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Abstract
According to its Lax pair formulation, the nonlinear Schrödinger (NLS) equation can
be expressed as the compatibility condition of two linear ordinary differential equations
with an analytic dependence on a complex parameter. The first of these equations—
often referred to as the x-part of the Lax pair—can be rewritten as an eigenvalue
problem for a Zakharov–Shabat operator. The spectral analysis of this operator is
crucial for the solution of the initial value problem for the NLS equation via inverse
scattering techniques. For space-periodic solutions, this leads to the existence of a
Birkhoff normal form, which beautifully exhibits the structure of NLS as an infinite-
dimensional completely integrable system. In this paper, we take the crucial steps
towards developing an analogous picture for time-periodic solutions by performing a
spectral analysis of the t-part of the Lax pair with a periodic potential.

Mathematics Subject Classification 34L20 · 35Q55 · 37K15 · 47A75

1 Introduction

The nonlinear Schrödinger (NLS) equation

iut + uxx − 2σ |u|2u = 0, σ = ±1, (1.1)

is one of the most well-studied nonlinear partial differential equations. As a universal
model equation for the evolution of weakly dispersive wave packets, it arises in a
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vast number of applications, ranging from nonlinear fiber optics and water waves to
Bose-Einstein condensates.Manyaspects of themathematical theory for (1.1) arewell-
understood. For example, for spatially periodic solutions (i.e., u(x, t) = u(x + 1, t)),
there exists a normal form theory for (1.1) which beautifully exhibits its structure as an
infinite-dimensional completely integrable system (see [13] and references therein).
This theory takes a particularly simple form in the case of the defocusing (i.e., σ = 1)
version of (1.1). Indeed, for σ = 1, the normal form theory ascertains the existence of
a single global system of Birkhoff coordinates (the Cartesian version of action-angle
coordinates) for (1.1). For the focusing (i.e.,σ = −1)NLS, such coordinates also exist,
but only locally [20]. The existence of Birkhoff coordinates has many implications.
Among other things, it provides an explicit decomposition of phase space into invariant
tori, thereby making it evident that an x-periodic solution of the defocusing NLS is
either periodic, quasi-periodic, or almost periodic in time. The construction ofBirkhoff
coordinates for (1.1) is a major achievement which builds on ideas going back all the
way to classic work of Gardner, Greene, Kruskal andMiura on the Korteweg–de Vries
(KdV) equation [11,12], and of Zakharov and Shabat on the NLS equation [34]. Early
works on the (formal) introduction of action-angle variables include [32,33]. More
recently, Kappeler and collaborators have developed powerful methods which have
led to a rigorous construction of Birkhoff coordinates for both KdV [15,16,18] and
NLS [13,20] in the spatially periodic case.

The key element in the construction of Birkhoff coordinates is the spectral analysis
of the Zakharov–Shabat operator L(u) defined by

L(u) = iσ3

(
d

dx
−U

)
, where U =

(
0 u
σ ū 0

)
and σ3 =

(
1 0
0 −1

)
.

In particular, the periodic eigenvalues of this operator are independent of time if u
evolves according to (1.1) and thus encode the infinite number of conservation laws
for (1.1). The time-independence is a consequence of the fact that equation (1.1) can
be viewed as the compatibility condition φxt = φt x of the Lax pair equations [22,34]

φx + iλσ3φ = Uφ, (1.2)

φt + 2iλ2σ3φ = Vφ, (1.3)

where λ ∈ C is the spectral parameter, φ(x, t, λ) is an eigenfunction,

V =
(−iσ |u|2 2λu + iux
2σλū − iσ ūx iσ |u|2

)
, (1.4)

and we note that (1.2) is equivalent to the eigenvalue problem L(u)φ = λφ.
Strangely enough, although the spectral theory of equation (1.2) (or, equivalently,

of the Zakharov–Shabat operator) has been so thoroughly studied, it appears that no
systematic study of the spectral theory of the t-part (1.3) with a periodic potential has
yet been carried out (there only exist a few studies of the NLS equation on the half-line
with asymptotically time-periodic boundary conditions which touch tangentially on
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the issue [4,5,23,25,26]). The general scope of this paper is to lay the foundation for
a larger project with the goal of showing that (1.1), viewed as an evolution equation
in the x-variable, is an integrable PDE and in particular admits a normal form in a
neighborhood of the trivial solution u ≡ 0. This means that one can construct Birkhoff
coordinates—often referred to as nonlinear Fourier coefficients—on appropriate func-
tion spaces so that, when expressed in these coordinates, the PDE can be solved by
quadrature. Our approach is inspired by the methods and ideas of [13,20], where such
coordinates for (1.1) as a t-evolution equation were constructed on the phase space of
x-periodic functions. This work at hand provides the key ingredients needed to adapt
the scheme of construction developed in [13,20] to the x-evolution of time-periodic
solutions of NLS, and ultimately to establish local Birkhoff coordinates, hence inte-
grability. In particular, we provide asymptotic estimates for the fundamental matrix
solution of the t-part (1.3), which we exploit to study the periodic spectrum of the
corresponding generalized eigenvalue problem.

For the spectral analysis, it is appropriate (at least initially) to treat the four functions
u, σ ū, ux , σ ūx in the definition of V as independent. We will therefore consider the
spectral problem (1.3) with potential V given by

V = V (λ, ψ) =
(−iψ1ψ2 2λψ1 + iψ3

2λψ2 − iψ4 iψ1ψ2

)
, (1.5)

where ψ = {ψ j (t)}41 are periodic functions of t ∈ R with period one.
Apart from the purely spectral theoretic interest of studying (1.3), there are at least

three other reasons motivating the present study:

– First, in the context of fiber optics, the roles of the variables x and t in Eq. (1.1) are
interchanged, see e.g. [2]. In other words, in applications to fiber optics, x is the
temporal and t is the spatial variable. Since the analysis of (1.3) plays the same
role for the x-evolution of u(x, t) as the analysis of the Zakharov–Shabat operator
plays for the t-evolution, this motivates the study of (1.3).

– Second, one of the most important problems for nonlinear integrable PDEs is
to determine the solution of initial-boundary value problems with asymptotically
time-periodic boundary data [3,6,26]. For example, consider the problem of deter-
mining the solution u(x, t) of (1.1) in the quarter-plane {x > 0, t > 0}, assuming
that the initial data u(x, 0), x ≥ 0, and the boundary data u(0, t), t ≥ 0 are known,
and that u(0, t) approaches a periodic function as t → ∞. The analysis of this
problem via Riemann-Hilbert techniques relies on the spectral analysis of (1.3)
with a periodic potential determined by the asymptotic behavior of u(0, t) [4,25].

– Third, at first sight, the differential equations (1.2) and (1.3) may appear unre-
lated. However, the fact that they are connected via Eq. (1.1) implies that they
can be viewed as different manifestations of the same underlying mathematical
structure. Indeed, for the analysis of elliptic equations and boundary value prob-
lems, a coordinate-free intrinsic approach in which the two parts of the Lax pair
are combined into a single differential form has proved the most fruitful [10,14].
In such a formulation, eigenfunctions which solve both the x-part (1.2) and the
t-part (1.3) simultaneously play a central role. It is therefore natural to investigate
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how the spectral properties of (1.2) are related to those of (1.3). Since the NLS
equation is just one example of a large number of integrable equations with a Lax
pair formulation, the present work can in this regard be viewed as a case study
with potentially broader applications.

1.1 Comparison with the analysis of the x-part

Compared with the analysis of the x-part (1.2), the spectral analysis of the t-part (1.3)
presents a number of novelties. Some of the differences are:

– Whereas Eq. (1.2) can be rewritten as the eigenvalue equation L(u)φ = λφ for an
operator L(u), no (natural) such formulation is available for (1.3) due to the more
complicated λ-dependence. Nevertheless, it is possible to define spectral quantities
associated with (1.3) in a natural way.

– Asymptotically for large |λ|, the periodic and antiperiodic eigenvalues of (1.2)
come in pairs which lie in discs centered at the points nπ , n ∈ Z, along the real
axis [13]. In the case of (1.3), a similar result holds, but in addition to discs centered
at points on the real axis, there are also discs centered at points on the imaginary
axis (see Lemma 3.13). Moreover, the spacing between these discs shrinks to zero
as |λ| becomes large.

– For so-called real type potentials (the defocusing case), the Zakharov–Shabat oper-
ator is self-adjoint, implying that the spectrum associated with (1.2) is real. No
such statement is true for the t-part (1.3). This is clear already from the previous
statement that there exist pairs of eigenvalues tending to infinity contained in discs
centered on the imaginary axis. However, it is also true that the eigenvalues of (1.3)
near the real axis need not be purely real and the eigenvalues near the imaginary
axis need not be purely imaginary. This can be seen from the simple case of a
single-exponential potential. Indeed, consider the potential

(ψ1(t), ψ2(t), ψ3(t), ψ4(t)) = (αeiωt , σ ᾱe−iωt , ceiωt , σ c̄e−iωt ), (1.6)

where α, c ∈ C, ω ∈ 2πZ, and σ = ±1. For potentials of this form, Eq. (1.3) can
be solved explicitly (see Sect. 5) and Fig. 1 shows the periodic and antiperiodic
eigenvalues of (1.3) for two choices of the parameters.

– Whereas the matrixU in (1.2) is off-diagonal and contains only the function u and
its complex conjugate ū, the matrix V in (1.3) is neither diagonal nor off-diagonal
and involves also ux and ūx . This has implications for the spectral analysis—an
obvious one being that (1.5) involves four instead of two scalar potentials ψ j (t).

– The occurrence of the factor λ2 in (1.3) implies that the derivation of the fun-
damental solution’s asymptotics for |λ| → ∞ requires new techniques (see the
proof of Theorem 2.7). For the x-part, the analogous result can be established via
an application of Gronwall’s lemma [13]. This approach does not seem to general-
ize to the t-part, but instead we are able to perform an asymptotic analysis inspired
by [7, Chapter 6] (see also [24]).

– In Theorems 4.4 and 4.5, we will, for sufficiently small potentials, establish the
existence of analytic arcs which connect periodic eigenvalues close to the real line
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(a) (b)

Fig. 1 Plots of the periodic and antiperiodic eigenvalues for two single exponential potentials with different
sets of parameters σ , ω, α and c; cf. (1.6). a The periodic and antiperiodic eigenvalues for the real type
potential given by σ = 1, ω = −2π , α = 6

15 + 11
4 i, c = 1

10 ; b the spectrum of the imaginary type potential

with σ = −1, ω = −2π , α = 1
2 , c = iα

√
2α2 − ω, which arises from an exact plane wave solution of the

focusing NLS

in a pairwise manner and along which the discriminant is real. A similar result
for (1.2) can be found in [20, Proposition 2.6]. In both cases, the proof relies on
the implicit function theorem in infinite dimensional Banach spaces. However,
the proof of (1.3) is quite a bit more involved and requires, for example, the
introduction of more complicated function spaces, see (3.5).

1.2 Outline of the paper

In order to facilitate comparison with the existing literature on the x-part (1.2), our
original intention was to closely follow the scheme and methods developed in [13],
adapting them to Eq. (1.3). As pointed out in the previous paragraph we have that
Eq. (1.3) is quadratic in the spectral parameterλ andhence it is ageneralized eigenvalue
problem making its treatment more challenging. Nevertheless, some resemblance to
the first two chapters of [13] remains. The main novelty of the paper is the proof
of the leading order asymptotics for large |λ| of the fundamental matrix solution
associated with (1.3), cf. Theorem 2.7. These asymptotics are a key ingredient for the
subsequent two sections. The discussion of the asymptotic localization of the Dirichlet
eigenvalues, Neumann eigenvalues and periodic eigenvalues in Sect. 3, as well as the
study of the zero set of the imaginary part of the discriminant for potentials of real
and imaginary type (corresponding to the defocusing and focusing NLS, respectively)
in Sect. 4 then follow closely [13] and, respectively, [20]. In Sect. 5, we consider the
special (but important) case of single-exponential potentials forwhich the fundamental
matrix solution permits an exact formula. This enables us to illustrate the theoretical
results from the previous sections. We provide useful formulas for the gradients of
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the fundamental solution and the discriminant in Sect. 6. The last section reviews the
standard bi-Hamiltonian structure of NLS as a time-evolution equation and establishes
a Hamiltonian structure for NLS viewed as an x-evolution equation. More precisely,
we show that the NLS system

{
qxx = −iqt + 2q2r

rxx = irt + 2r2q,

which is associated with (1.1), can be written as

(q, r , p, s)ᵀx = D̃ ∂ H̃1,

where the 4-vector on the left hand side is understood as a column vector (indicated
by the transpose operation ᵀ), and the Hamiltonian H̃1, its gradient ∂ H̃1, and the
Hamiltonian operator D̃ are given by

H̃1 =
∫ (

ps+iqtr−q2r2
)
dt, ∂ H̃1 =

⎛
⎜⎜⎝
−irt − 2r2q
iqt − 2q2r

s
p

⎞
⎟⎟⎠ , D̃ =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠.

The associated Poisson bracket for two functionals F and G is given by

{F,G}D̃ =
∫

(∂F)ᵀ D̃ ∂G dt .

2 Fundamental solution

In Sect. 2.1, we introduce the framework for the study of (1.3) and establish basic
properties of the fundamental solution. In Sect. 2.2 we derive estimates for the funda-
mental matrix solution and its λ-derivative for large |λ|. These estimates will be used
in Sect. 3 to asymptotically localize the Dirichlet, Neumann and periodic eigenvalues
as well as the critical points of the discriminant of (1.3).

2.1 Framework and basic properties

The potential matrix V in (1.3) depends on the spectral parameter λ ∈ C and the
potential ψ = (ψ1, ψ2, ψ3, ψ4) taken from the space

X := H1(T,C)× H1(T,C)× H1(T,C)× H1(T,C),

where H1(T,C) denotes the Sobolev space of complex absolutely continuous func-
tions on the one-dimensional torus T = R/Z with square-integrable weak derivative,
which is equipped with the usual norm induced by the H1-inner product
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(·, ·) : H1(T,C)× H1(T,C) → C, (u, v) �→
∫ 1

0
(uv̄ + ut v̄t ) dt .

We endow the space X with the inner product

〈ψ1, ψ2〉 := (ψ1
1 , ψ

1
2 )+ (ψ2

1 , ψ
2
2 )+ (ψ3

1 , ψ
3
2 )+ (ψ4

1 , ψ
4
2 ),

which induces the norm ‖ψ‖ = √〈ψ,ψ〉 on X. Likewise we consider the space

Xτ := H1([0, τ ],C)× H1([0, τ ],C)× H1([0, τ ],C)× H1([0, τ ],C)

on the interval [0, τ ] for fixed τ > 0, where the Sobolev space H1([0, τ ],C) is
equipped with the inner product

(·, ·)τ : H1([0, τ ],C)× H1([0, τ ],C) → C, (u, v) �→
∫ τ

0
(uv̄ + ut v̄t ) dt .

We set

〈ψ1, ψ2〉τ := (ψ1
1 , ψ

1
2 )τ + (ψ2

1 , ψ
2
2 )τ + (ψ3

1 , ψ
3
2 )τ + (ψ4

1 , ψ
4
2 )τ ,

which makes Xτ an inner product space and induces the norm ‖ψ‖τ := √〈ψ,ψ〉τ .
For the components ψ j of ψ ∈ X or ψ ∈ Xτ respectively, we write

‖ψ j‖ =
√
(ψ j , ψ j ), ‖ψ j‖τ =

√
(ψ j , ψ j )τ , j = 1, 2, 3, 4.

Since not every ψ ∈ X1 is periodic, X is a proper closed subspace of X1. The spaces
X and Xτ inherit completeness from H1(T,C) and H1([0, τ ],C) respectively, hence
they are Hilbert spaces.

On the space M2×2(C) of complex valued 2 × 2-matrices we consider the norm
| · |, which is induced by the standard norm in C

2, also denoted by | · |, i.e.

|A| := max
z∈C2,|z|=1

|Az|.

The norm | · | is submultiplicative, i.e. |AB| ≤ |A| |B| for A, B ∈ M2×2(C).
For given λ ∈ C and ψ ∈ X, let us write the initial value problem corresponding

to (1.3) as

Dφ = Rφ + Vφ, (2.1)

φ(0) = φ0, (2.2)

where V is given by (1.5),

D :=
(
∂t

∂t

)
, R ≡ R(λ) := −2iλ2σ3,
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and

φ =
(
φ1

φ2

)
: T → C

2.

Equation (2.1) reduces to (1.3) if we identify (ψ1, ψ2, ψ3, ψ4) = (u, σ ū, ux , σ ūx ).
In analogy to the conventions for the eigenvalue problem (1.2) for the x-part of the

NLS Lax pair, we say that the spectral problem (2.1) is of Zakharov–Shabat (ZS) type.
The corresponding equation written in AKNS [1] coordinates (q0, p0, q1, p1) reads

Dφ = −2λ2
( −1
1

)
φ +

(
2λq0 − p1 2λp0 + p20 + q20 + q1

2λp0 − (p20 + q20 )+ q1 −2λq0 + p1

)
φ.

(2.3)
It is obtained by multiplying the operator equation D = R + V from the right with T
and from the left with T−1, where

T =
(
1 i
1 −i

)
, T−1 = 1

2

(
1 1
−i i

)
, (2.4)

and by writing

ψ1 = q0 + ip0, ψ2 = q0 − ip0, ψ3 = q1 + ip1, ψ4 = q1 − ip1,

that is,

q0 = 1

2
(ψ1 +ψ2), p0 = − i

2
(ψ1 −ψ2), q1 = 1

2
(ψ3 +ψ4), p1 = − i

2
(ψ3 −ψ4).

In what follows we show the existence of a unique matrix-valued fundamental
solution M of (2.1), that is, a solution of

DM = RM + V M, M(0) = I, (2.5)

where I ∈ M2×2(C) denotes the identitymatrix. The proof relies on a standard iteration
technique. We first observe that the fundamental matrix solution for the zero potential
ψ = 0 is given by

Eλ(t) := e−2λ2iσ3t =
(
e−2λ2it

e2λ
2it

)
, t ≥ 0.

Indeed, Eλ solves the initial value problem

DEλ = REλ, Eλ(0) = I.

For λ ∈ C, ψ ∈ X and 0 ≤ t < ∞ we inductively define

M0 := Eλ(t), Mn+1(t) :=
∫ t

0
Eλ(t − s)V (s)Mn(s) ds, n ≥ 0, (2.6)
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where V ≡ V (s, λ, ψ) is defined for all s ≥ 0 by periodicity. For each n ≥ 1, Mn is
continuous on [0,∞)× C × X and satisfies

Mn(t) =
∫
0≤sn≤···≤s1≤t

Eλ(t)
n∏

i=1

Eλ(−si )V (si )Eλ(si ) dsn · · · ds1.

Using that |Eλ(t)| = e2|(λ2)|t for t ≥ 0, we estimate

|Mn(t)| ≤ e2(2n+1)|(λ2)|t
∫
0≤sn≤···≤s1≤t

n∏
i=1

|V (si )| dsn · · · ds1

≤ e2(2n+1)|(λ2)|t

n!
∫
[0,t]n

n∏
i=1

|V (si )| dsn · · · ds1

≤ e2(2n+1)|(λ2)|t

n!
(∫ t

0
|V (s)| ds

)n

≤ e2(2n+1)|(λ2)|t

n! tn/2
(
2max(1, |λ|))n [C(ψ, t)]n,

where one can choose

C(ψ, t) := ∥∥max
(|ψ1ψ2|, |ψ1| + |ψ3|, |ψ2| + |ψ4|)∥∥t

as a uniform bound for bounded sets of [0,∞)× X. Therefore the matrix

M(t) :=
∞∑
n=0

Mn(t) (2.7)

exists and converges uniformly on bounded subsets of [0,∞)×C×X.By construction,
M solves the integral equation

M(t, λ, ψ) = Eλ(t)+
∫ t

0
Eλ(t − s)V (s, λ, ψ)M(s, λ, ψ) ds, (2.8)

hence M is the unique matrix solution of the initial value problem (2.5). Since each
Mn , n ≥ 0 is continuous on [0,∞) × C × X and moreover analytic in λ and ψ for
fixed t ∈ [0,∞), M inherits the same regularity due to uniform convergence. Thus
we have proved the following result.

Theorem 2.1 (Existence of the fundamental solution M) The power series (2.7) with
coefficients given by (2.6) converges uniformly on bounded subsets of [0,∞)×C×X
to a continuous function denoted by M, which is analytic in λ and ψ for each fixed
t ≥ 0 and satisfies the integral Eq. (2.8).

The fundamental solution M is in fact compact:
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Proposition 2.2 (Compactness of M) For any sequence (ψk)k in X which converges
weakly to an element ψ ∈ X as k → ∞, i.e. ψk⇀ψ , one has

|M(t, λ, ψk)− M(t, λ, ψ)| → 0

uniformly on bounded sets of [0,∞)× C.

Proof It suffices to prove the statement for each Mn , since the series (2.7) converges
uniformly on bounded subsets of [0,∞)×C×X. The assertion is true for M0 = Eλ,
which is independent ofψ . To achieve the inductive step, we assume that the statement
holds for Mn , n ≥ 1, and consider an arbitrary sequence ψk⇀ψ in X. Then

Mn(t, λ, ψk) → Mn(t, λ, ψ)

uniformly on bounded subsets of [0,∞)× C. Thus

Mn+1(t, λ, ψk) =
∫ t

0
Eλ(t − s)V (s, λ, ψk)Mn(s, λ, ψk) ds

→
∫ t

0
Eλ(t − s)V (s, λ, ψ)Mn(s, λ, ψ) ds

uniformly on bounded subsets of [0,∞)× C. ��
Furthermore, M satisfies the Wronskian identity:

Proposition 2.3 (Wronskian identity) Everywhere on [0,∞)× C × X it holds that

det M(t, λ, ψ) = 1.

In particular, the inverse M−1 is given by

M−1 =
(

m4 −m2
−m3 m1

)
if M =

(
m1 m2
m3 m4

)
.

Proof The fundamental solution M is regular for all t ≥ 0. Therefore a direct compu-
tation yields

∂t det M = tr(∂t M · M−1) det M .

Since
tr(∂t M · M−1) = tr(R + V ) = 0

it follows that det M(t) = det M(0) = 1 for all t ≥ 0. ��
The solution of the inhomogeneous problem corresponding to the initial value

problem (2.1)–(2.2) has the usual “variation of constants representation”:
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Proposition 2.4 The unique solution of the inhomogeneous equation

D f = (R + V ) f + g, f (0) = v0

with g ∈ L2([0, 1],C)× L2([0, 1],C) is given by

f (t) = M(t)

(
v0 +

∫ t

0
M−1(s)g(s) ds

)
. (2.9)

Proof Differentiating (2.9) with respect to t and using that M is the fundamental
solution of (2.5), we find that

f ′(t) = D f (t) = M ′(t)v0 + M ′(t)
∫ t

0
M−1(s)g(s) ds + M(t)M−1(t)g(t)

= (R + V )M(t)

(
v0 +

∫ t

0
M−1(s)g(s) ds

)
+ g(t)

= (R + V ) f (t)+ g(t)

and f (0) = v0. ��
As a corollary we obtain a formula for the λ-derivative Ṁ of M .

Corollary 2.5 The λ-derivative Ṁ of M is given by

Ṁ(t) = M(t)
∫ t

0
M−1(s)N (s)M(s) ds, (2.10)

where

N = 2

(−2λi ψ1

ψ2 2λi

)
.

In particular, Ṁ is analytic on C ×X and compact on [0,∞)× C ×X uniformly on
bounded subsets of [0,∞)× C.

Proof Differentiation of DM = (R + V )M with respect to λ gives

DṀ = (R + V )Ṁ + d

dλ

(
R(λ)+ V (λ)

)
M = (R + V )Ṁ + NM,

and Proposition 2.4 yields (2.10). The second claim is a consequence of Proposition
2.2. ��

The fundamental solutionM of the ZS-system is related to the fundamental solution
K of the AKNS-system by

K = T−1MT , (2.11)

cf. (2.4). That is, if

M =
(
m1 m2
m3 m4

)
, K =

(
k1 k2
k3 k4

)
,
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1204 J. Lenells, R. Quirchmayr

then

k1 = m1 + m2 + m3 + m4

2
, k2 = m1 − m2 + m3 − m4

−2i
,

k3 = m1 + m2 − m3 − m4

2i
, k4 = m1 − m2 − m3 + m4

2
.

The fundamental solution for the zero potential in AKNS coordinates is therefore
given by

e2iλ
2σ2t =

(
cos 2λ2t sin 2λ2t
− sin 2λ2t cos 2λ2t

)
, σ2 =

(
0 −i
i 0

)
.

Remark 2.6 It is obvious that all results in this section possess an analogous version
in which the space X of 1-periodic potentials is replaced by the space Xτ of potentials
defined on the interval [0, τ ], τ > 0.

2.2 Leading order asymptotics

The results in this section hold for 0 ≤ t ≤ 1 and hence apply to the time-periodic
problem we are primarily interested in.

It was pointed out in [25] that the fundamental matrix solution M of (2.5) for a
potential with sufficient smoothness and decay admits an asymptotic expansion (as
|λ| → ∞) of the form

M(λ, t) =
(
I+ Z1(t)

λ
+ Z2(t)

λ2
+ · · ·

)
e−2iλ2tσ3 +

(
W1(t)

λ
+ W2(t)

λ2
+ · · ·

)
e2iλ

2tσ3 ,

(2.12)
where the matrices Zk , Wk , k = 1, 2, . . . , can be explicitly expressed in terms of the
potential and therefore only depend on the time variable t ≥ 0, and satisfy Zk(0) +
Wk(0) = 0 for all integers k ≥ 1. This suggests that M satisfies

M(λ, t) = e−2iλ2tσ3 +O(|λ|−1 e2|(λ2)|t ) as |λ| → ∞

for t within a given bounded interval. These considerations suggest the following
result.

Theorem 2.7 (Asymptotics of M and Ṁ as |λ| → ∞) Uniformly on [0, 1] × C and
on bounded subsets of X1,

M(t, λ, ψ) = Eλ(t)+O(|λ|−1 e2|(λ2)|t
)

in the sense that there exist constants C > 0 and K > 0 such that

|λ| e−2|(λ2)|t |M(t, λ, ψ)− Eλ(t)| ≤ C (2.13)
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uniformly for all 0 ≤ t ≤ 1, all λ ∈ C with |λ| > K and all ψ contained in a given
bounded subset of X1. Moreover, the λ-derivative of M satisfies

Ṁ(t, λ, ψ) = Ėλ(t)+O(
e2|(λ2)|t

)
(2.14)

uniformly on [0, 1] × C and on bounded subsets of X1.

Theorem 2.7 will be established via a series of lemmas. We first introduce some
notation and briefly discuss the idea of the proof.

For λ ∈ C and ψ ∈ X1, let M be the fundamental solution of (2.5), which will be
considered on the unit interval [0, 1]. We set

θ := 2λ2

and define M+ and M− by

M+(t, λ, ψ) := M(t, λ, ψ)eiθ tσ3 , M−(t, λ, ψ) := M(t, λ, ψ)e−iθ tσ3 ,

For a given complex 2× 2-matrix

A =
(
a b
c d

)

we denote by Ad its diagonal part and by Aod its off-diagonal part, i.e.

Ad =
(
a

d

)
, Aod =

(
c

b

)
.

We will always identify a potential ψ ∈ X1, with its absolutely continuous version.
This allows us to evaluate ψ at each point; we set ψ0 := ψ(0) and ψ

j
0 := ψ j (0) for

j = 1, 2, 3, 4. For a given potential ψ ∈ X1, t ∈ [0, 1] and λ ∈ C we define

Z p(t, λ, ψ) := I + Z1(t, ψ)

λ
+ Zod

2 (t, ψ)

λ2
,

where

Z1(t, ψ) := − i

2

(
ψ1

−ψ2

)
+ 1

2
σ3,

Zod
2 (t, ψ) := 1

4

(
ψ3 + iψ1

ψ4 + iψ2

)
,

with

 ≡ (t, ψ) :=
∫ t

0
(ψ1ψ4 − ψ2ψ3) dτ.
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Furthermore we set

Wp(t, λ, ψ) := W1(t, ψ)

λ
+ W2(t, ψ)

λ2
+ W d

3 (t, ψ)

λ3
,

where

W1(t, ψ) = W1(ψ) := i

2

(
ψ1
0−ψ2

0

)
,

W2(t, ψ) := −1

4

(
ψ2
0ψ

1 −iψ1
0 + ψ3

0−iψ2
0 + ψ4

0 ψ1
0ψ

2

)
,

W d
3 (t, ψ) := i

8

(−ψ2
0 (ψ

3 + iψ1)+ ψ4
0ψ

1

ψ1
0 (ψ

4 + iψ2)− ψ3
0ψ

2

)
.

We finally define Mp, which will serve as an approximation of M , by

Mp(t, λ, ψ) := Z p(t, λ, ψ)e−iθ tσ3 +Wp(t, λ, ψ)eiθ tσ3 ,

and set M+
p := Mpeiθ tσ3 , M−

p := Mpe−iθ tσ3 , i.e.

M+
p (t, λ, ψ) = Z p(t, λ, ψ)+Wp(t, λ, ψ)e2iθ tσ3 ,

M−
p (t, λ, ψ) = Z p(t, λ, ψ)e−2iθ tσ3 +Wp(t, λ, ψ).

Letting Q j , j = 1, 2, 3, 4, denote the four open quadrants of the complex λ-plane,
we set

D+ := Q1 ∪ Q3 and D− := Q2 ∪ Q4.

For an arbitrary complex number λ = x + iy with x, y ∈ R and t ≥ 0, it holds that

|e2iλ2t | = e−4xy ≤ 1 ⇐⇒ λ ∈ D+, |e−2iλ2t | = e4xy ≤ 1 ⇐⇒ λ ∈ D−.

We will prove Theorem 2.7 by establishing asymptotic estimates for the distance
between the fundamental solutionM and the explicit expressionMp that approximates
M . For this purpose we will consider the columns of M+ and M− separately and
compare themwith the columns ofM+

p andM−
p , respectively, after restricting attention

to either D+ or D−. By combining all possible combinations, we are able to infer
asymptotic estimates for the full matrix M valid on the whole complex plane.

Remark 2.8 For a given smooth potentialψ , thematrices Zk andWk can be determined
recursively up to any order k ≥ 0 by integration by parts. Indeed, note that V =
V0 + λV1 where

V0 :=
(−iψ1ψ2 iψ3

−iψ4 iψ1ψ2

)
, V1 :=

(
2ψ1

2ψ2

)
.
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Assuming that the formal expression

( ∞∑
k=−1

Zk(t, ψ)

λk

)
e−iθ tσ3 +

( ∞∑
k=−1

Wk(t, ψ)

λk

)
eiθ tσ3

with
Z0(t, ψ) ≡ I, Z−1(t, ψ) = W−1(t, ψ) = W0(t, ψ) ≡ 0

solves (2.5), one infers the following recursive equations for the coefficients Zk and
Wk :

(Zk)t + 4iσ3Z
od
k+2 = V0Zk + V1Zk+1,

(Wk)t + 4iσ3W
d
k+2 = V0Wk + V1Wk+1

for all integers k ≥ −1 and Zk(0, ψ)+Wk(0, ψ) = 0 for all integers k ≥ 1.
For ψ ∈ X1, the matrices Z p and Wp satisfy

Z p(0, λ, ψ)+Wp(0, λ, ψ) = I +O(|λ|−2),

since the values of Zd
2 are not determined, which turns out to be sufficient to prove the

asymptotic estimates of M asserted in Theorem 2.7.

Lemma 2.9 Let ψ ∈ X1 be an arbitrary potential. Then M is the fundamental matrix
solution of the Cauchy problem (2.5) if and only if M+ satisfies

M+
t + 2iθσ3(M

+)od = V M+, M+(0, λ) = I. (2.15)

Proof By applying the product rule, assuming that (2.5) holds and noting that σ3
commutes with diagonal matrices, we obtain

M+
t = (Meiθ tσ3)t = Mt e

iθ tσ3 + M eiθ tσ3 iθσ3

= (V M − iθσ3 M) eiθ tσ3 + iθM+σ3

= V M+ − iθ [σ3,M+]
= V M+ − 2iθσ3(M

+)od.

Conversely, if (2.15) holds, we similarly obtain

Mt e
iθ tσ3 = (V M − iθσ3 M) eiθ tσ3 ,

and a multiplication with e−iθ tσ3 from the right yields that M satisfies the differen-
tial equation in (2.5). The statement concerning the initial conditions holds because
M(0, λ) = M+(0, λ). ��

The following lemma is concerned with the invertibility of Z p. We set CK := {λ ∈
C : |λ| > K } for K > 0, and denote by Br (0,X1) the ball of radius r > 0 in X1
centered at 0.
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1208 J. Lenells, R. Quirchmayr

Lemma 2.10 Let r > 0. There exists a constant Kr > 0 such that Z p is invertible on
[0, 1] × C

Kr × Br (0,X1) with

Z−1
p (t, λ, ψ) =

∞∑
n=0

(
− Z1(t, ψ)

λ
− Zod

2 (t, ψ)

λ2

)n

. (2.16)

Proof We use the general fact that if an element A of a Banach algebra (A, ‖ · ‖)
satisfies ‖A‖ < 1, then I − A is invertible and its inverse is given by the Neumann
series

∑
n≥0 A

n . Let Kr > 0 be so large that

∣∣∣∣ Z1(t, ψ)

λ
+ Zod

2 (t, ψ)

λ2

∣∣∣∣ < 1

2

for all t ∈ [0, 1], λ ∈ C
Kr and ψ ∈ Br (0,X1). This can always be achieved, because

the functions {ψ j }41, and hence also the functions |Z1(t, ψ)| and |Zod
2 (t, ψ)|, are

uniformly bounded on [0, 1]× Br (0,X1). It follows that the inverse of Z p on [0, 1]×
C

Kr × Br (0,X1) exists and is given by its Neumann series, i.e. (2.16) is satisfied. ��
Lemma 2.10 and its proof suggest the introduction of the following notation.

Definition 2.11 For each r > 0, we define

Kr := inf|λ|>1
λ∈C

{|I− Z p(t, λ, ψ)| < 1/2 ∀t ∈ [0, 1] ∀ψ ∈ Br (0,X1)
}
.

Corollary 2.12 Let r > 0. The matrix Z p is invertible on [0, 1] × C
Kr × Br (0,X1)

and its inverse Z−1
p is given by (2.16). Both Z p and Z−1

p are uniformly bounded on

[0, 1] × C
Kr × Br (0,X1). Furthermore,

Z−1
p = I − Z1

λ
+ Z2

1 − Zod
2

λ2
+O(|λ|−3) (2.17)

uniformly on [0, 1] × C
Kr × Br (0,X1) as |λ| → ∞.

Proof The expansion (2.17) follows directly from (2.16), the uniform O(|λ|−3) error
follows from the uniform convergence of the respective Neumann series on [0, 1] ×
C

Kr × Br (0,X1), see the proof of Lemma 2.10. ��
For t ∈ [0, 1], λ ∈ C and ψ ∈ X1, we define

Ap,Z := [
(∂t Z p)− iθ Z pσ3

]
Z−1
p , A := V − iθσ3, �Z := A− Ap,Z ,

whenever the inverse Z−1
p exists. By Lemma 2.10, the inverse of Z p exists uniformly

on [0, 1] and on bounded sets in X1 provided that |λ| is large enough.
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Lemma 2.13 For λ ∈ C and ψ ∈ X1, let M be the fundamental solution of (2.5) on
the unit interval. If |λ| is so large that Z−1

p exists for all t ∈ [0, 1], then

(Z−1
p M+)t = Z−1

p �Z M
+ − iθ [σ3, Z−1

p M+], (2.18)

(Z−1
p M−)t = Z−1

p �Z M
− − iθ(σ3Z

−1
p M− + Z−1

p M−σ3). (2.19)

Proof By Lemma 2.9 we can write M+
t = AM+ + iθM+σ3, hence Eq. (2.18) is

directly obtained by:

(Z−1
p M+)t = −Z−1

p (∂t Z p)Z
−1
p M+ + Z−1

p M+
t

= −Z−1
p (Ap,Z Z p + iθ Z pσ3)Z

−1
p M+ + Z−1

p (AM+ + iθM+σ3)

= Z−1
p �Z M

+ − iθ [σ3, Z−1
p M+].

Equation (2.19) is similarly obtained by noting that

M−
t = (M+e−2iθ tσ3)t = (V M+ − iθ [σ3,M+])e−2iθ tσ3 − 2iθM+e−2iθ tσ3σ3

= AM− − iθM−σ3.

��
For z ∈ C, we define the linear map ezσ̂3 on the space of complex 2 × 2-matrices

by
ezσ̂3(A) := ezσ3 Ae−zσ3;

furthermore we define ezσ̌3 via

ezσ̌3(A) := ezσ3 Aezσ3 .

Lemma 2.13 yields Volterra equations for M+ and M−.

Lemma 2.14 For λ ∈ C and ψ ∈ X1, let M be the fundamental solution of (2.5) on
the unit interval. If |λ| is so large that Z−1

p exists for all t ∈ [0, 1], then M+ satisfies

M+(t, λ, ψ) = Z p(t, λ, ψ) e−iθ t σ̂3 [Z−1
p (0, λ, ψ)]

+
∫ t

0
Z p(t, λ, ψ) e−iθ(t−τ)σ̂3 [(Z−1

p �Z M
+)(τ, λ, ψ)] dτ, (2.20)

and M− satisfies

M−(t, λ, ψ) = Z p(t, λ, ψ) e−iθ t σ̌3 [Z−1
p (0, λ, ψ)]

+
∫ t

0
Z p(t, λ, ψ) e−iθ(t−τ)σ̌3 [(Z−1

p �Z M
+)(τ, λ, ψ)] dτ. (2.21)
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Proof Using identity (2.18) in Lemma 2.13, we infer that

(
eiθ t σ̂3(Z−1

p M+)
)
t = eiθ t σ̂3(Z−1

p �Z M
+). (2.22)

In order to obtain (2.20), we first integrate (2.22) from 0 to t and use thatM+(0, λ) = I
to determine the integration constant. Applying e−iθ t σ̂3 to both sides of the resulting
integral equation and multiplying by Z p from the left, we find (2.20).

The Volterra equation for M− follows in an analogous way from the equation

(eiθ t σ̌3(Z−1
p M−))t = eiθ t σ̌3(Z−1

p �Z M
−),

which is a consequence of (2.19). ��
For a t-dependent matrix A with entries in L p([0, 1],C) we define

‖A‖L p([0,1],C) :=
(∫ 1

0
|A(t)|p dt

)1/p

, 1 ≤ p < ∞.

Lemma 2.15 Let B be an arbitrary bounded subset of X1 and let 1 ≤ q ≤ 2. Then

‖∂t Z1(ψ)‖Lq ([0,1],C) = O(1), ‖∂t Zod
2 (ψ)‖Lq ([0,1],C) = O(1),

uniformly on B.

Proof The case q = 2 follows directly from the definitions of Z1 and Zod
2 , the conti-

nuity of the operator
‖ · ‖L2([0,1],C) ◦ ∂t : H1(0, 1) → R,

and the fact that H1(0, 1) is an algebra. The cases 1 ≤ q < 2 follow from the
case q = 2 in view of the continuous embeddings L2([0, 1],C) ↪→ Lq([0, 1],C),
1 ≤ q < 2. ��
Lemma 2.16 Let r > 0. There exists a constant C > 0 such that uniformly for (λ, ψ)

in C
Kr × Br (0,X1),

|λ| ‖�Z (λ, ψ)‖L1([0,1],C) ≤ C . (2.23)

Proof Note that
4iσ3Z

od
1 = V1, 4iσ3Z

od
2 = V0 + V1Z1 (2.24)

for arbitraryψ ∈ X1.ByCorollary 2.12 the asymptotic estimate (2.17) holds uniformly
on [0, 1]×C

Kr × Br (0,X1) as |λ| → ∞. In particular,�Z is well-defined on [0, 1]×
C

Kr × Br (0,X1) and satisfies

�Z = V0 + λV1 − 2iλ2σ3 + 2iλ2
(
I + Z1

λ
+ Zod

2

λ2

)
σ3

(
I− Z1

λ
+ Z2

1 − Zod
2

λ2

)

+O(|λ|−1) (2.25)
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in L1([0, 1],C) uniformly on C
Kr × Br (0,X1) as |λ| → ∞, where we have used

Lemma 2.15 to estimate the ∂t Z p-term. By keeping only the λk-terms for k = 0, 1, 2
in (2.25) and by employing (2.24), we obtain

�Z = V0 + λV1 − 2iλ[σ3, Z1] + 2i[Zod
2 , σ3] + 2i[σ3, Z1]Z1 +O(|λ|−1)

= V0 − 4iσ3Z
od
2 + 4iσ3Z

od
1 Z1 +O(|λ|−1)

= 0+O(|λ|−1)

in L1([0, 1],C) uniformly on C
K
r × Br (0,X1) as |λ| → ∞. ��

Let [A]1 and [A]2 denote the first and second columns of a 2 × 2-matrix A. Let
|[A]i |, i = 1, 2, denote the standard C

2-norm of the vector [A]i .
Lemma 2.17 Let r > 0. There exists a constant C > 0 such that

|λ| ∣∣[M+(t, λ, ψ)− Z p(t, λ, ψ) e−iθ t σ̂3
(
Z−1
p (0, λ, ψ)

)]
2

∣∣ ≤ C, (2.26)

|λ| ∣∣[M−(t, λ, ψ)− Z p(t, λ, ψ) e−iθ t σ̌3
(
Z−1
p (0, λ, ψ)

)]
1

∣∣ ≤ C (2.27)

uniformly on [0, 1] × DKr− × Br (0,X1), and

|λ| ∣∣[M−(t, λ, ψ)− Z p(t, λ, ψ) e−iθ t σ̌3
(
Z−1
p (0, λ, ψ)

)]
2

∣∣ ≤ C, (2.28)

|λ| ∣∣[M+(t, λ, ψ)− Z p(t, λ, ψ) e−iθ t σ̂3
(
Z−1
p (0, λ, ψ)

)]
1

∣∣ ≤ C (2.29)

uniformly on [0, 1] × DKr+ × Br (0,X1).

Proof For λ ∈ C
Kr , the functions

M(t, λ, ψ) := [M+(t, λ, ψ)]2,
M0(t, λ, ψ) := [

Z p(t, λ, ψ)e−iθ t σ̂3
(
Z−1
p (0, λ, ψ)

)]
2,

E(t, τ, λ, ψ) := Z p(t, λ, ψ)

(
e−2iθ(t−τ)

1

)
Z−1
p (τ, λ, ψ),

are well-defined on their domains [0, 1] × C
Kr × Br (0,X1) and [0, 1]2 × C

Kr ×
Br (0,X1) respectively, where the inverse Z−1

p is given by (2.16) and is uniformly
bounded on [0, 1] × C

Kr × Br (0,X1) by Lemma 2.10 and Corollary 2.12. Due to
Lemma 2.14,M satisfies the following Volterra equation for t ∈ [0, 1], λ ∈ C

Kr and
ψ ∈ Br (0,X1):

M(t, λ) = M0(t, λ)+
∫ t

0
E(t, τ, λ)�Z (τ, λ)M(τ, λ) dτ,

where the ψ-dependence has been suppressed for simplicity. Thus M admits the
power series representation
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M(t, λ) =
∞∑
n=0

Mn(t, λ),

which converges (pointwise) absolutely and uniformly on [0, 1] × C
Kr × Br (0,X1),

where

Mn(t, λ) :=
∫ t

0
E(t, τ, λ)�Z (τ, λ)Mn−1(τ, λ) dτ (n ≥ 1)

satisfies the estimate

|Mn(t, λ)| ≤
∫
0≤τn≤···≤τ1≤t

n∏
i=1

|E(t, τi , λ)�Z (τ, λ)M0(τ, λ)| dτn · · · dτ1

≤ 1

n!
(∫ t

0
|E(t, τ, λ)| |�Z (τ, λ)| |M0(τ, λ)| dτ

)n

uniformly on [0, 1] × C
Kr × Br (0,X1). The functions E and M0 satisfy

|M0(t, λ)| ≤ |Z p(t, λ)| |Z−1
p (0, λ)|,

|E(t, τ, λ)| ≤ |Z p(t, λ)| |Z−1
p (τ, λ)|,

for 0 ≤ τ ≤ t ≤ 1 and (λ, ψ) ∈ DKr− × Br (0,X1). Therefore, in view of Corollary
2.12 and Lemma 2.16, there exists a constant C > 0 such that

|Mn(t, λ)| ≤ Cn

n! |λ|n

uniformly on [0, 1] × DKr− × Br (0,X1), and thus

|M(t, λ)−M0(t, λ)| ≤
∞∑
n=1

Cn

n! |λ|n ≤ Ce
C
|λ|

|λ|

uniformly on [0, 1]×DKr− ×Br (0,X1). This proves (2.26); the proofs of (2.27)–(2.29)
are similar. ��
Lemma 2.18 Let r > 0. There exists a constant C > 0 such that

|λ|2 ∣∣[Z p(t, λ, ψ) e−iθ t σ̂3
(
Z−1
p (0, λ, ψ)

)− M+
p (t, λ, ψ)

]
2

∣∣ ≤ C, (2.30)

|λ|2 ∣∣[Z p(t, λ, ψ) e−iθ t σ̌3
(
Z−1
p (0, λ, ψ)

)− M−
p (t, λ, ψ)

]
1

∣∣ ≤ C (2.31)

uniformly on [0, 1] × DKr− × Br (0,X1), and

|λ|2 ∣∣[Z p(t, λ, ψ) e−iθ t σ̌3
(
Z−1
p (0, λ, ψ)

)− M−
p (t, λ, ψ)

]
2

∣∣ ≤ C, (2.32)
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|λ|2 ∣∣[Z p(t, λ, ψ) e−iθ t σ̂3
(
Z−1
p (0, λ, ψ)

)− M+
p (t, λ, ψ)

]
1

∣∣ ≤ C (2.33)

uniformly on [0, 1] × DKr+ × Br (0,X1).

Proof Since

[
eiθ t σ̂3

(
Z1(0, ψ)

)]
2 = e2iθ t

(− i
2ψ

1
0

0

)
= e2iθ t

[
Z1(0, ψ)

]
2 = −e2iθ t

[
W1(0, ψ)

]
2

for ψ ∈ X1, Corollary 2.12 yields

[
Z p(t, λ, ψ) e−iθ t σ̂3(Z−1

p (0, λ, ψ))
]
2

=
[
Z p(t, λ, ψ) e−iθ t σ̂3

(
I − Z1(0, ψ)

λ
+O(|λ|−2)

)]
2

=
[
Z p(t, λ, ψ)

]
2
− e−2iθ t

λ

[
Z1(0, ψ)

]
2
+O

(
e2θ t

|λ|2
)

=
[
Z p(t, λ, ψ)

]
2
+ e−2iθ t

λ

[
W1(0, ψ)

]
2
+O

(
e2θ t

|λ|2
)

uniformly on [0, 1] ×C
Kr × Br (0,X1) as |λ| → ∞. On the other hand, we have that

[
M+

p (t, λ, ψ)
]
2 =

[
Z p(t, λ, ψ)

]
2 +

e−2iθ t

λ

[
W1(0, ψ)

]
2
+O

(
e2θ t

|λ|2
)

uniformly on [0, 1] × C
Kr × Br (0,X1) as |λ| → ∞. Since θ ≤ 0 for λ ∈ D−, the

estimate (2.30) follows. The estimates (2.31)–(2.32) are proved in a similar way. ��
Proof of Theorem 2.7 The first assertion of the theorem follows by combining Lemmas
2.17 and 2.18. Let r > 0. By (2.26) and (2.30), there exists a C > 0 such that

|λ| ∣∣[M+(t, λ, ψ)− M+
p (t, λ, ψ)

]
2

∣∣ ≤ C

uniformly on [0, 1] × DKr− × Br (0,X1). Thus,

|λ| e−2|(λ2)|t ∣∣[M(t, λ, ψ)− Mp(t, λ, ψ)
]
2

∣∣ ≤ C

uniformlyon [0, 1]×DKr− ×Br (0,X1). SinceMp(t, λ, ψ) = Eλ(t)+O(|λ|−1e2|(λ2)|t )
uniformly on [0, 1]×DKr− × Br (0,X1) as |λ| → ∞, we infer that there exists aC > 0
such that

|λ| e−2|(λ2)|t ∣∣[M(t, λ, ψ)− Eλ(t)
]
2

∣∣ ≤ C

uniformly on [0, 1]× DKr− × Br (0,X1). Analogously, by using (2.29) and (2.33), one
infers the existence of a constant C > 0 such that

|λ| e−2|(λ2)|t ∣∣[M(t, λ, ψ)− Eλ(t)
]
1

∣∣ ≤ C
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1214 J. Lenells, R. Quirchmayr

uniformly on [0, 1] × DKr+ × Br (0,X1). The estimates (2.28) and (2.32) (resp. (2.27)
and (2.31)) yield the same asymptotic estimates for [M − Eλ]2 (resp. [M − Eλ]1) for
λ restricted to DKr+ (resp. DKr− ). In summary, this yields the existence of constants
C, K > 0 such that

|λ| e−2|(λ2)|t ∣∣M(t, λ, ψ)− Eλ(t)
∣∣ ≤ C

uniformly on [0, 1] × C
K × Br (0,X1). This proves (2.13).

To prove (2.14), we recall Cauchy’s inequality: the derivative f ′ of a holomorphic
function f : C ⊇ G → C satisfying | f (z)| ≤ C on a disc D(r , a) ⊆ G of radius r
centered at a in the open domainG can be estimated at the point a by | f ′(a)| ≤ Cr−1.
According to the first part of the theorem, for any r > 0 there is a K > 0 such that

|λ| e−2|(λ2)|t ∣∣M(t, λ, ψ)− Eλ(t)
∣∣ = O(1)

uniformly for t ∈ [0, 1], λ ∈ C
K and ψ ∈ Br (0,X1) as |λ| → ∞. By applying

Cauchy’s inequality to this estimate, we immediately obtain (2.14). ��
Let us for n ∈ N and i = 1, 2, 3, 4 consider the complex numbers ζ in , which are

given by

ζ 1n :=
√
nπ

2
, ζ 2n := −

√
nπ

2
, ζ 3n := i

√
nπ

2
, ζ 4n := −i

√
nπ

2
.

Theorem 2.19 For any potential ψ ∈ X1 and any sequence (zin)n∈N of complex num-
bers, whose elements zin, i = 1, 2, 3, 4, satisfy

zin = ζ in + O

(
1√
n

)
as n → ∞,

it holds that

sup
0≤t≤1

∣∣M(t, zin)− Ezin
(t)

∣∣ = O(
n−1/2), (2.34)

sup
0≤t≤1

∣∣Ṁ(t, zin)− Ėzin
(t)

∣∣ = O(1) (2.35)

as n → ∞. If moreover the squares (zin)
2 satisfy

(zin)
2 = (ζ in)

2 +O(
n−1/2) as n → ∞,

then it holds additionally that

sup
0≤t≤1

∣∣M(t, zn)− Eζ in
(t)

∣∣ = O(
n−1/2). (2.36)
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The estimates in (2.34) and (2.35) hold uniformly on bounded subsets of X1 and for
sequences (zin)n∈N, which satisfy |zin − ζ in| ≤ C

√
1/n for all n ≥ 1 with a uniform

constant C > 0. The estimate in (2.36) holds uniformly on bounded subsets ofX1 and
for sequences (zn)n∈Z, which satisfy |(zin)2 − (ζ in)

2| ≤ C
√
1/n for all n ≥ 1 with a

uniform constant C > 0.

Proof The estimates (2.34) and (2.35) follow directly from Theorem 2.7, because
z2n = O(1) as |n| → ∞ by assumption, and therefore e2|z2n |t = O(1) uniformly in
t ∈ [0, 1] as |n| → ∞.

To prove (2.36)we note that |ez−1| ≤ |z| e|z| for arbitrary z ∈ C, thus the additional
restriction on zin implies that

∣∣e2(zin)2it − e2(ζ
i
n)

2it
∣∣ = ∣∣e2((zin)2−(ζ in)

2)it − 1
∣∣ = O(

n−1/2) (2.37)

uniformly for t ∈ [0, 1] as n → ∞. The triangle inequality implies that

∣∣M(t, zin)− Eζ in
(t)

∣∣ ≤ ∣∣M(t, zin)− Ezin
(t)

∣∣+ ∣∣Ezin
(t)− Eζ in

(t)
∣∣

for t ∈ [0, 1], and hence (2.36) follows from (2.34) and (2.37). ��
Remark 2.20 For convenience, the asymptotic results in this section are stated for the
space Xτ with τ = 1 (which contains the periodic space X as a subspace). It is clear
that analogous results hold for an arbitrary fixed τ > 0.

3 Spectra

Wewill consider three different notions of spectra associatedwith the spectral problem
(2.1): the Dirichlet, Neumann and periodic spectrum. These spectra are the zero sets of
certain spectral functions, which are defined in terms of the entries of the fundamental
solution M evaluated at time t = 1. We introduce the following notation:

M̀ := M |t=1, m̀i := mi |t=1, i = 1, 2, 3, 4.

3.1 Dirichlet and Neumann spectrum

We define the Dirichlet domain AD of the AKNS-system (2.3) by1

AD := {
f ∈ H1([0, 1],C)× H1([0, 1],C)

∣∣ f2(0) = 0 = f2(1)
}
.

The Dirichlet domain DD of the corresponding ZS-system (2.1) is then given by

DD := {
g ∈ H1([0, 1],C)× H1([0, 1],C)

∣∣ (g1 − g2)(0) = 0 = (g1 − g2)(1)
}
,

1 Following [13], we define the Dirichlet spectrum in terms of f2 and the Neumann spectrum in terms of
f1.
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1216 J. Lenells, R. Quirchmayr

as AD corresponds to DD under the transformation T , cf. (2.4). For a given potential
ψ ∈ X, we say that λ ∈ C lies in the Dirichlet spectrum if there exists a φ ∈ DD \ {0}
which solves (2.1).

Theorem 3.1 Fix ψ ∈ X. The Dirichlet spectrum of (2.1) is the zero set of the entire
function

χD(λ, ψ) := m̀4 + m̀3 − m̀2 − m̀1

2i

∣∣∣∣
(λ,ψ)

. (3.1)

In particular, χD(λ, 0) = sin 2λ2.

Proof Due to the definition ofDD, a complex number λ lies in the Dirichlet spectrum
of (2.1) if and only if the fundamental solution M maps the initial value (1, 1) to a
collinear vector at t = 1. That is, if and only if m̀1 + m̀2 = m̀3 + m̀4. ��

By Theorem 2.7 the characteristic function χD satisfies

χD(λ, ψ) = sin 2λ2 +O(|λ|−1 e2|(λ2)|
)

(3.2)

uniformly on bounded sets in X as |λ| → ∞. For ψ ∈ X, we set

σD(ψ) := {
λ ∈ C : χD(λ, ψ) = 0

}
.

We aim to localize the Dirichlet eigenvalues with the help of (3.2), see Lemma 3.3
below. The proof makes use of the following elementary estimate, cf. [13, Appendix
F]: if λ ∈ C satisfies |λ− nπ | ≥ π/4 for all integers n, then 4 | sin λ| > e|λ|. Let us
rephrase this inequality as follows.

Lemma 3.2 If λ ∈ C satisfies |2λ2 − nπ | ≥ π/4 for all integers n, then

4 | sin 2λ2| > e2|(λ2)|.

We denote the right, left, upper and lower open complex halfplane by

C+ := {z ∈ C : �z > 0}, C− := {z ∈ C : �z < 0},
C
+ := {z ∈ C : z > 0}, C

− := {z ∈ C : z < 0}.

Lemma 3.2 motivates the definition of the discs Di
n , which are introduced below, to

localize the Dirichlet eigenvalues. For |n| ≥ 1, we consider the set

Dn :=
{
λ ∈ C : ∣∣2λ2 − nπ

∣∣ < π

4

}
,

which consists of two open discs, and define the disc Di
n , i = 1, 2, by

D1
n :=

{
Dn ∩ C+, n ≥ 1,

Dn ∩ C−, n ≤ −1,
D2
n :=

{
Dn ∩ C

+, n ≥ 1,

Dn ∩ C
−, n ≤ −1.
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Fig. 2 Localization of the periodic eigenvalues according to the Counting Lemma. The first 4(2N + 1)
roots of χP(·, ψ) lie in the large disc BN . The remaining periodic eigenvalues lie in the discs Di

n centered

at λ±,i
n (0), i = 1, 2, |n| > N ; each disc contains precisely two of them. The radii of these discs shrink to

zero at order O(|n|−1/2) as |n| → ∞

For a given integer N ≥ 1 we define the disc BN by

BN :=
{
λ ∈ C : |λ| <

√
(N + 1/4)π

2

}
.

Furthermorewe set D0 := B0 := {λ ∈ C : |λ| < √
π/8} and impose the convention

Di
0 := D0, i = 1, 2. Then for each N ≥ 0 the disc BN contains all the discs Di

n with
|n| ≤ N . An illustration of the discs BN and Di

n can be found in Fig. 2 (see also
Fig. 5).

Lemma 3.3 (Counting Lemma for Dirichlet eigenvalues) Let B be a bounded subset
of X. There exists an integer N ≥ 1, such that for every ψ ∈ B, the entire function
χD(·, ψ) has exactly one root in each of the two discs Di

n, i = 1, 2, for n ∈ Z with
|n| > N, and exactly 2(2N + 1) roots in the disc BN when counted with multiplicity.
There are no other roots.

Proof Outside of the set

� :=
⋃
n∈Z

i∈{1,2}

Di
n (3.3)
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1218 J. Lenells, R. Quirchmayr

it holds that e2|(λ2)|
| sin 2λ2| < 4 by the previous lemma. Therefore we obtain from (3.2) that

χD(λ, ψ) = sin 2λ2 + o
(
e2|(λ2)|

) = χD(λ, 0)
(
1+ o(1)

)

for |λ| → ∞ with λ /∈ � uniformly for ψ ∈ B. More precisely, this means that there
exists an integer N ≥ 1 such that, for all ψ ∈ B,

|χD(λ, ψ)− χD(λ, 0)| < |χD(λ, 0)|

on the boundaries of all discs Di
n with |n| > N , i = 1, 2, and also on the boundary

of BN . (Note that |χD(λ, 0)| > δ on these boundaries for some δ > 0 which can be
chosen independently of |n| > N .) Then Rouché’s theorem tells us that the analytic
functions χD(·, ψ) possess the same number of roots inside these discs as χD(·, 0).
This proves the first statement, because χD(·, 0) : λ �→ sin 2λ2 has exactly one root in
each Di

n for |n| > N , i = 1, 2, and 2(2N + 1) roots in the disc BN .
It is now obvious that there are no other roots, because the number of roots of

χD(·, ψ) in each of the discs BN+k , k ≥ 1, is exactly 2(N + k + 1) due to the same
argument as we used before. But these roots correspond to the 2(2N + 1) roots of
χD(·, ψ) inside BN ⊆ BN+k plus the 2k roots inside the discs Dl ⊆ BN+k with
N < |l| ≤ N + k that we have already identified earlier in the proof. ��

Lemma 3.3 allows us to introduce a systematic procedure for labeling the Dirich-
let eigenvalues. For this purpose, we first consider the spectrum σD(0) of the zero
potential, which consists of the two bi-infinite sequences

μi
n(0) = sgn(n)

√
(−1)i−1|n|π

2
, i = 1, 2, n ∈ Z, (3.4)

where

sgn(n) :=

⎧⎪⎨
⎪⎩
1 n > 0,

0 n = 0,

−1 n < 0.

The eigenvalues μ1
n(0), n ∈ Z, are real while the eigenvalues μ2

n(0), n ∈ Z \ {0},
are purely imaginary. The Dirichlet eigenvalue 0 has multiciplity two; all the other
Dirichlet eigenvalues corresponding to ψ = 0 are simple roots of χD(·, 0).

Let now ψ ∈ X be an arbitrary potential. By Lemma 3.3 there exists a minimal
integer N ≥ 0 such that for all |n| > N , each disc Di

n , i = 1, 2, contains precisely one
Dirichlet eigenvalue of multiplicity one—this eigenvalue will henceforth be denoted
byμi

n ≡ μi
n(ψ)—and BN contains the remaining 2(2N+1) eigenvalueswhen counted

with multiplicity. In order to label the 2(2N + 1) roots of χD(·, ψ) in BN , we proceed
as follows. We make a (so far unordered) list of all the elements of σD(ψ) ∩ BN .
For any multiple root of χD(ψ) in this list, we include multiple copies of it in the
list according to its multiplicity. In this way, we make sure that the list has exactly
2(2N+1) entries (the set σD(ψ)∩BN contains strictly less than 2(2N+1) elements if
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χD(ψ) has non-simple roots). We employ the lexicographical ordering of the complex
numbers, i.e. for z1, z2 ∈ C,

z1 � z2 ⇔

⎧⎪⎨
⎪⎩
�z1 < �z2
or

�z1 = �z2 and z1 ≤ z2,

to label the 2(2N + 1) entries of list list of roots in BN in such a way that

μ1−N � · · · � μ1−1 � μ2−N � · · · � μ2−1 � μ1
0 � μ2

0 � μ2
1

� · · · � μ2
N � μ1

1 � · · · � μ1
N .

The labeling of the roots of χD(·, ψ) according to this procedure is unique except
that the label of a particular Dirichlet eigenvalue is ambiguous whenever it is not
a simple root of χD(·, ψ). Sequences of Dirichlet eigenvalues of the form (μi

n)n∈Z,
where i = 1 or i = 2, are always well-defined, since each element of such a sequence
has a uniquely defined value.

Remark 3.4 In general neither the multiplicity, nor the label of a Dirichlet eigen-
valueμi

n(ψ) is preserved under continuous deformations of the potentialψ—not even
locally around the zero potential, where discontinuities of the functions ψ �→ μi

0(ψ)

may occur due to the lexicographical ordering. Merging and splitting of Dirichlet
eigenvalues can occur under continuous deformations of the potential, cf. Fig. 5 where
suchbehavior is illustrated in the case of periodic eigenvalues.However, for sufficiently
large |n|, the mappings ψ �→ μi

n(ψ), i = 1, 2, are continuous on bounded subsets of
X; in fact, we will see in the proof of Theorem 3.5 that these mappings are analytic.
In particular, the eigenvalue μi

n(ψ) remains simple under continuous deformations
within a bounded subset of X for large enough |n|.

To continue our analysis, we introduce the Banach spaces �
p,s
K

of (bi-infinite)
sequences

�
p,s
K

:=
{
u = (un)n∈Z

∣∣ ((1+ n2)
s
2 un

)
n∈Z ∈ �

p
K

}
, (3.5)

where 1 ≤ p ≤ ∞, s ∈ R, and K = R or K = C, as well as the closed subspaces

�̌
p,s
K

:= {
u = (un)n∈Z ∈ �

p,s
K

: u0 = 0
}
.

We consider basic properties of these Banach spaces in Sect. 4. Theorem 3.5 below
establishes asymptotic estimates and continuity properties of the Dirichlet eigenvalues
in the �∞,1

C
setting.We use the notation �

p,s
n to denote the n-th coordinate of a sequence

(�
p,s
n )n∈Z in �

p,s
C

, see [13,18,20].
From Lemma 3.3 we infer that, uniformly on bounded subsets of X,

μi
n(ψ) = μi

n(0)+ �
∞,1/2
n , i = 1, 2, (3.6)
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whereμi
n(0) is given by (3.4). More precisely, this means that the sequence (μi

n(ψ)−
μi
n(0))n∈Z, i = 1, 2, lies in �

∞,1/2
C

for everyψ ∈ Xwith a uniform bound in �
∞,1/2
C

for
ψ ranging within arbitrary but fixed bounded subsets of X. To see this, we note that the
radius of the disc Di

n centered at μi
n(0) = sgn(n)

√
(−1)i−1|n|π/2, i = 1, 2, which

contains the Dirichlet eigenvalue μi
n(ψ) for each |n| > N , is of order O(|n|−1/2) as

|n| → ∞; the integer N ≥ 1 can be chosen uniformly for allψ within a fixed bounded
subset of X.

The following theorem improves the estimate in (3.6) considerably; furthermore it
establishes an equicontinuity property of the set of Dirichlet eigenvalues as functions
of ψ .

Theorem 3.5 Let B be a bounded neighborhood of ψ = 0 in X.

(1) Uniformly on B,
μi
n(ψ) = μi

n(0)+ �∞,1
n , i = 1, 2, (3.7)

where μi
n(0) is given by (3.4).

(2) There exists a neighborhood W ⊆ B of the zero potential such that for allψ ∈ W,

μi
n(ψ) ∈ Di

n for |n| ≥ 1, μi
0(ψ) ∈ D0 (i = 1, 2). (3.8)

(3) Let W ⊆ B be an open neighborhood of the zero potential such that (3.8) is
fulfilled for allψ ∈ W.Then theDirichlet eigenvaluesμi

n , considered as functions
of ψ , are analytic on W for all n ∈ Z \ {0}, i = 1, 2. Furthermore, for every
ψ ∈ W and every sequence (ψk)k∈N in W with ψk → ψ as k → ∞ it holds that

lim
k→∞

(
sup

n∈Z\{0}
(1+ n2)

1
2
∣∣μi

n(ψk)− μi
n(ψ)

∣∣) = 0, i = 1, 2. (3.9)

Proof To prove the first assertion, we note that (3.6) and Theorem 2.19 imply (cf. the
asymptotic estimate in (2.34))

0 = χD(μ
i
n(ψ)) = sin[2(μi

n(ψ))2] + �
∞,1/2
n , i = 1, 2

uniformly on B. Therefore, the fundamental theorem of calculus implies that, uni-
formly on B,

�
∞,1/2
n = sin[2μi

n(ψ)2] − sin[2μi
n(0)

2]

= 2
(
μi
n(ψ)2 − μi

n(0)
2) ∫ 1

0
cos[t 2μi

n(ψ)2 + (1− t) 2μi
n(0)

2] dt, i = 1, 2.

The integral in the above equation is uniformly bounded in �∞
C

for all potentials in B,
since the line segments connecting μi

n(ψ)2 with μi
n(0)

2 are uniformly bounded in �∞
C

due to (3.6). Thus,

�
∞,1/2
n = μi

n(ψ)2 − μi
n(0)

2 = (
μi
n(ψ)− μi

n(0)
)(
μi
n(ψ)+ μi

n(0)
)
, i = 1, 2
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uniformly on B. By employing (3.6) once again, we infer that

�
∞,1/2
n = μi

n(0)
(
μi
n(ψ)− μi

n(0)
)
, i = 1, 2

uniformly on B, which is equivalent to the first assertion of the theorem.
To prove the second assertion, we recall that the characteristic function χD is ana-

lytic2 (and hence also continuous) with respect to ψ , and that (3.8) clearly holds for
ψ = 0. Hence, if W ⊆ B is a sufficiently small neighborhood of the zero potential,
then, for each ψ ∈ W , the disc Di

n contains precisely the simple Dirichlet eigenvalue
μi
n(ψ) while D0 contains either a double eigenvalue μ1

0(ψ) = μ2
0(ψ) or two distinct

simple eigenvalues μ1
0(ψ)  = μ2

0(ψ).
To prove the third assertion,wefirst show that the functionμi

n : W → C,n ∈ Z\{0},
i = 1, 2, is analytic and takes values in the disc Di

n . Analyticity is inherited from χD as
a consequence of the implicit function theorem for analytic mappings between com-
plex Banach spaces; see e.g. [31] for various generalizations of the classical implicit
function theorem to infinite dimensional Banach spaces. Indeed, the restriction of the
characteristic function for the Dirichlet eigenvalues to the domain Di

n ×W ,

χD
∣∣
Di
n×W : Di

n ×W → C, n ∈ Z \ {0}, i = 1, 2,

is analytic. By assumption, for each ψ ′ ∈ W there exists a unique λ′ ∈ Di
n such that

χD
∣∣
Di
n×W (λ′, ψ ′) = 0. Furthermore, denoting by ∂

∂λ
the partial derivative ofχD

∣∣
Di
n×W

with respect to its first variable λ, we claim that

∂

∂λ
χD

∣∣∣
Di
n×W

(λ′, ψ ′)  = 0, n ∈ Z \ {0}, i = 1, 2, (3.10)

so that the partial derivative is a linear isomorphism C → C. Indeed, by Theorem
2.19 (cf. (2.36)),

∂

∂λ
χD

∣∣∣
�̇×B

(λ, ψ) = 4λ cos 2λ2 +O(1), �̇ :=
⋃

n∈Z\{0}
i=1,2

Di
n (3.11)

uniformly on B as |λ| → ∞. This implies that

∂

∂λ
χD  = 0 on

⋃
|n|>N
i=1,2

Di
n × B (3.12)

for some large enough N ≥ 0. By continuity of ∂χD
∂λ

with respect to ψ and the fact

that the formula for ∂χD
∂λ

in (3.11) holds without the error term when ψ = 0, it is clear
that (3.12) holds for N = 0 with B replaced by W . This proves (3.10).

2 Cf. Theorem 2.1, where we proved analyticity of the fundamental matrix solution with respect to the
potential; see also the short review of analytic maps between complex Banach spaces in Sect. 4.

123



1222 J. Lenells, R. Quirchmayr

In view of (3.10), the implicit function theorem guarantees the existence of a unique
(global) analytic function μ̃i

n : W → C such that, for all (λ, ψ) ∈ Di
n ×W ,

χD
∣∣
Di
n×W (λ, ψ) = 0 ⇐⇒ λ = μ̃i

n(ψ), n ∈ Z \ {0}, i = 1, 2.

Since μ̃i
n = μi

n , this shows that μ
i
n : W → C is analytic for n ∈ Z \ {0}, i = 1, 2.

For n ∈ Z and i = 1, 2, we consider the analytic mappings

β i
n : W → C, ψ �→ β i

n(ψ) :=
{
(1+ n2)

1
2
(
μi
n(ψ)− μi

n(0)
)

n ∈ Z \ {0}
0 n = 0.

The first assertion of the theorem implies that the family {β i
n}i=1,2

n∈Z is uniformly

bounded inC. Since all the functions of this family are analytic, it follows that {β i
n}i=1,2

n∈Z
is uniformly equicontinuous on B, cf. [28, Proposition 9.15]. That is, for each ε > 0
there exists a δ > 0 such that, for all n ∈ Z, i ∈ {1, 2}, and all ψ,ψ ′ ∈ B,

‖ψ − ψ ′‖ < δ ⇒ ε > |β i
n(ψ)− β i

n(ψ
′)| = ∣∣(1+ n2)

1
2
(
μi
n(ψ)− μi

n(ψ
′)
)∣∣.

This implies that the two mappings

W → �̌
∞,1/2
C

, ψ �→
{
μi
n(ψ) n ∈ Z \ {0}

0 n = 0,
i = 1, 2,

are continuous, which proves the third assertion. ��
Remark 3.6 Amore abstract proof of (3.9) proceeds as follows. By the general version
of Montel’s theorem for analytic functions on separable complex Banach spaces, see
e.g. [28, Proposition9.16], the family {β i

n}i=1,2
n∈Z in the proof ofTheorem3.5 isnormal in

the locally convex topological vector spaceH(W ), the space of all analytic functions
from W to C, endowed with the topology τc of uniform convergence on compact
subsets of W . That is, each sequence of elements of {β i

n}i=1,2
n∈Z has a subsequence

which converges in (H(W ), τc). This allows us to obtain (3.9) by interchanging the
order of taking the limit and supremum as follows:

lim
k→∞

(
sup
n∈Z

∣∣β i
n(ψk)− β i

n(ψ)
∣∣) = sup

n∈Z

(
lim
k→∞

∣∣β i
n(ψk)− β i

n(ψ)
∣∣).

We define the Neumann domain AN of the AKNS-system (2.3) by

AN := {
f ∈ H1([0, 1],C)× H1([0, 1],C)

∣∣ f1(0) = 0 = f1(1)
}
.

The Neumann domain DN of the corresponding ZS-system (2.1) is then given by

DN := {
g ∈ H1([0, 1],C)× H1([0, 1],C)

∣∣ (h1 + h2)(0) = 0 = (h1 + h2)(1)
}
,
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as AN corresponds to DN under the transformation T . For a given potential ψ ∈ X,
we say that λ ∈ C lies in the Neumann spectrum if there exists a φ ∈ DN \ {0} which
solves (2.1).

Theorem 3.7 Fix ψ ∈ X. The Neumann spectrum related to (2.1) is the zero set of the
entire function

χN(λ, ψ) := m̀4 − m̀3 + m̀2 − m̀1

2i

∣∣∣∣
(λ,ψ)

.

In particular, χN(λ, 0) = χD(λ, 0) = sin 2λ2.

Proof Due to the definition ofDN, a complex number λ lies in the Neumann spectrum
of system (2.1) if and only if the fundamental solutionM maps the initial value (1,−1)
to a collinear vector at t = 1. That is, if and only if m̀1 − m̀2 = −m̀3 + m̀4. ��

By Theorem 2.7, the characteristic function χN satisfies

χN(λ, ψ) = sin 2λ2 +O(|λ|−1 e2|(λ2)|)

uniformly on bounded subsets of X as |λ| → ∞. For ψ ∈ X we set

σN(ψ) := {λ ∈ C : χN(λ, ψ) = 0}.

As for the Dirichlet case, we obtain the following asymptotic localization for the
elements of the Neumann spectrum.

Lemma 3.8 (Counting Lemma for Neumann eigenvalues) Let B be a bounded subset
of X. There exists an integer N ≥ 1, such that for every ψ ∈ B, the entire function
χN(·, ψ) has exactly one root in each of the two discs Di

n, i = 1, 2, for n ∈ Z with
|n| > N, and exactly 2(2N + 1) roots in the disc BN when counted with multiplicity.
There are no other roots.

We label the Neumann eigenvalues in the same way as the Dirichlet eigenvalues.
The Neumann spectrum of the zero potential ψ = 0 coincides with the corresponding
Dirichlet spectrum:

νin(0) = μi
n(0) = sgn(n)

√
(−1)i−1|n|π

2
, i = 1, 2. (3.13)

Remark 3.4 applies also to the Neumann eigenvalues. The analog of Theorem 3.5 for
Neumann eigenvalues reads as follows.

Theorem 3.9 Let B be a bounded neighborhood of ψ = 0 in X.

(1) Uniformly on B,
νin(ψ) = νin(0)+ �∞,1

n , i = 1, 2,

where νin(0) is given by (3.13).
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1224 J. Lenells, R. Quirchmayr

(2) There exists a neighborhood W ⊆ B of the zero potential such that for allψ ∈ W,

νin(ψ) ∈ Di
n for |n| ≥ 1, νi0(ψ) ∈ D0 (i = 1, 2). (3.14)

(3) Let W ⊆ B be an open neighborhood of the zero potential such that (3.14) is
fulfilled for all ψ ∈ W. Then the Neumann eigenvalues νin are analytic on W for
all n ∈ Z \ {0}, i = 1, 2. Furthermore, for every ψ ∈ W and every sequence
(ψk)k∈N in W with ψk → ψ as k → ∞ it holds that

lim
k→∞

(
sup

n∈Z\{0}
(1+ n2)

1
2
∣∣νin(ψk)− νin(ψ)

∣∣) = 0, i = 1, 2.

3.2 Periodic spectrum

The trace of the fundamental matrix solution M(t, λ, ψ) at time t = 1 is called the
discriminant and is denoted by �:

� ≡ �(λ,ψ) := tr M̀ = m̀1 + m̀4.

The sum of the off-diagonal entries of M̀ is referred to as the anti-discriminant:

δ ≡ δ(λ,ψ) := m̀2 + m̀3.

Theorem 3.10 The discriminant �, the anti-discriminant δ and their respective λ-
derivatives �̇ and δ̇ are compact analytic functions on C × X. At the zero potential,

�(λ, 0) = 2 cos 2λ2, λ ∈ C. (3.15)

Proof Both the discriminant and the anti-discriminant are analytic due to Theorem 2.1
and compactness follows from Proposition 2.2. From Corollary 2.5 we infer that the
λ-derivatives �̇ and δ̇ inherit both properties. ��

The periodic domain DP of the ZS-system (2.1) is defined by3

DP :=
{
f ∈ H1 ([0, 1],C)× H1 ([0, 1],C)

∣∣ f (1) = f (0) or f (1) = − f (0)
}

A complex number λ is called a periodic eigenvalue if (2.1) is satisfied for some
φ ∈ DP \ {0}.
Theorem 3.11 Let ψ ∈ X. A complex number λ is a periodic eigenvalue if and only if
it is a zero of the entire function

χP(λ, ψ) := �2(λ, ψ)− 4. (3.16)

3 Note that DP consists of both periodic and antiperiodic functions.
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Proof Let us fix ψ ∈ X. Since M is the fundamental solution of (2.1), a complex
number λ is a periodic eigenvalue if and only if there exists a nonzero element f ∈ DP
with

f (1) = M(1, λ) f (0) = ± f (0),

hence if and only if 1 or −1 is an eigenvalue of M(1, λ). As det M(1, λ) = 1 by
Proposition 2.3, the two eigenvalues of M(1, λ) are either both equal to 1 or both
equal to−1. Therefore we either have�(λ) = 2 or�(λ) = −2, that is, χP(λ) = 0. ��

For ψ ∈ X, we set

σP(ψ) := {
λ ∈ C : χP(λ, ψ) = 0

}
.

The characteristic function for the zero potential ψ = 0 is given by

χP(λ, 0) = −4 sin2 2λ2;

each root has multiplicity two, except the root λ = 0 has multiplicity four. Thus the
periodic spectrum of the zero potential consists of two bi-infinite sequences of double
eigenvalues

λi,±n (0) = sgn(n)

√
(−1)i−1|n|π

2
, i = 1, 2 (3.17)

on the real and imaginary axes in the complex plane. The λ-derivative of the discrim-
inant at the zero potential is given by

�̇(λ, 0) = −8λ sin 2λ2,

and its roots, the so-called critical points of the discriminant for the zero potential,
denoted by λ̇in(0), i = 1, 2, n ∈ Z, coincide with the periodic eigenvalues (and the
Dirichlet and Neumann eigenvalues):

λ̇in(0) = sgn(n)

√
(−1)i−1|n|π

2
, i = 1, 2. (3.18)

Note that λ = 0 has multiplicity three; all the other roots of �̇(·, 0) are simple roots.

Lemma 3.12 Fix ψ ∈ X. As |λ| → ∞ with λ /∈ � = ⋃
n∈Z, i=1,2 D

i
n,

χP(λ, ψ) = (−4 sin2 2λ2)
(
1+O(|λ|−1)

)
, (3.19)

�̇(λ, ψ) = (−8λ sin 2λ2)
(
1+O(|λ|−1)

)
. (3.20)

These asymptotic estimates hold uniformly on bounded subsets of X. For the zero
potential these formulas hold without the error terms.
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Proof By Theorem 2.7, we have �(λ,ψ) = 2 cos 2λ2 +O(|λ|−1e2|(λ2)|) uniformly
on bounded subsets of X, and thus

χP(λ, ψ) = (−4 sin2 2λ2)

[
1+ O(|λ|−1 e2|(λ2)|

)
cos 2λ2

sin2 2λ2
+ O(|λ|−2 e4|(λ2)|

)
sin2 2λ2

]
.

For λ /∈ �, we have 4 | sin 2λ2| > e2|(λ2)|, cf. Lemma 3.2, and therefore

∣∣∣∣cos 2λ
2

sin 2λ2

∣∣∣∣ ≤ e2|(λ2)|

| sin 2λ2| < 4 for λ ∈ C \�. (3.21)

The estimate (3.19) follows. Moreover, by Theorem 2.7,

�̇(λ, ψ) = (−8λ sin 2λ2)

[
1+ O(

e2|(λ2)|
)

λ sin 2λ2

]

uniformly on bounded subsets of X and thus (3.21) yields (3.20). ��
The next result provides an asymptotic localization of the periodic eigenvalues.

Lemma 3.13 (Counting Lemma for periodic eigenvalues) Let B be a bounded subset
of X. There exists an integer N ≥ 1, such that for every ψ ∈ B, the entire function
χP(·, ψ) has exactly two roots in each of the two discs Di

n, i = 1, 2, and exactly
4(2N + 1) roots in the disc BN , when counted with multiplicity. There are no other
roots.

Proof Let B ⊆ X be bounded. By Lemma 3.12,

χP(λ, ψ) = χP(λ, 0)
(
1+ o(1)

)

for |λ| → ∞ with λ /∈ � uniformly for ψ ∈ B. Hence there exists an integer N ≥ 1
such that, for all ψ ∈ B,

|χP(λ, ψ)− χP(λ, 0)| < |χP(λ, 0)|

on the boundaries of all discs Di
n with |n| > N , i = 1, 2, and also on the boundary of

BN . As in the proof of Lemma 3.3, the result follows by an application of Rouché’s
theorem. ��

Lemma 3.12 yields a Counting Lemma for the critical points of � as well:

Lemma 3.14 (Counting Lemma for critical points) Let B be a bounded subset of X.
There exists an integer N ≥ 1, such that for every ψ ∈ B, the entire function �̇(·, ψ)

has exactly one root in each of the two discs Di
n, i = 1, 2 for all |n| > N, and exactly

4N +3 roots in the disc BN , when counted with multiplicity. There are no other roots.
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Let ψ ∈ X be an arbitrary potential. Inspired by (3.17) and (3.18), we denote
the corresponding periodic eigenvalues and critical points by λ

i,±
n ≡ λ

i,±
n (ψ) and

λ̇in ≡ λ̇in(ψ) respectively, n ∈ Z, i = 1, 2.
The critical points are labeled in the same way as the Dirichlet and Neumann

eigenvalues (except that there is one additional root close the origin, which we will
ignore whenever we consider sequences of critical points of the form (λ̇in)n∈Z with
i = 1 or i = 2). Remark 3.4 applies also to the critical points.

Concerning periodic eigenvalues, we adapt our labeling procedure as follows. Let
N ≥ 0 be be the minimal integer such that (a) for each |n| > N and each i = 1, 2,
the disc Di

n contains either two simple periodic eigenvalues or one periodic double
eigenvalue and (b) BN contains precisely 4(2N + 1) roots of χP(·, ψ) when counted
with multiplicity. The two eigenvalues in the disc Di

n , |n| > N , i = 1, 2, will be
denoted by λ

i,±
n and ordered so that λi,−n � λ

i,+
n . The remaining 4(2N + 1) roots in

BN are labeled such that

λ
1,−
−N � λ

1,+
−N � · · · � λ

1,−
−1 � λ

1,+
−1 � λ

2,−
−N � λ

2,+
−N � · · · � λ

2,−
−1 � λ

2,+
−1 � λ

1,−
0

� λ
1,+
0 � λ

2,−
0 � λ

2,+
0 � λ

2,−
1 � λ

2,+
1 � · · · � λ

2,−
N � λ

2,+
N � λ

1,−
1 � λ

1,+
1

� · · · � λ
1,−
N � λ

1,+
N .

The labeling of the roots of χP(·, ψ) according to the above procedure is unique
except that the label of a particular periodic eigenvalue is ambiguous whenever it is
not a simple root of χP(·, ψ). Sequences of Dirichlet eigenvalues of the form (μi

n)n∈Z,
where i = 1 or i = 2, are always well-defined, since each element of such a sequence
has a uniquely defined value. If N = 0 happens to be the minimal integer, we agree
on the convention that merely

λ
1,−
0 � λ

1,+
0 and λ

2,−
0 � λ

2,−
0

is required rather than λ
1,−
0 � λ

1,+
0 � λ

2,−
0 � λ

2,−
0 . This convention provides the

freedom to label periodic eigenvalues inside the disc B0 = D0 in the intuitive way
(compare e.g. the labelings of Fig. 4a, b, where we labeled the two periodic double
eigenvalues closest to the origin either by λ

2,+
0 and λ

2,−
0 (Fig. 4a), or by λ

1,+
0 and λ

1,−
0

(Fig. 4b), since they lie close to the imaginary axis in Fig. 4a, and on the real axis in
Fig. 4b).

As in the case of Dirichlet eigenvalues, Neumann eigenvalues, and critical points,
no general statement can be made regarding the multiplicity of periodic eigenvalues
located near the origin; Fig. 5 illustrates this fact by means of an explicit example.
Likewise, the labeling of periodic eigenvalues is generally not preserved under con-
tinuous deformations of the potential. Unlike the situation for Dirichlet eigenvalues,
Neumann eigenvalues, and critical points, both multiplicity and labeling of periodic
eigenvalues are generally not preserved under continuous deformations asymptotically
for large |n|. Since each Di

n contains two periodic eigenvalues, their lexicographical
ordering may entail discontinuities.
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Remark 3.15 The Counting Lemma allows us to determine the sign of the discriminant
at periodic eigenvalueswith sufficiently large index |n|. Indeed, recall that |�(λ,ψ)| =
2 when λ is a periodic eigenvalue, cf. Theorem 3.11. Fix ψ ∈ X and choose N ≥ 1
according to the Counting Lemma so that each of the two discs Di

n , i = 1, 2, for n ∈ Z

with |n| > N contains exactly two periodic eigenvalues. In fact, we can without loss
of generality assume that Di

n contains exactly two periodic eigenvalues λi,±n (sψ) for
each potential sψ belonging to the line segment S := {sψ : 0 ≤ s ≤ 1}. Since S ⊆ X
is compact, we can choose N uniformly with respect to S. Let us now consider the
continuous paths ρi,±

n : [0, 1] → C, s �→ λ
i,±
n (sψ), i = 1, 2. Since � is continuous

and �(λ
i,±
n (sψ), sψ) ∈ {−2, 2} for s ∈ [0, 1], we conclude that either

�(ρi,±(s), sψ) ≡ 2 on [0, 1] or �(ρi,±(s), sψ) ≡ −2 on [0, 1].

Thus

�(λi,±n (ψ), ψ) = �(λi,±n (0), 0) = 2 cos nπ = 2(−1)n for |n| > N , i = 1, 2.

The next lemma establishes a relation between the discriminant and the anti-
discriminant evaluated at Dirichlet or Neumann eigenvalues.

Lemma 3.16 If ψ ∈ X and μi
n ≡ μi

n(ψ) is any Dirichlet eigenvalue of ψ , then

�2(μi
n, ψ)− 4 = δ2(μi

n, ψ).

This identity holds also at any Neumann eigenvalue νin ≡ νin(ψ) of ψ .

Proof We recall that m̀1m̀4 − m̀2m̀3 = 1 by Proposition 2.3. Therefore,

�2 − 4 = (m̀1 + m̀4)
2 − 4

= (m̀1 + m̀4)
2 − 4(m̀1m̀4 − m̀2m̀3)

= (m̀1 − m̀4)
2 + 4m̀2m̀3.

Let μi
n be a Dirichlet eigenvalue of ψ ∈ X, i = 1, 2. Then μi

n is a root of m̀4 + m̀3 −
m̀2 − m̀1, that is

(m̀1 − m̀4)
∣∣
(μi

n ,ψ)
= (m̀3 − m̀2)

∣∣
(μi

n ,ψ)
.

Therefore,

�2(μi
n, ψ)− 4 = (

m̀2(μ
i
n, ψ)+ m̀3(μ

i
n, ψ)

)2 = δ2(μi
n, ψ).

For Neumann eigenvalues νin(ψ), i = 1, 2, we have

(m̀1 − m̀4)
∣∣
(νin ,ψ)

= (m̀2 − m̀3)
∣∣
(νin ,ψ)

,

which again yields the desired identity. ��
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By employing the identity of Lemma 3.16, we can prove the following analog of
Theorems 3.5 and 3.9 for the periodic eigenvalues and the critical points.

Theorem 3.17 Let B be a bounded neighborhood of ψ = 0 in X.

(1) Uniformly on B,

λi,±n (ψ) = λi,±n (0)+ �∞,1
n and λ̇in(ψ) = λ̇in(0)+ �∞,1

n , i = 1, 2, (3.22)

where λ
i,±
n (0) = λ̇in(0) are given by (3.17) and (3.18).

(2) There exists a neighborhood W ⊆ B of the zero potential such that for allψ ∈ W
and every n ∈ Z:

(a) σP(ψ) ∩ Di
n = {λi,−n (ψ), λ

i,+
n (ψ)}, i = 1, 2;

(b) �(λ
i,±
n (ψ), ψ) = 2(−1)n, i = 1, 2;

(c) {λ ∈ C : �̇(λ, ψ) = 0} ∩ Di
n = {λ̇in(ψ)}, i = 1, 2.

(3) Let W ⊆ B be an open neighborhood of the zero potential such that part (c) of (2)
is fulfilled. Then the critical points λ̇in , considered as functions of ψ , are analytic
on W for all n ∈ Z \ {0}, i = 1, 2. Furthermore, for every ψ ∈ W and every
sequence (ψk)k∈N in W with ψk → ψ as k → ∞ it holds that

lim
k→∞

(
sup

n∈Z\{0}
(1+ n2)

1
2
∣∣λ̇in(ψk)− λ̇in(ψ)

∣∣) = 0, i = 1, 2.

Proof The proofs of the assertions for the critical points are similar to the proofs of
the analogous assertions for Dirichlet eigenvalues; see Theorem 3.5 and its proof. Fur-
thermore, the second assertion follows—in view of the Counting Lemma and Remark
3.15—from the continuity and asymptotics of χP. It only remains to show (3.22) for
the periodic eigenvalues λi,±n ≡ λ

i,±
n (ψ).

Sinceμi
n = μi

n(0)+�∞,1 uniformly on B by Theorem 3.5 and Eμi
n
is off-diagonal,

we can apply Theorem 2.19 to infer that δ(μi
n) = �

∞,1/2
n uniformly on B. Since the

quadratic mapping un �→ u2n is continuous as a map �
∞,1/2
C

→ �
∞,1
C

, Lemma 3.16
yields

�2(μi
n)− 4 = δ2(μi

n) = �∞,1
n (3.23)

uniformly on B. Since�(μi
n) = 2(−1)n + �

∞,1/2
n due to the second part of Theorem

2.19, we deduce from (3.23) by writing the left hand side as (�(μi
n)− 2)(�(μi

n)+ 2)
that

�(μi
n) = 2(−1)n + �∞,1

n (3.24)

uniformly on B.
Next we will employ the identity

�(λ̇in)−�(μi
n) = (λ̇in − μi

n)

∫ 1

0
�̇(t λ̇in + (1− t)μi

n) dt, (3.25)
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which is a consequence of the fundamental theorem of calculus. By Theorem 2.19,
all values on the lines connecting λ̇in and μi

n are O(1) as |n| → ∞ uniformly on
B. Moreover, λ̇in − μi

n = �
∞,1
n uniformly on B by the first assertion of this theorem

concerning the critical points and Theorem 3.5. Hence, we infer from (3.24) and (3.25)
that

�(λ̇in) = 2(−1)n + �∞,1
n (3.26)

uniformly on B. Furthermore, since �̇(λ̇in) = 0 by definition, we obtain

�(λi,±n ) = �(λ̇in)+ (λi,±n − λ̇in)
2
∫ 1

0
(1− t)�̈(tλi,±n + (1− t)λ̇in) dt . (3.27)

By recalling that�(λ
i,±
n ) = 2(−1)n for all sufficiently large |n|, cf. Remark 3.15, we

deduce from (3.26) and (3.27) that

(λi,±n − λ̇in)
2
∫ 1

0
(1− t)�̈(tλi,±n + (1− t)λ̇in) dt = �∞,1

n (3.28)

uniformly on B. Using Cauchy’s estimate and Theorem 2.7, we find

�̈(λ) = −16λ2 cos 2λ2 +O(|λ| e2|(λ2)|)

uniformly on B as |λ| → ∞. Hence, for a bi-infinite sequence (zn)n∈Z, whose entries
zn remain asymptotically in the discs Di

n (i = 1 or i = 2) we have �̈(zn) =
−16z2n cos 2z

2
n + O(|zn|). By the Counting Lemmas, (tλi,±n + (1 − t)λ̇in) = �

∞,1/2
n

uniformly for t ∈ [0, 1] and ψ ∈ B. Thus, the absolute value of the integral in
(3.28) is �(|n|) as |n| → ∞, which means that it grows precisely as fast as |n|. As a
consequence, (λi,±n − λ̇in)

2 = �
∞,2
n uniformly on B; in other words,

λi,±n − λ̇in = �∞,1
n (3.29)

uniformly on B. Since λ̇in = λ̇in(0) + �
∞,1
n = λ

i,±
n (0) + �

∞,1
n uniformly on B, we

conclude from (3.29) that λi,±n = λ
i,±
n (0)+ �

∞,1
n uniformly on B, hence the periodic

eigenvalues satisfy the asymptotic estimate of the first assertion of this theorem. This
completes the proof. ��

Remark 3.18 LetW be an open neighborhood of the zero potential such that Theorem
3.17 (2) is satisfied. Then the map

W → �
∞,1
C

, ψ �→ (
λi,±n (ψ)− λi,±n (0)

)
, i = 1, 2
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is continuous at ψ = 0, that is, for every sequence (ψk)k∈N in W with ψk → 0 as
k → ∞, it holds that

lim
k→∞

(
sup
n∈Z

(1+ n2)
1
2
∣∣λi,±n (ψk)− λ̇i,±n (0)

∣∣) = 0, i = 1, 2.

However, as a consequence of the lexicographical ordering, the periodic eigenvalues
λ
i,−
n and λ

i,+
n do not define analytic functions from W to Di

n , n ∈ Z \ {0}. In order
to formulate a version of Theorem 3.17 (3) for periodic eigenvalues, one can consider
suitable subsets ofW where λi,−n and λ

i,+
n are isolated from each other—the situation

near a potential ψ ∈ W with a double periodic eigenvalue is cumbersome. Section 4
addresses these questions for potentials of so-called real and imaginary type. For such
potentials the fundamental matrix solution possesses additional symmetries, which
implies that the two periodic eigenvalues λi,±n in Di

n are either real or form a complex
conjugate pair. In both cases, they are connected by an analytic arc along which the
discriminant is real-valued.

Remark 3.19 The asymptotic localization of Dirichlet eigenvalues, Neumann eigen-
values, periodic eigenvalues, and critical points provided by Theorems 3.5, 3.9 and
3.17 can be slightly improved. Indeed, it is straightforward to adapt the proofs of these
theorems to obtain, for each p > 2,

μi
n = μi

n(0)+ �
p,1/2
n ,

νin = μi
n(0)+ �

p,1/2
n ,

λi,±n = μi
n(0)+ �

p,1/2
n ,

λ̇in = μi
n(0)+ �

p,1/2
n ,

uniformly on bounded subsets of X, i = 1, 2. Studies of other related spectral
problems—see e.g. [8,17,19,30]—suggest that these localization results can be further
sharpened if attention is restricted to subspaces of more regular potentials.

4 Potentials of real and imaginary type

This section considers potentials of so-called real and imaginary type. These subspaces
of the space X of general t-periodic potentials consist precisely of those potentials,
which are relevant for the x-evolution of the t-periodic defocusing NLS (real type) and
focusingNLS (imaginary type).Ourmain results areTheorems 4.4 and 4.5,which state
that for sufficiently small real and imaginary type potentialsψ , the corresponding peri-
odic eigenvalues λ1,−n (ψ) and λ

1,+
n (ψ) are connected by analytic arcs in the complex

plane for each n ∈ Z \ {0}. These arcs form a subset of {λ ∈ C : �(λ,ψ) ∈ R}.
These results are needed for the establishment of local Birkhoff coordinates and
shall serve as a solid foundation for future investigations in this direction. Theorem
4.5 is inspired by [20, Proposition 2.6], which establishes similar properties for the
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x-periodic potentials of imaginary type for the focusing4 NLS. Our proof makes use
of the ideas and techniques of [20]. We refer to [21] for further related results.

For potentials ψ ∈ X, we define

ψ∗ := Pψ̄ := (ψ̄2, ψ̄1, ψ̄4, ψ̄3),

where

P :=
(
σ1 0
0 σ1

)
, σ1 =

(
0 1
1 0

)
.

We say that a potentialψ of the Zakharov–Shabat t-part (1.3) is of real type ifψ∗ = ψ .
In this case,ψ2 = ψ̄1 andψ4 = ψ̄3, that is,ψ = (q0+ip0, q0−ip0, q1+ip1, q1−ip1)
for some real-valued functions {q j , p j }1j=0. Hence a potential is of real type iff all
coefficients of the corresponding AKNS system are real-valued. The subspace of X
of all real type potentials will be denoted by

XR := {ψ ∈ X |ψ∗ = ψ}.

Note that this is a real subspace of X, not a complex one; it consists of those potentials
that are relevant for the defocusing NLS.

We can write the Zakharov–Shabat t-part (1.3) as

(
− iσ3∂t + 2λ2I +

(
ψ1ψ2 i(2λψ1 + iψ3)

−2iλψ2 − ψ4 ψ1ψ2

))
φ = 0,

or, in other words,

L(ψ)φ = R(λ, ψ)φ (4.1)

with

L(ψ) := −iσ3∂t +
(
ψ1ψ2 −ψ3

−ψ4 ψ1ψ2

)
, R(λ, ψ) := −2λ2I − 2iλ

(
0 ψ1

−ψ2 0

)
.

(4.2)

For v = (v1, v2) and w = (w1, w2), let

〈v,w〉 =
∫ 1

0
(v1w̄1 + v2w̄2) dt .

If the eigenfunctions v,w lie in the periodic domain DP, we can integrate by parts
without boundary terms and find that

〈w, L(ψ)v〉 = 〈L(ψ∗)w, v〉.
4 The analogous result for x-periodic real type potentials for the defocusing NLS is trivial, since in this
case all periodic eigenvalues are real valued due to selfadjointness of the corresponding ZS-operator, cf.
[13].

123



On the spectral problem associated with the time-periodic. . . 1233

Therefore, if the potential ψ is of real type and v is a periodic eigenfunction with
eigenvalue λ,

〈R(λ, ψ)v, v〉 = 〈L(ψ)v, v〉 = 〈v, L(ψ)v〉 = 〈v, R(λ, ψ)v〉

and thus we find that

λ = 0 or �λ = ( ∫ 1
0 ψ1v2v̄1 dt

)
〈v, v〉 .

According to theCountingLemma, the periodic eigenvalues of typeλ2n(ψ) for arbitrary
ψ ∈ X necessarily possess non-vanishing imaginary parts for sufficiently large |n|.
In analogy with the x-part (1.2), one might expect that λ1,±n (ψ) = 0 for real type
potentials. However, we will see in Sect. 5 that this is not the case: there are single
exponential potentials of real type for which some λ

1,±
n are nonreal, cf. Fig. 5.

Lemma 4.1 Let ψ be of real type and let λ ∈ R. Then m4 = m̄1 and m3 = m̄2. In
particular,� is real-valuedonR×XR.Moreover, if a solutionv of L(ψ)v = R(λ, ψ)v

is real in AKNS-coordinates, then v = σ1v̄.

Proof Sinceψ = ψ∗, the AKNS coordinates (p j , q j ), j = 0, 1, are real. If in addition
λ ∈ R, the system (2.3) has real coefficients, so its fundamental solution K is real-
valued. The relation M = T KT−1, cf. (2.11), then implies that m4 = m̄1 and m3 =
m̄2. To prove the second claim, we note that T̄ = σ1T and hence

M̄ = T̄ K T̄−1 = σ1T KT−1σ1 = σ1Mσ1.

If v is real in AKNS coordinates, it has real initial data v0 and v = MT v0. Therefore

v̄ = M̄ T̄ v0 = σ1MT v0 = σ1v.

��
We say that a potential ψ ∈ X is of imaginary type if ψ∗ = −ψ . The subspace

XI := {ψ ∈ X : ψ∗ = −ψ}

of potentials of imaginary type is relevant for the focusing NLS.

Proposition 4.2 For ψ ∈ XR the fundamental solution M satisfies

M(t, λ̄, ψ) = σ1M(t, λ, ψ)σ1, λ ∈ C, t ≥ 0; (4.3)

if ψ ∈ XI then M satisfies

M(t, λ̄, ψ) = σ1σ3M(t, λ, ψ)σ3σ1, λ ∈ C, t ≥ 0. (4.4)
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In particular,

�(λ̄, ψ) = �(λ,ψ) and �̇(λ̄, ψ) = �̇(λ, ψ) (4.5)

for all ψ ∈ XR∪XI and λ ∈ C, so that� and �̇ are real-valued on R× (XR∪XI).

Proof Let us first assume that ψ ∈ XR and λ ∈ C. Then a computation using (4.2)
shows that

L(ψ)v = R(λ, ψ)v ⇐⇒ L(ψ)v∗ = R(λ̄, ψ)v∗,

where v∗ := σ1v̄ = (v̄2, v̄1). The symmetry (4.3) follows from uniqueness of the
solution of (4.1) and the initial condition M(0, λ, ψ) = I . Evaluation of (4.3) at t = 1
gives (4.5). This finishes the proof for the case of real type potentials. If ψ ∈ XI , we
instead have

L(ψ)v = R(λ, ψ)v ⇐⇒ L(ψ)v̂ = R(λ̄, ψ)v̂

where v̂ := σ1σ3v̄ = (−v̄2, v̄1), which leads to (4.4) and (4.5). ��
Corollary 4.3 There exists a neighborhood W of the zero potential in X such that for
each ψ ∈ W ∩ (XR ∪ XI) and each n ∈ Z,

{λ ∈ C : �̇(λ, ψ) = 0} ∩ D1
n = {λ̇1n(ψ)} and λ̇1n(ψ) ∈ R.

Proof We already know from Theorem 3.17 that there exists a neighborhoodW of the
zero potential such that, for all general potentials ψ ∈ W and all n ∈ Z,

{λ ∈ C : �̇(λ, ψ) = 0} ∩ D1
n = {λ̇1n(ψ)}.

Due to the symmetry (4.5) we infer that, for all potentials ψ ∈ W ∩ (XR ∪ XI) and
n ∈ Z,

0 = �̇(λ̇1n(ψ), ψ) = �̇(λ̇1n(ψ), ψ) = �̇( ¯̇λ1n(ψ), ψ).

Since λ̇1n(ψ) is the only root of �̇(·, ψ) in D1
n , we conclude that λ̇

1
n(ψ) is real. ��

Theorem 4.4 There exists a neighborhood W of the zero potential inX and a sequence
of nondegenerate rectangles

Rε,δ
n := {

λ ∈ C : |�λ− λ̇1n(0)| < δn, |λ| < εn
}
, n ∈ Z, (4.6)

with ε, δ ∈ �
∞,1/2
R

, such that for all ψ ∈ W ∩ (XR ∪ XI) and every n ∈ Z \ {0},

{λ ∈ C : �(λ,ψ) ∈ R} ∩ Rε,δ
n = γn(ψ) ∪ (Rε,δ

n ∩ R),

where the subset γn(ψ) ⊆ C forms an analytic arc transversal to the real axis, which
crosses the real line in the critical point λ̇1n(ψ) of �(·, ψ). These arcs are symmetric
under reflection in the real axis and the orthogonal projectionofγn(ψ) to the imaginary
axis is a real analytic diffeomorphism onto its image.
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(a) (b)

Fig. 3 a An illustration of the path γn within the rectangle Rε,δ
n which is contained in the disc D1

n . The
critical points λ̇1n = λ̇1n(ψ) = γn ∩R and λ̇1n(0) are marked with dots. bA plot of the zero set of�2(·, 0) in
the complex λ-plane; the boundaries of the discs Di

n , i = 1, 2, are indicated by dashed circles, the periodic
eigenvalues (which coincide with the critical points of�(·, 0) and the Dirichlet and Neumann eigenvalues)
are indicated by dots

We refer to Fig. 3a for an illustration of the analytic arc γn(ψ) within the rectangle
Rε,δ
n centered at the critical point λ̇1n(0) of the discriminant �(·, 0).
Before proving Theorem 4.4, we state an important consequence of Theorem 4.4

andTheorem3.17.Namely that for all small enough real and imaginary type potentials,
the periodic eigenvalues λ1,−n (ψ) and λ

1,+
n (ψ) are connected by an analytic arc along

which the discriminant is real-valued. More precisely, we will deduce the following
result.

Theorem 4.5 There exists a neighborhood W ∗ of ψ = 0 in X such that for each ψ ∈
W ∗ ∩ (XR ∪XI) and each n ∈ Z \ {0} there exists an analytic arc γ ∗

n ≡ γ ∗
n (ψ) ⊆ C

connecting the two periodic eigenvaluesλ1,±n ≡ λ
1,±
n (ψ). Qualitatively we distinguish

two different cases: either (i) γ ∗
n = [λ1,−n , λ

1,+
n ] ⊆ R or (ii) γ ∗

n is transversal to the
real line, symmetric under reflection in the real axis, and the orthogonal projection
of γ ∗

n to the imaginary axis is a real analytic diffeomorphism onto its image. In both
cases, it holds that

(1) �(γ ∗
n , ψ) ⊆ [−2, 2],

(2) γ ∗
n = γ ∗

n ,
(3) λ̇1n(ψ) ∈ γ ∗

n ∩ R,
(4) For a parametrization by arc length ρn ≡ ρn(s) of γ ∗

n with ρn(0) = λ̇1n(ψ),
the function s �→ �(ρn(s), ψ) is strictly monotonous along the two connected
components of γ ∗

n \ {λ̇1n(ψ)}.
(We include the possible scenario λ

1,−
n (ψ) = λ

1,+
n (ψ) = λ̇1n(ψ), where the set γ ∗

n (ψ)

consists of the single element λ̇1n(ψ), as a degenerate special case.)
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The remainder of this section is devoted to the proofs of Theorems 4.4 and 4.5. We
follow closely the ideas and methods of the proof of [20, Proposition 2.6]—a related
result for the x-periodic focusing NLS. The proof is based on an application of the
implicit function theorem for real analytic mappings in an infinite dimensional setting.
This level of generality is necessary in order to treat the arcs γn in a uniform way.

Let us first briefly discuss the strategy of the proof. Writing λ = x + iy with
x, y ∈ R, we split �(λ;ψ) ≡ �(x, y;ψ) into its real and imaginary parts and write
� = �1 + i�2 with

�1(x, y;ψ) := �(�(λ;ψ)
)
, �2(x, y;ψ) := (�(λ;ψ)

)
.

The problem is then transformed into the study of the zero level set of �2(λ;ψ) =
�2(x, y;ψ). By Proposition 4.2, �2(x, 0;ψ) = 0 for any x ∈ R and ψ ∈ XR ∪XI .
Therefore, following [20], we introduce the function

F̃ : R × (R \ {0})× (XR ∪ XI) → R,

(x, y, ψ) �→ F̃(x, y;ψ) := �2(x, y;ψ)

y
,

(4.7)

which has the same zeros on R × (R \ {0})× (XR ∪ XI) as �2. We observe that F̃
has a real analytic extension

F : R × R × (XR ∪ XI) → R. (4.8)

To see this, we recall that� is analytic on C×X and real valued on R× (XR ∪XI).
Hence �2 vanishes on R × {0} × (XR ∪ XI) and is real analytic there. Thus
�2(x, y;ψ)/y admits a Taylor series representation at y = 0, which converges abso-
lutely to the analytic extension F of F̃ locally near y = 0.

For ψ ∈ XR ∪ XI and real sequences u = (un)n∈Z and v = (vn)n∈Z, we define
the map

F = (Fn)n∈Z, Fn(u, v;ψ) := F(λ̇1n + un, vn;ψ). (4.9)

For the zero potential and the zero sequence, both denoted by 0, we calculate

F(0, 0; 0) = (−8λ̇1n sin(2(λ̇
1
n)

2))n∈Z = (−8λ̇1n sin |n|π )n∈Z = 0.

In order to determine ∂F
∂u at the origin (0, 0; 0), we first observe that ∂F

∂u has diagonal
form because F j is independent of un for j ∈ Z with j  = n. On the diagonal, we
obtain

∂Fn

∂un
(u, v; 0) = ∂

∂un

[
�2(λ̇

1
n + un, vn; 0)

vn

]

= − 2

vn

{
4(λ̇1n + un) cos[2((λ̇1n + un)

2 − v2n)] sinh[4(λ̇1n + un)vn
]

+ sin[2((λ̇1n + un)
2 − v2n)] 4vn cosh[4(λ̇1n + un)vn]

}
,
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thus
∂Fn

∂un
(0, 0; 0) = −32(λ̇1n)

2 cos[2(λ̇1n)2],
and therefore

∂F
∂u

(0, 0; 0) = (
16π |n| diag((−1)n+1)

)
n∈Z. (4.10)

Consequently, the right-hand side of (4.10) is at least formally bijective in a set-
theoretic and algebraic sense, for example as a mapping from the linear space of real
sequences {u = (un)n∈Z : Z → R | u0 = 0} to itself. In order to give these formal
considerations a rigorous justification, we need to consider appropriate subspaces
of sequences equipped with suitable topologies. Due to the quadratic nature of the
underlyinggeneralized eigenvalueproblem, the right choice of spaces is quite a delicate
issue. In contrast to the related x-periodic problem for the focusing NLS, see [20],
we can not rely on �∞ sequences, but need to make use of the weighted �p-based
spaces of �p,s sequences, which we introduced earlier in (3.5). The establishment of
the necessary bounds for the mapping F between these spaces turns out to be highly
nontrivial, cf. Lemma 4.8.

Let us discuss the basic properties of the �
p,s
K

spaces, where K = R or K = C,
which appear in the formulation of Theorem 4.4, and Propositions 3.5, 3.9 and 3.17.
For 1 ≤ p ≤ ∞ and s ∈ R, we consider the linear spaces

�
p,s
K

:=
{
u = (un)n∈Z

∣∣ ((1+ n2)
s
2 un

)
n∈Z ∈ �

p
K

}

endowed with the norms

|u|p,s :=
( ∞∑
n=−∞

(1+ n2)
sp
2 |un|p

) 1
p

,

1 ≤ p < ∞; |u|∞,s := sup
n∈Z

{
(1+ n2)

s
2 |un|

}
.

One easily checks that these spaces are Banach spaces. Furthermore, defining

�n := (1+ n2)
1
2 , n ∈ Z,

the map
�r : �p,s

K
→ �

p,s−r
K

, un �→ �r
nun,

is an isometric isomorphism for each r ∈ R. In particular �s maps �p,s
K

isometrically
onto �

p
K
. For s ∈ R and 1 < p < ∞, the topological dual of �p,s

K
is isometrically

isomorphic to �
q,−s
K

, i.e., (�p,s
K

)′ ∼= �
q,−s
K

, where q is the Hölder conjugate of p defined
by 1/p + 1/q = 1. The isomorphism is given by the dual pairing

〈·, ·〉p,s;q,−s : �p,sK
× �

q,−s
K

→ K, 〈u, v〉p,s;q,−s :=
∞∑

n=−∞
unvn, (4.11)
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and can be deduced directly from the well-known �p-�q -duality. Henceforth, we will
identify the dual of �p,s

K
with �

q,−s
K

by means of 〈·, ·〉p,s;q,−s . In particular, �p,s
K

is a
reflexive Banach space for 1 < p < ∞.

We will also use the closed subspaces

�̌
p,s
K

:= {u ∈ �
p,s
K

: u0 = 0};

for 1 < p < ∞ their topological duals are given by:

(�̌
p,s
K

)′ ∼= �̌
q,−s
K

. (4.12)

The linear operator T defined by

Tnun �→ |n|un, T : �̌p,s
K

→ �̌
p,s−1
K

is a topological isomorphism. Likewise, T r : un �→ T r
n un = |n|r un is an isomporhism

�̌
p,s
K

→ �̌
p,s−r
K

for real r .
The first part of the proof of Theorem 4.4 uses techniques from the theory of

analytic maps between complex Banach spaces. We therefore review some aspects of
this theory. Let (E, ‖ · ‖E ), (F, ‖ · ‖F ) be complex Banach spaces. Furthermore, we
denote byL(E, F) the Banach space of boundedC-linear operators E → F endowed
with the operator norm ‖ · ‖L(E,F), where ‖L‖L(E,F) = sup0  =h∈E

‖Lh‖F‖h‖E < ∞ for
L ∈ L(E, F). In the special case F = C, we denote by E ′ = L(E,C) the topological
dual space of E . Let O ⊆ E be an open subset. A map f : O → F is called analytic
or holomorphic, if it is Fréchet differentiable in the complex sense at every u ∈ O ,
i.e., if for each u ∈ O there exists a bounded linear operator A(u) ∈ L(E, F) such
that

lim‖h‖E→0

‖ f (u + h)− f (u)− A(u)h‖F
‖h‖E = 0.

In this case we call A(u) the derivative of f at u and write d f (u) for A(u). In the
special case E = F = C, we simply write d f (u) = f ′(u) ∈ C ∼= C

′. We call f
weakly analytic on O if for every u ∈ O , h ∈ E and L ∈ F ′ the function

z �→ L f (u + zh)

is analytic in some neighborhood of zero.
We provide the basic characterization of analytic maps between complex Banach

spaces in the following lemma.

Lemma 4.6 [18, Theorem A.4] Let E and F be complex Banach spaces, let O ⊆ E
be open and let f : O → F be a mapping. The following statements are equivalent.

(1) f is analytic in O.
(2) f is weakly analytic and locally bounded on O.
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(3) f is infinitely many times differentiable on O and for each u ∈ O the Taylor
series of f at u, given by

f (u+ h) = f (u)+ d f (u)h+ 1

2
d2 f (u)(h, h)+ · · · + 1

n!d
n f (u)(h, . . . , h)+ · · ·

converges to f absolutely and uniformly in a neighborhood of u.

Thenext lemma, also referred to asCauchy’s inequality, provides an important estimate
for the multilinear map dn f (u).

Lemma 4.7 Let E and F be complex Banach spaces and let f be analytic from the
open ball of radius r around u in E into F such that ‖ f ‖F ≤ M on this ball. Then
for all integers n ≥ 0,

max
0  =h∈E

‖dn f (u)(h, . . . , h)‖F
‖h‖nE

≤ Mn!
rn

.

Proof By the previous lemma, f is infinitely often differentiable at u with n-th deriva-
tive dn f (u) ∈ Ln(E, F), the space of continuous n-linearmappings E×· · ·×E → F .
The lemma now follows directly from the usual Cauchy inequality for holomorphic
Banach space valued functions on a complex domain by considering the holomorphic
map ϕ(z) := f (u + zh) for arbitrary h  = 0 on the disc with radius r/|h| centered at
the origin of C. See e.g. [18, Lemma A.2], see also e.g. [9, Chapter III.14] for the gen-
eralization of the classical theory of complex analysis for functions f : C ⊇ O → C

to complex Banach space valued functions f : C ⊇ O → F defined on a complex
domain, and [28] for a general account on complex analysis in Banach spaces. ��

The purpose of the next lemma is the establishment of certain bounds we will use
later on.

Lemma 4.8 Let ψ ∈ XR ∪XI , let λ = x + iy ∈ C with x, y ∈ R, and let�1 and�2
denote the real and imaginary parts of � = �1 + i�2.

(1) As |λ| → ∞, the partial derivative ∂y�2 satisfies the asymptotic estimate

∂y�2(x, y;ψ) = −8
(
x sin[2(x2 − y2)] cosh[4xy] − y cos[2(x2 − y2)] sinh[4xy])

− 4ì(ψ) cos[2(x2 − y2)] cosh[4xy] +O
(

e4|xy|√
x2 + y2

)
(4.13)

uniformly for ψ in bounded subsets of XR ∪ XI , where

̀(ψ) := (1, ψ) =
∫ 1

0
(ψ1ψ4 − ψ2ψ3) dt .

(2) Set λ̇1n := λ̇1n(0). The mapping

(xn, yn) �→ ∂y�2(λ̇
1
n + xn, yn;ψ), (4.14)
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which is real analytic in each coordinate, maps bounded sets in �
∞,1/2
R

× �
∞,1/2
R

to bounded sets in �
∞,−1/2
R

; the corresponding bound in �
∞,−1/2
R

can be chosen
uniformly for ψ varying within bounded subsets of XR ∪ XI . The assertion
remains true when considering (4.14) as a mapping

�
∞,1/2
C

× �
∞,1/2
C

× X ⊇ (
�
∞,1/2
R

× �
∞,1/2
R

× (XR ∪ XI)
)⊗ C → �

∞,−1/2
R

⊗ C

by means of the coordinatewise analytic extension to all of
(
�
∞,1/2
R

× �
∞,1/2
R

×
(XR ∪XI)

)⊗C; that is, this mapping maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to

bounded sets in �
∞,−1/2
C

uniformly on bounded subsets of (XR ∪ XI)⊗ C.

Proof In order to prove part (1), we recall from Theorem 2.7 that

M̀(λ, ψ) = e−2iλ2σ3 +O
(
e2|(λ2)|

|λ|
)
.

In the proof of Theorem 2.7, we gained additional information on the remainder term:
it is of the form

Z1(ψ)

λ
e−2iλ2σ3 + W1(ψ)

λ
e2iλ

2σ3 +O
(
e2|(λ2)|

|λ|2
)
,

where the diagonal part of the 1/λ-terms is given by

1

2λ
̀(ψ) σ3e

−2iλ2σ3 .

Thus the discriminant satisfies

�(λ,ψ) = 2 cos 2λ2 − ì

λ
sin 2λ2 +O(|λ|−2 e2|(λ2)|

)

for any potential ψ ∈ X, and its λ-derivative satisfies

�̇(λ, ψ) = −8λ sin 2λ2 − 4ì(ψ) cos 2λ2 + O
(|λ|−1 e2|(λ2)|

)
. (4.15)

Since ̀(ψ) ∈ iR for ψ ∈ XR ∪XI , the asymptotic estimate (4.13) follows by taking
the real part of (4.15).

We prove part (2) of the lemma in the complex setting; this includes the real setting
as a special case. The analytic extension ∂̃y�2 of ∂y�2 to C × C × (XR ∪ XI)⊗ C

is given by

∂̃y�2(x, y;ψ) = �̇(x + iy, ψ), x, y ∈ C, ψ ∈ (XR ∪ XI)⊗ C,
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which, according to the first part of the proof, satisfies the asymptotic estimate

∂̃y�2(x, y;ψ) = −8(x + iy) sin[2(x + iy)2] − 4ì(ψ) cos[2(x + iy)2]

+ O

(
e2|((x+iy)2)|

|x + iy|
)
. (4.16)

The error termholds uniformlyonbounded subsets of (XR∪XI)⊗C for |x+iy| → ∞;
likewise ̀ possesses a uniform bound on bounded subsets of this potential space.
Therefore we only need to establish the desired bounds for arbitrary potentials ψ ∈
(XR∪XI)⊗C and the uniformity on bounded subsets follows automatically.Wewrite
the complexification of (4.14) (by means of analytic extensions in all coordinates) as

�
∞,1/2
C

×�
∞,1/2
C

×[(XR∪XI)⊗C] → �
∞,−1/2
C

, (xn, yn) �→ ∂̃y�2(λ̇
1
n+xn, yn;ψ),

(4.17)
and employ the asymptotic estimate (4.16) to deduce the asserted bounds for (4.17).
Let us verify the bounds separately for the three components of (4.17), which arise
from the three terms in (4.16), beginning with the error term. That is, we first show
that

(xn, yn) �→ e2|((λ̇1n+xn+iyn)2)|

|λ̇1n + xn + iyn|
(4.18)

maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �
∞,−1/2
R

. We clearly have
that

(xn, yn) �→ |((λ̇1n + xn + iyn)
2)|

maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �∞
R
, hence the nominator in

(4.18) is bounded in �∞
R

uniformly on bounded sets in �
∞,1/2
C

× �
∞,1/2
C

. It follows that

the whole expression on the right-hand side of (4.18) is bounded in �
∞,1/2
R

⊆ �
∞,−1/2
R

on bounded sets in �
∞,1/2
C

× �
∞,1/2
C

. Next we show that

(xn, yn) �→
∣∣ cos[2(λ1n + xn + iyn)

2]∣∣ (4.19)

maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �
∞,−1/2
R

, which ensures
that the second component of (4.17) has the asserted property. By recalling that
sin[2(λ̇1n)2] = 0 and cos[2(λ̇1n)2] = (−1)n and employing the classical trigonometric
addition formulas, we obtain

∣∣ cos[2(λ1n + xn + iyn)
2]∣∣ ≤ ∣∣ cos[2(x2n + 2ixn yn − y2n )] cos[4λ1n(xn + iyn)]

∣∣
+ ∣∣ sin[2(x2n + 2ixn yn − y2n )] sin[4λ1n(xn + iyn)]

∣∣.
(4.20)

The second term on the right-hand side of (4.20) is bounded in �
∞,1/2
R

on bounded

sets of �∞,1/2
C

× �
∞,1/2
C

; the first term is bounded in �∞
R
. Thus (4.19) maps bounded
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sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �∞
R

⊆ �
∞,−1/2
R

. Finally, we infer by similar

arguments that the first component of (4.17) maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to

bounded sets in �
∞,−1/2
C

. Indeed,

(xn, yn) �→ | sin[2(λ1n + xn + iyn)
2]|

maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �∞
R
, thus

(xn, yn) �→ |(λ1n + xn + iyn) sin[2(λ1n + xn + iyn)
2]|

maps bounded sets in �
∞,1/2
C

× �
∞,1/2
C

to bounded sets in �
∞,−1/2
R

. We conclude that
the mapping (4.17) has the asserted boundedness properties, which finishes the proof
of the lemma. ��

Below we provide an elementary criterion, which helps to show analyticity of
functions, which map to �

∞,s
C

; unlike Lemma 4.6 it does not involve the dual (�∞,s
C

)′
in this particular situation. The criterion is formulated for the target space �∞,s

F , s ∈ R,
where F is a complex Banach space; i.e. �∞,s

F denotes the Banach space

{
u = (un)n∈Z : Z → F

∣∣∣ ‖u‖∞,s := sup
n∈Z

{
(1+ n2)

s
2 |un|F

}
< ∞

}

with norm ‖u‖∞,s .

Lemma 4.9 Let s ∈ R, let E, F be complex Banach spaces and let O ⊆ E be an open
subset. If the function

f : O → �
∞,s
F , u �→ f (u) = (

fn(u)
)
n∈Z

is locally bounded and each coordinate function fn : O → F is analytic, then f is
analytic.

Proof A proof for the case s = 0 can be found in [18, Theorem A.3], and this proof
can easily be generalized to the case of arbitrary s ∈ R. Let us for convenience state
this proof, which verifies the differentiability of f at an arbitrary point u ∈ O directly.
By assumption there is a ball centered at u such that f is bounded in �

∞,s
F on this ball.

In particular, each (1+ n2)s/2| fn|F is bounded by the same constant. Since all fn are
moreover analytic, it follows from the Taylor series representation applied to each fn ,
cf. Lemma 4.6, and an application of Cauchy’s estimate, cf. Lemma 4.7, that

‖ fn(u + h)− fn(u)− d fn(u)h‖F ≤ C(1+ n2)−
s
2 ‖h‖2E

for small enough ‖h‖E , where C is independent of n ∈ Z. This means that for small
‖h‖E ,

‖ f (u + h)− f (u)− (d fn(u)h)n∈Z‖∞,s ≤ C‖h‖2E ,
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from which we infer that f is differentiable at u with derivative

d f (u) = (d fn(u))n∈Z ∈ L(E, �
∞,s
F ).

��
Proof of Theorem 4.4 The real analytic extension F : R×R× (XR ∪XI) → R of F̃ ,
cf. (4.7) and (4.8), can be written as

F(x, y;ψ) =
∫ 1

0
(∂2�2)(x, sy;ψ) ds, (4.21)

where ∂2 denotes the partial derivative with respect to the second variable. Indeed,

∫ 1

0
(∂2�2)(x, sy;ψ)y ds =

∫ y

0
(∂2�2)(x, y

′;ψ) dy′ = �2(x, y;ψ)−�2(x, 0;ψ),

where �2(x, 0;ψ) = 0 because, by Proposition 4.5, � is real-valued on R × (XR ∪
XI). We obtain from (4.21) that

|F(x, y;ψ)| ≤ max
s∈[0,1] |(∂2�2)(x, sy;ψ)|. (4.22)

In view of Lemma 4.8 and (4.22), the operator F given by (4.9) defines a well-
defined map

F : �̌∞,1/2
R

× �̌
∞,1/2
R

× (XR ∪ XI) ⊇ B∞,1/2
1 × B∞,1/2

1 × (XR ∪ XI) → �̌
∞,−1/2
R

,

where B∞,1/2
1 ≡ B∞,1/2

1 (�̌
∞,1/2
R

) denotes the open unit ball in �̌∞,1/2
R

centered at 0; the

space �̌∞,1/2
R

× �̌
∞,1/2
R

×(XR∪XI) is endowedwith the usual product topology. Since
F is real analytic, it admits an analytic extension FC to some open set inC×C×[(XR∪
XI)⊗C], which contains R×R× (XR ∪XI). Let us consider the complexification(
B∞,1/2
1 × B∞,1/2

1 × (XR ∪ XI)
) ⊗ C of B∞,1/2

1 × B∞,1/2
1 × (XR ∪ XI). By an

application of Lemma 4.8 and (4.22), there exists an open setUC ⊆ (
�̌
∞,1/2
R

×�̌
∞,1/2
R

×
(XR ∪ XI)

) ⊗ C, which contains B∞,1/2
1 × B∞,1/2

1 × (XR ∪ XI), such that the

coordinatewise analytic extension FC : UC → �̌
∞,−1/2
C

of F is bounded on bounded
subsets ofUC; in particularFC is locally boundedonUC. FromLemma4.9weconclude
that FC is analytic on UC; in particular, F is real analytic.

The partial derivative ∂uF(0, 0; 0), which is given by (4.10), is a topological iso-
morphism �̌

∞,1/2
R

→ �̌
∞,−1/2
R

and F(0, 0; 0) = 0. Thus we can apply the implicit
function theorem for Banach space valued real analytic functions, cf. [31]. We infer
the existence of an open neighborhood W of the zero potential in XR ∪ XI , an open
ε-ball B∞,1/2

ε and a δ-ball B∞,1/2
δ around the origin in �̌

∞,1/2
R

and a real analytic
function

G : B∞,1/2
ε ×W → B∞,1/2

δ
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such that, for all v ∈ B∞,1/2
ε and ψ ∈ W ,

F(G(v, ψ), v, ψ) = 0,

and such that the map

(v, ψ) �→ (G(v, ψ), v, ψ), B∞,1/2
ε ×W → B∞,1/2

δ × B∞,1/2
ε ×W

describes the zero level set of F in B∞,1/2
δ × B∞,1/2

ε ×W .
We may assume that the sequences ε = (εn)n∈Z and δ = (δn)n∈Z satisfy εn > 0

and δn > 0 for n ∈ Z\{0} and ε0 = δ0 = 0. Clearly, if −1 ≤ τn ≤ 1 for each n, then
(τnεn)n∈Z ∈ B∞,1/2

ε and (τnδn)n∈Z ∈ B∞,1/2
δ . Thus we can run through the intervals

in each coordinate in a uniform way. Let Rε,δ
n , n ∈ Z\{0}, be the associated sequence

of nondegenerate rectangles defined in (4.6).
Our considerations show that, for every ψ ∈ W and n ∈ Z\{0}, the zero set of F

can be parametrized locally near λ̇1n by the real analytic function

zn(ψ) : (−εn, εn) → Rε,δ
n , yn �→ λ̇1n + Gn(yn, ψ)+ iyn .

We set
γn(ψ) := zn(ψ)((−εn, εn)) ⊆ Rε,δ

n

and denote the zero set of �2(·, ψ) by

N�2(ψ) := {(x, y) ∈ R
2 : �2(x, y, ψ) = 0} ⊆ R

2.

By construction,
γn(ψ)\R = N�2(ψ) ∩ (Rε,δ

n \R),

and furthermore, since � is real-valued on R × (XR ∪ XI), cf. Proposition 4.2, we
have

N�2(ψ) ∩ Rε,δ
n = γn(ψ) ∪ (Rε,δ

n ∩ R) =: Zn(ψ) ⊆ C.

Thus for arbitrary ψ ∈ W and every n ∈ Z\{0}, λ ∈ Rε,δ
n satisfies

�(λ,ψ) ∈ R ⇐⇒ λ ∈ Zn(ψ). (4.23)

The intersection γn(ψ) ∩ R consists of a single point which we denote by ξn ≡
ξn(ψ) ∈ Rε,δ

n ⊆ D1
n . We will show that ξn = λ̇1(ψ). Since �2 vanishes on the curve

γn(ψ), which is orthogonal to the real line at the point ξn , we have ∂y�2(ξn, ψ) = 0.
Furthermore, we know that �2 vanishes on R, hence ∂x�2(ξn, ψ) = 0. The Cauchy-
Riemann equations then imply that �̇(ξn, ψ) = ∂y�2(ξn, ψ) + i∂x�2(ξn, ψ) = 0;
hence ξn(ψ) is a critical point of �(·, ψ). Since �(·, ψ) has only one critical point
in D1

n , namely λ̇1n(ψ) according to Corollary 4.3, we conclude that γn(ψ) crosses the
real line in the point λ̇1n(ψ) ∈ Rε,δ

n . ��
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Proof of Theorem 4.5 According to Theorem 4.4 there exists a neighborhood W of 0
in X such that for ψ ∈ W ∩ (XR ∪ XI) and arbitrary n ∈ Z\{0}, the analytic arc
γn(ψ) and the respective part of the real line describe the preimage ofR under�(·, ψ)

locally around λ̇1n(0). This arc is transversal to the real line, symmetric under reflection
in the real axis, and the orthogonal projection of γn(ψ) to the imaginary axis is a real
analytic diffeomorphism onto its image.

Let us consider the rectangles Rε,δ
n , which are centered at λ1,±n (0) = λ̇1n(0) such

that γn(ψ) ⊆ Rε,δ
n uniformly for all ψ ∈ W ∩ (XR ∪ XI) and all n ∈ Z\{0}. Since

the lengths and widths δn and εn are of order �
∞,1/2
R

, it is guaranteed by Theorem 3.17
that there exists a neighborhood W ∗ of ψ = 0 in X such that W ∗ ∩ (XR ∪XI) ⊆ W
and such that λ1,±n (ψ), λ̇1n(ψ) ∈ Rε,δ

n for allψ ∈ W ∗ ∩ (XR∪XI) and all n ∈ Z\{0}.
Furthermore, Theorem 3.17 tells us that

�(λ1,±n (ψ), ψ) = 2(−1)n . (4.24)

Using the notation of the proof of Theorem 4.4, we infer from (4.23) in combination
with (4.24) and Corollary 4.3 that

λ1,±n (ψ) ∈ Zn(ψ) and λ̇1n(ψ) ∈ Zn(ψ) ∩ R = Rε,δ
n ∩ R

for all ψ ∈ W ∩ (XR ∪ XI). If both λ
1,−
n (ψ) and λ

1,+
n (ψ) are real, we set

γ ∗
n ≡ γ ∗

n (ψ) := [λ1,−n (ψ), λ1,+n (ψ)] ⊆ Rε,δ
n ∩ R;

otherwise we set

γ ∗
n ≡ γ ∗

n (ψ) := γn(ψ) ∩ {λ ∈ C : |�(λ,ψ)| ≤ 2}.

In both cases, we have that �({γ ∗
n }, ψ) ⊆ [−2, 2], γ ∗

n = γ ∗
n and λ̇1n(ψ) ∈ γ ∗

n ∩ R.
Finally, considering a parametrization by arc length ρn ≡ ρn(s) of γ ∗

n with ρn(0) =
λ̇1n(ψ), we have that

d

ds

[
�(ρn(s), ψ)

] = 0 ⇐⇒ �̇(ρn(s), ψ) = 0 ⇐⇒ s = 0,

because
∣∣ d
ds ρn

∣∣ ≡ 1 by assumption and, by Corollary 4.3, ρn(0) = λ̇1n(ψ) is the only

root of �̇(·, ψ) in Rε,δ
n ⊆ D1

n . ��

5 Example: single exponential potential

In this section, we consider single exponential potentialsψ of real and imaginary type:

ψ(t) = (αeiωt , σ ᾱe−iωt , ceiωt , σ c̄e−iωt ), α, c ∈ C, ω ∈ R, σ ∈ {±1}. (5.1)
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(b)(a)

(c) (d)

Fig. 4 Plots of the zero level sets of �2(·, ψ) for single exponential potentials of real type (left column)
and imaginary type (right column); periodic eigenvalues are indicated with dots and the dashed circles are
the boundaries of the discs Di

n

The fundamental matrix solution that corresponds to a single exponential potential can
be calculated explicitly. In Figs. 4 and 5 we provide numerical plots of the periodic
eigenvalues and the set {λ ∈ C : �(·, ψ) ∈ R} for several particular potentials ψ of
the form (5.1).

To ensure that ψ ∈ X, i.e. that ψ has period one, we require that ω ∈ 2πZ. If
σ = 1, the potential ψ(t) in (5.1) is of real type and hence relevant for the defocusing
NLS; if σ = −1, it is of imaginary type and hence relevant for the focusing NLS.
A direct computation shows that the associated fundamental solution M(t, λ, ψ) is
explicitly given by
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Fig. 5 A plot of the zero level set of�2(·, ψ) for the real type single exponential potential (5.1) with σ = 1,
ω = −2π , α = 6

15 + 11
4 i, c = 1

10 . Periodic eigenvalues are indicated with dots, the large dashed circle is

the boundary of the disc B3 and the remaining dashed circles are the boundaries of the discs Di
n

e
iω
2 tσ3

(
cos(�t)+ 4λ2+2σ |α|2+ω

2i� sin(�t) 2αλ+ic
�

sin(�t)

σ 2ᾱλ−ic̄
�

sin(�t) cos(�t)− 4λ2+2σ |α|2+ω
2i� sin(�t)

)
, (5.2)

where

� = �(λ) =
√
4λ4 + 2ωλ2 + 4σ(ᾱc)λ+

(ω
2
+ σ |α|2

)2 − σ |c|2. (5.3)

We fix the branch of the root in (5.3) by requiring that

�(λ) = 2λ2 + ω

2
+O(λ−1) as |λ| → ∞.

Thus the discriminant �, i.e. the trace of (5.2), and the characteristic function for the
periodic eigenvalues χP defined in (3.16) are given by

�(λ,ψ) = −2 cos(�), χP(λ, ψ) = 4 sin2(�).

Figure 4 shows plots of the zero set of �2(·, ψ) = �(·, ψ) and the periodic
eigenvalues in the complex λ-plane for four different choices of the parameters σ , α,
c and ω. All four choices correspond to exact plane wave solutions of NLS. Indeed,
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if ω = −2π and α > 0 is chosen such that −σ2α2 − ω > 0 is satisfied for σ = ±1,
then

u(x, t) = α eiβx+iωt with β =
√
−σ2α2 − ω

solves the defocusing (focusing) NLS if σ = 1 (σ = −1). Moreover, it holds that

u(0, t) = α eiωt , ux (0, t) = c eiωt , with c = iαβ.

In the left and right columns of Fig. 4we find examples for the defocusing and focusing
case, respectively. In the top row, the norm of the potential is small enough (α = 1/12)
that each periodic eigenvalue λ

i,±
n is contained in the disc Di

n , i = 1, 2, n ∈ Z. In
Fig. 4a, all periodic eigenvalues λ1,±n are real and there is a spectral gap [λ1,−−1 , λ

1,+
−1 ];

the remaining periodic eigenvalues satisfy λ
1,−
n = λ

1,+
n , n ∈ Z\{−1, 0}. The periodic

eigenvalues λ
2,±
n , n ∈ Z, lie on a curve that asymptotes to the imaginary axis. In

Fig. 4b, λ1,−−1 and λ
1,+
−1 are not real but lie on the (global) arc γ−1, which is symmetric

with respect to the real axis and crosses the real line at the critical point λ̇1−1. In Fig. 4c,
d, the spectral gaps are larger than in Fig. 4a, b, because the parameter α is larger than
in the previous examples (α = 1/2).

Figure 5 shows the zero set of �2(·, ψ) in the complex λ-plane for the real type
single exponential potential (5.1) with parameters σ = 1,ω = −2π , α = 6

15+ 11
4 i and

c = 1
10 . This example clearly demonstrates that Theorems 4.4 and 4.5 fail to remain

true for potentials with sufficiently large X-norms.We further notice that some arcs γn
donot only “leave” the discs Di

n (and hence also the rectangles R
ε,δ
n fromTheorem4.4),

but the zero set differs qualitatively from the previous examples: certain arcs “merge”
with other arcs and subsequently “split” into new components. This example also
illustrates that the labeling of periodic eigenvalues is not preserved under continuous
deformations of the potential.We furthermore note that for this particular potential (and
consequently all potentials in X with smaller X-norm), the assertion of the Counting
Lemma holds already true for N = 3: there are 4(2 ·3+1) = 28 periodic eigenvalues
contained in the disc B3 (when counted with multiplicity: 12 double eigenvalues plus
4 simple eigenvalues) and each disc Di

n , i = 1, 2, |n| > 3, contains precisely one
periodic double eigenvalue.

6 Formulas for gradients

6.1 Gradient of the fundamental solution

Let dF denote theFréchet derivativeof a functional F : Y → Con a (complex)Banach
space Y . If it exists, dF : Y → Y ′ is the unique map from Y into its topological dual
space Y ′ such that

F(u + h) = F(u)+ (dF)(u)h + o(h) as ‖h‖ → 0

for u ∈ Y . The map dFh : Y → C (also denoted by ∂h F) is the directional derivative
of F in direction h ∈ Y .
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For any differentiable functional F : X → C and h ∈ X, we have that

dFh = ∂h F =
∫ 1

0

(
F1h1 + F2h2 + F3h3 + F4h4

)
dt

for some uniquely determined function ∂F = (F1, F2, F3, F4) : X → X.We denote
the components of ∂F by ∂ j F , j = 1, 2, 3, 4, and define the gradient ∂F of F by

∂F = (∂1F, ∂2F, ∂3F, ∂4F) = (F1, F2, F3, F4).

The following proposition gives formulas for the partial derivatives of the fundamental
solution

M(t, λ, ψ) =
(
m1 m2
m3 m4

)
.

For fixed t ≥ 0 and λ ∈ C, we consider M as a map X → M2×2(C). In particular,
each matrix entry mi , i = 1, 2, 3, 4 gives rise to a functional X → C. Let us set

γ ≡ γ (M) := det Md − det Mod = m1m4 + m2m3.

Proposition 6.1 For any t ≥ 0 and 0 ≤ s ≤ t , the gradient of the fundamental solution
M, defined on the interval [0, t], is given by

(
∂1M(t)

)
(s) = M(t)

(−iγψ2 + 2λm3m4 −2iψ2m2m4 + 2λm2
4

2iψ2m1m3 − 2λm2
3 iγψ2 − 2λm3m4

)
(s),

(
∂2M(t)

)
(s) = M(t)

(−iγψ1 − 2λm1m2 −2iψ1m2m4 − 2λm2
2

2iψ1m1m3 + 2λm2
1 iγψ1 + 2λm1m2

)
(s),

(
∂3M(t)

)
(s) = M(t)

(
im3m4 im2

4

−im2
3 −im3m4

)
(s),

(
∂4M(t)

)
(s) = M(t)

(
im1m2 im2

2

−im2
1 −im1m2

)
(s).

Moreover, at the zero potential ψ = 0,

(
∂1Eλ(t)

)
(s) =

(
0 2λ e−2iλ2(t−2s)

0 0

)
,

(
∂2Eλ(t)

)
(s) =

(
0 0

2λ e2iλ
2(t−2s) 0

)
,

(
∂3Eλ(t)

)
(s) =

(
0 i e−2iλ2(t−2s)

0 0

)
,

(
∂4Eλ(t)

)
(s) =

(
0 0

−i e2iλ
2(t−2s) 0

)
.

Proof By Theorem 2.1 the fundamental solution M is analytic in ψ . It suffices there-
fore to verify the above formulas for smooth potentials ψ for which the order of
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differentiation with respect to t and ψ can be interchanged. The general result then
follows by a density argument.

Applying the directional derivative ∂h to both sides of Eq. (2.5), we obtain

D ∂hM = (R + V ) ∂hM + ∂h(R + V )M .

Since both M(0) and R are independent of ψ , Proposition 2.4 implies

∂hM(t) = M(t)
∫ t

0
M−1(s) ∂hV (s)M(s) ds.

The integrand equals

(
m4 −m2
−m3 m1

) (−i(ψ2h1 + ψ1h2) 2λh1 + ih3

2λh2 − ih4 i(ψ2h1 + ψ1h2)

) (
m1 m2
m3 m4

)
,

which can be rewritten as
(−iψ2(m1m4 + m2m3)+ 2λm3m4 −2iψ2m2m4 + 2λm2

4

2iψ2m1m3 − 2λm2
3 iψ2(m1m4 + m2m3)− 2λm3m4

)
h1

+
(−iψ1(m1m4 + m2m3)− 2λm1m2 −2iψ1m2m4 − 2λm2

2

2iψ1m1m3 + 2λm2
1 iψ1(m1m4 + m2m3)+ 2λm1m2

)
h2

+
(
im3m4 im2

4

−im2
3 −im3m4

)
h3 +

(
im1m2 im2

2

−im2
1 −im1m2

)
h4.

The expression for the gradient ∂M(t) follows. In the case of the zero potentialψ = 0,
we have m1 = e−2λ2it , m4 = e2λ

2it and m2 = m3 = 0, so the gradient ∂Eλ(t) is
easily computed. ��

The following notation is useful to express the gradient of M more compactly. Let
M1 and M2 denote the first and second columns of M , and denote by ψ1,2 the first
two components, and by ψ3,4 the last two components of the four-vector ψ :

ψ1,2 :=
(
ψ1

ψ2

)
, ψ3,4 :=

(
ψ3

ψ4

)
.

Analogously, let

∂1,2 :=
(
∂1
∂2

)
, ∂3,4 :=

(
∂3
∂4

)
.

Following [13], we introduce the star product of two 2-vectors a = (a1, a2) and
b = (b1, b2) by

a�b :=
(
a2b2
a1b1

)
.
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Moreover, recall that γ = m1m4 + m2m3. With this notation, we obtain

Corollary 6.2 For any t ≥ 0, the gradient of the fundamental solution M is given by

∂1,2M(t)

= M(t)

( −iγ σ1ψ
1,2 + 2λσ3(M1�M2) −2im2m4σ1ψ

1,2 + 2λσ3(M2�M2)

2im1m3σ1ψ
1,2 − 2λσ3(M1�M1) iγ σ1ψ

1,2 − 2λσ3(M1�M2)

)
(s),

i∂3,4M(t) = M(t)

(−M1�M2 −M2�M2

M1�M1 M1�M2

)
(s).

In the special case when ψ = 0 and λ is a periodic eigenvalue corresponding to the
zero potential (i.e. λ = λ

i,±
n (0), i = 1, 2, n ∈ Z), we find

e+n = M1�M1, e−n = M2�M2, n ∈ Z,

where

e+n :=
(

0
e−2π int

)
, e−n :=

(
e2π int

0

)
, n ∈ Z.

6.2 Discriminant and anti-discriminant

Proposition 6.3 The gradient of � is given by

∂1,2� = m̀2[2im1m3σ1ψ
1,2 − 2λσ3(M1�M1)] − m̀3[2im2m4σ1ψ

1,2

− 2λσ3(M2�M2)] + (m̀4 − m̀1)[iγ σ1ψ
1,2 − 2λσ3(M1�M2)],

i∂3,4� = m̀2M1�M1 − m̀3M2�M2 + (m̀4 − m̀1)M1�M2.

At the zero potential, ∂�(λ, 0) = 0 for all λ ∈ C.

Proof The formula for the gradient follows directly from Corollary 6.2. In the case of
the zero potential, m2 = m3 = 0; hence M1�M2 = 0 and therefore ∂�(λ, 0) = 0 for
all λ ∈ C. ��

The following formulas for the derivative of the anti-discriminant are derived in a
similar way.

Proposition 6.4 The gradient of the anti-discriminant δ is given by

∂1,2δ = m̀4[2im1m3σ1ψ
1,2 − 2λσ3(M1�M1)] + (m̀2 − m̀3)[iγ σ1ψ

1,2

− 2λσ3(M1�M2)] − m̀1[2im2m4σ1ψ
1,2 − 2λσ3(M2�M2)],

i∂3,4δ = m̀4M1�M1 + (m̀2 − m̀3)M1�M2 − m̀1M2�M2.
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In the special case when ψ = 0 and λ is a periodic eigenvalue corresponding to the
zero potential, i.e. λ = λ

i,±
n (0), i = 1, 2, n ∈ Z,

∂1,2δ = 2λi,±n (0)(−1)n(e+n + e−n ), i∂3,4δ = (−1)n(e+n − e−n ).

7 Hamiltonian structure of the nonlinear Schrödinger system

Consider the NLS system

{
iqt + qxx − 2q2r = 0,

−irt + rxx − 2r2q = 0,
(7.1)

where q(x, t) and r(x, t) are independent complex-valued functions. If r = σ q̄ , the
system (7.1) reduces to the NLS Eq. (1.1). We can view (7.1) as an evolution equation
with respect to t by writing

(
q
r

)
t
= i

(
qxx − 2q2r
−rxx + 2r2q

)
. (7.2)

On the other hand, introducing p(x, t) and s(x, t) by

p = qx , s = rx , (7.3)

we can also write (7.1) as an evolution equation with respect to x :

⎛
⎜⎜⎝
q
r
p
s

⎞
⎟⎟⎠

x

=

⎛
⎜⎜⎝

p
s

−iqt + 2q2r
irt + 2r2q

⎞
⎟⎟⎠ . (7.4)

The potentials {ψ j }41 of Eq. (1.5) can be viewed as the initial data for (7.4) according
to the identifications

ψ1(t) = q(0, t), ψ2(t) = r(0, t), ψ3(t) = p(0, t), ψ4(t) = s(0, t).

In this section, we first review the bi-Hamiltonian formulation of (7.1) when viewed
as an evolution equation with respect to t . We also recall how this formulation gives
rise to an infinite number of conservation laws. We then show that (7.1) admits a
Hamiltonian formulation also when viewed as an evolution equation with respect to x .
Although this one Hamiltonian formulation is enough for the purpose of establishing
local Birkhoff coordinates for the x-evolution of NLS, we also consider the existence
of a second Hamiltonian structure for (7.4). We find that even though the infinitely
many conservation laws of (7.2) transfer to the x-evolution Eq. (7.4), the naive way
of deriving a second Hamiltonian structure for this system fails. Indeed, the obvious
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guess for a second Hamiltonian structure yields a Poisson bracket which does not
satisfy the Jacobi identity.

In contrast to the rest of the paper, we will not specify the functional analytic
framework in terms of Sobolev spaces such as H1(T,C). Instead we will adopt the
more algebraic point of view of [29], which is not restricted to the periodic setting;
roughly speaking, thismeans thatwewill assume that all functions canbedifferentiated
to any order and that partial integrations can be performed freely with vanishing
boundary terms. We will use the symbol

∫
to denote integration over the relevant x or

t domain.

7.1 The bi-Hamiltonian structure of (7.2)

In the current framework, we define the gradient ∂F of a functional F = F[q, r ] by

∂F =
(
∂1F

∂2F

)
=
(

∂F
∂q

∂F
∂r

)

whenever there exist functions ∂1F and ∂2F such that

d

dε
F[q + εϕ1, r + εϕ2]

∣∣∣∣
ε=0

=
∫
[(∂1F)ϕ1 + (∂2F)ϕ2] dx

for any smooth functions ϕ1 and ϕ2 of compact support. The system (7.2) admits the
bi-Hamiltonian formulation [27]

(
q
r

)
t
= D ∂H1 = E ∂H2, (7.5)

where the Hamiltonian functionals H1[q, r ] and H2[q, r ] are defined by

H1 = i
∫

qxr dx, H2 =
∫

(−qxxr + q2r2) dx, (7.6)

and the operators D and E are given by

D =
(

2qD−1
x q Dx − 2qD−1

x r
Dx − 2r D−1

x q 2r D−1
x r

)
, E =

(
0 −i
i 0

)
. (7.7)

The equalities in (7.5) are easy to verify using that

∂H1 =
(−irx

iqx

)
, ∂H2 =

(−rxx + 2qr2

−qxx + 2q2r

)
.
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The operators D and E are Hamiltonian operators in the sense that the associated
Poisson brackets

{F,G}D =
∫

(∂F)ᵀ D ∂G dx, {F,G}E =
∫

(∂F)ᵀ E ∂G dx, (7.8)

are skew-symmetric and satisfy the Jacobi identity [29, Definition 7.1]. Furthermore,
D and E form a Hamiltonian pair in the sense that any linear combination aD + bE ,
a, b ∈ R, is also a Hamiltonian operator [29, Definition 7.19]. We will review the
proofs of these properties below.

The bi-Hamiltonian formulation (7.5) together with the fact that D and E form
a Hamiltonian pair implies that DE−1 is a recursion operator for (7.2) and that a
hierarchy of conserved quantities Hn can be obtained (at least formally) by means of
the recursive definition (see [29, Theorem 7.27])

D ∂Hn = E ∂Hn+1.

The first few conserved quantities H0, H1, H2, H3 for (7.2) are given by (7.6) and

H0 =
∫

qr dx, H3 = i
∫ (

−qxxxr + 3

2
(q2)xr

2
)

dx .

In differential form, the associated conservation laws are given by

H0 : (qr)t = i(qxr − qrx )x ,

H1 : i(qxr)t = (q2r2 + qxrx − qxxr)x ,

H2 : (−qxxr + q2r2)t = i(4qqxr
2 + qxxrx − qxxxr

)
x ,

H3 : i
(
−qxxxr + 3

2
(q2)xr

2
)
t
= (2q3r3 − 5q2x r

2 − 2qqxrrx + q2r2x − 5qqxxr
2

− 2q2rrxx − qxxxrx + qxxxxr)x . (7.9)

Even for relatively simple brackets such as those defined in (7.8), the direct ver-
ification of the Jacobi identity is a very complicated computational task. In the next
lemma, we give a proof of the well-known fact that D and E are Hamiltonian oper-
ator by appealing to the framework of [29, Chapter 7] which shortens the argument
significantly.

Lemma 7.1 D and E are Hamiltonian operators.

Proof It is easy to verify thatD and E are skew-symmetric with respect to the bracket

〈(
f1
f2

)
,

(
g1
g2

)〉
=
∫

( f1g1 + f2g2) dx . (7.10)

Since E has constant coefficients, E is a Hamiltonian operator by [29, Corollary 7.5]. It
remains to show that the bracket defined by D satisfies the Jacobi identity. According
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to [29, Proposition 7.7], it is enough to show that the functional tri-vector!D defined
by

!D = 1

2

∫ {
θ ∧ pr vDθ (D) ∧ θ

}
dx = 1

2

∫ 2∑
α,β=1

{
θα ∧ (pr vDθ (D))αβ ∧ θβ

}
dx

vanishes, where we refer to [29] for the definitions of the wedge product ∧, the
functional vector θ = (θ1, θ2), the vector field vDθ , and its prolongation pr vDθ .
We have (see [29, p. 442])

pr vDθ (q) = (Dθ)1, pr vDθ (r) = (Dθ)2,

Dθ =
(
(Dθ)1

(Dθ)2

)
=
(
2q(D−1

x (qθ1))+ (Dxθ
2)− 2q(D−1

x (rθ2))
(Dxθ

1)− 2r(D−1
x (qθ1))+ 2r(D−1

x (rθ2))

)
, (7.11)

and

pr vDθ (D) = 2

(
(Dθ)1D−1

x q + qD−1
x (Dθ)1 −(Dθ)1D−1

x r − qD−1
x (Dθ)2

−(Dθ)2D−1
x q − r D−1

x (Dθ)1 (Dθ)2D−1
x r + r D−1

x (Dθ)2

)
.

Hence

!D =
∫
{θ1 ∧ (Dθ)1 ∧ D−1

x (qθ1)+ θ1 ∧ qD−1
x ((Dθ)1 ∧ θ1)

− θ1 ∧ (Dθ)1 ∧ D−1
x (rθ2)− θ1 ∧ qD−1

x ((Dθ)2 ∧ θ2)

− θ2 ∧ (Dθ)2 ∧ D−1
x (qθ1)− θ2 ∧ r D−1

x ((Dθ)1 ∧ θ1)

+ θ2 ∧ (Dθ)2 ∧ D−1
x (rθ2)+ θ2 ∧ r D−1

x ((Dθ)2 ∧ θ2)} dx . (7.12)

An integration by parts shows that the first two terms on the right-hand side of (7.12)
are equal:

∫
θ1 ∧ qD−1

x ((Dθ)1 ∧ θ1) dx = −
∫ (

D−1
x (qθ1)

) ∧ (Dθ)1 ∧ θ1 dx

=
∫

θ1 ∧ (Dθ)1 ∧ D−1
x (qθ1) dx .

In the same way, the third and sixth terms are equal, the fourth and fifth are equal, and
the last two terms are equal. Thus we find

!D =
∫
{θ1 ∧ (Dθ)1 ∧ D−1

x (qθ1 − rθ2)− θ2 ∧ (Dθ)2 ∧ D−1
x (qθ1 − rθ2)} dx .

(7.13)
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Substituting in the expressions (7.11) for (Dθ)1 and (Dθ)2, this becomes

!D =
∫
{θ1 ∧ [2q(D−1

x (qθ1))+ (Dxθ
2)− 2q(D−1

x (rθ2))] ∧ D−1
x (qθ1 − rθ2)

− θ2 ∧ [(Dxθ
1)− 2r(D−1

x (qθ1))+ 2r(D−1
x (rθ2))] ∧ D−1

x (qθ1 − rθ2)} dx .

Using that (D−1
x (qθ j )) ∧ (D−1

x (qθ j )) = 0 and (D−1
x (rθ j )) ∧ (D−1

x (rθ j )) = 0, a
simplification gives

!D =
∫
{θ1 ∧ (Dxθ

2) ∧ D−1
x (qθ1 − rθ2)− θ2 ∧ (Dxθ

1) ∧ D−1
x (qθ1 − rθ2)} dx .

Integrating by parts in the first term on the right-hand side, we arrive at

!D =
∫
{−(Dxθ

1) ∧ θ2 ∧ D−1
x (qθ1 − rθ2)− θ2 ∧ (Dxθ

1) ∧ D−1
x (qθ1 − rθ2)} dx

= 0.

This shows that D is Hamiltonian and completes the proof. ��
Lemma 7.2 D and E form a Hamiltonian pair.

Proof By [29, Corollary 7.21], it is enough to verify that

pr vDθ (�E )+ pr vEθ (�D) = 0, (7.14)

where

�D = 1

2

∫
{θ ∧Dθ} dx, �E = 1

2

∫
{θ ∧ Eθ} dx,

are the functional bi-vectors representing the associated Poisson brackets. Since E has
constant coefficients, we have pr vDθ (�E ) = 0. Moreover, the same computations
that led to the expression (7.13) for !D = − pr vDθ (�D) (with (Dθ) j replaced with
(Eθ) j ) imply that

pr vEθ (D) = −
∫
{θ1 ∧ (Eθ)1 ∧ D−1

x (qθ1 − rθ2)

− θ2 ∧ (Eθ)2 ∧ D−1
x (qθ1 − rθ2)} dx .

Since (Eθ)1 = −iθ2 and (Eθ)2 = iθ1, this gives

pr vEθ (D) = i
∫
{θ1 ∧ θ2 ∧ D−1

x (qθ1 − rθ2)

+ θ2 ∧ θ1 ∧ D−1
x (qθ1 − rθ2)} dx = 0,

which completes the proof of the lemma. ��
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7.2 The NLS system as an evolution in x

The system (7.4) expresses the NLS system (7.1) as an evolution equation with respect
to x . We first present a Hamiltonian structure for the system (7.4).

7.2.1 A Hamiltonian structure for (7.4)

The system (7.4) can be written as

⎛
⎜⎜⎝
q
r
p
s

⎞
⎟⎟⎠

x

= D̃ ∂ H̃1, (7.15)

where the Hamiltonian functional H̃1[q, r , p, s] is defined by

H̃1 =
∫

(ps + iqtr − q2r2) dt (7.16)

and the operator D̃ is defined by

D̃ =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠ .

The next lemma shows that (7.15) is a Hamiltonian formulation of (7.4).

Lemma 7.3 The operator D̃ is Hamiltonian.

Proof It is clear that the bracket {F,G}D̃ defined by

{F,G}D̃ =
∫

(∂F)ᵀ D̃ ∂G dt

is skew-symmetric. The Jacobi identity is satisfied because D̃ has constant coefficients
(see [29, Corollary 7.5]). ��

7.2.2 Conservation laws

Weconclude from the conservation laws in (7.9) that if (q, r , p, s) evolves in x accord-
ing to the NLS system (7.4), then the functionals
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H̃0 := i
∫

(qxr − qrx ) dt, H̃1 :=
∫

(q2r2 + qxrx − qxxr) dt,

H̃2 := i
∫

(4qqxr
2 + qxxrx − qxxxr) dt, etc.

are conserved under the flow, i.e.,

dH̃n

dx
= 0.

Using (7.3) and (7.4) to eliminate the x-derivatives from the above expressions, we
find that, on solutions of (7.4),

H̃0 = i
∫

(pr − qs) dt, H̃1 =
∫

(ps + iqtr − q2r2) dt,

H̃2 =
∫

(qt s − ptr) dt, etc. (7.17)

In this way, we obtain an infinite number of conserved quantities for (7.4). In differ-
ential form, the first few conservation laws are given by

H̃0 : i(pr − qs)x = (qr)t ,

H̃1 : (ps + iqtr − q2r2)x = i(pr)t ,

H̃2 : (qt s − ptr)x = (iqtr − q2r2)t .

The gradients of the first few functionals H̃ j are given by

∂ H̃0 =

⎛
⎜⎜⎝
−is
ip
ir
−iq

⎞
⎟⎟⎠ , ∂ H̃1 =

⎛
⎜⎜⎝
−irt − 2r2q
iqt − 2q2r

s
p

⎞
⎟⎟⎠ , ∂ H̃2 =

⎛
⎜⎜⎝
−st
−pt
rt
qt

⎞
⎟⎟⎠ .

7.2.3 A candidate for a second Hamiltonian structure of (7.4)

Inspired by the bi-Hamiltonian formulation (7.5) of (7.2), it is natural to seek a second
Hamiltonian formulation of (7.4) of the form

⎛
⎜⎜⎝
q
r
p
s

⎞
⎟⎟⎠

x

= Ẽ ∂ H̃2, (7.18)

where H̃2 is the conserved functional defined by (7.17) and Ẽ is an appropriate Hamil-
tonian operator. It is easy to check that (7.18) is satisfied for any choice of the constant
α ∈ C provided that Ẽ = Ẽα is defined by
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Ẽα =

⎛
⎜⎜⎜⎜⎜⎝

0 −D−1
t 0 0

−D−1
t 0 0 0

0 0 2αqD−1
t q −i+ 4(1− α)r D−1

t q + 2αqD−1
t r

0 0 i+ 4(1− α)qD−1
t r + 2αr D−1

t q 2αr D−1
t r

⎞
⎟⎟⎟⎟⎟⎠

.

(7.19)

This suggests that we seek a second Hamiltonian operator for (7.4) of the form (7.19).
The bracket

{F,G}Ẽα
=
∫

(∂F)ᵀ Ẽα ∂G dt,

is skew-symmetric for each α ∈ C. However, the next lemma shows that Ẽα is not
Hamiltonian for any choice of α because the bracket {·, ·}Ẽα

fails to satisfy the Jacobi
identity.

Lemma 7.4 The operator Ẽ = Ẽα defined in (7.19) is not Hamiltonian for any α ∈ C.

Proof Fix α ∈ C. We will show that {F,G}Ẽ does not satisfy the Jacobi identity. By
[29, Proposition 7.7], it is enough to show that the tri-vector

!Ẽ = 1

2

∫ {
θ ∧ pr vẼθ

(Ẽ) ∧ θ
}
dt

does not vanish identically. Since

pr vẼθ
(q) = (Ẽθ)1, pr vẼθ

(r) = (Ẽθ)2,

we find

pr vẼθ
(Ẽ) =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 (pr vẼθ

(Ẽ))33 (pr vẼθ
(Ẽ))34

0 0 (pr vẼθ
(Ẽ))43 (pr vẼθ

(Ẽ))44

⎞
⎟⎟⎠ ,

where

(pr vẼθ
(Ẽ))33 = 2α(Ẽθ)1D−1

t q + 2αqD−1
t (Ẽθ)1,

(pr vẼθ
(Ẽ))34 = 4(1− α)(Ẽθ)2D−1

t q + 4(1− α)r D−1
t (Ẽθ)1

+ 2α(Ẽθ)1D−1
t r + 2αqD−1

t (Ẽθ)2,
(pr vẼθ

(Ẽ))43 = 4(1− α)(Ẽθ)1D−1
t r + 4(1− α)qD−1

t (Ẽθ)2
+ 2α(Ẽθ)2D−1

t q + 2αr D−1
t (Ẽθ)1,

(pr vẼθ
(Ẽ))44 = 2α(Ẽθ)2D−1

t r + 2αr D−1
t (Ẽθ)2.
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Thus

!Ẽ = 1

2

∫
{θ3 ∧ (pr vẼθ

(Ẽ))33 ∧ θ3 + θ3 ∧ (pr vẼθ
(Ẽ))34 ∧ θ4

+ θ4 ∧ (pr vẼθ
(Ẽ))43 ∧ θ3 + θ4 ∧ (pr vẼθ

(Ẽ))44 ∧ θ4} dt

is given by

!Ẽ =
∫
{αθ3 ∧ (Ẽθ)1 ∧ D−1

t (qθ3)+ αqθ3 ∧ D−1
t ((Ẽθ)1 ∧ θ3)

+ 2(1− α)θ3 ∧ (Ẽθ)2 ∧ D−1
t (qθ4)+ 2(1− α)rθ3 ∧ D−1

t ((Ẽθ)1 ∧ θ4)

+αθ3 ∧ (Ẽθ)1 ∧ D−1
t (rθ4)+ αqθ3 ∧ D−1

t ((Ẽθ)2 ∧ θ4)

+ 2(1− α)θ4 ∧ (Ẽθ)1 ∧ D−1
t (rθ3)+ 2(1− α)qθ4 ∧ D−1

t ((Ẽθ)2 ∧ θ3)

+αθ4 ∧ (Ẽθ)2 ∧ D−1
t (qθ3)+ αrθ4 ∧ D−1

t ((Ẽθ)1 ∧ θ3)

+αθ4 ∧ (Ẽθ)2 ∧ D−1
t (rθ4)+ αrθ4 ∧ D−1

t ((Ẽθ)2 ∧ θ4)} dt . (7.20)

An integration by parts shows that the first two terms on the right-hand side of (7.20)
are equal:

∫
qθ3 ∧ D−1

t ((Ẽθ)1 ∧ θ3) dt = −
∫

D−1
t (qθ3) ∧ (Ẽθ)1 ∧ θ3 dt

=
∫

θ3 ∧ (Ẽθ)1 ∧ D−1
t (qθ3) dt .

In the same way, the third and eighth terms are equal, the fourth and seventh are equal,
the fifth and tenth are equal, the sixth and ninth are equal, and the eleventh and twelfth
are equal. Thus we find

!Ẽ = 2
∫
{αθ3 ∧ (Ẽθ)1 ∧ D−1

t (qθ3)+ 2(1− α)θ3 ∧ (Ẽθ)2 ∧ D−1
t (qθ4)

+αθ3 ∧ (Ẽθ)1 ∧ D−1
t (rθ4)+ 2(1− α)θ4 ∧ (Ẽθ)1 ∧ D−1

t (rθ3)

+αθ4 ∧ (Ẽθ)2 ∧ D−1
t (qθ3)+ αθ4 ∧ (Ẽθ)2 ∧ D−1

t (rθ4)} dt . (7.21)

Using that

Ẽθ =

⎛
⎜⎜⎝

−(D−1
t θ2)

−(D−1
t θ1)

2αqD−1
t (qθ3)− iθ4 + 4(1− α)r D−1

t (qθ4)+ 2αqD−1
t (rθ4)

iθ3 + 4(1− α)qD−1
t (rθ3)+ 2αr D−1

t (qθ3)+ 2αr D−1
t (rθ4)

⎞
⎟⎟⎠ ,
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this becomes

!Ẽ = − 2
∫
{αθ3 ∧ (D−1

t θ2) ∧ D−1
t (qθ3)+ 2(1− α)θ3 ∧ (D−1

t θ1) ∧ D−1
t (qθ4)

+αθ3 ∧ (D−1
t θ2) ∧ D−1

t (rθ4)+ 2(1− α)θ4 ∧ (D−1
t θ2) ∧ D−1

t (rθ3)

+αθ4 ∧ (D−1
t θ1) ∧ D−1

t (qθ3)+ αθ4 ∧ (D−1
t θ1) ∧ D−1

t (rθ4)} dt . (7.22)

Consider the two terms which involve all three of the uni-vectors θ1, θ3, and θ4:

" := − 2
∫
{2(1− α)θ3 ∧ (D−1

t θ1) ∧ D−1
t (qθ4)+ αθ4 ∧ (D−1

t θ1) ∧ D−1
t (qθ3)} dt

= 4(1− α)

∫
(D−1

t θ1) ∧ θ3 ∧ D−1
t (qθ4) dt + 2α

∫
(D−1

t θ1) ∧ θ4 ∧ D−1
t (qθ3) dt .

Let P j = (P j
1 , P

j
2 , P

j
3 , P

j
4 ), j = 1, 2, 3, where each P j

i is a differential function
(i.e., a smooth function of t, q, r , p, s and t-derivatives of q, r , p, s up to some finite,
but unspecified, order). Then (see [29, p. 440])

〈"; P1, P2, P3〉 = 4(1− α)

∫
∣∣∣∣∣∣∣∣∣

(D−1
t P1

1 ) P1
3 D−1

t (qP1
4 )

(D−1
t P2

1 ) P2
3 D−1

t (qP2
4 )

(D−1
t P3

1 ) P3
3 D−1

t (qP3
4 )

∣∣∣∣∣∣∣∣∣
dt

+ 2α
∫

∣∣∣∣∣∣∣∣∣

(D−1
t P1

1 ) P1
4 D−1

t (qP1
3 )

(D−1
t P2

1 ) P2
4 D−1

t (qP2
3 )

(D−1
t P3

1 ) P3
4 D−1

t (qP3
3 )

∣∣∣∣∣∣∣∣∣
dt .

Choosing for example

P1 = (nqn−1qt , 0, 0, 0), P2 = (0, 0, 1, 0), P3 = (0, 0, 0, qt ),

where n ≥ 1 is an integer, we see that

〈"; P1, P2, P3〉 = 4(1− α)

∫
(D−1

t P1
1 )P

2
3 D

−1
t (qP3

4 ) dt

− 2α
∫

(D−1
t P1

1 )P
3
4 D

−1
t (qP2

3 ) dt

= 4(1− α)

∫
qn

q2

2
dt − 2α

∫
qnqt D

−1
t (q) dt

= 4(1− α)

∫
qn+2

2
dt + 2α

∫
D−1
t (qnqt )q dt

=
∫ (

4(1− α)
qn+2

2
+ 2α

qn+2

n + 1

)
dt .
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Regardless of the value of α, this is nonzero for some integer n ≥ 0. Since all the
other terms in the expression (7.22) for !Ẽ vanish when applied to this choice of
(P1, P2, P3), we conclude that !Ẽ  = 0. ��
Remark 7.5 The inverse operator D−1

t in the above computations can be treated as a
pseudo-differential operator in the sense of [29, Definition 5.37] by appealing to the
identity (see [29, Eq. (5.55)])

D−1
t q =

∞∑
i=0

(−1)i (Di
t q)D

−i−1
t .

Remark 7.6 The failure of Ẽ to be Hamiltonian presumably has to do with the fact
that solutions of NLS only live on the submanifold where qx = p and rx = s, so
that one should restrict the Poisson bracket to this submanifold before considering the
Jacobi identity. Since the Hamiltonian formulation (7.15) is sufficient for our objective
of establishing local Birkhoff coordinates for the x-evolution (7.4) of NLS, and the
infinite sequence of conserved quantities can be obtained from the recursion operator
for (7.2), we do not pursue this matter further.

Remark 7.7 An alternative proof of Lemma 7.4 proceeds as follows: As in the proof
of Lemma 7.2, it can be shown that D̃ and Ẽ satisfy the following analog of (7.14) for
any value of α:

pr vD̃θ
(�Ẽ )+ pr vẼθ

(�D̃) = 0.

Thus, if Ẽ were Hamiltonian, then D̃ and Ẽ would form a Hamiltonian pair and then
R̃ = ẼD̃−1 would be a recursion operator for (7.4). However, a direct computation
shows that R̃ does not satisfy the defining relation [29, Eq. (5.43)] of a recursion
operator for any value of α ∈ C.
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