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Abstract
Using the connection discovered by Hassett between the Noether-Lefschetz moduli
space C42 of special cubic fourfolds of discriminant 42 and the moduli space F22 of
polarized K3 surfaces of genus 22, we show that the universal K3 surface over F22
is unirational.

1 Introduction

The 19-dimensional moduli space Fg of polarized K3 surfaces of genus g (or of
degree 2g − 2), parametrizing pairs [S, H ], where S is a K3 surface and H ∈ Pic(S)

is a primitive polarization class satisfying H2 = 2g − 2, is one of the most intriguing
parameter spaces in algebraic geometry. In stark contrast to the moduli space of curves
or abelian varieties, its Picard group is highly intricate, see [3]. The moduli space Fg

is a quotient of a locally symmetric domain. Via this realization as an orthogonal
modular variety one can employ automorphic methods in order to study its Kodaira
dimension. In this way, Gritsenko, Hulek and Sankaran [11] proved thatFg is a variety
of general type for g > 62, as well as for g = 47, 51, 53, 55, 58, 59, 61. On the other
hand, using vector bundles on various rational homogeneous varieties, in a celebrated
series of papers Mukai [20–24] described the construction of general polarized K3
surfaces of genus g ≤ 12, as well as for g = 13, 16, 18, 20. In particular, the moduli
spaceFg is unirational for those values of g. The case g = 14, not covered byMukai’s
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work, has been settled using the birational isomorphism between F14 and the moduli
space C26 of special cubic fourfolds of discriminant 26. Nuer [29] first showed that
F14 is uniruled. This was then improved in [9], where we showed that the universal
K3 surface F14,1 is rational, hence F14 is unirational. Recently Ma [19] undertook
a systematic study of the Kodaira dimension of the moduli space Fg,n of n-pointed
K3 surfaces of genus g, in the spirit of a similar analysis of the Kodaira dimension of
Mg,n carried out in [8,18].

The aim of this paper is to study the geometry ofF22 using the connection between
K3 surfaces and special cubic fourfolds of discriminant 42.We establish the following
result:

Theorem 1.1 The universal K3 surface F22,1 of genus 22 is unirational.

In particular, F22 is unirational as well. Note that 22 is the highest genus where it
is known that the moduli space Fg is not of general type. Our approach to F22 relies
on the relation between Noether–Lefschetz special cubic fourfolds and polarized K3
surfaces, which we explain next.

We fix a smooth cubic fourfold X ⊆ P5. Recall the important fact that the Fano
variety of lines F(X) := {

� ∈ G(1, 5) : � ⊆ X
}
is a hyperkähler variety of dimension

4, see [2]. Its primitive cohomology H4
prim(X , Z), displaying the Hodge numbers

(0, 1, 20, 1, 0), looks like the Tate twist of the middle cohomology of a K3 surface,
except it has signature (20, 2) rather than (19, 3). When X is very general, the lattice
A(X) := H2,2(X) ∩ H4(X , Z) consists only of classes of complete intersection
surfaces, that is, A(X) = 〈h2〉, where h ∈ Pic(X) is the hyperplane class, see [32].
Let C be the 20-dimensional coarse moduli space of smooth cubic fourfolds X ⊆ P5

and denote by Cd the locus of special cubic fourfolds X characterized by the existence
of an embedding of a saturated rank 2 lattice

L := 〈h2, T 〉 ↪→ A(X),

of discriminant disc(L) = d, where T is a codimension 2 algebraic cycle of X not
homologous to a complete intersection. Hassett [12] showed that Cd ⊆ C is nonempty
and if so, an irreducible divisor, if and only if d > 6 and d ≡ 0, 2 (mod 6). A conjecture
of Kuznetsov [16] predicts that all cubic fourfolds [X ] ∈ C2(n2+n+1) are rational. This
has been confirmed in the classical case d = 14, see [4,7], and more recently when
d = 26 by Russo and Staglianò [30]. Very recently, the same authors announced a
proof of the rationality of all cubic fourfolds from C42, see [31].

For d = 42, Hassett’s work [12] implies the existence of a rational map of degree
2

ϕ : F22 → C42, ϕ([S, H ]) = [X ],

where the cubic fourfold X is characterized by the existence of an isomorphism

S[2] ∼= F(X) ⊆ G(1, 5). (1)
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The unirationality of the moduli space of K3 surfaces of genus 22 955

Lai’s paper [17] represents an important first step in understanding the relation
between F22 and C42. We summarize its results. Starting with a polarized K3 surface
[S, H ] ∈ F22, for each point p ∈ S one considers the rational curve

�p := {
ξ ∈ S[2] : supp(ξ) = {p}}.

Under the isomorphism S[2] ∼= F(X) described above,�p corresponds to a rational
curve of degree 9 inside F(X) ⊆ G(1, 5), that is, to a degree 9 scroll Rp ⊆ X . The
double point formula implies that, as long as it has isolated nodal singularities, Rp

has 8 nodes and no further singularities. This is precisely the content of [17, Theorem
0.3]. We denote byHscr the PGL(6)-quotient of the Hilbert scheme of 8-nodal scrolls
R ⊆ P5 of degree 9. Lai shows [17, Proposition 0.4] that Hscr has the expected
codimension 8 inside the parameter space of all scrolls of degree 9 in P5, in particular
dim(Hscr) = 16.

One can then set up the incidence correspondence between scrolls and cubic four-
folds:

X :=
{
(X , R) : R ⊆ X , deg(R) = 9, [X ] ∈ C42

}/
PGL(6)

π1

�������
�����

�����
�����

�� π2

������
�����

�����
�����

���

C42 Hscr

For a general [R] ∈ Hscr one computes that h0
(
P5, IR/P5(2)

) = 0 and

h0
(
P5, IR/P5(3)

) = 6, It follows that X is birational to a P5-bundle over the vari-
ety Hscr. Since π1 is dominant, this implies that C42 is uniruled.

This is the point where Lai’s paper [17] ends and our analysis starts. We first
introduce the universal K3 surface u : F22,1 → F22, then the map

ϕ̃ : F22,1 → X, ϕ̃([S, p]) := [X , Rp],

where Rp is the degree 9 scroll contained in X corresponding to the rational curve
�p ⊆ F(X) under the isomorphism (1). We observe that although ϕ has degree 2, that
is, for a general fourfold [X ] ∈ C42 one has two polarized K3 surfaces realizing the
isomorphism (1), this ambiguity disappears once we lift to the universal K3 surface.
We prove the following:

Theorem 1.2 The map ϕ̃ : F22,1 → X is a birational isomorphism.

Since X is a P5-bundle over Hscr, the unirationality of F22,1 will be implied by
that of the moduli space Hscr. To summarize the situation, we have the following
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commutative diagram:

F22,1
ϕ̃ ��

u

��

X

π1

��
F22

ϕ �� C42

We now explain our parametrization of the moduli space of 8-nodal nonic scrolls.
We start by considering the Hirzebruch surface F1 := Blo(P2), where o ∈ P2, and
denote by h the class of a line and by E the exceptional divisor. The smooth degree 9
scroll R′ := S4,5 ⊆ P10 is the image of the linear system

φ|5h−4E | : F1 ↪→ P10.

We choose a 4-plane 	 ∈ G(4, 10) which is 8-secant to the secant variety Sec(R′) ⊆
P10. We may assume 	 ∩ R′ = ∅ and refer to [17, Sections 3.2-3.3] for the proof that
such a 4-plane	 exists. Consider the restriction to R′ of the projection π	 with center
	

π := π	|R′ : R′ → R ⊆ P5,

where R := π(R′). Then R is an 8-nodal scroll of degree 9. If for i = 1, . . . , 8, we
have that 〈xi , yi 〉 ∩ 	 
= ∅ for certain points xi , yi ∈ R′, then the (nodal) singularities
of R appear as ni := π	(xi ) = π	(yi ). Up to the action of PGL(6) on the ambient
projective space P5, each 8-nodal nonic scroll [R] ∈ Hscr appears in this way.

We now fix an unordered set of four general rulings �1, �2, �3, �4 of R, thus they
can be assumed to be disjoint from Sing(R). Since containing a line imposes three
conditions on the linear system of quadrics in P5 and since dim |OP5(2)| = 20, it
follows that there exists a unique quadric Q ⊆ P5 containing the rulings �1, . . . , �4,
as well as the nodes n1, . . . , n8. We write

R · Q = �1 + �2 + �3 + �4 + 
. (2)

It will turn out that the residual curve 
 ⊆ P5 is a degree 14 integral curve of
arithmetic genus 12 having nodes at the points n1, . . . , n8. Assuming this, let

C := π−1(
) ⊆ R′

be the normalization of 
. Then from (2) we find that C ∈ |6h − 4E |. Therefore
C is a hyperelliptic curve of genus 4 which passes through the points xi , yi ∈ R′,
for i = 1, . . . , 8. The degree 2 pencil on C is cut out by the rulings of R′, that is,
OC (h − E) ∈ W 1

2 (C). Denoting by ι : C → C the hyperelliptic involution, we
observe that

R =
⋃

x∈C

〈
π(x), π(ι(x))

〉 ⊆ P5,
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The unirationality of the moduli space of K3 surfaces of genus 22 957

that is, the degree 9 scroll R can be recovered from the curve 
 ⊆ P5.
We denote by P the parameter space of pairs [R, �1 + · · · + �4], where R ⊆ P5 is

an 8-nodal scroll of degree 9 and �1, . . . , �4 are rulings of R, viewed as an unordered
set. In the definition of P we quotient out by the PGL(6)-action on P5. The forgetful
map

P → Hscr

is birational to aP1-bundle corresponding to the choice of the four rulings, in particular
dim(P) = 17. LetHyp4,8 be the moduli space of pairs [
, L], where
 is an integral 8-
nodal curve of arithmetic genus 12, whose normalization ν : C → 
 is a hyperelliptic
curve of genus 4 and L ∈ W 2

8 (
), that is, L is a line bundle of degree 8 on 
 with
h0(
, L) ≥ 3. Note that by Riemann-Roch, in this case ω
 ⊗ L∨ ∈ W 5

14(
). We have
the following result, reducing the study of F22,1 to that of a certain moduli space of
curves.

Theorem 1.3 There exists a birational isomorphism χ : P ∼=��� Hyp4,8 given by

χ
([R, �1 + �2 + �3 + �4]

) = [
,ω
(−1)].

Theorem1.1nowfollowsonceweestablish theunirationality ofHyp4,8.We indicate
how to carry this out. Start with a general element [
, L] ∈ Hyp4,8, viewed as an 8-
nodal degree 14 curve 
 ⊆ P5 embedded by the line bundle ω
 ⊗ L∨. We shall show
that a suitably general such curve 
 is projectively normal, thus the kernel of the
multiplication map

Sym2H0(
,O
(1)) → H0(
,O
(2))

is 4-dimensional. We can write

Bs
∣∣I
/P5(2)

∣∣ = 
 + B.

The residual curve B ⊆ P5 is a conic such that
·B = 6.Wedenote by� := 〈B〉 ⊆ P5

the plane spanned by B. There exists a 3-dimensional subspaceV ⊆ H0
(
P5, I
/P5(2)

)

consisting of quadrics containing the plane �. We write

Bs |V | = � + T , (3)

where T ⊆ P5 is a degree 7 surface lying on three quadrics that intersect along the
2-plane �. It is not hard to see that T ∼= Bl9(P2) is the blow-up of P2 at 9 general
points in P2. Moreover, the map ϕ : Bl9(P2) ↪→ T ⊆ P5 implicitly defined by (3) is
induced by the linear system

|4h − E1 − · · · − E9|,
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where E1, . . . , E9 are the exceptional divisors. Via the isomorphism T ∼= Bl9(P2),
one realizes 
 as an octic plane curve with 17 nodes divided in two groups: namely
the 9 points where P2 is blown up and the remaining 8 nodes. This plane model is
helpful to prove the next result:

Theorem 1.4 The moduli space Hyp4,8 is unirational.

To prove Theorem 1.4, we fix a cubic scroll Z ⊆ P4 obtained by embedding the
Hirzebruch surface F1 := Blo(P2) by the linear system |2h − E |. We consider the
parameter space

T =
{
(t1, . . . , t8, �, C) : ti ∈ Z for i = 1, . . . , 8, � ∈ G(1, 4) is a line in P4,

C ∈ ∣∣I{x1,y1,...,x8,y8}/Z (6h − 4E)
∣∣, where 〈�, ti 〉 · Z = ti + xi + yi , for i = 1, . . . , 8.

}

Note that dim
∣∣I{x1,y1,...,x8,y8}/Z (6h −4E)

∣∣ = 1, hence the map T → Z8×G(1, 4)
is birationally a locally trivialP1-bundle over a rational variety. ThereforeT is rational.
The curve C is hyperelliptic of genus 4. Denoting by π� : P4 ��� P2 the projection
with center �, observe that n′

i := π�(xi ) = π�(yi ) for i = 1, . . . , 8. The dominant
rational map

ϑ : T ��� Hyp4,8

needed to proveTheorem1.4 is obtainedby associating to a point
(
t1, . . . , t8, �, C

)∈ T
essentially the projected curve 
 := π�(C). This is a nodal octic plane curve having
8 distinguished nodes at n′

1, . . . , n′
8, as well as 9 further nodes. The image under the

map ϕ of the proper transform of 
′ in the blow-up of P2 at these 9 points gives rise
to an element of Hyp4,8. For further details on the definition of the map ϑ we refer to
Theorem 3.5.

It turns out that proving directly the various transversality assumptions implicit in
this sketched proof of Theorem 1.3 is not straightforward. Instead, in the rest of the
paper we shall reverse the argument presented in the Introduction. First we show that
Hyp4,8 is unirational (seeTheorem3.5), thenusing the explicit unirational parametriza-
tion found in this way, we show that the map χ : P ��� Hyp4,8 is well defined, as well
as birational.

2 Themoduli spaceF22 via special cubic fourfolds

We denote by Fg the irreducible 19-dimensional moduli space of smooth polarized
K3 surfaces [S, H ] of genus g, that is, with H ∈ Pic(S) being a nef class satisfying
H2 = 2g − 2. Let u : Fg,1 → Fg be the universal K3 surface of genus g in the sense
of stacks. Each fiber u−1([S, H ]) is thus identified with the K3 surface S.

We fix a smooth cubic fourfold X ⊆ P5 and denote by h its hyperplane class. The
Hodge structure on the primitive cohomology H4

prim(X , Z) is similar to the twist of
the middle cohomology of a K3 surface. Since the signatures (with respect to the
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The unirationality of the moduli space of K3 surfaces of genus 22 959

intersection form) are different, (20, 2) and (19, 3) respectively, one has to pass to
sub-Hodge structures of codimension one, both having signature (19, 2), to have the
possibility of realizing an isomorphism of Hodge structures between the two sides.
On the cubic fourfold side one requires the existence of a class T ∈ H2,2(X), whereas
on the K3 side one requires the existence of a polarization H ∈ Pic(S) such that the
following isomorphism of Hodge structures holds

〈h2, T 〉⊥ ∼= H2
prim(S, Z)(−1). (4)

Denoting by d := disc(〈h2, T 〉) = H2, it is proved in [12, Theorem 5.1.3] that the
isomorphism (4) is realized for any d > 6 such that d ≡ 0, 2 (mod 6) that is not
divisible by 4, 9 or by any prime p ≡ 2 (mod 3). When d = 2(n2 + n + 1), the
isomorphism (4) takes the geometric form (1)

S[2] ∼= F(X) ⊆ G(1, 5).

This opens the way to a study of the moduli spaces Fn2+n+2 where n ≥ 2, using the
concrete projective geometry of cubic fourfolds. The case n = 2 (that is, d = 14)
is classical and essentially due to Fano [8]; we refer to [2] and [4] for a modern
perspective and stronger results. The case n = 3 (that is, d = 26) has been treated in
our paper [9] as well as in [30], whereas this paper is devoted to the case n = 4 (that
is, d = 42).

For d = 42, Hassett [12] constructed a degree 2 map

ϕ : F22 −→ C42, ϕ
([S, H ]) = [X ],

such that the isomorphism (1) holds. Note that ϕ is defined at the level of moduli
spaces of weight 2 Hodge structures and there is no direct geometric construction of
the cubic fourfold one associates to a K3 surface of genus 22. Since deg(ϕ) = 2, it
follows that for a general [X ] ∈ C42 there exist two distinct polarized K3 surfaces
[S, H ] and [S′, H ′] such that

S[2] ∼= S′[2] ∼= F(X).

Clarifying the relation between S and S′ is essential in order to prove Theorem 1.2.

2.1 Hilbert squares of K3 surfaces

Let (S, H)be a K3 surfacewithPic(S) = Z·H and H2 = 2g−2.Wedenote by S[2] the
Hilbert scheme of length two zero-dimensional subschemes on S. Then H2(S[2], Z)

is endowed with the Beauville–Bogomolov quadratic form q. Let � ⊆ S[2] be the
divisor consisting of zero-dimensional subschemes supported only at a single point
and denote by δ := [�]

2 ∈ H2(S[2], Z) the reduced diagonal class. Then q(δ, δ) = −2.
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Moreover

� = P(TS) =
⋃

p∈S

�p,

where �p is the rational curve consisting of those 0-dimensional subschemes ξ ∈ �

such that supp(ξ) = {p}. We set δp := [�p] ∈ H2(S[2], Z).
For any curve C ∈ |H |, we introduce the divisor

fC := {
ξ ∈ S[2] : supp(ξ) ∩ C 
= ∅}

and set f := [ fC ] ∈ H2
(
S[2], Z

)
. For a point p ∈ S, we also define the curve

Fp := {
ξ = p + x ∈ S[2] : x ∈ C

}

and set f p := [Fp] ∈ H2(S[2], Z). The Beauville–Bogomolov form can be extended
to a quadratic form on H2(S[2], Z), by setting q(α, α) := q(wα,wα), with wα ∈
H2(S[2], Z) being the class characterized by the property α · u = q(wα, u), for every
u ∈ H2(S[2], Z). Here α · u denotes the intersection product.

One has the following decompositions, orthogonal with respect to q, both for the
Picard group and for the group N1(S[2], Z) of 1-cyclesmodulo numerical equivalence:

Pic(S[2]) ∼= Z · f ⊕ Z · δ and N1(S[2], Z) ∼= Z · f p ⊕ Z · δp.

We record the following more or less immediate relations:

f · f p = 2g − 2, δ · δp = −1, f · δp = 0 and δ · f p = 0. (5)

The form q takes the following values on H2
(
S[2], Z

)
:

q( f p, f p) = 2g − 2, q( f p, δp) = 0, q(δp, δp) = −1

2
.

Thus q(a f p − bδp) = a2(2g − 2) − b2
2 , for a, b ∈ Z.

It follows from [1, Proposition 13.1] (see also [6, Proposition 3.14] for this formu-
lation) that for a polarized K3 surface [S, H ] ∈ F22 with Pic(S) = Z · H , the nef
cone Nef(S[2]) equals the movable cone Mov(S[2]) and it is generated by the rays f
and 55 f −252δ respectively. Using the terminology of [12], the Hilbert square S[2] is
strongly ambiguous, that is, there exists another K3 surface S′ such that there exists an
isomorphism r : S[2] ∼=→ S′[2] which is not induced by an automorphism S

∼=→ S′. This
implies r∗(δ′) 
= δ and then necessarily, the map r∗ : H2

(
S′[2], Z

) → H2
(
S[2], Z

)

interchanges the two rays of the respective nef cones, that is,

r∗( f ′) = 55 f − 252δ, r∗(55 f ′ − 252δ′) = f .
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The unirationality of the moduli space of K3 surfaces of genus 22 961

Then also r∗( f ) = 55 f ′ − 252δ′ and r∗(δ) = 12 f ′ − 55δ′, from which we obtain the
following relations at the level of the cone of curves in S[2] and S′[2] respectively:

r∗(δ′
p′) = 6 f p − 55δp, r∗(6 f ′

p′ − 55δ′
p′) = δp. (6)

2.2 Scrolls contained in special cubic fourfolds

Suppose R ⊆ X ⊆ P5 is a rational scroll with smooth normalization having only
isolated singularities and which is contained in a cubic fourfold X . The double point
formula [10, Theorem 9.3] gives the number D(R) of singularities of R, counted
appropriately:

2D(R) = R2 − 6h2 − K 2
R − 3h · K R + χtop(R). (7)

If moreover all singularities of R are nodal, then D(R) equals the number of nodes of
R.

When [X ] ∈ C42, assuming that A(X) = 〈h2, [R]〉, where h2 · [R] = deg(R) = 9,
necessarily R2 = 41. Since χtop(R) = 4 and h · K R = −11, from (7), we compute
D(R) = 8. Therefore if R has only isolated nodes, then it is necessarily 8-nodal.

Proposition 2.1 Suppose [S, H ] ∈ F22 is an element such that Pic(S) = Z · H and
let Z ⊆ S[2] be an effective 1-cycle of degree 9 with respect to the Plücker embedding.
Then [Z ] = f p or [Z ] = 6 f p − 55δp. In the first case Z = �p for some point p ∈ S,

and in the second case r(Z) = �p′ for some point p′ ∈ S, where r : S[2] ∼=→ S′[2].

Proof Assume that Z is an effective 1-cycle on S[2] and let us write
[Z ] = a f p − bδp ∈ N1

(
S[2], Z

)
. Let γS denote the class of the Plücker line bun-

dle OS[2](1) with respect to the isomorphism S[2] ∼= F(X). Since q(γS, γS) = 6, one
obtains

γS = 2 f − 9δ ∈ H2(S[2], Z
)
.

Therefore 9 = Z · γS = (a f p − b f p)(2 f − 9δ) = 84a − 9b, hence we can write
a = 3a1, with a1 ∈ Z, in which case b = 28a1 − 1. Using [1, Proposition 12.6], if Z
is effective we also have the inequality q(Z , Z) ≥ − 5

2 , implying 7a2
1 −14a1 −1 ≤ 0.

The integer solutions of this inequality are a1 = 0, when [Z ] = δp, a1 = 2, in
which case [Z ] = 6 f p − 55δp, and finally a1 = 1. Note that in the first two cases
q(Z , Z) = − 1

2 . On the other hand, a1 = 1 implies [Z ] = 3 f p − 27δp, yielding
q(Z , Z) = 27

2 . But this is incompatible with the double point formula. Indeed, if
R ⊆ X is the scroll associated to the curve Z under the isomorphism S[2] ∼= F(X),
then following [14, §7.1], we have

R2 = (Z · γS)
2

2
− q(Z , Z),

which is impossible because R2 = 41.
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In the case [Z ] = 6 f p −55δp, denoting by [S′, H ′] ∈ F22 the polarized K3 surface

such that r : S[2] ∼=→ S′[2] ∼= F(X), it follows from (6) that [r∗(Z)] = δ′
p′ . By possibly

replacing S with S′, we may assume [Z ] = δp. We claim this implies Z is one of the
smooth rational curves �p, for some point p ∈ S.

Indeed, from [Z ] · δ = −1, it follows that Z ⊆ �. Moreover, Z lies in one of the
fibers of the P1-bundle π : � = P(TS) → S. This implies that Z = �p, for some
p ∈ S, because otherwise π(Z) ≡ m H for some integer m > 0 and then

m H2 = Z · π−1(H) = Z · f = δp · f = 0,

which is a contradiction. ��
We are now in a position to prove Theorem 1.2. Recall the definition given in

the Introduction of the parameter space X of pairs (X , R), where [X ] ∈ C42 and
R ⊆ X is a degree 9 scroll. As explained, as long as R has isolated nodal singular-
ities, R has precisely 8 nodes. We define the map ϕ̃ : F22,1 → X given by setting
ϕ̃([S, H , p]) := [X , Rp], where the cubic scroll X is determined by the isomorphism
F(X) ∼= S[2] and the scroll Rp ⊆ X corresponds to �p, viewed as a rational curve
inside F(X). Recall that it is proved in [17] that the projection π1 : X → C42 is
dominant. This implies that ϕ̃ is well-defined.

Proof of Theorem 1.2 We show that ϕ̃ : F22,1 → X is a birational isomorphism by
constructing its inverse. Start with an element [X , R] ∈ X and we denote by{[S, H ], [S′, H ′]} = ϕ−1([X ]) the two polarized K3 surfaces realizing the isomor-
phism (1).ApplyingProposition 2.1, for precisely one element ofϕ−1([X ]), say [S, H ]
we have that the curve Z = Z R ⊆ F(X) ∼= S[2] of rulings of R has class [Z ] = δp,
for a point p ∈ S. Then clearly ϕ̃−1([X , R]) = [S, H , p]. ��

3 Moduli of nodal hyperelliptic curves

On our way towards establishing Theorems 1.3 and 1.4 and ultimately proving Theo-
rem 1.1, we shall reverse the construction described in the Introduction associating to
a suitably general scroll [R] ∈ Hscr an 8-nodal curve with hyperelliptic normalization.
In order to establish the various transversality claims mentioned in the Introduction,
we find it easier to start with a suitable nodal hyperelliptic curve and bring the degree
9 scroll into picture only later. We begin therefore by introducing and studying various
moduli spaces of curves that will turn out to be relevant when dealing with C42.

Recall that for an irreducible nodal curve Y , we denote by W r
d (Y ) the Brill-Noether

locus consisting of line bundles L ∈ Picd(Y ) satisfying h0(Y , L) ≥ r + 1.

Definition 3.1 We denote by Hyp4,8 the moduli space of pairs [
, L], where 
 is an
irreducible 8-nodal curve of arithmetic genus 12, such that its normalization C → 


is hyperelliptic and L ∈ W 2
8 (
).

In this Section we provide an explicit parametrization of Hyp4,8 and conclude that
this space is unirational. We begin with some preparation. We consider the Hirzebruch
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The unirationality of the moduli space of K3 surfaces of genus 22 963

surface F1 := Blo(P2) viewed as a cubic scroll via the embedding

φ|2h−E | : F1 ↪→ Z ⊆ P4. (8)

Here h denotes the pull-back of the line class under the morphism F1 → P2, whereas
E is the exceptional divisor over the point o ∈ P2.

We denote by H4 the moduli space of smooth hyperelliptic curves of genus 4 and
by Pic8H4

→ H4 the universal Picard variety of pairs [C, L], where [C] ∈ H4 and

L ∈ Pic8(C). Our next result provides an explicit birational realization of this universal
Picard variety.

Proposition 3.2 There is a birational isomorphism Pic8H4

∼=���
∣∣6h − 4E

∣∣/Aut(F1).

Proof A smooth curveC ∈ |6h−4E | is hyperelliptic of genus 4. To it we can associate
the pair [C, L], where L := OC (2h − E) is a line bundle of degree 8. In other words,
L = OC (1), where C ⊆ Z ⊆ P4 is viewed as an octic curve. This construction is
Aut(F1)-invariant, hence it gives rise to a map

∣∣6h − 4E
∣∣/Aut(F1) ��� Pic8H4

.

Conversely, we start with a general line bundle L ∈ Pic8(C) on a hyperelliptic curve
C of genus 4. We denote by A ∈ W 1

2 (C) the hyperelliptic pencil. We may assume L
does not lie in the translate ωC ⊗ A + C − C ⊆ Pic8(C) of the difference variety
C − C ⊆ Pic0(C). Set OC (h) := L ⊗ A∨ ∈ Pic6(C). Then h0(C,OC (h)) = 3 and
our assumption on L guarantees an induced regular map φ|h| : C → P2, whose image
is a sextic curve C ′ ⊆ P2. Set

N := OC (h) ⊗ A∨ = L ⊗ A−2.

For a general L ∈ Pic8(C) we have h0(C, N ) = 1 and we write N = OC (x1 + x2 +
x3 + x4), for points xi ∈ C . By choosing L generally in Pic8(C) we can arrange that
the points xi are distinct. Then

h0(C,OC (h)(−x1 − x2 − x3 − x4)
) = h0(C, A) = 2,

which is to say that the image C ′ := φ|h|(C) has a 4-fold point at o := φ|h|(xi )

for i = 1, . . . , 4. Comparing the genera of C and C ′ we see that C ′ has no further
singularities. This implies we can embed C in the blown-up surface Blo(P2) such that
C ∈ |6h−4E |. Since A = OC (h−E), we also obtain L = OC (h)⊗A = OC (2h−E),
thus finishing the proof. ��

In our study of the moduli space C42 via nodal scrolls, a special role is played by a
certain degree 7 rational surface in P5. In what follows, we summarize its properties.
If o1, . . . , on ∈ P2 are distinct points, we denote by Bln(P2) := Blo1,...,on (P

2) their
blow-up, by Ei the exceptional divisor over oi , and by h the pull-back of the line class
under the contraction morphism Bln(P2) → P2.

Proposition 3.3 Let o1, . . . , o9 ∈ P2 be points lying on a unique smooth cubic curve.
Then the linear system |4h − E1 − · · · − E9| is very ample on Bl9(P2) and the image
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964 G. Farkas , A. Verra

T of the embedding

φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5

is projectively normal. In particular h0
(
P5, IT /P5(2)

) = 3. Furthermore,

Bs
∣∣IT /P5(2)

∣∣ = T ∪ �, where � is a 2-plane meeting T along a smooth elliptic
curve.

Proof The fact that the linear system |4h − E1 − · · · − E9| is very ample on the
blow-up Bl9(P2) follows from [5, Theorem 2.2]. Let C ∈ |OT (1)| be a general
hyperplane section on T . Then C is a smooth non-hyperelliptic curve of genus 3.
Since deg(OC (1)) = 7, using for instance [28, page 55], it follows that the curve
φ|OC (1)| : C ↪→ P4 is projectively normal. Since h0(C,OC (2)) = 12, we find
h0

(
P4, IC/P4(2)

) = 3.Denoting byλ ∈ H0(T ,OT (1)) the equation of the hyperplane

〈C〉 ⊆ P
(
H0(OT (1))∨

) ∼= P5 spanned by C , we have a short exact sequence

0 −→ H0(T ,OT (1))
·λ−→ H0(T ,OT (2)) −→ H0(C,OC (2)) −→ 0,

fromwhich we compute h0(T ,OT (2)) = 6+12 = 18.We also have the commutative
diagram

0 �� λ · H0(T ,OT (1)) ��

∼=
��

Sym2H0(T ,OT (1)) ��

μT

��

Sym2H0(C,OC (1)) ��

μC

��

0

0 �� H0(T ,OT (1))
·λ �� H0(T ,OT (2)) �� H0(C,OC (2)) �� 0

,

where μT and μC denote the multiplication maps. It follows that Coker(μT ) ∼=
Coker(μC ), that is, T is projectively normal. In particular T ⊆ P5 lies on precisely
three quadrics.

The smooth elliptic curve J ∈ |3h − E1 − · · · − E9| can be viewed as a cubic
curve in P5 spanning the plane �. Any quadric containing T also contains J , thus
� ⊆ Bs

∣∣IT /P5(2)
∣∣. The multiplication map H0(T ,OT (h)) ⊗ H0(T ,OT (J )) →

H0(T ,OT (1)) being obviously injective, we find that T ∩ � = J . We finally claim
that

Bs
∣∣IT /P5(2)

∣∣ = T ∪ �. (9)

Indeed, one inclusion having been already established, suppose by contradiction there
is a point r ∈ Bs

∣∣IT /P5(2)
∣∣\(T ∪ �). We pick a general hyperplane hyperplane

P4 ∼= H ⊆ P5 passing through r . Then T ∩ H =: C is a smooth non-hyperelliptic
curve of genus 3, where OC (1) ∈ Pic7(C), whereas H ∩ � =: � is a line. The
components C and � meet along the divisor r1 + r2 + r3 consisting of the points lying
on the intersection J · H ⊆ � ∩ H . Furthermore,

H0(C,OC (r1 + r2 + r3)
) ∼= H0(C,OC (J )) ∼= H0(T ,OT (J ))
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is a 1-dimensional space, for the cubic J does not move in its linear system. It fol-
lows that the stable genus 5 curve C ∪ � is not trigonal. Therefore, its canonical
embedding C ∪ � ↪→ P4 is ideal-theoretically cut out by quadrics, in particular
r ∈ Bs

∣∣IC∪�/P4(2)
∣∣ = C ∪ �. In particular r ∈ T , which shows that T is scheme-

theoretically cut out by quadrics. ��
We describe a geometric construction that will yield a parametrization of Hyp4,8.

Recall that Z ⊆ P4 denotes the cubic scroll defined by (8). We fix general points
(t1, . . . , t8) ∈ Z8 and a general line � ⊆ P4 disjoint from Z . For i = 1, . . . , 8, we
obtain further points xi , yi ∈ Z via the relation

〈�, ti 〉 · Z = ti + xi + yi , (10)

with the intersection being taken inside P4.
We consider the projection π� : P4 ��� P2 of center �, whose restriction

π� : Z → P2 is a regular morphism of degree 3. Since 〈�, xi 〉 = 〈�, yi 〉 = 〈�, ti 〉,
it follows that

π�(xi ) = π�(yi ) = π�(ti ) ∈ P2.

Furthermore, let us choose a general curve C ∈ ∣∣I{x1,y1,...,x8,y8}/Z (6h − 4E)
∣∣. Note

that

dim
∣∣I{x1,y1,...,x8,y8}/Z (6h − 4E)

∣∣ =
(
8

2

)
−

(
5

2

)
− 1 − 16 = 1.

Definition 3.4 Let T be the space of triples (t1, . . . , t8, �, C) ∈ Z8 × G(1, 4) ×
|6h − 4E |, where C ∈ ∣∣I{x1,y1,...,x8,y8}/Z (6h − 4E)

∣∣ is a nodal curve, with the points
xi , yi ∈ Z described by (10).

Clearly, T is a locally trivial P1-bundle over Z8 × G(1, 4). In particular, T is a
rational variety of dimension 23. Note that the 6-dimensional automorphism group
Aut(F1) acts on T , where the action on G(1, 4) is via the identification Aut(F1) ∼=
Aut(Z) ⊆ PGL(5). Therefore the quotient T /Aut(F1) has dimension 17 (and is of
course unirational).

Theorem 3.5 One has a dominant rational morphism ϑ : T ��� Hyp4,8. In particular,
Hyp4,8 is unirational

Proof We start with a suitably general point (t1, . . . , t8, �, C) ∈ T . In particular
C ⊆ Z ⊆ P4 is a smoothhyperelliptic curveof genus 4 and theprojectionπ� : Z → P2

is regular.

Claim (i): The image 
′ of the projection π := π�|C : C → 
′ ⊆ P2 is a nodal octic
curve. In particular, π is the normalization map and 
′ has precisely 17 = (7

2

) − 4
nodes.

Assuming this claim for themoment, we set n′
i := π�(ti ) = π�(xi ) = π�(yi ), where

xi , yi ∈ C are defined via (10). We denote by
{
o1, . . . , o9} := Sing(
′)\{n′

1, . . . , n′
8}
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the set of remaining nodes of 
′. Let Ei be the exceptional divisor at oi on the blow-up
Bl9(P2).
Claim (ii): One has an embedding ϕ := φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5.

Via Proposition 3.3, in order to establish claim (ii), it suffices to show that through
the points o1, . . . , o9 ∈ P2 there passes a unique smooth cubic curve.

Assuming both claims (i) and (ii), we proceed with our proof. The map ϕ is an
embedding and from Proposition 3.3 its image T ⊆ P5 is a projectively normal
surface. We consider the image 
 ⊆ P5 of the strict transform of 
′ in Bl9(P2) under
the map ϕ. Then 
 has nodes at the points ni := ϕ(n′

i ) ∈ P5 for i = 1, . . . , 8 and is
of degree

deg(O
(1)) = (8h − 2E1 − · · · − 2E9)(4h − E1 − · · · − E9) = 14.

Comparing degrees, we conclude that
 ⊆ P5 is a quadratic section of T . Furthermore,
we have a sequence of maps C → 
 → 
′, showing that the smooth hyperelliptic
curve C is the normalization of 
. Summarizing all this, the assignment

ϑ
(
(t1, . . . , t8, �, C)

) := [
,ω
(−1)] ∈ Hyp4,8,

where ω
(−1) = O
(4h − E1 − · · · − E9) is well-defined.
We now show that each irreducible 8-nodal curve [
, L] ∈ Hyp4,8 which is general

in any component of Hyp4,8 appears this way. We fix such a pair and we may assume
that L ∈ W 2

8 (
) is base point free. Let ν : C → 
 be the normalizationmap and denote
by
′ the image of the map φ|L| : 
 → P2. Setting {n1, . . . , n8} = Sing(
), we denote
by {xi , yi } := ν−1(ni ) the inverse images of the nodes of 
 for i = 1, . . . , 8. Then
[C, ν∗(L)] is a general point of the universal Picard variety Pic8H4

. Via Proposition

3.2 we may assume C is embedded in the cubic scroll Z ∼= Blo(P2) ⊆ P4 as a curve
in the linear system |6h − 4E |. Furthermore ν∗(L) = OC (1) = OC (2h − E), where,
as usual, E is the exceptional divisor at the point o. Set π := φ|L| ◦ ν : C → P2.

Using the canonical isomorphism H0(Z ,OZ (1)) ∼= H0(C,OC (1)), we set

� := P
(

H0(Z ,OZ (1)
)
/π∗ H0(P2,OP2(1))

∨)
∈ G(1, 4)

and consider the projection π� : P4 ��� P2 with center �. Clearly, π� is an extension
of the regular map π : C → P2. Note that n′

i := π�(xi ) = π�(yi ). We set ti :=
π−1

� (n′
i )\{xi , yi } ∈ Z . Then clearly ϑ

(
(t1, . . . , t8, �, C)

) = [C, L], thus showing that
ϑ is dominant.

Proof of the claims (i) and (ii) By degeneration we exhibit a point
p := (t1, . . . , t8, �, C) ∈ T , where C is a reducible nodal curve, such that ϑ(p)
is well-defined and both (i) and (ii) hold.

For a line � in P4, if again π� : P4 ��� P2 is the projection with center �, the rational
map

ξ : |4h − 2E | × G(1, 4) ���
(
P2)[8]

, ξ(B, �) := Sing(π�(B)),
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is dominant. Therefore we can start with 8 general points o1, . . . , o8 ∈ P2 and choose
a smooth genus 2 curve B ∈ |4h − 2E | on Z and a line � ⊆ P4, such that the image
B ′ := π�(B) ⊆ P2 is a sextic plane curve with nodes at o1, . . . , o8 and no further
singularities.

The linear system
∣∣I{o1,...,o8}/P2(3)

∣∣ is a general pencil of plane cubics. Its general
member is smooth and its 12 singular members are irreducible one-nodal rational
curves with singularities disjoint from the set {o1, . . . , o8}. The plane cubics through
o1, . . . , o8 cut out the canonical linear system on B, that is,

π∗
�

(∣∣I{o1,...,o8}/P2(3)
∣∣
)

= |ωB |.

This implies that the ninth remaining base point of the pencil
∣∣I{o1,...,o8}/P2(3)

∣∣ does
not lie on B ′, since otherwise B would have a pencil of degree one, hence B would be
rational.

We now choose two general rulings �1 and �2 of Z , that is, �i ≡ h − E , and set
F ′

i := π�(�i ). Both F ′
1 and F ′

2 are lines in P2 meeting in a point o9. Furthermore,
�i · B = 2 and we set

C := B + �1 + �2 ∈ |6h − 4E |, (11)

viewed as a nodal hyperelliptic curve of genus 4. Note that both �1 and �2 meet B in
a pair of hyperelliptic conjugate points. The image curve


′ := π�(C) = B ′ + F ′
1 + F ′

2 ⊆ P2

is a reducible nodal octic, where for i = 1, 2, the intersection B ′ · F ′
i consists of 6

nodes, namely the 2 points in π�(B · �i ), as well as 4 further nodes on each F ′
1 and F ′

2
respectively.

Since o9 can be chosen freely in P2, through the points o1, . . . , o9 there passes a
unique smooth cubic. The map ϕ := φ|4h−E1−···−E9| : Blo1,...,o9(P2) ↪→ T ⊆ P5 is
therefore an embedding. The image Fi ⊆ P5 of the strict transform in Blo1,...,o9(P

2)

of F ′
i is a twisted cubic, whereas the image under ϕ of the proper transform of B ′ can

be identified with the original smooth genus 2 curve B embedded by the linear system∣∣ωB ⊗ π∗
�|BOP2(1)

∣∣. The intersection Fi · B on T is transverse and consists of the 6
points in ϕ(F ′

i · B ′), for i = 1, 2. Finally, F1 and F2 are disjoint. We consider the
nodal curve


 := B + F1 + F2 ⊆ P5. (12)

Set {t1, . . . , t8} := π−1
�

((
F ′
1 + F ′

2

) · B ′\π�

(
(F1 + F2) · B

))\(B + �1 + �2) ⊆ Z .

After choosing an ordering on this set of 8 points, clearly p := (t1, . . . , t8, �, C) ∈ T
and ϑ(p) = [
,ω
(−1)], with O
(1) being defined via the embedding (12). The 8
assigned nodes of 
 as an element of Hyp4,8 are the points in (F1 + F2) · B that are
not the images of (�1 + �2) · B. This completes the proof of both claims (i) and (ii). ��
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Corollary 3.6 For a general point [
, L] ∈ Hyp4,8, the curve φω
⊗L∨ : 
 ↪→ P5 is a
projectively normal 8-nodal curve of degree 14.

Proof Keeping the notation from the proof of Theorem 3.5, we consider the reducible
nodal curve
 = F1+ F2+ B defined by (12) and which appears as a quadratic section
of the surface T ⊆ P5. We have the following commutative diagram:

Sym2H0(T ,OT (1))
∼= ��

μT

��

Sym2H0(
,O
(1))

μ


��
H0(T ,OT (2)) �� H0(
,O
(2))

The bottom map in this diagram is surjective. By Proposition 3.3 the surface T is
projectively normal, thus it follows that the same holds for 
. ��

4 From scrolls of degree 9 to nodal hyperelliptic curves

Let H9 denote the Hilbert scheme of degree 9 scrolls R ⊆ P5. The general point of
H9 corresponds to a smooth degree 9 scroll R ⊆ P5. Following e.g. [17, Lemma 1.5],
one knows thatH9 is smooth of dimension h0(R, NR/P5) = 59. We denote byH8

9 the
closure in H9 of the locus of scrolls having precisely 8 (non-normal) nodes and no
further singularities. Using [17, Proposition 0.4] it follows that H8

9 is nonempty and
has pure codimension 8 insideH9, that is, dim(H8

9) = 51.We introduce the parameter
space of unparametrized degree 9 nodal scrolls

Hscr := H8
9/PGL(6).

Theorem 1.2, coupled with results from [17], imply that Hscr is an irreducible variety
of dimension 16 = dim(H8

9) − dim PGL(6).
Each nodal scroll [R] ∈ Hscr is a projection π : P10 ��� P5 of a smooth degree 9

scroll

F1 := Blo(P2) ↪→ R′ ⊆ P10,

embedded by the linear system φ|5h−4E | : F1 ↪→ P10. Here h is the pull-back of
the line class under the morphism F1 → P2 and E denotes the exceptional divisor
corresponding to the point o ∈ P2. The rulings of R′ are the fibers of the morphism
φ|h−E | : R′ → P1 and correspond to lines in P10. The center of the projection π is a
4-plane 	 ⊆ P10 which is 8-secant to the secant variety Sec(R′) and the restriction
π : R′ → R of the projection map π may be regarded as the normalization of R. We
denote by {n1, . . . , n8} ⊆ P5 the set of (non-normal) nodes of R and by {xi , yi } =
π−1(ni ) ⊆ R′, for i = 1, . . . , 8. The projections of the rulings of R′ ⊆ P10 passing
through xi and yi correspond to lines on R ⊆ P5 meeting in the node ni .
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Definition 4.1 We denote byP the moduli space of pairs [R, �1+�2+�3+�4], where
[R] ∈ Hscr and �1, . . . , �4 ∈ G(1, 5) are rulings of R ⊆ P5, regarded as an unordered
set.

Over a dense open subset, the projection map P → Hscr sending [R, �1 +· · ·+ �4]
to [R] is a P1 ∼= M0,4/S4-bundle. To a general element [R, �1 + �2 + �3 + �4] ∈ P
(in which case we may assume that the rulings �i are disjoint from Sing(R)), we can
associate a unique quadric Q ⊆ P5 containing Sing(R) and the rulings �1, . . . , �4.
The quadric Q determines a residual curve 
 ⊆ P5 given by the relation (2), that is,

R · Q = �1 + �2 + �3 + �4 + 
.

Next we show that the assignment [R] �→ [
] described by (2) induces a well
defined map χ : P ��� Hyp4,8. For our next result, recall that we have studied in
Theorem 3.5 the dominant morphism ϑ : T ��� Hyp4,8.

Proposition 4.2 For a general element [R, �1 + �2 + �3 + �4] ∈ Hscr, the curve

 ⊆ P5 has nodes at n1, . . . , n8 and no further singularities. Its normalization C :=
π−1(
) ⊆ R′ is a smooth hyperelliptic curve of genus 4.

Proof Recall that π : R′ → R is the normalization map and set �′
i := π−1(�i ). Since

�′
i is a ruling of R′ we have that �i ≡ h − E , where we have identified F1 and R′.
From (2) we then obtain C ≡ 6h − 4E . Furthermore, C · (h − E) = 2, that is,
OC (h − E) ∈ W 1

2 (C) is the hyperelliptic linear system on C . For a general choice of
the rulings, we have �i ∩ {n1, . . . , n8} = ∅, therefore from (2) it follows that ni ∈ 


and hence xi , yi ∈ C .
We now show that χ is well defined and in fact Im(χ) ∩ Im(ϑ) 
= ∅. To that end

we use a further degeneration inside the linear system |6h − 4E | on the cubic scroll
Z ⊆ P4. We start with two general curves 
1, 
2 ∈ |3h − 2E | on Z . Both 
1 and

2 are smooth rational curves meeting in 5 = (3h − 2E)2 points, which we call
v1, . . . , v5 ∈ Z . The union 
1 ∪ 
2 is a stable hyperelliptic curve of genus 4 and the
hyperelliptic involution interchanges 
1 and 
2. Precisely, if u := φ|h−E | : Z → P1 is
the fibration given by the rulings of Z , then ι : 
1 → 
2 is the isomorphism given by
ι(u−1(t)·
1) = u−1(t)·
2, for every t ∈ P1,with themap (ι, ι−1) : 
1∪
2 → 
2∪
1
being the hyperelliptic involution.

We pick a general line � ∈ G(1, 4) and consider the degree 3 map π� : Z → P2

obtained by restricting the projection map. Set 
′
i := π�(
i ) ⊆ P2, for i = 1, 2.

Both 
′
1 and 
′

2 are 3-nodal plane quartics and we set Sing(
′
1) = {o1, o2, o3} and

Sing(
′
2) = {o4, o5, o6} respectively. The curves 
′

1 and 
′
2 meet transversally at

16 points, namely n′
i+8 := π�(vi ) for i = 1, . . . , 5 and 11 further nodes which

we partition into two groups we denote by {o7, o8, o9} and {n′
1, . . . , n′

8} respectively.
It is now straightforward to check that 
1 and 
2 can chosen in such a way that
through o1, . . . , o9 there passes a unique smooth cubic curve. Recalling that Ei is
the exceptional divisor corresponding to the point oi for i = 1, . . . , 9, we apply
Proposition 3.3 and obtain that the map

ϕ := φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5

123



970 G. Farkas , A. Verra

is an embedding having as image a projectively normal surface T ⊆ P5 of degree 7.
The image under ϕ of the strict transform of 
′

1 ∪ 
′
2 in Bl9(P

2) is the stable curve


 = 
1 + 
2 ⊆ T ⊆ P5, (13)

where 
1 and 
2 are smooth rational curves of degree 7 meeting at the points ni :=
ϕ(n′

i ), for i = 1, . . . , 13. The 8-nodal scroll associated via (2) to the curve
 described
by (13) is then

R :=
⋃

x∈
1

〈
x, ι(x)

〉 ⊆ P5.

This is a scroll of degree 9 which has nodes at n1, . . . , n8 (and not at n9, . . . , n13,
which are fixed by the hyperelliptic involution on 
1 ∪ 
2). One checks directly
or with Macaulay that R has no further singularities, showing that
[
,ω
(−1)] ∈ Im(ϑ) ∩ Im(χ). ��
Remark 4.3 The constructiondescribed inProposition4.2 provides an alternative proof
of the result in [17] stating that the Hilbert scheme H8

9 of 8-nodal scrolls of degree 9
is nonempty.

Therefore we have a well-defined rational map

χ : P ��� Hyp4,8, χ
([R, �1 + �2 + �3 + �4]

) := [
,ω
(−1)].

As discussed in the previous section, since O
(2) is non-special, applying Riemann-
Roch we find h0(
,O
(2)) = 2deg(
) + 1 − pa(
) = 17. Since the image of χ

intersects the image of the dominant map ϑ : T ��� Hyp4,8, applying Corollary 3.6
we may also assume that 
 ⊆ P5 is projectively normal, hence h0

(
P5, I
/P5(2)

) = 4.

Furthermore, the last part of Proposition 3.3 yields that base locus Bs
∣∣I
/P5(2)

∣∣ is a
nodal curve Y of degree 16 containing 
 as a component, that is,

Y = 
 + B, (14)

with ωY = OY (2). Furthermore, the curves B and 
 meet transversally. Using [10,
Example 9.1.12], we have the formulas

pa(
) − pa(B) = 1

2
· (8 − 6)

(
deg(
) − deg(B)

) = 12, 
 · B = 2deg(
) + 2 − 2pa(
) = 6,

hence B is a smooth conic 6-secant to 
. We introduce the 2-plane spanned by B

� := 〈B〉 ⊆ P5.

Viewing B ·
 as a degree 6 divisor on 
 disjoint from the nodes n1, . . . , n8, we have

ω
(B · 
) ∼= O
(2). (15)
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Proposition 4.4 There exists a 3-dimensional linear system V ⊆ H0
(
P5, I
/P5(2)

)

containing �.

Proof We pick a general point r ∈ �\B. Then for a quadric Z ∈ H0
(
P5, I
/P5(2)

)

one has that � ⊆ Z if and only if r ∈ Z . Indeed, if r ∈ Z , then the restriction of Z
to � already contains B ∪ {r }, therefore � ⊆ Z . Since containing the fixed point r
imposes one condition on |I
/P5(2)|, the conclusion follows. ��

We now introduce the surface T ⊆ P5, defined as the residual surface to � in the
complete intersection (3), that is,

Bs |V | = � + T .

Thus T is a degree 7 surface in P5 lying on three quadrics whose intersection
contains a 2-plane. Such surfaces are classified in [15] and there are five possible
families. But the geometric situation at hand helps us show that T is the surface
described in Proposition 3.3. Since 
 is nondegenerate in P5, in particular 
 � �,
hence 
 ⊆ T . It follows that 
 is the intersection of T with one of the quadrics from
H0

(
P5, I
/P5(2)

)\V . Since the intersection 
 ∩ B is transverse, one has ni /∈ B, and

hence ni ∈ P5\�. We set n′
i := p(ni ) ∈ P2 for i = 1, . . . , 8, where

p = p� : P5 ��� P2 (16)

is the projection with center the 2-plane �.

Proposition 4.5 The image curve 
′ := p(
) ⊆ P2 is a nodal plane curve of genus 8
with nodes at n′

1, . . . , n′
8, as well as at further 9 unspecified points.

Proof Set
·B = r1+· · ·+r6 viewed as a divisor of degree 6on
. Since for anyquadric
q ∈ H0

(
P5, I
/P5(2)

)\V one has q · � = Q, it follows that 
 ∩ � = {r1, . . . , r6}.
The restriction p|
 : 
 ��� P2 of the projection map p defined by (16) has thus the

divisor r1 + · · · + r6 as its base locus. Removing this base locus we obtain a regular
map p : 
 → 
′ ⊆ P2 given by the linear system

∣∣O
(1)(−r1 − · · · − r6))
∣∣ ∼= |ω
(−1)| ∈ W 2

8 (
).

Thus 
′ is a plane octic curve. Since its normalization is the genus 4 curve C , it has 17
nodes, which fall into two groups, namely the 8 nodes {n′

1, . . . , n′
8} and the rest, which

we denote by {o1, . . . , o9}. We remark that 
 ⊆ P5 can be recovered from such an
octic curve 
′. Indeed, keeping the notation above, we blow-up P2 at the nine points
o1, . . . , o9 ∈ P2, then consider the regular map ϕ := φ|4h−E1−···−E9| : Bl9(P2) → P5.

Using Proposition 3.3, we may assume ϕ is indeed an embedding. The image of the
strict transform of 
′ under ϕ is precisely the 8-nodal curve 
. ��
Remark 4.6 The conic B defined in (14) is the intersection of the quadric q with the
2-plane �, whereas the cycle 
 · B of length 6 is precisely the intersection cycle 
 · J
on the smooth surface T , where J ∈ |3h − E1 − · · · − E9|.
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We can now finish the proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.2 It suffices to observe that the map χ is generically injective.
Indeed, for the 8-nodal curve 
 ⊆ P5 given by (2) and having a hyperelliptic nor-
malization π : C → 
 of genus 4, we recover the scroll as the union of the lines〈
π(x), π(ι(x))

〉 ⊆ P5 as x ∈ C varies. Here ι denotes the hyperelliptic involution of
C . But then the quadric Q ⊆ P5 such that 
 ⊆ R · Q is also determined, which also
leads to the unordered collection �1+�2+�3+�4 of rulings of R such that the relation
(2) holds. ��
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