assume that z1 = x , zn = y,

123
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and zi lies to the left of z j for every pair of indices i < j . For every i = 1, 2, . . . , n
let Ei denote the connected component of Xzi ,sm(R) containing σ(zi ) and for every
i = 1, 2, . . . , n − 1 let Ji denote the closure of the image of ]zi zi+1[ with respect to
σ .

Since the restriction of σ onto ]zi zi+1[ is continuous for every index i < n, the
image of ]zi zi+1[with respect to σ is connected, and hence its closure Ji is connected,
too. Since Ji is also compact, its image under p(R) is the closure [zi zi+1] of ]zi zi+1[.
Therefore Ji ∩ Xzi (R) is non-empty. By our assumptions the latter intersection lies in
Ei , hence Ji ∩ Ei is non-empty, too. A similar argument shows that Ji ∩ Ei+1 is also
non-empty. Therefore the set

L = p(R)−1(]xy[) ∩
(
n−1⋃

i=1

Ji ∪
n−1⋃

i=2

Ei

)

is connected. Let V be the unique semi-algebraic connected component of X ′
x,y(R)

containing L and let V be its closure in X (R). Since

V ∩ Ez1 ⊇ J1 ∩ Ez1 �= ∅,

by Lemma 3.22 the intersection V ∩Xx,sm(R) contains Ez1 , and hence σ(x). We may
argue similarly to deduce that V ∩Xy,sm(R) contains σ(y). In other words V touches
σ(x) on the right and σ(y) on the left. Since x and y are arbitrary, we get that σ is
weakly continuous. ��

4 The Stone–Weierstrass approximation theoremwith interpolation

Definition 4.1 Let π : C × P
1(R) = C(R) × P

1(R) → C(R) denote the projection
onto the first factor. Let R ⊆ C(R)×P

1(R) be a semi-algebraic subset. We say that R
is admissible if it is the union of an open semi-algebraic set and finitely many points.
The kissing points of an admissible semi-algebraic set R as above are all points of R
which are not in the interior of R. We say that R does not have topological obstruction
if there is a Nash section s : C(R) → C × P

1(R) whose image lies in R.

The key result we need is an analogue of Conjecture9.1 in [11] which we will
formulate next. It is essentially a refined version of the classical the Stone–Weierstrass
approximation theorem with interpolation conditions.

Theorem 4.2 Let R ⊆ C(R)×P
1(R) be an admissible semi-algebraic subset, and for

some closed subscheme S ⊂ C letφ : S → (P1×C)×C S = P
1×S be an interpolation

condition such that there is a Nash section s : C(R) → C × P
1(R) compatible with

φ and whose image lies in R. Then there is a regular section f : C → C × P
1
R
of the

first projection compatible with φ such that f (C(R)) lies in R.

In particularwe get that if R ⊆ C(R)×P
1(R) is an admissible semi-algebraic subset

which does not have topological obstruction then there is a morphism f : C → P
1
R
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of schemes over R such that f (C(R)) lies in R. We are going to prove the theorem
above via a sequence of lemmas.

Lemma 4.3 For some closed subscheme Z ⊂ C let h : Z → P
1
R
be an interpolation

condition. Then there is a morphism f : C → P
1
R
of schemes over R such that f is

compatible with h and f has no poles on C(R) outside of Z.

Proof First assume that h is actually a map h : Z → A
1
R
. By our usual abuse of

notation let Z also denote the effective divisor defining this closed subscheme and let
d denote its degree. Choose an effective real divisor D onC which is supported outside
of C(R) and whose degree is bigger than 2g + d where g is the genus of C . Then
by the Riemann–Roch theorem we have dim H1(C,OC (D)) = 0, so the pull-back
induces a surjection:

H0(C,OC (D + Z)) −→ H0(Z ,OC (D + Z)|Z ).

Therefore there is a real rational function f on C compatible with h whose polar
divisor is a sub-divisor of D.

Now consider the general case. We may assume without loss of generality that Z
is non-empty. Since Z is a finite scheme over R there is an interpolation condition
h̃ : Z → A

2
R

− {0} such that the composition of h̃ and the projection A2
R

− {0} → P
1
R

given by the rule (a, b) �→ (a : b) is h. Let h̃1 : Z → A
1
R
and h̃2 : Z → A

1
R
denote

the first, respectively the second, coordinate of h̃. By the above there is a rational
function f2 on C compatible with h̃2. Let O be the zero divisor of f2. We can write
it as O = O1 + O2 + O3, where O1 is supported on the support of Z , the divisor
O2 is supported on the complement of the support of Z in C(R), and O3 is supported
outside of C(R). Now let

h1 : Z
∐

2O2 → A
1
R

be the unique map such that h1|Z is h̃1, and h1|2O2 is f2|2O2 . By the above there is a
rational function f1 on C compatible with h1 whose polar divisor is supported outside
of C(R). Since Z is non-empty, the functions f1, f2 are not both identically zero,
and hence there is a non-empty Zariski-open U ⊆ C such that the rule z �→ ( f1, f2)
furnishes a map f̃ : U → A

2
R

− {0}. The composition of f̃ and the projection
A
2
R

− {0} → P
1
R
extends uniquely to a morphism f : C → P

1
R
by the valuative

criterion of properness. By our choice of f1 and f2 it is clear that f is compatible with
h. It is also clear that on C(R) − Z the rational function f can only have poles on the
support of O2. However the zero divisors of f1 and f2 are equal on the support of O2,
in fact it is O2 in both cases, so f does not have a pole on the support of O2 either. ��
Lemma 4.4 Let A and B be smooth irreducible algebraic varieties over R, and let
f : A(R) → B(R) be a Nash map, and let Z ⊂ B be a closed subscheme of positive
codimension. Then the intersection of f −1(Z)(R) with each connected component
of A(R) is either a semi-algebraic subset of positive codimension, or the connected
component itself.
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Proof Let D ⊂ A(R) be a semi-algebraic connected component, and let D1 ⊂ D be
the collection of all points x ∈ D such that x has a semi-algebraic open neighbourhood
U ⊂ D such that the semi-algebraic set U ∩ f −1(Z) has dimension strictly less than
D. Clearly D1 is open (in the usual semi-algebraic topology). Set D2 = f −1(Z)−D1;
since f −1(Z) is closed, the set D2 is closed, too. It will be sufficient to show that D2
is also open. Clearly we only need to verify the latter Zariski-locally, that is, we may
assume without loss of generality that A is affine.

Now let x ∈ D2 be arbitrary; then there are a Zariski-open affine neighbourhood
V ⊂ B of f (x) and a finite set of regular maps g1, g2, . . . , gn from V to A

1
R
such

that Z ∩ V is the common zero locus of g1, g2, . . . , gn . Let U ⊂ f −1(V (R)) be a
connected semi-algebraic open neighbourhood of x in D. Then gi (R) ◦ f : U → R

is a Nash function for each index i , so by Proposition 8.1.10 of [2] on page 166 its
zero set Zi ⊂ U has either dimension strictly less thanU , or this set Zi is equal toU .
Since Zi contains f −1(Z)(R) ∩ U the former is not possible, so Zi = U for every
index i . This implies that f −1(Z)(R) ∩U also equal to U . ��
Lemma 4.5 In the proof of Theorem 4.2 we may assume that R ⊆ C(R) × A

1(R)

without loss of generality.

Proof By Lemma 4.4 for every connected component D ⊂ C(R) either s is constant
on D, or s takes every value only finitely many times on D. Therefore for all but
finitely many x ∈ P

1(R) the function s takes x only finitely many times on C(R),
and hence after applying an automorphism of P1 over R, if this is necessary, we may
assume that the set T of points t ∈ C(R) where s(t) = ∞ is finite without loss
of generality. We may even assume that φ does not take ∞ as a value. Since Nash
maps are analytic, there are an effective zero divisor Z with support on C(R) and an
interpolation condition h : Z → P

1
R
compatible with s such that for every Nash map

r : C(R) → P
1(R) compatible with h the limit

lim
x→t

(s(x) − r(x)) (4.5.1)

exists and finite for every t ∈ T . We may even assume that h subsumes φ without loss
of generality by choosing a Z such that Z − S is effective. By Lemma 4.3 there is a
morphism r : C → P

1
R
of schemes over R such that r is compatible with h and r has

no poles on C(R) outside of Z .
By our assumptions both s and r take values in R on C(R) − T , so their difference

s̃ = s − r is a Nash function C(R) − T → R. Since the limit (4.5.1) exists and finite
for every t ∈ T , this map s̃ extends uniquely to a continuous map C(R) → R which
we will also denote by s̃ by slight abuse of notation. The latter is also Nash and it is
compatiblewith a unique interpolation condition φ̃ : Z → A

1
R
. Let R̃ ⊆ C(R)×A

1(R)

be the union of the image of s̃ and the set

{(x, y) ∈ C(R) × A
1(R) | x /∈ T and (x, y + r(x)) ∈ R}.

The set R̃ is admissible, and it contains the image of s̃. So if we assume that the
claim of the theorem holds for R̃ then there is a map f̃ : C → P

1
R
of schemes over R
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compatiblewith φ̃ such that f̃ (C(R)) lies in R̃. The rational function f̃ +r : C ��� P
1
R

extends to a map f : C → P
1
R
which is compatible with φ and f (C(R)) lies in R. ��

Proposition 4.6 Let R ⊆ C ×A
1(R) be an admissible semi-algebraic subset, and let

s : C(R) → C × A
1(R) be a Nash section whose image lies in R. Then there are

an open neighbourhood U of s in the C∞-topology, a finite subscheme Y ⊂ C and
an interpolation condition ψ : Y → C × A

1
R
compatible with s with the following

property: for every C∞-section r : C(R) → C × A
1(R) which lies in U and is

compatible with ψ , the image of r lies in R.

Proof Let s2, r2 : C(R) → R denote the second coordinate functions of s and r . The
set of kissing points is Z = R \ R◦. Let T = π(Z) ⊂ C(R), and let V ⊂ C(R)

be an open neighborhood of T which is the union of disjoint open intervals. We fix
a real analytic imbedding V ↪→ (0, 1) ⊂ R, this induces a real analytic imbedding
of G = V × A

1(R) into the Euclidean plane. In particular, U and G inherit the
Euclidean metric. Let A = G \ R◦, it is a closed semi-algebraic set in G. Let K ⊂ V
be a compact neighborhood of T in V , and let S denote the maximum of

∣∣r2(t)
∣∣ for

t ∈ K . Let E ⊂ A denote the compact subset E = (
K × [−S − 1, S + 1]) \ R◦.

Consider the real analytic function

f : G = V × A
1(R) → R, f (t, a) = |a − s2(t)|2.

The zero set of f is s(V ), hence the zero set of the restriction f |A is just Z . By the
Łojasiewicz inequality (in the form of Corollaire to Théorème 1 of section 18 in [12])
applied to our f , G, A, E , and Z , there are d, N > 0 such that

∣∣ f (x)
∣∣ ≥ d · dist

(
x, Z

)N for all x ∈ E . (4.2)

Choose an integer M ≥ N/2, and set d̃ = min
(√

d, 1
)
. Then

∣∣a − s2(t)
∣∣ ≥ d̃ · dist

(
t, T )M whenever t ∈ K , (t, a) ∈ A. (4.3)

Indeed, the projection π is a contraction, and dist(t, T ) ≤ 1 since U was imbedded
into (0, 1). So (4.2) implies (4.3) for (t, a) ∈ E . On the other hand if (t, a) /∈ E then
|a| > S + 1, hence

∣∣a − s2(t)
∣∣ > 1, and (4.3) follows again.

With the divisor Y = MT let ψ : Y → C × A
1
R
be the (unique) interpolation

condition (of order M) compatible with s. Suppose now that a section r is compatible
with ψ , and its CM+1-distance from s is less than, say, 1. If D denotes the maximum
of

∣∣s(M+1)
2 (t)

∣∣ for t ∈ K , then
∣∣r (M+1)
2 (t)

∣∣ < D+1 for all t ∈ K . By Taylor’s theorem
(with the Lagrange form of remainder)

∣∣r2(t) − s2(t)
∣∣ < 2

D + 1

(M + 1)! dist
(
t, T )M+1 for all t ∈ K . (4.4)

Combining (4.3) and (4.4) we obtain that, after possibly shrinking K , r(t) =(
t, r2(t)

)
/∈ A for t ∈ K \ T , hence r(K ) ⊂ R.
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On the other hand Q = s
(
C(R) \ K ◦) is a compact set in R◦. If the C0-distance of

r from s is smaller than dist(Q, A), then r
(
C(R) \ K

) ⊂ R as well. ��

Proof of Theorem 4.2 By Lemma 4.5 wemay assume that R ⊆ C(R)×A
1(R)without

loss of generality. By Proposition 4.6 there is an open neighbourhood U of s in the
C∞-topology and an interpolation condition ψ : Y → A

1
R
compatible with s with the

following property: for every C∞-section r : C(R) → C × A
1(R) which lies in U

and compatible with ψ , the image of r lies in R. Let T be a zero-dimensional closed
subscheme of C whose closed points are all real and which contains both S and Y as a
closed subscheme. Let φ̃ : T → A

1
R
be the unique interpolation condition compatible

with s. Since s is compatible bothwithφ andψ , the interpolation condition φ̃ subsumes
both φ and ψ . By Lemma 3.15 there is a regular section r : C → C ×A

1 compatible
with φ̃ such that r(R) lies inU . Since φ̃ subsumes φ, the section r is compatible with
φ. Since φ̃ subsumes ψ , the section r is compatible with ψ , too. Therefore the image
of r(R) lies in R. ��

5 Themain theorem and some easy reductions

Definition 5.1 Note that for every x ∈ C(R) the discrete valuation ofR(C)x induces a
topology on the projective space Pn(R(C)x ), and hence on theR(C)x -valued points of
any quasi-projective variety defined over R(C)x . Moreover this topology is canonical
in the sense that it does not depend on the choice of the embedding into a projective
space. We will call this the x-adic topology. Now let X be again a smooth, irreducible
projective variety defined over R(C). We will equip the direct product

X(AC ) =
∏

x∈C(R)

X(R(C)x )

with the direct product of the x-adic topologies.

Remark 5.2 Let X be as above, and let X be a model of X over C . It is possible to
give a simple description of a basis for the topology on X(AC ) defined above in terms
of X as follows. By slight abuse of notation let X (Ox ) denote the set of sections
Spec(Ox ) → X ×C Spec(Ox ) for every x ∈ C(R). As we already noted we have
a bijection X(R(C)x ) ∼= X (Ox ) for every x ∈ C(R) by the valuative criterion of
properness, so we have a bijection

X(AC ) ∼=
∏

x∈C(R)

X (Ox ), (5.2.1)

too. For every interpolation condition φ : S → X ×C S let

U (S, φ) ⊆
∏

x∈C(R)

X (Ox )
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be the subset of all those sections whose pull-back under the closed immersion

S →
∐

x∈C(R)

Spec(Ox )

is φ. These sets form a basis for the topology of X(AC ) under the map in (5.2.1).

For every morphism f : X → Y of varieties overR(C) and for every c ∈ Y (R(C))

let Xc denote the fibre of f above c. Our main result Theorem 1.5 follows from the
following

Theorem 5.3 Assume that C(R) is non-empty. Let Y be a smooth, projective, rational
variety over R(C), and let X be a smooth, projective, irreducible variety over R(C)

endowed with a dominant morphism f : X → Y with a geometrically irreducible and
smooth generic fibre. Let

M =
∏

x∈C(R)

Mx ∈ X(AC )CT ,

and let U ⊂ X(AC ) be an open neighbourhood of M. Then there exist

(i) a point c ∈ Y (R(C)) such that Xc is smooth, and
(ii) an N ∈ Xc(AC )CT such that N ∈ U.

Remark 5.4 Note that Theorem 1.5 is trivially true whenC(R) is empty. Indeed in this
case there is noCT obstruction both for the smooth fibres of f over rational points and
for X itself. By assumption all such fibres will have rational points, so X has rational
points, too.

Proof We start the proof with two easy reduction steps. For the sake of simple notation
set

Yn = P
1
R(C) × P

1
R(C) × · · · × P

1
R(C)︸ ︷︷ ︸

n-times

.

��
Proposition 5.5 We may assume that Y = Yn for some n without loss of generality.

Proof Using resolutions of singularities it follows from the assumption that there is a
diagram

Ỹ
ψφ

Y Yn
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of birational morphisms between smooth projective varieties over R(C) (for some n).
Let X̃ → X ×Y Ỹ be a desingularisation of the pull-back X ×Y Ỹ of X via φ which
is isomorphic over the nonsingular part, and let f̃ : X̃ → Ỹ be the composition of
this desingularisation and the base change of f with respect to φ. Let V ⊆ Ỹ be
a non-empty Zariski-open subset such that the restrictions of both φ and ψ onto V
are isomorphisms onto their images, and f is smooth over φ(V ). Then we have a
commutative diagram:

X̃

f̃

ρ
X

f

Ỹ
φ

Y

such thatρ maps f̃ −1(V ) isomorphically onto f −1(φ(V )). In particularρ is birational.
Let Z ⊂ X be the complement of f −1(φ(V )), and let Z̃ ⊂ X̃ be the complement
of f̃ −1(V ). Now let M be an element of X(AC )CT , as in the claim above. We may
assume without loss of generality that its given open neighbourhoodU is of the form

U =
∏

x∈C(R)

Ux

where Ux is an x-adic open neighbourhood of Mx in X(R(C)x ) for every x ∈ C(R).
Let I ⊆ C(R) be the set of those x ∈ C(R) where Ux �= X(R(C)x ). The set I is
finite.

Now let X be a model of X over C and for every x ∈ C(R) let Tx ⊆ X(R(C)x ) be
the x-adic open neighbourhood of Mx which under the bijection X(R(C)x ) ∼= X (Ox )

corresponds to those sections Spec(Ox ) → X ×C Spec(Ox ) whose special fibre is
the same as the special fibre of the section corresponding to Mx . Since Z is a proper
Zariski-closed subscheme of X , the set Z(R(C)x ) is nowhere dense in X(R(C)x )

with respect to the x-adic topology, so there is a non-emptyWx ⊆ Ux ∩ Tx , open with
respect to the x-adic topology, such that Wx and Z(R(C)x ) have empty intersection,
for every x ∈ C(R). By the above for every

M ′ =
∏

x∈C(R)

M ′
x ∈

∏

x∈C(R)

Wx

we have σ(M ′) = σ(M) (see Notation 3.5). Pick such an M ′. Then by Theorem 3.6
we have M ′ ∈ X(AC )CT . Clearly it will be enough to show the claim for M ′ and for
any of its open neighbourhoods contained in

W =
∏

x∈I
Wx ×

∏

x∈C(R)−I

X(R(C)x ).

Therefore we may assume, without loss of generality, that Mx /∈ Z(R(C)x ) for every
x ∈ C(R), the set I is non-empty, and Ux ∩ Z(R(C)x ) = ∅ for every x ∈ I . Since ρ
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1012 A. Pál, E. Szabó

maps f̃ −1(V ) isomorphically onto f −1(φ(V ))we get that there is a M̃x ∈ X̃(R(C)x )

for every x ∈ C(R) such that M̃x /∈ Z̃(R(C)x ) and ρ(M̃x ) = Mx . By Lemma 2.7 we
know that

M̃ =
∏

x∈C(R)

M̃x ∈ X̃(AC )CT .

Moreover for every x ∈ I there is an x-adic open neighbourhood Ũx ⊆ X̃(R(C)x )

of M̃x such that Ũx ∩ Z̃(R(C)x ) = ∅ and Ũx maps to Ux homeomorphically with
respect to ρ. Set

Ũ =
∏

x∈I
Ũx ×

∏

x∈C(R)−I

X̃(R(C)x );

it is an open neighbourhood of M̃ . Since the map ψ ◦ f̃ : X̃ → Yn satisfies the
conditions of theorem, we get that there is a point c ∈ Yn(R(C)) such that X̃c is
smooth, and an Ñ ∈ X̃c(AC )CT such that Ñ ∈ Ũ . Let x be now an element of I .
Then c lies in the image of Ũx with respect to ψ ◦ f̃ , so it must lie in ψ(V (R(C)x )).
Therefore there is a unique c ∈ V (R(C)) such that c̃ = ψ(c). Set c = φ(c) and
N = ρ(Ñ ). Clearly c ∈ φ(V (R(C))) and hence Xc is smooth. Moreover ρ maps X̃c

isomorphically onto Xc, so N ∈ Xc(AC )CT . Finally N ∈ U since ρ maps Ũ into U .
��

Lemma 5.6 We may assume that Y = P
1
R(C)

without loss of generality.

Proof Wemay immediately reduce the case when Y = Yn to the case when Y = P
1
R(C)

via an easy induction on n, so the claim follows from the proposition above. ��

6 The fibrationmethod

Let us begin the main part of the proof of Theorem 5.3. By the above we may assume
without loss of generality that Y = P

1
R(C)

. By resolution of singularities there is an
integral, smooth, projective varietyX equipped with a projective dominant morphism
f : X → C × P

1
R
over R whose generic fibre is f : X → P

1
R(C)

. In particular X
is a model of X over C with respect to the composition p of f with the projection
π : C × P

1
R

→ C onto the first factor.
Since the generic fibre of f is smooth, the same holds for f , too. Therefore there

is a closed subscheme Z ⊂ C × P
1
R
of positive codimension such that f |f−1(U) :

f−1(U) → U is smooth, where U = C × P
1
R

− Z is the complement of Z . Now let
M be an element of X(AC )CT , and let U ⊂ X(AC ) be an open neighbourhood of
M , as in the claim above. We may assume without loss of generality that there is an
interpolation condition φ : S → X ×C S such that the open neighbourhood U given
is of the form U (S, φ) by Remark 5.2.

Proposition 6.1 There is an M ′ ∈ X(AC )CT ∩U such that
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(i) the section σ(M ′) : C(R) → Xsm(R) is Nash,
(ii) the section σ(M ′) is compatible with φ,
(iii) the section f(R) ◦ σ(M ′) only intersects Z(R) in finitely many points.

Proof By our assumption U is of the form

U =
∏

x∈C(R)

Ux

where Ux is an x-adic open neighbourhood of Mx in X(R(C)x ) for every x ∈ C(R).
Let I ⊆ C(R) be the set of those x ∈ C(R)whereUx �= X(R(C)x ). The set I is finite.
For every connected component D ⊂ C(R) for all but finitely many x ∈ D the inter-
section Z ∩ π−1(x) is a zero dimensional scheme, since Z has positive codimension
in C × P

1
R
. Since p is generically smooth and has geometrically irreducible fibres,

for all but finitely many x ∈ D the fibre Xx is smooth and geometrically irreducible.
Therefore for all D as above wemay choose a point x(D) ∈ D which does not lie in I ,
the intersection Z(R)∩π−1(xD)(R) is finite, and Xx(D) is smooth and geometrically
irreducible.

For every D as above let ED ⊂ Xx(D)(R) denote the connected component con-
taining mx(D) = σ(M)(x(D)) ∈ Xx(D)(R). We claim that there is an nD ∈ ED such
that nD /∈ f−1(Z)(R). Assume that this is not the case for some D ∈ π0(C(R)). Then
the image of ED under f(R) lies in the finite set Z(R) ∩ π−1(x(D))(R). But ED is
connected, so is its image under the continuous map f(R), which therefore must be a
point pD ∈ Z(R) ∩ π−1(x(D))(R). Note that ED is Zariski-dense in Xx(D). Indeed
suppose that this is not the case; as the latter is geometrically irreducible, the Zariski-
closure of ED has dimension strictly less than the dimension d of Xx(D). Therefore
the dimension of the semi-algebraic set ED is also less than d. But Xx(D) is smooth,
so the dimension of ED is d by the inverse function theorem, which is a contradiction.
We get that Xx(D) lies in f−1(pD), and hence the fibre of f over any other point in
π−1(x(D)) is empty. But this is a contradiction, so our original assumption on the
image of ED with respect to f(R) is false.

For every D as above choose an Nx(D) ∈ X(R(C)x(D)) such that the special fibre
of the section Spec(Ox(D)) → X ×C Spec(Ox(D)) associated to Nx(D) is the point
nD ∈ ED − f−1(Z)(R) found above. (This is possible by Hensel’s lemma.) Let
N ∈ X(AC )CT be the point we get from M by replacing Mx(D) with Nx(D) for every
D as above. Clearly N ∈ U , and by Proposition 3.4 we have N ∈ X(AC )CT . Let
T be the effective zero cycle S + ∑

D∈π0(C(R)) xD and let ψ : T → X ×C T be
the unique interpolation condition which subsumes φ and ψ(y) is the special fibre of
the section Spec(Oy) → X ×C Spec(Oy) associated to Ny for every y ∈ T . This
interpolation condition ψ is weakly compatible with σ(N ), so there is a Nash section
ρ : C(R) → Xsm(R) compatible with ψ by Proposition 3.19. Since ρ(xD) /∈ Z(R)

for every D ∈ π0(C(R)) by construction, by Lemma 4.4 the section ρ only intersects
Z(R) in finitely many points. Again by Hensel’s lemma there is an M ′ ∈ X(AC )CT

such that σ(M ′) = ρ and M ′
x = Nx = Mx for every x ∈ I . Clearly M ′ ∈ U and by

Theorem 3.6 we have M ′ ∈ X(AC )CT . ��
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1014 A. Pál, E. Szabó

Replacing M by M ′ we may assume without loss of generality that σ(M) is Nash,
compatible with φ, and f(R) ◦ σ(M) only intersects Z(R) in finitely many points.
Recall that a Nash map a : A → B of Nash manifolds over R is Nash trivial if there
is a Nash manifold L and a Nash diffeomorphism b : L × B → A (over R) such that
a ◦ b : L × B → B is the projection onto the second coordinate.

Proposition 6.2 There is an admissible semi-algebraic subset R ⊆ C(R) × P
1(R)

such that

(i) the image I of f(R) ◦ σ(M) lies in R,
(ii) the set Ro lies in U(R),
(iii) there is a Nash retraction ρ : Ro → Ro ∩ I,
(iv) for every semi-algebraic connected component O ⊂ Ro the map

f(R)|f(R)−1(O) : f(R)−1(O) → O

is Nash-trivial.

Proof SinceU(R) is aNashmanifold overR, there is a finite covering {Vj } j∈J ofU(R)

by open semi-algebraic subsets which are Nash diffeomorphic to an affine space over
R, necessarily of dimension 2, by Lemma 3.2 of [9] on page 1217. For every j ∈ J
the restriction

f(R)|f(R)−1(Vj )
: f(R)−1(Vj ) → Vj

is a proper surjective submersion of Nashmanifolds, so it is Nash trivial by Proposition
5.2 of [6] on page 368 and the main theorem of [9] on page 1209. For every j ∈ J
the intersection Vj ∩ I is semi-algebraic and open in I, so its image Q j under the
projection π(R) is semi-algebraic and open in C(R). Therefore Q j is the union of
finitely many pairwise disjoint open intervals or circles, i.e. open and connected sets.
By possibly refining the covering {Vj } j∈J wemay achieve that we have only intervals,
no circles.

Let B be the union of the end-points of these open intervals for all j ∈ J , where
by end-points we mean accumulation points not in the interval. Since the set of these
intervals is finite, the set B is also finite. The complement of B in C(R) is the union
of finitely many pair-wise disjoint open intervals; let K denote the set of these open
intervals. Since the sets {Vj } j∈J cover all but finitely many points of I, for every
H ∈ K the pre-image π(R)−1(H) ∩ I lies in Vj for some j ∈ J . For every such
H fix such a Vj and let WH ⊂ Vj be a semi-algebraic tubular neighbourhood of
π(R)−1(H) ∩ I in π(R)−1(H) ∩ Vj . (The latter exists by Corollary 8.9.5 of [2] on
page 199.)

Let R be the union of the {WH }H∈K and I. Since B is finite, the set R is admissible,
and (i) holds for R by construction. Since the elements of K are pair-wise disjoint, the
elements of {WH }H∈K are also pair-wise disjoint. For every H ∈ K the semi-algebraic
set π(R)−1(H)∩ I is connected, so the same holds for its tubular neighbourhoodWH .
As Ro = ⋃

H∈K WH , we get that the sets {WH }H∈K are the connected components
of Ro. Since WH ⊂ Vj for some j , condition (iv) holds. As the sets {Vj } j∈J lie in
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U(R), condition (i i) is true. MoreoverWH is a semi-algebraic tubular neighbourhood
of WH ∩ I = π(R)−1(H) ∩ I, so there is a Nash retraction ρH : WH → WH ∩ I for
every H ∈ K . Therefore (i i i) holds, too. ��
Definition 6.3 For every x ∈ C × P

1(R) and every 1-dimensional subspace L of the
tangent space of C ×P

1 at x letXL,sm ⊂ Xx be the largest open sub-scheme such that
for every closed point P of XL,sm the image of the differential of f at P contains L .
Let σ : C(R) → X (R) be a Nash section of p(R) and let R+ ⊆ C(R) ×P

1(R) be an
admissible semi-algebraic subset which contains the image Im(f(R) ◦ σ) of f(R) ◦ σ .
For every point x on Im(f(R) ◦ σ) let L(x) denote the tangent line of f(R) ◦ σ at x ; it
is a 1-dimensional subspace of the tangent space of C ×P

1 at x . A butterfly extension
of σ on R+ is a semi-algebraic section β : R+ → X (R) of f(R) such that σ restricted
to Ro+ is continuous, the composition β ◦ f(R)◦σ is σ , and for every kissing point x of
R+ on Im(f(R) ◦ σ) the intersection of the closure of the image of β with Xx (R) lies
in the connected component of β(x) in XL(x),sm(R). (Note that β(x) = σ(π(R)(x)),
so β(x) does lie in XL(x),sm(R), since σ is a Nash section.)

Proposition 6.4 There is an admissible semi-algebraic subset R+ ⊆ R containing
Im(f(R) ◦ σ(M)) = I such that there is a butterfly extension s : R+ → X (R) of
σ(M).

Proof We will need the following easy semi-algebraic separation lemma. ��
Lemma 6.5 Let F and G be two disjoint closed semi-algebraic subsets ofX (R). Then
there are two disjoint open semi-algebraic subsets A, B ⊂ X (R) such that F ⊂ A
and G ⊂ B.

Proof Since X is projective, by Theorem 3.4.4 of [2] on page 72 there is a continuous
semi-algebraic embedding ι : X (R) → R

m for some positive integer m. Because X
is projective, the semi-algebraic set X (R) is compact, so the same holds for its closed
subsets F and G. Therefore ι(F) and ι(G) are closed in R

m , and by elimination of
quantifiers these sets are also semi-algebraic. Then d = dist(F,G) > 0, where dist
stands for the Euclidean distance. The sets

A =
{
x ∈ R

m | dist(x, F) <
d

3

}
, B =

{
x ∈ R

m | dist(x,G) <
d

3

}

are open, semi-algebraic, contain F and G, respectively, and A ∩ B = ∅. ��
By removing every kissing point of R which does not lie on I we may assume that

every kissing point of R lies on I without loss of generality. Let ρ : Ro → Ro ∩ I
be a Nash retraction. For every semi-algebraic connected component O ⊂ Ro let
MO be a compact Nash manifold such that there is a Nash diffeomorphism bO :
MO × O → f(R)−1(O) such that f(R) ◦ bO : MO × O → O is the projection onto
the first coordinate. For every such O let aO : MO × O → MO be the projection
onto the second coordinate, let ρO : O → O ∩ I be the restriction of ρ onto O , let
rO : O → MO denote the composition:

aO ◦ b−1
O ◦ σ(M) ◦ π(R) ◦ ρO ,
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and let sO : O → f(R)−1(O) be the composition of the map:

O → O × MO given by t �→ (t, rO)

and bO . Let so be the coproduct of the maps sO for all such O . The map so is a Nash
section of

f(R)|f(R)−1(Ro) : f(R)−1(Ro) → Ro

which extends σ(M) ◦ π(R)|Ro∩I. It has a unique extension s : R → X (R) such that
s ◦ f (R) ◦ σ(M) is σ(M).

For every point x on I let L(x) denote the tangent line of f(R)◦σ(M) at x . Note that
for every x ∈ I we have s(x) = σ(M)(π(R)(x)), and σ(M) is a Nash section, so s(x)
lies in XL(x),sm(R). Therefore it will be enough to show that there is an admissible
semi-algebraic subset R+ ⊆ R containing I such that for every kissing point x of R+
on I the intersection of the closure of the image of s with Xx (R) lies in the connected
component of s(x) in XL(x),sm . Let K denote the set of kissing points of R.

For every x on I letXL(x),bad be the complement ofXL(x),sm inXx . For every x ∈ K
the subschemeXL(x),bad ofX is Zariski-closed, so the semi-algebraic setXL(x),bad(R)

is closed in X (R), and does not contain s(x), hence by Lemma 6.5 we may pick two
disjoint open semi-algebraic subsets Ax , Bx ⊂ X (R) such that XL(x),bad(R) ⊂ Ax

and s(x) ∈ Bx . Now let E be any semi-algebraic connected component ofXL(x),sm(R)

which does not contain s(x), and let E denote its closure in Xx (R). Since E is closed
in XL(x),sm(R), and s(x) lies in XL(x),sm(R), the set E does not contain s(x), so by
Lemma 6.5 we may pick two disjoint open semi-algebraic subsets AE , BE ⊂ X (R)

such that E ⊂ AE and s(x) ∈ BE .
For every x ∈ K letWx be the intersection of Bx and the BE for all E as above. The

set of connected components of XL(x),sm(R) is finite, therefore the set Wx is an open
semi-algebraic neighbourhood of s(x) such the intersection of its closure with Xx (R)

lies in the connected component of s(x) in XL(x),sm . Since σ(M) is continuous, for
every x as above π(R)(x) has an open connected neighbourhood Vx in C(R) such
that σ(M) maps Vx into Wx . We may assume that the sets Vx are pair-wise disjoint
by shrinking them, if this is necessary. For every x ∈ K let Rx be the intersection of
π(R)−1(Vx )with the image ofWx ∩ f(R)−1(Ro)with respect to f . Since Ro ⊂ U(R),
the restriction of f onto Wx ∩ f(R)−1(Ro) is a Nash submersion, and hence open by
the implicit function theorem. Hence Rx is open and semi-algebraic. Since σ(M) is a
section, the set Rx also contains the image ofVx−π(R)(x)with respect to f(R)◦σ(M).

Let T be the interior of the complement of the union of Vx for all x ∈ K in C(R).
Then the set

R++ =
(
π(R)−1(T ) ∩ Ro

)
∪

⋃

x∈K
Rx ⊂ Ro

is open, semi-algebraic and contains all but finitely many points of I. Therefore R+ =
R++ ∪ I is an admissible subset of R. For every x ∈ K the intersection of the closure
of the image of s|R+ with Xx (R) lies in the connected component of s(x) in XL(x),sm
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The fibration method over real function fields 1017

by construction. If x is a kissing point of R+ not in K , then x ∈ Ro, so s is continuous
at x , and hence the intersection of the closure of the image of s|R+ with Xx (R) is just
s(x). ��

Let Xsm ⊆ X be the smooth locus of f .

Lemma 6.6 Let x be a point in C(R), let y ∈ Xsm(R(C)x ) be a point, and let U ⊂
X(R(C)x ) be an open neighbourhood of y in the x-adic topology. Then there is an
open neighbourhood V of f (y) in the x-adic topology such that for every z ∈ V the
set f −1(z)(R(C)x ) ∩ U is non-empty.

Proof By the implicit function theorem there is an open neighbourhoodW of f (y) in
the x-adic topology and a section s : W → Xsm(R(C)x ) of the x-adic analytic map
Xsm(R(C)x ) → P

1(R(C)x ) induced by f such that s( f (y)) = y. This is continuous
with respect to the x-adic topology. Therefore there is an open neighbourhoodV ⊂ W
of f (y) in the x-adic topology such that s(V) ⊂ U. For every z ∈ V we have
s(z) ∈ f −1(z)(R(C)x ) ∩ U. ��

For every x ∈ I let Px denote the formal completion of the Nash section σ(M)

around σ(M)(x); it is a section Spec(Ox ) → X ×C Spec(Ox ). By slight abuse
of notation let the same symbol Px denote its generic fibre, too. Since σ(M) only
intersects Z(R) in finitely many points, we have Px ∈ Xsm(R(C)x ). By property (i i)
of Proposition 6.1 we have Px ∈ Ux for every x ∈ I , so by Lemma 6.6 for every
x ∈ I there is an open neighbourhood Vx of f (Px ) in the x-adic topology such that
for every z ∈ Vx the set f −1(z)(R(C)x ) ∩ Ux is non-empty. We may assume that
Vx = P

1(R(C)x ) whenever Ux = X(R(C)x ). There is an interpolation condition
κ̃ : T̃ → P

1 compatible with f(R) ◦ σ(M) such

U (T̃ , κ̃) ⊂
∏

x∈I
Vx ×

∏

x∈C(R)−I

P
1(R(C)x ).

Now let R+ ⊆ R be an admissible semi-algebraic subset containing the image I of
f(R) ◦ σ(M) and let s : R+ → X (R) be a butterfly extension of σ(M). By removing
every kissing point of R+ which does not lie on I we may even assume that every
kissing point of R+ lies on I. Let κ : T → P

1 be an interpolation condition subsuming
κ̃ : T → P

1, compatible with f(R) ◦ σ(M) such that for every kissing point z of R+
the point π(R)(z) has coefficient at least 2 in T .

By Theorem 4.2 there is a regular map c : C → P
1 compatible with κ such that

the graph �c of c in C × P
1(R) lies in R+. Let c ∈ P

1(R(C)) be the generic point
of c. Let Xc denote the closed subscheme f−1(�c) ⊂ X and let πc : Xc → C be the
composition of f and π . Since all but finitely many points of �c lie in Ro+ ⊂ U(R), the
generic fibre Xc of Xc (with respect to πc) is smooth. Let Xc,sm ⊆ Xc be the smooth
locus ofπc. By resolution of singularities there is a sequence of blow-ups r : X̃c → Xc

such that X̃c is a model of Xc over C and contains Xc,sm as an open sub C-scheme,
i.e. the restriction r |r−1(Xc,sm ) : r−1(Xc,sm) → Xc,sm is an isomorphism.
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Lemma 6.7 The image of s ◦ c(R) lies in Xc,sm(R) and the composition

s ◦ c(R) : C(R) → Xc,sm(R) ⊂ X̃c(R)

is weakly continuous.

Proof Since restriction of f onto f−1(U) is smooth, and Ro+ lies in U(R), for every
z ∈ �c(R)∩ Ro+ the point s(z) lies in Xc,sm(R). If z ∈ �c(R)− Ro+ then z is a kissing
point of R+ lying on I. Therefore the point π(R)(z) has coefficient at least 2 in T , so
the tangent lines of �c and I at z are the same; let L denote this tangent line. Note that
the fibre of Xc,sm above z is XL,sm . Since σ(M) is a Nash section, its tangent vector
at s(x) maps non-trivially into L , and we get that s(x) lies in Xc,sm in this case, too.
Also note that the closure of the image of s ◦ c(R), considered as a map into X̃c(R),
lies in the pre-image of the closure of the image of s ◦ c(R), considered as a map
into Xc(R), with respect to r(R). Therefore the second half of the claim follows from
Proposition 3.21. ��

Nowwe can complete the proof of Theorem5.3. Since c ∈ U (T , κ), for every x ∈ I
the set f −1(c)(R(C)x )∩Ux is non-empty, and wemay choose Nx from this set. Using
Hensel’s lemma for every x ∈ C(R) − I we get that there is an Nx ∈ Xc(R(C)x )

such that the special fibre of the section Spec(Ox ) → X ×C Spec(Ox ) associated
to Nx is the point s ◦ c(R)(x). Set N = ∏

x∈C(R) Nx . Clearly N ∈ U . Moreover
σ(N ) = s ◦ c(R), which is weakly continuous by Lemma 6.7, so N ∈ Xc(AC )CT by
Theorem 3.6. ��
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