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Abstract
Motivated by the relation between (twisted) K3 surfaces and special cubic fourfolds,
we construct moduli spaces of polarized twisted K3 surfaces of any fixed degree and
order. We do this by mimicking the construction of the moduli space of untwisted
polarized K3 surfaces as a quotient of a bounded symmetric domain.

Mathematics Subject Classification 14J10 · 14J28 · 14F22 · 14J35

Introduction

A twisted K3 surface is a pair (S, α) consisting of a K3 surface S and a Brauer class α

on S. Using the isomorphism Br(S) ∼= H2(S,O∗
S)tors, twisted K3 surfaces can be seen

as a degree two version of polarized K3 surfaces. We may also view them from the
perspective of Hitchin’s generalized K3 surfaces [11], using α to change the volume
form on S. This gives us a generalized Calabi–Yau structure, to which we associate a
Hodge structure ˜H(S, α, Z) of K3 type on the full cohomology of S [17]. In this way,
we can view (S, α) as a geometric realization of a point in the extended period domain
for K3 surfaces.

This paper is concerned with polarized twisted K3 surfaces, that is, K3 surfaces
together with a Brauer class and a primitive ample class in H2(S, Z). Our first goal is
to construct a moduli space of these objects, fixing the degree of the polarization and
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1454 E. Brakkee

the order of the Brauer class. This can be done up to the following concession: when
ρ(S) > 1, one parametrizes lifts of Brauer classes to H2(S, Q), which gives a strictly
bigger group than Br(S).

Theorem 1 (Def. 2.1, Prop. 2.4) There exists a schemeMd [r ]which is a coarse moduli
space for triples (S, L, α) where S is a K3 surface, L ∈ H2(S, Z) is a polarization of
degree (L)2 = d and α is an element of Hom(H2(S, Z)pr, Z/rZ). This group has a
surjection to Br(S)[r ], which is an isomorphism if and only if ρ(S) = 1.

We prove this by mimicking the construction of the moduli space of (untwisted)
polarized K3 surfaces via the period domain. In particular, Md [r ] is a quasi-projective
variety with at most finite quotient singularities, whose number of connected compo-
nents can be bounded in terms of d and r (Proposition 2.5).

In the second part of the paper, we will concentrate on a Hodge-theoretic relation
between twisted K3 surfaces and special cubic fourfolds. For untwisted K3 surfaces,
this relation was first studied by Hassett [10]. He also constructed, for d satisfying a
numerical condition (∗∗), rational maps

Md ��� Cd

from the moduli space of polarized K3 surfaces of degree d to the moduli space
of special cubic fourfolds of discriminant d, sending a K3 surface to the cubic it is
associated to.

Associated twisted K3 surfaces were studied by Huybrechts in [16], extending
results of [1]. The numerical condition on the discriminant given by Huybrechts can
be formulated as follows:

(∗∗′) d ′ = dr2 for some integers d and r , where d satisfies (∗∗).

We give a full generalization of Hassett’s results to the setting of twisted K3 surfaces.

Theorem 2 (Cor. 4.2) A cubic fourfold X is in Cd ′ for some d ′ satisfying (∗∗′) if and
only if for every decomposition d ′ = dr2 with d satisfying (∗∗), X has an associated
polarized twisted K3 surface of degree d and order r .

We also give the analogous construction of Hassett’s rational maps to Cd . Just like
for untwisted K3 surfaces, these maps are either birational or of degree two. We end
with a discussion of the covering involution in the degree two case, relating this paper
to [6].

0.1 Notation

For basics on lattices, see e.g. [15, Chapter 14].

– U is the rank two lattice with intersection matrix
(

0 1
1 0

)

.
– E8 is the unique positive definite even unimodular lattice of rank eight.
– Λ:=E8(−1)⊕2⊕U⊕3 is the lattice isomorphic to the second cohomologyH2(S, Z)

of a K3 surface S.
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– ˜H(S, Z) is the full cohomology of Swith theMukai pairing, viewed as an ungraded
ring.

– ˜Λ:=Λ ⊕U is the lattice isomorphic to ˜H(S, Z).
– Λd ⊂ Λ is the orthogonal complement of a primitive element �d ∈ Λ of square
d, which is unique up to O(Λ).

– Λ ‹

d,r :=( 1r Λ
‹

d)/Λ

‹
d

∼= Λ ‹

d ⊗ Z/rZ ∼= Hom(Λd , Z/rZ).
– ˜O(Λd):=Ker(O(Λd) → O(DiscΛd)). This group acts naturally on Λ ‹

d,r .
– For an isomorphism ϕ : L → L ′ of lattices, ϕr is the induced map L ‹ ⊗ Z/rZ →

(L ′) ‹ ⊗ Z/rZ.
– For a lattice L of signature (n+, n−) with n+ ≥ 2, D(L) is the period domain

{x ∈ P(L ⊗ C) | (x)2 = 0, (x, x̄) > 0}.
– G[r ] is the r -torsion subgroup of an abelian group G.
– Cohomology with coefficients in Gm means étale cohomology. Otherwise we
always use the analytic topology.

– Md is themoduli functor for polarizedK3 surfaces of degreed, andΦ : Md → Md

is the associated coarse moduli space.

Remark 0.1 Byamoduli functorM , wewillmean a functor on the category of schemes
of finite type over SpecC. A coarse moduli space for M is a scheme M with a
morphism ξ : M → M such that ξ(C) is a bijection, and we have factorization over
M of morphisms M → T for T any C-scheme of finite type.

1 Twisted K3 surfaces

1.1 Definitions

For references, see [14,13]. Recall that the Brauer group Br(X) of a scheme X is the
groupof sheaves ofAzumaya algebrasmoduloMorita equivalence,withmultiplication
given by the tensor product. If X is quasi-compact and separated and has an ample
line bundle, then Br(X) is isomorphic to the cohomological Brauer group

Br(X)′:=H2(X , Gm)tors,

which equals H2(X , Gm)when X is regular and integral. If X is a complex K3 surface,
one can moreover show that

Br(X) ∼= H2(X ,O∗
X )tors ∼= (Q/Z)22−ρ(X).

A twisted K3 surface is a pair (S, α) where S is a K3 surface and α ∈ Br(S). Two
twisted K3 surfaces (S, α) and (S′, α′) are isomorphic if there exists an isomorphism
f : S → S′ such that f ∗α′ = α.
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1456 E. Brakkee

The exponential sequence on S induces the following exact sequence:

0 NS(S) H2(S, Z) H2(S,OS)
exp

H2(S,O∗
S) 0

∩ ∼=

H2(S, C) = H0,2(S) ⊕ H1,1(S) ⊕ H2,0(S)

It follows that any Brauer class α ∈ H2(S,O∗
S)tors is of the form exp(B0,2) for some

B ∈ H2(S, Q), unique up toH2(S, Z) andNS(S)⊗Q. Thus, denoting by T (S) the tran-
scendental lattice of S, intersecting with B gives a linear map fα = (B,−) : T (S) →
Q/Z which only depends on α. One can show that α �→ fα yields an isomorphism
Br(S) ∼= Hom(T (S), Q/Z).

Given a lift B ∈ H2(S, Q) of α, we define a weight two Hodge structure of K3 type
˜H(S, B, Z) on the full cohomology of S by

˜H2,0(S, B):=C[exp(B)σ ] ⊂ ˜H(S, C),

where σ is a nowhere degenerate holomorphic 2-form on S and exp(B)σ :=σ + B ∧
σ . This Hodge structure does not depend on our choice of B (up to non-canonical
isomorphism [17, Section 2]), so we can define

˜H(S, α, Z):=˜H(S, B, Z)

for any B ∈ H2(X , Q) with exp(B0,2) = α. When α is trivial, this gives back the
usual Hodge structure on H∗(S, Z).

The Picard group of (S, α) is defined as ˜H1,1(S, α) ∩ ˜H(S, α, Z), so

Pic(S, α) = {δ | (δ, exp(B)σ ) = 0} ⊂ ˜H(S, α, Z)

for B ∈ H2(S, Q) lifting α. If α is trivial, then Pic(S, α) = H0(S, Z) ⊕ Pic(S)⊕
H4(S, Z). The transcendental lattice T (S, α) is defined as the orthogonal complement
of Pic(S, α) in˜H(S, α, Z). Ifα is trivial, then T (S, α) is the transcendental lattice T (S)

of S. One can show that T (S, α) is isometric, as an abstract lattice, to

Ker( fα : T (S) → Q/Z) = {x ∈ T (S) | (B, x) ∈ Z}.

Definition 1.1 A polarized twisted K3 surface is a triple (S, L, α), where S is a K3
surface, L ∈ H2(S, Z) is a primitive ample class andα ∈ Br(S). Two twisted polarized
K3 surfaces (S, L, α) and (S′, L ′, α′) are isomorphic if there exists an isomorphism
f : S → S′ such that f ∗L ′ = L and f ∗α′ = α.
We define two invariants of (S, L, α): its degree d = (L)2 and its order r = ord(α)

(also known as its period).
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1.2 A non-existence result for moduli spaces

Ideally, one would like to find a (coarse) moduli space Nd [r ] for the following functor:

Nd [r ] : (Sch/C)o → (Sets), T �→ {( f : S → T , L, α)}/ ∼= .

Here, ( f : S → T , L ∈ H0(T , R1 f∗Gm)) ∈ Md(T ) is a smooth proper family of
polarized K3 surfaces of degree d and α ∈ H0(T , R2 f∗Gm) such that for any closed
point x ∈ T , base change gives a Brauer class αx ∈ H2(Sx , Gm)[r ].

It is, however, not difficult to show that Nd [r ] does not exist as a locally Noetherian
scheme. Namely, supposeNd [r ] → Nd [r ] exists. Consider the natural transformation
ξ : Nd [r ] → Md which at a scheme T is defined by (S → T , L, α) �→ (S → T , L).
By the properties of a coarse moduli space, there exists a unique morphism
π : Nd [r ] → Md which makes the following diagram commute:

Nd [r ]
ξ

Nd [r ]
∃π

Md
Φ

Md .

For a closed point y ∈ Nd [r ] corresponding to a tuple (S, L, α), the image π(y)
should be the point x of Md corresponding to (S, L). So the fibre of π over x is

(Nd [r ])x = {(S, L, α) | α ∈ Br(S)[r ]}/Aut(S, L).

For d > 2, let U ⊂ Md be the open subset where Aut(S, L) is trivial. Over U , we
have (Nd [r ])x ∼= Br(S)[r ] ∼= (Z/rZ)22−ρ(S). In particular, π |Nd [r ]×Md U

is ramified
exactly over the locus where ρ(S) > 1. Now this set is dense in U , thus not Zariski
closed, giving a contradiction.

For d = 2, letU ⊂ M2 be the open subset where Aut(S, L) ∼= Z/2Z. Then overU ,
we have 221−ρ(S) ≤ |(N2[r ])x | ≤ 222−ρ(S). So π |Nr

2 ×M2U
is ramified (at least) over

the locus where ρ(S) > 2, again a dense set in U , which leads to a contradiction.

When requiring that α has order r (on each connected component of T ), non-
existence is proven similarly. One obtains a morphism π to Md such that over an open
subset U ⊂ Md , the cardinality of the fibre of π over (S, L) ∈ U is the number
of elements of order r in (Z/rZ)22−ρ(S) (or half this number when d = 2). Again,
π |π−1(U ) is ramified exactly over the locus where ρ(S) > 1 (at least over the locus
where ρ(S) > 2 when d = 2), a contradiction.

2 Moduli spaces of polarized twisted K3 surfaces

Wewill construct a slightly different moduli space Md [r ]mapping to Md , whose fibre
over (S, L) ∈ Md parametrizes triples (S, L, α) with α ∈ Hom(H2(S, Z)pr, Z/rZ).
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1458 E. Brakkee

There is a surjective homomorphism from this group to Br(S)[r ], which is an isomor-
phism if and only if ρ(S) = 1.

2.1 Definition of themoduli functor

The Kummer sequence 0 → μr → Gm
(·)r→ Gm → 0 induces a short exact sequence

0 → Pic(S) ⊗ Z/rZ → H2(S, μr ) → Br(S)[r ] → 0.

If L ∈ H2(S, Z) is a polarization, we have injections

Z/rZ · L ↪→ Pic S ⊗ Z/rZ ↪→ H2(S, Z/rZ).

Hence, we get a surjective map

H2(S, Z/rZ)/(Z/rZ · L) H2(S, Z/rZ)/(Pic S ⊗ Z/rZ) ∼= Br(S)[r ]= =

H2(S, Z) ‹pr ⊗ Z/rZ T (S) ‹ ⊗ Z/rZ

which is an isomorphism if and only if ρ(S) = 1.
We define a relative version of H2(S, Z) ‹pr ⊗ Z/rZ ∼= Hom(H2(S, Z)pr, Z/rZ) as

follows. For a smooth proper family ( f : S → T , L) of polarized K3 surfaces, set

R2
pr f∗Z:=Ker

(

R2 f∗Z
·c1(L)−−−→ R4 f∗Z

)

where c1(L) is the image of L under H0(T , R1 f∗Gm) → H0(T , R2 f∗Z). Let F [r ]
be the following local system:

F [r ]:=H omAb(R
2
pr f∗Z, Z/rZ)

where H omAb means morphisms of sheaves of abelian groups.

Definition 2.1 The moduli functor Md [r ] is defined as

Md [r ] : (Sch/C)o → (Sets), T �→ {( f : S → T , L, α)}/∼=

where
(

f : S → T , L ∈ H0(T , R1 f∗Gm)
)

is a smooth proper family of polarized K3
surfaces of degree d and α ∈ H0(T ,F [r ]). We define

M r
d : (Sch/C)o → (Sets)

to be the subfunctor sending a scheme T to the set of those tuples ( f , L, α) for which
α has order r on each connected component of T .

We will construct coarse moduli spaces forMd [r ] and M r
d .
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2.2 Construction of themoduli space

We recall the construction of Md as a subvariety of a quotient of a bounded symmetric
domain (see e.g. [15]). The primitive cohomology H2(S, Z)pr of a degree-d polarized
K3 surface only depends, as a lattice, on d, and is isomorphic to Λd . The moduli
functor Mmar

d of marked polarized K3 surfaces of degree d is given by

Mmar
d (T ) = {( f : S → T , L ∈ H0(T , R1 f∗Gm), ϕ : R2

pr f∗Z ∼= Λd)}/ ∼=,

where ( f : S → T , L) ∈ Md(T ). It has an analytic fine moduli space Mmar
d , which

can be constructed as an open submanifold of the period domain D(Λd) of Λd . In
particular, there exists a universal family

(

f : Smar → Mmar
d , Lmar, ϕmar) .

We denote the morphismMmar
d → Mmar

d by Φmar. The moduli space Md is obtained
from Mmar

d by taking the quotient under the action of ˜O(Λd).
Note that ϕmar induces an isomorphism ϕmar

r : F [r ] ∼= Hom(Λd , Z/rZ) = Λ ‹

d,r .

Thus, F [r ] is the sheaf of sections of the trivial finite cover

Mmar
d [r ]:=Spec H omSets(Λ

‹

d,r ,OMmar
d

)

= Mmar
d ×Λ ‹

d,r ,

where H omSets means morphisms of sheaves of sets. The space Mmar
d [r ] is a coarse

moduli space for the functor

Mmar
d [r ] : (Sch/C)o → (Sets), T �→ {( f : S → T , L, ϕ, α)}/ ∼=

where ( f : S → T , L, ϕ) ∈ Mmar
d (T ) and α ∈ H0(T ,F [r ]). Namely, let

Φmar[r ] : Mmar
d [r ] → Mmar

d [r ]

be the morphism defined over a connected scheme T by

(S → T , L, ϕ, α) �→ (Φmar(S → T , L, ϕ), ϕr (α)),

so we have a commutative diagram

Mmar
d

Φmar
Mmar

d

Mmar
d [r ]

Φmar[r ] Mmar
d [r ]
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1460 E. Brakkee

Then Φmar
d [r ] is a bijection over SpecC. Moreover, suppose we have a map G from

Mmar
d [r ] to aC-scheme X . For any α ∈ Λ ‹

d,r , there is a mapGα : Mmar
d → X defined

over a connected scheme T by (S → T , L, ϕ) �→ G(S → T , L, ϕ, ϕ−1
r (α)). The

Gα induce maps gα : Mmar
d → X , which combine to a morphism g : Mmar

d [r ] → X
satisfying g ◦ Φmar[r ] = G.

The action of ˜O(Λd) on Mmar
d lifts to Mmar

d [r ] via

g(S, L, ϕ, α) =
(

S, L, g ◦ ϕ, ϕ−1
r gϕr (α)

)

.

Under Mmar
d [r ] ↪→ D(Λd) × Λ ‹

d,r , this is the restriction of the natural action of
˜O(Λd) on D(Λd) × Λ ‹

d,r . This action is properly discontinuous: it is on D(Λd) (see
[15, Remark 6.1.10]), so also on the product with the finite group Λ ‹

d,r . It follows that
the quotient

Md [r ]:=Mmar
d [r ]/˜O(Λd)

exists as a complex space. Similarly, let Mmar,r
d ⊂ Mmar

d [r ] be the union of those
components Mmar

d [r ] × {v} for elements v ∈ Λ ‹

d,r of order r . Then the quotient

Mr
d :=Mmar,r

d /˜O(Λd)

exists as a complex space.
We claim that Md [r ] and Mr

d are quasi-projective varieties. Consider the following
commutative diagram:

Mmar
d [r ] = Mmar

d ×Λ ‹

d,r
π

Λ ‹

d,r

Md [r ] π̄
Λ ‹

d,r/
˜O(Λd).

Giving the sets on the right side the discrete topology, all these maps are continuous.
So under π̄ , each connected component of Md [r ] is mapped to a point. Vice versa,
given [w] ∈ Λ ‹

d,r , the inverse image of ˜O(Λd) · [w] ∈ Λ ‹

d,r/
˜O(Λd) under π̄ is

Mw := (

Mmar
d ×˜O(Λd) · [w]) /˜O(Λd) ∼= (

Mmar
d ×{[w]})/Stab [w]

where Stab [w] ⊂ ˜O(Λd) is the stabilizer of [w] under the acion of ˜O(Λd) on Λ ‹

d,r .
NowStab [w] contains the reflection sδ for an element δ ∈ Λd of square−2 orthogonal
tow and �′

d , which interchanges the two connected components ofMmar
d . Hence,Mw is

connected; even irreducible. This shows that the connected components of Md [r ] are
in one-to-one correspondence with Λ ‹

d,r/
˜O(Λd). Each component Mw parametrizes

triples (S, L, α) that admit a marking ϕ with ϕr (α) = [w]. The components belonging
to Mr

d are those Mw for which [w] has order r .
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Remark 2.2 Recall (see e.g. [15, Section 6.4.2]) that for � large enough, there exists
a fine moduli space Mlev

d of polarized K3 surfaces (S, L) of degree d with a Λ/�Λ-
level structure, i.e. an isometry H2(S, Z)pr ⊗ Z/�Z ∼= Λd ⊗ Z/�Z. The space Mlev

d
is a smooth quasi-projective variety which is a finite cover of Md . We could have
constructedMd [r ] as a quotient ofMlev

d ×Λ ‹

d,r instead, choosing � to be a large enough
multiple of r .

Corollary 2.3 Every connected component of Md [r ] (and therefore of Mr
d ) is an irre-

ducible, quasi-projective variety with at most finite quotient singularities.

Proof The finite index subgroup Stab [w] ⊂ ˜O(Λd) being arithmetic, the quotient
D(Λd)/Stab [w] is a quasi-projective variety with finite quotient singularities, by
[2] and [24, Lemma IV.7.2]. We will show that Mw = (

Mmar
d ×{[w]})/Stab [w] is a

Zariski open subset of it, using the same argument as for the algebraicity of the moduli
space of untwisted polarized K3 surfaces (see e.g. [15, Section 6.4.1]).

Let �be a large enoughmultiple of r such that there exists a finemoduli spaceMlev
d of

polarized K3 surfaces with a Λ/�Λ-level structure, see Remark 2.2. For the universal
family π : Slev → Mlev

d , there exists a marking R2
prπ∗Z ⊗ Z/�Z ∼= Λd ⊗ Z/�Z. This

induces a holomorphic map Mlev
d → D(Λd)/Γ�, where

Γ� = {g ∈ ˜O(Λd) | g ≡ id mod �} ⊂ Stab [w].

The image of this map is Mmar
d /Γ�. Dividing out further by Stab [w] yields a holo-

morphic map

Mlev
d � Mmar

d /Stab [w] ⊂ D(Λd)/Stab [w].

By a theorem of Borel [4] (and also [24, Lemma IV.7.2]), this map is algebraic, and
therefore the image Mmar

d /Stab [w] is constructible. As it is also analytically open in
D(Λd)/Stab [w], it is Zariski open [9, Corollary XII.2.3]. ��

One constructs a morphism Ψ : Md [r ] → Md [r ] in the following way. Consider
a point ( f : S → T , L, α) in Md [r ](T ). Proceeding as for untwisted polarized K3
surfaces, we pass to the (infinite) étale covering

˜T := Isom(R2
pr f∗Z,Λd)

η−→ T ,

which has a natural˜O(Λd)-action, satisfying ˜T /˜O(Λd) ∼= T . Write ˜f : ˜S → ˜T for the
pullback family. The local system R2

pr
˜f∗Z is trivial: there exists a canonical isomor-

phism ϕ : R2
pr

˜f∗Z ∼= Λd . NowΦmar[r ](˜S, η∗L, ϕ, η∗α
)

is an element of Mmar
d [r ](˜T ),

i.e. a holomorphicmap˜T → Mmar
d [r ]. Thismap is˜O(Λd)-equivariant, hence descends

to a map T → Md [r ]. This map is algebraic by [4], thus defines a point in Md [r ](T ).
We let Ψ (S → T , L, α) be this point.

Proposition 2.4 The space Md [r ] is a coarse moduli space for the functor Md [r ].
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1462 E. Brakkee

Proof By definition, there is a commutative diagram

Mmar
d [r ] Φmar[r ]

F

Mmar
d [r ]

q

Md [r ]
Ψ

Md [r ]

where the map F forgets the marking and q is the quotient map. We need to show that
Ψ (C) : Md [r ](C) → Md [r ](C) is a bijection. For x ∈ Md [r ](C), let y ∈ Mmar

d [r ](C)

such that q(y) = x . Set Ψ (C)−1(x):=F(Φmar[r ](C)−1(y)); note that this does not
depend on the choice of y. One checks that Ψ (C)−1 defines a set-theoretic inverse to
Ψ (C).

For the universal property of Ψ , let s : Md [r ] → T be a morphism to a finite type
C-scheme T . Then s ◦ F is a map from Mmar

d [r ] to T ; since Mmar
d [r ] → Mmar

d [r ]
is a coarse moduli space, this induces a unique holomorphic map t : Mmar

d [r ] → T
such that t ◦Φmar[r ] = s ◦ F . It follows from the uniqueness that t is equivariant, thus
factors over a holomorphic map Md [r ] → T . We will show that this map is algebraic.

Like before, let � be a large enough multiple of r such that there exists a fine moduli
spaceMlev

d of K3 surfaces with aΛ/�Λ-level structure. ThemapMmar
d [r ] → T factors

as

Mmar
d [r ] → Mlev

d ×Λ ‹

d,r → Md [r ] → T

(see Remark 2.2). The map Mlev
d ×Λ ‹

d,r → T is algebraic and equivariant under the

algebraic action of˜O(Λd). The induced algebraic morphism (Mlev
d ×Λ ‹

d,r )/
˜O(Λd) →

T is the given map Md [r ] → T . ��
The proof that Mr

d is a coarse moduli space forM r
d is analogous.

Proposition 2.5 The spaceMr
d has at most r · gcd(r , d) many connected components.

This follows directly from the following lemma. Denote Λ = E8(−1)⊕2 ⊕U1 ⊕U2
⊕U3. Let {ei , fi } be the standard basis for the i-th copy of U . Fix �d :=e3 + d

2 f3 and
�′
d :=e3 − d

2 f3, so Λ ‹

d
∼= E8(−1)⊕2 ⊕U1 ⊕U2 ⊕ 〈 1d �′

d〉. For integers n, k, we let

wn,k := 1
r (e1 + n f1 + k

d �′
d) ∈ 1

r Λ

‹

d .

Lemma 2.6 Every element of order r in Λ ‹

d,r is equivalent under the action of ˜O(Λd)

to [wn,k] for some n, k ∈ Z. Moreover, if n ≡ n′ mod r and k ≡ k′ mod gcd(r , d),
then [wn,k] and [wn′,k′ ] are equivalent.
Proof Elements in Λ ‹

d,r of order r are of the form m[ 1r x] where gcd(m, r) = 1 and

x ∈ Λ ‹

d is primitive, so x = sy + t
d �′

d for some primitive y ∈ E8(−1)⊕2 ⊕U1 ⊕U2
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and integers s, t with gcd(s, t) = 1. Write d = d0 · gcd(d, t) and t = t0 · gcd(d, t).
Then d0x = d0sy + t0�′

d ∈ Λd is primitive and

(d0x,Λd) = gcd
(

(d0sy, E8(−1)⊕2 ⊕U1 ⊕U2), (t0�
′
d , Z�′

d)
)

= gcd(d0s, dt0)

= d0.

By Eichler’s criterion [8, Proposition 3.3], d0x is equivalent under ˜O(Λd) to d0(e1 +
n f1) + t0�′

d for some n. So 1
r x is equivalent to 1

r (e1 + n f1 + t
d �′

d) = wn,t .
Now m

r x ≡ mwn,t is equivalent modulo Λ ‹

d to 1
r (me1 + (mn + r) f1 + mt

d �′
d). As

gcd(r ,m) = 1, the element y = me1 + (mn + r) f1 + mt
d �′

d ∈ Λ ‹

d is primitive, so by
the above, 1

r y is equivalent under ˜O(Λd) to some wn′,t ′ . It follows that m[ 1r x] ∈ Λ ‹

d,r
is equivalent to [wn′,t ′ ].

Next, note that if t ′ ≡ t mod d, then wn,t is equivalent to wn′,t ′ for some n′ (by
Eichler’s criterion). In particular, writing gcd(r , d) = pr + qd, the class

[wn,gcd(r ,d)+t ] = [ 1r (e1 + n f1 + (pr + qd + t) 1d �′
d)] = [ 1r (e1 + n f1 + (qd + t) 1d �′

d)]

in Λ ‹

d,r is equivalent to [ 1r (e1 + n′ f1 + t
d �′

d)] = [wn′,t ] for some n′. This shows that
every [wn,k] is equivalent to some [wn′,k′ ] with 0 ≤ n′ < r and 0 ≤ k′ < gcd(r , d). ��

3 Periodmaps

We show how to construct period maps on the connected components of Mr
d , which

will be an important ingredient in relating twisted K3 surfaces to cubic fourfolds in
Sect. 4.

3.1 Construction

We have seen that the connected components of Mr
d are of the form

Mw = (Mmar
d ×{[w]})/Stab [w]

for [w] ∈ Λ ‹

d,r of order r . We will construct a period map from Mmar
d ×{[w]} to the

period domain D(Tw) of the lattice

Tw:=Ker((w,−) : Λd → Q/Z).

Let (S, L, ϕ, [w]) ∈ Mmar
d ×{[w]}. The corresponding twisted Hodge structure

˜H(S, [w], Z) on S is given as follows. Let

w′ = ϕ−1
Q

(w) ∈ 1
r H

2(S, Z) ‹pr ⊂ H2(S, Q).
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Then˜H2,0(S, [w]) isC[σ +w′ ∧σ ], where σ is a non-degenerate holomorphic 2-form
on S. Let ˜Λ = Λ⊕U4 be the extended K3 lattice. We can extend ϕ to an isomorphism
ϕ̃ : ˜H(S, Z) → ˜Λ by sending 1 ∈ H0(S, Z) to e4 ∈ U4 and 1 ∈ H4(S, Z) to f4 ∈ U4.
Then

ϕ̃(σ + w′ ∧ σ) = ϕ(σ) + (w, ϕ(σ )) f4.

Recall that for an even lattice N and B ∈ N , the B-field shift exp(B) ∈ O(N ⊕U )

is defined by

z �→ z − (B.z) f , e �→ e + B − (B)2

2 f , f �→ f

for z ∈ N , where {e, f } is the standard basis of the hyperbolic plane U . For B ∈ NQ,
we define exp(B) ∈ O((N ⊕ U )Q) by linear extension. The discussion above shows
that ϕ̃(σ + w′ ∧ σ) = exp(w)ϕ(σ ) (note: U ∼= U (−1) = 〈e,− f 〉). We thus obtain a
map

Qw : Mmar
d ×{[w]} → D

(

(exp(w)Λd) ∩ ˜Λ
)

sending (S, L, ϕ, [w]) to [ϕ̃(˜H2,0(S, [w]))].
The above depends on the choice of a representative w ∈ 1

r Λ
‹

d of [w] ∈ Λ ‹

d,r . We
can get rid of this choice in the following way. First, the lattice Tw is a finite index
sublattice of Λd , so we have D(Tw) = D(Λd). Second, note that the map exp(w)

gives an isomorphism Tw
∼= (exp(w)Λd) ∩ ˜Λ. We see thatQw factors over the usual

period map P for Mmar
d : the diagram

Mmar
d ×{[w]} ∼= Mmar

d

Qw

P
D(Λd)

=

D
(

(exp(w)Λd) ∩ ˜Λ
)

∼= D(Tw)

commutes. Denote by Pw the composition from Mmar
d ×{[w]} to D(Tw). It follows

from the above diagram that Pw is holomorphic and injective.
Just like Mw, the quotient D(Tw)/Stab [w] is a quasi-projective variety by [2].

There is a commutative diagram

Mmar
d ×{[w]} Pw

D(Tw)

Mw
Pw

D(Tw)/Stab [w]

where Pw is algebraic by the same argument as in Corollary 2.3 (note that when �

is a multiple of r2d, the group Γ� = {g ∈ ˜O(Λd) | g ≡ id mod �} is contained in
Stab [w]).
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Recall (see e.g. [15, Remark 6.4.5]) that D(Tw)\ imPw = D(Λd)\ imP is a
union of hyperplanes

⋃

δ∈Δ(Λd ) δ⊥, where Δ(Λd) is the set of (−2)-classes in Λd . It
follows that D(Tw) parametrizes periods of twisted quasi-polarized K3 surfaces, i.e.
twisted K3 surfaces with a line bundle that is nef and big (however, the corresponding
moduli stack is not separated). Hence, the quotientD(Tw)/Stab [w] can be viewed as
a moduli space of quasi-polarized twisted K3 surfaces.

3.2 The discriminant group of Tw

We collect some results about the lattice Tw, in preparation of Sect. 4. Let w ∈ 1
r Λ

‹

d
such that [w] ∈ Λ ‹

d,r has order r . Wewill describe the group Disc Tw and the quadratic
form on it. Note that if g ∈ ˜O(Λd), then g induces an isomorphism Tw

∼= Tg(w). So
by Lemma 2.6, we can assume that

w = wn,k = 1
r (e1 + n f1 + k

d �′
d)

for some n, k. Then Tw = E8(−1)⊕2 ⊕U2 ⊕ T0, where

T0 = {y ∈ U1 ⊕ Z�′
d | (y, w) ∈ Z} = 〈e1 − n f1, r f1, k f1 + �′

d〉.

Since E8(−1)⊕2⊕U2 is unimodular,Disc Tw is isomorphic toDisc T0. The intersection
matrix of T0 is (compare [23, Lemma 2.12])

M =
⎛

⎝

−2n r k
r 0 0
k 0 −d

⎞

⎠

As the map T0 → T ‹0 is given by the matrix Mt = M , we have

Disc T0 = Z/g1Z × Z/g2Z × Z/g3Z

where the invariant factors gi can be computed using the i × i-minors of M [5,
Satz 2.9.6]:

g1 = gcd(2n, r , k, d), g2 = gcd(r2, kr , rd, 2nd − k2)/g1, g3 = dr2/g1g2.

We will be interested in the following two cases:

Proposition 3.1 Let w = wn,k ∈ 1
r Λ

‹

d .

(i) The group Disc Tw is cyclic if and only if gcd(r , 2nd − k2) = 1.
(ii) We have

Disc Tw
∼= Z/(r2d/3)Z × Z/3Z

if and only if gcd(r , 2nd − k2) = 3, and if 3|d then 9 � nd.
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In order to determine the quadratic form on Disc Tw, we write down explicit gen-
erators. Consider the following elements of Disc T0:

[ f1] = [ 1r (r f1)]
[�′

d/d] = [ 1d (k f1 + �′
d) − k

rd (r f1)]
[w] = [ 1r (e1 − n f1) + 2nd−k2

r2d
(r f1) + k

rd (k f1 + �′
d)].

The order of [x] is the smallest natural number a such that ax ∈ Tw, that is, (ax, w) ∈
Z. For the elements above, this gives

ord[ f1] = r , ord[�′
d/d] = rd

gcd(k,rd)
, ord[w] = r2d

gcd(r2d,2nd−k2)
.

The class of x ∈ T ‹w in Disc Tw is

[x] = (x, r f1)[w] − (x, k f1 + �′
d)[�′

d/d] + (x, e1 − n f1)[ f1].

This shows that Disc Tw is generated by [ f1], [�′
d/d] and [w].

Lemma 3.2 If gcd(d, k, r) = s, then there is an integer p such that gcd(d, k+pr) = s.

Proof Let d = d0 gcd(r , d), so gcd(r , sd0) = s. Write xsd0 + yr = s. Then

gcd
(

d, k + (1 − k
s )yr

) = gcd
(

sd0, k + (1 − k
s )(s − xsd0)

)

= s gcd
(

d0, 1 − xd0 + xd0
k
s

)

= s.

��
First assume Disc Tw is cyclic, so gcd(r , 2nd − k2) = 1. In particular, we have

gcd(r , d, k) = 1. By Lemma 3.2 there exists a p such that gcd(d, k + pr) = 1. Since
Twn,k

∼= Twn,k+pr , we can replace k by k+ pr . Then we have gcd(r2d, 2nd − k2) = 1;
hence, [w] generates Disc Tw. So the quadratic form qTw on Disc Tw is determined by

qTw([w]) = [(w)2] = 1
r2d

(2nd − k2)mod 2Z.

Next, assume Disc Tw
∼= Z/(r2d/3)Z × Z/3Z. If 3|d, then gcd(r , 2nd − k2) = 3,

and 9 � nd implies 9 � 2nd − k2. It follows that gcd(r2, 2nd − k2) = 3, so [w]
generates Z/(dr2/3)Z. As a generator of the factor Z/3Z, we take the element

u:= k
3 [ f1] − d

3 [�′
d/d] = 1

3 [k f1 + �′
d ],

which satisfies qTw(u) = − d
9 mod 2Z. If u were a multiple m[w] of [w], we

would have qTw(u) ≡ m2 2nd−k2
3 mod 2; multiplying by r2d

3 gives − ( d
3

)2 r2
3 ≡
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m2 2nd−k2
3 mod 2r2d

3 . This implies that m = rm0 for some m0; hence − ( d
3

)2 ≡
3m2

0
2nd−k2

3 mod 2d. This is not possible as 3 does not divide the left hand side.
If 3 � d, we may have 9|2nd − k2, but this implies 9 � r . Using that Twn,k

∼= Twn+r ,k ,
we may replace n by n+r and obtain 9 � 2nd−k2. This gives gcd(r2, 2nd−k2) = 3,
so [w] generates Z/(dr2/3)Z. As a generator of the factor Z/3Z, we take

u′:= rd
3 [w] − 2nd−k2

3 [ f1] = 1
3 ([d(e1 − n f1) + k(k f1 + �′

d)]).

We have qTw(u′) = − d
9 (2nd − k2)mod 2Z. Like before, if u′ were a multiple m[w]

of [w], we would find −d2
( r
3

)2 2nd−k2
3 ≡ m2 2nd−k2

3 mod 2r2d
3 . It follows that m =

m0r/3 for somem0, and hence 2nd−k2
3 (m2

0+d2) ≡ 0mod 6d. But this is not possible,
since the left hand side is not divisible by 3.

Corollary 3.3 Let w = wn,k ∈ 1
r Λ

‹

d .

(i) If Disc Tw is cyclic, there exists a generator t such that

qTw(t) = 1
r2d

(2nd − k2)mod 2Z.

(ii) If Disc Tw
∼= Z/(r2d/3)Z × Z/3Z and 3 � d, there exist generators (1, 0) and

(0, 1) such that

qTw(1, 0) = 1
r2d

(2nd − k2)mod 2Z

and

qTw(0, 1) = − d
9 (2nd − k2)mod 2Z.

(iii) If Disc Tw
∼= Z/(r2d/3)Z × Z/3Z and 3|d, there exist generators (1, 0) and

(0, 1) such that

qTw(1, 0) = 1
r2d

(2nd − k2)mod 2Z

and

qTw(0, 1) = − d
9 mod 2Z.

4 Twisted K3 surfaces and cubic fourfolds

A smooth cubic fourfold X is special if the lattice H2,2(X)∩H4(X , Z) has rank at least
two. Hassett [10] showed that special cubic fourfolds form a countably infinite union
of irreducible divisors Cd in the moduli space of cubic fourfolds. Here Cd �= ∅ if and
only if d > 6 and d ≡ 0, 2mod 6. Hassett proved that X is in Cd with d satisfying

(∗∗) d is even and not divisible by 4, 9, or any odd primep ≡ 2 mod 3

123



1468 E. Brakkee

if and only if there exists a polarized K3 surface (S, L) of degree d whose primitive
cohomology H2(S, Z)pr can be embedded Hodge-isometrically into H4(X , Z)pr, up
to a sign and a Tate twist.

In this section, we will generalize this result to twisted K3 surfaces.

4.1 Associated twisted K3 surfaces

We denote by H4(X , Z)(1) the middle cohomology of a cubic fourfold X with the
intersection product changed by a sign and the weight of the Hodge structure shifted
by two. There is a lattice isometry

H4(X , Z)(1) ∼= E8(−1)⊕2 ⊕U⊕2 ⊕ Z(−1)⊕3. (1)

The isometry can be chosen such that the square of the hyperplane class on X is
mapped to h:=(1, 1, 1) ∈ Z(−1)⊕3. We denote the orthogonal complement to h by
Γ , so Γ is isomorphic to H4(X , Z)pr(1).

The cubic X lies in the divisor Cd if and only if there exists a primitive sublattice

K ⊂ H2,2(X) ∩ H4(X , Z)(1)

of rank two and discriminant d containing the square of the hyperplane class. The
orthogonal complement K⊥ ⊂ H4(X , Z)(1) has an induced Hodge structure which
determines X when X ∈ Cd is very general. As abstract lattices, K and K⊥ only
depend on d.

Under the isometry (1), the lattice K corresponds to a primitive sublattice of
E8(−1)⊕2⊕U⊕2⊕Z(−1)⊕3 of rank two and discriminant d containing h. Such a sub-
lattice is unique up to the action of the stable orthogonal group˜O(Γ ) = Ker(O(Γ ) →
O(DiscΓ )). We fix one such sublattice for each discriminant d and denote it by Kd .
Its orthogonal complement K⊥

d is contained in Γ .
Hassett proved that d satisfies (∗∗) if and only if there is an isometry K⊥

d
∼= Λd .

In generalizing this to the situation of twisted K3 surfaces, we replace Λd by Tw and
(∗∗) by the condition (∗∗′) introduced in [16]:

(∗∗′) d ′ = dr2 for some integers d and r , where d satisfies (∗∗).

Theorem 4.1 The number d ′ satisfies (∗∗′) if and only if for every decomposition
d ′ = dr2 with d satisfying (∗∗), there exists an element [w] ∈ Λ ‹

d,r of order r such

that K⊥
d ′ is isomorphic to Ker((w,−) : Λd → Q/Z).

For a cubic fourfold X ∈ Cd ′ , the inclusion K⊥
d ′ ⊂ H4(X , Z)(1) gives an induced

Hodge structure of K3 type on K⊥
d ′ and thus on Tw = Ker (w,−), yielding a point x

in the period domain D(Tw). In [25], it was shown that for a smooth cubic fourfold
X , there are no classes in H4(X , Z)pr ∩ H2,2(X) of square 2. It follows that the class
of x in D(Tw)/Stab [w] lies in the image of the period map Pw. As a consequence,
we obtain
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Corollary 4.2 A cubic fourfold X is in Cd ′ for some d ′ satisfying (∗∗′) if and only if
for every decomposition d ′ = dr2 with d satisfying (∗∗), there exists a polarized K3
surface (S, L) of degree d and an element α ∈ Hom(H2(S, Z)pr, Q/Z) of order r
such that K⊥

d ′ is Hodge isometric to Ker α.

We say that the twisted K3 surface in Corollary 4.2 is associated to X .

Remark 4.3 This notion of associated twisted K3 surfaces almost coincides with the
one given byHuybrechts [16]. He relates the full cohomology˜H(S, α, Z) to the Hodge
structure ˜H(AX , Z) of K3 type associated to the K3 category AX ⊂ Db(X), which
was introduced in [1].

To be precise, Huybrechts shows that a cubic X is in Cd ′ for some d ′ sat-
isfying (∗∗′) if and only if there is a twisted K3 surface (S, α) such that
˜H(AX , Z) is Hodge isometric to ˜H(S, α, Z). One can show that a Hodge isometry
K⊥
d ′ ∼= Ker(α : H2(S, Z)pr → Q/Z) always extends to ˜H(AX , Z) ∼= ˜H(S, α, Z), see

Proposition 5.6.
Vice versa, assume ˜H(AX , Z) ∼= ˜H(S, α, Z). When S has Picard number one, it

follows that K⊥
d ⊂ H4(X , Z)(1) is Hodge isometric to Ker(α : H2(S, Z)pr → Q/Z)

(these are the transcendental parts of ˜H(AX , Z) and ˜H(S, α, Z)). When ρ(S) > 1,
there exists a Hodge isometry K⊥

d ′ ∼= Ker(α′) for a possibly different K3 surface S′
and α′ ∈ Hom(H2(S′, Z)pr, Q/Z) that satisfies ˜H(S, α, Z) ∼= ˜H(S′, α′, Z).

The above is completely analogous to the untwisted situation. Note that Corol-
lary 4.2 implies a strengthening of Huybrechts’ result, replacing “there is a twisted
K3 surface” by “for any decomposition d ′ = dr2 with d satisfying (∗∗), there is a
twisted K3 surface of degree d and order r”.

Finally, we should mention that these Hodge-theoretical notions (both twisted and
untwisted) have a categorical counterpart due to [1,16,3]: There exists a Hodge isome-
try˜H(AX , Z) ∼= ˜H(S, α, Z) if and only if the categoryAX is equivalent to the bounded
derived category Db(S, α) of α-twisted sheaves on S.

4.2 Proof of Theorem 4.1

We have seen that the discriminant group of Tw can always be generated by three ele-
ments. As Tw has signature (2, 19), it follows that Tw is determined by its discriminant
group and the quadratic form on it [22, Corollary 1.13.3]. To prove Theorem 4.1, it
thus suffices to determine when

(

Disc Tw, qTw

) ∼= (

Disc K⊥
dr2 , qK⊥

dr2

)

.

Write d ′ = dr2. We will use the following result by Hassett (using our sign conven-
tion):

Proposition 4.4 [10, Proposition 3.2.5]When d ′ ≡ 0mod 6, thenDisc(K⊥
d ′ ) is isomor-

phic to Z/ d ′
3 Z×Z/3Z, which is cyclic unless 9 divides d ′. One can choose generators

(1, 0) and (0, 1) such that the quadratic form qK⊥
d′ satisfies qK⊥

d′ (1, 0) = 3/d ′ mod 2Z
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and qK⊥
d′ (0, 1) = −2/3mod 2Z. When d ′ ≡ 2mod 6, then Disc(K⊥

d ′ ) is Z/d ′
Z. One

can choose a generator u such that qK⊥
d′ (u) = (1 − 2d ′)/3d ′ mod 2Z.

We prove Theorem 4.1 by comparing the quadratic forms on Disc K⊥
d ′ and Disc Tw.

We distinguish the cases when the groups are cyclic and non-cyclic. We will use the
following statements, which follow from quadratic reciprocity [10, proof of Proposi-
tion 5.1.4].

Lemma 4.5 When d ≡ 2mod 6, then d satisfies (∗∗) if and only if −3 is a square
modulo 2d. When d ≡ 0mod 6, write d = 6t . Then d satisfies (∗∗) if and only if −3
is a square modulo 4t and 4t is a square modulo 3.

4.2.1 Cyclic case

Assuming that Disc K⊥
d ′ is cyclic, we will show that d ′ = dr2 with d satisfying (∗∗′)

if and only if there exists a [w] ∈ Λ ‹

d,r of order r such that K⊥
d ′ ∼= Tw. The proof

consists of Propositions 4.6 and 4.7.

Proposition 4.6 Assume that Disc K⊥
d ′ is cyclic. If there is a [w] ∈ Λ ‹

d,r of order r

such that K⊥
d ′ ∼= Tw (so in particular, d ′ = dr2), then d satisfies (∗∗).

Proof First assume that 3 does not divide d. By Proposition 4.4 and Corollary 3.3, we
have K⊥

d ′ ∼= Twn,k if and only if there is an x such that

x2

r2d
(k2 − 2nd) ≡ 2dr2−1

3dr2
mod 2.

Multiplying by 3dr2 gives

3x2(k2 − 2nd) ≡ 2dr2 − 1mod 6dr2

which is equivalent to

3x2(k2 − 2nd) ≡ −1mod 2dr2. (2)

It follows that −3 is a square modulo 2d, so by Lemma 4.5, d satisfies (∗∗).
Next we assume 3|d. By Proposition 4.4 and Corollary 3.3, we have K⊥

d ′ ∼= Twn,k

if and only if there is an x such that

x2

r2d
(k2 − 2nd) ≡ 2

3 − 3
dr2

mod 2.

Writing d = 6t and multiplying by dr2 gives

x2(k2 − 12nt) ≡ 4tr2 − 3mod 12tr2. (3)

In particular,−3 is a square modulo 4t , and we have 4tr2 ≡ x2k2 mod 3. Since 3 does
not divide r , this implies that 4t is a square modulo 3. It follows from Lemma 4.5 that
d satisfies (∗∗). ��
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Write r = 2sqr0 where q consists of all prime factors of r which are 1 modulo 3,
and r0 consists of all odd prime factors of r which are 2 modulo 3. In particular, dq2

still satisfies (∗∗), and we have gcd(r0, dq2) = 1.

Proposition 4.7 There exists an n such that for w = wnq2,r0 ∈ 1
r Λ

‹

d , we have K⊥
d ′ ∼=

Tw.

Proof We first assume 3 � d. By (2) we have to show that for some x and some n,

fn(x):=3x2(r20 − 2ndq2) + 1 ≡ 0mod m (4)

where m = 2dr2.
Since dq2 satisfies (∗∗), the number −3 is a square modulo 2dq2. As 3r0 is invert-

ible in Z/2dq2Z, we get −3 ≡ (3r0x)2 mod 2dq2 for some x ∈ Z. This gives
3x2r20 + 1 ≡ 0mod 2dq2, which shows that (4) has a solution modulo m = 2dq2,
for any n. In particular, it has solutions modulo dq2/2 and modulo 4.

It follows that ( fn/2)(x) ≡ 0 has a solution modulo 2. Also, ( fn/2)′(x) = 3x(r20−
2ndq2) is always odd. By Hensel’s lemma, ( fn/2)(x) = 0 has a solution modulo 2l

for any l ≥ 1. It follows that (4) has a solution modulo 2l for any l ≥ 2.
By the Chinese remainder theorem, there exists a solution x for (4) modulo

m = 2d(2sq)2.We can assume gcd(x, r0) = 1: otherwise,write ar0+b·2d(2sq)2 = 1
and replace x by x + b · 2d(2sq)2(1 − x) = 1 + ar0(x − 1).

Nowwehavegcd(r20 , 6x2dq2) = 1, so there exista andb such thatar20 + b · 6x2dq2
= 1. In particular, r20 divides 3x2 · −2bdq2 + 1. We see that for n = b, there is a solu-
tion to (4) modulo m = r20 . By the Chinese remainder theorem, there exists a solution
modulo 2dr2.

Next, assume 3|d. Write d = 6t . By (3) we have to show that for some x and n,

gn(x):=x2(r20 − 12ntq2) − 4tr2 + 3 ≡ 0mod m (5)

where m = 12tr2.
Since dq2 satisfies (∗∗), first, 4tq2 is a square modulo 3, so also 4tr2 = 4t(2sqr0)2

is a square modulo 3. Second, −3 is a square modulo 4tq2. Since 3 does not divide
4tq2, it follows that 4tr2 − 3 is a square modulo 12tq2.

Now r0 is invertible inZ/12tq2Z, which implies that 4tr2−3 ≡ (xr0)2 mod 12tq2

for some x . So x2r20 −4tr2+3 is divisible by 12tq2, which shows that (5) has a solution
modulo m = 12tq2, for any n. In particular, there exist solutions modulo 3tq2 and
modulo 4.

Like before, it follows from Hensel’s lemma that (5) has a solution modulo 2l for
any l ≥ 2.

By the Chinese remainder theorem, there exists a solution x for (5) modulo
12t(2sq)2. Like before, if gcd(x, r0) �= 1, take a and b such that ar0+b·12t(2sq)2 = 1
and replace x by x + b · 12t(2sq)2 · (1 − x) = 1 + ar0(x − 1).

Now we have gcd(r20 , 4t x2q2) = 1, so we can write 3ar20 + bx2 · 12t x2q2 = 3 for
some a and b. So for n = b, we find that r20 divides x2 · −12ntq2 + 3, hence (5) has a
solution modulom = r20 . By the Chinese remainder theorem, it has a solution modulo
2dr2. ��
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4.2.2 Non-cyclic case

We now assume Disc(K⊥
d ′ ) ∼= Z/3Z × Z/ d ′

3 Z, and we again show that d ′ = dr2

with d satisfying (∗∗′) if and only if there exists a [w] ∈ Λ ‹

d,r of order r such that

K⊥
d ′ ∼= Tw. The proof consists of Propositions 4.8, 4.9 and 4.10.

Proposition 4.8 Assume that Disc K⊥
d ′ ∼= Z/(d ′/3)Z×Z/3Z. If there is a [w] ∈ Λ ‹

d,r

of order r such that K⊥
d ′ ∼= Tw (so in particular, d ′ = dr2), then d satisfies (∗∗).

Proof Consider the factor Z/(d ′/3)Z = Z/(dr2/3)Z. By Proposition 4.4 and Corol-
lary 3.3, there exists an x such that x2 2nd−k2

r2d
is congruent to 3

dr2
modulo 2.Multiplying

both expressions with −dr2 gives

x2(k2 − 2nd) ≡ −3mod 2dr2. (6)

We see that −3 is a square modulo 2d, which implies that d satisfies (∗∗). ��
Write r = 2sqr0, where q consists of all prime factors of r which are congruent to

1 modulo 3, and r0 consists of all other odd prime factors of r . In particular, dq2 still
satisfies (∗∗) and gcd(r0, dq2) is 1 or 3. Note that 3 divides r0.

Proposition 4.9 Suppose that 3 does not divide d. There exists an integer n such that
for w = w3nq2,r0 ∈ 1

r Λ

‹

d , we have K⊥
d ′ ∼= Tw.

Proof By (6), we need n and x such that

x2(r20 − 6ndq2) + 3 ≡ 0mod m (7)

where m = 2dr2.
Since dq2 satisfies (∗∗), −3 is a square modulo 2dq2, and as r0 is divisible in

Z/2dq2Z, we have −3 ≡ (r0x)2 mod 2dq2 for some x . This shows that (7) has a
solution modulo 2dq2 for any n. In particular, there exist solutions modulo dq2/2 and
modulo 4.

Using Hensel’s lemma again, one shows that there exist solutions modulo 2� for
any � ≥ 2, and by the Chinese remainder theorem, there exists a solution x modulo
m = 2d(2sq)2. Wemay assume that gcd(x, r0) = 1 by writing ar0+b ·2d(2sq)2 = 1
and replacing x by x + b · 2d(2sq)2(1 − x) = 1 + ar0(x − 1).

Now gcd(r20/3, 2x2dq2) = 1; take a and b such that ar20/3+b ·2x2dq2 = 1. Then
r20 divides −6bx2dq2 + 3, so for n = b, there exists a solution to (7) modulo r20 . By
the Chinese remainder theorem, there is a solution modulo m = 2dr2.

We still need to check that for the generator u of Z/3Z ⊂ Disc Tw, there exists
y ∈ Z such that y2(u)2 = y2 · d

9 (r20 − 6nq2d) is congruent to −2/3 modulo 2.
Multiplying both expressions by 3/2 gives

y2 d2
r20−6nq2d

3 ≡ −1mod 3.
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Now note that d/2 ≡ 1mod 3, so taking y such that 3 does not divide y, we have

y2 · d
2 · r20−2nq2d

3 ≡ r20−6nq2d
3 mod 3.

The element on the right hand side is

3(r0/3)
2 − 2bq2d ≡ −b mod 3

where b was defined by the equation ar20/3+ b · 2x2dq2 = 1. Reducing this modulo
3, we indeed find b ≡ 1mod 3. ��

We are left with the case 3|d.
Proposition 4.10 Suppose3divides d. There is ann such that forw = wnq2,3r0 ∈ 1

r Λ

‹

d ,

we have K⊥
d ′ ∼= Tw.

Proof By (6), we need n and x such that

x2((3r0)
2 − 2ndq2) + 3 ≡ 0mod 2dr2.

Write d = 6t , then this is equivalent to

x2(3r20 − 4ntq2) + 1 ≡ 0mod m (8)

where m = 4tr2.
As dq2 satisfies (∗∗), Lemma 4.5 tells us that −3 is a square modulo 4tq2. Since

gcd(3r0, 4tq2) = 1, it follows that −3 ≡ (3r0x)2 mod 4tq2 for some x . So we have
3x2r20 + 1 ≡ 0mod 4tq2, which shows that (8) has a solution modulo m = 4tq2.

By Hensel’s lemma once more, (8) also has a solution modulo 2� for all � ≥ 2,
and by the Chinese remainder theorem it then has a solution x modulo 4t(2sq)2. Like
before, wemay assume gcd(x, r0) = 1 bywriting ar0+b·2d(2sq)2 = 1 and replacing
x by x + b · 2d(2sq)2(1 − x) = 1 + ar0(x − 1).

Now note that gcd(r20 , 4t x2q2) = 1 and take a, b such that ar20 + b · 4t x2q2 = 1.
Then r20 divides −b · 4t x2q2 + 1, showing that for n = b, (8) has a solution modulo
m = r20 . By the Chinese remainder theorem, there exists a solution modulo 4tr2.

Finally, we need to check that for the generator u′ of Z/3Z ⊂ Disc Tw, there exists
a y such that y2(u′)2 = −y2d/9 is congruent to −2/3 modulo 2. Multiplying by
−3/2, we get

y2d/6 ≡ 1mod 3

which is true whenever 3 does not divide y. ��
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5 Rational maps to Cd′

For untwisted K3 surfaces, an isomorphism Λd ∼= K⊥
d can be used to construct a

rational map Md ��� Cd . We will generalize these maps to the situation of twisted K3
surfaces.

Throughout this section, we will assume d ′ satisfies (∗∗′) and fix a decomposition
d ′ = dr2 with d satisfying (∗∗). Moreover, we fix [w] ∈ Λ ‹

d,r as in Theorem 4.1 and

choose an isomorphism K⊥
d ′ ∼= Tw = Ker (w,−).

5.1 Construction

Note that the group ˜O(K⊥
d ′ ) can be viewed as a subgroup of ˜O(Γ ): any element

f ∈ ˜O(K⊥
d ′ ) can be extended to an orthogonal transformation ˜f of the unimodular

lattice E8(−1)⊕2 ⊕U⊕2 ⊕ Z(−1)⊕3 such that ˜f |Kd′ is the identity. Then restrict to
Γ to get an element of ˜O(Γ ).

On the level of the period domain, we have a commutative diagram

D(Tw)
∼=

D(K⊥
d ′ ) D(Γ )

D(Tw)/˜O(Tw)
∼=

D(K⊥
d ′ )/˜O(K⊥

d ′ ) C d ′ D(Γ )/˜O(Γ )

where C d ′ is the image of D(K⊥
d ′ ) under D(Γ ) → D(Γ )/˜O(Γ ). Embedding the

moduli space C of smooth cubic fourfolds into D(Γ )/˜O(Γ ) via the period map, one
shows that C d ′ is the closure of Cd ′ ⊂ C in D(Γ )/˜O(Γ ).

Lemma 5.1 The group ˜O(Tw) is a subgroup of Stab [w] ⊂ ˜O(Λd).

Proof Let g ∈ ˜O(Tw). By assumption, g ‹ sends any x ∈ T ‹w to x + y for some
y ∈ Tw ⊂ Λd . In particular, this holds for x ∈ Λd ⊂ T ‹w,which shows that g

‹ preserves
Λd . Moreover, g ‹ induces the identity on DiscΛd , so g ‹|Λd is an element of ˜O(Λd).

Now w ∈ 1
r Λ

‹

d lies in T

‹

w, so we also have g

‹(w) = w + y for some y ∈ Tw ⊂ Λ ‹

d .
This implies that when acting on Λ ‹

d,r , the map g ‹|Λd stabilizes [w]. ��
The period map Pw : Mmar

d ×{[w]} → D(Tw) induces an embedding of

˜Mw:=(Mmar
d ×{[w]})/˜O(Tw)

intoD(Tw)/˜O(Tw). This map is algebraic, which is shown similarly as for the embed-
ding Mw ↪→ D(Tw)/Stab [w]. The space ˜Mw parametrizes tuples (S, L, α, f )where
(S, L, α) is in Mw and f is an isomorphism from Disc(Ker α) to Disc Tw. The com-
position

˜Mw → D(Tw)/˜O(Tw) → C d ′
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induces a rational map ˜Mw ��� Cd ′ , which is regular on an open subset that maps
surjectively (by Corollary 4.2) to Cd ′ . Hassett showed that D(K⊥

d ′ )/˜O(K⊥
d ′ ) → C d ′

generically has degree one when d ′ ≡ 2mod 6, and degree two when d ′ ≡ 0mod 6.
Hence, ˜Mw ��� Cd ′ is birational in the first case and has degree two in the second
case; see also Sect. 5.3.

The map γ : ˜Mw ��� Cd ′ is in general not unique: it depends on the choice of
an isomorphism Tw

∼= K⊥
d ′ . To be precise, let ι : O(Tw) → Aut(D(Tw)) send an

isometry of Tw to the induced action on the period domain. Then γ is unique up to
ι(O(Tw))/ι(˜O(Tw)). We can compute this group as in [12, Lemma 3.1]: there is a short
exact sequence

0 → ˜O(Tw) → O(Tw) → O(Disc Tw) → 0.

Using ι(˜O(Tw)) ∼= ˜O(Tw) and ι(O(Tw)) ∼= O(Tw)/ ± id, we find that

ι(O(Tw))/˜O(Tw) ∼= O(Disc Tw)/ ± id .

Corollary 5.2 The map ˜Mw ��� Cd ′ is unique up to elements of O(Disc Tw)/ ± id.

WhenDisc Tw
∼= Z/d ′

Z, this group is isomorphic to (Z/2Z)⊕τ(d ′/2)−1, where τ(d ′/2)
is the number of prime factors of d ′/2.

We have seen that there is a difference to the untwisted situation: the rational map
to Cd ′ can only be defined after taking a finite covering π : ˜Mw → Mw. We give an
upper bound for the degree of this covering.

Corollary 5.3 The degree of the quotient map π : ˜Mw → Mw is at most

I = |O(Disc Tw)/ ± id |.

If Disc Tw is cyclic, then I = 2τ(d ′/2)−1.

Proof The degree of π is the index of ι(˜O(Tw)) ∼= ˜O(Tw) in ι(Stab [w]). This is at
most the index I of ˜O(Tw) in ι(O(Tw)). ��

5.2 Example

We consider the case d = r = 2, so d ′ = 8. The cubic fourfolds in C8 are those
containing a plane. For a generic such cubic X , it was shown already in [19] that X
has an associated twisted K3 surface (S, α) in the categorical sense (see Remark 4.3).
In this special case, there is a geometric construction for (S, α), which was used before
by Voisin in her proof of the Torelli theorem for cubic fourfolds [25]. As explained in
Remark 4.3, (S, α) is also Hodge-theoretically associated to X .

By Lemma 2.6, the moduli space M2
2 has at most four connected components,

corresponding to the vectors wn,k = 1
2 (e1 + n f1 + k

2�
′
2) with n, k ∈ {0, 1}. Now by
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Eichler’s criterion, e1 is equivalent to e1 + f1 +�′
2 under˜O(Λ2), and this is equivalent

to e1 + f1 modulo 2Λ ‹

2. Thus, the components Mw0,0 and Mw1,0 are the same.
The discriminant group of K⊥

8 is cyclic, and one can choose a generator u such that
qK⊥

8
(u) = − 5

8 mod 2Z. By Proposition 3.1, the discriminant group of Twn,k is cyclic

if and only if k = 1. By Corollary 3.3, Twn,1 is isomorphic to K⊥
8 if and only if there

exists an x ∈ Z such that x2(4n−1)
2 ≡ − 5

8 mod 2. For n = 0, we have

x2(4n−1)
2 = − x2

8

which is never equivalent to − 5
8 modulo 2. For n = 1, we have

x2(4n−1)
2 = 3x2

8

which is equivalent to − 5
8 modulo 2 when x = 3.

We see that for w = w1,1, there exists a rational map ˜Mw ��� Cd ′ as above.
Since d ′/2 = 4 has only one prime factor, Corollary 5.2 tells us that there is a unique
choice for the rational map ˜Mw1,1 ��� C8. Moreover, it follows from Corollary 5.3
that π : ˜Mw1,1 → Mw1,1 is an isomorphism. Hence, we obtain a rational map

Mw1,1 ��� C8

which gives an inverse to the geometric construction of associated twisted K3 surfaces
over the locus where ρ(S) = 1.

Remark 5.4 The three types of Brauer classes occurring in this example have been
studied before by Van Geemen [7] (see also [20, Section 2]). He relates the twisted
K3 surfaces in the components Mw0,0 and Mw0,1 to certain double covers of P

2 × P
2

and to complete intersections of three quartics in P
4, respectively.

Remark 5.5 In general, the component Mw ⊂ Mr
d for which a rational map ˜Mw ���

Cd ′ exists is not unique, because the class [w] ∈ Λ ‹

d,r satisfying Tw
∼= K⊥

d ′ is not
unique modulo ˜O(Λd). We work out an example.

Let d = 14 and r = 7, so Disc K⊥
d ′ is cyclic. Since r divides d, [20, Theorem 9]

tells us that for [w] ∈ Λ ‹

d,r of order r , there is only one isomorphism class of lattices

Tw with cyclic discriminant group. By Theorem 4.1, these Tw are isomorphic to K⊥
d ′ .

Consider w0,1 = 1
7 (e1 + �′

14/14) and w1,3 = 1
7 (e1 + f1 + 3�′

14/14). By
Proposition 3.1, Disc Tw0,1 and Disc Tw1,3 are both cyclic. By the above, we have
Tw0,1

∼= Tw1,3
∼= K⊥

14·72 . We show that [w0,1] �≡ [w1,3] in Λ ‹

d,r/
˜O(Λd).

Namely, suppose [w1,3] lies in the orbit˜O(Λ14) · [w0,1] ⊂ Λ ‹

14,7. Then there exists
z ∈ Λ ‹

14 such that f7(w0,1) = w1,3 + z for some f ∈ ˜O(Λ14), that is, f (14 ·7w0,1) =
14 ·7(w1,3+ z). Write z = z0 + t

14�
′
14 for some z0 ∈ E8(−1)⊕2 ⊕U1⊕U2 and t ∈ Z,

so

14 · 7(w1,3 + z) = 14(e1 + f1) + 14 · 7z0 + (3 + 7t)�′
14.
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The square of the right hand side should be equal to (14 · 7w0,1)
2 = −14. This gives

−14 = 2 · 142 + 143(e1 + f1, z0) + (14 · 7)2(z0)2 − 14(9 + 6 · 7t + (7t)2)

which simplifies to

8 = 2 · 14 + 142(e1 + f1, z0) + 14 · 72(z0)2 − (6 · 7t + (7t)2).

Reducing modulo 7, one sees that this is not possible.

5.3 Pairs of associated twisted K3 surfaces

In [6], we studied the covering involution of Hassett’s rational map Md ��� Cd in the
case this has degree two. We showed that if (S, L) ∈ Md is mapped to (Sτ , Lτ ) under
this involution, then Sτ is isomorphic to a moduli space of stable sheaves on S with
Mukai vector (3, L, d/6). In this section, we discuss the analogous twisted situation.

We denote the bounded derived category of α-twisted coherent sheaves on S by
Db(S, α). When α ∈ Hom(H2(S, Z)pr, Z/rZ), then by α-twisted sheaves we mean
α-twisted sheaves, where α is the image of α in Hom(T (S), Z/rZ) = Br(S)[r ].
Similarly, ˜H(S, α, Z) means ˜H(S, α, Z).

Assume that 3 divides d ′ = dr2. Hassett showed (see also [6]) that the map
D(K⊥

d ′ )/˜O(K⊥
d ′ ) → C d ′ is a composition ν ◦ f , where ν is the normalization of C d ′

and f is generically of degree two, induced by an element in O(K⊥
d ′ ) of order two.

The corresponding element g ∈ O(Tw) induces a covering involution

τ : D(K⊥
d ′ )/˜O(K⊥

d ′ ) → D(K⊥
d ′ )/˜O(K⊥

d ′ )

that preserves ˜Mw. We claim that g extends to an orthogonal transformation of ˜Λ. This
follows from [22, Corollary 1.5.2] and the following statement. We embed Tw ⊂ Λd

primitively into ˜Λ using the map exp(w), as in Sect. 3.1.

Proposition 5.6 Let Sw:=T⊥
w ⊂ ˜Λ. The map O(Sw) → O(Disc Sw) is surjective.

Proof The lattice Sw has rank three. When Disc Tw
∼= Disc Sw is cyclic, the statement

follows from [22, Theorem 1.14.2]. When Disc Tw is Z/(d ′/3)Z × Z/3Z, it follows
from Corollary VIII.7.3 in [21]. ��

This implies that when τ maps (S, L, α, f ) ∈ ˜Mw to (S′, L ′, α′, f ′), then there is
a Hodge isometry

˜H(S, α, Z) ∼= ˜H(S′, α′, Z).

This map might not preserve the orientation of the four positive directions. How-
ever, by [16, Lemma 2.3], there exists an orientation reversing Hodge isometry in
O(˜H(S, α, Z)). By composing with it, we see that there exists a Hodge isometry
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g : ˜H(S, α, Z) → ˜H(S′, α′, Z) which is orientation preserving. By [18], g is induced
by a Fourier–Mukai equivalence

ΦE : Db(S, α) → Db(S′, α′)

for some E ∈ Db(S × S′, α−1 � α′), that is, the associated cohomological Fourier–
Mukai transformΦH

E : ˜H(S, α, Z) → ˜H(S′, α′, Z) equals g. Now S′ is a moduli space
of stable complexes of α-twisted sheaves on S with Mukai vector

v = (ΦH
E )−1(v(k(x))) = (ΦH

E )−1(0, 0, 1),

where x is any closed point in S′. It is a coarse moduli space: the universal family on
S × S′ exists as an α−1 � α′-twisted sheaf, which is an untwisted sheaf if and only if
α′ is trivial.

In fact, one can show that S′ is isomorphic to a moduli space of stable α-twisted
sheaves on S. Namely, by [26] (see also [18]), there exists a (coarse) moduli space
M(v) of stableα-twisted sheaves on SwithMukai vector v. By precomposingΦE with
autoequivalences of Db(S, α), we may assume M(v) is non-empty [18, Section 2].
Hence, as (v)2 = 0, the space M(v) is a K3 surface.

For some B-field β ∈ H2(M(v), Q), there exists a universal family Ev on
S × M(v) which is an α−1 � β-twisted sheaf. It induces an equivalence of categories
ΦEv

: Db(S, α) → Db(M(v), β) whose associated cohomological Fourier–Mukai
transform ΦH

Ev
sends v to (0, 0, 1) ∈ ˜H(M(v), β, Z). The composition

ΦH
Ev

◦ (ΦH
E )−1 : ˜H(S′, α′, Z) → ˜H(M(v), β, Z)

is a Hodge isometry that sends (0, 0, 1) to (0, 0, 1) and is orientation preserving, since
both ΦH

Ev
and ΦH

E are (for ΦH
Ev
, see [17]). It follows from [18, Section 2] that S′ is

isomorphic to M(v).
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