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Abstract

According to its Lax pair formulation, the nonlinear Schrédinger (NLS) equation can
be expressed as the compatibility condition of two linear ordinary differential equations
with an analytic dependence on a complex parameter. The first of these equations—
often referred to as the x-part of the Lax pair—can be rewritten as an eigenvalue
problem for a Zakharov—Shabat operator. The spectral analysis of this operator is
crucial for the solution of the initial value problem for the NLS equation via inverse
scattering techniques. For space-periodic solutions, this leads to the existence of a
Birkhoff normal form, which beautifully exhibits the structure of NLS as an infinite-
dimensional completely integrable system. In this paper, we take the crucial steps
towards developing an analogous picture for time-periodic solutions by performing a
spectral analysis of the #-part of the Lax pair with a periodic potential.

Mathematics Subject Classification 341.20 - 35Q55 - 37K15 - 47A75

1 Introduction
The nonlinear Schrédinger (NLS) equation
iU, + ey —20ulPu =0, o==+l, (1.1)

is one of the most well-studied nonlinear partial differential equations. As a universal
model equation for the evolution of weakly dispersive wave packets, it arises in a
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vast number of applications, ranging from nonlinear fiber optics and water waves to
Bose-Einstein condensates. Many aspects of the mathematical theory for (1.1) are well-
understood. For example, for spatially periodic solutions (i.e., u(x, t) = u(x + 1, 1)),
there exists a normal form theory for (1.1) which beautifully exhibits its structure as an
infinite-dimensional completely integrable system (see [13] and references therein).
This theory takes a particularly simple form in the case of the defocusing (i.e., 0 = 1)
version of (1.1). Indeed, for o = 1, the normal form theory ascertains the existence of
a single global system of Birkhoff coordinates (the Cartesian version of action-angle
coordinates) for (1.1). For the focusing (i.e.,0 = —1) NLS, such coordinates also exist,
but only locally [20]. The existence of Birkhoff coordinates has many implications.
Among other things, it provides an explicit decomposition of phase space into invariant
tori, thereby making it evident that an x-periodic solution of the defocusing NLS is
either periodic, quasi-periodic, or almost periodic in time. The construction of Birkhoff
coordinates for (1.1) is a major achievement which builds on ideas going back all the
way to classic work of Gardner, Greene, Kruskal and Miura on the Korteweg—de Vries
(KdV) equation [11,12], and of Zakharov and Shabat on the NLS equation [34]. Early
works on the (formal) introduction of action-angle variables include [32,33]. More
recently, Kappeler and collaborators have developed powerful methods which have
led to a rigorous construction of Birkhoff coordinates for both KdV [15,16,18] and
NLS [13,20] in the spatially periodic case.

The key element in the construction of Birkhoff coordinates is the spectral analysis
of the Zakharov—Shabat operator L («) defined by

d
L(u):i@(a—U), where U=<c70ﬁ g) and O’3=<(1) _01)

In particular, the periodic eigenvalues of this operator are independent of time if u
evolves according to (1.1) and thus encode the infinite number of conservation laws
for (1.1). The time-independence is a consequence of the fact that equation (1.1) can
be viewed as the compatibility condition ¢,; = ¢y, of the Lax pair equations [22,34]

¢x +irko3p =Ud, (1.2)
¢ + 2102030 = Vo, (1.3)

where A € C is the spectral parameter, ¢ (x, 7, A) is an eigenfunction,

_ —io|ul? 200 + 1uy
V= (2akﬁ — o, io|ul? ) ’ 1.4

and we note that (1.2) is equivalent to the eigenvalue problem L(u)¢ = A¢.
Strangely enough, although the spectral theory of equation (1.2) (or, equivalently,
of the Zakharov—Shabat operator) has been so thoroughly studied, it appears that no
systematic study of the spectral theory of the z-part (1.3) with a periodic potential has
yet been carried out (there only exist a few studies of the NLS equation on the half-line
with asymptotically time-periodic boundary conditions which touch tangentially on
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the issue [4,5,23,25,26]). The general scope of this paper is to lay the foundation for
a larger project with the goal of showing that (1.1), viewed as an evolution equation
in the x-variable, is an integrable PDE and in particular admits a normal form in a
neighborhood of the trivial solution u = 0. This means that one can construct Birkhoff
coordinates—often referred to as nonlinear Fourier coefficients—on appropriate func-
tion spaces so that, when expressed in these coordinates, the PDE can be solved by
quadrature. Our approach is inspired by the methods and ideas of [13,20], where such
coordinates for (1.1) as a 7-evolution equation were constructed on the phase space of
x-periodic functions. This work at hand provides the key ingredients needed to adapt
the scheme of construction developed in [13,20] to the x-evolution of time-periodic
solutions of NLS, and ultimately to establish local Birkhoff coordinates, hence inte-
grability. In particular, we provide asymptotic estimates for the fundamental matrix
solution of the ¢-part (1.3), which we exploit to study the periodic spectrum of the
corresponding generalized eigenvalue problem.

For the spectral analysis, it is appropriate (at least initially) to treat the four functions
u, ou, Uy, o, in the definition of V as independent. We will therefore consider the
spectral problem (1.3) with potential V given by

—iyly? 29! + iW) (L5)

V=V y)= (%w2 iy iy
where ¥ = {y/ (t)}‘f are periodic functions of ¢ € R with period one.

Apart from the purely spectral theoretic interest of studying (1.3), there are at least
three other reasons motivating the present study:

— First, in the context of fiber optics, the roles of the variables x and 7 in Eq. (1.1) are
interchanged, see e.g. [2]. In other words, in applications to fiber optics, x is the
temporal and ¢ is the spatial variable. Since the analysis of (1.3) plays the same
role for the x-evolution of u(x, t) as the analysis of the Zakharov—Shabat operator
plays for the #-evolution, this motivates the study of (1.3).

— Second, one of the most important problems for nonlinear integrable PDEs is
to determine the solution of initial-boundary value problems with asymptotically
time-periodic boundary data [3,6,26]. For example, consider the problem of deter-
mining the solution u(x, t) of (1.1) in the quarter-plane {x > 0,z > 0}, assuming
that the initial data u (x, 0), x > 0, and the boundary data u (0, ¢), ¢ > 0 are known,
and that u (0, ¢) approaches a periodic function as t — oo. The analysis of this
problem via Riemann-Hilbert techniques relies on the spectral analysis of (1.3)
with a periodic potential determined by the asymptotic behavior of u(0, ¢) [4,25].

— Third, at first sight, the differential equations (1.2) and (1.3) may appear unre-
lated. However, the fact that they are connected via Eq. (1.1) implies that they
can be viewed as different manifestations of the same underlying mathematical
structure. Indeed, for the analysis of elliptic equations and boundary value prob-
lems, a coordinate-free intrinsic approach in which the two parts of the Lax pair
are combined into a single differential form has proved the most fruitful [10,14].
In such a formulation, eigenfunctions which solve both the x-part (1.2) and the
t-part (1.3) simultaneously play a central role. It is therefore natural to investigate
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how the spectral properties of (1.2) are related to those of (1.3). Since the NLS
equation is just one example of a large number of integrable equations with a Lax
pair formulation, the present work can in this regard be viewed as a case study
with potentially broader applications.

1.1 Comparison with the analysis of the x-part

Compared with the analysis of the x-part (1.2), the spectral analysis of the ¢-part (1.3)
presents a number of novelties. Some of the differences are:

— Whereas Eq. (1.2) can be rewritten as the eigenvalue equation L (u)¢ = A¢ for an
operator L(u), no (natural) such formulation is available for (1.3) due to the more
complicated A-dependence. Nevertheless, it is possible to define spectral quantities
associated with (1.3) in a natural way.

— Asymptotically for large |A|, the periodic and antiperiodic eigenvalues of (1.2)
come in pairs which lie in discs centered at the points nx, n € Z, along the real
axis [13]. In the case of (1.3), a similar result holds, but in addition to discs centered
at points on the real axis, there are also discs centered at points on the imaginary
axis (see Lemma 3.13). Moreover, the spacing between these discs shrinks to zero
as |A| becomes large.

— For so-called real type potentials (the defocusing case), the Zakharov—Shabat oper-
ator is self-adjoint, implying that the spectrum associated with (1.2) is real. No
such statement is true for the #-part (1.3). This is clear already from the previous
statement that there exist pairs of eigenvalues tending to infinity contained in discs
centered on the imaginary axis. However, it is also true that the eigenvalues of (1.3)
near the real axis need not be purely real and the eigenvalues near the imaginary
axis need not be purely imaginary. This can be seen from the simple case of a
single-exponential potential. Indeed, consider the potential

WL, v2 @), v (0, v (1) = (@, cae™ !, e gee ), (1.6)

where «, ¢ € C, w € 2 Z, and o = £1. For potentials of this form, Eq. (1.3) can
be solved explicitly (see Sect. 5) and Fig. 1 shows the periodic and antiperiodic
eigenvalues of (1.3) for two choices of the parameters.

— Whereas the matrix U in (1.2) is off-diagonal and contains only the function u# and
its complex conjugate u, the matrix V in (1.3) is neither diagonal nor off-diagonal
and involves also u, and u,. This has implications for the spectral analysis—an
obvious one being that (1.5) involves four instead of two scalar potentials v/ (7).

— The occurrence of the factor A% in (1.3) implies that the derivation of the fun-
damental solution’s asymptotics for [A| — oo requires new techniques (see the
proof of Theorem 2.7). For the x-part, the analogous result can be established via
an application of Gronwall’s lemma [13]. This approach does not seem to general-
ize to the ¢-part, but instead we are able to perform an asymptotic analysis inspired
by [7, Chapter 6] (see also [24]).

— In Theorems 4.4 and 4.5, we will, for sufficiently small potentials, establish the
existence of analytic arcs which connect periodic eigenvalues close to the real line

@ Springer



On the spectral problem associated with the time-periodic. . . 1197

(a) (b)

Fig. 1 Plots of the periodic and antiperiodic eigenvalues for two single exponential potentials with different
sets of parameters o, w, o and c; cf. (1.6). a The periodic and antiperiodic eigenvalues for the real type
potential givenbyo = 1,0 = —2n,a = % + %i, c= % ; b the spectrum of the imaginary type potential

witho = -1, w = 2m,a = %, c = iay/ 202 — w, which arises from an exact plane wave solution of the
focusing NLS

in a pairwise manner and along which the discriminant is real. A similar result
for (1.2) can be found in [20, Proposition 2.6]. In both cases, the proof relies on
the implicit function theorem in infinite dimensional Banach spaces. However,
the proof of (1.3) is quite a bit more involved and requires, for example, the
introduction of more complicated function spaces, see (3.5).

1.2 Outline of the paper

In order to facilitate comparison with the existing literature on the x-part (1.2), our
original intention was to closely follow the scheme and methods developed in [13],
adapting them to Eq. (1.3). As pointed out in the previous paragraph we have that
Eq. (1.3)is quadratic in the spectral parameter A and hence itis a generalized eigenvalue
problem making its treatment more challenging. Nevertheless, some resemblance to
the first two chapters of [13] remains. The main novelty of the paper is the proof
of the leading order asymptotics for large |A| of the fundamental matrix solution
associated with (1.3), cf. Theorem 2.7. These asymptotics are a key ingredient for the
subsequent two sections. The discussion of the asymptotic localization of the Dirichlet
eigenvalues, Neumann eigenvalues and periodic eigenvalues in Sect. 3, as well as the
study of the zero set of the imaginary part of the discriminant for potentials of real
and imaginary type (corresponding to the defocusing and focusing NLS, respectively)
in Sect. 4 then follow closely [13] and, respectively, [20]. In Sect. 5, we consider the
special (but important) case of single-exponential potentials for which the fundamental
matrix solution permits an exact formula. This enables us to illustrate the theoretical
results from the previous sections. We provide useful formulas for the gradients of
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the fundamental solution and the discriminant in Sect. 6. The last section reviews the
standard bi-Hamiltonian structure of NLS as a time-evolution equation and establishes
a Hamiltonian structure for NLS viewed as an x-evolution equation. More precisely,
we show that the NLS system

{qxx = —ig +2¢°r
rex =i +2r2q,
which is associated with (1.1), can be written as
(q.r, p,)I =DaH,
where the 4-vector on the left hand side is understood as a column vector (indicated

by the transpose operaition T), and the Hamiltonian Fh, its gradient Bﬁl, and the
Hamiltonian operator D are given by

—ir; — 2r%q 0 0 01

~ . ~ ig; — 24> ~ 0 0 10
H = / (ps—l—lqlr—qzrz) dt, 0H; = 191 s ar , D= 0 -1 0 0
p -1 0 00

The associated Poisson bracket for two functionals F and G is given by

{F.Glp= /(8F)T DG dr.

2 Fundamental solution

In Sect. 2.1, we introduce the framework for the study of (1.3) and establish basic
properties of the fundamental solution. In Sect. 2.2 we derive estimates for the funda-
mental matrix solution and its A-derivative for large |A|. These estimates will be used
in Sect. 3 to asymptotically localize the Dirichlet, Neumann and periodic eigenvalues
as well as the critical points of the discriminant of (1.3).

2.1 Framework and basic properties

The potential matrix V in (1.3) depends on the spectral parameter A € C and the
potential ¢ = (¥, ¥2, ¥>, ¥*) taken from the space

X := HY(T,C) x HY(T, C) x HY(T, C) x H(T, C),
where H'(T, C) denotes the Sobolev space of complex absolutely continuous func-
tions on the one-dimensional torus T = R/Z with square-integrable weak derivative,

which is equipped with the usual norm induced by the H'-inner product
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1
(,): H{(T,C) x H(T,C) — C, (u,v)r—)/ (ud + u,v,) dt.
0

We endow the space X with the inner product
(Wi ¥2) = (U2 + T 03) + (U7, 93) + (W 3,
which induces the norm ||v|| = +/(¥, ¥) on X. Likewise we consider the space
X, := H'([0,7],C) x H'([0, 7], C) x H'([0, 7], C) x H'([0, 7], C)

on the interval [0, ] for fixed t > 0, where the Sobolev space H 1([0, 7], C) is
equipped with the inner product

(,9)7: H'(0,7],C) x H'([0,7],C) = C, (u,v) — /t(u{)—i—u,ﬁ,)dt.
0

We set

W1, ¥2)e o= (Ul V) + (W ¥ + W, ¥3)e + (W, ¥3)e,

which makes X; an inner product space and induces the norm ||V ||; = /(¥, ¥):.
For the components ¥/ of ¢ € X or ¢ € X; respectively, we write

Il = (Wi ), I e = (W, yd)e,  j=1,2,3,4

Since not every ¥ € X is periodic, X is a proper closed subspace of X;. The spaces
X and X; inherit completeness from H 1 (T,C)and H 1 ([0, 71, C) respectively, hence
they are Hilbert spaces.

On the space M»,>(C) of complex valued 2 x 2-matrices we consider the norm

| - |, which is induced by the standard norm in C2, also denoted by | - |, i.e.
|A] == max |Az]|.
z€C2,|z|=1

The norm | - | is submultiplicative, i.e. |[AB| < |A| |B| for A, B € M>+>(C).
For given A € C and ¢ € X, let us write the initial value problem corresponding
to (1.3) as

D¢ = R + Vo, @2.1)
#(0) = ¢o, 2.2)

where V is given by (1.5),

D:= (8’ 9 ) ., R=R() = —2i)%03,
i
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and

1
¢=<$2):T—>(C2.

Equation (2.1) reduces to (1.3) if we identify (v', ¥2, ¥3, v*) = (u, o1, uy, oiiy).
In analogy to the conventions for the eigenvalue problem (1.2) for the x-part of the

NLS Lax pair, we say that the spectral problem (2.1) is of Zakharov—Shabat (ZS) type.
The corresponding equation written in AKNS [1] coordinates (qo, po, g1, p1) reads

-1 21q0 — p1 20po+ pg +at + a1
D¢ = —22% + ( 0T 40 ,
v (1 ) ?* 2ipo - (Pg+ad) + a1 —22q0 + p1 ¢
2.3)

It is obtained by multiplying the operator equation D = R + V from the right with T
and from the left with 7!, where

(1 i 11
e () =), o0

Yl =qo+ipo, ¥ =qo—ipo, V> =qi+ip1, v* =q1 —ip1,

and by writing

that is,

Loy 2 R DS R I DS I P S
Clo—z(l/f +v¥°), po= 2(1!f I/f),ql—z(l// +v¥), p1= 2(1/f Y.

In what follows we show the existence of a unique matrix-valued fundamental
solution M of (2.1), that is, a solution of

DM =RM+ VM, MO =1, 2.5)
wherel € M»,2(C) denotes the identity matrix. The proof relies on a standard iteration

technique. We first observe that the fundamental matrix solution for the zero potential
Y = 0 is given by

5 2ot o242t

. - 10

E(t):=e = i | 1=0.
(S

Indeed, E, solves the initial value problem
DE, = RE;, E;(0) =1L

For A € C, ¥ € X and 0 <t < oo we inductively define
t
My := Ex(1), Mu41(1) := / E,(t —s)V(s)My(s)ds, n >0, (2.6)
0
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where V = V (s, A, ) is defined for all s > 0 by periodicity. For each n > 1, M,, is
continuous on [0, co) x C x X and satisfies

Mo = | Ev0) [ | Ex(=s VD Ex(s1) sy -+ sy
<sp<--<s1<t

i=1

. 502 .
Using that |E, (t)| = 2SI for 1 > 0, we estimate

~(32
| M,y (1)] < 2@ DO / ]"[|V<s,)|dsn~

0<s;<---<s1< <t

2(2n+1)\\s(kz)|t

<— / ]"[|V(s,)|dsn--

62(2n+1)\\s()»2)|t n
—(/ [V (s)] ds)
I’l' 0

eZ(Zn—i—l)\“‘s(kz)lt

< ———— " (2max(1, |AD)" [Cw, DI,
n.

IA

where one can choose

Cy. 1) = [ max (Iy w2 1w+ 121 12+ 1),
as a uniform bound for bounded sets of [0, 00) x X. Therefore the matrix
oo
M(t) := ) M,(t) .7)
n=0
exists and converges uniformly on bounded subsets of [0, 0c0) x C x X. By construction,

M solves the integral equation

t
M, A, ) = E)(t) + / E(@t —s)V(s, A, Y)M(s, A, ¥)ds, (2.8)
0

hence M is the unique matrix solution of the initial value problem (2.5). Since each
M,,, n > 0 is continuous on [0, co) x C x X and moreover analytic in A and ¢ for
fixed t € [0, o), M inherits the same regularity due to uniform convergence. Thus
we have proved the following result.

Theorem 2.1 (Existence of the fundamental solution M) The power series (2.7) with
coefficients given by (2.6) converges uniformly on bounded subsets of [0, 00) x C x X
to a continuous function denoted by M, which is analytic in A and  for each fixed
t > 0 and satisfies the integral Eq. (2.8).

The fundamental solution M is in fact compact:
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1202 J. Lenells, R. Quirchmayr

Proposition 2.2 (Compactness of M) For any sequence (Vr)x in X which converges
weakly to an element v € X as k — oo, i.e. Yx—, one has

|M(Za)"s Wk) _M(tv)\'7 1//)| -0

uniformly on bounded sets of [0, o0) x C.
Proof 1t suffices to prove the statement for each M,,, since the series (2.7) converges
uniformly on bounded subsets of [0, 0c0) x C x X. The assertion is true for My = E;,

which is independent of v. To achieve the inductive step, we assume that the statement
holds for M,,, n > 1, and consider an arbitrary sequence ¥, — in X. Then

Mn(t, )‘" ‘(//k) g Mn(t: )‘" W)

uniformly on bounded subsets of [0, c0) x C. Thus

1
M1 (2, 1, V) =/0 Ex(t =)V (s, A, ) My(s, A, i) ds

t
— / E,(t —s)V(s, .\, v)M, (s, ., ¥)ds
0

uniformly on bounded subsets of [0, o) x C. |
Furthermore, M satisfies the Wronskian identity:

Proposition 2.3 (Wronskian identity) Everywhere on [0, 00) x C x X it holds that
det M(t, 1, ¢) = 1.

In particular, the inverse M~ is given by

M-l= (™ T if M= mp  mp
B —ms3 nmi B ms3 my ’
Proof The fundamental solution M is regular for all # > 0. Therefore a direct compu-

tation yields
3 detM = tr(,;M - M~y det M.

Since
r(M-M Y =tw(R+V)=0

it follows that det M () = det M(0) = 1 for all ¢+ > 0. O

The solution of the inhomogeneous problem corresponding to the initial value
problem (2.1)—(2.2) has the usual “variation of constants representation”:
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Proposition 2.4 The unique solution of the inhomogeneous equation
Df=R+V)f+g [fO)=w

with g € L*([0, 1], C) x L?([0, 1], C) is given by

t
f= M(t)<vo +/ M_l(S)g(S)dS)- 2.9)
0

Proof Differentiating (2.9) with respect to ¢ and using that M is the fundamental
solution of (2.5), we find that

1t
f'@)=Df@t) = M (t)vo + M (1) /0 M~ (s)g(s)ds + MM (1)g(1)

=R+ V)M(©) <v0 + fo M) ds) +8(0)
=R+V)f()+g®)
and f(0) = vo. O
As a corollary we obtain a formula for the A-derivative M of M.

Corollary 2.5 The A-derivative M of M is given by

t
M) = M(t)/ M~ Y(s)N(s)M(s) ds, (2.10)
0

A (-2x !
N=2 < ¥? 2M) '
In particular, M is analytic on C x X and compact on [0, 00) x C x X uniformly on
bounded subsets of [0, o0) x C.

where

Proof Differentiation of DM = (R + V)M with respect to A gives

DM = (R+ V)M + %(R(A) + V(/\))M =R+ V)M +NM,

and Proposition 2.4 yields (2.10). The second claim is a consequence of Proposition
2.2. O

The fundamental solution M of the ZS-system is related to the fundamental solution
K of the AKNS-system by
K=T"'MT, (2.11)

_(m1 my _ ki k2
me () e )

cf. (2.4). That is, if
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1204 J. Lenells, R. Quirchmayr

then
mi +my +m3 + my mip —my +ms3z — nmy
ki = , ko= - ,
2 —2i
my| +my —m3 — My myp —my —m3+my
k3 = T , ks = 5
i

The fundamental solution for the zero potential in AKNS coordinates is therefore

given by
2ix2oyt cos2x%t  sin2A2%t 0 —i
€ = . 2 2 , O = | . .
—sin2A°t  cos2\°t i 0

Remark 2.6 1t is obvious that all results in this section possess an analogous version
in which the space X of 1-periodic potentials is replaced by the space X; of potentials
defined on the interval [0, T], T > O.

2.2 Leading order asymptotics

The results in this section hold for 0 < ¢ < 1 and hence apply to the time-periodic
problem we are primarily interested in.

It was pointed out in [25] that the fundamental matrix solution M of (2.5) for a
potential with sufficient smoothness and decay admits an asymptotic expansion (as
|| — 00) of the form

Z1(t)  Zr(@) o2 Wi@) = Wa() 2in2
MG, 1) =1+ —+ SRl R + ==+ e,
*.2) ( Y 22 ¢ Y 22 ¢
(2.12)
where the matrices Z, Wy, k = 1,2, ..., can be explicitly expressed in terms of the

potential and therefore only depend on the time variable ¢ > 0, and satisfy Z;(0) +
Wi (0) = O for all integers k > 1. This suggests that M satisfies

MG 1) = e 27100 L (A7 2RI as 3] > o0

for + within a given bounded interval. These considerations suggest the following
result.

Theorem 2.7 (Asymptotics of M and M as |A| — oc) Uniformly on [0, 1] x C and
on bounded subsets of X1,

Mt 3, %) = Ex(t) + O(1a] 71 230D
in the sense that there exist constants C > 0 and K > 0 such that
e 280D M1, 3, ) — Ex ()] < € (2.13)
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uniformly for all 0 <t < 1, all . € C with || > K and all { contained in a given
bounded subset of X1. Moreover, the A-derivative of M satisfies

M(t, o, ) = E (1) + O30 (2.14)

uniformly on [0, 1] x C and on bounded subsets of X.

Theorem 2.7 will be established via a series of lemmas. We first introduce some
notation and briefly discuss the idea of the proof.

For . € C and ¢ € X, let M be the fundamental solution of (2.5), which will be
considered on the unit interval [0, 1]. We set

0 1= 222
and define M+ and M~ by
MY A, ) = M, A, e M Tt ) = M(t, A, Y)e 13

For a given complex 2 x 2-matrix

we denote by AY its diagonal part and by A°d its off-diagonal part, i.e.

e )w)

We will always identify a potential ¢ € X, with its absolutely continuous version.

This allows us to evaluate i at each point; we set ¥y := 1 (0) and ‘ﬁé = Y/ (0) for
j =1,2,3,4. For a given potential ¥ € X;,t € [0, 1] and A € C we define

od
Zytay) =14 2D LY

A A2
where
! 1
Z](l, 'W) = z 1//2 + 2FU3,
1 iyl
z8%t,y) = I < Fiy?r i F) ;
with

F=T( )= /tw‘w“ 2yt dr
0
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1206 J. Lenells, R. Quirchmayr

Furthermore we set

Wiy | Waltv) Wi, v)

k]

where

3 1
Wit ) = W) =5 <_1//§ ‘”0> ,
R R AR U2
== Lty il ")
i (—wg(w3+iw1r>+x/f5‘w‘

Wi ) =g

VoWt +1yT) — w3w2> '
We finally define M, which will serve as an approximation of M, by

Mp(t, 0o ) = Zp(t, 2 )% + Wy, 4, ),
and set M;r 1= M,e?'%, M, = M,e™9193 je.

M;(L M) = Zp(t, A, ) + Wy, A, Pr)e?if003,
My (8,0, 9) = Zp(t, 2, Y)e 297 + Wy (e, 2, ).

Letting Q;, j = 1,2, 3,4, denote the four open quadrants of the complex A-plane,
we set

Dy :=01UQ3 and D_ := Q02U Qq.

For an arbitrary complex number A = x + iy with x, y € Rand ¢ > 0, it holds that

) _ J— hie2 ) J—
=™ <1 & reD;, e =" <1 & reD_.

We will prove Theorem 2.7 by establishing asymptotic estimates for the distance
between the fundamental solution M and the explicit expression M, that approximates
M. For this purpose we will consider the columns of M+ and M~ separately and
compare them with the columns of M ;‘ and M ;’, respectively, after restricting attention

to either Dy or D_. By combining all possible combinations, we are able to infer
asymptotic estimates for the full matrix M valid on the whole complex plane.

Remark 2.8 For a given smooth potential ¥, the matrices Z; and Wy can be determined

recursively up to any order k > 0 by integration by parts. Indeed, note that V =
Vo + A V) where

_ (il iy? . 2!
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Assuming that the formal expression

o0

< Z Zk()f;( w))e_iem +< Z Wk;tkv ‘P))eiez@

k=—1 k=—1
with
Zot,y) =1, Za@, ) =W, ) =Wo,¢) =0
solves (2.5), one infers the following recursive equations for the coefficients Z; and
Wi
(Z1)e + 403245 = VoZk + Vi Zi1,
(W) + 43 Wiy = VoWi + ViWiert

for all integers k > —1 and Z; (0, ¥) + Wi (0, ¥) = O for all integers k > 1.
For ¥ € X, the matrices Z, and W), satisfy

Zp (0.2, 9) + Wp(0, A, ¥) =T+ O(A| ),
since the values of Zg are not determined, which turns out to be sufficient to prove the
asymptotic estimates of M asserted in Theorem 2.7.
Lemma 2.9 Let v € X be an arbitrary potential. Then M is the fundamental matrix
solution of the Cauchy problem (2.5) if and only if M satisfies
M 4 2i003(MT) = vMt, MT 0,0 =1 (2.13)

Proof By applying the product rule, assuming that (2.5) holds and noting that o3
commutes with diagonal matrices, we obtain

M;‘r — (Mei9l0‘3)t — M[ ei@[(f3 + Mei910'3 190_3
= (VM —ifo3 M) e + oM+ o3
=VM*t —i0[o3, M)
= VMt —2i0o3(M+)%.

Conversely, if (2.15) holds, we similarly obtain
M; %% = (VM —ifo3 M) '3,

and a multiplication with e 7%’ from the right yields that M satisfies the differen-
tial equation in (2.5). The statement concerning the initial conditions holds because
MO, 1) = MT(,A). m]

The following lemma is concerned with the invertibility of Z,. We set cKk:={re
C: |A| > K} for K > 0, and denote by B, (0, X;) the ball of radius r > 0 in X;
centered at 0.
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1208 J. Lenells, R. Quirchmayr

Lemma 2.10 Letr > 0. There exists a constant K, > 0 such that Z, is invertible on
[0, 1] x CXr x B,.(0, X1) with

(e ¢] d n
_ Zit,y)  Z3° )
zp‘(t,x,w):Z(— T : (2.16)
n=0
Proof We use the general fact that if an element A of a Banach algebra (A, | - ||)

satisfies ||[A|| < 1, then I — A is invertible and its inverse is given by the Neumann
series ) .o A”". Let K, > 0 be so large that

Zit, ) 29| 1
‘ P ‘<§

forall 7 € [0, 1], » € CXr and Y € B,(0, X1). This can always be achieved, because
the functions {y/}%, and hence also the functions |Z; (¢, ¥)| and |Z§d(t, Y|, are
uniformly bounded on [0, 1] x B, (0, Xj). It follows that the inverse of Z,, on [0, 1] x
CXr x B,(0, X)) exists and is given by its Neumann series, i.e. (2.16) is satisfied. O

Lemma 2.10 and its proof suggest the introduction of the following notation.

Definition 2.11 For each r > 0, we define

K, = |i?f1 {1 Z,(t, 2, 9)| < 1/2 ¥ € [0, 11¥Y € B, (0, X1}
>
reC

Corollary 2.12 Let r > 0. The matrix Z, is invertible on [0, 1] x Ckr x B.(0, X))
and its inverse Z;l is given by (2.16). Both Z,, and Z;l are uniformly bounded on

[0,1] x Cckr x B, (0, X1). Furthermore,

AR A A
z,' = —T‘+%+O(m—3) 2.17)

uniformly on [0, 1] x CKr x B,(0, X}) as |A| — oc.
Proof The expansion (2.17) follows directly from (2.16), the uniform O(|A|~3) error

follows from the uniform convergence of the respective Neumann series on [0, 1] x
CXr x B,(0, X)), see the proof of Lemma 2.10. O

Fort € [0, 1], 2 € Cand ¢ € X, we define
Apz=[@Zy) —i0Zp03]Z,'. A=V —ifo3, Az:=A—-A,7,

whenever the inverse Z;l exists. By Lemma 2.10, the inverse of Z, exists uniformly
on [0, 1] and on bounded sets in X provided that |A| is large enough.
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Lemma2.13 For » € C and v € Xy, let M be the fundamental solution of (2.5) on
the unit interval. If |A| is so large that Z;l exists for all t € [0, 1], then

(Z,'"M™), =Z,'AzM* —i6[03, 2, M), (2.18)

(Z,'M™) = Z,'AzM™ —i0(03Z,' M~ + Z,' M~ 03). (2.19)

Proof By Lemma 2.9 we can write M;’ = AM™ + iOM T o3, hence Eq. (2.18) is
directly obtained by:

—1 —1 —1 —1
z, MY, = ~Z, (WZp)Z, M+ z, M;"
=-Z,(Ap 22y +i0Zp03)Z,'MT + Z ' (AMT +i0M 7 03)
=2, AzM* —i0[o3, Z,' M)

Equation (2.19) is similarly obtained by noting that

Mt_ — (M+e—21010'3)t — (VM+ _ i9[0'3, M+])e—2i9163 _ 219M+e—2i910'303
=AM~ —iOM™ o3.

m}

For z € C, we define the linear map %% on the space of complex 2 x 2-matrices
by
¢ (A) 1= ¥ Ae I

furthermore we define €3 via
e*P(A) = e Ae*%.

Lemma 2.13 yields Volterra equations for M™ and M.

Lemma 2.14 For » € C and v € Xy, let M be the fundamental solution of (2.5) on
the unit interval. If |A| is so large that Z;l exists for all t € [0, 1], then M satisfies

MY 0 ) = Zp(t a, Y) e BLZ10, 0, 9]

t
+ [ 2ot aon e IR A w1 220)
0

and M~ satisfies
M™(t, a 9) = Zp(t, h, Y) e B [Z10, 1, ¥)]

t
+/ Zy(t, 2, ) e OB Z I Az M)z h Y)lde. (221
0
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1210 J. Lenells, R. Quirchmayr

Proof Using identity (2.18) in Lemma 2.13, we infer that
(€7 (z, M), =5z Az M. (2.22)

In order to obtain (2.20), we first integrate (2.22) from O to t and use that M+ (0, 1) =1
to determine the integration constant. Applying e ¢! %3 to both sides of the resulting
integral equation and multiplying by Z, from the left, we find (2.20).

The Volterra equation for M~ follows in an analogous way from the equation

which is a consequence of (2.19). O

For a t-dependent matrix A with entries in L? ([0, 1], C) we define

1 1/p
I AllLro.11.0) = (/ IA(f)Ipdt> , 1=p<oo
0
Lemma 2.15 Let B be an arbitrary bounded subset of X1 and let 1 < q < 2. Then

18: Z1 (W)l za 0. 11.0) = O, 18 ZS* W)l e g0.11.0) = O(1),
uniformly on B.

Proof The case ¢ = 2 follows directly from the definitions of Z; and Z‘z’d, the conti-
nuity of the operator
I 2o ey 0 8t H'(0.1) - R,

and the fact that H1(0, 1) is an algebra. The cases 1 < g < 2 follow from the
case ¢ = 2 in view of the continuous embeddings L>([0, 1], C) — L4([0, 1], C),
1<qg<?2. O

Lemma 2.16 Letr > 0. There exists a constant C > 0 such that uniformly for (A, )
in C* x B,(0, X)),
[ATAZ S Y o1y,0) < C- (2.23)

Proof Note that
4i03 20 = Vi, 4i03Z8% = Vo + V1 Z, (2.24)

forarbitrary ¢ € X;.By Corollary 2.12 the asymptotic estimate (2.17) holds uniformly
on [0, 1] x CXr x B, (0, X;) as |A| — oo.In particular, Az is well-defined on [0, 1] x
CXr x B,(0,X;) and satisfies

Az = Vo +AV) —2ir’os + 2% 1+ 1 + z -4 + -2
= — 21A70 1 - o -+t
2= : : oz ) N 22

+0(IA7h (2.25)
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in L'([0, 1], C) uniformly on CXr x B, (0, X)) as |,| — oo, where we have used
Lemma 2.15 to estimate the 0, Z ,-term. By keeping only the A-terms fork =0, 1,2
in (2.25) and by employing (2.24), we obtain

Az = Vo + AV = 2irlo3, Z1] + 2i[25%, 03] + 2ilo3, Z11Z) + O(lll_l)
= Vo — 4io3 25" + 41032921 + O(1A17")
=04+ 0"
in L1 ([0, 1], C) uniformly on CX x B, (0, X;) as || — oc. o

Let [A]; and [A]; denote the first and second columns of a 2 x 2-matrix A. Let
[[A]il, i = 1, 2, denote the standard C2-norm of the vector [A];.

Lemma 2.17 Letr > 0. There exists a constant C > 0 such that

I [MT a9 = Zp (g e P9 (Z210, 1, 9)],| = €. (2:26)
W [M™ a9 = Zp g e P20, )] = ¢ @27)

uniformly on [0, 1] x Df’ x B, (0, X1), and

I [M™ (a9 = Zp(t a9 e 793 (Z21(0, 4, 9) ],
I [ME ) = Zp (@ 0, 9 e 1 (2,10, 0, 9)],

<C, (229
<C (229

uniformly on [0, 1] x Df’ x B, (0, X1).
Proof For A € CXr the functions
M@, A ) = [MT(t, 2 P)]a,
Mot h ) = [Zp( 0 e 7% (2,10, 2, 9)) ],
o—2i0(—1)
E(t, T, A, ¥) = zp(t,x,w)< 1) Z, (T ),
are well-defined on their domains [0, 1] x CX x B, (0, X;) and [0, 1]*> x CKr x

B, (0, X1) respectively, where the inverse Z;l is given by (2.16) and is uniformly

bounded on [0, 1] x Ckr x B, (0, X1) by Lemma 2.10 and Corollary 2.12. Due to
Lemma 2.14, M satisfies the following Volterra equation for ¢ € [0, 1], € CXr and
¥ € B0, Xy):

t
M(t, 1) = Mo(t, 1) + / E(t,t, \)Az(t, M) M(z, 1) dr,
0

where the 1-dependence has been suppressed for simplicity. Thus M admits the
power series representation
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1212 J. Lenells, R. Quirchmayr

M2 = Myt ),
n=0

which converges (pointwise) absolutely and uniformly on [0, 1] x CXr x B, 0, X1),
where

t
My(t, A) = [ E(t, T, VAz(t, )M, (T, )dt n>1)
0

satisfies the estimate

n

Y [T1EC 7 A Mo W dry -+ - dey

Oty <=7t i=1

1 ! n
= ;(/0 |E(t, T, M) |Az(t, M)| | Mo(z, A)|dr)

uniformly on [0, 1] x CXr x B, (0, X;). The functions E and M satisfy

|Mo(t, W] <12, MI1Z," 0, 1),
[E(t, 7, 0| < 12,1, MI1Z, " (x, W],

forO <t <t<land (A, ¥) € Dfr X By (0, X1). Therefore, in view of Corollary
2.12 and Lemma 2.16, there exists a constant C > 0 such that

n

A
Mot <

uniformly on [0, 1] x Df’ x B, (0, X1), and thus

<

Cel
<
ntAl™ = A

M, 0) = Mo, )] < )

n=1

uniformly on [0, 1] x Df’ X By (0, X1). This proves (2.26); the proofs of (2.27)—(2.29)
are similar. O

Lemma 2.18 Let r > 0. There exists a constant C > 0 such that

A2 [Zp (2 9) 792,10, 0, ) = M, )], < € (2.30)
P |[Zp( 2 ) e (2,10, 0, 9) = My (1, )] <€ (231)

uniformly on [0, 1] x Df’ x B, (0, X1), and
P |[Zp( a9y e (2,10, 0, 9) — My (10, 9)],| < €. (232)
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WP |[Zp( 29y e 99(Z,10, 0, 9) = Mo 9] <€ (233)

uniformly on [0, 1] x D_f x B, (0, X1).

Proof Since
. iyl . .
[elmg3 (Z10, )], = 20t ( 201//0> = emt[Zl(O, ], = _ezlet[Wl ©.9)],
for y € Xj, Corollary 2.12 yields

[Zp @t 0 9) e 93210, 2, )],

[ B Z](O, W)

= |Zp@. 1) e® (I ; +O(|M72))]2

—2i0t

- 2301t
= _Z,,(t,)\,lﬂ)]z— - 5 [21(0, Ip)]z-'_o<el)»7>

e—219t

] 236t
=[zperw] += [Wl(o"”)]ﬁo(‘el/\?)

uniformly on [0, 1] x CX" x B,(0,X}) as |A| — oo. On the other hand, we have that

e—ziet

(M@ )], = [Zp@ 0 0], + [W © w)] Lo(e
p e 2 PR 2 I 1 2 |)L|2

uniformly on [0, 1] x CXr x B, (0, X;) as |A| — oo. Since J0 < 0 for A € D_, the
estimate (2.30) follows. The estimates (2.31)—(2.32) are proved in a similar way. O

Proof of Theorem 2.7 The first assertion of the theorem follows by combining Lemmas
2.17 and 2.18. Let r > 0. By (2.26) and (2.30), there exists a C > 0 such that

(M@ 09y = MY x| = €

uniformly on [0, 1] x Df’ x B, (0, X1). Thus,

1] e 230D (M2 9) = Mp(t. 2 9], < €

uniformly on [0, 1]x D% x B, (0, X1). Since M, (1, 1, ) = E5 () 4+-O(|a|~ &2

uniformly on [0, 1] x Df’ X B, (0, X1) as |A| — oo, we infer that there existsa C > 0
such that

Rl M. 29) = Ex(D],| = C

uniformly on [0, 1] x Df’ X B (0, X1). Analogously, by using (2.29) and (2.33), one
infers the existence of a constant C > 0 such that

1] e 230D M2 9) - Ex0]| = C
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1214 J. Lenells, R. Quirchmayr

uniformly on [0, 1] x Df’ x By (0, X1). The estimates (2.28) and (2.32) (resp. (2.27)
and (2.31)) yiel@e same asymptotic estimates for [M — E, ] (resp. [M — E,];) for

A restricted to Df’ (resp. Df’). In summary, this yields the existence of constants
C, K > 0 such that

A e 2RI M1 0, y) — Ex(n)] < €

uniformly on [0, 1] x CX x B,(0,X;). This proves (2.13).

To prove (2.14), we recall Cauchy’s inequality: the derivative f’ of a holomorphic
function f: C 2 G — C satisfying | f(z)|] < C on adisc D(r,a) € G of radius r
centered at a in the open domain G can be estimated at the pointa by | f/(a)| < Cr~!
According to the first part of the theorem, for any r > 0 there is a K > 0 such that

e 230D M1, 3, ) — Ex(0)| = O1)

uniformly for ¢ € [0,1], A € CK and ¢ € B,(0,X;) as [\| — oo. By applying
Cauchy’s inequality to this estimate, we immediately obtain (2.14). O

Letus forn € Nandi = 1, 2, 3, 4 consider the complex numbers ;,’;, which are

given by
_ [nw /nrr nmw nw
=\ 5 { B Cn : R (:n =

Theorem 2.19 For any potential ¥ € X and any sequence (Zi,)neN of complex num-
bers, whose elements z,, 1 =1, 2, 3, 4, satisfy

. . 1
Z;=§fl+0<%> as n — oo,
it holds that
sup |M(t,z}) — E.; ()| = O(n~'/?), (2.34)
0<t<1 "
sup [M(t,z)) — E;i ()| = O(1) (2.35)
0<r<l

as n — o0. If moreover the squares (zfl)2 satisfy
@) =) +0n"?) as n— oo,
then it holds additionally that

sup [M(t,2,) — E.i (1) = O(n -2y, (2.36)

0<r<1
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The estimates in (2.34) and (2.35) hold uniformly on bounded subsets of X and for
sequences (z!)nen, which satisfy |z, — ¢i| < C/T/n for all n > 1 with a uniform
constant C > 0. The estimate in (2.36) holds uniformly on bounded subsets of X1 and
for sequences (zp)nez, Which satisfy |(zf1)2 — (§£)2| < CJ/1/n foralln > 1 with a
uniform constant C > 0.

Proof The estimates (2.34) and (2.35) follow directly from Theorem 2.7, because

Jz2 = O(1) as |n| — oo by assumption, and therefore 237l — O(1) uniformly in

t €[0,1]as |n] — oc.
To prove (2.36) we note that le?—1] < |z] el*! for arbitrary z € C, thus the additional
restriction on zj, implies that
|ez(z:;>2iz _ ez@,i)%z| — |ez<(z:;>27<z,i>2)iz —1|=0(n"'7?) (2.37)
uniformly for 7 € [0, 1] as n — oo. The triangle inequality implies that
|M(t,2}) = Eci ()] < |M (2, 2},) = Eyi (0] + |Ei (1) = Ei (1)
for ¢ € [0, 1], and hence (2.36) follows from (2.34) and (2.37). m|

Remark 2.20 For convenience, the asymptotic results in this section are stated for the
space X, with T = 1 (which contains the periodic space X as a subspace). It is clear
that analogous results hold for an arbitrary fixed t > 0.

3 Spectra

We will consider three different notions of spectra associated with the spectral problem
(2.1): the Dirichlet, Neumann and periodic spectrum. These spectra are the zero sets of
certain spectral functions, which are defined in terms of the entries of the fundamental

solution M evaluated at time = 1. We introduce the following notation:
M= M|_i, m;:=mil—, i=123,4.
3.1 Dirichlet and Neumann spectrum
We define the Dirichlet domain Ap of the AKNS-system (2.3) by1
Ap = {f € H'(10,1],C) x H'([0,1],C) | 2(0) =0= fr(D}.
The Dirichlet domain Dp, of the corresponding ZS-system (2.1) is then given by

Dp:={g € H'([0,1],C) x H'([0,11,C) | (g1 — £2)(0) = 0 = (g1 — g2)(1)},

1 Following [13], we define the Dirichlet spectrum in terms of f> and the Neumann spectrum in terms of

f1-
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as Ap corresponds to Dp under the transformation 7', cf. (2.4). For a given potential
Y € X, we say that A € C lies in the Dirichlet spectrum if there exists a ¢ € Dp \ {0}
which solves (2.1).

Theorem 3.1 Fix v € X. The Dirichlet spectrum of (2.1) is the zero set of the entire
function
ma4 + m3 — iy — ny

xo, ¥) = 5

. 3.1)
()

In particular, xp(A,0) = sin 222,

Proof Due to the definition of Dp, a complex number A lies in the Dirichlet spectrum
of (2.1) if and only if the fundamental solution M maps the initial value (1, 1) to a
collinear vector at r = 1. That is, if and only if m| + my = m3 + my4. O

By Theorem 2.7 the characteristic function xp satisfies
a0, ) = sin 222 + O3]~ 2301 (3.2)
uniformly on bounded sets in X as |A| — oo. For ¢ € X, we set

op(¥) = {1 € C: xp(r, ) = 0}.

We aim to localize the Dirichlet eigenvalues with the help of (3.2), see Lemma 3.3
below. The proof makes use of the following elementary estimate, cf. [13, Appendix
F]: if » € C satisfies |A — nmr| > 7 /4 for all integers n, then 4| sin A| > el3* . Let us
rephrase this inequality as follows.

Lemma 3.2 Ifx € C satisfies |20*> — nx| = 7 /4 for all integers n, then
4sin22%] > 2RO,
We denote the right, left, upper and lower open complex halfplane by

Ci:={zeC:Nz>0}, C_:={zeC: Nz <0}
Ct:={zeC:3z>0}), C :={zeC:3z<0)}.

Lemma 3.2 motivates the definition of the discs D,"l, which are introduced below, to

localize the Dirichlet eigenvalues. For |n| > 1, we consider the set
D, = {A cC: |2)»2 —nrr| < %}

which consists of two open discs, and define the disc D;;, i=1,2,by

= =
S_ls m DnmC*, S

Drll — Dnﬁ((:+, n
D, N (C—,

1, D2 {Dnﬂ(C+, n
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Fig. 2 Localization of the periodic eigenvalues according to the Counting Lemma. The first 42N + 1)
roots of xp(-, ¥) lie in the large disc By . The remaining periodic eigenvalues lie in the discs D}, centered
at )L,jt '(0),i = 1,2, |n| > N; each disc contains precisely two of them. The radii of these discs shrink to

zero at order O(\nlfl/z) as |n| - oo

For a given integer N > 1 we define the disc By by

By = {AE(C: |)\|<‘IW}.

'Furthermore we set Do := By := {A € C: |A| < /7 /8} and impose the conve;ntion
(’) = Do, i =1, 2. Then for each N > 0 the disc By contains all the discs D;, with

[n] < N. An illustration of the discs By and Dfl can be found in Fig. 2 (see also

Fig. 5).
Lemma 3.3 (Counting Lemma for Dirichlet eigenvalues) Let B be a bounded subset
of X. There exists an integer N > 1, such that for every \ € B, the entire function

xp (-, ¥) has exactly one root in each of the two discs D;, i =1,2, forn € Z with
[n| > N, and exactly 22N + 1) roots in the disc By when counted with multiplicity.

There are no other roots.

Proof Outside of the set
(3.3)

n:= J D
nez
ie{l,2}
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32
it holds that % < 4 by the previous lemma. Therefore we obtain from (3.2) that

xp(h, ¥) =sin 2% + 0(ez|~3(xz)\) = xp(, 0)(1 + o(D))

for [A\| = oo with A ¢ IT uniformly for {» € B. More precisely, this means that there
exists an integer N > 1 such that, for all ¥ € B,

Ixp, ¥) — xp(4, 0)] < [xp(4,0)]

on the boundaries of all discs D,i with |n| > N, i = 1, 2, and also on the boundary
of By. (Note that | xp(A, 0)| > & on these boundaries for some § > 0 which can be
chosen independently of |n| > N.) Then Rouché’s theorem tells us that the analytic
functions xp(:, ¥) possess the same number of roots inside these discs as yp(-, 0).
This proves the first statement, because xp(-, 0): A +> sin 212 has exactly one root in
each D! for [n| > N,i =1,2,and 2(2N + 1) roots in the disc By.

It is now obvious that there are no other roots, because the number of roots of
xp (-, ¥) in each of the discs By+k, k > 1, is exactly 2(N + k + 1) due to the same
argument as we used before. But these roots correspond to the 2(2N + 1) roots of
xp(-, ¥) inside By € By plus the 2k roots inside the discs D; € By4x with
N < |l| < N + k that we have already identified earlier in the proof. O

Lemma 3.3 allows us to introduce a systematic procedure for labeling the Dirich-
let eigenvalues. For this purpose, we first consider the spectrum op(0) of the zero
potential, which consists of the two bi-infinite sequences

) _1)i—1
16 (0) = sgn(n) % i=1,2 nez, (3.4)
where
1 n>0,
sgn(n) :=4{0 n=0,
-1 n<O.

The eigenvalues ,u}l (0), n € Z, are real while the eigenvalues ,uﬁ ), n € Z\ {0},
are purely imaginary. The Dirichlet eigenvalue 0 has multiciplity two; all the other
Dirichlet eigenvalues corresponding to ¢ = 0 are simple roots of yp(-, 0).

Let now ¢ € X be an arbitrary potential. By Lemma 3.3 there exists a minimal
integer N > O such that for all |n| > N, each disc Dﬁl, i = 1, 2, contains precisely one
Dirichlet eigenvalue of multiplicity one—this eigenvalue will henceforth be denoted
by u’n = u;l (¥ )—and B contains the remaining 2(2N + 1) eigenvalues when counted
with multiplicity. In order to label the 2(2N + 1) roots of xp(-, ¥) in By, we proceed
as follows. We make a (so far unordered) list of all the elements of op(y¥) N By.
For any multiple root of xp(¥) in this list, we include multiple copies of it in the
list according to its multiplicity. In this way, we make sure that the list has exactly
2(2N +1) entries (the set op () N By contains strictly less than 2(2N + 1) elements if
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xp(¥) has non-simple roots). We employ the lexicographical ordering of the complex
numbers, i.e. for z;, zo € C,

Nz1 < Rz
21322 & or
Nz1 = Nzp and Jz1 < Jz7,

to label the 2(2N + 1) entries of list list of roots in By in such a way that

1 2 12,2
Uy X=Xy M e A W V7 S U e V2
< Xpy 2pf 2 Sy

The labeling of the roots of xp(:, ¥) according to this procedure is unique except
that the label of a particular Dirichlet eigenvalue is ambiguous whenever it is not
a simple root of xp(-, ¥). Sequences of Dirichlet eigenvalues of the form (ui,)nez,
where i = 1 ori = 2, are always well-defined, since each element of such a sequence
has a uniquely defined value.

Remark 3.4 In general neither the multiplicity, nor the label of a Dirichlet eigen-
value uﬁl () is preserved under continuous deformations of the potential {»—not even
locally around the zero potential, where discontinuities of the functions v — /LB(@D)
may occur due to the lexicographical ordering. Merging and splitting of Dirichlet
eigenvalues can occur under continuous deformations of the potential, cf. Fig. 5 where
such behaviorisillustrated in the case of periodic eigenvalues. However, for sufficiently
large |n|, the mappings ¢ +— ,ufl (), i = 1, 2, are continuous on bounded subsets of
X; in fact, we will see in the proof of Theorem 3.5 that these mappings are analytic.
In particular, the eigenvalue j/, () remains simple under continuous deformations
within a bounded subset of X for large enough |n|.

To continue our analysis, we introduce the Banach spaces €p ** of (bi-infinite)
sequences

e = fu = Gnez | (1 + )20, 5 € €2, (35)

where 1 < p < 00,5 € R,and K = R or K = C, as well as the closed subspaces

68 = {u = (un)nez € €8 ug = 0}.
We consider basic properties of these Banach spaces in Sect. 4. Theorem 3.5 below
estabhshes asymptotic estimates and continuity properties of the Dirichlet eigenvalues
in the EC settmg We use the notation £5"° to denote the n-th coordinate of a sequence
82y, ez in €27, see [13,18,20].

From Lemma 3.3 we infer that, uniformly on bounded subsets of X,

wh) = uh ) + 612 i =12, (3.6)
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where Mﬁ; (0) is given by (3.4). More precisely, this means that the sequence (Mﬁ, (¥) —
;Lil O)nez,i = 1,2, liesin 6%0’1/2 forevery ¢ € X with a uniform bound in E(%o’l/z for
Y ranging within arbitrary but fixed bounded subsets of X. To see this, we note that the
radius of the disc D’ centered at /,Ln (0) = sgn(n)+/(=1)i~Yn|r/2,i = 1,2, which
contains the D1r1chlet eigenvalue /Ln(lff) for each |n| > N, is of order O(|n|~/?) as
[n| — oo;theinteger N > 1 can be chosen uniformly for all ¢ within a fixed bounded
subset of X.

The following theorem improves the estimate in (3.6) considerably; furthermore it
establishes an equicontinuity property of the set of Dirichlet eigenvalues as functions

of .
Theorem 3.5 Let B be a bounded neighborhood of ¥ = 0 in X.

(1) Uniformly on B, ‘ ‘
W) = @ + 651 =1,2, 3.7)

where ;Li, (0) is given by (3.4).
(2) There exists a neighborhood W C B of the zero potential such that forall € W,

uh(p) € Dy for In| =1, uph(y)eDy (i=1,2). (3.8)

(3) Let W C B be an open neighborhood of the zero potential such that (3.8) is
fulfilled for ally € W. Then the Dirichlet eigenvalues ,uﬁl, considered as functions
of ¥, are analytic on W for alln € 7\ {0}, i = 1, 2. Furthermore, for every
Y € W and every sequence (Yy)ren in W with Y, — ¥ as k — oo it holds that

lim < sup (1+n2)%yufl(1/fk)—u;;(w)y>=o, i=1,2. (3.9)

k=00 \ pez\{0}

Proof To prove the first assertion, we note that (3.6) and Theorem 2.19 imply (cf. the
asymptotic estimate in (2.34))

0 = xp(uh (¥)) = sin[2(uh, ()1 + 671, i =12

uniformly on B. Therefore, the fundamental theorem of calculus implies that, uni-
formly on B,

00,1/2

6777 = sin[2u, ()] — sin[244, (0)°]

1
=2(uy, (¥)* — i, (0)%) fo coslt 2, (¥)* + (1 — 1) 23, (0)1dz, i =1,2.

The integral in the above equation is uniformly bounded in £Z° for all potentials in B,
since the line segments connecting Mi, (l/f)2 with ,uil (0)? are uniformly bounded in Z%O
due to (3.6). Thus,

G = 10 = 1O = (1, () = 1, O) (15, (9) + 5, (0), P =1.2
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uniformly on B. By employing (3.6) once again, we infer that

60 = ph ) () — uh (@), i=1.2

uniformly on B, which is equivalent to the first assertion of the theorem.

To prove the second assertion, we recall that the characteristic function p is ana-
lytic? (and hence also continuous) with respect to v, and that (3.8) clearly holds for
Y = 0. Hence, if W C B is a sufficiently small neighborhood of the zero potential,
then, for each ¢ € W, the disc Dfl contains precisely the simple Dirichlet eigenvalue
Mi, (¢¥) while Dy contains either a double eigenvalue ,u(l)(l//) = ,u%(w) or two distinct
simple eigenvalues u(l)(lp) + /L%(lp). '

To prove the third assertion, we first show that the function i), : W — C,n € Z\{0},
i = 1, 2,is analytic and takes values in the disc D,’;. Analyticity is inherited from xp as
a consequence of the implicit function theorem for analytic mappings between com-
plex Banach spaces; see e.g. [31] for various generalizations of the classical implicit
function theorem to infinite dimensional Banach spaces. Indeed, the restriction of the
characteristic function for the Dirichlet eigenvalues to the domain Dfl x W,

Di’xW:D;xW—>C, neZ\{0}, i=1,2,

XD

is analytic. By assumption, for each /" € W there exists a unique 1" € Dfl such that

, A, ") = 0. Furthermore, denoting by -2 the partial derivative of ,
XI?‘D,’,XW( W.) _ UNEbY 5z tep XD‘D,QXW
with respect to its first variable A, we claim that

il
o, XD

o SN A0, neZ\{0) i =12, (3.10)

i
D}, x

so that the partial derivative is a linear isomorphism C — C. Indeed, by Theorem
2.19 (ct. (2.36)),

iXD‘, [0 =4hcos2?+0), M= | Dy @D

A~ neZ\{0}
i=1,2
uniformly on B as || — oco. This implies that
O b #0 on |J D, xB (3.12)
A " '
|n|>N
i=1,2

for some large enough N > 0. By continuity of %’? with respect to ¥ and the fact
that the formula for BBL)? in (3.11) holds without the error term when ¥ = 0, it is clear
that (3.12) holds for N = 0 with B replaced by W. This proves (3.10).

2 Cf. Theorem 2.1, where we proved analyticity of the fundamental matrix solution with respect to the
potential; see also the short review of analytic maps between complex Banach spaces in Sect. 4.
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In view of (3.10), the implicit function theorem guarantees the existence of a unique
(global) analytic function ji},: W — C such that, for all (A, ) € D}, x W,

10|y e ¥) =0 &= A=), neZ\{0), i=12.

Since ,1151 = uﬁl, this shows that ,uil : W — Cis analytic forn € Z \ {0},i =1, 2.
Forn € Z andi = 1, 2, we consider the analytic mappings

i . A i
BL:W —C, ¢ Bi(Y):= (1+n*)2 (uh,(¥) — 1,(0)) n e Z\ {0}

0 n=0.
The first assertion of the theorem implies that the family {ﬂfl };';12,2 is uniformly

bounded in C. Since all the functions of this family are analytic, it follows that { 8] };‘le,z

is uniformly equicontinuous on B, cf. [28, Proposition 9.15]. That is, for each ¢ > 0
there exists a § > 0 such that, forall n € Z, i € {1,2}, and all ¥, ¥’ € B,

W=yl <8 = e>|B.W) — BN =] +n7 () — ul(y")].

This implies that the two mappings

. ! € Z\ {0
W By {gm) EIVO
n=0,
are continuous, which proves the third assertion. O

Remark 3.6 A more abstract proof of (3.9) proceeds as follows. By the general version
of Montel’s theorem for analytic functions on separable complex Banach spaces, see
e.g. [28, Proposition 9.16], the family {8} }izlz’z in the proof of Theorem 3.5 is normal in
the locally convex topological vector space H (W), the space of all analytic functions
from W to C, endowed with the topology 7. of uniform convergence on compact
subsets of W. That is, each sequence of elements of {/S,il}j;lz’z has a subsequence
which converges in (H(W), t.). This allows us to obtain (3.9) by interchanging the

order of taking the limit and supremum as follows:

Jim. <ZE§ ACAR ﬂ,i(l/f)\) = sup (klggo |5 (W) — ﬂ:’,(w)}).
We define the Neumann domain Ay of the AKNS-system (2.3) by
An = {f e H'(10,11,C) x H'([0,1],C) | £1(0) =0= fi(D}.
The Neumann domain Dy of the corresponding ZS-system (2.1) is then given by

Dy = {g € H'([0,11,C) x H'([0,11,C) | (11 +h2)(0) = 0 = (hy + ha)(D)},
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as A corresponds to Dy under the transformation 7. For a given potential ¢ € X,
we say that A € C lies in the Neumann spectrum if there exists a ¢ € Dy \ {0} which
solves (2.1).

Theorem 3.7 Fix y € X. The Neumann spectrum related to (2.1) is the zero set of the
entire function
4 —m3+my —m

hoy) ="
NG, ) 1= h

*.¥)
In particular, xx(%, 0) = xp (i, 0) = sin 212,

Proof Due to the definition of Dy, a complex number 2 lies in the Neumann spectrum
of system (2.1) if and only if the fundamental solution M maps the initial value (1, —1)
to a collinear vector at t = 1. That is, if and only if m| — my = —m3 + mg4. O

By Theorem 2.7, the characteristic function N satisfies
INCL ) = sin 227 + O3]~ 2P0
uniformly on bounded subsets of X as |A| — oo. For ¢ € X we set

on(¥) == {r € C: xn(2,¥) =0}

As for the Dirichlet case, we obtain the following asymptotic localization for the
elements of the Neumann spectrum.

Lemma 3.8 (Counting Lemma for Neumann eigenvalues) Let B be a bounded subset
of X. There exists an integer N > 1, such that for every \ € B, the entire function
XN (-, ¥) has exactly one root in each of the two discs qu, i =1,2 forn € Z with
[n| > N, and exactly 2(2N + 1) roots in the disc By when counted with multiplicity.
There are no other roots.

We label the Neumann eigenvalues in the same way as the Dirichlet eigenvalues.
The Neumann spectrum of the zero potential » = 0 coincides with the corresponding
Dirichlet spectrum:

i i =i njr
Vy0) = 1} (0) = sgn(n), | —————. i =12 (3.13)

Remark 3.4 applies also to the Neumann eigenvalues. The analog of Theorem 3.5 for
Neumann eigenvalues reads as follows.

Theorem 3.9 Let B be a bounded neighborhood of ¥ = 0 in X.

(1) Uniformly on B, _ A
Vi) = vh0) + %1, i =1,2,

where v,’l (0) is given by (3.13).
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(2) There exists a neighborhood W C B of the zero potential such that forall € W,
vi() e DY for |n|>1, vi(¥)eDy (i=12). (3.14)

(3) Let W S B be an open neighborhood of the zero potential such that (3.14) is
fulfilled for all y € W. Then the Neumann eigenvalues v, are analytic on W for

alln € Z\ {0}, i = 1, 2. Furthermore, for every ¥ € W and every sequence
(i) ren in W with Y — ¥ as k — oo it holds that

hm( wp(r+#ﬁbﬂmy—%wﬂ)=07i=Ll

k=00 \ nez\{0}

3.2 Periodic spectrum

The trace of the fundamental matrix solution M (¢, A, ¥) at time t = 1 is called the
discriminant and is denoted by A:

A=AGY) =t M =nm; + .
The sum of the off-diagonal entries of M is referred to as the anti-discriminant:
8§ =8\, ) :=mo +m3.

Theorem 3.10 The discriminant A, the anti-discriminant 8 and their respective -
derivatives A and § are compact analytic functions on C x X. At the zero potential,

A(r,0) =2cos22%, e C. (3.15)

Proof Both the discriminant and the anti-discriminant are analytic due to Theorem 2.1
and compactness follows from Proposition 2.2. From Corollary 2.5 we infer that the
A-derivatives A and § inherit both properties. O

The periodic domain Dp of the ZS-system (2.1) is defined by?

Dpi={f € H'(10.1.C) x H' (10.11.C) | f(1) = f(0) or f(1) = —F O}

A complex number A is called a periodic eigenvalue if (2.1) is satisfied for some
¢ € Dp\ {0}.

Theorem 3.11 Ler € X. A complex number A is a periodic eigenvalue if and only if
it is a zero of the entire function

xp(h, ¥) = AZ(h, ¥) — 4. (3.16)

3 Note that Dp consists of both periodic and antiperiodic functions.
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Proof Let us fix ¢ € X. Since M is the fundamental solution of (2.1), a complex
number A is a periodic eigenvalue if and only if there exists a nonzero element f € Dp
with

F() = M(1,3) f(0) = ££(0),

hence if and only if 1 or —1 is an eigenvalue of M (1,1). As det M(1,1) = 1 by
Proposition 2.3, the two eigenvalues of M (1, 1) are either both equal to 1 or both
equal to —1. Therefore we either have A(L) = 2 or A(A) = —2, thatis, xp(A) = 0.0

For ¢ € X, we set
op(y) = {r € C: xp(, ¥) = 0}
The characteristic function for the zero potential {» = 0 is given by
xp(A, 0) = —4sin 2A%;

each root has multiplicity two, except the root A = 0 has multiplicity four. Thus the
periodic spectrum of the zero potential consists of two bi-infinite sequences of double

eigenvalues
. —1i-1
)Jn’i(O)zsgn(n),/%, i=1.2 3.17)

on the real and imaginary axes in the complex plane. The A-derivative of the discrim-
inant at the zero potential is given by

A(r,0) = —8isin 222,
and its roots, the so-called critical points of the discriminant for the zero potential,

denoted by iﬁl 0),i = 1,2, n € Z, coincide with the periodic eigenvalues (and the
Dirichlet and Neumann eigenvalues):

_1)i—1
ii,(o):sgn(n),/w, i=1,2 (3.18)

Note that A = 0 has multiplicity three; all the other roots of A(-, 0) are simple roots.

Lemma3.12 Fix ¢y € X. As |A| —> oo with & ¢ T1 = U,.cz, ;1.2 Db,

xp(h, ¥) = (—4sin* 222 (1 + O(A| ™)), (3.19)
A, ¥) = (=8asin22%) (1 4+ O(A ™). (3.20)

These asymptotic estimates hold uniformly on bounded subsets of X. For the zero
potential these formulas hold without the error terms.
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Proof By Theorem 2.7, we have A(A, ¥) = 2 cos 2% + O(|)L|_1e2|:‘()‘2)‘) uniformly
on bounded subsets of X, and thus

O(|)\|—1 62|S(12)|) COSZ)\,Z O(|)\|_2 e4|3(}»2)‘)
sin” 212 sinZ 22

xp(h, ) = (—4sin? 2A2>[1 +

For A ¢ I1, we have 4 | sin 2A2| > e2|‘~‘()‘2)‘, cf. Lemma 3.2, and therefore

Q2130

< .
~ |sin2A2|

cos 2A2
sin 222

<4 for L e C\TI. (3.21)

The estimate (3.19) follows. Moreover, by Theorem 2.7,

@(ezmzn)]

A, W) = (=8Aasin2a2)| 1
(A, ¥) = (=8sin )|: + A sin 222

uniformly on bounded subsets of X and thus (3.21) yields (3.20). O
The next result provides an asymptotic localization of the periodic eigenvalues.
Lemma 3.13 (Counting Lemma for periodic eigenvalues) Let B be a bounded subset
of X. There exists an integer N > 1, such that for every \ € B, the entire function

i

xp (-, ¥) has exactly two roots in each of the two discs D)}, i = 1,2, and exactly
4(2N + 1) roots in the disc By, when counted with multiplicity. There are no other
roots.

Proof Let B C X be bounded. By Lemma 3.12,

xp(h, ¥) = xp(x, 0)(1 + o(1))

for |A| = oo with A ¢ IT uniformly for ¢ € B. Hence there exists an integer N > 1
such that, for all ¥ € B,

Ixp(h, ) — xp (A, 0)] < |xp (%, 0)]

on the boundaries of all discs Dfl with |n| > N,i = 1, 2, and also on the boundary of
By . As in the proof of Lemma 3.3, the result follows by an application of Rouché’s
theorem. O

Lemma 3.12 yields a Counting Lemma for the critical points of A as well:

Lemma 3.14 (Counting Lemma for critical points) Let B be a bounded subset of X.
There exists an integer N > 1, such that for every ¥ € B, the entire function A(-, ¥)
has exactly one root in each of the two discs D,’;, i =1,2forall |n| > N, and exactly
4N + 3 roots in the disc By, when counted with multiplicity. There are no other roots.
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Let ¢+ € X be an arbitrary potential. Inspired by (3.17) and (3.18), we denote
the corresponding periodic eigenvalues and critical points by )J,’i = )\i,’i(lp) and
AL =l () respectively, n € Z,i = 1,2.

The critical points are labeled in the same way as the Dirichlet and Neumann
eigenvalues (except that there is one additional root close the origin, which we will
ignore whenever we consider sequences of critical points of the form (j‘iz)neZ with
i = 1ori =2). Remark 3.4 applies also to the critical points.

Concerning periodic eigenvalues, we adapt our labeling procedure as follows. Let
N > 0 be be the minimal integer such that (a) for each |[n| > N and eachi = 1, 2,
the disc D,’; contains either two simple periodic eigenvalues or one periodic double
eigenvalue and (b) By contains precisely 4(2N + 1) roots of xp(-, ) when counted
with multiplicity. The two eigenvalues in the disc D,’;, In| > N,i = 1,2, will be
denoted by )»f{i and ordered so that AZ’_ =< AZ’J’. The remaining 4(2N + 1) roots in
By are labeled such that

1,— 1+ 1,— 1.+ 2,— 2.+ 2,— 2,4 1—
Aoy = ADE < xalr =l =ty <At < x0T <A =y
L4 32— 324 32— g2+ 2= 324 g l— o1+
i Sl e R e e =7 =T 1
L— _ 1+
<=y =y

The labeling of the roots of xp(-, ¥) according to the above procedure is unique
except that the label of a particular periodic eigenvalue is ambiguous whenever it is
not a simple root of xp(-, ¥). Sequences of Dirichlet eigenvalues of the form (M;)neZ’
where i = 1 ori = 2, are always well-defined, since each element of such a sequence
has a uniquely defined value. If N = 0 happens to be the minimal integer, we agree
on the convention that merely

1,— 1+ 2,— 2,—
Ay 2 A and Ay =X Ay

is required rather than A(l)’_ < A(l)’+ < A(z)’_ < A(z)’_. This convention provides the
freedom to label periodic eigenvalues inside the disc By = Dy in the intuitive way
(compare e.g. the labelings of Fig. 4a, b, where we labeled the two periodic double
eigenvalues closest to the origin either by )%’JF and )L(z)’f (Fig. 4a), or by )L(l)’+ and )L(l)’f
(Fig. 4b), since they lie close to the imaginary axis in Fig. 4a, and on the real axis in
Fig. 4b).

As in the case of Dirichlet eigenvalues, Neumann eigenvalues, and critical points,
no general statement can be made regarding the multiplicity of periodic eigenvalues
located near the origin; Fig. 5 illustrates this fact by means of an explicit example.
Likewise, the labeling of periodic eigenvalues is generally not preserved under con-
tinuous deformations of the potential. Unlike the situation for Dirichlet eigenvalues,
Neumann eigenvalues, and critical points, both multiplicity and labeling of periodic
eigenvalues are generally not preserved under continuous deformations asymptotically
for large |n|. Since each D! contains two periodic eigenvalues, their lexicographical
ordering may entail discontinuities.
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Remark 3.15 The Counting Lemma allows us to determine the sign of the discriminant
atperiodic eigenvalues with sufficiently large index |n|. Indeed, recall that |A (A, V)| =
2 when A is a periodic eigenvalue, cf. Theorem 3.11. Fix ¥ € X and choose N > 1
according to the Counting Lemma so that each of the two discs Dﬁl ,i=1,2,forneZ
with |n] > N contains exactly two periodic eigenvalues. In fact, we can without loss
of generality assume that D' contains exactly two periodic eigenvalues Af{i(sw) for
each potential sy belonging to the line segment S := {sy: 0 <s < 1}. Since § € X
is compact, we can choose N uniformly with respect to S. Let us now consider the
continuous paths pﬁ,’i: 0,11 = C, s — )\Z’i(sw), i = 1, 2. Since A is continuous
and A(ki;i(sw), syr) € {—=2,2} for s € [0, 1], we conclude that either

A(pi’i(s), SI//) =2o0n [0’ 1] or A(Ioi’i(s), sl[/) = —-2o0n [0, 1]
Thus
AG W), ) = ARGF(0),0) =2 cosnm = 2(=1)" for |n| > N, i =1,2.

The next lemma establishes a relation between the discriminant and the anti-
discriminant evaluated at Dirichlet or Neumann eigenvalues.

Lemma 3.16 If{ € X and /,LZ = ;Lil (¥) is any Dirichlet eigenvalue of r, then

AP (s ) — 4 = 82 (i ).
This identity holds also at any Neumann eigenvalue vfl = sz () of .
Proof We recall that mm4 — myms = 1 by Proposition 2.3. Therefore,
A* =4 = () +my)® —4
= (i1 +ma)* — 40y — mams)
= (m1 — 1itg)? + 4o,
Let u!, be a Dirichlet eigenvalue of Y € X, i = 1, 2. Then !, is a root of ig + m3 —

my — myq, that is
(ml - m4)’(”£"¢) = (m3 - mZ)}(ltz‘w)'

Therefore,
A2l ) — 4 = (Mo, ¥) + ma (i, ¥)) = 82w, ).

For Neumann eigenvalues Ui(l/f), i = 1,2, we have

(my — my)

Wiy = M2 =m3)| i 4

which again yields the desired identity. O
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By employing the identity of Lemma 3.16, we can prove the following analog of
Theorems 3.5 and 3.9 for the periodic eigenvalues and the critical points.

Theorem 3.17 Let B be a bounded neighborhood of ¥ = 0 in X.
(1) Uniformly on B,

MEQ) =0 + 6> and () =0 + 6> i=1.2, (322)

where \%(0) = il (0) are given by (3.17) and (3.18).
(2) There exists a neighborhood W C B of the zero potential such that for all v € W
and every n € 7.:

(@ op(¥) N D} = (M~ (W), i T (W) i = 1,2
(0) A= (W), ) =2(=1)" i =1,2;
© (reC: A Y)=0IND. =AY}, i=1,2

(3) Let W C B be an open neighborhood of the zero potential such that part (c) of (2)
is fulfilled. Then the critical points )»il considered as functions of r, are analytic
on W foralln € Z\ {0}, i = 1,2. Furthermore, for every v € W and every
sequence (Yi)ken in W with Y, — ¥ as k — oo it holds that

lim ( sup (1+n2)5yi;(¢k)—i;(¢)\)=0, i=1,2.

k=00 \ pez\{0}

Proof The proofs of the assertions for the critical points are similar to the proofs of
the analogous assertions for Dirichlet eigenvalues; see Theorem 3.5 and its proof. Fur-
thermore, the second assertion follows—in view of the Counting Lemma and Remark
3.15—from the continuity and asymptotics of xp. It only remains to show (3.22) for
the periodic eigenvalues )»i;i = )»ﬁ;i(W).

Since i, = ! (0) 4 £°>! uniformly on B by Theorem 3.5 and E i, 1s off-diagonal,

/2 uniformly on B. Since the

A2 E((Ozo’l, Lemma 3.16

we can apply Theorem 2.19 to infer that § (i) = E;’lo’l
2

. i Eoo
» 18 continuous as a map C

quadratic mapping u, — u
yields

AX(up) =4 =82 (uf) = £ (3.23)
uniformly on B. Since A(uﬁl) =2(—-D)"+ 2,30’1/2 due to the secqnd part of Theorem
2.19, we deduce from (3.23) by writing the left hand side as (A(u}) —2)(A(u}) +2)

that _
AQup) =2(=1)" + £ (3.24)

uniformly on B.
Next we will employ the identity

1
AGH) - A = G — ) [ Bail o+ -nuar 629
0
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which is a consequence of the fundamental theorem of calculus. By Theorem 2.19,
all values on the lines connecting )lil and ,uil are O(1) as |[n| — oo uniformly on
B. Moreover, A, — i = £5°! uniformly on B by the first assertion of this theorem
concerning the critical points and Theorem 3.5. Hence, we infer from (3.24) and (3.25)
that

AGLY =2(=1)" 4 ¢! (3.26)

uniformly on B. Furthermore, since A(iﬁ;) = 0 by definition, we obtain
. o . o 1 .o . .
AQEE)Y = AGLY + (ALE — ,\;)2/ (1 —DAEAE 4+ (1 —pilyde.  (3.27)
0

By recalling that A(Af{i) = 2(—1)" for all sufficiently large |n|, cf. Remark 3.15, we
deduce from (3.26) and (3.27) that

1
(W — ;\;)2/ (1 —OA@AEE 4 (1 —nilyde = ¢! (3.28)
0
uniformly on B. Using Cauchy’s estimate and Theorem 2.7, we find

A(L) = —161% cos 2A° + O(W 62\3(,\2”)

uniformly on B as |A| — oo. Hence, for a bi-infinite sequence (z,,),<7, Whose entries
z, remain asymptotically in the discs Dil (i = 1ori = 2) we have A(z,,) =
—16z,% cos 225 + O(Jzn|)- By the Counting Lemmas, (t)»f,’i + (1 - t))lﬁl) = Ef,o’l/z
uniformly for ¢+ € [0, 1] and ¢ € B. Thus, the absolute value of the integral in
(3.28) is ®(|n]) as |n| — oo, which means that it grows precisely as fast as |n|. As a

consequence, (M{i — )'Lfl)z = ZZO’Z uniformly on B; in other words,
it i ool
A=A =L (3.29)

uniformly on B. Since )l;'l = )'»il ) + EZO’I = kﬁ;i(O) + Z?,o’l uniformly on B, we
conclude from (3.29) that Af{i = Afl’i(O) + Eﬁo’l uniformly on B, hence the periodic
eigenvalues satisfy the asymptotic estimate of the first assertion of this theorem. This
completes the proof. O

Remark 3.18 Let W be an open neighborhood of the zero potential such that Theorem
3.17 (2) is satisfied. Then the map

W s (MEy) —AE), i=1,2
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is continuous at ¥ = 0, that is, for every sequence (V¢)ren in W with ¢ — 0 as
k — o0, it holds that

Jim <sup(1+n2)i|xﬁ;i(¢k)—}\;;i(O)|> =0, i=1,2.

k=00 \ pez

However, as a consequence of the lexicographical ordering, the periodic eigenvalues
)»n and An+ do not define analytic functions from W to D n € Z\ {0}. In order
to formulate a version of Theorem 3.17 (3) for periodic elgenvalues one can consider
suitable subsets of W where A; ~ and A; T are isolated from each other—the situation
near a potential v € W with a double periodic eigenvalue is cumbersome. Section 4
addresses these questions for potentials of so-called real and imaginary type. For such
potentials the fundamental matrix solution possesses additional symmetries, which
implies that the two periodic eigenvalues )»f;i in D! are either real or form a complex
conjugate pair. In both cases, they are connected by an analytic arc along which the
discriminant is real-valued.

Remark 3.19 The asymptotic localization of Dirichlet eigenvalues, Neumann eigen-
values, periodic eigenvalues, and critical points provided by Theorems 3.5, 3.9 and
3.17 can be slightly improved. Indeed, it is straightforward to adapt the proofs of these
theorems to obtain, for each p > 2,

= il (0) 4 €512,
vh = 13, (0) +zfi’”2,
M = ) + €02,
by = 1y @) + €17,

uniformly on bounded subsets of X, i = 1,2. Studies of other related spectral
problems—see e.g. [8,17,19,30]—suggest that these localization results can be further
sharpened if attention is restricted to subspaces of more regular potentials.

4 Potentials of real and imaginary type

This section considers potentials of so-called real and imaginary type. These subspaces
of the space X of general ¢-periodic potentials consist precisely of those potentials,
which are relevant for the x-evolution of the #-periodic defocusing NLS (real type) and
focusing NLS (imaginary type). Our main results are Theorems 4.4 and 4.5, which state
that for sufficiently small real and imaginary type potentials v, the corresponding peri-
odic eigenvalues )»,11’_ () and )»,11'+(10) are connected by analytic arcs in the complex
plane for each n € Z \ {0}. These arcs form a subset of {A € C: A(A,¥) € R}.
These results are needed for the establishment of local Birkhoff coordinates and
shall serve as a solid foundation for future investigations in this direction. Theorem
4.5 is inspired by [20, Proposition 2.6], which establishes similar properties for the
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x-periodic potentials of imaginary type for the focusing* NLS. Our proof makes use
of the ideas and techniques of [20]. We refer to [21] for further related results.
For potentials i € X, we define

where

(o1 O _ (0 1
pe( 2 me ()

We say that a potential ¢ of the Zakharov—Shabat ¢-part (1.3) is of real type if ¥* = .
Inthis case, ¥* = ¥' andy* = 42, thatis, ¥ = (go+ipo. go—ipo. q1+ip1. q1—ip1)
for some real-valued functions {g;, p j}}':o- Hence a potential is of real type iff all
coefficients of the corresponding AKNS system are real-valued. The subspace of X
of all real type potentials will be denoted by

Xp ={y eX[y" =9}

Note that this is a real subspace of X, not a complex one; it consists of those potentials
that are relevant for the defocusing NLS.
We can write the Zakharov—Shabat 7-part (1.3) as

1,12 : 1 1.3
( — 1039 + 22’1 + (_21%3”_ " 1(2/\151:;2% )) >¢ =0,

or, in other words,

L(y)¢ =R, ¥)¢ 4.1
with
) 1.2 _ 1.3 . 0 1
L(lp) = _10'38[ + (1//_1;,/[4 1//11{/.//2> . R()\,, W) = —2}\,21 — 21A (_wz 1/() ) .
4.2)

For v = (v1, v2) and w = (wy, wy), let

1
(v, w) = / (viw + vawy) dt.
0

If the eigenfunctions v, w lie in the periodic domain Dp, we can integrate by parts
without boundary terms and find that

(w, LY)v) = (LEw, v).

4 The analogous result for x-periodic real type potentials for the defocusing NLS is trivial, since in this
case all periodic eigenvalues are real valued due to selfadjointness of the corresponding ZS-operator, cf.
[13].
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Therefore, if the potential v is of real type and v is a periodic eigenfunction with
eigenvalue A,

(R, ¥)v, v) = (L(¥)v, v) = (v, L{Y)v) = (v, R(A, ¥)v)
and thus we find that

=0 o g o ¥lend)

(v, v)
According to the Counting Lemma, the periodic eigenvalues of type )\3 () for arbitrary
¥ € X necessarily possess non-vanishing imaginary parts for sufficiently large |n|.
In analogy with the x-part (1.2), one might expect that Sk,ll’i(w) = 0 for real type
potentials. However, we will see in Sect. 5 that this is not the case: there are single
exponential potentials of real type for which some )L,ll’i are nonreal, cf. Fig. 5.

Lemma 4.1 Let  be of real type and let . € R. Then my = m| and m3 = ma. In
particular, A is real-valued on R x X . Moreover, if a solutionv of L({¥)v = R(A, Y¥)v
is real in AKNS-coordinates, then v = ojv.

Proof Since y = v*, the AKNS coordinates (p;, g;), j = 0, 1, are real. If in addition
A € R, the system (2.3) has real coefficients, so its fundamental solution K is real-
valued. The relation M = TKT !, cf. 2.1 1)_, then implies that m4 = m and m3 =
my. To prove the second claim, we note that 7 = 07T and hence

M=TKT ' =61TKT ') = 01 Moy.

If v is real in AKNS coordinates, it has real initial data vy and v = M T vg. Therefore

U =MTvy =0 MTvy = oyv.

O
We say that a potential ¢ € X is of imaginary type if * = —. The subspace
Xz ={y eX:y" =y}
of potentials of imaginary type is relevant for the focusing NLS.
Proposition 4.2 For Y € XR the fundamental solution M satisfies
M(t, A, ¢) = oMt A, Y)o1, AeC, t>0; 4.3)
if v € X7 then M satisfies
M(t, k) = o103M(t, A, Y)ozor, reC, t>0. (4.4)

@ Springer



1234 J. Lenells, R. Quirchmayr

In particular,

A Y) =AM, ) and AL ¥) = Ak, ) 4.5)

forally € Xr UX7z and A € C, so that A and A are real-valued on R x (X5 UX7).

Proof Let us first assume that ¥ € Xz and A € C. Then a computation using (4.2)
shows that )
L(y)v =R, y)v <= L))" =R®A, Y)v*,

where v* := o010 = (v, v1). The symmetry (4.3) follows from uniqueness of the
solution of (4.1) and the initial condition M (0, A, ¥) = I. Evaluation of (4.3)att = 1
gives (4.5). This finishes the proof for the case of real type potentials. If ¥ € X7, we
instead have

Ly =RA,Y)v <= LH)0=RQA Y)0

where ¥ := 01030 = (=1, U1), which leads to (4.4) and (4.5). O

Corollary 4.3 There exists a neighborhood W of the zero potential in X such that for
eachy € WN (Xr UX7) and eachn € Z,

(L eC: A, y¥)=0)nD} = (i @)} and i) eR.

Proof We already know from Theorem 3.17 that there exists a neighborhood W of the
zero potential such that, for all general potentials € W and alln € Z,

(A eC: A, y) =0} D) = ().

Due to the symmetry (4.5) we infer that, for all potentials ¥ € W N (Xg U X7) and
new,

0=AG W), ¥) = AGLW), ¥) = AGL @), ¥).

Since X}l(w) is the only root of A(-, ¥) in D,l, we conclude that ).\,,L(I/f) is real. O

Theorem 4.4 There exists a neighborhood W of the zero potential in X and a sequence
of nondegenerate rectangles

RE? = {h e C: IRA—Ap(0)] <8, ISA <&y}, neZ, (4.6)
with &, 8 € £5°""?, such that for all v € W N (Xg U X1) and every n € Z.\ {0},
{(AeC: A\, ¥) e RYNREY =y, (¥) U (REC NR),

where the subset y,, () C C forms an analytic arc transversal to the real axis, which
crosses the real line in the critical point k}l () of A(-, ). These arcs are symmetric
under reflection in the real axis and the orthogonal projection of y,, () to the imaginary
axis is a real analytic diffeomorphism onto its image.
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1
/-\L( A (0) P RA 0

Tn

6
R -1

. D} -2

n

(a) (l;)

Fig. 3 a An illustration of the path y, within the rectangle Rz’a which is contained in the disc D,i. The
critical points )'»,11 = )'»,11 (¥) = yp NR and )'»,11 (0) are marked with dots. b A plot of the zero set of A, (-, 0) in
the complex A-plane; the boundaries of the discs Di,, i = 1, 2, are indicated by dashed circles, the periodic
eigenvalues (which coincide with the critical points of A(-, 0) and the Dirichlet and Neumann eigenvalues)
are indicated by dots

We refer to Fig. 3a for an illustration of the analytic arc y, () within the rectangle
R,ﬁ"s centered at the critical point X}l (0) of the discriminant A(-, 0).

Before proving Theorem 4.4, we state an important consequence of Theorem 4.4
and Theorem 3.17. Namely that for all small enough real and imaginary type potentials,
the periodic eigenvalues A,11’_ () and A,ll’+(1p) are connected by an analytic arc along
which the discriminant is real-valued. More precisely, we will deduce the following
result.

Theorem 4.5 There exists a neighborhood W* of ¥ = 0 in X such that for each €
W* N (Xr UX7z) and each n € Z \ {0} there exists an analytic arc y,} = y,f () € C
connecting the two periodic eigenvalues )\},’i = )»,11’i (¥). Qualitatively we distinguish
two different cases: either (i) v\ = [Ay'~, A T1 S R or (i) v, is transversal to the
real line, symmetric under reflection in the real axis, and the orthogonal projection
of v, to the imaginary axis is a real analytic diffeomorphism onto its image. In both
cases, it holds that

() A, ) € [-2.2]

@ v =7

3) hy(¥) ey NR, _

(4) For a parametrization by arc length p, = p,(s) of y,; with p,(0) = )L}L ),
the function s +— A(pn(s), ¥) is strictly monotonous along the two connected
components of ;i \ (1)),

(We include the possible scena(’io A,I,’_ W) = A,11’+ W) = )»,11 (), where the set y,; (V)
consists of the single element )»,11 (¥), as a degenerate special case.)
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The remainder of this section is devoted to the proofs of Theorems 4.4 and 4.5. We
follow closely the ideas and methods of the proof of [20, Proposition 2.6]—a related
result for the x-periodic focusing NLS. The proof is based on an application of the
implicit function theorem for real analytic mappings in an infinite dimensional setting.
This level of generality is necessary in order to treat the arcs y,, in a uniform way.

Let us first briefly discuss the strategy of the proof. Writing A = x + iy with
x,y € R, we split A(x; ) = A(x, y; ¥) into its real and imaginary parts and write
A = A| +1A; with

Ar(x,y ) = R(AG ), Aalx, yi ) i= (AR ).

The problem is then transformed into the study of the zero level set of Ax(A; ¥) =
Ao (x, y; ¥). By Proposition 4.2, Az (x, 0; ) = 0forany x € Rand ¢ € Xg U X7.
Therefore, following [20], we introduce the function

F:Rx R\ {0}) x (XgUX7) — R,
Ao (x, y; ¥) 4.7
—

X, . 9) > F(x, y; ¢) ==

which has the same zeros on R x (R \ {0}) x (Xr U X7) as A;. We observe that F
has a real analytic extension

F:RxRx XrpUX7) — R. 4.8)

To see this, we recall that A is analytic on C x X and real valued on R x (X U X7).
Hence A vanishes on R x {0} x (Xg U X7) and is real analytic there. Thus
Ao (x, y; ¥)/y admits a Taylor series representation at y = 0, which converges abso-
lutely to the analytic extension F of F locally near y = 0.
For ¥ € X U X7 and real sequences u = (u,),ez and v = (v,),ez, We define
the map
F = Fadneze Falu, v ) i= FGL + g, vas ). 4.9)

For the zero potential and the zero sequence, both denoted by 0, we calculate
F(0,0;0) = (—84, sin2(h))nez = (=8, sin |n|7 )pez = 0.
In order to determine % at the origin (0, 0; 0), we first observe that % has diagonal

form because F; is independent of u,, for j € Z with j # n. On the diagonal, we
obtain

3F, v 0) = 3 [A2Gh) + up, va: 0)
aun aun Un

= _vi {4()'L,ll + 1) cos[2((A} + up)? — v2)]sinh[4(A} + Un)Up ]

n

+ sin[2((A) 4 un)? — vH)]4v, cosh[4(i) + un)vn]},

@ Springer



On the spectral problem associated with the time-periodic. . . 1237

thus O
“(0,0; 0) = —32(4,)* cos[2(A,)°].
ouy
and therefore
aF

—=-(0,0;0) = (167 |n] diag((—D)"*t)) (4.10)
u

nez’

Consequently, the right-hand side of (4.10) is at least formally bijective in a set-
theoretic and algebraic sense, for example as a mapping from the linear space of real
sequences {# = (uy)nez: Z — R|ug = 0} to itself. In order to give these formal
considerations a rigorous justification, we need to consider appropriate subspaces
of sequences equipped with suitable topologies. Due to the quadratic nature of the
underlying generalized eigenvalue problem, the right choice of spaces is quite a delicate
issue. In contrast to the related x-periodic problem for the focusing NLS, see [20],
we can not rely on £°° sequences, but need to make use of the weighted ¢7-based
spaces of £7-% sequences, which we introduced earlier in (3.5). The establishment of
the necessary bounds for the mapping F between these spaces turns out to be highly
nontrivial, cf. Lemma 4.8.

Let us discuss the basic properties of the E%’S spaces, where K = R or K = C,
which appear in the formulation of Theorem 4.4, and Propositions 3.5, 3.9 and 3.17.
For 1 < p < oo and s € R, we consider the linear spaces

E]I%S = {u = (Un)nez ‘ ((1 + nz)%u”)nel € 2%}

endowed with the norms

1

00 2
2
|“|p,s = ( Z (1 +n2) 2 |”n|p> s

n=—oo

I <p<o0; |u|oos :=sup {(1 +n2)%|un|}.
nez

One easily checks that these spaces are Banach spaces. Furthermore, defining
2.1
Ay =1 +n%2, nelZ,

the map
A = ey > Ajuy,

is an isometric isomorphism for each r € R. In particular A* maps EH’;’S isometrically
onto £f. For s € Rand 1 < p < oo, the topological dual of ££* is isometrically
isomorphic to Kﬂq(’ e, (Zﬁ;"Y I = Eﬂqg’ ~* where q is the Holder conjugate of p defined
by 1/p 4+ 1/q = 1. The isomorphism is given by the dual pairing

o0
(oD pusigeos t U X EET > K (U, 0) g = Y tnn, (4.11)

n=—0oo
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and can be deduced directly from the well-known £7-¢4-duality. Henceforth, we will
identify the dual of £f7° with £%,"° by means of (-, ) s:q,—s. In particular, £§" is a
reflexive Banach space for 1 < p < oco.

We will also use the closed subspaces

0F° = {u e e up = 0}
for 1 < p < oo their topological duals are given by:
(LY = ¢, (4.12)
The linear operator 7' defined by
Tyttn > nlun, T:05° — Zﬂ%kl

is a topological isomorphism. Likewise, T" : u, + T, u, = |n|"u, is an isomporhism
Z%’S — Eﬂpg’s_r for real r.

The first part of the proof of Theorem 4.4 uses techniques from the theory of
analytic maps between complex Banach spaces. We therefore review some aspects of
this theory. Let (E, || - ||g), (F, || - || ) be complex Banach spaces. Furthermore, we
denote by L(E, F') the Banach space of bounded C-linear operators E — F endowed
with the operator norm || - || (g, Fy, Where || Ll zg,F) = SUPoheE % < oo for
L € L(E, F).In the special case F = C, we denote by E’ = L(E, C) the topological
dual space of E. Let O C E be an open subset. A map f: O — F is called analytic
or holomorphic, if it is Fréchet differentiable in the complex sense at every u € O,
i.e., if for each u € O there exists a bounded linear operator A(u) € L(E, F) such

that
i I f(u+h)— fuw) —Awhl|F
m
2] g—0 2]l e

=0.

In this case we call A(u) the derivative of f at u and write d f (1) for A(u). In the
special case E = F = C, we simply write df (u) = f'(u) € C = C'. We call f
weakly analytic on O if foreveryu € O, h € E and L € F’ the function

z+— Lf(u+ zh)

is analytic in some neighborhood of zero.
We provide the basic characterization of analytic maps between complex Banach
spaces in the following lemma.

Lemma 4.6 [18, Theorem A.4] Let E and F be complex Banach spaces, let O C E
be open and let f: O — F be a mapping. The following statements are equivalent.

(1) f is analytic in O.
(2) f is weakly analytic and locally bounded on O.
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(3) f is infinitely many times differentiable on O and for each u € O the Taylor
series of f at u, given by

1 1
f(u+h):f(u)+df(u)h+Edzf(u)(h,h)—i-“--i-Ed"f(u)(h,...,h)+~~

converges to f absolutely and uniformly in a neighborhood of u.

The nextlemma, also referred to as Cauchy’s inequality, provides an important estimate
for the multilinear map d” f (u).

Lemma4.7 Let E and F be complex Banach spaces and let [ be analytic from the
open ball of radius r around u in E into F such that || f||r < M on this ball. Then
for all integers n > 0,

ld" fu)h,....,n|r _ Mn!
max < .
0#£heE 21l -

rn

Proof By the previous lemma, f is infinitely often differentiable at # with n-th deriva-
tived” f(u) € L"(E, F), the space of continuous n-linear mappings £ x- - X E — F.
The lemma now follows directly from the usual Cauchy inequality for holomorphic
Banach space valued functions on a complex domain by considering the holomorphic
map ¢(z) := f(u + zh) for arbitrary 2 # 0 on the disc with radius r /|| centered at
the origin of C. See e.g. [18, Lemma A.2], see also e.g. [9, Chapter I11.14] for the gen-
eralization of the classical theory of complex analysis for functions f: C 2> O — C
to complex Banach space valued functions f: C © O — F defined on a complex
domain, and [28] for a general account on complex analysis in Banach spaces. O

The purpose of the next lemma is the establishment of certain bounds we will use
later on.

Lemma4.8 Lety € XpUX7, let A =x+1iy € Cwithx,y € R, and let Ay and Ar
denote the real and imaginary parts of A = A1 +1A,.

(1) As |A| — oo, the partial derivative 0y, A; satisfies the asymptotic estimate
dyAa(x, y; ¥) = —8(x sin[2(x* — y*)] cosh[4xy] — y cos[2(x? — y?)] sinh[4xy])

) 4.13)

4)xyl

— 4" () cos[2(x? — y?)] cosh[4xy] + o(
uniformly for { in bounded subsets of X U X7, where
1
) =T, 9) =/O Wyt — Py dr.

(2) Set A,ll = A,l, (0). The mapping
Gty ) > Dy A2 (hy + X, Yui W), (4.14)
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L . ; ; 1/2 1/2
which is real analytic in each coordinate, maps bounded sets in K]T{) 12y Z]CI? 1/

to bounded sets in Zf; = 2,' the corresponding bound in ng Y2 can be chosen
uniformly for  varying within bounded subsets of Xr U Xz. The assertion
remains true when considering (4.14) as a mapping

e g X o (21 x 0P x Xr UXD) @ C - £ P eC
by means of the coordinatewise analytic extension to all of (E]T; A2y EEK? A2y

Xr U XI)) ® C; that is, this mapping maps bounded sets in E(%O’l/z X Z%O’ 2 16

bounded sets in E(%O’_l/ 2 uniformly on bounded subsets of (Xr U X7) ® C.

Proof In order to prove part (1), we recall from Theorem 2.7 that

R s Q21303
MQ., ) = e~ 2% +O< ] >

In the proof of Theorem 2.7, we gained additional information on the remainder term:
it is of the form

~(12
Zl (1//)6_21)\20.3 + Wl (I/I)ezi)tzo'3 + O ezlxs()\ )l
A A A2 )

where the diagonal part of the 1/A-terms is given by
Ly oo
2% '

Thus the discriminant satisfies

N

il 5
A ) = 205227 = —=sin 24 + O(12] 7 20
for any potential ¢ € X, and its A-derivative satisfies
AQh, ¥) = —8rsin 222 — 4l (¥) cos 222 + O (|~ 230, (4.15)

Since I (¥) € iR for ¢ € X UX7, the asymptotic estimate (4.13) follows by taking
the real part of (4.15).
We prove part (2) of the lemma in the complex setting; this includes the real setting

as a special case. The analytic extension 9, A of 9,A> to C x C x (Xgr UX7) ® C
is given by

dAs(x, yi¥) = Ax iy, ¥), x,yeC, ¥ € XrUX7) ®C,
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which, according to the first part of the proof, satisfies the asymptotic estimate

dyAg(x, y: ¥) = —8(x +iy) sin[2(x +iy)*] — 4l () cos[2(x +iy)*]

Q213 ((r+iy)?)|
0(—,). (4.16)
lx +1y|

The error term holds uniformly on bounded subsets of (X UX7)®C for |[x+iy| — oo;
likewise I possesses a uniform bound on bounded subsets of this potential space.
Therefore we only need to establish the desired bounds for arbitrary potentials ¢ €
(X UX7)®C and the uniformity on bounded subsets follows automatically. We write
the complexification of (4.14) (by means of analytic extensions in all coordinates) as

e g2 X (X UXD) ©C) — 60071/

o Gy ) = 9y Ao (g 30, v ¥,
4.17)

and employ the asymptotic estimate (4.16) to deduce the asserted bounds for (4.17).

Let us verify the bounds separately for the three components of (4.17), which arise

from the three terms in (4.16), beginning with the error term. That is, we first show

that

Q213G +xu+iyn) )|

: - (4.18)
|)\,11 + Xp +1yul

(X, yn) >

maps bounded sets in K%O’l/z X Z%o’l/z to bounded sets in Efg’_l/z. We clearly have

that
s Yn) > IS(GL 4 20 + 1))

maps bounded sets in E(%o 12 E(%o 172 to bounded sets in Eﬁ?, hence the nominator in
/2 ,00,1)2

(4.18) is bounded in £3” uniformly on bounded sets in E(EO x L . It follows that

the whole expression on the right-hand side of (4.18) is bounded in EE’; 172 - Ef{} =12
on bounded sets in E((O:O’]/z X Ezéo’l/z. Next we show that
(s ) > | cOS[2(hh + X + 1y 2] (4.19)

maps bounded sets in Z((O:O’l/z X E(%o’l/z to bounded sets in Zg’_lﬂ, which ensures

that the second component of (4.17) has the asserted property. By recalling that
sin[2()»,£)2] =0and cos[Z(A,ll)z] = (—1)" and employing the classical trigonometric
addition formulas, we obtain

| cos[2(A) + xn +iy)?1| < | cos[2(x2 + 2ixnyn — y2)] cos[4A} (xn + iva)]|

+ | sin[2(x; + 2ix,yn — y)]sin[4h) (X, + iya)])]-
(4.20)

The second term on the right-hand side of (4.20) is bounded in Efs 172 on bounded
sets of Z(%O’l/z X E(%O’l/z; the first term is bounded in Eﬁ'g. Thus (4.19) maps bounded
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sets in Kg”l/z X 6%0’1/2 to bounded sets in Zﬁ? - Eg’_lﬂ. Finally, we infer by similar

arguments that the first component of (4.17) maps bounded sets in EEO 12y Z(%O’ 12 0

bounded sets in Z((o:o’*l/ 2, Indeed,

(s Yn) > | SIN[20) 4 %, +iy)?]|

maps bounded sets in Z%O’l/ 2 X E(%O’l/ 2 to bounded sets in K]‘fg’, thus

@ yn) #> [ Gy 2 L) N[22 + i) |
maps bounded sets in 6(%0 172 E(OCO /2 {6 bounded sets in E]T; =12 We conclude that
the mapping (4.17) has the asserted boundedness properties, which finishes the proof
of the lemma. o

Below we provide an elementary criterion, which helps to show analyticity of
functions, which map to £2*; unlike Lemma 4.6 it does not involve the dual (£3*)’
in this particular situation. The criterion is formulated for the target space E(;O’S ,s €R,
where F' is a complex Banach space; i.e. ZCI’,O’S denotes the Banach space

[ = Wzt Z > F | oo,y = sup {(1 + 1)y} < o0}
nel

with norm ||u||co.s-

Lemma4.9 Lets € R, let E, F be complex Banach spaces and let O C E be an open
subset. If the function

f: 0 — Z%O’S, u = f(u) = (f”(u))nez

is locally bounded and each coordinate function f,: O — F is analytic, then f is
analytic.

Proof A proof for the case s = 0 can be found in [18, Theorem A.3], and this proof
can easily be generalized to the case of arbitrary s € R. Let us for convenience state
this proof, which verifies the differentiability of f at an arbitrary point u € O directly.
By assumption there is a ball centered at u such that f is bounded in Z‘;O’S on this ball.
In particular, each (1 4+ n%)*/?| f,|r is bounded by the same constant. Since all f,, are
moreover analytic, it follows from the Taylor series representation applied to each f;,
cf. Lemma 4.6, and an application of Cauchy’s estimate, cf. Lemma 4.7, that

I fut +h) = fuu) —dfa@hlp < C(L+n») "2 |h]%
for small enough ||/|| g, where C is independent of n € Z. This means that for small

Il E,
If @+ h) — fw) — (dfu@hnezlloos < Clhl%,

@ Springer



On the spectral problem associated with the time-periodic. . . 1243

from which we infer that f is differentiable at # with derivative

df () = (dfu@))nez € LIE, LF).
O

Proof of Theorem 4.4 The real analytic extension F: R x R x (Xg UX7) — Rof F,
cf. (4.7) and (4.8), can be written as

1
F(x7y;1ﬁ)=/0 (0242)(x, sy; ¥) ds, (4.21)

where 9> denotes the partial derivative with respect to the second variable. Indeed,

1 y
/0 (32A2)(x, sy; )y ds =/0 (0282)(x, ¥y 5 ) dy' = Ax(x, y: ¥) — Aa(x, 0; ¥),

where Az (x, 0; ) = 0 because, by Proposition 4.5, A is real-valued on R x (X U
X7). We obtain from (4.21) that

[F(x, y; ¥)| < Jmax. [(32A2)(x, sy; ¥)I. (4.22)

In view of Lemma 4.8 and (4.22), the operator F given by (4.9) defines a well-
defined map

001/2 500,1/2

x 02912 5 (X UXz) 2 BYOM? %

00,1/2

1/2
x B

F:ly X (X UXg) — o712

00,1/2 _ oo 1/2
00,1/2

¥00,1/2 x00,1/2

where B (L centered at O; the
space Z x Ly X (Xr UX7) is endowed with the usual product topology. Since
Fis real analytlc itadmits an analytic extension F¢ to some opensetin Cx Cx [(Xr U

X7) ® C], which contains R x R x (X% U X7). Let us consider the complexification

) denotes the open unit ball in £
500, 1 /2

(BX'? x BY'? x (Xg UX7)) ® Cof BY™'/? x B™!/? x (XR U X7). By an
application of Lemma 4.8 and (4.22), there exists an open setUc C ( R 172 ER co.1/2 o

Xr U XI)) ® C, which contains B 1 12y B1 12y (Xr U X7), such that the

coordinatewise analytic extension F¢: Uc — f(%o =172 ¢ F is bounded on bounded
subsets of Uc; in particular Fc is locally bounded on . From Lemma 4.9 we conclude
that F¢ is analytic on Uc; in particular, F is real analytic.

The partial derivative 9, F (0, 0; 0), which is given by (4.10), is a topological iso-
morphism ZOO 2 ng’_l/z and F(0,0; 0) = 0. Thus we can apply the implicit
function theorem for Banach space valued real analytic functions, cf. [31]. We infer
the existence of an open neighborhood W of the zero potential in X U X7, an open

e-ball B /2 and a s-ball B;)O’l/ % around the origin in Zﬂ? /2 and a real analytic
function

G: B2 x W — B2
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such that, for all v € Bfo’l/z andy e W,

F(G, ), v, ¥) =0,

and such that the map

W) = G W) v ), BOVEx W — BV x B2 5w
describes the zero level set of F in Bgo’l/z x B2 wow.

We may assume that the sequences ¢ = (&,)nez and § = (8,),ez satisfy &, > 0
and 8, > 0 for n € Z\{0} and g9 = §p = 0. Clearly, if —1 < 7, < 1 for each n, then
(thén)nez € Bgo’l/z and (7,8,)nez € B;o’l/z. Thus we can run through the intervals
in each coordinate in a uniform way. Let Rﬁ"s, n € Z\{0}, be the associated sequence
of nondegenerate rectangles defined in (4.6).

Our considerations show that, for every v € W and n € Z\{0}, the zero set of F
can be parametrized locally near i,l, by the real analytic function

2n(¥): (—&n, &n) = Ri’av Yn > )\,1, + gn(ym ) +iy,.

We set
V(W) i= 24 (¥) ((—&n, €1)) € RE®

and denote the zero set of A, (-, ¥) by
Na, () = {(x,y) € R?: Ax(x, y,¥) = 0} S R

By construction,
Ya(W\R = Na, () N (R °\R),

and furthermore, since A is real-valued on R x (X U X7), cf. Proposition 4.2, we
have
Na,(W) N Ry’ = v, (¥) U (R’ NR) =: Z,(¥) < C.

Thus for arbitrary ¥ € W and every n € Z\{0}, 1 € R,ﬁ"s satisfies
AM YY) eR < re Z,(¥). (4.23)

The intersection y, (1) N R consists of a single point which we denote by &, =
£,(¥) € RS® < D!, We will show that &, = A!(1). Since A, vanishes on the curve
¥n(¥), which is orthogonal to the real line at the point &,, we have 9, Az (&,, ) = 0.
Furthermore, we know that A; vanishes on R, hence 9, A>(&,, ¥) = 0. The Cauchy-
Riemann equations then imply that A&, Y) = 0y A2(Es, ) +i0x A28, ) = 0;
hence &, (1) is a critical point of A(-, ). Since A(-, ¥) has only one critical point
in D,ll, namely i,ll (¥) according to Corollary 4.3, we conclude that y;, (1) crosses the

real line in the point A} () € RE?. ]
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Proof of Theorem 4.5 According to Theorem 4.4 there exists a neighborhood W of 0
in X such that for v € W N (Xg U X7) and arbitrary n € Z\{0}, the analytic arc
¥ (¥) and the respective part of the real line describe the preimage of R under A(-, ¥)
locally around i,ll (0). This arc is transversal to the real line, symmetric under reflection
in the real axis, and the orthogonal projection of y, () to the imaginary axis is a real
analytic diffeomorphism onto its image.

Let us consider the rectangles R;,;°, which are centered at A,l,’i(O) = )'»,11(0) such
that y,, () C Rfl’(S uniformly for all y € W N (Xg U X7) and all n € Z\{0}. Since
the lengths and widths &, and &, are of order @;; 1/ 2, it is guaranteed by Theorem 3.17
that there exists a neighborhood W* of ¢ = 0 in X such that W* N (Xr UX7) C W
and such that A, (), A () € RS forall € W* N (Xg UX7) and all n € Z\{0}.

Furthermore, Theorem 3.17 tells us that

AGyF W), ) =2(=D)". (4.24)

Using the notation of the proof of Theorem 4.4, we infer from (4.23) in combination
with (4.24) and Corollary 4.3 that

bt € Zo(P) and A,(p) € Zu@) NR = R NR
forall € W N (X UX7). If both K},’i(l//) and X,]l’+(w) are real, we set
Vo = Ve (W) =Dy "), W1 S R NR;
otherwise we set
Vo =Va (W) = va() N{a e C: AR, ¥)| <2}
In both cases, we have that A({y,*}, ¥) € [-2, 2], y_,;" =y, and i}l(w) eyrsNR.

Finally, considering a parametrization by arc length p,, = p, (s) of y,* with p,,(0) =
AL (), we have that

d .
a[A(pn(s)al//)] =0 <= A(pa(5),¥) =0 <= 5 =0,

because ‘% pu| = 1 by assumption and, by Corollary 4.3, p,(0) = A} (¥) is the only
root of A(-, ¥) in R € DL O

5 Example: single exponential potential

In this section, we consider single exponential potentials s of real and imaginary type:
V() = (@', cae ', e oce ), a,ceC, weR, o e{l}. (5.1)
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2 -1 0

- 2
c=iafB b)o=-1,w=-2ma=

1
%, c=iaf

_ _ _ 1
(a) c=1,w=-2m a= 4,

-2 -1 0 1 2 -2 -1 0 1 2

(C)U=17w=727r,oz=%,c=ia,3 d) o=-1l,w=-2ma=1

5, c=iap

Fig. 4 Plots of the zero level sets of Ay (-, ¥) for single exponential potentials of real type (left column)
and imaginary type (right column); periodic eigenvalues are indicated with dots and the dashed circles are
the boundaries of the discs D},

The fundamental matrix solution that corresponds to a single exponential potential can
be calculated explicitly. In Figs. 4 and 5 we provide numerical plots of the periodic
eigenvalues and the set {A € C: A(:, ¢) € R} for several particular potentials v of
the form (5.1).

To ensure that ¥ € X, i.e. that ¢ has period one, we require that v € 27 Z. If
o = 1, the potential ¥ (¢) in (5.1) is of real type and hence relevant for the defocusing
NLS; if o = —1, it is of imaginary type and hence relevant for the focusing NLS.
A direct computation shows that the associated fundamental solution M (¢, A, ¥) is
explicitly given by
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-3 -2 -1 0 1 2 3

Fig.5 A plot of the zero level set of Ay (-, ) for the real type single exponential potential (5.1) witho =1,
w=-21,a= % + %i, c= %. Periodic eigenvalues are indicated with dots, the large dashed circle is

the boundary of the disc B3 and the remaining dashed circles are the boundaries of the discs D,’;

2 2 .
w10 [cOS(Q) + LEZLE sin(Qr) 2004 §in(Qr) 52)
e 20)—iE G ) O H2 420 e Pt an)
o =5 sin(§2r) cos(§2t) — =55 —— sin(§2r)

where

) 2
Q=Q1) = /41 + 20A% + 4o I(ac)r + <E + a|a|2) —olcl?. (5.3)
We fix the branch of the root in (5.3) by requiring that
2, @ -1
QL) =2 +E+(’)(}» ) as |A| = oo.

Thus the discriminant A, i.e. the trace of (5.2), and the characteristic function for the
periodic eigenvalues xp defined in (3.16) are given by

A, ¥) = —2¢0s(Q),  xp(h, ¥) = 4sin*(Q).
Figure 4 shows plots of the zero set of Az (-, ¥) = JIA(-, ¥) and the periodic

eigenvalues in the complex A-plane for four different choices of the parameters o, o,
¢ and w. All four choices correspond to exact plane wave solutions of NLS. Indeed,
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if o = =27 and « > 0 is chosen such that —o2a% — w > 0 is satisfied for ¢ = +1,

then . _
u(x, 1) = a P with B=v-0222 —w

solves the defocusing (focusing) NLS if 0 = 1 (¢ = —1). Moreover, it holds that
u©,1) =ae®, uc(0,1) =ce, with ¢=iap.

In the left and right columns of Fig. 4 we find examples for the defocusing and focusing
case, respectively. In the top row, the norm of the potential is small enough (o = 1/12)
that each periodic eigenvalue )\Z’i is contained in the disc D;, i=1,2,n € Z.In
Fig. 4a, all periodic eigenvalues A,l,’i are real and there is a spectral gap [)Ll;f, )&f];
the remaining 2periodic eigenvalues satisfy A,11’_ = A,11’+, n € Z\{—1, 0}. The periodic
eigenvalues An’i, n € Z, lie on a curve that asymptotes to the imaginary axis. In
Fig. 4b, A 1_1_ and A l_f’ are not real but lie on the (global) arc y_1, which is symmetric
with respect to the real axis and crosses the real line at the critical point il_l .InFig. 4c,
d, the spectral gaps are larger than in Fig. 4a, b, because the parameter « is larger than
in the previous examples (¢ = 1/2).

Figure 5 shows the zero set of Ay (-, ¥) in the complex A-plane for the real type
single exponential potential (5.1) with parameterso = 1,0 = —2w, o0 = % + %i and
c= %. This example clearly demonstrates that Theorems 4.4 and 4.5 fail to remain
true for potentials with sufficiently large X-norms. We further notice that some arcs y;,
donotonly “leave” the discs D,’; (and hence also the rectangles Ry, % from Theorem 4.4),
but the zero set differs qualitatively from the previous examples: certain arcs “merge”
with other arcs and subsequently “split” into new components. This example also
illustrates that the labeling of periodic eigenvalues is not preserved under continuous
deformations of the potential. We furthermore note that for this particular potential (and
consequently all potentials in X with smaller X-norm), the assertion of the Counting
Lemma holds already true for N = 3: there are 4(2-3 + 1) = 28 periodic eigenvalues
contained in the disc B3 (when counted with multiplicity: 12 double eigenvalues plus
4 simple eigenvalues) and each disc Dfl, i = 1,2, |[n] > 3, contains precisely one
periodic double eigenvalue.

6 Formulas for gradients
6.1 Gradient of the fundamental solution
Letd F denote the Fréchet derivative of afunctional F: Y — Cona(complex) Banach
space Y. If it exists, dF: ¥ — Y’ is the unique map from Y into its topological dual
space Y’ such that

Fu+h)=F@)+ (dF)(uh+o(h) as |h| — 0

foru € Y. ThemapdFh: Y — C (also denoted by 9, F) is the directional derivative
of F in direction h € Y.
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For any differentiable functional F: X — C and i € X, we have that

1
dFh = 8, F = f (F'n' + F?n* + F°i° + F*n*) dt
0

for some uniquely determined function 0 F = (F LV p2 F3 F 4) : X — X. We denote
the components of dF by d; F, j = 1,2, 3, 4, and define the gradient 0 F of F by

OF = (| F, hF,xF,dF) = (F', F2, F3 F*).

The following proposition gives formulas for the partial derivatives of the fundamental
solution
_(my1 my
M(ta)\'7 w) - <m3 m4) .
For fixed + > 0 and 1 € C, we consider M as a map X — M>4>(C). In particular,
each matrix entry m;, i = 1,2, 3, 4 gives rise to a functional X — C. Let us set

y = y(M) = det M — det M°* = m1m4 + moms.

Proposition 6.1 Foranyt > 0and(0 < s < t, the gradient of the fundamental solution
M, defined on the interval [0, t], is given by

—iy Y2 + 2mymy =2y mamy + 22m}
@MO)) =M@ . ),
2iy mymz — 2am3 iy YT — 2hmzmy

—iyw1 — 2 Ammy —2i1//1m2m4 — 2)»m%
(02M (1)) (s) = M (1) (s),

2iy mims +2)»m% iyy! 4+ 2amims

2

imamg  imy
(3M (1)) (s) = M(1) 5 (s),

—im3 —im3my

—im% —imimy

imymy im%
(34M (D) (5) = M(1) ®).

Moreover, at the zero potential W = 0,

—2ir%(1—2s) 0 0
(alEx(r))(s)=<8 e ) (32E2(0)(s) =(2Aemz(t_m 0),

0 ie—2ir2(—29) 0 0
(33E}L(I))(S) = <0 e 0 )’ (34E)~(t))(s) = (_ieZiAZ(I—Zs) O) .

Proof By Theorem 2.1 the fundamental solution M is analytic in . It suffices there-
fore to verify the above formulas for smooth potentials i for which the order of
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differentiation with respect to # and ¥ can be interchanged. The general result then
follows by a density argument.
Applying the directional derivative 9;, to both sides of Eq. (2.5), we obtain

DM =(R+V)yM+0d,(R+V)M.

Since both M (0) and R are independent of i, Proposition 2.4 implies
t
onM(t) = M(t) / M~Y(s) 89,V (s) M(s) ds.
0

The integrand equals
mg —ma\ [(—i(p2h' + ¢ 'h?)  2ah' +ih3 my mo
—m3 m 242 —in* iR +y'h? ) \m3mg )
which can be rewritten as

(—iwz(m1m4 + mom3) + 2Amazmy —2iw2m2m4 + ZAmZ ) |
h

2i1//2m1m3 — 2)»m§ ilﬁ2(m1m4 + moym3s) — 2Amsmy

(—iwl(m1m4 + moms) — 2immy —Ziw1m2m4 — ZAm% ) 2

21¢1m1m3 +2)»m% iwl(m1m4+m2m3) + 2 mimy

1msmy 1m4 3 mimy 1m2 4
+ h” + h”.
—im% —im3my —im% —immy
The expression for the gradient d M (¢) follows. In the case of the zero potential ¢ = 0,
—22%r 2221

we have m| = e , My = € and my = m3 = 0, so the gradient dE,(¢) is
easily computed. O

The following notation is useful to express the gradient of M more compactly. Let
M and M, denote the first and second columns of M, and denote by ¢1,2 the first
two components, and by 1> the last two components of the four-vector v

1 3
Y2 = (zz) coyt= (54) .
12._ (9 34._ (93
b (). e (%)

Following [13], we introduce the star product of two 2-vectors a = (aj, az) and
b = (b1, by) by

Analogously, let
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Moreover, recall that y = mm4 4+ mom3. With this notation, we obtain

Corollary 6.2 For any t > 0, the gradient of the fundamental solution M is given by

a2M @)

M) —iyo‘ll/fl’2 + 2103 (M xM>) —2im2m4011/f1’2 + 2103 (MrxM>) ©)
= M(t s),
2imimzo it — 2h03(MixM1)  iyoryh? — 2h03(M*M>)

i33’4M(t) — M) (—Ml*Mz —Mz*Mz) s

M]*Ml M]*Mz

In the special case when ¢ = 0 and 4 is a periodic eigenvalue corresponding to the
zero potential (i.e. A = )\ﬁ{i(O), i=1,2,n€7Z),wefind

e:[ =M xM;y, e

n

0 _ eZﬂint
= <e_2ﬂint) , €, = ( 0 ) , ne¢ 7.

6.2 Discriminant and anti-discriminant

= MrxM,, nez,

where

=

e

Proposition 6.3 The gradient of A is given by

AV2A = ma2imimzo1 Y = 2003(Mi* M) — m3[2imomgo 2
— 2003 (MaxM2)] + (g — mp)liyory'? — 2h03(MixM2)],
1034A = maM*M| — m3MaxMa + (s — i) Mi*M,.
At the zero potential, dA(X,0) = 0 forall . € C.
Proof The formula for the gradient follows directly from Corollary 6.2. In the case of
the zero potential, my = m3 = 0; hence M1xM;, = 0 and therefore dA (X, 0) = O for

all A € C. O

The following formulas for the derivative of the anti-discriminant are derived in a
similar way.

Proposition 6.4 The gradient of the anti-discriminant § is given by

928 = ma2imimso 1 — 2003 (M« M1)] + Gy — m3)[iyory 2
— 2)03(MyxMp)] — 1) [2imomaor ' — 2003(MaxM))],
10348 = maM*My + (my — m3) MyxMy — rivy Mox M.
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In the special case when = 0 and A is a periodic eigenvalue corresponding to the
zero potential, i.e. A = )»i,’i(O), i=1,2,nez,

3128 = 2ALE0) (= 1) (e +¢;), 10>4 = (=1)"(e) —e,).

7 Hamiltonian structure of the nonlinear Schrodinger system

Consider the NLS system

(7.1)

i% + gxx — 2q27 =0,
—irs + ryy — 2r2q =0,

where ¢ (x, t) and r(x, t) are independent complex-valued functions. If r = o4, the
system (7.1) reduces to the NLS Eq. (1.1). We can view (7.1) as an evolution equation

with respect to ¢ by writing
2
g\ _ . 9xx—2q°r
(r>z_1<_"xx +2r2‘1>- 72
On the other hand, introducing p(x, #) and s(x, t) by

P=qx. S=rx, (7.3)

we can also write (7.1) as an evolution equation with respect to x:

q p

r s

p| | —ia 2% | 74
s ir, +2r%q

X

The potentials {1/ }‘1t of Eq. (1.5) can be viewed as the initial data for (7.4) according
to the identifications

vl =q0,1), ¥2@)=r0,0, 1) =p0,0, @) =s0,1).

In this section, we first review the bi-Hamiltonian formulation of (7.1) when viewed
as an evolution equation with respect to . We also recall how this formulation gives
rise to an infinite number of conservation laws. We then show that (7.1) admits a
Hamiltonian formulation also when viewed as an evolution equation with respect to x.
Although this one Hamiltonian formulation is enough for the purpose of establishing
local Birkhoff coordinates for the x-evolution of NLS, we also consider the existence
of a second Hamiltonian structure for (7.4). We find that even though the infinitely
many conservation laws of (7.2) transfer to the x-evolution Eq. (7.4), the naive way
of deriving a second Hamiltonian structure for this system fails. Indeed, the obvious
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guess for a second Hamiltonian structure yields a Poisson bracket which does not
satisfy the Jacobi identity.

In contrast to the rest of the paper, we will not specify the functional analytic
framework in terms of Sobolev spaces such as H!(T, C). Instead we will adopt the
more algebraic point of view of [29], which is not restricted to the periodic setting;
roughly speaking, this means that we will assume that all functions can be differentiated
to any order and that partial integrations can be performed freely with vanishing
boundary terms. We will use the symbol | to denote integration over the relevant x or
¢t domain.

7.1 The bi-Hamiltonian structure of (7.2)

In the current framework, we define the gradient d F of a functional F = F[q, r] by

aF
e () - (2)
aF
o F &
whenever there exist functions 91 F and 9, F' such that

d
d—F[q +epi, 1+ €gr]
€

_ / (01 F)g1 + (2 F)ga] dx
e=0

for any smooth functions ¢; and ¢, of compact support. The system (7.2) admits the
bi-Hamiltonian formulation [27]

<‘r’> —DJH, = £ Hy, (7.5)
t
where the Hamiltonian functionals Hi[q, r] and H>[q, r] are defined by

H, = i/qxrdx, H) = /(—qxxr + ¢°r?) dx, (7.6)

and the operators D and £ are given by

_ 2qD;1q Dx—2qD;1r (0 —i
b= (DX—Zerlq 2rD71r cE=\ 0)° (.7

The equalities in (7.5) are easy to verify using that

—ir —rex + 272
oH = .""), oH, = ™ .
! ( 1qx ) : <_%cx + 2q2r>
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The operators D and £ are Hamiltonian operators in the sense that the associated
Poisson brackets

(F, G}D=/(8F)TD8de, (F, G}g:/(BF)TEBde, (7.8)

are skew-symmetric and satisfy the Jacobi identity [29, Definition 7.1]. Furthermore,
D and £ form a Hamiltonian pair in the sense that any linear combination aD + b€,
a,b € R, is also a Hamiltonian operator [29, Definition 7.19]. We will review the
proofs of these properties below.

The bi-Hamiltonian formulation (7.5) together with the fact that D and £ form
a Hamiltonian pair implies that DE~! is a recursion operator for (7.2) and that a
hierarchy of conserved quantities H, can be obtained (at least formally) by means of
the recursive definition (see [29, Theorem 7.27])

DoH, = £IHy4.

The first few conserved quantities Hy, Hy, Hy, H3 for (7.2) are given by (7.6) and

: 3
Hy = /qr dx, Hz= 1/ <—CIxxxl’ + E(qz)xr2> dx.

In differential form, the associated conservation laws are given by

Ho : (gr)e = i(gxr — gry)x,
Hy : i(qer)e = (@77 4 gxrs = qxxxs
Hy @ (—qxxr + q2r2)t = i(4QQJcr2 + Gxxlx — Qxxxr)xy

. 3
Hj : 1 <_‘Ixxxr + E(qz)x’l) = (261373 - Sqfrz —2qqxrry +q2r§ - Sqqxxr2

t

- 2q2rrxx — QxxxTx + Gxxxxl)x- (7.9)

Even for relatively simple brackets such as those defined in (7.8), the direct ver-
ification of the Jacobi identity is a very complicated computational task. In the next
lemma, we give a proof of the well-known fact that D and £ are Hamiltonian oper-
ator by appealing to the framework of [29, Chapter 7] which shortens the argument
significantly.

Lemma 7.1 D and £ are Hamiltonian operators.

Proof It is easy to verify that D and £ are skew-symmetric with respect to the bracket

<<2> ’ (§;>> = /(f1g1 + f2g2) dx. (7.10)

Since & has constant coefficients, £ is a Hamiltonian operator by [29, Corollary 7.5]. It
remains to show that the bracket defined by D satisfies the Jacobi identity. According
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to [29, Proposition 7.7], it is enough to show that the functional tri-vector Wp defined
by

2
1 1
Up = Ef {6 Aprvpe(D) AB}dx = 5/ Z {6% A (prvpe(D))ap A 0P} dx
o, =1
vanishes, where we refer to [29] for the definitions of the wedge product A, the

functional vector 8 = (', 62), the vector field vpy, and its prolongation prvpy.
We have (see [29, p. 442])

prvpe(q) = (D),  prvpy(r) = (DO)?,
Do — (@O _ (24D (g0h) + (Dx6?) = 2q(D7 1 (6%) a1
“\D9)?) ~ \(D08Y) —2r(D; 1 (g0Y)) + 2r(D7(r6?)) ) :

and

(DO)'D; g + gD (Do) —(DO)Y' D r — qD;l(D9)2>

prvpe (D) = 2( _ _ R -
—(D)*D;'q —rD7N (DO (DO’ D 'r + rD7(DH)?

Hence

Up = /{91 A DO A D (g0 + 0! AgDL (DO A oY)

—0' A (DO AD 6% — 0" A gDTI(DO)? A 6?)
— 02 A (DO AD; (0" — 0> ArD(DO)! A 0L
+ 02 A (DO AD7Lr0%) + 62 ArD7N(DO)? A 6%} dx.  (7.12)

An integration by parts shows that the first two terms on the right-hand side of (7.12)
are equal:

/91 AgD7H (DO A0 dx = —f (D' (g0h) A (Do) A6 dx
= /91 A (DO A D1 (go") dx.

In the same way, the third and sixth terms are equal, the fourth and fifth are equal, and
the last two terms are equal. Thus we find

Up = /{9‘ A (D' A D (g0 — 16 — 6% A (D) A D7 (g0 — ro?)) dx.
(7.13)
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Substituting in the expressions (7.11) for (D6)! and (DH)2, this becomes
Wp = / {0' A2q(D; " (g0") + (D07 — 2q(D; ' r0*)] A D (g0" —r6?)
— 02 AL(DOY) —2r (D1 (g0Y)) + 2r (D7 (r6%)] A D (g0 — r6%)) dx.

Using that (D;'(g87)) A (D7 '(g67)) = 0 and (D' (r67)) A (D71 (r67)) = 0, a
simplification gives

Up = /{9‘ A (D0%) A D1 (g0! — 16 — 0% A (DY) A DN (g0 — ro?)}dx.

Integrating by parts in the first term on the right-hand side, we arrive at

Up = /{—(Dxel) ANO* A DTN go! —r6%) — 02 A (D0Y) A Do — r6%)) dx
=0.

This shows that D is Hamiltonian and completes the proof. O

Lemma 7.2 D and & form a Hamiltonian pair.

Proof By [29, Corollary 7.21], it is enough to verify that
prvpe(Og) + prvey(©p) =0, (7.14)

where | .
Op = E/{@ADG}dx, Qg = 5/{9/\59}dx,

are the functional bi-vectors representing the associated Poisson brackets. Since £ has
constant coefficients, we have pr vpy (®g) = 0. Moreover, the same computations
that led to the expression (7.13) for Wp = — pr vpy (Op) (with (D6)/ replaced with
(£6)7) imply that

prves(D) = —/{91 A (ED' A Do —ro?)
— 02 A (£0)* A Do — r6?))dx.
Since (£6)! = —i6? and (£0) = i0', this gives
pI‘Vgg('D) 21/{91 A@z A D;l(qel _rez)
+62 70" ADT(go" — r6?)}dx =0,

which completes the proof of the lemma. O
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7.2 The NLS system as an evolution in x

The system (7.4) expresses the NLS system (7.1) as an evolution equation with respect
to x. We first present a Hamiltonian structure for the system (7.4).

7.2.1 A Hamiltonian structure for (7.4)

The system (7.4) can be written as

=DaiH,, (7.15)

vy YR

X

where the Hamiltonian functional I:Il lg.r, p, s]is defined by
H = /(ps +igq;r — q2r2) dt (7.16)

and the operator D is defined by

0 0 0 1
- 0 0 1 0
P=10o -1 0 0

-1 0 0 0

The next lemma shows that (7.15) is a Hamiltonian formulation of (7.4).
Lemma 7.3 The operator D is Hamiltonian.

Proof It is clear that the bracket {F, G} defined by
{F,G}p= /(8F)T D oG dr

is skew-symmetric. The Jacobi identity is satisfied because D has constant coefficients
(see [29, Corollary 7.5]). O

7.2.2 Conservation laws

We conclude from the conservation laws in (7.9) thatif (¢, r, p, s) evolves in x accord-
ing to the NLS system (7.4), then the functionals
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I:IO ::i/(CIxr_qrx)dtv I:Il = /(q2r2+CIxrx_Qxxr)dt,
FIZ = i/(4qCIxr2 + Gxxtx — CIxxxr) dr, etc.
are conserved under the flow, i.e.,

dH,
dx

Using (7.3) and (7.4) to eliminate the x-derivatives from the above expressions, we
find that, on solutions of (7.4),

Hy = i/(pr —gs)dt, H = f(ps +igir —q’r?) di,
i = / (s — pir)dt, e, (7.17)

In this way, we obtain an infinite number of conserved quantities for (7.4). In differ-
ential form, the first few conservation laws are given by

Hy : i(pr —gqs)x = (qr),
Hi: (ps +igr — %)) = i(pr),
1:12 2 (qrs — pir)x = (g — qzrz),.

The gradients of the first few functionals H j are given by

—is —ir; — 2r%g —8
- . - . _ 2 - _
abdo=| P |, am=|v"2T | am=|TP
r s ¢
—igq P 4

7.2.3 A candidate for a second Hamiltonian structure of (7.4)

Inspired by the bi-Hamiltonian formulation (7.5) of (7.2), it is natural to seek a second
Hamiltonian formulation of (7.4) of the form

=E0H,, (7.18)

L YR

X

where H, is the conserved functional defined by (7.17) and Eisan appropriate Hamil-
tonian operator. It is easy to check that (7.18) is satisfied for any choice of the constant
a € C provided that £ = &, is defined by
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0o -p;! 0 0

. -7 0 0 0

. 0 0 Zoquflq —i+4(1 —a)er]q +2anf1r
0 0 14401 —oz)qD,_lr +2arD,_1q 2arD,_1r

(7.19)

This suggests that we seek a second Hamiltonian operator for (7.4) of the form (7.19).
The bracket

(F,G)s, = /(E)F)T £ 0G dt,

is skew-symmetric for each « € C. However, the next lemma shows that éa is not
Hamiltonian for any choice of o because the bracket {-, -} s fails to satisfy the Jacobi
identity.

Lemma 7.4 The operator E=¢, defined in (7.19) is not Hamiltonian for any a € C.
Proof Fix a € C. We will show that {F', G}z does not satisfy the Jacobi identity. By

[29, Proposition 7.7], it is enough to show that the tri-vector

v

1 .
= 5/ {6 Aprvg, (&) A6} dr

does not vanish identically. Since

prvg,(q) = Eo', prvg,(r) = (£0)?,

we find
0 0 0 0
&= 0 0 0 0
PP =10 o0 (Prvgy(€))zs (prvgy(£))aa
0 0 (rvgy@as (rvg,E)as
where

(Prvg, (£)3 = 2(£60)' D 'q + 209 D1 (£6)",

(Prvg,(E)za =41 — ) (€0)*D; g + 4(1 — a)r D; ' (£0)!
+2a(E0)' D7 + 209 D1 (E6)?,

(Prvg,(E)az =41 — a)(EO)' D 'r +4(1 — a)g D, (£6)*
+2a(E0)*D; g 4 2ar D1 (E0)!,

(Prvg, (€)as = 20(£0)*D; ' + 2ar D71 (£6)7.
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Thus

1 ~ -
Ws = 5 [16% A Grvg, @) A0+ 07 A (rvg, Esa A 0°

+ 0 A (Prvey(£)az A0+ 0% A (prvg, (£))as A0} dr

is given by

Vs = /{a93 AED A Do) + agd® A DTIEN A 63)
+2(1 — )03 A (€6)* A D71 (g0%) +2(1 — a)r6® A D7HEN A 6Y
+ a0’ A (E0)' A D7 r0%) + agh® A DTV((E0)? A 6%
+2(1 —a)0* A (€)' A D7Lr0?) +2(1 — a)gb* A D71((E0)? A 63)
+ab* A (£0)* A D1 (q63) 4 aro* A D7H(ED)! A 63)
+ab* A (£0)2 A D7 (r0*) + ard* A D1((E0)? A 6Y) dr. (7.20)

An integration by parts shows that the first two terms on the right-hand side of (7.20)
are equal:

fq03 ADTHEN A0y dr = — / D7 (g0 A E0)' A6 dr
= / 63 A (EN' A D (g0?) dr.
In the same way, the third and eighth terms are equal, the fourth and seventh are equal,

the fifth and tenth are equal, the sixth and ninth are equal, and the eleventh and twelfth
are equal. Thus we find

Vs = 2/{a93 AED A Do) +2(1 — )8 A (£60)* A D (g0
+ a0 A (EO A DoY) +2(1 — a)0* A (E0) A D7H(r0%)
+ab* A (€0)> A D71 (q0?) + ab* A (E0)* A DoY) dr.  (7.21)

Using that

—(D;'0%)
2 —(D; 0"
= -1 3 04 —1, p4 —1,ndy |
2aqD;  (g6°) —10" +4(1 —a)rD; " (g07) + 2aqg D; ~ (r67)
i0° +4(1 — a)g D, ' (r6%) + 2ar D; 1 (g6°%) + 20r D7 (r6%)
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this becomes

Wy =— 2[{a93 A(D7'0%) A D7 (g6%) 4+ 2(1 — )63 A (D710 A D7 (g0%)

+ab® A (D103 A D70 4+ 2(1 — )0t A (D107 A D7 r6?)
+a0* A(D710Y A DTN (g0?) + ab* A (D7IOYY A Do dr. (7.22)

Consider the two terms which involve all three of the uni-vectors 6!, 63, and 0%
gi=— 2/{2(1 — )8 A (D10 A D (g8 + a8 A (D0 A DN (g6%)) dt

=4(1 —a)/(Dflel) A 6% A D Y(goh) dr +2a/(D;191) AO* A DY (g6?) dr.

Let P/ = (Pj , sz , P3j , PZ ), j = 1,2, 3, where each Pij is a differential function
(i.e., a smooth function of ¢, g, r, p, s and t-derivatives of g, r, p, s up to some finite,
but unspecified, order). Then (see [29, p. 440])
(D7 'PY) P{ D (qP)
-1 -1
(B: P!, P2, P3y=4(l —a) | |(D7'P]) P} D7 (qPD)|
(D' PY) P{ D (aP))
—1 -1
(D;'P}) P} D7 (qP))
20 [ |(D7'PY P DN qPY)| s,
—1 -1
(D7 'P}) P} D7 (qP)
Choosing for example

P! = (ng"'¢,,0,0,0), P?>=(0,0,1,0), P>=(0,0,0,q,),

where n > 1 is an integer, we see that
(g; P, P2, P}y =401 - a)/(D;‘PI‘)PfD;‘(qPS)dt
—2a/(D;1P11)PfD;1(qP32)dr

2
:4(1—a)/q"%dt—Za/q"q,Dfl(q)dt

qn+2
=401 —a)f dt+2a/1);1(q"q,)th

2
n+2 n+2
q

:/(4(]—a)q2 —|—2an+l)dt.
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Regardless of the value of «, this is nonzero for some integer n > 0. Since all the
other terms in the expression (7.22) for Wz vanish when applied to this choice of

(P!, P2, P?), we conclude that Wz # 0. O

Remark 7.5 The inverse operator D, ! in the above computations can be treated as a
pseudo-differential operator in the sense of [29, Definition 5.37] by appealing to the
identity (see [29, Eq. (5.55)])

D; q—Z( D (Dig)D; .

i=0

Remark 7.6 The failure of £ to be Hamiltonian presumably has to do with the fact
that solutions of NLS only live on the submanifold where g, = p and ry = s, so
that one should restrict the Poisson bracket to this submanifold before considering the
Jacobi identity. Since the Hamiltonian formulation (7.15) is sufficient for our objective
of establishing local Birkhoff coordinates for the x-evolution (7.4) of NLS, and the
infinite sequence of conserved quantities can be obtained from the recursion operator
for (7.2), we do not pursue this matter further.

Remark 7.7 An alternative proof of Lemma 7.4 proceeds as follows: As in the proof
of Lemma 7.2, it can be shown that D and £ satisfy the following analog of (7.14) for
any value of a:

Prvp, (Og) +prvg,(©5z) = 0.

Thus, if £ were Hamiltonian, then D and £ would form a Hamiltonian pair and then
R = D! would be a recursion operator for (7.4). However, a direct computation
shows that R does not satisfy the defining relation [29, Eq. (5.43)] of a recursion
operator for any value of @ € C.
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