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Abstract
We characterize Salem numbers which have some power arising as dynamical degree
of an automorphism on a complex (projective) 2-Torus, K3 or Enriques surface.

Mathematics Subject Classification Primary 14J28; Secondary 14J50 · 37F10

1 Introduction

To a bimeromorphic transformation F : X ��� X of aKähler surface one can associate
its dynamical degree

λ(F) = lim sup
n→∞

(||(Fn)∗||)1/n,

where F∗ denotes the action on H2(X ,Z) and || · || is any norm on End(H2(X ,Z)).
The dynamical degree is a bimeromorphic invariant of (X , F) which measures the
dynamical complexity of F . In the projective case, it describes the asymptotic degree
growth of defining equations for F . If F is an automorphism, then the dynamical
degree λ(F) is given by the spectral radius of F∗. In fact it is either 1 or a Salem
number, that is, an algebraic integer λ > 1 which is Galois conjugate to 1/λ and all
whose other conjugates lie on the unit circle.

The question this paper is dealing with is: which Salem numbers are dynamical
degrees of surface automorphisms and which ones are coming from automorphisms
of projective surfaces?
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422 S. Brandhorst

If the dynamical degree of an automorphism F of a surface X is λ(F) > 1, then X
is a blow up of the projective plane in at least 10 points, or a blow up of a 2-Torus, a
K3 or an Enriques surface [6]. For rational surfaces the contribution to the dynamical
spectrum coming from automorphisms is described in terms of Weyl groups in [12]
and the case of complex 2-Tori (respectively Abelian surfaces) is completely described
in [11]. The complete determination of the dynamical spectrum of complex projective
K3 surfaces seems out of reach.

However, we can relax the problem by asking for stable realizations of dynamical
degrees instead, that is: which Salem numbers have some power that is realized as a
dynamical degree of a (projective) surface? Indeed this question is more tractable, and
the answer is rather simple:

Theorem 1.1 Let λ be a Salem number of degree d. Then there is an n ∈ N, a projective
K3 surface X and an automorphism F : X → X with dynamical degree λ(F) = λn

if and only if d ≤ 20.

Recall that the degree of a Salem number is the degree of its minimal polynomial.
We illustrate the theorem with case of the minimal Salem number λd of degree d.
Conjecturally, the smallest Salem number is Lehmer’s number λ10 ≈ 1.17628. In
[9] the author gives a strategy to decide whether a single given Salem number λ

is the dynamical degree of an automorphism of a complex projective K3 surface.
This strategy is then applied in [5,9] to show that λd is a dynamical degree of an
automorphism of a projective K3 surface if and only if 14, 16 �= d ≤ 18. Using the
strategy in [9] and the improved positivity test from [5] one obtains that

λ914, λ
7
16, λ

11
20

are realized on projective K3 surfaces. In the non-projective realm even λ14, λ16, λ20
and λ22 are realized.

Considering the stable dynamical degrees for complex tori and Enriques surfaces,
we obtain a uniform answer which depends only on the Betti and Hodge numbers of
Tori, Enriques and K3 surfaces given by b2 = 6, 10, 22 and h1,1 = 4, 10, 20.

Theorem 1.2 Let λ be a Salem number of degree d with minimal polynomial s(x).
Then there is some power λn, n ∈ N, that is realized as dynamical degree of an
automorphism on a complex 2-torus (resp. an Enriques, a K3 surface) if and only if

(1) d < 6 (resp. 10, 22) or
(2) d = 6 (resp. 10, 22) and −s(1)s(−1) is a square integer.

If additionally d ≤ 4 (resp. 10, 20) then some for some n′ ∈ N, the power λn
′
is

realized on a projective Abelian (resp. Enriques, K3) surface.

The proof proceeds as follows. All Tori (resp. Enriques, K3 surfaces) are diffeo-
morphic. Hence, the isometry class of the lattice H2(X ,Z) is independent of which
Torus (resp. Enriques, K3 surface) X we have chosen. It is abstractly isomorphic
to some known lattice L . Given an isometry f ∈ O(L) it is possible, using some
Torelli theorem, to decide whether f is in the image of the natural representation
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On the stable dynamical spectrum of complex surfaces 423

Aut(X) → O(H2(X ,Z)) ∼= O(L) for some X . This is the case if f preserves some
extra linear data such as a Hodge structure or has trivial mod 2 reduction. The most
intricate case is that of projective K3 surfaces. There f has to preserve a chamber of
the positive cone-corresponding to the ample cone. Since it is usually infinite sided,
it is notoriously difficult to control. For a given concrete f it is now algorithmically
possible to decide whether a chamber is preserved [5,9]. However, the algorithm can
only deal with a single isometry at a time. In Proposition 4.3, we give a sufficient con-
dition for a chamber to be preserved.We expect that it will be useful to study the stable
dynamical spectrum of supersingular K3 surfaces (as in [5]) and IHSM manifolds (as
in [1]) as well.

2 Preliminaries

In this section we review the necessary material from [9,10] concerning the theory of
lattices, their isometries, discriminant forms, gluings and twists.

2.1 Lattices

A lattice is a finitely generated free abelian group L equipped with a non-degenerate
integer valued bilinear form

〈·, ·〉 : L × L → Z.

It is called even if x2 := 〈x, x〉 ∈ 2Z for all x ∈ L andunimodular if it is of determinant
±1. An isometry M → L of lattices is an isomorphism of Z-modules preserving the
bilinear forms. The orthogonal group O(L) consists of the self isometries of the lattice
L . The signature (pair) of a lattice is denoted by (s+, s−) where s+ (respectively s−)
is the number of positive (respectively negative) eigenvalues of the Gram matrix. A
lattice is called indefinite if both s+ and s− are non-zero and hyperbolic if it is indefinite
and s+ = 1. Indefinite, even unimodular lattices are classified up to isometry by their
signature pair (s+, s−). We denote such a lattice by IIs+,s− . The dual lattice L∨ of L
is given by

L∨ = {x ∈ L ⊗ Q | 〈x, L〉 ⊆ Z}.

The discriminant group DL = L∨/L is a finite abelian group of cardinality | det L|.
If L is an even lattice, then its discriminant group carries the discriminant form, given
by

qL : DL → Q/2Z x �→ 〈x, x〉 mod 2Z.

By definition of the dual lattice qL is non-degenerate. The length l(D) of an abelian
group D is its minimal number of generators. If M ⊆ L are lattices of the same rank,
then we call L an overlattice of M . Even overlattices L of a lattice M correspond
bijectively to totally isotropic subgroups
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424 S. Brandhorst

L/M = H ⊆ DM

of the discriminant group, i.e., with qM |H = 0. For a prime number p we denote by
Zp the p-adic integers and by Qp the p-adic numbers. The discriminant form (and
group) has an orthogonal decomposition into its p-primary parts (qL)p

qL =
⊕

p

(
(qL)p : (DL)p → Qp/2Zp

)

where (qL)p is the discriminant form of L ⊗ Zp (defined analogously).

2.2 Embeddings and gluing

An embedding of lattices M ↪→ L is called primitive if the cokernel L/M is torsion
free. Let M ↪→ L be a primitive embedding into an even unimodular lattice L and
N = M⊥ the orthogonal complement. It is primitive as well. We have a chain of
inclusions

M ⊕ N ↪→ L = L∨ ↪→ M∨ ⊕ N∨.

The orthogonal projections provide us with isomorphisms

DM = M∨/M ∼= L/(M ⊕ N ) ∼= N∨/N = DN .

The composite map φ : DM → DN is called the glue map. It satisfies qN (φ(x)) =
−qM (x). Conversely, given such a glue map, its graph

�φ = {x + φ(x) ∈ DM ⊕ DN | x ∈ DM }

is isotropic with respect to the discriminant quadratic form qM⊕N . Hence it defines an
overlattice Lφ via Lφ/ (M ⊕ N ) := �φ . This overlattice turns out to be unimodular.
Let f ∈ O(M) and g ∈ O(N ) be isometries. Then f ⊕ g ∈ O(M ⊕ N ) extends to
the overlattice Lφ if and only if φ ◦ f̄ = ḡ ◦ φ where f̄ ∈ O(qM ) and ḡ ∈ O(qN ) are
the induced actions. Note that we can always arrange this condition for some power
( f ⊕ g)n with n ∈ N such that f̄ n = idDM and ḡn = idDN .

The following easy to use criterion for the existence of a primitive embedding will
be useful for us later.

Proposition 2.1 [10, Corollary 1.12.3] Let S be an even lattice of signature (s+, s−).
Then S has a primitive embedding into an even unimodular lattice L of signature
(l+, l−) if l+ ≥ s+, l− ≥ s− and l(DS) + 3 ≤ rk L − rk S.

In order to use the proposition one can reduce the length of the discriminant group
by taking a maximal overlattice.

Lemma 2.2 Let L be an even lattice and M a maximal even overlattice. Then
l(DM )≤3.
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On the stable dynamical spectrum of complex surfaces 425

Proof Using the classification of finite quadratic forms given in [10, Prop. 1.8.1], one
sees that a finite quadratic form represents 0 if the group has length at least four. In
particular, if a lattice M has l(DM ) ≥ 4, then we can find an element x �= 0 of DM

with q(x) = 0. This element provides us with a proper even overlattice of M . Thus
M cannot be maximal. ��

2.3 Twists

A pair (L, f ) of a lattice L and an isometry f of L with characteristic polynomial
s(x) ∈ Z[x] is called an s(x)-lattice. Given an s(x)-lattice (L, f ) and t ∈ Z[ f + f −1],
we obtain a new symmetric bilinear form on L by setting

〈g1, g2〉t = 〈tg1, g2〉 .

The lattice L equipped with this new product is called the twist of L by t and is
denoted by (L(t), f ). Note that the twist of an even lattice stays even [8, Prop 4.1].
Twisting may change the signature and determinant of a lattice. If t2 ∈ Z[ f + f −1]
is a square, then L(t2) is isomorphic, via x �→ t x , to the sublattice t L of L . In
particular, the signatures of L(t2) and L coincide. Of particular interest is the case
when the characteristic polynomial s(x) of f is irreducible. Then K = Q[ f ] is a
degree two extension of the field k = Q[ f + f −1] with Galois group generated by σ

with f σ = f −1. We denote by Ok and OK the rings of integers of k and K .

Lemma 2.3 Let (L, f ) be an s(x)-lattice with s(x) irreducible. Suppose that t ∈
Z[ f + f −1] is a prime of k split in K of norm p not dividing det L · discr s(x).
Then the p-primary part (qL(tn))p of the discriminant quadratic form of the twisted
s(x)-lattice L(tn) is isomorphic to

q : (
Z/pnZ

)2 → Qp/2Zp (x1, x2) �→ 2x1x2
pn

.

Proof Since p does not divide discr s(x) and det L , we may without loss of generality
assume thatZ[ f ] is the full ring of integers of K and L is unimodular. Then it is easy to
see that DL(tn) ∼= Z[ f ]/(tn). Since t in k is split in K , we find an ideal p = (p, f −a)

of Z[ f ] with t = ppσ . Then pσ = (p, f − a′) with a, a′ ∈ Z, aa′ ≡ 1 mod p and
a �≡ a′ mod p. Now,

Z[ f ]/(t)n ∼= Z[ f ]/pn × Z[ f ]/(pσ )n ∼= (
Z/pnZ

)2
.

Let v be a generator of Z[ f ]/(p, f − a)n then f v = αv for some α ∈ Z with α ≡ a
mod p. Since f induces an isometry of the discriminant form, we obtain

q(v) = q( f v) = q(αv) = α2q(v).

But α2 ≡ a2 �= 1 mod p, hence q(v) = 0. The same argument works for a generator
w of Z[ f ]/(p, f − a′)n . Since the quadratic form is non-degenerate, we can rescale
w to obtain the desired result. ��
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426 S. Brandhorst

2.4 Positivity

Let L be an even lattice. A root of L is r ∈ L with 〈r , r〉 = −2. We denote the set of
roots by �L . If L is hyperbolic, we set

VL = {x ∈ L | 〈x, x〉 > 0,∀r ∈ �L : 〈r , x〉 �= 0}

which is an open set. If L is negative definite, we define

VL = {x ∈ L | x �= 0,∀r ∈ �L : 〈r , x〉 �= 0}.

In both cases the connected components of VL are called the chambers of VL . An
isometry f ∈ O(L) is called positive if it preserves a chamber. We denote by O+(L)

the subgroup stabilizing each connected component of the light cone V 0 = {x ∈
L ⊗ R | x �= 0, 〈x, x〉 = 0}. A dual perspective on positivity is that of obstructing
roots. An obstructing root for f is r ∈ �L such that there is no h ∈ L with h⊥ negative
definite and h. f i (r) > 0 for all i ∈ Z. We call r a cyclic root for f if

r + f (r) + f 2(r) + · · · + f i (r) = 0

for some i > 0. Cyclic roots are obstructing. If L is negative definite, then every
obstructing root is cyclic. We have the following

Theorem 2.4 [9, 2.1] A map f ∈ O+(L) is positive if and only if it has no obstructing
roots. The set of obstructing roots, modulo the action of f , is finite.

Let L be hyperbolic and f ∈ O(L) with spectral radius a Salem number λ. Denote by
γ the real plane spanned by the eigenspaces for λ and λ−1. Then the obstructing roots
for f are the cyclic roots together with the roots r such that r⊥ ∩γ is positive definite.
To see this, note that the closure of any f -invariant chamber contains the intersection
of γ with the positive cone. First suppose that γ ⊆ r⊥. Then r ∈ γ ⊥ ∩ L which is
negative definite. In particular, if r is obstructing, then it is cyclic. On the other hand,
if r⊥ intersects γ in the positive cone, then γ crosses the wall r⊥ of a camber. Then
γ is not contained in the closure of a single chamber.

3 Surfaces and their automorphisms

Let X be a either a 2-Torus, a K3 surface or an Enriques surface. Its second singular
cohomology group modulo torsion H2(X ,Z)/tors equipped with the cup product is
a unimodular lattice isomorphic to

H2(X ,Z)/tors ∼=

⎧
⎪⎨

⎪⎩

II3,3 for X a 2-Torus

II1,9 for X an Enriques surface

II3,19 for X a K3 surface.
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On the stable dynamical spectrum of complex surfaces 427

It admits a Hodge decomposition

H2(X ,Z) ⊗ C ∼= H2(X ,C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X)

where Hi, j (X) ∼= H j (X ,
i
X ), Hi, j (X) = H j,i (X) and H1,1(X) = (H2,0(X) ⊕

H0,2(X))⊥ is hyperbolic. By Lefschetz’ Theorem on (1, 1) classes we can recover the
numerical divisor classes from the Hodge structure as

Num(X) = H1,1(X) ∩ H2(X ,Z)/tors.

We note that a (compact) Kähler surface X is projective if and only if there is a divisor
of positive square, i.e. Num(X) has signature (1, rk Num(X)−1). The transcendental
lattice is defined as the smallest primitive sublattice T (X) ⊆ H2(X ,Z) whose com-
plexification contains H2,0(X) ⊆ T (X) ⊗ C. Since in our case h2,0(X) ∈ {0, 1}, the
Hodge structure on T (X) is irreducible.

Let F ∈ Aut(X) be an automorphism with dynamical degree λ > 1. The minimal
polynomial s(x) ∈ Z[x] ofλ is called a Salem polynomial. Then F∗ is semisimplewith
characteristic polynomial s(x)c(x)where c(x) is a product of cyclotomic polynomials
[7, Thm. 3.2]. Set

S = ker s(F∗) ⊆ H2(X ,Z)/tors.

By irreducibility of T (X), the minimal polynomial of F∗|T (X) must be irreducible
in Q[x]. Hence, either T (X) = S or S ⊆ Num(X). Since the real eigenvectors for
λ and λ−1 span a hyperbolic plane, the signature of S is either (1, deg s(x) − 1) if
S ⊆ Num(X) or in case S = T (X) it is (3, deg s(x) − 3). In the first case X is
projective and in the second not.

In the following threeLemmaswe collect criteria for an isometry of the cohomology
lattice to come from an automorphism of a surface.

Lemma 3.1 [2] The automorphism group of a very general Enriques surface X is the
2-congruence subgroup given by the kernel of

O+(H2(X ,Z)) → O(H2(X ,Z) ⊗ F2).

It is of finite index in the orthogonal group of H2(X ,Z)/tors ∼= II1,9.

Lemma 3.2 Let s(x) be a Salem polynomial of degree d and f ∈ O(II3,3) an isometry
with characteristic polynomial s(x)(x −1)6−d which acts trivially on II3,3 ⊗F2. Then
one can find a complex 2-torus X with II3,3 = H2(X ,Z) and F ∈ Aut(X) such
that F∗ = f . The 2-torus X is projective if and only if S = ker s( f ) has signature
(1, d − 1).

Proof Let L be a free Z module of rank 4. An orientation on L is an isomorphism
det : ∧4 L

∼−→ Z. It equips
∧2 L with the structure of an even unimodular lattice

which we identify with II3,3. We can choose an eigenvector η ∈ II3,3 ⊗C of f ⊗ C
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such that 〈η, η〉 = 0 and 〈η, η̄〉 > 0. Since Cη is isotropic, it is in the image of the
Plücker embedding Gr(2, L⊗C) → ∧2 L ∼= II3,3. Hence, we get a complex 2-plane
Swith

∧2 S = Cη and S⊕ S̄ = L⊗C. This defines aweight oneHodge structure on L ,
i.e., a complex 2-torus X . We can view f as an isometry of H2(X ,Z) = ∧2 L ∼= II3,3
which, by construction, preserves the Hodge structure on H2(X ,Z). Since f ⊗ F2 is
the identity, we can apply, [3, V (3.2)] to get an automorphism F of X with F∗ = ± f .
However, both F∗ and f stabilize each connected component of the positive cone of
H1,1(X). Hence, they are equal. ��
Lemma 3.3 Let f ∈ O(II3,19) be an isometry with characteristic polynomial s(x)(x−
1)22−d where s(x) is a Salem polynomial. Then one can find a K3 surface X, F ∈
Aut(X) and an isometry φ : II3,19 → H2(X ,Z) such that F∗ = φ ◦ f ◦ φ−1 if and
only if

(1) S = ker s( f ) has signature (3, d − 3) or
(2) S has signature (1, d − 1) and f |S is positive.

In case (2) X is projective and in case (1) not.

Proof The lemma follows once we check the conditions of [9, 6.1]. If the signature of
S is (3, d − 3), then we take as period an eigenvector η ∈ S⊗C of f with 〈η, η̄〉 > 0.
Since f is the identity on S⊥ there are no cyclic roots, and f |S⊥ is positive. If the
signature of S is (1, d − 1), then we take as period η in S⊥ ⊗ C such that 〈η, η̄〉 > 0
and η⊥ ∩ II3,19 = S. ��

4 Proof of Theorem 1.2

In order to prove the main Theorem 1.2, we need to produce isometries of certain
lattices with given spectral radius. In general this can be difficult. Hence, we simplify
the problem by asking for rational isometries first. Indeed, here the answer is known
as is displayed by the following Lemma 4.1. We postpone its proof till the end of this
paper.

Lemma 4.1 Let L ∈ {II3,3, II1,9, II3,19} and s(x) be a Salem polynomial of degree d.
Then there exists a rational isometry f ∈ O(L ⊗ Q) with characteristic polynomial
det(x · Id− f ) = s(x)(x − 1)rk L−d if and only if either

(1) d ≤ rk L − 2 or
(2) d = rk L and −s(1)s(−1) is a square.

In case (1) we can find f such that ker s( f ) is hyperbolic. If the signature of L is
(3, rk L − 3), then we can find f such that ker s( f ) has signature (3, d − 3).

Typically, a rational isometry f ∈ O(L ⊗ Q) does not preserve L . Since we are only
considering the stable dynamical spectrum, we may replace f by some power f n .

Lemma 4.2 Let L be a lattice and f ∈ O(L ⊗ Q) a rational isometry with

det(x · Id− f ) ∈ Z[x].

Then one can find n ∈ N such that f n ∈ O(L).
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On the stable dynamical spectrum of complex surfaces 429

Proof Since the characteristic polynomial of f is integral, the Z-module Z[ f ]L is
finitely generated and of the same rank as L . Consequently, for the index k = [Z[ f ]L :
L] we get the chain of inclusions

kZ[ f ]L ⊆ L ⊆ Z[ f ]L.

Conclude by taking n ∈ N such that f n acts as the identity on the finite quotient
Z[ f ]L/kZ[ f ]L . ��

We now have all the ingredients for the

Proof of Theorem 1.2 for Tori and Enriques surfaces A combination of Lemmas 4.1 and
4.2 provides us with isometries of L ∈ {II3,3, II1,9}with spectral radius some power of
the desired Salem number. After raising the isometries to some sufficiently divisible
power, we can assume that they satisfy the conditions of Lemmas 3.1 and 3.2. ��

The same argument completes the proof of the main theorem for non-projective K3
surfaces. It remains for us to control the positivity of the isometries to prove the result
for projective K3 surfaces as well.

Proposition 4.3 Let f ∈ O(S) be an isometry of a hyperbolic lattice S with charac-
teristic polynomial a Salem polynomial s(x). If

| det S| > 4 discr s(x),

then f preserves a chamber of the positive cone.

Proof Let L and f be as in the proposition and denote by

π : S ⊗ R → ker( f + f −1 − λ − λ−1)

the orthogonal projection where λ > 1 is a root of s(x). Suppose that f does not
preserve a chamber. Then, by Theorem 2.4, there is an obstructing root r ∈ L . This
means that 〈r , r〉 = −2 and r⊥ crosses the geodesic γ of f , i.e. 〈π(r), π(r)〉 < 0.
Since s(x) is irreducible over Q, Z[ f ]r is a sublattice of full rank, and hence

| det S| ≤ | detZ[ f ]r |.

The basic idea at this point is that the obstructing roots modulo the action of f lie in
some compact fundamental domain in S ⊗ R depending only on s(x). Then we can
maximize | detZ[ f ]r | over all r in this fundamental domain. We extend the bilinear
form to aC-linear formon S⊗C and compute the determinant ofZ[ f ]r in an eigenbasis
of f . We can find u1, u2 ∈ S ⊗ R and vi ∈ S ⊗ C such that

f (u1) = λu1, f (u2) = 1/λu2, f (vi ) = αivi , i ∈ {1, . . . , k}
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430 S. Brandhorst

where λ > 1, 1/λ, αi , αi are the complex roots of s(x) and deg s(x) = 2k + 2. After
rescaling, we may assume that 〈u1, u2〉 = 1 and 〈vi , vi 〉 = −1 for i ∈ {1, . . . , k}. All
other inner products vanish. Now, write

r = x1u1 + x2u2 +
k∑

i=1

(yivi + yivi )

for x1, x2 ∈ R, yi ∈ C. The Van-der-Monde determinant yields that

| det〈 f i (r), f j (r)〉| = |x1x2|2
k∏

i=1

|yi |4 discr s.

Since r is obstructing, x1x2 = 〈x1u1, x2u2〉 ∈ [−2, 0) and in these coordinates
〈r , r〉 = x1x2 − ∑k

i=1 |yi |2 = −2, i.e. the coordinates of the root r lie in the set

K =
{

(x, y) ∈ R
2 × C

k : x1x2 ∈ [−2, 0), x1x2 −
k∑

i=1

|yi |2 = −2

}
.

Then, assuming k �= 0,

| det S| ≤ | det〈 f i (r), f j (r)〉| (1)

≤ sup

{
|x1x2|

k∏

i=1

|yi |2 : (x, y) ∈ K

}2

discr s (2)

= sup
c∈(0,2]

⎛

⎝c2 · sup
{

k∏

i=1

|yi |2 :
∑

i

|yi |2 = 2 − c

}2⎞

⎠ discr s (3)

=
[

sup
c∈(0,2]

c(2 − c)k sup

{
k∏

i=1

|yi |2 :
∑

i

|yi |2 = 1

}]2

discr s (4)

=
[

2

1 + k

(
2

k

)k (
1 − 1

1 + k

)k
]2

discr s (5)

≤ discr s. (6)

In line (5) we have used that that c(2 − c)k (0 ≤ c ≤ 2) takes its maximum in
c = 2/(k + 1) and that

1/kk = max

{
k∏

i=1

y2i | (y1, . . . , yk) ∈ R
k,

k∑

i=1

y2i = 1

}
.

Here the maxima lie at |yi | = 1/
√
k, i ∈ {1, . . . , k}. For the case of k = 0 one obtains

4 discr s. ��
Proof of Theorem 1.1 For any natural number n let sn(x) denote the minimal polyno-
mial of λn . Suppose that deg s1(x) ≤ 18. There exists an even hyperbolic s1(x)-lattice
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(S, f ). After replacing f by f n for some sufficiently divisible n ∈ N, we may assume
that f acts trivially on the discriminant group. In particular, f preserves any integral
overlattice. Then, we can replace S by a maximal even integral overlattice. By Lemma
2.2 this assures that the length l(DS) ≤ 3. Let p < Ok be a prime ideal of degree 1
over a prime number p not dividing det S. By finiteness of the class group, there is
l ∈ N with pl = tOk principal, where t ∈ Ok . Replace S by its twist S(t2r ) for some
large r ∈ N such that

4 discr sn(x) < p2lr .

Then S is hyperbolic as t2r is a square, and f n preserves a chamber by Proposition
4.3. Since p is of degree 1, we still have l(DS) ≤ 3. Hence, we may apply Proposition
2.1 to obtain a primitive embedding i : S ↪→ II3,19. After replacing f by some power
which acts trivially on DS , we can continue f by the identity on i(S)⊥ to get an
isometry of II3,19. Finally, use Lemma 3.3 (2) to get a projective K3 surface X and
F ∈ Aut(X) with dynamical degree some power of λ.

In the case that deg s1(x) = 20, we have to work a little harder to obtain a primitive
embedding. ByLemmas 4.1 and 4.2, for some n ∈ Nwe get an isometry f ∈ O(II3,19)
with characteristic polynomial sn(x)(x−1)2 and such that S = ker sn( f ) is hyperbolic.
Set C = S⊥ = ker( f − id). The primitive extension S ⊕ C ↪→ II3,19, provides us
with an isomorphism of discriminant quadratic forms qS ∼= qC (−1). By Chebotarev’s
density theorem there are infinitely many prime ideals p < Ok of degree one, split in
K/k such that

p ≡ 1 mod (8 detC)

where (p) = Z ∩ p. Choose one such p with p > discr sn(x) and which does not
divide the determinant of S. We can find l ∈ N and t ∈ Ok with pl = tOk , and then

| det S(t2)| = | det S|p2l > discr sn(x).

For primes p′ �= p, S(t2) ⊗ Zp′ → S ⊗ Zp′ , x �→ t x is an isometry. Hence,

(qS(t2))p′ ∼= (qS)p′ ∼= (qC )p′(−1) ∼= (qC(p2l ))p′(−1).

By Lemma 2.3

(qS(t2))p is represented by p−2l
(
0 1
1 0

)
.

Further, since C is of rank 2 and p does not divide detC ,

(qC(p2l ))p(−1) is represented by p−2l
(
1 0
0 detC

)
.

The two forms are isomorphic if and only if both −1 and detC are of the same square

class in Z
×
p /

(
Z

×
p

)2
. This is computed by the Legendre symbols

(−1
p

)
and

(
detC
p

)
.

Since p ≡ 1 mod (8 detC), we have that
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(
detC

p

)
=

( p

detC

)
= 1 =

(−1

p

)
.

By assembling the isometries from different primes, we can construct a glue map
qS(t2)

∼= qC(p2t )(−1). This provides a primitive embedding of S(t2) into II3,19 with
orthogonal complement C(p2l). Proceed as before to obtain the projective K3 surface
with its automorphism. ��

4.1 Proof of Lemma 4.1

Except for the signature condition, Lemma 4.1 is a special case of [4, Cor. 9.2, Prop.
11.9]. In what follows, we inspect the original proof. For the readers convenience,
we recall some of the notation involved. We need only the following special case:
k = Q and k is the set of its places. Then q is the quadratic form on L ⊗ Q. An
isometry t ∈ O(q) induces the structure of a self-dual torsion Q[x]-module on LQ

via p(x).v = p(t)v for v ∈ LQ and p(x) ∈ Q[x]. We set

M0 = (Q[x]/(x − 1))22−r , M1 = Q[x]/s(x), and M = M0 ⊕ M1.

Then CM,q is the set of all collections of forms C = {qν
i } for i ∈ I0 = {0, 1} and

ν ∈ k , such that qν
i has an isometry with module Mi ⊗Qν and qν

0 ⊕qν
1 is isomorphic

to the localization qν = q ⊗ Qν of q at ν. For i ∈ I0, we set

Ti (C) = {ν ∈ k | w(qν
i ) = 1}

where w(qν
i ) is the Hasse invariant of qν

i . Let FM,q be the subset of CM,q such that
for all i ∈ I0, Ti (C) is a finite set.

The main step involved is

Theorem 4.4 [4, Thm. 10.8] Let M be a self-dual torsion k[x]-module which is finite
dimensional as a k-vector space. Suppose that the quadratic form q over the global
field k has an isometry with module M over kν for all places ν of k. Then q has an
isometry with module M if and only if there exists a collection C = {qν

i } ∈ FM,q such
that for all i ∈ I0, the cardinality of Ti (C) is even. In this case qν

i = qi ⊗ κν .

Proof of Lemma 4.1 By [4, Prop. 11.9], we find f ∈ O(q) with module M . Hence its
characteristic polynomial has the desired form

det(x · Id− f ) = s(x)(x − 1)22−r .

If q1 = q|SQ has signature (1, r −1), we are done, else q1 has signature (3, r −3). By
Theorem 4.4, this provides us with a collection C = {qν

i } ∈ FM,q with qν
i = qi ⊗ κν

such that |Ti (C)| is even for i ∈ {0, 1}. We set

d1 ≡ det q1 ≡ s(1)s(−1) mod Q
×2
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and

d0 ≡ det q0 ≡ d1 det q = −s(1)s(−1) mod Q
×2.

Denote by 
(Mi , di ) the set of finite places ν of Q such that for any ε ∈ {0, 1} there
is a quadratic space Q over Qν with determinant di , Hasse invariant w(Q) = ε and
which has an isometry with module Mi . By [4, Prop. 11.9] every finite place is in

(M0, d0). Hence


0,1 = 
(M0, d0) ∩ 
(M1, d1) = 
(M1, d1),

which is non-empty by [4, Lem. 9.4, 9.6] and Chebotarev’s density theorem for the
degree two extension Q[λ] of Q[λ + λ−1]. Choose a place p ∈ 
0,1. We can define a
new collection C̃ = {q̃ν

i } by q̃ν
i = qν

i for i ∈ {0, 1} and ν �= p,∞, For q̃∞
i , we take

forms of signature (1, d − 1), respectively (2, rk L − 2 − d). At p we just switch the
Hasse invariants of q p

i . By [4, Lem. 9.6], C̃ ∈ CM,q , and moreover C̃ ∈ FM,q . Since
the Hasse invariants have changed at two places, |Ti (C̃)| is still even. Finally, C̃ meets
the conditions of Theorem 4.4 and the claim follows. ��
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