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Abstract
We study a natural functional on the space of holomorphic sections of the Deligne–
Hitchin moduli space of a compact Riemann surface, generalizing the energy of
equivariant harmonic maps corresponding to twistor lines. We show that the energy
is the residue of the pull-back along the section of a natural meromorphic connection
on the hyperholomorphic line bundle recently constructed by Hitchin. As a byprod-
uct, we show the existence of a hyper-Kähler potentials for new components of real
holomorphic sections of twistor spaces of hyper-Kähler manifolds with rotating S1-
action. Additionally, we prove that for a certain class of real holomorphic sections
of the Deligne–Hitchin moduli space, the energy functional is basically given by the
Willmore energy of corresponding equivariant conformal map to the 3-sphere. As an
application we use the functional to distinguish new components of real holomorphic
sections of the Deligne–Hitchin moduli space from the space of twistor lines.

Mathematics Subject Classification 53C26 · 53C28 · 53C43 · 14H60 · 14H70

Introduction

The Deligne–Hitchin moduli space MDH (�,GC) [28] for a compact Lie group G
with complexification GC, is a complex analytic reincarnation of the twistor space
of the hyper-Kähler moduli space MSD(�,G) of solutions of Hitchin’s self-duality
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equations on a principal G-bundle over a compact Riemann surface � [18]. It is
defined by gluing the Hodge moduli spaces of λ-connections on � and � via the
monodromy representation, and it admits a holomorphic fibration over the projective
line. The fibers are the moduli spaces of GC-Higgs bundles, flat GC-connections
or GC-Higgs bundles over �. Holomorphic sections of the Deligne–Hitchin moduli
space are interesting for various reasons: MDH (�,GC) carries an anti-holomorphic
involution τ covering the antipodal map λ �→ −λ̄−1. By the twistor construction
for hyper-Kähler manifolds [21], the hyper-Kähler moduli space MSD(�,G) can
be identified with a certain component of the space of τ -real holomorphic sections
of the fibration MDH (�,GC) → CP1. These sections are called twistor lines. On
the other hand, a solution of the self-duality equations corresponds to an equivariant
harmonic map from the universal cover �̃ into the symmetric space GC/G, which can
be reconstructed from the associated twistor line by loop group factorization methods
[3,27]. Apart from the twistor lines, holomorphic sections satisfying other types of
reality conditions arise from equivariant harmonic maps of �̃ into different (pseudo-
)Riemannian symmetric spaces related to the the group GC and its real forms.

This paper is motivated by the work of some of the authors about the question of
Simpson, whether all τ -real holomorphic sections are in fact twistor lines [28]. The
answer turns out to be no [3,14], and leads to the problem of how to differentiate
between the components of the space of τ -real holomorphic sections.

The most fundamental quantity associated to a harmonic map is its energy and the
starting point of this paper is the simple observation that the energy of a harmonic
map (defined on a compact Riemann surface) can be computed via its associated
holomorphic section of the Deligne–Hitchin moduli space (see Theorem 2.4). This
computation leads us to a well-defined energy functional on the space of holomorphic
sections (see Proposition 2.1). The detailed investigation of this functional is the main
objective of our work. It should be mentioned that the functional is defined in terms of
the complex analytic structure of the Deligne–Hitchin moduli space and its definition
does not involve the hyper-Kähler metric on MSD(�,G), i.e., the twistor lines.

We will mostly be concerned with the case G = SU(2), so that GC = SL(2, C).
Twistor lines then correspond to equivariant harmonic maps of �̃ into the hyper-
bolic space H3 = SL(2, C)/SU(2). This is the space of positive definite hermitian
matrices, hence these harmonic maps are called harmonic metrics. One can also
study equivariant harmonic maps from �̃ into the 3-sphere S3 = SU(2) (the com-
pact dual of SL(2, C)/SU(2)), into the anti de Sitter space AdS3 = SL(2, R) or
into the de Sitter space dS3 = SL(2, C)/SL(2, R) via holomorphic sections of
MDH (�, SL(2, C)) → CP1. To a conformal equivariant harmonic map one may,
under certain circumstances, associate another harmonic map with in general different
target space. This process, which we call twisting, played a central role in the con-
struction of counterexamples to Simpson’s question in [3] and we will give a more
systematic treatment in this article. We study how the energy functional interacts with
the two real structures on MDH (�,GC). We will see that it takes real values on real
holomorphic sections and is normalised in such a way that it takes non-positive values
on twistor lines, while it is non-negative on holomorphic sections corresponding to
equivariant harmonic maps into G. In the rank 2 case we then examine its behavior
under twisting (see Proposition 2.7). The explicit relation between the energy of a

123



Energy of sections of the Deligne–Hitchin twistor space 1171

section and its twist allows us to give an alternative proof that the τ -real sections
constructed in [3] are not twistor lines by checking that these have positive energy.

Although the definition of the functional is motivated by the theory of harmonic
maps and does not involve the hyper-Kähler structure of MSD(�,G), it can be given
a natural interpretation in terms of the hyper-Kähler geometry of the moduli space
MSD(�,G). The natural isometric circle action on MSD(�,G) plays a central role.
It preserves one of the complex structures of and rotates the other two complex struc-
tures. We show that an analogous functional exists on the space of holomorphic sections
of the twistor space of any hyper-Kähler manifold with an isometric circle action of this
type. Building on work by Haydys [12], Hitchin [20] has shown that on the twistor
space of such a hyper-Kähler manifold, one has a natural holomorphic line bundle
with meromorphic connection. The pull-back of the meromorphic connection along
a holomorphic section of MDH (�,GC) → CP1 has simple poles at λ = 0,∞
only, and it turns out that the residue at λ = 0 coincides with the energy (Corol-
lary 3.11). As a byproduct, we show that the residue evaluation along sections is
always a complexification of the moment map of the S1-action (Theorem 3.9). More-
over, it automatically serves as a Kähler potential on all hyper-Kähler components
of real holomorphic sections of the twistor space. Recently it has been shown [17]
that there indeed exist such hyper-Kähler components of the space real holomorphic
sections of MDH (�, SL(2, C)). The energy functional thus gives a Kähler potential
on these new components and we hope to extract from it more information about the
geometry of these components in the future.

The third main objective of the paper is the geometric interpretation of the energy
for a class of τ -real holomorphic sections which are not twistor lines [14]. Recall
that in the case of G = SU(2), twistor lines correspond to equivariant harmonic
maps to hyperbolic 3-space H3. A holomorphic section of the type constructed in
[14] is instead obtained from a Möbius equivariant Willmore surface �̃ → S3. By
decomposing the 3-sphere S3 = H3 ∪ S2 ∪ H3 into two hyperbolic balls separated by
the boundary 2-sphere at infinity, one can show that such a holomorphic section defines
a solution of the self-duality equations on an open dense subset of the Riemann surface
�. The solution blows up in a well-behaved way near certain curves on the surface.
The corresponding equivariant harmonic map into hyperbolic 3-space intersects S2,
the boundary at infinity, along these curves and continues as a harmonic map on
the other side. We prove that the energy of such a section is directly related to the
Willmore energy of the surface, a conformally invariant measure of the roundness
of an immersed surface. This relation allows us to prove our last main result: the
sections constructed in [14] have positive energy. This gives a complex analytic way
to distinguish the component of twistor lines from this newly discovered component
of real holomorphic sections.

The structure of the paper is as follows. In Sect. 1 we set up some notation and recall
basic notions associated with holomorphic sections of the Deligne–Hitchin moduli
space over a compact Riemann surface. In Sect. 2 we define the energy functional
and prove its basic properties. Section 3 then contains the natural interpretation of
the energy functional in terms of the residue of the meromorphic connection on the
hyperholomorphic line bundle over MDH (�,GC). In Sect. 4, we relate the energy
of the real holomorphic sections constructed in [14] to the Willmore energy of the
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related Möbius equivariant Willmore surfaces. In the final Sect. 5, we show that the
energy functional can be used to distinguish different components of the space of
real holomorphic sections. In particular, we prove that the new sections of [14] have
positive energy.

1 The Deligne–Hitchinmoduli space

1.1 �-Connections and the Deligne–Hitchinmoduli space

Let (M4k; g, I1, I2, I3) be a hyper-Kähler manifold. Recall that this means that g is
a Riemannian metric and I1, I2, I3 are orthogonal complex structures satisfying the
quaternionic relations I1 I2 = I3 = −I2 I1 such that the two-forms ω j = g(I j−,−),
j = 1, 2, 3 are closed. It can be shown that ωC = ω2+iω3 is a holomorphic symplectic
form with respect to the complex structure I1.

Associated with a hyper-Kähler manifold we have the twistor space Z = Z(M)

which is a complex manifold of complex dimension 2k+1 on which the hyper-Kähler
structure is encoded in the following complex-geometric data [21]:

• A holomorphic projection πZ : Z → CP1,
• A holomorphic section ω ∈ H0(�2T ∗

F (2)) inducing a holomorphic symplectic
form on each fibre π−1(λ) (here TF = ker dπZ is the tangent bundle along the
fibers),

• An anti-holomorphic involution τZ : Z → Z covering the antipodal map CP1 →
CP1 and such that τ ∗

Zω = ω,
• A family (parametrized by M) of τZ -real holomorphic sections with normal bundle

isomorphic to O(1)2k , the twistor lines.

We now briefly recall the construction of the Deligne–Hitchin moduli space, which
may be interpreted as the twistor space of the hyper-Kähler moduli space of solutions
to the self-duality equations on a Riemann surface �. For details we refer to [28], see
also [3] for a more differential geometric account. The discussion of this subsection
works for complex reductive Lie groups G as structure groups. Since we fully work
out our concepts, e.g., twisting (Sect. 1.3), for SL(2, C), we choose G = SL(n, C) in
this subsection for concreteness.

Let � be a compact Riemann surface and denote by E → � the trivial smooth
rank n vector bundle. We endow E with an SL(n, C)-structure, i.e., a trivialisation
det E ∼= O� , which in the case of rank 2 is a complex symplectic form. We denote by
sl(E) the subbundle of End(E) given by the endomorphisms of trace zero.

Denote by C(E) the space of holomorphic structures ∂̄ on E that induce the trivial
holomorphic structure on det E ∼= O. It is an affine space for 	0,1(�, sl(E)). To
formulate the self-duality equations, we must reduce the structure group to the maximal
compact subgroup SU(n), i.e., we choose a hermitian metric h on E . Then the self-
duality equations are given by
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F∇h + [
 ∧ 
∗h ] = 0,

∂̄
 = 0
(1.1)

for a holomorphic structure ∂̄ ∈ C(E) and 
 ∈ 	1,0(�, sl(E)). As usual, ∇h is the
Chern connection with respect to ∂̄ and h. Moreover, ∗h is the adjoint with respect to
h, which we will sometimes just denote by ∗ if confusion is unlikely. We denote by

H ⊂ C(E) × 	1,0(�, sl(E))

the space of solutions to (1.1). Then the moduli space of such solutions is given by

MSD(�, SU(n)) = H/G

with the special unitary gauge group G = �(SU(E)) = {g ∈ �(End(E) : u∗u =
id, det u = 1} acting by (∂̄,
).g = (g−1 ◦ ∂̄ ◦ g, g−1
g). The smooth locus of
MSD(�, SU(n)) is given by Mirr

SD(�, SU (n)) = Hirr/G, where Hirr denotes the
set of irreducible solutions, i.e. those for which (∂,
).g = (∂,
) implies that g ∈ G
is a constant multiple of idE .

The space C(E) × 	1,0(�, sl(E)) is an affine space for 	0,1(�, sl(E)) ⊕
	1,0(�, sl(E)). It carries a flat hyper-Kähler structure given by the three complex
structures

I1(γ, β) = (iγ, iβ),

I2(γ, β) = (−β∗, γ ∗),
I3(γ, β) = (−iβ∗, iγ ∗),

(1.2)

for (γ, β) ∈ 	0,1(�, sl(E)) ⊕ 	1,0(�, sl(E)) and metric

‖(γ, β)‖2 = 2i
∫

�

tr(γ ∗ ∧ γ + β ∧ β∗). (1.3)

The holomorphic symplectic 2-form ωC = ω2 + iω3 (with respect to I1) is

ωC((γ1, β1), (γ2, β2)) = 2i
∫

�

tr(β2 ∧ γ1 − β1 ∧ γ2). (1.4)

The action ofG preserves this hyper-Kähler structure and (formally) the self-duality
equations are the vanishing condition for the associated hyper-Kähler moment map.
Therefore, by the hyper-Kähler quotient construction, Mirr

SD(�, SU(n)) inherits a
hyper-Kähler structure [11,18].

To give a complex analytic description of the twistor space of Mirr
SD(�, SU(n))

Deligne introduced the concept of a λ-connection [28]:

Definition 1.1 Let λ ∈ C. A holomorphic λ-connection on E is a pair (∂, D) such
that:

• ∂ ∈ C(E),
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• D : �(E) → 	1,0(E) is a C∞ differential operator satisfying

D( f s) = λ∂ f ⊗ s + f Ds,

such that the induced differential operator on det E coincides with λ∂� .
• The differential operator D is holomorphic in the sense that

D∂ + ∂D = 0. (1.5)

The group of complex gauge transformations GC = �(SL(E)) = {g ∈ �(End(E)) :
det g ≡ 1} acts on the space of λ-connections by

(∂, D) · g = (g−1 ◦ ∂ ◦ g, g−1 ◦ D ◦ g).

A holomorphic λ-connection (∂, D) on E is called stable (resp. semi-stable) if any
D-invariant holomorphic subbundle F ⊂ (E, ∂) satisfies deg F < 0 (resp. deg F ≤
0). We call a holomorphic λ-connection polystable if it is isomorphic to a direct sum
of stable λ-connections whose associated holomorphic bundles have degree zero.

Remark 1.2 The concept of holomorphic λ-connections gives a way of interpolating
between flat SL(n, C)-connections and Higgs bundles.

(i) If λ = 0, then D is C∞-linear and holomorphic, hence defines a holomorphic
section 
 ∈ H0(sl(E) ⊗ K ). Hence a 0-connection is the same as an SL(n, C)-
Higgs bundle. The Higgs bundle is stable (resp. semi-stable, resp. polystable) in
the sense of [18] if and only if the 0-connection is stable (resp. semi-stable, resp.
polystable) in the sense of the above definition.

(ii) If λ �= 0 and (∂, D) is a holomorphic λ-connection, then the condition (1.5)
implies that we obtain a flat SL(n, C)-connection ∇ via

∇ = ∂ + λ−1D.

Stability in this case means that there exist no ∇-invariant subbundles. A
polystable λ-connection corresponds to a completely reducible flat connection,
i.e., a direct sum of irreducible flat connections.

(iii) The action of the group of gauge transformations specialises to the usual action
on the space of Higgs bundles and flat SL(n, C)-connections, respectively.

(iv) A holomorphic λ-connection (∂, D) on E is called irreducible if (∂, D) · g =
(∂, D) implies that g ∈ GC is a constant multiple of the identity endomorphism
idE , i.e., g is a constant map to the center of SL(n, C)). Since we work with
vector bundles, irreducible λ-connections are equivalent to stable λ-connections.
In particular, irreducible 0-connections are stable Higgs bundles.

Definition 1.3 Let � be a compact Riemann surface. The Hodge moduli space
MHod(�, SL(n, C)) is defined as

MHod(�, SL(n, C)) = {(∂, D, λ) : λ ∈ C, (∂, D) polystable hol. λ-connection}/GC.
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Remark 1.4 The Hodge moduli space MHod(�, SL(n,C)) is a complex space. Its
smooth locus coincides with the locus Ms

Hod(�, SL(n, C)) of stable λ-connections.
Note that we have a holomorphic projection

p : MHod(�, SL(, C)) → C, (∂, D, λ) �→ λ.

The map (∂, D, λ) �→ (∂ + λ−1D, λ) induces a biholomorphism

p−1(C∗) ∼= MdR(�, SL(n, C)) × C
∗,

where MdR(�, SL(n, C)) is the moduli space of completely reducible flat SL(n, C)-
connections on �. Via the Riemann-Hilbert correspondence, this is biholomorphic
to the representation variety MB(�, SL(n, C)) = Homred(π1(�), SL(n, C))/

SL(n, C) of isomorphism classes of completely reducible representations of the fun-
damental group π1(�) into SL(n, C).

There is a natural isometric circle action on MSD(�, SU(n)) induced by the circle
action

eiα
(
∂̄, 


) =
(
∂̄, eiα


)

on C(E) × 	1,0(sl(E)). It preserves the complex structure I1 and rotates I2, I3. The
action complexifies to a natural C

∗-action on MHod(�, SL(n, C)) covering the stan-
dard C

∗-action on C. A given t ∈ C
∗ acts on an element (∂, D, λ) by

t · (∂, D, λ) = (∂, t D, tλ). (1.6)

Definition 1.5 Let � be a compact Riemann surface and denote by � the conjugate
surface. The Deligne–Hitchin moduli space MDH (�, SL(n, C)) is

MDH (�, SL(n, C)) = (MHod(�, SL(n, C)) ∪̇MHod(�, SL(n, C)))/ ∼,

where

(∂, D, λ) ∼ (λ−1D, λ−1∂, λ−1)

for any (∂, D, λ) ∈ MHod(�, SL(n, C)) with λ �= 0. If we glue stable λ-
connections, then we write Ms

DH (�, SL(n, C)).

Remark 1.6 The projections from the respective Hodge moduli spaces to C glue to give
a holomorphic projection π : MDH (�, SL(n, C)) → CP1. The Deligne–Hitchin
moduli space is a complex space. Its smooth locus Ms

Hod(�, SL(n, C)) coincides
with the twistor space of Mirr

SD(�, SU(n)) ( [28, §4]).

The anti-holomorphic involution τ can be seen via the Riemann–Hilbert corre-
spondence as follows. On MB(�, SL(n, C)) we have the natural anti-holomorphic
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involution which associates to a representation R : π1(�) → SL(n, C) its com-

plex conjugate dual representation γ �→ R(γ )−1
t
, i.e., R is composed with the

Cartan involution corresponding to the compact real form SU(n). Under the Riemann–
Hilbert correspondence MB(�, SL(n, C)) ∼= MdR(�, SL(n, C)) this induces an
anti-holomorphic involution on the space of flat connections and we denote by ∇∗

the flat connection associated to ∇ in this way. It can be interpreted as the connection
on E

∗
induced by ∇, hence the notation. We arrive at the following description of

the anti-holomorphic involution on the Deligne–Hitchin moduli space (see also the
discussion in [28, §4] and [3, §1.4]).

Definition 1.7 The Deligne–Hitchin moduli space comes with the following involu-
tions.

(i) We have the involution N given by the action of (−1) ∈ C
∗:

N : MDH (�, SL(n, C)) → MDH (�, SL(n, C)), [(∂, D, λ)] �→ [(∂,−D,−λ)].

(ii) We have an anti-holomorphic involution τ , covering the antipodal involution λ �→
−λ

−1
.

τ : MDH (�, SL(n, C)) → MDH (�, SL(n, C)),

[(∂, D, λ)] �→ [(λ−1
D

∗
,−λ

−1
∂

∗
,−λ

−1
)] = [(∂∗

,−D
∗
,−λ̄)].

(iii) From N and τ we get a further anti-holomorphic involution ρ = τ ◦ N = N ◦
τ : MDH (�, SL(n, C)) → MDH (�, SL(n, C)) covering the inversion at the

unit circle λ �→ λ
−1

.

It is easily checked that the involutions τ and ρ are compatible with the C
∗-action

in the following sense. If σ ∈ {ρ, τ } and t ∈ C
∗, then

σ(t · (∂̄, D, λ)) = t−1 · σ(∂̄, D, λ). (1.7)

1.2 Sections of the Deligne–Hitchinmoduli space

In this subsection we recall some concepts and definitions from [3].

Definition 1.8 We call a holomorphic section s : CP1 → MDH (�, SL(n, C)) (i.e.,
a holomorphic map such that π ◦ s = idCP1 ) irreducible if the image of s is contained
in Ms

DH (�, SL(n, C)).

Remark 1.9 Note that we could also call such sections stable by Remark 1.2.

For every k ∈ N ∪ {∞}, λ-connections of class Ck , instead of C∞, are defined in
an obvious way. Also, the notion of holomorphic λ-connections of class Ck is defined
correspondingly. The next lemma shows their relation to (local) irreducible sections.
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Lemma 1.10 [3, Lemma 2.2] Let s : B → Ms
DH (�, SL(n, C)) be an irreducible

section where B ⊂ CP1 is an open neighborhood of 0 ∈ CP1. For every k ∈ N
≥2,

there exists a holomorphic lift

ŝ(λ) = (
∂(λ), D(λ), λ

) =
⎛
⎝∂ +

∞∑
j=1

λ j� j , λ∂ + 
 +
∞∑
j=2

λ j
 j , λ

⎞
⎠ , λ ∈ B ′

(1.8)
of s to the space of holomorphic λ-connections of class Ck. Here B ′ ⊂ B is an open
neighborhood of 0 which equals B if B � CP1 and equals C if B = CP1. In the
latter case, there also exists a lift −ŝ on CP1 \ {0}.
Remark 1.11 The proof in [3] is formulated for SL(2, C) and global irreducible sec-
tions but generalizes to the setup of Lemma 1.10. Note that if B is sufficiently small,
any irreducible section s on B admits a lift to the space of holomorphic λ-connections
of class C∞. We lose regularity when such local lifts are glued together over larger B
though, see [3] for details.

We further observe that if s : B → MDH (�, SL(n, C)) is a local section around
0 ∈ CP1 such that s(0) is a stable Higgs bundle, then there is an open neighborhood
B ′ ⊂ B of 0 such that s|B′ maps to Ms

DH (�, SL(n, C)). In particular, the germs of
such sections always admit lifts to the space of holomorphic λ-connections.

Finally, the above lemma applies for sections locally defined around ∞ ∈ CP1 in
the obvious way.

Given an irreducible holomorphic section s with lifts ŝ, −ŝ over C and CP1 \ {0}
respectively, we will often work with the associated C

∗-family of flat connections

+∇ = ∂̄(λ) + λ−1D(λ) = λ−1
 + ∇ + · · ·

and −∇ defined similarly over CP1 \ {0,∞}. Here we write ∇ = ∂̄ + ∂ in the
notation of Eq. (1.8). One can show [3], that there exists a holomorphic C

∗-family
g(λ) of GL(n, C)-valued gauge transformations, unique up to multiplication by a
holomorphic scalar function, such that +∇λ.g(λ) = −∇λ.

Irreducible holomorphic sections corresponding to solutions of the self-duality
equations have the special property that we have lifts such that +∇ = −∇ on C

∗, i.e.,
we can arrange g ≡ idE in the above discussion. This is axiomatised as follows.

Definition 1.12 We call a holomorphic section s of MDH (�, SL(n, C)) admissible
if it admits a lift ŝ on C of the form

ŝ(λ) = (∂ + λ�, λ∂ + 
, λ)

for a Dolbeault operator ∂ of type (0, 1), a Dolbeault operator ∂ of type (1, 0), a (1, 0)-
form 
 and a (0, 1)-form �, such that (∂,
) and (∂,�) are semi-stable Higgs pairs
on � respectively �.

In the rank 2 case the family of gauge transformations g(λ) such that +∇ · g = −∇
can be used to define the following invariant of an irreducible section s.
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Definition 1.13 Let s be an irreducible section ofMDH (�, SL(2, C)) with associated
families +∇ and −∇ over C and CP1 \ {0} respectively. Consider a holomorphic C

∗-
family g(λ) of GL(2, C)-valued gauge transformations such that +∇λ · g(λ) =− ∇λ.
The parity of s is the parity of the degree of the holomorphic function det g : C

∗ → C
∗.

Remark 1.14 (i) We remark that the parity of an irreducible section s is zero, if and
only if we can arrange the family g(λ) gauging +∇ to −∇ to be SL(2, C)-valued.
In particular, any admissible section has parity zero.
In higher rank n > 2 one can construct a similar invariant given by deg(det g)
mod n ∈ Z/nZ. For groups other than SL(n, C) it is not obvious what an appro-
priate generalisation of this invariant might be.

(ii) Let s be an irreducible holomorphic section which is not admissible. Consider
the holomorphic family g(λ) : � × C

∗ → GL(2, C) such that +∇ · g(λ) = −∇
and interpret this as a map g : � → �GL(2, C). Here �GL(2, C) is (a suitable
Sobolev completion of) the group of holomorphic maps C

∗ → GL(2, C). Then it
is shown in [3, Proposition 2.7.] that g(�) ⊂ �GL(2, C) cannot be fully contained
in the big cell of loops that admit a Birkhoff factorization of the form g = g+g−,
where g+, g− extends holomorphically to λ = 0, λ = ∞ respectively. In other
words, for a non-admissible section there is a non-empty subset γ ⊂ � on which
we cannot write g = g+g−.

Definition 1.15 Let σ ∈ {τ, ρ}, where τ and ρ denote the anti-holomorphic involutions
defined in Definition 1.7. A holomorphic section s : CP1 −→ MDH (�, SL(n, C))

of the fibration π : MDH (�, SL(n, C)) −→ CP1 is called it real with respect to σ ,
or just σ -real, if s(λ) = σ(s (̃σ (λ))) for all λ ∈ CP1, where σ̃ : CP1 → CP1 is the
induced involution.

If we have a lift ∇λ on C ⊂ CP1 of a σ -real holomorphic section s, then for every
λ ∈ C

∗ there is a gauge transformation g(λ) such that the following equation holds

∇λ.g(λ) = ∇ σ̃ (λ)
∗
. (1.9)

If s is σ -real and irreducible of parity 0, we can choose the family of gauge trans-
formations g(λ) in (1.9) to depend holomorphically on λ and may assume that it takes
values in SL(2, C). By irreducibility, the holomorphic family g(λ) is then uniquely
determined up to a sign. By [3, Lemma 2.15] the following definition makes sense.

Definition 1.16 Let σ ∈ {τ, ρ} and consider an irreducible σ -real holomorphic sec-
tion s : CP1 → MDH (�, SL(2, C)) of parity 0. Let ∇λ be a lift of s over C and
let g(λ), λ ∈ C

∗, be a holomorphic family of SL(2, C)-valued gauge transforma-

tions such that (1.9) holds. Then s is called σ -positive if −g(λ)g(̃σ (λ))−1
t = Id and

σ -negative if −g(λ)g(̃σ (λ))−1
t = −Id.

Remark 1.17 (i) The signs in Definition 1.16 are chosen to be consistent with [3],
where the fact that an SL(2, C) bundle is isomorphic to its dual is incorporated
into the definition, see [3, §1.6] for details.
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(ii) If (∂̄,
) is a solution to the SU(2)-self-duality equations, the associated twistor
line is given by the C

∗-family of flat SL(2, C)-connections

∇λ = λ−1
 + ∇h + λ
∗h .

It is shown in [3, Theorem 3.6] that the irreducible solutions of the self-duality
equations correspond precisely to the admissible, irreducible τ -negative sections
CP1 → MDH (�, SL(2, C)). By the non-abelian Hodge correspondence, these
correspond to equivariant harmonic maps f : �̃ → H3 = SL(2, C)/SU(2).

(iii) On the other hand, ρ-negative sections CP1 → MDH (�, SL(2, C)) are auto-
matically admissible and correspond to equivariant harmonic maps f : �̃ →
S3 = SU(2). These are obtained from solutions to the harmonic map equations

F∇h − [
 ∧ 
∗h ] = 0,

∂̄
 = 0.
(1.10)

The associated sections are of the form ∇λ = λ−1
 + ∇h − λ
∗h .

1.3 Twisting

We briefly review the twisting or Gauß map procedure that played a central role in
the construction of τ -positive holomorphic sections of MDH (�, SL(2, C)) in [3].
Starting from an irreducible solution (∇̃, 
̃) to the SU(2)-harmonic map Eq. (1.10)
with nilpotent Higgs field, one considers the associated family of flat connections

∇̃λ = ∇̃ + λ−1
̃ − λ
̃∗.

Denote by L the kernel bundle of 
̃, so that we get a smooth splitting E = L⊕L⊥. To
this family ∇̃λ of flat connections, one associates a new family ∇λ of flat connections
by twisting, which is given by

∇λ = ∇λ2 · h(λ),

where

h(λ) =
(

1√
λ

0

0
√

λ

)

is written with respect to the splitting E = L ⊕ L⊥. In [3] it was shown that the
so defined C

∗-family of flat connections extends to define an irreducible, admissible
holomorphic section over all of CP1. In this section we study this procedure more
systematically.
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Let s : CP1 → MDH (�, SL(n, C)) be a holomorphic section. Then we may use
the C

∗-action to define a new holomorphic section s̃ over C
∗:

s̃ : C
∗ → MDH (�, SL(n, C)), s̃(λ) = λ−1 · s(λ2).

Since the C
∗-action on MDH (�, SL(n, C)) covers the obvious one on CP1 = C ∪

{∞} it is clear that s̃ is a holomorphic section over C
∗. It is a natural question to

ask under what conditions on s the twisted section s̃ extends to define a holomorphic
section s̃ : CP1 → MDH (�, SL(n, C)).

Definition 1.18 We call a holomorphic section s : CP1 → MDH (�, SL(n, C))

twistable if s̃ : C
∗ → MDH (�, SL(n, C)), λ �→ λ−1.s(λ2), extends to a holomorphic

section s̃ : CP1 → MDH (�, SL(n, C)), which we call the twist of s.

Remark 1.19 In terms of λ-connections, we can view the construction of the twist as
follows. Write

s(λ) = [(∂(λ), D(λ), λ)].

Then for λ ∈ C
∗

s̃(λ) = λ−1 · s(λ2) = λ−1 · [(∂(λ2), D(λ2), λ2)] = [(∂(λ2), λ−1D(λ2), λ)].

The construction of [3] suggests that there exists a transformation from the space
of ρ-real twistable sections to the space of τ -real sections. The precise result is as
follows.

Proposition 1.20 i) Suppose that s : CP1 → MDH (�, SL(n, C)) is a twistable
holomorphic section. Then the twist s̃ is N-invariant.

ii) Suppose that s : CP1 → MDH (�, SL(n, C)) is a ρ-real twistable holomorphic
section. Then the twist s̃ is again ρ-real and moreover N-invariant, hence τ -real.

iii) Suppose that s : CP1 → MDH (�, SL(n, C)) is a τ -real and N-invariant
twistable holomorphic section. Then the twist s̃ is again τ -real and moreover
N-invariant.

Proof (i) We have by definition s̃(λ) = λ−1 · s(λ) and so

s̃(−λ) = (−λ−1) · s((−λ)2) = (−λ)−1s(λ2) = (−1) · λ−1 · s(λ2) = N (s̃(λ)).

(ii) We have s̃(λ) = λ−1 · s(λ). Therefore

ρ(s̃(λ)) = ρ(λ−1 · s(λ2)) = λ · ρ(s(λ2)) = λ · s(λ−2
) = s̃(λ

−1
)

Thus, using (i),

τ(s̃(λ)) = N (ρ(s̃(λ))) = N (s̃(λ
−1

)) = s̃
(
−λ

−1
)

.
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(iii) Since the section s is τ -real and N -invariant, it must be ρ-real, since

ρ(s(λ)) = N (τ (s(λ))) = N (s(−λ
−1

) = s(λ
−1

).

By part (ii) the twist s̃ is therefore again τ -real and N -invariant. ��
Remark 1.21 (i) In part (iii) of Proposition 1.20 the assumption that the τ -real section

s is moreover N -invariant is needed due to Eq. (1.7) with σ = τ . In general we

get τ(s̃(λ)) = λ · s(−λ
−2

) and the N -invariance then ensures the τ -reality of s̃.
(ii) Theorem 3.4 in [3] can be interpreted as the statement that, in the SL(2, C)-case, an

irreducible admissible ρ-negative section s with nilpotent Higgs field is twistable
and that the twist s̃ is τ -positive.

The following proposition describes a class of twistable sections in the SL(2, C)-
case.

Proposition 1.22 Let s : CP1 → MDH (�, SL(2, C)) be an irreducible holomorphic
section such that the stable Higgs pairs s(0) = (∂,
+) and s(∞) = (∂,
−) on �

and � have nilpotent Higgs fields. Then s is twistable and the twist s̃ is an irreducible
section of MDH (�, SL(2, C)).

Proof We need to prove that λ �→ s̃(λ) extends to λ = 0,∞. Both cases work
analogously, so we only deal with λ = 0. Let us consider a lift ∇λ of s over {λ �=
∞} ⊂ CP1 given by

∇λ = λ−1
+ + ∇ +
∞∑
k=1

λk�k .

Here 
+ ∈ 	1,0, and �k ∈ 	1 for k ≥ 1. Then by Remark 1.19 we get a lift of s̃ over
C

∗ by

∇̃λ = λ−2
+ + ∇ +
∞∑
k=1

λ2k�k .

The section s̃ extends to λ = 0 if we can find a C
∗-family h(λ) of complex gauge

transformations such that

∇̃λ · h(λ) = λ−1
̃ + ∇̃ +
∞∑
k=1

λk�̃k

and the Higgs pair s̃(0) = (∂̄ ∇̃ , 
̃) is stable. If 
+ = 0 there is nothing to prove,
so let us assume 
+ �= 0. By assumption 
+ is nilpotent, so let us denote by L
its kernel bundle, which must satisfy deg L < 0, since (∂̄∇ ,
+) is a stable Higgs
pair by irreducibility of the section s (see Definition 1.8 and Remark 1.2). Take a
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complementary bundle L⊥. Then, with respect to the splitting E = L ⊕ L⊥, we can
take

h(λ) =
(

λ−1 0
0 1

)
,

and get with


+ =
(

0 φ

0 0

)

the equation


+ · h(λ) := h(λ)−1
+h(λ) = λ
+.

The flatness of ∇λ implies 0 = d∇
+ = ∂
∇

+, so that ∇ must be of the form

∇ =
(∇L α

β ∇L⊥

)
,

with β ∈ 	1,0(Hom(L, L⊥)). Then, writing

�1 =
(

ψ11 ψ12
ψ21 ψ22

)
,

we get

∇ · h(λ) =
( ∇L λα

λ−1β ∇L⊥

)
, h(λ)−1�1 · h(λ) =

(
ψ11 λψ12

λ−1ψ21 ψ22

)
.

With this the lift ∇̃λ transforms to

∇̃λ.h(λ) = λ−2
+ · h(λ) + ∇ · h(λ) + λ2�1 · h(λ) +
∞∑
k=2

λ2k�k · h(λ)

= λ−1
(

0 φ

β 0

)
+

(∇L 0

0 ∇L⊥

)
+ λ

(
0 α

ψ21 0

)
+

∞∑
k=2

λk�̃k .

It now follows just like in the proof of [3, Theorem 3.4.] that the section s̃ extends to
λ = 0 and that s̃(0) is a stable Higgs pair. Moreover, for any λ �= 0 the connection
∇̃λ = ∇λ2

is irreducible, which implies that also ∇̃λ.h(λ) is irreducible. Altogether
this shows that s̃ is an irreducible section. ��

We expect that a similar construction works for n > 2 as well. The main difficulty
is to verify the stability of s̃(0) and s̃(∞) which is more involved for general n > 2.
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2 The energy functional

2.1 The definition of the energy functional

Consider a holomorphic section s : CP1 → MDH (�, SL(n, C). Assume that s(0) is
a stable Higgs pair. We shall denote the space of such sections by S. By Remark 1.11
there exists an neighbourhood B of 0 ∈ CP1 and a lift

ŝ(λ) = (∂ + λ� + . . . , 
 + λ∂ + · · · , λ), λ ∈ B

to the space of λ-connections with associated family of flat connections

∇λ = λ−1
 + ∇ + λ� + · · · , λ ∈ B \ {0}.

Here 
 ∈ 	1,0(sl(E)),� ∈ 	0,1(sl(E)) and ∇ = ∂̄ + ∂ is an SL(n, C)-connection.
We have seen in Lemma 1.10 that we can even find a global lift (i.e., B = C) if the
section s is irreducible.

Consider

E(̂s) := 1

2π i

∫
�

tr(
 ∧ �). (2.1)

Proposition 2.1 The quantity E(̂s) is independent of the choice of local lift ŝ of the
local section s. It defines a function E : S → C

E : S → C

E(s) := E(̂s).

The function E : S → C is holomorphic in the following sense: if T is a complex
manifold and s : T → S, t �→ st is a holomorphic family of sections, then the function
E ◦ s : T → C, t �→ E(st ) is holomorphic.

Proof Write ŝ = (∂ + λ� + · · · ,
 + λ∂ + . . . , λ) as above. Let ŝ · g be another lift
of s, where g is a λ-dependent family of gauge transformations

g(λ) = g0 + λg1 + · · · ,

defined in a neighbourhoof of 0 ∈ C. We split g(λ) into the product of a constant gauge
transformation and a gauge transformation which equals the identity for λ = 0:

g(λ) = g0(g
−1
0 g(λ)).

It is clear that E(̂s.g0) = E(̂s), since 
 and � are just conjugated by g0. Thus, we
may assume that g0 = 1. Then

g(λ) = 1 + λg1 + · · · , g−1(λ) = 1 − λg1 + · · · .
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Thus,

ŝ(λ).g(λ) = (∂̄ + λ(� − ∂̄g1) + · · · ,
 + λ∂ + · · · , λ)

It then follows from Stokes’ theorem and ∂̄
 = 0 that

E(̂s · g(λ)) =
∫

�

tr(
 ∧ (� − ∂̄g1)) = E(̂s).

The holomorphicity ofE as stated in the Proposition follows directly from the definition
of E . ��

Definition 2.2 We call E the energy functional on the space S of holomorphic sec-
tions of MDH (�, SL(n, C)) admitting a local lift to the space of holomorphic
λ-connections near λ = 0.

Remark 2.3 (i) For the definition of E(s) we do not have to require the Higgs pair
s(0) to be stable. We have just made this assumption to streamline the exposition.
The proof of Proposition 2.1 works without modification for any local section s
for which there exists a lift ŝ to the space λ-connections in a neighbourhood of
0 ∈ CP1. In particular we can define the energy of an admissible section, and in
particular of a twistor line.

(ii) It is immediate from the definition that the energy functional E does only depend
on the complex analytic structure of the Deligne–Hitchin moduli space, and not
on the identification of MDH (�, SL(n, C)) with the twistor space of the Higgs
bundle moduli space.

(iii) The existence and relevance of such a functional is implicitly contained in [19,
Theorem 13.17] and [2, Theorem 9] for the case of tori, and [16, Theorem 8] for
holomorphic sections in certain equivariant moduli spaces.

The name energy functional is motivated by the following observation.

Theorem 2.4 Let s be a twistor line of MDH (�, SL(2, C)) → CP1 corresponding
to an equivariant harmonic map f : �̃ → H3, where H3 is equipped with its constant
sectional curvature −1 metric. Then

E(s) = − 1
4π

energy( f ),

where energy( f ) is the energy of f on �. In particular, if s is a twistor line, then
E(s) ≤ 0.

Likewise, for a ρ-negative holomorphic section s of MDH (�, SL(2, C)) → CP1

corresponding to an equivariant harmonic map to SU(2) (equipped with its constant
sectional curvature 1 metric) we have

E(s) = 1
4π

energy( f ).
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Proof Take the associated family of flat connections, which provides us with a natural
lift of such a (τ - or ρ-)real holomorphic section (see Remark 1.17). The theorem then
follows by interpreting the Higgs field as the (1, 0)-part of the differential of the map
f , see [9,18]. ��
Remark 2.5 Analogous formulas hold for the case of equivariant harmonic maps of �

into the anti-de Sitter space SL(2, R) and into the de Sitter space SL(2, C)/SL(2, R).

Proposition 2.6 Let σ ∈ {ρ, τ } and let s : CP1 → MDH (�, SL(n, C) be an admis-
sible holomorphic section. Then we have for the section σ ∗s = σ ◦ s ◦ σ̃

E(σ ∗s) = E(s).

In particular, if s is σ -real, then its energy E(s) is real.

The last statement is generalized to arbitrary holomorphic τ -real sections in Sect. 3
(cf. Lemma 3.6) and Corollary 3.11).

Proof Since s is admissible, we may find a global lift ŝ with associated C
∗-family ∇λ

of flat connections of the form

∇λ = λ−1
 + ∇ + λ�,

where 
 ∈ 	1,0(�, sl(E)),� ∈ 	0,1(�, sl(E)). Then σ ∗s = σ ◦ s ◦ σ̃ has a lift
given by

σ ∇λ = ∇ σ̃ (λ)
∗ = −σ̃ (λ−1)
∗ + ∇∗ − σ(λ)�∗ =

{
λ−1�∗ + ∇∗ + λ
∗, σ = τ

−λ−1�∗ + ∇∗ − λ
∗, σ = ρ
.

It follows that

E(σ ∗s) = 1

2π i

∫
�

tr(�∗ ∧ 
∗)

= − 1

2π i

∫
�

tr(
 ∧ �) =
(

1

2π i

∫
�

tr(
 ∧ �)

)
= E(s).

��

2.2 The effect of twisting on the energy

In this paragraph we investigate how the energy functional behaves under the twisting
construction introduced in Sect. 1.3.

Proposition 2.7 Let s : CP1 → MDH (�, SL(2, C)) be an irreducible holomorphic
section such that the stable Higgs pairs s(0) = (∂,
+) and s(∞) = (∂,
−) on �

and � have nilpotent Higgs fields. Then the energy of the twisted section s̃ is given by

E(s̃) = 2E(s) − deg L,
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where L is the kernel bundle of 
+.

Proof By Proposition 1.22 we know that s is twistable. With the same notation as in
the proof of Proposition 1.22 we have a lift of the form

∇̃λ = ∇λ2 · h(λ) = λ−1
̃ + ∇̃ + λ�̃1 +
∞∑
k=2

λk�̃k,

where


̃ =
(

0 φ

β 0

)
, ∇̃ =

(∇L 0

0 ∇L⊥

)
, �̃1 =

(
0 α

ψ21 0

)
.

Let us for convenience relabel ψ = ψ21. The energy of s is given by

E(s) = E(̂s) = 1

2π i

∫
�

tr(
 ∧ �) = 1

2π i

∫
�

φ ∧ ψ.

The energy of the twist is

E(s̃) = E(̂s̃) = 1

2π i

∫
�

tr(
̃ ∧ �̃)

= 1

2π i

∫
�

(φ ∧ ψ + β ∧ α) = E(s) + 1

2π i

∫
�

β ∧ α.

Since ∇̃λ is flat for all λ ∈ C
∗, we see

0 = F ∇̃λ

= λ−1d∇̃
̃ +
(
F ∇̃ + [
̃ ∧ �̃1]

)

+
∞∑
k=1

λk

⎛
⎝d∇̃�̃k + [
̃ ∧ �̃k+1] + 1

2

k∑
j=1

[�̃ j , �̃k− j ]
⎞
⎠

= λ−1d∇̃
̃ +
(
F∇L + φ ∧ ψ + α ∧ β ∗

∗ ∗
)

+
∞∑
k=1

λk

⎛
⎝d∇̃�̃k + [
̃ ∧ �̃k+1] + 1

2

k∑
j=1

[�̃ j , �̃k− j ]
⎞
⎠ .

Thus, F∇L + φ ∧ ψ + α ∧ β = 0, i.e.,

β ∧ α = F∇L + φ ∧ ψ.
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It follows that

E(s̃) = E(s) + 1

2π i

∫
�

β ∧ α = E(s) + 1

2π i

∫
�

(F∇L + φ ∧ ψ) = 2E(s) − deg L.

��
Corollary 2.8 Consider an irreducible, ρ-real, admissible holomorphic section s :
CP1 → MDH (�, SL(2, C)) given by a family of flat connections

∇λ = λ−1
 + ∇ − λ
∗,

where 0 �= 
 ∈ 	1,0(sl(E)) is nilpotent and (∇,
) is an irreducible solution of the
harmonic map Eq. (1.10). Then the energy of the twisted section s̃ satisfies

E(s̃) > | deg L| > 0,

where L denotes the kernel bundle of 
. In particular, the τ -real section s̃ cannot be
a twistor line.

Proof By Theorem 2.4 we know that E(s) > 0, since 
 �= 0. The energy of the twisted
section s̃ is then (note that deg L < 0 by irreducibility)

E(s̃) = 2E(s) − deg L > | deg L| > 0.

We know from Proposition 1.20 that s̃ is τ -real since s is ρ-real. But for a twistor line
the energy is negative, while we have just seen that E(s̃) > 0. Hence s̃ cannot be a
twistor line. ��
Remark 2.9 The proof of [3, Theorem 3.4] has two steps: first an irreducible ρ-real
section s with nilpotent Higgs field corresponding to a solution of the Eq. (1.10) is
constructed. Then it is shown that the twist s̃ is an admissible τ -positive section, and
therefore cannot be a twistor line. The above corollary simplifies the second step by
showing instead E(s̃) > |deg(L)| > 0 and applying Theorem 2.4.

3 Interpretation of the energy via the hyperholomorphic Line bundle

We have defined the energy functional on the space of holomorphic sections of the
Deligne–Hitchin moduli space Mirr

DH → CP1. In this section we will see that it
is in fact a natural functional on the space of holomorphic sections of the twistor
space Z(M) → CP1 of any hyper-Kähler manifold M with a circle action that
induces a standard rotation of the S2 of complex structures. The crucial tool is the
hyperholomorphic line bundle introduced by Haydys [12] which was given a twistorial
description by Hitchin [20].

More precisely, let (M4k; g, I1, I2, I3) be a hyper-Kähler manifold with corre-
sponding Kähler forms ω j , j = 1, 2, 3. Suppose that M comes equipped with an
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isometric circle action which preserves ω1 and rotates ω2, ω3, i.e.,

LXω1 = 0, LXω2 = −ω3, LXω3 = ω2, (3.1)

where X is the vector field induced by the circle action.
Let μ : M → iR be the moment map corresponding to ω1. Haydys has shown that

the two-form1 ω1 + iddc1μ is of type (1, 1) with respect to each I j , j = 1, 2, 3. In
particular, if [ω1/2π ] ∈ H2(M, Z), then there exists a line bundle LM → M such
that c1(LM ) = [ω1/2π ] which carries a unitary connection with curvature equal to
ω1 + iddc1μ. Such line bundles are unique up to tensor product with a flat line bundle
on M and we fix one in the following. By Haydys’ result this connection is hyper-
holomorphic: it induces a holomorphic structure on L with respect to each complex
structure in the S2-family of compatible complex structures. The hyperholomorphic
line bundle LM induces a holomorphic line bundle LZ → Z on the twistor space
πZ : Z = Z(M) → CP1 of M , which is trivial on the twistor lines.

Remark 3.1 We emphasize that for the existence of LM , and hence LZ , it is sufficient
to work with iXω1 instead of the moment map (also see [24]).

3.1 Meromorphic connections on LZ

Before we define the energy functional in general, we need some background on
meromorphic connections on LZ complementing the results of [20]. The line bundle
LZ corresponds to the Lie algebroid

0 OZ T PZ/C
∗ TZ 0 (3.2)

where PZ is the principal C
∗-bundle corresponding to LZ and T PZ/C

∗ is the vector
bundle on Z whose sections correspond to the C

∗-invariant vector fields on PZ . For
later reference we denote the extension class of (3.2) by ηZ ∈ H1(Z , T ∗

Z ). Since
T PZ/C

∗ is a Lie algebroid, ηZ actually lies in (the image of) H1(Z , T ∗
Z ,cl) for the

closed 1-forms T ∗
Z ,cl . That is, ηZ can be represented by a Čech cocyle with values in

the sheaf of closed one-forms.
Hitchin observed thatηZ is of a special form if additionally H1(M, C) = 0. Namely,

let Y ∈ H0(Z , TZ ) be the holomorphic vector field induced by the circle action lifted
to the twistor space Z . After applying Möbius transformations, we may assume that
the circle action satisfies

dπZ (Y ) = s := π∗
Z

(
iλ

d

dλ

)
∈ H0(Z , π∗O(2)). (3.3)

1 As usual, we write dcj = I j ◦ d ◦ I j for j = 1, 2, 3. Also note that both Haydys and Hitchin work with
R-valued moment maps explaining our additional factor i , for example i dμ = iXω1.
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If D := D0 + D∞ denotes the divisor determined by the fibers of πZ over 0 and ∞,
then s yields the short exact sequence

0 T ∗
Z T ∗

Z (2) T ∗
Z (2)|D 0.

s (3.4)

In his twistorial approach to LZ , Hitchin constructed a section ϕ ∈ H0(D, T ∗
Z (2)|D),

assuming H1(M, C) = 0, which satisfies

δZ (ϕ) = ηZ , ϕ|TF = − 1
2 iYω|D. (3.5)

Here δZ : H0(D, T ∗
Z (2)|D) → H1(Z , T ∗

Z ) is the connecting homomorphism in the
long exact sequence associated to (3.4), TF = ker dπZ is the tangent bundle along the
fibers of πZ and

ω = (ω2 + iω3) + 2iλω1 + λ2(ω2 − iω3) ∈ H0(Z ,�2T ∗
Z (2)). (3.6)

We next show that ϕ satisfying (3.5) is essentially unique.

Proposition 3.2 Let M be a connected hyper-Kähler manifold with a circle action as
before. Additionally assume that [ω1/2π ] ∈ H2(M, Z). Then the space

{ϕ ∈ H0(D, T ∗
Z (2)|D) | ϕ satisfies (3.5)}

is an affine complex line if non-empty (e.g., if H1(M, C) = 0). Each such ϕ determines
a unique meromorphic connection ∇ϕ on LZ with simple poles along D with

resD(∇ϕ) = ϕ ∈ H0(D, T ∗
Z (2)|D) (3.7)

and non-singular otherwise.

The existence of a meromorphic connection ∇ϕ with (3.7) already appeared in [20]
but we include its proof for completeness.

As a preparation we give the proof of the following well-known lemma.

Lemma 3.3 Let πZ : Z → CP1 be the twistor space of a connected hyper-Kähler
manifold M. Then H0(Z ,�kT ∗

Z ) = 0 = H0(Z ,�kT ∗
F ) for all k ≥ 1 and in particular

H0(Z ,OZ ) = C.

Proof Let α ∈ H0(Z , T ∗
Z ) and let sm : CP1 → Z be the twistor line determined by

m ∈ M . Then sm induces the holomorphic splitting

s∗
mT

∗
Z

∼= s∗
mT

∗
F ⊕ s∗

m(π∗
ZO(−2)) ∼= Nsm ⊕ O(−2) ∼= O(−1)⊕d ⊕ O(−2).

Hence if we restrict α (as a section) to the image sm(CP1) ⊂ Z , we obtain α|sm (CP1) =
0. By varyingm ∈ M , we concludeα = 0. The same argument shows H0(Z ,�kT ∗

Z ) =
0 = H0(Z ,�kT ∗

F ). Since M is connected, it immediately follows that H0(Z ,OZ ) =
C. ��
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Proof of Proposition 3.2 First of all, we consider for each F ∈ {
T ∗
Z , T ∗

F , π∗
Z T

∗
CP1 =

π∗
ZO(−2)

}
the short exact sequence

C•(F) : 0 F F(2) F(2)|D 0.
s (3.8)

These fit into the diagram
0

C•(π∗
ZO(−2))

C•(T ∗
Z )

C•(T ∗
F )

0

(3.9)

with exact rows and columns. Next we consider (parts of) the corresponding long
exact sequences. Since H0(Z , T ∗

Z ) = 0 = H0(Z , T ∗
F ) and H0(Z ,OZ ) = C, we

obtain the following diagram2

C H0(OD) H1(π∗
ZO(−2))

H0(T ∗
Z (2)) H0(T ∗

Z (2)|D) H1(T ∗
Z )

H0(T ∗
F (2)) H0(T ∗

F (2)|D) H1(T ∗
F )

δZ

r

(3.10)

Now let ϕ, ϕ′ ∈ H0(T ∗
Z (2)|D) satisfy (3.5) and set c := ϕ − ϕ′. By assumption,

we have δZ (c) = 0 and r(c) = 0. Therefore the exactness of (3.10) implies that
c ∈ H0(Z ,OZ ) = C. To make this more explicit for later purposes, note that OD

appearing in (3.10) is actually π∗ (O(−2) ⊗ O(2))|D . Using γ := π∗
Zdλ ⊗ π∗

Z
∂
∂λ

as
trivializing section3, we have

c �→ (c γ|D0 , c γ|D∞) ∈ H0(D0, T
∗
Z (2)|D0) ⊕ H0(D∞, T ∗

Z (2)|D∞) (3.11)

under the inclusion C ↪→ H0(T ∗
Z (2)|D) in (3.10). In that sense ϕ ∈ H0(Z , T ∗

Z (2)|D )

satisfying (3.5) is unique up to an additive constant.
For the last statement, assume ϕ ∈ H0(D, T ∗

Z (2)|D) with (3.5) exists. This is the
case, for example, if H1(M, C) = 0. Then choose an appropriate open covering U of

2 We drop the spaces from the notation to simplify notation.
3 Note that we pullback dλ as a 1-form but ∂

∂λ
as a section.
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Z such that ϕ|U∩D lifts to ϕU ∈ H0(U , T ∗
U (2)) for every U ∈ U . By (3.5), the cocycle

ηUV = ϕU
s − ϕV

s

is a Čech cocycle representing ηZ = δZ (ϕ) ∈ H1(Z , T ∗
Z ). But ηZ is determined by

the line bundle LZ so that ηUV = g−1
UV dgUV for a Čech cocyle gUV defining LZ .

Altogether
g−1
UV dgUV = ηUV = ϕU

s − ϕV
s

so that ϕU
s are connection 1-forms of a meromorphic connection ∇ϕ on LZ with the

claimed properties.
For the uniqueness of ∇ϕ , let ∇1,∇2 be two meromorphic connections on LZ

with resD(∇1) = resD(∇2) and holomorphic otherwise. Then ∇ := ∇1 ⊗ ∇∗
2 is a

holomorphic connection on LZ ⊗ L∗
Z = OZ . Hence ∇ is of the form d + α for a

global holomorphic 1-form α on Z which must vanish by Lemma 3.3. Consequently,
∇1 and ∇2 are equal. ��

As a next step, we examine how such ϕ interact with the real structure τZ . First
observe that for every ϕ satisfying (3.5), the section

ϕr := 1
2 (ϕ + τ ∗

Zϕ)

again satisfies (3.5) and is further real, i.e.,

τ ∗
Z (ϕr ) = ϕr ⇔ τ ∗

Zϕr
0 = ϕr∞. (3.12)

Since δZ commutes with τZ
∗, it follows that τ ∗

Z (ηZ ) = ηZ and consequently τ ∗
Z LZ ∼=

LZ .

Remark 3.4 Hitchin’s sections ϕ ∈ H0(D, T ∗
Z (2)|D) satisfying (3.5) are real by con-

struction.

For later reference, we record the following observation.

Corollary 3.5 The space

{ϕ ∈ H0(D, T ∗
Z (2)|D) | ϕ satisfies (3.5) and τ ∗

Zϕ = ϕ}

is an affine real line (if non-empty).

Proof By Proposition 3.2, if ϕ, ϕ′ obey (3.5), then ϕ −ϕ′ = c ∈ H0(Z ,O) = C. The
reality condition implies

c = τ ∗
Z (ϕ − ϕ′) = ϕ − ϕ′ = c.

��
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3.2 Residues

For the next proposition, we assume H1(M, C) = 0 so that real sections ϕ ∈
H0(D, T ∗

Z (2)) as in Corollary 3.5 and correspondingly meromorphic connections ∇ϕ

on LZ exist as in Proposition 3.2. Let S be the complex-analytic space of holomorphic
sections of πZ : Z → CP1 and define the function

resϕ : S → C, resϕ(s) := res0(s
∗∇ϕ).

This is well-defined because s∗ϕ0 ∈ H0({0},O) = C. It is immediate that resϕ is
holomorphic in the following sense: if T is a complex manifold and (st : CP1 →
Z)t∈T a holomorphic family of sections of πZ , then

T → C, t �→ resϕ(st )

is holomorphic. We further observe that resϕ(s) is defined for any local holomorphic
section around 0 ∈ CP1.

In case s is a real section defined on all of CP1, then we obtain the following
relation:

Lemma 3.6 If s ∈ SR is a real holomorphic section of πZ , then

resϕ(s) = deg(s∗LZ ) − resϕ(s). (3.13)

In particular, if s is a real holomorphic sectionwith deg(s∗LZ ) = 0, then resϕ(s) ∈ iR.

Proof Since ϕ0 = τ ∗
Zϕ∞, we obtain by the reality of s

resϕ(s) = s∗ϕ0 = s∗τ ∗
Zϕ∞ = τ ∗

CP1s
∗ϕ∞ = res∞(s∗∇ϕ).

The last equation uses again the fact that H0({∞}, C) = C canonically so that the pull-
back along τCP1 has no effect. By the residue formula for meromorphic connections
on line bundles over Riemann surfaces, we have

deg(s∗LZ ) = res0(s
∗∇ϕ) + res∞(s∗∇ϕ). (3.14)

Combining the two formulas, we arrive at (3.13). ��
The previous lemma reflects the fact that resϕ yields a moment map on all connected

components of SR, see Sect. 3.4. To show this and the relation of resϕ to the previously
defined energy functional, we need an explicit formula for resϕ . We begin with the
following lemma (see [20, Lemma 8]).

Lemma 3.7 Let T ∗
Z (2) = T ∗

F (2) ⊕ OZ be the C∞-splitting induced by the C∞-
decomposition Z = M × CP1. Define the section ψ ∈ �(Z , T ∗

F (2) ⊕ OZ ) via

ψ = (
φ
2 , μ), φ = (dc2μ + idc3μ) + 2iλdc1μ + λ2(dc2μ − idc3μ). (3.15)
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Then ψ|D is a holomorphic section of TZ (2)|D and satisfies (3.5).

Proof Let X be the C∞-vector field on M induced by the circle action which we
identify with a C∞-vector field on Z = M × CP1. We denote by X1,0

λ the (1, 0)-part
of X with respect to the complex structure Iλ on M . The holomorphic structure ∂̄Z on
T ∗
Z (2) = T ∗

F (2) ⊕ π∗
ZOCP1 (with respect to the natural C∞-splitting) is given by

∂̄Z (α, u) =
(
∂̄λα, ∂̄λu + iλ−1α

(
∂̄λX

1,0
λ

))
, (3.16)

cf. Eq. (8) after Lemma 7 in [20]. Here we abuse notation and write ∂̄λ also for the
induced complex structure on O(2)-valued one-forms etc.

Let F = ω1 + iddc1μ, the curvature of the hyperholomorphic line bundle on M .
We first prove

∂̄Zψ = (λF, 0) (3.17)

which implies that ψ|D is holomorphic and satisfies the first equation in (3.5), i.e.,
determines the hyperholomorphic line bundle. The first summand in (3.17) is ∂̄λ(

φ
2 ).

Since φ is of type (1, 0) with respect to ∂̄λ for all λ, it follows that ∂̄λφ = (dφ)1,1. But
ddckμ = i ωk , k = 2, 3 so that

dφ = 2iλddc1μ + i (ω2 + iω3) + i λ2(ω2 − iω3). (3.18)

Since ω = (ω2 + iω3)+2iλω1 +λ2(ω2 − iω3) as in (3.6) is of type (2, 0) with respect
to ∂̄λ for every λ, we conclude

∂̄λ

(
φ
2

)
= 1

2 (dφ)1,1 = iλ(ddc1μ − i ω1)
1,1 = λF .

For the second summand in (3.17), we have to show

2iλ∂̄λμ = φ
(
∂̄λX

1,0
λ

)
(3.19)

by (3.16). Since φ is of type (1, 0) with respect to ∂̄λ, we have iXφ = iX1,0
λ

φ and

therefore

φ
(
∂̄λX

1,0
λ

)
= ∂̄λ(iXφ) + iX1,0

λ
∂̄λφ = ∂̄λ(iXφ) + 2λ(iX F)0,1

from (3.17). To evaluate iXφ, observe that

iXd
c
1μ = −i g(X , X), iXd

c
2μ = −i ω3(X , X) = 0, iXd

c
3μ = i ω2(X , X) = 0

and hence iXφ = 2λg(X , X). Further (iX F)0,1 = i ∂̄λ(μ + i g(X , X)) so that

φ(∂̄λX
1,0
λ ) = 2iλ ∂̄λμ (3.20)

and (3.19) is proven.
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It remains to prove that ψ satisfies ψ|TF = 1
2i iYω along D (again for ω as in (3.6)).

Since ψ is real, it suffices to check this equality at λ = 0:

ψ|TD0
= φ

2 |λ=0 = 1
2 (dc2μ + idc3μ) = − i

2 (iYω3 − i iYω2) = − 1
2 iYω.

Here we have used that ω2 + i ω3 is of type (2, 0) along D0 and X1,0
0 = Y . ��

Remark 3.8 For our considerations in Sect. 3.4 we observe that the previous proof
works on any open, not necessarily S1-invariant, subset U ⊂ D with H1(U , R) = 0.
Indeed, under this assumption we always find a Hamiltonian function f with d f =
iXω1. By replacing μ with f , the previous argument provides ϕU ∈ H0(TZ (2)|U ).
The condition H1(M, R) = 0 then guarantees that the ϕU , which differ by a real
additive constant (Corollary 3.5), glue to a global section.

Theorem 3.9 Let Z = Z(M) be the twistor space of a connected hyper-Kähler man-
ifold M with circle action as before with [ω1/2π ] ∈ H2(M, Z) and H1(M, C) = 0.
Let B ⊂ CP1 be an open disk around 0 ∈ CP1 and s : B → Z a local holomorphic
section with s(0) = m ∈ M. Then

resϕ(s) = res0(s
∗∇ϕ) = − 1

2 iYω (ṡ(0) − ṡm(0)) + μ(m), (3.21)

up to a additive constant where sm is the twistor line through m ∈ M andμ : M → iR
the moment map of the circle action.

Remark 3.10 (i) The right-hand side of (3.21) is well-defined because ṡ(0)− ṡm(0) ∈
TF .

(ii) Since the moment map μ : M → iR is only unique up to an additive constant in
iR, the freedom in ϕ reflects the freedom in μ.

Proof We first prove the statement about the additive constant. Let ϕ, ϕ′ ∈
H0(D, T ∗

Z (2)) satisfy (3.5). As we have seen in Corollary 3.5, we have ϕ′ = ϕ + c γ

where c ∈ R and γ = π∗
Zdλ ⊗ π∗

Z
∂
∂λ

, cf. (3.11). But s∗γ = dλ ⊗ ∂
∂λ

∈
H0(CP1,O(−2) ⊗ O(2)), so that

resϕ′(s) = s∗(ϕ + c γ ) = resϕ(s) + c

for any holomorphic section s of πZ .
Hence it is sufficient to prove (3.21) for the section ψ ∈ H0(D, T ∗

Z (2))

of Lemma 3.7. Every twistor line sm induces the same smooth (dual) splitting
θsm : s∗

mTF (2) ⊕ OCP1 → TZ (2) as for the definition of ψ so that we compute

res0(s
∗
m∇ψ) = μ(m).

Let s : B → Z be any local holomorphic section with s(0) = m. It defines the splitting
θs : s∗TF (2) ⊕ OB → s∗TZ (2). Since sm(0) = s(0) we can compare the splittings at
λ = 0 and obtain

θ−1
sm ◦ θs(

∂
∂λ

) = ṡ(0) − ṡm(0) ∈ TD0 . (3.22)
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Now ψ is given in the dual splitting θ∗
sm so that

(s∗ψ)0 = 1
2 φ (ṡ(0) − ṡm(0)) + μ(m)

= − 1
2 iYω (ṡ(0) − ṡm(0)) + μ(m)

by Lemma 3.7 and (3.22). ��

Hence the residue resϕ is natural in several ways. Not only is it essentially inde-
pendent of ϕ or the base point (i.e., 0 or ∞) but it is also the analytic continuation
of the moment map μ : M → iR to the space of all holomorphic sections, where we
identify M with space of the twistor lines.

3.3 Relation to the energy functional

We next explain the relation between the generalized energy functional E and the
residue(s) resϕ if M = Mirr

SD(�, SU(n)) is the smooth locus of MSD(�, SU(n)), the
moduli space of solutions to the self-duality equations with structure group SU(n).
Here we use the notation set up in Sect. 1.1

Recall that the circle action on M is induced by the circle action on C(E) ×
	1,0(�, sl(E)) given by eiα.(∂̄,
) = (∂̄, eiα
). The corresponding vector field X at
a point (∂̄,
) ∈ C × 	1,0(�, sl(E)) is

X(∂̄,
) = d

dt
|t=0(e

it · (∂̄,
)) = (0, i
). (3.23)

Here we have used the identification T(∂̄,
)

(C(E) × 	1,0(�, sl(E))
) = 	0,1(�,

sl(E)) ⊕ 	1,0(�, sl(E)). The moment map (with respect to ω1) is given by

μ(∂̄,
) = −
∫

�

tr(
 ∧ 
∗), (3.24)

as follows easily from the explicit form of the metric

g((γ, β), (γ, β)) = 2i
∫

�

tr(γ ∗ ∧ γ + β ∧ β∗). (3.25)

Recall moreover that the holomorphic symplectic 2-form ωC = ω2+iω3 (with respect
to I1) is

ωC((γ1, β1), (γ2, β2)) = 2i
∫

�

tr(β2 ∧ γ1 − β1 ∧ γ2), (3.26)

where (γi , βi ) ∈ 	0,1(�, sl(E)) ⊕ 	1,0(�, sl(E)), i = 1, 2. If (γ, β) ∈
	0,1(�, sl(E))⊕	1,0(�, sl(E)) is an arbitrary tangent vector then (3.23) and (3.26)
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combine to give

iX(∂̄,
)
ωC(γ, β) = ωC(X(∂̄,
), (γ, β)) = ωC((0, i
), (γ, β)) = 2

∫
�

tr(
 ∧ γ ).

(3.27)
The holomorphic line bundle LZ on Z is determined as follows (see [20, §3.7] for
details): by construction, Z = Z+ ∪ Z− where Z+ ∼= MHod(�, SL(n, C)) and
Z− ∼= MHod(�, SL(n, C)). On Z± there is a natural determinant line bundle L±
with fiber (�top ker(D))∗ ⊗�top coker(D) over the isomorphism class [(∂̄, D)] ∈ Z±
of a λ-connection (∂̄, D). Then LZ is obtained by gluing L+ and L∗− over Z+ ∩ Z−.

Corollary 3.11 Let M = Mirr
SD(�, SU(n)), Z = Z(M) = Ms

DH (�, SL(n, C)) the
corresponding twistor space. Further let ∇ψ be the meromorphic connection on LZ

uniquely determined by ψ ∈ H0(Z , T ∗
Z (2)) as in (3.15). If s : B → Z is a local

holomorphic section around 0 ∈ B, then

E(s) = i
2π

resψ(s) (3.28)

where E(s) is the energy functional of Sect. 2.

Proof First of all, let m := [∂̄, 
] := s(0) be the value of s at 0 and sm : B → Z the
corresponding twistor line through m. Further let ŝ(λ) = λ−1
+∇0 +λ� +· · · and
ŝm(λ) = λ−1
 + ∇h + λ
∗ be local lifts of s and sm respectively. In particular, we
have

E(s) = 1
2π i

∫
�

tr(
 ∧ �), (3.29)

˙̂s(0) − ˙̂sm(0) = (� − 
∗, ∂∇0 − ∂∇h
). (3.30)

Hence Theorem 3.9 implies

resψ(s) = − 1
2 iYω (ṡ(0) − ṡm(0)) + μ(m)

= −
∫

�

tr
(

 ∧ (� − 
∗)

) −
∫

�

tr(
 ∧ 
∗)

= −
∫

�

tr (
 ∧ �)

= −2π i E(s).

(3.31)

��
Remark 3.12 (i) We have formulated Corollary 3.11 for the SL(n, C)-case. However,

Corollary 3.11 makes sense for any semisimple complex Lie group GC and the
previous proof stills works once we replace tr by (an appropriate multiple of) the
Killing form. Note that in this case we still have H1(MSD(�,G), C) = {0} by
[4].

123



Energy of sections of the Deligne–Hitchin twistor space 1197

(ii) To our best knowledge, meromorphic connections ∇ϕ in terms of determinant line
bundles have only been given for M = Mirr

SD(�, C
∗) in [22, Theorem 5.13] via

their theory of intersection connections on Deligne pairings. Our results could be
useful to extend [22, Theorem 5.13] to higher rank.

3.4 The energy as amomentmap

Let Z = Z(M) be the twistor space of a connected hyper-Kähler manifold M with
circle action as before with [ω1/2π ] ∈ H2(M, Z) and H1(M, C) = 0. We assume
that there exists a component N of real holomorphic sections of Z → CP1 which
is different from the component M of twistor lines. We further assume that the nor-
mal bundle for any section s ∈ N is the direct sum of O(1) → CP1 and that the
twistor construction [21] yields a positive definite Riemannian metric gN induced by
ω. This implies that the evaluation map for any λ ∈ CP1 of real normal sections is a
local diffeomorphism. Hence, by [21], (N , gN ) extends to a hyper-Kähler manifold
(N ; gN , I N1 , I N2 , I N3 ). The circle action on the twistor space induces a circle action on
N . Indeed, for c ∈ S1 ⊂ C, and the corresponding biholomorphic map 
c : Z → Z ,
we define for a given section s the new section

sc : CP1 → Z , λ �→ 
c
(
s
( 1
cλ

))
.

Clearly, sc is real holomorphic if s is real holomorphic, and because S1 is connected
s and sc are in the same component of real holomorphic sections. This circle action is
again rotating.

Theorem 3.13 Let Z = Z(M) be the twistor space of a connected hyper-Kähler
manifold M with circle action as before with [ω1/2π ] ∈ H2(M, Z) and H1(M, C) =
0. Let N ⊂ S be a component of real holomorphic sections of Z → CP1 such that the
twistor construction of [21] yields a hyper-Kähler manifold (N ; gN , I N1 , I N2 , I N3 ).

Then N has a rotating circle action, and the residue resψ : S → C of the natural
meromorphic connection∇ψ on LZ → Z restricted to N yields a moment map for the
circle actionwith respect toωN

1 . In particular, resϕ is aKähler potential for (N , g, I N2 ).

Note that H1(N , R) might not be zero so that general arguments do not even
guarantee the existence of a moment map on N .

Proof For every s ∈ N , there exist open neighborhoods U ⊂ N , V ⊂ M = Z0 of s
and s(0) respectively such that there is a biholomorphism

� : Z(U ) → Z(V )

of the twistor spaces of U and V . It is compatible with the fibrations to CP1, the real
structures and the twisted relative symplectic forms. Even though U might not be S1-
invariant, there is a holomorphic line bundle LZ(U )—induced by a hyperholomorphic
line bundle LU overU—with a meromorphic connection ∇ϕU as before, cf. Remark 3.1
and 3.8. Theorem 3.9 implies that resϕU : U → iR, s �→ res0(s∗∇ϕU ), satisfies
d resϕN = iXN ω1 where XN is the vector field of the circle action on N .
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On the other hand, if d = deg(s∗LZ ) for any s ∈ N , then

�∗LZ ⊗ π∗
Z(N )O(−d) ∼= LZ(U ) (3.32)

over Z(U ). By Proposition 3.2, the meromorphic connections ∇ϕN and ∇ϕ (tensored
with an appropriate meromorphic connection ∇d on O(−d) if necessary) on LZ(U )

and LZ respectively are exchanged under (3.32) if the additive constants in the residues
ϕU and ψ are appropriately chosen. Hence resψ(s) = resϕU (s) for any s ∈ U up to
an additive constant. Since resψ is globally defined on N , it is a moment map for the
circle action on N .

The second part is now standard, see [21, §3 (E)]. ��

4 The energy and theWillmore functional

We have seen in Theorem 2.4 that for twistor lines the energy E is directly related to the
harmonic map energy of the corresponding equivariant harmonic map. In [14], non-
admissible τ -negative real holomorphic sections of the rank 2 Deligne–Hitchin moduli
spaces have been constructed. These sections correspond to equivariant Willmore
surfaces, for definitions see Sect. 4.2 below. We will exhibit an explicit formula relating
the Willmore energy of the surface with the energy of the corresponding section of
MDH → CP1. Before we can state the main results, we need an auxiliary tool: the
dual surface construction. In the following sections we restrict to rank 2 Deligne–
Hitchin moduli spaces.

4.1 The dual surface construction

Consider a holomorphic section s of the Deligne–Hitchin moduli space. We assume
that s(0) is a stable Higgs pair with nilpotent Higgs field. The section s admits a (local)
lift ∇λ = λ−1
 + ∇ + λ� + · · · such that 
 is nilpotent.

By assumption, the kernel bundle L of 
 has negative degree. Choose a com-
plementary subbundle L and apply the gauge transformation h(λ) = diag(λ−1, 1),
written with respect to L ⊕ L∗ to ∇λ, cf. the proof of Proposition 1.22. In this way,
we obtain a new C

∗-family of flat SL(2, C)-connections

∇̂λ = ∇λ · h(λ). (4.1)

With respect to L ⊕ L∗ we may write


 =
(

0 φ

0 0

)
, ∇ =

(∇L α

β ∇L⊥

)
, � =

(
ψ11 ψ12
ψ21 ψ22

)
,
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with φ ∈ H0(K L−2), β ∈ 	1,0(L2). By a computation analogous to the one in the
proof of Proposition 1.22 we see that

∇̂λ = ∇λ. h(λ) = 
 + ∇ · h(λ) + λ� · h(λ) + · · ·
= λ−1

(
0 0
β 0

)
+

( ∇L φ

ψ21 ∇L⊥

)
+ λ

(
ψ11 α

∗ ψ22

)
+ · · ·

Note that although the corresponding family of λ-connections has a limit as λ → 0,
this family is not the lift of any holomorphic section ŝ : C → MDH , as the Higgs pair

(∂
∇̂
, 
̂) at λ = 0 is unstable: Indeed, we have

∂
∇̂ =

(
∂
L

0

∗ ∂
L⊥

)
, 
̂ =

(
0 0
β 0

)
.

Thus, the holomorphic subbundle L∗ is the kernel bundle of 
̂ and has positive degree.
Still, we can interpret λ �→ ∇̂λ as a map ŝ into the space of holomorphic λ-connections,
and consider its energy E(ŝ) as defined in (2.1). This is well-defined, and invariant
under holomorphic families of gauge transformations λ �→ g(λ) which extend holo-
morphically to λ = 0 (see the proof of Proposition 2.1).

With

�̂ =
(

ψ11 α

∗ ψ22

)

a computation analogous to the proof of Proposition 2.7 yields the following formula
relating the energy of ŝ to that of s. Note that on the right hand side of the formula
E(s) appears with a factor 1 as opposed to the formula in Proposition 2.7.

Proposition 4.1 Let s : CP1 → MDH be an irreducible holomorphic section such
that the stable Higgs pair s(0) = (∂,
) on� has nilpotent Higgs field. Then we have

E(ŝ) = E(s) − deg L,

where L is the kernel bundle of 
 and ŝ is determined by (4.1).

Remark 4.2 Consider an equivariant minimal surface f : �̃ → S3 = SU(2) and the
associated family of flat connections

∇λ = λ−1
 + ∇ − λ
∗,

where (∇,
) is a solution of (1.10). The Higgs field 
 is nilpotent as the surface is
given by a conformal harmonic map, and we can apply the construction (4.1). Denote
the kernel bundle of 
 by L and write with respect to E = L ⊕ L⊥

∇λ = λ−1
 + ∇ − λ
∗ =
( ∇Lα + λ−1φ

−α∗ − λφ∗∇L⊥

)
.
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The dual surface construction then yields the family

∇̂λ =
( ∇L λα + φ

−λ−1α∗ − φ∗ ∇L⊥

)
,

which satisfies the same reality condition as ∇λ, i.e., both are unitary for λ ∈ S1.
Moreover ∇̂λ has nilpotent Higgs field as well. It therefore gives another conformal
harmonic map into S3 = SU(2) which is branched at the zeros of the Hopf differential
of the surface f . This construction is well-known in classical surface theory, and is
sometimes called the parallel or dual surface of the initial minimal surface f , see [23]
and the references therein.

Remark 4.3 Suppose (∇,
) is a solution to the self-duality equations with nilpotent
Higgs field 
 corresponding to an equivariant minimal surface f : �̃ → H3. Let L
again be the kernel bundle of 
. The associated τ -real family of flat connections on
E = L ⊕ L⊥ is of the form

∇λ = λ−1
 + ∇ + λ
∗ =
( ∇L α + λ−1φ

−α∗ + λφ∗ ∇L⊥

)
.

The dual surface construction yields the family

∇̂λ =
( ∇L λα + φ

−λ−1α∗ + φ∗ ∇L⊥

)
. (4.2)

We observe that

∇̂λ
∗ =

(
∇L

∗
λ̄−1α − φ

−λ̄α∗ − φ∗ ∇L⊥∗
)

=
(

∇L
∗ −(−λ̄−1α + φ)

−(λ̄α∗ + φ∗) ∇L⊥∗
)

.

Thus, ∇̂λ satisfies a different reality condition than ∇λ. In fact, it follows that the family
∇̂λ does not give an equivariant harmonic map to H3 but an equivariant harmonic map
�̃ → dS3 = SL(2, C)/SU(1, 1) into the de Sitter space, see [3, Section 3]. Because
the Higgs field

(
0 0
α∗ 0

)

of the family ∇̂λ is also nilpotent the corresponding equivariant harmonic map into de
Sitter space is conformal as well.

The de Sitter space dS3 has the identification as the space of oriented circles on
a fixed 2-sphere. We consider the 2-sphere as the equatorial 2-sphere S∞ in the 3-
sphere which separates two hyperbolic 3-balls. The space of oriented circles C in the
2-sphere can be identified with the space of oriented 2-spheres S in the 3-sphere which
intersect S∞ perpendicularly, i.e., C = S∩ S∞ as oriented submanifolds of S3. In this
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interpretation, the equivariant conformal harmonic map into de Sitter 3-space yields
a map into the space of oriented 2-spheres in the 3-sphere. We will see in Sect. 4.3
below, that the latter map is the mean curvature sphere of the minimal surface f in
H3 ⊂ S3, i.e., the map which associates to a point p of the surface the best touching
2-sphere of f at p.

Let s be a twistor line given by a nilpotent Higgs pair s(0), and apply the dual
surface construction. From (4.2) we can directly compute that E(ŝ) ≥ 0 with equality
if and only if ∇ is reducible, i.e., α = 0. As an application of Proposition 4.1 we
reobtain the well-known energy estimate

0 > E(s) ≥ deg L ≥ 1 − g,

where g is the genus of the surface �.

4.2 TheWillmore functional and the energy of higher sections

A solution (∇,
) of the self-duality equations with nilpotent Higgs field 
 �= 0
gives rise to a branched conformal harmonic map, i.e., an equivariant minimal surface
f : �̃ → H3 with branch points. The basic invariant of the equivariant minimal
surface is the area of a fundamental piece, which is determined by the energy of the
harmonic map, i.e.,

Area( f ) = energy( f ) = −4πE(s),

where s is the τ -real holomorphic section of the Deligne–Hitchin moduli space cor-
responding to the solution (∇,
) of the self-duality equations.

The Willmore energy of a conformal immersion f : �̃ → M into a Riemannian
3-manifold M is given by

W( f ) =
∫

�

(
H2 − K + K̄

)
d A,

where d A is the induced area form, K is the curvature of the induced metric, H =
1
2 tr(I I ) is the mean curvature, i.e., the half-trace of the second fundamental form
I I , and for p ∈ �̃ the quantity K̄ p is the sectional curvature of the tangent plane
T f (p) f (�̃) ⊂ T f (p)M . It was known already to Blaschke that the Willmore functional
for surfaces in R

3 or S3 is invariant under Möbius transformations of the target space. It
was first shown in [8] that the Willmore integrand is actually invariant under conformal
changes of the metric on M .

In the case of an equivariant, immersed minimal surface f : �̃ → H3 into hyper-
bolic 3-space, H = 0 and the Willmore functional therefore equals to

W( f ) = −
∫

�

KdA −
∫

�

d A = 2π(2g − 2) + 4πE(s).
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We apply the dual surface construction (4.1) to the corresponding holomorphic section
s with nilpotent Higgs field 
. We obtain a new family of λ-connections ŝ. Let L be the
kernel bundle of 
. Because 
 can be interpreted as the (1, 0)-part of the differential
of the minimal surface, the zeroes of the Higgs field are branch points of f . Since we
assume that f is not branched, we must have deg(L) = 1 − g. Hence, Proposition 4.1
implies

W( f ) = 4π E(ŝ). (4.3)

The conformally invariant Willmore integrand
(
H2 − K + K̄

)
d A can be gener-

alized to a class of branched conformal maps into the conformal 3-sphere. The extra
assumption is that the mean curvature sphere (the exact definition is given in Sect. 4.3
below) extends through the branch points of the conformal map, see [6] and related
literature. We will see in Sect. 4.3 that this assumption holds for branched minimal
surfaces in hyperbolic 3-space, yielding (4.3) in this more general situation. In fact,
we obtain an equality for the Willmore integrand:

Proposition 4.4 Let f : � → H3 be an equivariant branched minimal surface with
associated C

∗-family of flat connections∇λ. Then the conformally invariant Willmore
integrand is given by

−2i tr(
̂ ∧ �̂),

where ∇̂λ := ∇λ.h(λ) = ∇̂ + λ−1
̂ + λ�̂ is given by the dual surface construction.
In particular

W( f ) = 4πE(ŝ),

where ŝ is the family of λ-connections determined by ∇̂λ.

A proof is given in Sect. 4.3 below using notions from conformal surface geometry.
In [14] it was shown that there exist compact Riemann surfaces � whose associated

Deligne–Hitchin moduli spaces admit τ -negative holomorphic sections s with the
following properties:

(1) The Higgs field 
 is nilpotent, where s(0) = [∂̄, 
];
(2) The section s is not admissible: for a lift ∇λ with ∇ λ̄−1 = ∇λ.g(λ) the Birkhoff

factorization g = g+g− fails along a real analytic (not necessarily connected)
curve γ ⊂ � (see Remark 1.14);

(3) On � \ γ the section s gives rise to an (equivariant) conformal harmonic map
which extends through the boundary 2-sphere at infinity of the hyperbolic 3-space,
yielding a Möbius equivariant Willmore surface f : �̃ → S3 = H3 ∪ S2 ∪ H3.

It is a natural guess that the energy E(s) is related to the Willmore energy of a funda-
mental piece of f . We remark that [2, Theorem 9] can be interpreted as this relation in
the case of � being of genus 1. Our main result here is the following theorem, whose
proof we postpone to Sect. 4.4.
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Theorem 4.5 Let� be a compact Riemann surface. Let s be a τ -negative holomorphic
section of the Deligne–Hitchin moduli spaceMDH (�, SL(2, C) satisfying the above
mentioned properties (1)–(3). Let L be the kernel bundle of the nilpotent Higgs field
of the Higgs pair s(0) = [∂̄, 
]. Then the energy of s is related to the Willmore energy
of a fundamental piece of the surface f by the formula

E(s) = 1
4π

W( f ) + deg(L).

Remark 4.6 This geometric interpretation might have applications in theoretical and
mathematical physics, in particular in the AdS/CFT-correspondence (see for example
[1,25] for more details): Consider a minimal surface in a totally geodesic H3 ⊂ AdS4

which intersects the boundary at infinity. If the surface extends to a Willmore surface
in S3, giving rise to a τ -negative holomorphic section of the Deligne–Hitchin moduli
space of a compact Riemann surface, the finite part of the area functional is given by
the Willmore energy of the surface. If we additionally have a symmetry between the
two pieces of the minimal surface in the two components of H3 in S3 = H3 ∪S2 ∪H3,
the Willmore energy is given in terms of the energy of the section. A similar relation
holds for space-like minimal surfaces in AdS3.

4.3 The lightcone approach to conformal surface geometry

Our proofs of Proposition 4.4 and Theorem 4.5 will use some concepts of conformal
surface geometry in the lightcone model, which we recall here. We refer to [5,7,26]
for details.

Consider R
4,1 with the standard Minkowski inner product

〈., .〉 = −(dx0)
2 + (dx1)

2 + · · · + (dx4)
2

and the lightcone

L = {x ∈ R
4,1 | 〈x, x〉 = 0}.

Then the map R
4 → PR

4,1, (x1, x2, x3, x4) �→ [1 : x1 : x2 : x3 : x4] restricts to
a natural diffeomorphism between the 3-sphere S3 and the projectivization PL ⊂
PR

4,1. There exists a natural conformal structure on PL induced by 〈., .〉, which
contains the round metric on S3. If σ is a (local) section of π : L → PL then the
conformal structure is represented by the Riemannian metric gσ defined as

gσ (X ,Y ) := 〈dσ(X), dσ(Y )〉.

The round metric is obtained from the lift σ([x]) = x
x0

, [x] ∈ PL. The space of

orientation preserving conformal diffeomorphisms of S3 ∼= PL is then given by
PSO(4, 1) (via its natural action on PR

4,1). Those transformations are also called
Möbius transformations. We will often consider the conformal 3-sphere as the union
S3 = H3∪S2∪H3, i.e., as the union of two hyperbolic balls separated by an equatorial
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S2. In the lightcone model a 2-sphere S2 can be written as P(v⊥ ∩L) for a space-like
vector v ∈ R

4,1. It is known that the complement {[x] ∈ PL : 〈x, v〉 �= 0} is conformal
to H3 ∪ H3. In particular, we note that a 2-sphere S2 ⊂ S3 corresponds to a subspace
of R

4,1 of signature (3, 1).
Consider a conformal immersion f : � → PL from a Riemann surface. There

exists a real rank 4 vector bundle S ⊂ R
4,1 locally defined with respect to a holomor-

phic coordinate z and a local lift f̂ of f to R
4,1 as

S ⊗ C = span( f̂ , f̂z, f̂ z̄, f̂z,z̄),

where for a function g we denote gz := ∂g
∂z and so on. The real rank 4 bundle is well-

defined, and 〈., .〉 restricts to an inner product of type (3, 1). Under the correspondence
between 2-spheres in S3 and subspaces of signature (3, 1) in R

4,1 the bundle S can be
interpreted as a family of 2-spheres. It is called the mean curvature sphere congruence
associated with f . Its orthogonal complement is denoted by N and we obtain an
induced decomposition of the trivial connection on R

4,1 = S ⊕ N into diagonal and
off-diagonal parts

d = DS + β,

where β is tensorial and DS is a connection. The Willmore energy of the surface is
then given by

W ( f ) = − 1
4

∫
�

tr(∗β ∧ β),

where ∗dz = idz, ∗dz̄ = −id z̄. A surface is Willmore if and only if

dDS ∗ β = 0,

which is equivalent to the flatness of the family of

SO(4, 1)C = SO(5, C)

connections

λ ∈ C
∗ �→ Dλ = DS + λ−1β(1,0) + λβ(0,1).

The equivariant Willmore surfaces constructed in [14] have the additional property
that they are minimal in two hyperbolic balls separated by the boundary at infinity
S2 ⊂ S3 = PL. This condition is equivalent to the fact that there exists a space-like
vector v of length 1 which is contained in Sp for all p ∈ �, see [5,7,26] for a proof.
Therefore v is also parallel with respect to Dλ for all λ ∈ C

∗. After applying a Möbius
transformation we can assume that v = e4.
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In order to compare the SL(2, C)-family ∇λ with the SO(5, C)-family Dλ of flat
connections coming from the Willmore surface, we make use of the following model
of R

4,1: Consider the space

H := {A ∈ gl(2, C) | ĀT = A}

of hermitian 2 by 2 matrices, and

V = H ⊕ R

equipped with the Lorentzian inner product given by the quadratic form

q(A, r) := − det(A) + r2.

An isometry � : R
4,1 → V is given by

�(x0, x1, x2, x3, x4) =
((

x0 + x1 x2 + i x3
x2 − i x3 x0 − x1

)
, x4

)
.

Let � be a Riemann surface. Consider a C
∗-family ∇λ of flat SL(2, C)-connections of

the self-duality form (on the trivial C
2 bundle over � with standard hermitian metric)

corresponding to an equivariant minimal surface f : �̃ → H3 on the universal
covering, i.e.,

∇λ = d + ξλ = d + λ−1ξ−1 + ξ0 + λξ1.

We have that ξ−1 ∈ 	(1,0)(�, sl(2, C)) is nilpotent, ξ1 ∈ 	(0,1)(�, sl(2, C)), ξ0 ∈
	1(�, sl(2, C)) with

dξλ + ξλ ∧ ξλ = 0

for all λ ∈ C
∗. The family ξλ satisfies the following reality condition

ξ−1
T = ξ1 and ξ0

T = −ξ0,

which implies

− ξ−λ̄−1 = ξλ
T
. (4.4)

Consider a parallel frame F : C
∗ × �̃ → SL(2, C) for ∇λ, i.e.,

dFλ = −ξλFλ (4.5)

with Fλ(p) = Id for some fixed p ∈ �̃. By (4.4) we have

dFλ
T = −Fλ

T
ξλ

T = Fλ
T
ξ−λ̄−1

. (4.6)
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On the other hand, (4.5) implies d((Fλ)−1) = (Fλ)−1ξλ, so that

(Fλ)−1 = F−λ̄−1
T
. (4.7)

The corresponding equivariant minimal surface f in H3 is now given by

f̂ = ((F−1)−1F1, 1) = (F
T
F, 1) : M̃ → V ,

where we put F := F1 for short. As det(F) = 1, f = R f̂ maps to the projectivized
lightcone PL ⊂ PV . Let z be a local holomorphic coordinate on U ⊂ �. The
complexified mean curvature sphere S ⊗ C is spanned over U by

f̂ , ∂
∂z f̂ = 2

(
F
T
ξ−1

(
∂
∂z

)
F, 0

)
,

∂
∂ z̄ f̂ = 2

(
F
T
ξ1

(
∂
∂ z̄

)
F, 0

)
, ∂

∂z
∂
∂ z̄ f̂ = μ(F

T
F, 0),

where the local function μ is defined by

μId = 2(ξ−1 ∧ ξ1 − ξ1 ∧ ξ−1)
(

∂
∂z ,

∂
∂ z̄

)
,

as a short computation using flatness of d+ξλ shows. From this we obtain the following
frame of S ⊗ C:

f̂ ,
(
F
T
ξ−1

(
∂
∂z

)
F, 0

)
,

(
F
T
ξ1

(
∂
∂ z̄

)
F, 0

)
, (0, 1). (4.8)

In particular, (0, 1) ∈ V is a constant space-like vector contained in Sp for all p ∈ �̃.
Moreover, by the Riemann extension theorem, we observe that the mean curvature
sphere extends through the branch points of f (given by the zeros of ξ−1).

Note that (4.8) yields an induced frame of the flat rank 5 bundle V by extending
the mean curvature sphere bundle by a constant length 1 section of its orthogonal
complement. We want to describe the connection Dλ with respect to this frame.

Locally, on open sets where F is well-defined and where we have a holomorphic
coordinate z, we can find an SU(2)-frame such that

ξ−1 =
(

0 eudz
0 0

)

ξ0 =
( 1

2uzdz − 1
2uz̄d z̄ −e−uq̄d z̄

e−uqdz − 1
2uzdz + 1

2uz̄d z̄

)

ξ1 = ξ−1
T =

(
0 0

eudz̄ 0

)
.

(4.9)
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The locally defined function u is determined by the induced metric g (from the hyper-
bolic minimal surface) by

g = e2udz ⊗ dz̄,

and uz, uz̄ are determined by uzdz + uz̄d z̄ = du and q is a holomorphic function
(representing the Hopf differential q(dz)2 of the surface).

We obtain the following (moving) frame for V ⊗ C

ψ1 :=
(
F̄T F, 0

)
, ψ2 :=

(
F̄T

(
0 1
0 0

)
F, 0

)
, ψ3 :=

(
F̄T

(
0 0
1 0

)
F, 0

)
,

ψ4 := (0, 1) , ψ5 :=
(
F̄T

(
1 0
0 −1

)
F, 0

)
.

(4.10)
Due to (4.8) and (4.9) the mean curvature sphere bundle S ⊗ C ⊂ V ⊗ C is spanned
by ψ1, . . . , ψ4.

Lemma 4.7 With respect to the frame (ψ1, . . . , ψ5), the connection Dλ = D +
λ−1β1,0 + λβ0,1 is given by

d+

⎛
⎜⎜⎜⎜⎝

0 0 −eu 0 0
−2eu uz 0 0 0

0 0 −uz 0 λ−12qe−u

0 0 0 0 0
0 −λ−1qe−u 0 0 0

⎞
⎟⎟⎟⎟⎠ dz+

⎛
⎜⎜⎜⎜⎝

0 −eu 0 0 0
0 −uz̄ 0 0 λ2q̄e−u

−2eu 0 uz̄ 0 0
0 0 0 0 0
0 0 −λq̄e−u 0 0

⎞
⎟⎟⎟⎟⎠ dz̄.

(4.11)

Proof Let ξ± := ξ±1 = ±ξ−1 + ξ0 ± ξ1. Then, by (4.6) we have dF = −ξ+F and
d F̄T = F̄T ξ−. It follows that if U ∈ gl(2, C) is a constant matrix, then

d(F̄TU F) = F̄T (ξ−U −Uξ+)F .

Since ψ1, ψ2, ψ3, ψ5 are of the form (F̄TU F, 0) and obviously dψ4 = 0 the lemma
follows by direct calculation using the explicit form of ξ± provided by (4.9). ��

Remark 4.8 Consider the trivial bundle V ⊗ C = gl(2, C) ⊕ C. Together with the
above quadratic form this becomes an SO(5, C)-bundle. Note that we have an action
by SL(2, C)-valued functions via F̂U = F̄TU F . It thus follows that F̂ gives a gauge
transformation from the standard frame given by

e1 =
((

1 0
0 1

)
, 0

)
, e2 =

((
0 1
0 0

)
, 0

)
, e3 =

((
0 0
1 0

)
, 0

)
,

e4 = (0, 1) , e5 =
((

1 0
0 −1

)
, 0

)
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to the frame ψ1, . . . , ψ5. Since ψ4 = (0, 1) is parallel, D + β induces a connection
on the subbundle gl(2, C). Therefore, Lemma 4.7 implies that

D + β = d + F̂−1d F̂ .

Lemma 4.9 Let∇λ = d+ξλ be as above. Consider the trivial rank 5 bundle V ⊗C =
gl(2, C) ⊕ C equipped with the connection D̂λ defined by

D̂λ(A, f ) = (d A + ξ̂ (−λ)A − Aξ̂ λ, d f ),

where ξ̂ is obtained from ξ by the dual surface construction, i.e., ∇̂λ = ∇λ.h̃(λ),
where h̃(λ) = diag(1, λ). Then with respect to the frame

ẽ1 = e5, ẽ2 = e2, ẽ3 = −e3, ẽ4 = e4, ẽ5 = e1

the connection D̂λ is given by equation (4.11). Thus, D̂λ andDλ are gauge equivalent
by a λ-independent gauge transformation.

Proof Obviously D̂λẽ4 = 0 and for i = 1, 2, 3, 5 we have ẽi = (Ei , 0) with a constant
matrix Ei ∈ gl(2, C). Thus,

D̂λẽi = (ξ̂ (−λ)Ei − Eiξ
λ, 0).

A direct calculation then yields the connection matrix.
Note that in the notation of Remark 4.8 we have that ẽi is obtained from ei by

multiplying the matrix part by diag(1,−1) and leaving the scalar part unchanged.
Denote this map ei �→ ẽi by S. Then S−1 = S and we have with the notation of
Lemma 4.7

ψi = F̂ Sẽi .

Clearly, the gauge transformation Ĝ = F̂ ◦ S is independent of λ and satisfies Ĝ−1 ◦
Dλ ◦ Ĝ = D̂λ as can be checked in the frame {ẽi }. ��

4.4 Proofs

We will now use the theory of the previous section to give the proofs of the results
formulated in Sect. 4.2.

Remark 4.10 Note that the energy integrand E (and not only the integrated energy) is
invariant under gauge transformations which are constant in λ. In particular, we can
use any λ-independent frame to compute the energy. Similarly, the Willmore energy
can be computed with respect to any frame of the (complexified) R

4,1-bundle.
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Proof of Proposition 4.4 By Lemma 4.7 the Willmore integrand is locally given by

− 1
4 tr(∗β ∧ β) = − i

2 tr(β1,0 ∧ β0,1) = 2iqq̄e−2udz ∧ dz̄.

On the other hand, locally, and with respect to the chosen SU(2) frame, 
̂ and �̂ are
given by


̂ =
(

0 0
e−uq 0

)
dz and �̂ =

(
0 −e−uq̄
0 0

)
dz̄,

and we obtain

−2i tr(
̂ ∧ �̂) = 2iqq̄e−2udz ∧ dz̄ = − 1
4 tr(∗β ∧ β),

proving Proposition 4.4. ��

Proof of Theorem 4.5 Let s be a section satisfying the assumptions in Theorem 4.5,
with associated equivariant Willmore surface f : �̃ → S3 = PL. We start with a lift
of s

∇λ = d + ηλ = d + η−1λ
−1 + η0 + · · · ,

where ηλ is a λ-family of sl(2, C)-valued 1-forms on �. There exists a curve γ ⊂ �

such that on M = � \ γ we have a holomorphic λ-family of gauge transformations
g+(λ) which extends to λ = 0 and which gauges ∇λ into self-duality form. That is,
on M we have ∇λ. g+(λ) = λ−1φ + ∇0 + λφ∗, where (∇0, φ) solves the self-duality
equations and φ is still nilpotent. Denote by L the kernel bundle of the Higgs field φ

with orthogonal complement L⊥.
Choose a complementary bundle L̃∗ of the kernel bundle L̃ = ker(η−1) and let

h̃(λ) = diag(1, λ) with respect to the splitting L̃∗ ⊕ L̃ . Consider the dual surface
construction

∇̂λ = ∇λ. h̃(λ) = d + η̂λ.

The family g+(λ) induces a family of gauge transformations ĝ(λ), which gauges ∇̂λ

into the SU(1, 1) = SL(2, R) self-duality form (see the discussion in Remark 4.3).
We claim that ĝ extends holomorphically to λ = 0 as a gauge transformation. To see
this, note that we have

ĝ(λ) = (π L̃∗ ⊕ λπ L̃)g+(λ)(π L⊥ ⊕ 1
λ
π L).

Because g+ maps L to L̃ it follows that ĝ extends holomorphically to λ = 0 as a gauge
transformation.
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On the complex rank 4 bundle gl(2, C) → � we consider the family of flat con-

nections D̂λ given by

D̂λA = d A + η̂(−λ)A − Aη̂λ.

Note that the pair of gauge transformations ĝ+(λ), ĝ+(−λ) induces a gauge transfor-
mation Ĝ(λ) on gl(2, C) by

Ĝ(λ) := A �→ g+(−λ)Ag+(λ)−1.

Moreover, by Lemma 4.9, D̂λ.Ĝ(λ) and Dλ are gauge equivalent by a λ-independent
gauge transformation. The mean curvature sphere family extends smoothly through
the singularity set of the equivariant minimal surface f (or likewise g+). Therefore also
Ĝ extends smoothly through this singularity set as a positive gauge transformation.
The Theorem now follows from Remark 4.10 and Proposition 4.4. ��

5 Energy estimates

Corollary 2.8 gives us a possibility to distinguish the space of twistor lines, i.e., the
space of τ -negative admissible holomorphic sections, from the space of τ -positive
admissible sections, by looking at the value range of E . Note that this criterion is much
easier to handle in practice than determining whether a τ -real section is τ -positive or
τ -negative. We shall be able to use E also to distinguish the recently discovered new
components of τ -negative sections [14] from the component of twistor lines. We
emphasize that these τ -negative sections cannot be admissible. In view of Simpson’s
question [28], such a complex-analytic tool to distinguish those components seems
desirable.

The first indication that the function E does help can be seen in the case of tori, i.e.,
for � of genus 1. In this case, the SL(2, C) Deligne–Hitchin moduli space has a 2-fold
covering of the C

∗ Deligne–Hitchin moduli space. Note that theE-function is still well-
defined in this situation, even if we do not have any irreducible λ-connections at all: It is
well-known that on a torus solutions of the self-duality equations are totally reducible.
Applying Hitchin’s spectral curve approach [19] to this situation, we easily see that
twistor lines correspond to spectral data of spectral genus 0. Other components of the
space of τ -negative holomorphic sections are given by spectral data for spectral curves
of positive genus, compare with [2,14,18]. While the spectral genus distinguishes the
different components of τ -negative sections, the following theorem indicates the use
of the E-function in this context.

Theorem 5.1 Let s be a holomorphic section of the (singular) Deligne–Hitchin moduli
space over a Riemann surface of genus 1 which is τ -negative and has a nilpotent Higgs
field. Assume that the spectral genus is bigger than 1. Then

E(s) ≥ 1

4
.
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Proof Such sections give rise to Möbius equivariant Willmore surfaces f : �̃ → S3

into the conformal 3-sphere, see [2] or also [14]. Because the kernel bundle of the
nilpotent Higgs field on a torus has degree 0, we obtain from Theorem 4.5 that

E(s) = 1

4π
W( f ),

whereW( f ) is the Willmore energy of a fundamental piece of f . The theorem follows
from an application of the quaternionic Plücker estimate, see [10, Equation (89)]:
That the spectral genus is at least 2 (in fact it must be odd) implies that there are two
quaternionic holomorphic linearly independent sections on an unbranched fourfold
covering of the torus of a quaternionic holomorphic line bundle. The Willmore energy
of this quaternionic holomorphic line bundle coincides with the Willmore energy of
f on a fundamental piece. ��

Note that holomorphic sections with nilpotent Higgs field on a torus cannot be
totally reducible and therefore are not twistor lines. They therefore lie in a different
component of the space of τ -negative sections than the twistor lines. The assumption
on the spectral genus in Theorem 5.1 leaves open the case of spectral genus 1. In that
case, as the solutions are equivariant, one can make the energy E(s) to be arbitrarily
close to 0 by changing the conformal type of the torus �. On the other hand, it does
not seem possible to fix the Riemann surface � of genus 1 and then find, for each
ε > 0, a τ -negative holomorphic section s in the Deligne–Hitchin moduli space with
nilpotent Higgs field such that E(s) < ε.

In general, one might try to use the energy to distinguish different components of
τ -negative holomorphic sections of the Deligne–Hitchin moduli space.

A first result is given in the following theorem, where we show that the energy is
positive for the τ -negative holomorphic sections constructed in [14].

Theorem 5.2 There exist Riemann surfaces �̂ of sufficiently large genus g ≥ 2 whose
SL(2, C) Deligne–Hitchin moduli space admits irreducible τ -negative holomorphic
sections s with

E(s) > 0.

In particular, these sections cannot be twistor lines.

Proof The non-admissible τ -real holomorphic sections have been constructed by a
deformation of finite gap solutions of the cosh-Gordon equation of spectral genus 1
on a torus �. The initial section on the torus � yields an equivariant Willmore surface
f . By Theorem 4.5, the Willmore energy of a fundamental piece is the energy of the
section, since the degree of the kernel bundle L is necessarily 0. Because the Hopf
differential q(dz)2 does not vanish, the Willmore integrand is positive, which implies
that the Willmore energy of f is positive.

The τ -negative holomorphic sections s on surfaces of high genus have been con-
structed as follows (see [14, Theorem 4.5] for details): There is a q-fold covering
Riemann surface �̂ → � of the initial torus, branched over the four half-lattice points
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with branch order q − 1. On �, there is a holomorphic family of connections with
regular singularities at the half-lattice points and local monodromies in the conjugacy
class of

(
e2π i/q 0

0 e−2π i/q

)
.

The pull-back of this family of flat connections to �̂ can be desingularized, and yields
a lift of a τ -negative holomorphic section s on �̂. This gives rise to a branched
equivariant Willmore surface f̂ which is minimal in H3 away from its intersection
with the boundary at infinity [14, Section 5]. The counting of branch orders in [15,
Theorem 3.3] also holds in the case of (equivariant) minimal surfaces f̂ constructed
by the τ -negative holomorphic sections s, as it only depends on the local analysis near
the singular points, and branch orders are given by the vanishing order of the Higgs
field. In particular, (for odd q), this yields that (with the notations of [15, Theorem
3.3])

p̃

q̃
= 2/q + 1

4
= 2 + q

4q
,

where p̃ = 2 + q and q̃ = 4q are coprime since q is odd. Then

g(�̂) = 2q − 1.

Moreover, the total branch order of f is

4(q̃/2 − p̃ − 1) = 4(q − 3).

Hence, as the differential of the surface is a holomorphic section of

K
�̂
L2,

where L is the kernel bundle of the Higgs field of s on �̂, we compute

deg(L) = 1

2
(2 − 2g(�̂) + 4(q − 3)) = −4.

By Theorem 4.5 it remains to show that the Willmore energy of f̂ is bigger than 16π.

This can be seen as follows: The family of regular singular connections on the torus �

yields a equivariant Willmore surface f on the 4-punctured torus by the reconstruction
method in [14, Section 5]. Putting q many Möbius-congruent pieces of f together in

the conformal 3-space yields the (equivariant) Willmore surface f̂ . By construction
f is close to f away from two branch cuts between the singular points on the torus
�. It follows from [14, Section 5] that for every ε > 0 there exists δ > 0 such that for
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all q with 1
q < δ we have |W ( f ) − W ( f )| < ε. Take ε small such that 1

2W( f ) > ε.

As the Willmore energy of f is positive (independent of q) we obtain

W( f̂ ) = qW( f ) > q(W( f ) − ε) > 16π

for q large enough. ��
Remark 5.3 Alternative proofs of the theorem can be given by making use of the
special coordinates introduced in [13].
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