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Abstract
In this paper we prove a quantitative multilinear limited range extrapolation theorem
which allows us to extrapolate from weighted estimates that include the cases where
some of the exponents are infinite. This extends the recent extrapolation result of Li,
Martell, and Ombrosi. We also obtain vector-valued estimates including �∞ spaces
and, in particular, we are able to reprove all the vector-valued bounds for the bilinear
Hilbert transform obtained through the helicoidal method of Benea and Muscalu.
Moreover, our result is quantitative and, in particular, allows us to extend quantitative
estimates obtained from sparse domination in the Banach space setting to the quasi-
Banach space setting. Our proof does not rely on any off-diagonal extrapolation results
and we develop a multilinear version of the Rubio de Francia algorithm adapted to
the multisublinear Hardy–Littlewood maximal operator. As a corollary, we obtain
multilinear extrapolation results for some upper and lower endpoints estimates in
weak-type and BMO spaces.

Mathematics Subject Classification 42B25 · 42B20

1 Introduction

An essential tool in the theory of singular operators is extrapolation. In one of its
forms, the classical extrapolation theorem of Rubio de Francia [14] says that if an
operator T satisfies Lq(w) boundedness for a fixed q ∈ (1,∞) and for all weights w

in the Muckenhoupt class Aq , then T is in fact bounded on L p(w) for all p ∈ (1,∞)

and all w ∈ Ap.
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Many variations of Rubio de Francia’s extrapolation theorem have appeared over
the years adapted to various situations. Amultilinear version of the extrapolation result
was found by Grafakos and Martell [17]. Another version provided by Auscher and
Martell [1] dealt with operators bounded only for a limited range of p rather than for
all p ∈ (1,∞). Combining these approaches, it was shown by Cruz-Uribe andMartell
[7] that if there are 0 ≤ r j < s j ≤ ∞ and q j ∈ [r j , s j ], q j �= 0,∞, such that an
m-linear operator T satisfies

‖T ( f1, . . . , fm)‖Lq (wq ) ≤ c
m∏

j=1

‖ f j‖Lq j (w
q j
j )

(1.1)

for all weights w
q j
j in the restricted Muckenhoupt and Reverse Hölder class Aq j /r j ∩

RH(s j /q j )
′ , where w = ∏m

j=1 w j , 1
q = ∑m

j=1
1
q j
, then T satisfies the same bound-

edness for all p j ∈ (r j , s j ) and all w
p j
j ∈ Apj /r j ∩ RH(s j /p j )

′ , as well as certain
vector-valued bounds.

In the linear setting for operators satisfying weighted bounds, it need not be the case
that they are bounded on L∞, as is the case, for example, for the Hilbert transform. In
particular, it is impossible to extrapolate estimates to this endpoint. This is in contrast
to what happens in the multilinear setting, where it may very well occur that singular
integral operators satisfy boundedness as in (1.1), but with some of the q j being equal
to ∞. This brings an interest to the question whether it is possible to extrapolate to
bounds that include these endpoint cases p j = ∞, starting from an initial weighted
estimate where the q j are also allowed to be infinite. In this work we develop a method
that does include these cases based on a multilinear Rubio de Francia algorithm. To
facilitate this we give a natural extension in the definition of the weight classes to
include these cases, see Definition 2.1 below. We point out that it is also possible to
obtain these endpoint cases through off-diagonal extrapolation methods [32].

As an application for the theory, one can consider the bilinear Hilbert transform
BHT given by

BHT( f1, f2)(x) := p. v.
∫

R
f1(x − t) f2(x + t)

dt

t
,

which plays a central role in the theory of time-frequency analysis. It was shown by
Lacey and Thiele [25] that BHT is bounded L p1 × L p2 → L p with 1

p = 1
p1

+ 1
p2

if 1 < p1, p2 ≤ ∞ and 2
3 < p < ∞. Through the helicoidal method of Benea and

Muscalu [2,4], vector-valued bounds of the form L p1(�q1) × L p2(�q2) → L p(�q)

were established in this range of p1, p2, p for various choices of 1 < q1, q2 ≤ ∞,
2
3 < q < ∞ with 1

q = 1
q1

+ 1
q2
. However, they left open the problem whether one can

obtain vector-valued bounds for all q1, q2, q in the same range as Lacey and Thiele’s
theorem, i.e., for all 1 < q1, q2 ≤ ∞with 2

3 < q < ∞. While BHT satisfies weighted
bounds as well as more general sparse bounds, see [3,8], the extrapolation result by
Cruz-Uribe and Martell [7] does not allow one to cover the full range of exponents.
In particular, their result cannot retrieve any of the vector-valued bounds involving
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�∞ spaces. Such bounds also fall outside of the extrapolation result of Lorist and the
author [35] where vector valued extensions of multilinear operators were considered
in the setting of UMD Banach spaces, since �∞ does not satisfy the UMD property.
The problem seems to be that the multilinear nature of the problem is not completely
utilized when one imposes individual conditions on the weights rather than involving
an interaction between the various weights.

In the recent work [33] by Li, Martell, and Ombrosi an extrapolation result was
presented where they work with a limited range version of the multilinear weight
condition introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [30]
which also appears in [3] and, in the bilinear case, in [8]. Indeed, such weight classes
are characterized by boundedness of the multi-sublinear Hardy–Littlewood maximal
operator as well as by boundedness of sparse forms, meaning the theory can be applied
to important operators such as multilinear Calderón-Zygmund operators as well as
the bilinear Hilbert transform. They introduced the weight class A 
p,
r where 
p =
(p1, . . . , pm), 
r = (r1, . . . , rm+1) and 1 ≤ r j ≤ p j < ∞ and r ′

m+1 > p with
1
p = ∑m

j=1
1
p j

and 
w = (w1, . . . , wm) ∈ A 
p,
r if

[ 
w]A 
p,
r := sup
Q a cube

⎛

⎝ 1

|Q|
∫

Q

( m∏

j=1

w

p
p j
j

) r ′m+1
r ′m+1−p dx

⎞

⎠

1
p − 1

r ′m+1

m∏

j=1

(
1

|Q|
∫

Q
w

r j
r j−p j
j dx

) 1
r j

− 1
p j

< ∞. (1.2)

They showed that if (1.1) holds for a 
q with 1 ≤ r j ≤ q j < ∞, r ′
m+1 > q and

all (w
q1
1 , . . . , w

qm
m ) ∈ A
q,
r , then T satisfies the same boundedness for all 
p and

(w
p1
1 , . . . , w

pm
m ) ∈ A 
p,
r with r j < p j < ∞ and r ′

m+1 > p. Furthermore, their
result extends and reproves some of the vector-valued bounds found by Benea and
Muscalu [4] for BHT. This class of weights does seem to be adapted to the sit-
uation even when p j = ∞, but one needs to be careful in how the constant is
interpreted in this case. Similar to the proof of the extrapolation result of Cruz-Uribe
and Martell, their proof of this extrapolation result is based upon an off-diagonal
extrapolation result, but in their work they left open exactly what happens in the
case that some of the exponents are infinite. They announced a paper in which these
cases were treated which had not appeared yet when our paper was first posted,
but is available now [32]. Here they show that, as a feature of off-diagonal extrap-
olation, it is also possible to obtain estimates that include the cases of infinite
exponents.

In this work we again prove an extrapolation result using the multilinear weight
classes, and our result includes these endpoint cases which, in particular, include the
possibility of extrapolating from the caseswhere in the initial assumption the exponents
can be infinite. Our proof is new and does not rely on any off-diagonal extrapolation
result. Rather, we generalize the Rubio de Francia algorithm to a multilinear setting
adapted to the multi-sublinear Hardy–Littlewood maximal operator. As a corollary,

123



Z. Nieraeth

we are able to obtain vector-valued extensions of operators to spaces including �∞
spaces. Thus, applying this to BHT allows us to recover these endpoint bounds that
were obtained earlier through the helicoidal method [4].

Our construction is quantitative in the sense that it allows us to track the dependence
of the bounds on the weight constants. Such quantitative versions of extrapolation
results were first formalized by Dragičević, Grafakos, Pereyra, and Petermichl in
the linear setting in [11], but are completely new in the multilinear setting. In the
linear setting this result is based on Buckley’s sharp weighted bound for the Hardy–
Littlewood maximal operator. This bound has been generalized to the multi-sublinear
Hardy–Littlewood maximal operator by Damián, Lerner, and Pérez [10] to a sharp
estimate in the setting of a mixed type A 
p − A∞ estimates and a sharp A 
p bound is
found in [34]. We give a different proof of this result for the limited range version of
this maximal operator by generalizing a proof of Lerner [28].

Finally, we also showhowour quantitative extrapolation result recovers and extends
a bound obtained for multi-(sub)linear sparsely dominated operators, generalizing the
bound of Hytönen’s A2 Theorem [20]. More precisely, sparse domination yields sharp
bounds for an operator for exponents p1, . . . , pm only if 1

p = ∑m
j=1

1
pm

≤ 1 so that
we may appeal to duality. Our extrapolation result allows us to show that this same
control in terms of the weight also holds when 1

p > 1.

1.1 Symmetry in Muckenhoupt weight classes

To facilitate our results,we heavily rely on the symmetric structure of theMuckenhoupt
classes.

For p ∈ (1,∞), a standard method of obtaining weighted L p estimates with a
weight w is by using the duality (L p(w))∗ = L p′

(w1−p′
) given through the integral

pairing

〈 f , g〉 =
∫

Rn
f g dx .

Moreover, the Muckenhoupt Ap class is defined through these two weights w and
w1−p′

through

[w]Ap := sup
Q

(
1

|Q|
∫

Q
w dx

)(
1

|Q|
∫

Q
w1−p′

dx

)p−1

where the supremum is taken over all cubes Q ⊆ Rn . One way to understand this
definition better is by noting that we can relate the weights w and w1−p′

through

w
1
p (w1−p′

)
1
p′ = 1. One can also make sense of this condition if p = 1 through

[w]A1 := sup
Q

(
1

|Q|
∫

Q
w dx

)(
ess inf
x∈Q w(x)

)−1

,

and one usually defines A∞ := ⋃
p∈[1,∞) Ap.
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When we replace the weight w by the weight w p we find, using the averaging

notation 〈h〉q,Q :=
(

1
|Q|

∫
Q |h|q dx

) 1
q
, that

[w p]
1
p
Ap

= sup
Q

〈w〉p,Q〈w−1〉p′,Q

for p ∈ (1,∞). The symmetry in this condition is much more prevalent and this
condition seems to be more naturally adapted to the weighted L p theory. Indeed,
defining

[w]p := [w p]
1
p
Ap

,

we note that [w]p = [w−1]p′ . If we denote the Hardy–Littlewood maximal operator
by M and if we define the bi-sublinear Hardy–Littlewood maximal operator M(1,1) by

M(1,1)( f1, f2)(x) := sup
Q�x

〈 f1〉1,Q〈 f2〉1,Q,

then we have the remarkable equivalences

‖M(1,1)‖L p(w p)×L p′ (w−p′ )→L1,∞ � ‖M‖L p(w p)→L p,∞(w p)

� ‖M‖L p′ (w−p′ )→L p′,∞(w−p′ ) � [w]p, (1.3)

where the implicit constant depends only on the dimension, see Proposition 2.7 and
Proposition 2.14 below.

Another way of thinking of these equivalences is by setting w1 := w, w2 := w−1

and p1 := p, p2 := p′ so that we have the relations

w1w2 = 1,
1

p1
+ 1

p2
= 1. (1.4)

Then one can impose a symmetric weight condition

[(w1, w2)](p1,p2) := sup
Q

〈w1〉p1,Q〈w2〉p2,Q < ∞

and note that

[(w1, w2)](p1,p2) = [w1]p1 = [w2]p2 .

The equivalences in (1.3) can now be thought of as

‖M(1,1)‖L p1 (w
p1
1 )×L p2 (w

p2
2 )→L1,∞ � [(w1, w2)](p1,p2),

‖M‖L p1 (w
p1
1 )→L p1,∞(w

p1
1 )

� [w1]p1,
‖M‖L p2 (w

p2
2 )→L p2,∞(w

p2
2 )

� [w2]p2 .
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Wecan evenmake sense of these expressionswhen p1 = 1 and p2 = ∞ or p1 = ∞
and p2 = 1, given that we use the correct interpretation and this is what allows us to
extrapolate using such classes. Indeed, one can think of f ∈ L p(w p) as the condition
‖ f w‖L p < ∞, which makes sense even when p = ∞ by requiring that the function
f w is essentially bounded. Using the interpretation 〈h〉∞,Q = ess supx∈Q |h(x)|, we
see that the condition [w1]1 < ∞ is equivalent to the usual A1 condition imposed on
the weight w1 = w, while the condition [w1]∞ < ∞ is equivalent to the condition
w2 = w−1 ∈ A1. We emphasize here that our condition [w]∞ < ∞ is not equivalent
to the condition w ∈ A∞ = ⋃

p∈[1,∞) Ap and these notions should not be confused.

The condition w−1 ∈ A1 seems to be a natural upper endpoint condition and one can
show that this is equivalent to the boundedness

‖(M f )w‖L∞ ≤ c‖ f w‖L∞ ,

see Proposition 2.14 below. It also turns out that this condition allows us to extrapolate
away from weighted L∞ estimates. We point out that this idea has already been used
in the endpoint extrapolation result of Harboure, Macías and Segovia [19, Theorem
3].

We wish to view our symmetric weight condition in the context of extrapolation.
In proving Rubio de Francia’s extrapolation theorem, one usually starts with a pair of
functions (h, f ) and assumes that one has the inequality

‖h‖Lq (wq ) ≤ c‖ f ‖Lq (wq ) (1.5)

for some q ∈ [1,∞] and all weights w satisfying [w]q < ∞. The idea is then that
given a p ∈ (1,∞) and a weight w satisfying [w]p < ∞, one can construct a weight
W , possibly depending on f , h, and w, so thatW satisfies [W ]q < ∞ as well as some
additional properties to ensure that we can use (1.5) with W to conclude that

‖h‖L p(w p) ≤ c̃‖ f ‖L p(w p). (1.6)

Applying this with h = T f then gives the desired boundedness for an operator T .
For the proof one usually splits into two cases, namely the case where p < q and the
case where p > q. In the former case one can apply Hölder’s inequality to move from
L p to Lq and in the latter case one uses duality and a similar trick to move from L p′

to Lq ′
. The point is that both of these cases are essentially the same, but due to the

notation we use we have to deal with the cases separately. Here, we wish to come up
with a formalization to avoid this redundancy.

The extrapolation theorem is essentially a consequence of to the following propo-
sition:

Proposition Suppose we are given p1, p2 ∈ (1,∞) satisfying 1
p1

+ 1
p2

= 1 and
weights w1, w2 satisfying w1w2 = 1 and [(w1, w2)](p1,p2) < ∞. Moreover, assume
we have two functions f1 ∈ L p1(w

p1
1 ) and f2 ∈ L p2(w

p2
2 ) and q1, q2 ∈ [1,∞] with

1
q1

+ 1
q2

= 1. Then there are weights W1, W2 satisfying W1W2 = 1,
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‖ f1W1‖Lq1 ‖ f2W2‖Lq2 ≤ 2‖ f1w1‖L p1 ‖ f2w2‖L p2

and

[(W1,W2)](q1,q2) ≤ C[(w1, w2)]
max

(
p1
q1

,
p2
q2

)

(p1,p2)
.

Indeed, the result of the extrapolation theorem follows by applying the proposition
with f1 := f , q1 := q, q2 := q ′, p1 := p, p2 := p′, w1 := w, w2 = w−1 and
W1 := W , W2 := W−1 so that, by (1.5), we have

|〈h, f2〉|≤‖hW‖Lq‖ f2W
−1‖Lq′ ≤c‖ f W‖Lq‖ f2W

−1‖Lq′ ≤2c‖ f w‖L p‖ f2w
−1‖L p′ .

Thus, by duality, we obtain (1.6), as desired.
The proof of the proposition uses the classical construction using the Rubio de

Francia algorithm and the novelty here is our symmetric formulation. A proof can
be found in this work, as it is a special case of Theorem 3.1. The case p < q in the
proposition takes the form p1 < q1 and p2 > q2 while the case p > q takes the
form p1 > q1 and p2 < q2. The fact that the proposition is formulated completely
symmetrically in terms of the parameters indexed over {1, 2}, where we note that
[(w1, w2)](p1,p2) = [(w2, w1)](p2,p1), means that these respective cases can be proven
using precisely the same argument, up to a permutation of the indices. Thus, without
loss of generality, one only needs to prove one of the two cases.

These symmetries become especially important in the m-linear setting where we
are dealing with parameters indexed over {1, . . . ,m + 1} and the amount of cases we
have to consider increases. Thanks to our formulation, we will be able to reduce these
multiple cases back to a single case in our arguments again by permuting the indices.

We wish to point out here that to facilitate our symmetric formulation and to use
the duality argument involving the Rubio de Francia algorithm as above, we need
to essentially restrict ourselves to the Banach range 1

p ≤ 1. However, in the m-

linear setting one also has to deal with the quasi-Banach range 1
p > 1. This means

that to employ our multilinear Rubio de Francia algorithm, we must first reduce to
the case where

∑m
j=1

1
p j

= 1
p ≤ 1. In this case we can set 1

pm+1
:= 1 − 1

p ≥ 0

and
∑m+1

j=1
1
p j

= 1, which places us in the setting of Theorem 3.1. This is not a
problem however, as reducing to this case is facilitated by the rescaling properties of
the multilinear weight classes, see also Remark 2.3. In conclusion, even though our
multilinear Rubio de Francia algorithm is applied in the Banach range 1

p ≤ 1, our

result also includes the quasi-Banach range 1
p > 1.

This article is organized as follows:

• In Sect. 2 we state our main result and give an overview of the multilinear weight
classes, proving some important properties as well as proving new quantitative
estimates with respect to the multisublinear maximal operator as well as sparse
forms.

• In Sect. 3 we prove the main result.
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• In Sect. 4 we apply the extrapolation result for weak type bounds and certain BMO
type bounds as well as for vector-valued bounds. Moreover, we give an application
of our results to the bilinear Hilbert transform.

2 Multilinear weight classes

2.1 Setting andmain result

We work inRn equipped with the Lebesgue measure dx . This is mostly for notational
convenience and our results also hold in the more general setting of spaces of doubling
quasimetric measure spaces, provided one uses the right notion of dyadic cubes in this
setting, see [21]. For a measurable set E we denote its Lebesgue measure by |E |. A
measurable function w : Rn → (0,∞) is called a weight. We can identify w with a
measure byw(E) := ∫

Ew dx . For p ∈ (0,∞], a weightw, and a measurable function
f on Rn we say that f ∈ L p(w p) provided that ‖ f ‖L p(w p) := ‖ f w‖L p < ∞.
Moreover, for a measurable set E ⊆ Rn with 0 < |E | < ∞ we write

〈 f 〉p,E :=
(

1

|E |
∫

E
| f |p dx

) 1
p

when 0 < p < ∞ and 〈 f 〉∞,E := ess supx∈E | f (x)|.
We will use the notation A � B if there is a constant c > 0, independent of the

important parameters, such that A ≤ cB. Moreover, we write A � B if A � B and
B � A.

Let m ∈ N and let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞]. For p1, . . . , pm ∈ (0,∞],
writing 
r = (r1, . . . , rm) and similarly for 
p, we write 
r ≤ 
p if r j ≤ p j ≤ ∞ for
all j ∈ {1, . . . ,m}. Moreover, we write (
r , s) ≤ 
p if 
r ≤ 
p and p ≤ s, where p is
defined by

1

p
=

m∑

j=1

1

p j
.

Similarly, we write 
r < 
p if r j < p j for all j ∈ {1, . . . ,m} and we write (
r , s) < 
p
if 
r < 
p and p < s.

Definition 2.1 Let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞], and p1, . . . , pm ∈ (0,∞] with
(
r , s) ≤ 
p. Let w1, . . . , wm be weights and write w = ∏m

j=1 w j , 
w = (w1, . . . , wm).
We say that 
w ∈ A 
p,(
r ,s) if

[ 
w] 
p,(
r ,s) := sup
Q

⎛

⎝
m∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

⎞

⎠ 〈w〉 1
1
p − 1

s
,Q < ∞,

where the supremum is taken over all cubes Q ⊆ Rn .
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As a point of comparison, we note here that, for finite p j , our condition 
w ∈ A 
p,(
r ,s)
is equivalent to the condition (w

p1
1 , . . . , w

pm
m ) ∈ A 
p,(r1,...,rm ,s′), where the latter con-

dition considers the weight class of Li, Martell, and Ombrosi defined in (1.2). Thus,
in this range their extrapolation result [33] consider the same weights as we do.

Our main theorem is as follows:

Theorem 2.2 (Quantitativemultilinear limited range extrapolation)Let ( f1, . . . , fm, h)

be an m + 1-tuple of measurable functions and let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞].
Suppose that for some q1, . . . , qm ∈ (0,∞] with 
q ≥ (
r , s) there is an increasing
function φ
q such that

‖h‖Lq (wq ) ≤ φ
q([ 
w]
q,(
r ,s))
m∏

j=1

‖ f j‖Lq j (w
q j
j )

(2.1)

for all 
w ∈ A
q,(
r ,s).
Then for all p1 . . . , pm ∈ (0,∞] with 
p > (
r , s) there is an increasing function

φ 
p,
q,
r ,s such that

‖h‖L p(w p) ≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))
m∏

j=1

‖ f j‖L p j
(
w

p j
j

) (2.2)

for all 
w ∈ A 
p,(
r ,s). More explicitly, we can take

φ 
p,
q,
r ,s(t) = 2
m2
r φ
q

⎛

⎜⎝C 
p,
q,
r ,s t
r max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)⎞

⎟⎠

1
r

, (2.3)

where 1
r = ∑m

j=1
1
r j
.

We note that if there is equality in one of the components in 
q ≥ (
r , s), i.e., if
q = s or q j = r j for some j ∈ {1, . . . ,m}, then we may also include the respective
cases with p = s or p j = r j to the conclusion of the extrapolation result. In this

case one should respectively use the interpretation
1
q − 1

s
1
p − 1

s
= 1 or

1
r j

− 1
q j

1
r j

− 1
p j

= 1. To see

this, one need only note that the proof we give of the theorem already accounts for the
respective cases when 1

p = 1
q or 1

p j
= 1

q j
.

Our result is stronger than that in [33] in the sense that we do not have to restrict our
exponents to the case where they are finite, i.e., in the initial assumption we include
all the cases where q j = ∞ and in the conclusion we similarly obtain all the cases
where p j = ∞, see also [32]. We emphasize here that we use the interpretation
‖ f j‖Lq j (w

q j
j )

= ‖ f jw j‖L∞ in the case where q j = ∞ and we need to impose the

weight condition from Definition 2.1 with 1
q j

= 0. For example, in the case m = 1,
r = 1 andq = s = ∞, one has to use the conditionw ∈ A∞,(1,∞) in the initial estimate
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(2.1) which, following our definition, is equivalent to the condition w−1 ∈ A1. This
stronger result is possible due to our use of a multilinear Rubio de Francia algorithm,
fully utilizing the multilinear nature of the problem. Our result also implies vector
valued estimates in these ranges and we refer the reader to Sect. 4 where we elaborate
on this further.

Next we make some remarks on the quantitative result (2.3).
Usually in applications, the increasing function will be of the form φ
q(t) = ctα for

some c, α > 0. Then we find from (2.3) that

φ 
p,
q,
r ,s(t) = c̃t
αmax

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)

.

In the case m = 1, r = 1, s = ∞, this means that we have

φp,q,1,∞(t) = c̃t
αmax

(
p′
q′ , p

q

)

, (2.4)

and this coincides with the bound obtained in [11]. This result was used in Hytönen’s
A2 theorem [20] to reduce proving the sharp estimate

‖T f ‖L p(w p) � [w p]
max(p′,p)

p
Ap

‖ f ‖L p(w p) (2.5)

for Calderón-Zygmund operators T to only having to prove the linear A2 bound

‖T f ‖L2(w2) � [w2]A2‖ f ‖L2(w2).

Indeed, noting that [w]p,(1,∞) = [w p]
1
p
Ap
, we find that (2.5) follows from (2.4) by

taking α = 2 and q = 2.
The fact that we need to extrapolate from q = 2 to obtain the sharp bounds for

Calderón-Zygmund operators speaks to their nature as operators revolving around
their properties in L2. As a contrast, we note that the estimate

‖(T f )w‖L∞ � [w−1]A1‖ f w‖L∞

is central, for example, for when T is the Hardy–Littlewood maximal operator M .
Indeed, by (2.4) with q = ∞ and α = 1 and by noting that [w]∞,(1,∞) = [w−1]A1 ,
this estimate extrapolates to the estimate

‖T f ‖L p � [w p]
p′
p
Ap

‖ f ‖L p(w p)

for p ∈ (1,∞], which is precisely Buckley’s sharp bound obtained for M . We point
out here that this argument is actually circular for when T = M , since the proof
of the quantitative estimate in the extrapolation result makes use of Buckley’s sharp
bound. Nonetheless, we think this example is heuristically interesting, since it exhibits
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Quantitative estimates and extrapolation for multilinear weight classes

how one can extrapolate away from weighted L∞ estimates. Multilinear versions of
Buckley’s sharp bound have been found in [10,34] and can be recovered in a similar
way, see also Theorem 4.12.

The remainder of this section will be dedicated to a discussion on the quantitative
properties of themultilinear weight classes.We split this into two separate cases. In the
first case we adopt the symmetric notation from the introduction and think in terms of
m+1-tuples of weights and parameters satisfying a symmetric relation. In the second
case we adopt the more classical approach of thinking in terms of m-tuples and we
prove some key results for our main theorem.

2.2 Quantitative properties of multilinear weight classes: them+ 1-tuple case

Let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞], and p1, . . . , pm ∈ (0,∞] and let w1, . . . , wm

be weights, with w := ∏m
j=1 w j . In terms of symmetries, the definition of the weight

class

[ 
w] 
p,(
r ,s) = sup
Q

⎛

⎝
m∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

⎞

⎠ 〈w〉 1
1
p − 1

s
,Q

seems to be best suited to the case where 1
p ≤ 1. Indeed, if we set 1

pm+1
:= 1− 1

p ≥ 0,
1

rm+1
:= 1 − 1

s and wm+1 := w−1, then we have

m+1∑

j=1

1

p j
= 1,

m+1∏

j=1

w j = 1.

The condition (
r , s) ≤ 
p is equivalent to r j ≤ p j for all j ∈ {1, . . . ,m + 1} and the
constant for the weight class now takes the form

[ 
w] 
p,(
r ,s) = sup
Q

m+1∏

j=1

〈
w−1

j

〉
1

1
r j

− 1
p j

,Q
= [(w1, . . . , wm+1)](p1,...,pm+1),((r1,...,rm+1),∞),

where the last equality follows from the fact that the term involving the product weight
in them+1-linear weight class is equal to 1. The symmetry of this last expression also
emphasizes a certain permutational invariance. Indeed, if π ∈ Sm+1 is a permutation,
then, since

m+1∑

j=1

1

pπ( j)
=

m+1∑

j=1

1

p j
= 1,

m+1∏

j=1

wπ( j) =
m+1∏

j=1

w j = 1,

we have

[ 
w] 
p,(
r ,s) = [(wπ(1), . . . , wπ(m))](pπ(1),...,pπ(m)),((rπ(1),...,rπ(m)),r ′
π(m+1))

,
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and this will be used in the proof of our extrapolation theorem.

Remark 2.3 While we restrict ourselves to the Banach range 1
p ≤ 1 in this section,

we do point out that our main results do also apply in the cases where 1
p > 1. This is

facilitated by the rescaling property

[ 
w]
1
α

p
α
,( 
r

α
, s
α
)
=
[(

w
1
α

1 , . . . , w
1
α
m

)]


p,(
r ,s)
,

which, in our arguments, allows us to reduce back to the case where 1
p ≤ 1, see also

the proof of Theorem 2.2.

It will sometimes also be useful to redefine v j := w

− 1
1
r j

− 1
p j

j for j ∈ {1, . . . ,m+1}
so that

[(w1, . . . , wm+1)](p1,...,pm+1),((r1,...,rm+1),∞) = sup
Q

m+1∏

j=1

〈v j 〉
1
r j

− 1
p j

1,Q .

These weight classes are governed by a certain maximal operator, see also [30].

Definition 2.4 Given r1, . . . , rm ∈ (0,∞), we define the m-sublinear Hardy–
Littlewood maximal operator

M
r ( f1, . . . , fm)(x) := sup
Q�x

m∏

j=1

〈 f j 〉r j ,Q

for f j ∈ L
r j
loc, where the supremum is taken over all cubes Q ⊆ Rn containing x .

Moreover, for a dyadic grid D we define

MD

r ( f1, . . . , fm)(x) := sup

Q�x
Q∈D

m∏

j=1

〈 f j 〉r j ,Q

for f j ∈ L
r j
loc.

For the relevant definitions and results regarding dyadic grids we refer the reader
to [29]. A property we need is the fact that there exist 3n dyadic grids (Dα)3

n

α=1 such
that for each cube Q ⊆ Rn there is an α and a cube Q̃ ∈ Dα such that Q ⊆ Q̃ and
|Q̃| ≤ 6n|Q|. This implies the following:

Lemma 2.5 Let r1, . . . , rm ∈ (0,∞). Then there exist 3n dyadic grids (Dα)3
n

α=1 such
that
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M
r �
3n∑

α=1

MDα


r .

See also [29].

Definition 2.6 A collection of cubes S in a dyadic grid is called sparse if there is
a pairwise disjoint collection of measurable sets (EQ)Q∈S such that EQ ⊆ Q and
|Q| ≤ 2|EQ |.

Given r1, . . . , rm ∈ (0,∞), for a sparse collection of cubesS we define the sparse
operator

A
r ,S ( f1, . . . , fm) :=
∑

Q∈S

⎛

⎝
m∏

j=1

〈 f j 〉r j ,Q
⎞

⎠χQ,

and the sparse form

�
r ,S ( f1, . . . , fm) :=
∑

Q∈S

m∏

j=1

〈 f j 〉r j ,Q |Q|.

We point out here that the sparsity constant 2 appearing in the estimate |Q| ≤ 2|EQ |
is not too important and in most situations it can be replaced by any other constant
greater than 1. Note however, that we will be considering the form supS �
r ,S and
here it is important that one only considers sparse collections in this supremum with
the same sparsity constant. See [29] for further properties and results regarding sparse
collections of cubes.

Since this section contains results involving both m-tuples and m + 1-tuples with
the same parameters, it is convenient to separate these notationally. We will use the
following convention: for m + 1 parameters α1, . . . , αm+1 we shall use the boldface
notation ααα = (α1, . . . , αm+1) for m + 1-tuples while we will use the arrow notation

α = (α1, . . . , αm) for m-tuples.

The main result for this section is the following:

Proposition 2.7 Let r1, . . . , rm+1 ∈ (0,∞), p1, . . . , pm+1 ∈ (0,∞] satisfy 1
p j

< 1
r j

for all j ∈ {1, . . . ,m+1} and∑m+1
j=1

1
p j

= 1. Moreover, letw1, . . . , wm+1 be weights

satisfying
∏m+1

j=1 w j = 1. Then the following are equivalent:

(i) www ∈ Appp,(rrr ,∞);
(ii) ‖Mrrr‖L p1 (w

p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞ < ∞;

(iii) ‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1 < ∞;

(iv) ‖ supS �rrr ,S ‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→R < ∞.
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Moreover, we have

‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞ � [www]ppp,(rrr ,∞), (2.6)

‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1 � ‖ sup

S
�rrr ,S ‖L p1 (w

p1
1 )×···×L pm+1 (w

pm+1
m+1 )→R

(2.7)

where the implicit constants depend only on the dimension, and

‖ sup
S

�rrr ,S ‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→R � cppp,rrr [www]

max j=1,...,m+1

{ 1
r j

1
r j

− 1
p j

}

ppp,(rrr ,∞) , (2.8)

where the implicit constant depends on the dimension and

cppp,rrr =
m+1∏

j=1

⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

.

Remark 2.8 We again point out that the condition www ∈ Appp,(rrr ,∞) is equivalent to the
condition 
w ∈ A 
p,(
r ,r ′

m+1)
, with equal constants. Moreover, the results containing the

sparse forms are formulated with the supremum taken inside of the norm. One can
equivalently put the supremum outside of the norm which follows from the fact that
there is a single sparse form that dominates all the other sparse forms, see [27, Section
4].

In the case m = 1, r1 = r2 = 1, the equivalence (2.6) takes the more familiar form

‖M(1,1)‖L p(w p)×L p′ (w−p′ )→L1,∞ � [w p]
1
p
Ap

which appeared in the introduction.
We note that the estimate (2.8) was already obtained in [8] in the case m = 2.
For r1 = r , r2 = s′ the estimate (2.8) takes the form

‖ sup
S

�(r ,s′),S ‖L p(w p)×L p′ (w−p′ )→R �
[
w

(
1
p − 1

s

)−1
]max

(
1
p − 1

s
1
r − 1

p

1
r , 1

s′

)

A 1
r − 1

s
1
p − 1

s

(2.9)

and when r = 1 and s = ∞ we reobtain the sharp bound from the A2 theorem. We
wish to compare (2.9) to the bound obtained in [5]. For their main result they prove
that

‖ sup
S

�(r ,s′),S ‖L p(w)×L p′ (w1−p′ )→R �
(
[w]A p

r
[w]RH( s

p

)′
)max

(
1

p−r , s−1
s−p

)

, (2.10)
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Our result implies that

‖ sup
S

�(r ,s′),S ‖L p(w)×L p′ (w1−p′ )→R �
(
[w]A p

r
[w]RH( s

p

)′
)
(
s
p

)′
max

(
1
p − 1

s
1
r − 1

p

1
r , 1

s′

)

,

see also [24], and this recovers the estimate (2.10).
Finally, we point out here that the estimate (2.8) already appears in [33, p. 12] for

the particular choice 1
p j

= 1
r j

1∑m+1
j=1

1
r j

, and it seems like this choice of p j is central

for the theory of these sparse forms, see also the proof of Corollary 4.2.
For the proof of the proposition we will require several preparatory lemmata.

Lemma 2.9 Let 0 < r1, . . . , rm < ∞. Then for each dyadic grid D and all f j ∈ Lr j

there is a sparse collection S ⊆ D such that

MD

r ( f1, . . . , fm) ≤ 2

n+1
r

∑

Q∈S

m∏

j=1

〈 f j 〉r j ,QχEQ

pointwise almost everywhere, where 1
r = ∑m

j=1
1
r j
. In particular we have

MD

r ( f1, . . . , fm) ≤ 2

n+1
r A
r ,S ( f1, . . . , fm)

pointwise almost everywhere.

The proof is essentially the same as the well-known result in the case m = 1, r = 1.

Proof For k ∈ Z we define

�k := {x ∈ Rn : MD

r ( f1, . . . , fm)(x) > 2

n+1
r k}.

By taking themaximal cubes Q in�k we obtain a pairwise disjoint collectionQk ⊆ D
such that �k = ⋃

Q∈Qk
Q and

2
n+1
r k <

m∏

j=1

〈 f j 〉r j ,Q ≤ 2
n+1
r (k+1)

2
1
r

(2.11)

for all Q ∈ Qk . We define S := ∪k∈ZQk and claim that S is a sparse collection of
cubes. Indeed, for Q ∈ Qk it follows from (2.11) that for any Q′ ∈ Qk+1 we have

m∏

j=1

〈 f j 〉r j ,Q′ > 2
1
r
2

n+1
r (k+1)

2
1
r

≥ 2
1
r

m∏

j=1

〈 f j 〉r j ,Q .
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Thus, by maximality of Qk and Hölder’s inequality with
∑m

j=1
r
r j

= 1, we have

|�k+1 ∩ Q| =
∑

Q′∈Qk+1
Q′⊆Q

|Q′| ≤ 1

2
∏m

j=1〈 f j 〉rr j ,Q
∑

Q′∈Qk+1
Q′⊆Q

|Q′|
m∏

j=1

〈 f j 〉rr j ,Q′

= |Q|
2

∑
Q′∈Qk+1
Q′⊆Q

∏m
j=1

(∫
Q′ | f j |r j dx

) r
r j

∏m
j=1

(∫
Q | f j |r j dx

) r
r j

≤ |Q|
2

∏m
j=1

(∫
�k+1∩Q | f j |r j dx

) r
r j

∏m
j=1

(∫
Q | f j |r j dx

) r
r j

≤ |Q|
2

.

Thus, defining EQ := Q\�k+1, we have |Q| ≤ 2|EQ |.
To conclude thatS is sparse, it remains to check that (EQ)Q∈S is pairwise disjoint.

Let Q, Q′ ∈ S such that EQ ∩ EQ′ �= ∅. If Q ∈ Qk and Q′ ∈ Qk′ , we have
EQ ⊆ �k\�k+1 and EQ′ ⊆ �k′ \�k′+1. Since (�k\�k+1)k∈Z is pairwise disjoint,
this means that we must have k = k′. Since Q ∩ Q′ �= ∅, it follows from maximality
of Qk that Q = Q′, as desired.

Finally, if x ∈ Rn and MD

r ( f1, . . . , fm)(x) �= 0, then there is a unique k ∈ Z such

that 2
n+1
r k < MD


r ( f1, . . . , fm)(x) ≤ 2
n+1
r (k+1). Hence, x ∈ �k\�k+1 and thus there

is a cube Q ∈ Qk so that x ∈ Q\�k+1 = EQ and

MD

r ( f1, . . . , fm)(x) ≤ 2

n+1
r 2

n+1
r k < 2

n+1
r

m∏

j=1

〈 f j 〉r j ,Q

= 2
n+1
r

∑

Q′∈S

m∏

j=1

〈 f j 〉r j ,Q′χEQ′ (x).

This proves the assertion. ��
The following result is a reformulation of the definition of the weight class.

Lemma 2.10 Let r1, . . . , rm+1 ∈ (0,∞), p1, . . . , pm+1 ∈ (0,∞] satisfy 1
p j

< 1
r j

for

all j ∈ {1, . . . ,m + 1} and ∑m+1
j=1

1
p j

= 1. Moreover, let w1, . . . , wm+1 be weights

satisfying
∏m+1

j=1 w j = 1 and define v j := w

− 1
1
r j

− 1
p j

j . Then www ∈ Appp,(rrr ,∞) if and only
if v1, . . . , vm+1 are locally integrable and there is a constant c > 0 such that for all
cubes Q we have

⎛

⎝
m+1∏

j=1

〈v j 〉
1
r j
1,Q

⎞

⎠ |Q| ≤ c
m+1∏

j=1

v j (Q)
1
p j .
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In this case, the optimal constant c in this inequality is given by [www]ppp,(rrr ,∞).

The following lemma allows us to deal with weighted estimates involving sparse
forms.

Lemma 2.11 Let r1, . . . , rm+1 ∈ (0,∞), p1, . . . , pm+1 ∈ (0,∞] satisfy 1
p j

< 1
r j

for

all j ∈ {1, . . . ,m + 1} and ∑m+1
j=1

1
p j

= 1. Moreover, let w1, . . . , wm+1 be weights

satisfying
∏m+1

j=1 w j = 1 with www ∈ Appp,(rrr ,∞) and define v j := w

− 1
1
r j

− 1
p j

j . Let Q be a
cube and let E ⊆ Q such that |Q| ≤ 2|E |. Then

⎛

⎝
m+1∏

j=1

〈v j 〉
1
r j
1,Q

⎞

⎠ |Q| � [www]
max j=1,...,m+1

{ 1
r j

1
r j

− 1
p j

}

ppp,(rrr ,∞)

m+1∏

j=1

v j (E)
1
p j . (2.12)

Remark 2.12 Having Lemma 2.10 in mind, it seems that the larger power of the weight
constant in (2.12) comes from the fact that we are passing from the weighted measure
of the set Q to the measure of the smaller set E . In fact, it seems like we are only using
the full weight condition www ∈ Appp,(rrr ,∞) once and we are left with an estimate of the
form

m+1∏

j=1

v j (Q)
1
p j �

m+1∏

j=1

v j (E)
1
p j ,

where the implicit constant depends on the weights. This estimate seems to only
require the weaker Fujii-Wilson A∞ condition satisfied by the weight v j , but we do
not pursue this further here. We refer the reader to [22] where quantitative estimates
involving this condition first appeared. We also point out that estimates of this type
for the limited range sparse operator in the case m = 1 have been studied in [13,31].
This condition has also been considered in the multilinear case in [10].

Proof We set γ := max j=1,...,m+1

{
1
r j

1
r j

− 1
p j

}
and

β j := 1

r j
−
(
1

r j
− 1

p j

)
γ,

so that β j ≤ 0 for all j ∈ {1, . . . ,m + 1}. Thus, since 〈v j 〉1,E ≤ 2〈v j 〉1,Q by the

assumptions on E , we have 〈v j 〉β j
1,Q ≤ 2−β j 〈v j 〉β j

1,E . Then
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⎛

⎝
m+1∏

j=1

〈v j 〉
1
r j
1,Q

⎞

⎠ |Q| =
⎛

⎝
m+1∏

j=1

〈v j 〉
1
r j

− 1
p j

1,Q

⎞

⎠
γ ⎛

⎝
m+1∏

j=1

〈v j 〉β j
1,Q

⎞

⎠ |Q|

≤ [www]γppp,(rrr ,∞)

⎛

⎝
m+1∏

j=1

〈v j 〉β j
1,Q

⎞

⎠ |Q|

� [www]γppp,(rrr ,∞)

⎛

⎝
m+1∏

j=1

〈v j 〉β j
1,E

⎞

⎠ |E |

= [www]γppp,(rrr ,∞)

⎛

⎝
m+1∏

j=1

v j (E)β j

⎞

⎠ |E |1−
∑m+1

j=1 β j .

(2.13)

Next, set α := ∑m+1
j=1

(
1
r j

− 1
p j

)
> 0 and k j := α

(
1
r j

− 1
p j

)−1
. Then

m+1∑

j=1

1

k j
= 1

α

m+1∑

j=1

(
1

r j
− 1

p j

)
= 1

and

1 −
m+1∑

j=1

β j =
m+1∑

j=1

1

p j
−

m+1∑

j=1

1

r j
+ γ

m+1∑

j=1

(
1

r j
− 1

p j

)
= (γ − 1)α

so that

1 −∑m+1
j=1 β j

k j
=
(
1

r j
− 1

p j

)
(γ − 1) = 1

p j
− β j .

Thus, since
∏m+1

j=1 v

1
r j

− 1
p j

j = ∏m+1
j=1 w j = 1, it follows from Hölder’s inequality that

|E |1−
∑m+1

j=1 β j =
⎛

⎝
∫

E

m+1∏

j=1

v

1
α

(
1
r j

− 1
p j

)

j dx

⎞

⎠
1−∑m+1

j=1 β j

≤
m+1∏

j=1

v j (E)

1−∑m+1
j=1 β j
k j =

m+1∏

j=1

v j (E)
1
p j

−β j
.

By combining this estimate with (2.13), we obtain (2.12). The assertion follows. ��

Proof of Proposition 2.7 We set v j := w

− 1
1
r j

− 1
p j

j for j ∈ {1, . . . ,m + 1}.

123



Quantitative estimates and extrapolation for multilinear weight classes

The strategy for the proof will be as follows: We will prove the equivalence of (i)
and (ii) by proving (2.6) and we will prove the equivalence of (iii) and (iv) by proving
(2.7). Then, noting that the implication (iii)⇒(ii) is clear, we conclude the proof by
showing that (i)⇒(iv) through (2.8).

For (2.6), for the first inequality we note that it follows from Lemma 2.5 that it
suffices to consider the estimate for MD

rrr for a dyadic grid D . First consider a finite
collectionF ⊆ D . Let λ > 0, f j ∈ L p j (w

p j
j ) and, defining MF

rrr as MD
rrr but with the

supremum taken over all Q ∈ F , we set

�F
λ :=

{
MF

rrr ( f1, . . . , fm+1) > λ
}

and similarly for �D
λ .

Let P denote the collection of those cubes Q ∈ F such that
∏m+1

j=1 〈 f j 〉r j ,Q > λ

that have no dyadic ancestors inF . Using the rule

〈h〉r ,Q = 〈hu− 1
r 〉ur ,Q〈u〉

1
r
1,Q,

where 〈h〉ur ,Q :=
(

1
u(Q)

∫
Q |h|r u dx

) 1
r
, it follows from Lemma 2.10 and the fact that

P gives a decomposition of �F
λ , that

λ|�F
λ | =

∑

Q∈P
λ|Q| ≤

∑

Q∈P

⎛

⎝
m+1∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ |Q|

=
∑

Q∈P

⎛

⎝
m+1∏

j=1

〈 f jv
− 1

r j
j 〉v j

r j ,Q
〈v j 〉

1
r j
1,Q

⎞

⎠ |Q|

≤ [www]ppp,(rrr ,∞)

∑

Q∈P

m+1∏

j=1

〈 f jv
− 1

r j
j 〉v j

r j ,Q
v j (Q)

1
p j

≤ [www]ppp,(rrr ,∞)

∑

Q∈P

m+1∏

j=1

⎛

⎝
∫

Q
| f j |p j v

p j

(
1
p j

− 1
r j

)

j dx

⎞

⎠

1
p j

≤ [www]ppp,(rrr ,∞)

m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

),

where in the fourth step we used Hölder’s inequality with r j ≤ p j and in the last step
we used Hölder’s inequality on the sum.

By considering an exhaustion of D of finite sets it follows from monotonicity of
the measure and by taking a supremum over λ > 0 that

‖MD
rrr ‖L p1 (w

p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞ ≤ [www]ppp,(rrr ,∞).
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For the converse inequality, fix a cube Q. Assuming for the moment that the v j are

locally integrable, we let 0 < λ <
∏m

j=1〈v j 〉
1
r j
1,Q . Setting f j := v

1
r j
j χQ , we obtain

Mrrr ( f1, . . . , fm+1)(x) ≥
m+1∏

j=1

〈 f j 〉r j ,Q =
m+1∏

j=1

〈v j 〉
1
r j
1,Q > λ

for all x ∈ Q so that Q ⊆ {Mrrr ( f1, . . . , fm+1) > λ}. Thus,

λ|Q| ≤ λ|{Mrrr ( f1, . . . , fm+1) > λ}|

≤ ‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞

m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

)

= ‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞

m+1∏

j=1

v j (Q)
1
p j .

Taking a supremum over such λ, we conclude that

⎛

⎝
m+1∏

j=1

〈v j 〉
1
r j
1,Q

⎞

⎠ |Q| ≤ ‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞

m+1∏

j=1

v j (Q)
1
p j . (2.14)

Thus, it follows from Lemma 2.10 that

[www]ppp,(rrr ,∞) ≤ ‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1,∞ ,

proving (2.6). To prove our initial assumption that the v j are locally integrable, we
repeat the above argument with the weights replaced by (v−1

j + ε)−1 for ε > 0. As
these weights are bounded, they are locally integrable. An appeal to the Monotone
Convergence Theorem as ε ↓ 0 after a rearrangement of (2.14) yields the desired
conclusion.

For (2.7), let f j ∈ L p j (w
p j
j ) and letD be a dyadic grid. By Lemma 2.9 there exists

a sparse collection S ⊆ D such that

‖MD
rrr ( f1, . . . , fm+1)‖L1 � ‖Arrr ,S ( f1, . . . , fm+1)‖L1 ≤ �rrr ,S ( f1, . . . , fm+1).

Thus, it follows from Lemma 2.5 that

‖Mrrr‖L p1 (w
p1
1 )×···×L pm+1 (w

pm+1
m+1 )→L1 � ‖ sup

S
�rrr ,S ‖L p1 (w

p1
1 )×···×L pm+1 (w

pm+1
m+1 )→R.
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For the converse inequality, we estimate

�rrr ,S ( f1, . . . , fm+1) ≤ 2
∑

Q∈S

⎛

⎝
m+1∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ |EQ |

≤ 2
∑

Q∈S

∫

EQ

Mrrr ( f1, . . . , fm+1) dx

≤ 2‖Mrrr ( f1, . . . , fm, g)‖L1 .

As this estimate is uniform in S , this proves (2.7) and thus the equivalence of (iii)
and (iv).

To prove (2.8) and thus the implication (i)⇒(iv), we note that it follows from
Lemma 2.11 that for a sparse collection S in a dyadic grid D and for γ =
max j=1,...,m+1

{
1
r j

1
r j

− 1
p j

}
we have

�rrr ,S ( f1, . . . , fm+1) =
∑

Q∈S

⎛

⎝
m+1∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ |Q|

=
∑

Q∈S

⎛

⎝
m+1∏

j=1

〈 f jv
− 1

r j
j 〉v j

r j ,Q
〈v j 〉

1
r j
1,Q

⎞

⎠ |Q|

� [www]γppp,(rrr ,∞)

∑

Q∈S

m+1∏

j=1

〈 f jv
− 1

r j
j 〉v j

r j ,Q
v j (EQ)

1
p j

≤ [www]γppp,(rrr ,∞)

∑

Q∈P

m+1∏

j=1

(∫

EQ

M
v j ,D
r j ( f jv

− 1
r j

j )p j v j dx

) 1
p j

≤ [www]γppp,(rrr ,∞)

m+1∏

j=1

‖Mv j ,D
r j ( f jv

− 1
r j

j )‖L p j (v j )

� cppp,rrr [www]γppp,(rrr ,∞)

m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

),

where in the last step we used the fact that the weighted dyadic maximal operator
Mu,D

r h := supQ∈D 〈h〉ur ,QχQ is bounded on Lq(u) for q > r with constant bounded

by

[
1
r

1
r − 1

q

] 1
r

, uniformly in the weight u. As this estimate is uniform in the sparse

collection S , this proves (2.8). The assertion follows. ��
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2.3 Quantitative properties of multilinear weight classes: them-tuple case

It is sometimes convenient to emphasize this separation of the parameter s from the r j ,
as it often plays a different role from the other parameters in the proofs. The following
lemma provides a way to deal with this parameter.

Lemma 2.13 (Translation lemma) Let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞] and
p1, . . . , pm ∈ (0,∞] with (
r , s) ≤ 
p and let w1, . . . , wm be weights with w =∏m

j=1 w j . Then 
w ∈ A 
p,(
r ,s) if and only if there are 1
s1

, . . . 1
sm

satisfying 1
s j

≤ 1
p j
,

∑m
j=1

1
s j

= 1
s , and 
w ∈ A 
p(s),(
r(s),∞), where


p(s) =
(

1
1
p1

− 1
s1

, . . . ,
1

1
pm

− 1
sm

)
, 
r(s) =

(
1

1
r1

− 1
s1

, . . . ,
1

1
rm

− 1
sm

)
.

Moreover, in this case we have

[ 
w] 
p,(
r ,s) = [ 
w] 
p(s),(
r(s),∞). (2.15)

Proof We have

1

p(s)
:=

m∑

j=1

(
1

p j
− 1

s j

)
= 1

p
− 1

s
.

it remains to note that

⎛

⎝
m∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

⎞

⎠ 〈w〉 1
1
p − 1

s
,Q =

⎛

⎝
m∏

j=1

〈w−1
j 〉 1(

1
r j

− 1
s j

)
−
(

1
p j

− 1
s j

) ,Q

⎞

⎠ 〈w〉p(s),Q .

Taking a supremum over all cubes Q yields (2.15), proving the assertion. ��
We point out that the choice of the 1

s j
in the lemma is not necessarily unique if

m �= 1. One could, for example, take 1
s j

= p
p j

1
s , but a different choice will be made

later in the proof of the main result. We also note that this lemma can be used even
if 1

s = 0. In this case it can occur that some of the 1
s j

are negative, but this does not
seem to cause any problems.

Having reduced to the case where s = ∞, the following proposition is the main
result for this subsection.

Proposition 2.14 Let r1, . . . , rm ∈ (0,∞), p1, . . . , pm ∈ (0,∞] with (
r ,∞) ≤ 
p
and letw1, . . . , wm beweights withw = ∏m

j=1 w j . Then the following are equivalent:

(i) 
w ∈ A 
p,(
r ,∞);
(ii) ‖M
r‖L p1 (w

p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

< ∞.
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In this case we have

‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

� [ 
w] 
p,(
r ,∞). (2.16)

Moreover, if 
r < 
p, then (i) and (ii) are equivalent to

(iii) ‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

< ∞
and we have

‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� c 
p,
r [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)
, (2.17)

where the implicit constant depends on the dimension and

c 
p,
r =
m∏

j=1

⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

.

Moreover, the power of the weight constant in (2.17) is the smallest possible one.

Remark 2.15 The equivalence (2.16) is also contained in the full range version in [30,
Theorem3.3] in the casewhere the p j are finite, and the limited range version is proven
in [3, Proposition 21], but here the cases p j = ∞ are only treated when w j = 1.

For our result here we use the interpretation that for q = ∞ and a weight u we
have ‖h‖Lq (uq ) = ‖h‖Lq,∞(uq ) = ‖hu‖L∞ .

Remark 2.16 The estimate (2.17) is a generalization of Buckley’s sharp weighted
bound for the Hardy–Littlewood maximal operator. It can be proven using the sparse
domination we obtained in Lemma 2.9, but we present an altogether different proof
which generalizes an approach due to Lerner [28]. This construction is important, as
it turns out to be key for our multilinear Rubio de Francia algorithm.

In the case r1 = · · · = rm = 1, the sharp bound (2.17) recovers the sharp bound
obtained by Li, Moen, and Sun in [34] where sparse domination techniques were

used. To see this, note given weights w1, . . . , wm and setting v 
w := ∏m
j=1 w

p
p j
j , the

multilinear weight constant they used is defined as

[ 
w]A 
p := sup
Q

(
1

|Q|
∫

Q
v 
w dx

) m∏

j=1

(
1

|Q|
∫

Q
w

1−p′
j

j dx

) p
p′j

. (2.18)

Writing 
1 = (1, . . . , 1), the sharp result they prove is

‖M
1‖L p1 (w1)×···×L pm (wm )→L p(v 
w) � [ 
w]
max j=1,...,m

{
p′j
p

}

A 
p . (2.19)
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for all p1, . . . , pm ∈ (1,∞) and 
w ∈ A 
p. To compare this to our result, we replace

the w j by w
p j
j and note that v 
w = ∏m

j=1(w
p j
j )

p
p j = w p, [(w p1

1 , . . . , w
pm
m )]A 
p =

[ 
w]p
p,(
1,∞)
. Thus, (2.19) coincides with our bound found in (2.17) when 
r = 
1.

Lemma 2.17 Let r1, . . . , rm ∈ (0,∞), p1, . . . , pm ∈ (0,∞] with 
r < 
p and let
w1, . . . , wm be weights with w = ∏m

j=1 w j and 
w ∈ A 
p,(
r ,∞). Then there exist

sublinear operators Np j ,r j , 
w : L p j (w
p j
j ) → L p j (w

p j
j ) so that for any f j ∈ L p j (w

p j
j )

we have

M
r ( f1, . . . , fm) ≤ [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)

m∏

j=1

Npj ,r j , 
w( f j ). (2.20)

Moreover, Np j ,r j , 
w satisfies

‖Npj ,r j , 
w‖
L p j

(
w

p j
j

)
→L p j

(
w

p j
j

) �

⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

.

Proof We first prove this result for the dyadic maximal operator MD

r for a dyadic grid

D to obtain the appropriate operators ND
p j ,r j , 
w. Then it follows from Lemma 2.5 that

M
r ( 
f ) �
3n∑

α=1

m∏

j=1

NDα

p j ,r j , 
w( f j ) ≤
m∏

j=1

3n∑

α=1

NDα

p j ,r j , 
w( f j ). (2.21)

The result then follows by setting

Npj ,r j , 
w := c
3n∑

α=1

NDα

p j ,r j , 
w,

where c is an appropriate constant determined by the implicit constant in (2.21).

Now, fix a dyadic grid D . Let γ := max j=1,...,m

{
1
r j

1
r j

− 1
p j

}
, let Q ∈ D , and set

v j := w

− 1
1
r j

− 1
p j

j . Since
∏m

j=1 w−1
j w

1
p j
1
p =

(∏m
j=1 w−1

j

)
w = 1, it follows from

Hölder’s inequality that
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1 = 〈1〉γ−1
1∑m

j=1
1
r j

,Q
≤

m∏

j=1

〈
w−1

j w

1
p j
1
p

〉γ−1

r j ,Q

=
m∏

j=1

〈
w−1

j w

1
p j
1
p

〉γ−
1
r j

1
r j

− 1
p j

r j ,Q

〈
w−1

j w

1
p j
1
p

〉
1
p j

1
r j

− 1
p j

r j ,Q

≤
m∏

j=1

⎛

⎜⎜⎝〈w−1
j 〉 1

1
r j

− 1
p j

〈w
1
p j
1
p 〉p j ,Q

⎞

⎟⎟⎠

γ−
1
r j

1
r j

− 1
p j
〈
w−1

j w

1
p j
1
p

〉
1
p j

1
r j

− 1
p j

r j ,Q

=

⎛

⎜⎜⎜⎝

m∏

j=1

(
〈v j 〉

1
r j

− 1
p j

1,Q 〈w p〉
1
p j
1,Q

)γ−
1
r j

1
r j

− 1
p j

⎞

⎟⎟⎟⎠

m∏

j=1

〈
w

−r j
j w

1
p j
1
p
r j
〉

1
p j

1
r j

1
r j

− 1
p j

1,Q

.

This implies that

m∏

j=1

〈v j 〉
1
r j
1,Q ≤

[ 
w]γ
p,(
r ,∞)⎛

⎝∏m
j=1〈v j 〉

(
1
r j

− 1
p j

)
γ− 1

r j

1,Q

⎞

⎠ 〈w〉γp,Q

=
[ 
w]γ
p,(
r ,∞)

∏m
j=1

(
〈v j 〉

1
r j

− 1
p j

1,Q 〈w p〉
1
p j
1,Q

)γ−
1
r j

1
r j

− 1
p j

m∏

j=1

(
1

〈w p〉1,Q
)

1
p j

1
r j

1
r j

− 1
p j

≤ [ 
w]γ
p,(
r ,∞)

m∏

j=1

⎛

⎜⎜⎜⎜⎝

〈w−r j
j w

1
p j
1
p
r j 〉1,Q

〈w p〉1,Q

⎞

⎟⎟⎟⎟⎠

1
p j

1
r j

1
r j

− 1
p j

.

Thus, for f j ∈ L p j (w
p j
j ) and any x ∈ Q, we have

m∏

j=1

〈 f j 〉r j ,Q =
m∏

j=1

〈
f jv

− 1
r j

j

〉v j

r j ,Q

〈
v j
〉 1
r j
1,Q

≤ [ 
w]γ
p,(
r ,∞)

m∏

j=1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

inf y∈Q M
v j ,D
r j

(
f jv

− 1
r j

j

)
(y)

1
r j

− 1
p j

1
p j

1
r j 〈w−r j

j w

1
p j
1
p
r j 〉1,Q

〈w p〉1,Q

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

1
p j

1
r j

1
r j

− 1
p j
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≤ [ 
w]γ
p,(
r ,∞)

m∏

j=1

Mw p ,D
1
r j

− 1
p j

1
p j

1
r j

⎛

⎜⎝M
v j ,D
r j

(
f jv

− 1
r j

j

)
v

1
p j
j w

−
1
p j
1
p

⎞

⎟⎠ (x).

(2.22)

Setting

ND
p j ,r j , 
w( f j ) := Mw p,D

1
r j

− 1
p j

1
p j

1
r j

⎛

⎜⎝M
v j ,D
r j

(
f jv

− 1
r j

j

)
v

1
p j
j w

−
1
p j
1
p

⎞

⎟⎠w

1
p j
1
p w−1

j

and by taking a supremum over all Q containing x in (2.22) we have proven (2.20) in
the dyadic case. We remark here that in the case that 1

p j
= 0, we use the interpretation

ND
∞,r j , 
w( f j ) = ‖Mv j ,D

r j

(
f jv

− 1
r j

j

)
‖L∞w−1

j .

Noting that

‖Mu,D
1
r − 1

q
1
q
1
r

(h)‖Lq (u) �
(q
r

) 1
q
1
r

1
r − 1

q ‖h‖Lq (u) = e
log q−log r

q−r ‖h‖Lq (u) ≤ e
1
r ‖h‖Lq (u),

for the case 1
p j

> 0, we compute

‖ND
p j ,r j , 
w( f j )‖L p j

(
w

p j
j

) = ‖Mw p,D
1
r j

− 1
p j

1
p j

1
r j

(
M

v j ,D
r j

(
f jv

− 1
r j

j

)
v

1
p j
j w

− p
p j

)
‖L p j (w p)

� ‖Mv j ,D
r j

(
f jv

− 1
r j

j

)
v

1
p j
j w

− p
p j ‖L p j (w p)

= ‖Mv j ,D
r j

(
f jv

− 1
r j

j

)
‖L p j (v j )

�

⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

‖ f jv
− 1

r j
j ‖L p j (v j )

=
⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

‖ f j‖L p j
(
w

p j
j

),
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and for the case 1
p j

= 0, we compute

‖ND
∞,r j , 
w( f j )w j‖L∞ = ‖Mv j ,D

r j ( f jv
− 1

r j
j )‖L∞ ≤ ‖ f jv

− 1
r j

j ‖L∞ = ‖ f jw j‖L∞ .

The assertion follows. ��

Proof of Proposition 2.14 We will prove the equivalence of (i) and (ii) by proving
(2.16).

For “ �′′, we note that it follows from Lemma 2.5 that it suffices to prove the
estimate for MD


r for a fixed dyadic grid D . Note that by Hölder’s inequality we have

〈 f j 〉r j ,Q ≤ 〈 f jw j 〉p j ,Q〈w−1
j 〉 1

1
r j

− 1
p j

,Q for a cube Q, so that

m∏

j=1

〈 f j 〉r j ,Q ≤ [ 
w] 
p,(
r ,∞)〈w〉−1
p,Q

m∏

j=1

〈 f jw j 〉p j ,Q = [ 
w] 
p,(
r ,∞)

m∏

j=1

〈 f jw jw
− p

p j 〉w p

p j ,Q .

Thus, by Hölder’s inequality for weak type Lebesgue spaces, we have

∥∥∥MD

r ( f1, . . . , fm)

∥∥∥
L p,∞(w p)

≤ [ 
w] 
p,(
r ,∞)

∥∥∥∥∥∥

m∏

j=1

Mw p,D
p j

(
f jw jw

− p
p j

)∥∥∥∥∥∥
L p,∞(w p)

� [ 
w] 
p,(
r ,∞)

m∏

j=1

∥∥∥∥M
w p,D
p j

(
f jw jw

− p
p j

)∥∥∥∥
L p j ,∞(w p)

� [ 
w] 
p,(
r ,∞)

m∏

j=1

∥∥ f j
∥∥
L p j

(
w

p j
j

) ,

where we used the fact that the weighted dyadic maximal operator Mu,D
q is bounded

Lq(u) → Lq,∞(u)with constant uniform in q and the weight u. Thus, we have shown
that

‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

� [ 
w] 
p,(
r ,∞).

For the converse inequality, fix a cube Q and let f j ∈ L p j (w
p j
j ). Letting 0 < λ <∏m

j=1〈 f j 〉r j ,Q , we have

M
r ( f1, . . . , fm)(x) ≥
m∏

j=1

〈 f j 〉r j ,Q > λ
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for all x ∈ Q so that Q ⊆ {M
r ( f1, . . . , fm) > λ}. Hence,

λ〈w〉p,Q ≤ |Q|− 1
p λ(w p({M
r ( f1, . . . , fm) > λ})) 1

p

≤ ‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

m∏

j=1

|Q|−
1
p j ‖ f j‖L p j (w

p j ).

Taking a supremum over such λ and by replacing f j with χQ f j , we conclude that

⎛

⎝
m∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ 〈w〉p,Q ≤ ‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

m∏

j=1

〈 f jw j 〉p j ,Q .

(2.23)

Now set f j = w

−
1
r j

1
r j

− 1
p j

j and assume for the moment that f
r j
j = f

p j
j w

p j
j = w

− 1
1
r j

− 1
p j

j
is locally integrable. Then the product on the right-hand side of (2.23) is positive and
finite so that we may take it to the left-hand side. This yields

⎛

⎝
m∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

⎞

⎠ 〈w〉p,Q ≤ ‖M
r‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p,∞(w p)

(2.24)

and taking a supremum over all cubes Q yields (2.16). To prove that w

− 1
1
r j

− 1
p j

j is

indeed locally integrable, we choose f j such that f
p j
j w

p j
j = (w

1
1
r j

− 1
p j

j + ε)−1 for
ε > 0, the latter expression being bounded and thus locally integrable. Again taking
the product on the right-hand side of (2.23) to the left, an appeal to the Monotone
Convergence Theorem as ε ↓ 0 yields (2.24). The assertion follows.

Since the implication (iii)⇒(ii) is clear, we may finish the proof of the equivalences
by showing (i)⇒(iii) through (2.17).

By Lemma 2.17, it follows from Hölder’s inequality that

‖M
r ( f1, . . . , fm)‖L p(w p) ≤ [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)

m∏

j=1

‖Npj ,r j , 
w f j‖L p j
(
w

p j
j

)

� c 
p,
r [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)

m∏

j=1

‖ f j‖L p j
(
w

p j
j

),

as desired.
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Finally, we prove optimality of (2.17). Let α ≥ 0 denote the smallest possible
constant in the estimate

‖M
r ( f1, . . . , fm)‖L p(w p) � [ 
w]α
p,(
r ,∞)

m∏

j=1

‖ f j‖L p j
(
w

p j
j

).

We have shown that α ≤ max j=1,...,m

{
1
r j

1
r j

− 1
p j

}
and it remains to prove the lower

bound. We assume that we are in dimension n = 1, the general case following
mutatis mutandis. Moreover, we assume without loss of generality that the maxi-

mum max j=1,...,m

{
1
r j

1
r j

− 1
p j

}
is attained for j = 1, the other cases following similarly

by permuting the indices. For 0 < ε < 1 we define

w1(x) := |x |(1−ε)
(

1
r1

− 1
p1

)

, w j (x) := 1 for j ∈ {2, . . . ,m},
f1(x) := |x |− 1−ε

r1 χ(0,1)(x), f j (x) := |x |−
1−ε
p j χ(0,1)(x) for j ∈ {2, . . . ,m}.

Then, by Hölder’s inequality and a computation, we have

[ 
w] 
p,(
r ,∞) ≤ [w1]p1,(r1,∞) � ε
1
p1

− 1
r1 .

Moreover, one computes

m∏

j=1

‖ f j‖L p j
(
w

p j
j

) = ε
− 1

p

and

m∏

j=1

〈 f j 〉r j ,[−|x |,|x |] � ε
− 1

r1 f1(x)
m∏

j=2

⎡

⎣
1
r j

1
r j

− (1 − ε) 1
p j

⎤

⎦

1
r j

f j (x).

Setting f (x) := ∏m
j=1 f j (x)w j (x) = |x |− 1−ε

p χ(0,1)(x), we find that

‖M
r ( f1, . . . , fm)‖L p(w p) � ε
− 1

r1 ‖ f ‖L p = ε
− 1

r1
− 1

p

and

‖M
r ( f1, . . . , fm)‖L p(w p) � [ 
w]α
p,(
r ,∞)

m∏

j=1

‖ f j‖L p j
(
w

p j
j

) � ε
α
(

1
p1

− 1
r1

)
− 1

p
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Letting ε ↓ 0 shows that we must have α
(

1
p1

− 1
r1

)
− 1

p − (− 1
r1

− 1
p ) ≤ 0, i.e.,

α ≥
1
r1

1
r1

− 1
p1

= max
j=1,...,m

⎧
⎨

⎩

1
r j

1
r j

− 1
p j

⎫
⎬

⎭ .

Thus, we have α = max j=1,...,m

{
1
r j

1
r j

− 1
p j

}
and the assertion follows. ��

Remark 2.18 We point out here that in the unweighted case we actually have an equiv-
alence ‖M
r‖L p1×···×L pm→L p � c 
p,
r , which follows from a similar calculation as

above, with f j (x) := |x |−
1−ε
p j χ(0,1)(x) for all j ∈ {1, . . . ,m}.

3 Proof of themain result

The proof of the main theorem essentially follows from the theorem below. In this
theorem we deal with m + 1-tuples as well as m-tuples of the same parameters,
which can be notationally confusing. To circumvent this problem, we shall use the
earlier established convention that for m + 1 parameters α1, . . . , αm+1 we shall use
the boldface notation ααα = (α1, . . . , αm+1) for m + 1-tuples while we will use the
arrow notation 
α = (α1, . . . , αm) for m-tuples, see also Sect. 2.2.

We again point out that even though this result is formulated for the Banach range
1
p ≤ 1, it can be used to obtain results in the range including the cases 1

p > 1, see also
Remark 2.3 and the proof of Theorem 2.2.

Theorem 3.1 Let 1
r1

, . . . , 1
rm+1

∈ (0, 1] and suppose we are given 1
p1

, . . . , 1
pm+1

∈
[0, 1] satisfying 1

p j
< 1

r j
for all j ∈ {1, . . . ,m + 1} and

∑m+1
j=1

1
p j

= 1. Assume

moreover that we are given weights w1, . . . wm+1 satisfying
∏m+1

j=1 w j = 1 and www ∈
Appp,(rrr ,∞).

Suppose we are given functions f j ∈ L p j (w
p j
j ) and 1

q1
, . . . , 1

qm+1
∈ [0, 1] satis-

fying 1
q j

≤ 1
r j

and
∑m+1

j=1
1
q j

= 1. Then there are weights W1, . . . ,Wm+1 satisfying
∏m+1

j=1 Wj = 1 and WWW ∈ Aqqq,(rrr ,∞) such that

m+1∏

j=1

‖ f j‖Lq j (W
q j
j )

≤ 2m
2
m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

) (3.1)

and

[WWW ]qqq,(rrr ,∞) ≤ Cppp,qqq,rrr [www]
max j=1,...,m+1

{ 1
r j

− 1
q j

1
r j

− 1
p j

}

ppp,(rrr ,∞) . (3.2)

The proof of this theorem relies on a multilinear generalization of the Rubio de
Francia algorithm.
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Lemma 3.2 (Multilinear Rubio de Francia algorithm) Let r1, . . . , rm, p1, . . . , pm ∈
(0,∞) with 
r < 
p. Then for each 
w ∈ A 
p,(
r ,∞) there exist operators Rp j ,r j , 
w :
L p j

(
w

p j
j

)
→ L p j

(
w

p j
j

)
satisfying

(i) | f j | ≤ Rpj ,r j , 
w f j ;
(ii) ‖Rpj ,r j , 
w f j‖L p j (w

p j
j )

≤ 2‖ f j‖L p j (w
p j
j )

;

(iii)
m∏

j=1

〈Rpj ,r j , 
w f j 〉r j ,Q � c 
p,
r [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)
inf
y∈Q

m∏

j=1

Rpj ,r j , 
w f j (y) for all

cubes Q, where the implicit constant depends on the dimension and

c 
p,
r =
m∏

j=1

⎡

⎣
1
r j

1
r j

− 1
p j

⎤

⎦

1
r j

.

Proof Letting Npj ,r j , 
w be as in Lemma 2.17, we define

Rpj ,r j , 
w f j :=
∞∑

k=0

Nk
p j ,r j , 
w( f j )

2k‖Npj ,r j , 
w‖k
L p j

(
w

p j
j

)
→L p j

(
w

p j
j

)
,

where N 0
p j ,r j , 
w( f j ) := | f j | and Nk

p j ,r j , 
w( f j ) := Npj ,r j , 
w(Nk−1
p j ,r j , 
w( f j )).

To prove property (i), it suffices to note that the k = 0 term in the sum is equal to
| f j |.

For (ii) we have

‖Rpj ,r j , 
w f j‖L p j
(
w

p j
j

) ≤
∞∑

k=0

∥∥∥Nk
p j ,r j , 
w( f j )

∥∥∥
L p j

(
w

p j
j

)

2k
∥∥∥Npj ,r j , 
w

∥∥∥
k

L p j
(
w

p j
j

)
→L p j

(
w

p j
j

)

≤
∞∑

k=0

‖ f j‖L p j
(
w

p j
j

)

2k
= 2‖ f j‖L p j

(
w

p j
j

).

To prove (iii), we first note that

Npj ,r j , 
w(Rpj ,r j , 
w f j ) ≤
∞∑

k=0

Nk+1
p j ,r j , 
w( f j )

2k‖Npj ,r j , 
w‖k
L p j

(
w

p j
j

)
→L p j

(
w

p j
j

)

≤ 2‖Npj ,r j , 
w‖
L p j

(
w

p j
j

)
→L p j

(
w

p j
j

)Rpj ,r j , 
w f j .
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Thus, it follows from Lemma 2.17 that

M
r (Rp1,r1, 
w f1, . . . , Rpm ,rm , 
w fm) ≤ [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)

m∏

j=1

Npj ,r j , 
w(Rpj ,r j , 
w f j )

� 2mc 
p,
r [ 
w]
max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}


p,(
r ,∞)

m∏

j=1

Rpj ,r j , 
w f j ,

as desired. The assertion follows. ��
Proof of Theorem 3.1 The proof will consist of two steps. In the first step we prove
the result for very specific qqq . In the second step we iterate the first step to obtain the
desired result.

Step 1. In this step we assume that there is some j0 ∈ {1, . . . ,m + 1} such that
1

p j0
<

1

q j0
,

1

p j
≥ 1

q j
for j �= j0.

Since none of the statements in the formulation of the proposition depend on the
order of the indices, we may assume without loss of generality that j0 = m + 1.
More precisely, we can let π ∈ Sm+1 be the transposition given by π( j) = j for
j �= j0,m + 1 and π( j0) = m + 1, π(m + 1) = j0. Replacing the index j by π( j)
everywhere then indeed allows us to reduce to the case j0 = m + 1.

We define 1
s := 1 − 1

rm+1
≥ 0, 1

p := 1 − 1
pm+1

> 0, 1
q := 1 − 1

qm+1
≥ 0, and

w := w−1
m+1 so thatw = ∏m

j=1 w j . For anm+1-tuple (α1, . . . , αm+1)we will use the
notation 
α = (α1, . . . , αm) so that the arrow notation will always refer to an m-tuple.
Thus, we have now reduced the problem to proving that there exist m weights 
W ∈
A
q,(
r ,s) such that f j ∈ Lq j (W

qj
j ), fm+1 ∈ Lq ′

(W−q ′
), where W := ∏m

j=1 Wj , with

⎛

⎝
m∏

j=1

‖ f j‖Lq j (W
q j
j )

⎞

⎠ ‖ fm+1‖Lq′
(W−q′

)
≤2m

⎛

⎝
m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

⎞

⎠ ‖ fm+1‖L p′ (w−p′ ),

(3.3)
and

[ 
W ]
q,(
r ,s) ≤ C 
p,
q,
r ,s[ 
w]
max j=1,...,m

{ 1
r j

− 1
q j

1
r j

− 1
p j

}


p,(
r ,s) . (3.4)

Indeed, the result then follows by setting Wm+1 := W−1 and by noting that

[WWW ]qqq,(rrr ,∞) = [ 
W ]
q,(
r ,s), [www]ppp,(rrr ,∞) = [ 
w] 
p,(
r ,s).

The construction of the m weights W1, . . . ,Wm relies on the multilinear Rubio de
Francia algorithm as well as a clever usage of the translation lemma to deal with the
parameter s. Setting
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1

s j
:=

(
1
p − 1

s

)
1
q j

−
(
1
q − 1

s

)
1
p j

1
p − 1

q

,

we have

1

s j
≤
(
1
p − 1

s

)
1
q j

−
(
1
q − 1

s

)
1
q j

1
p − 1

q

= 1

q j

with equality if and only if 1
q j

= 1
p j

and so that 1
s j

≤ 1
q j

≤ 1
p j
, and

m∑

j=1

1

s j
=
(
1
p − 1

s

)
1
q −

(
1
q − 1

s

)
1
p

1
p − 1

q

= 1

s
.

We set

1

p j (s)
:= 1

p j
− 1

s j
,

1

q j (s)
:= 1

q j
− 1

s j
,

1

r j (s)
:= 1

r j
− 1

s j

and 1
p(s) := ∑m

j=1
1

p j (s)
= 1

p − 1
s , 
p(s) := (p1(s), . . . , pm(s)), and similarly for 1

q(s) ,


q(s), and 
r(s).
We emphasize here that 1

p j (s)
= 0 if and only if 1

p j
= 1

q j
and we encourage the

reader to verify that the remaining steps in this proof remain valid in this particular case.
We may compute

1

p j
− 1

q j
=

1
p(s) − 1

q(s)
1

p(s)

1

p j (s)
,

1

q j (s)
=

1
q(s)
1

p(s)

1

p j (s)
. (3.5)

We set g j := | f j |
1

p j (s)
1
p j w

−
1
s j
1
p j

j so that

‖g j‖
L p j (s)(w

p j (s)

j )
= ‖ f j‖

1
p j (s)
1
p j

L p j
(
w

p j
j

)

and, using the notation from Lemma 3.2, we set

Wj := (Rpj (s),r j (s), 
w(g j ))
−

1
p(s) − 1

q(s)
1

p(s) w

1
q(s)
1

p(s)
j .

Unwinding the definitions, it follows from (3.5) and property (i) of our multilinear
Rubio de Francia algorithm that
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‖ f j‖Lq j (Wj )
= ‖g

1
p j
1
q j
j (Rpj (s),r j (s), 
w(g j ))

−
1
p j

− 1
q j

1
q j ‖

1
q j
1

p j (s)

L p j (s)(w
p j (s)

j )

≤ ‖g j‖

1
q j
1

p j (s)

L p j (s)(w
p j (s)

j )
= ‖ f j‖

1
q j
1
p j

L p j
(
w

p j
j

).

(3.6)

Next, it follows from (3.5), Hölder’s inequality, and property (ii) that
‖ fm+1‖Lq′

(W−q′
)
≤ ‖ fm+1w

−1‖L p′ ‖W−1w‖
L

1
1
p − 1

q

= ‖ fm+1‖L p′ (w−p′ )

∥∥∥∥∥∥∥∥∥

⎛

⎝
m∏

j=1

Rpj (s),r j (s), 
w(g j )

⎞

⎠

1
p(s) − 1

q(s)
1

p(s)

w

1
p(s) − 1

q(s)
1

p(s)

∥∥∥∥∥∥∥∥∥
L

1
1

p(s) − 1
q(s)

= ‖ fm+1‖L p′ (w−p′ )

∥∥∥∥∥∥

m∏

j=1

Rpj (s),r j (s), 
w(g j )

∥∥∥∥∥∥

1
p(s) − 1

q(s)
1

p(s)

L p(s)(w p(s))

≤ ‖ fm+1‖L p′ (w−p′ )

m∏

j=1

‖Rpj (s),r j (s), 
w(g j )‖
1

p(s) − 1
q(s)

1
p(s)

L p j (s)(w
p j (s)

j )

≤ 2m‖ fm+1‖L p′ (w−p′ )

m∏

j=1

‖ f j‖

1
p j

− 1
q j

1
p j

L p j
(
w

p j
j

).

By combining this estimate with (3.6), we have proven (3.3).
Finally, we prove (3.4). Noting that

1

r j
− 1

q j
=

1
p(s) − 1

q(s)
1

p(s)

1

r j (s)
+

1
q(s)
1

p(s)

(
1

r j
− 1

p j

)
,

it follows from Hölder’s inequality and (iii) that for a cube Q we have

m∏

j=1

〈
W−1

j

〉
1

1
r j

− 1
q j

,Q
≤

m∏

j=1

〈
Rpj ,r j , 
w(g j )

〉
1

p(s) − 1
q(s)

1
p(s)

r j (s),Q

〈
w−1

j

〉
1

q(s)
1

p(s)
1

1
r j

− 1
p j

,Q

�

⎛

⎜⎜⎜⎝c 
p(s),
r(s)[ 
w]
max j=1,...,m

⎧
⎨

⎩

1
r j (s)

1
r j (s)

− 1
p j (s)

⎫
⎬

⎭


p(s),(
r(s),∞)
inf
y∈Q (3.7)
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m∏

j=1

Rpj (s),r j (s), 
w(g j )(y)

⎞

⎟⎟⎟⎠

1
p(s) − 1

q(s)
1

p(s)
m∏

j=1

〈w−1
j 〉

1
q(s)
1

p(s)
1

1
r j

− 1
p j

,Q
.

Moreover, we have

⎛

⎝ inf
y∈Q

m∏

j=1

Rpj (s),r j (s), 
w(g j )(y)

⎞

⎠

1
p(s) − 1

q(s)
1

p(s)

〈W 〉 1
1
q − 1

s
,Q ≤ 〈w

1
q(s)
1

p(s) 〉q(s),Q = 〈w〉
1

q(s)
1

p(s)
1

1
p − 1

s
,Q

.

By combining this with (3.7) we find that

⎛

⎝
m∏

j=1

〈W−1
j 〉 1

1
r j

− 1
q j

,Q

⎞

⎠ 〈W 〉 1
1
q − 1

s
,Q

�

⎛

⎜⎜⎜⎝c 
p(s),
r(s)[ 
w]
max j=1,...,m

⎧
⎨

⎩

1
r j (s)

1
r j (s)

− 1
p j (s)

⎫
⎬

⎭


p(s),(
r(s),∞)

⎞

⎟⎟⎟⎠

1
p(s) − 1

q(s)
1

p(s)

[ 
w]
1

q(s)
1

p(s)


p,(
r ,s). (3.8)

By the translation lemma, Lemma 2.13, we have [ 
w] 
p(s),(
r(s),∞) = [ 
w] 
p,(
r ,s) and,
moreover, by using (3.5) we compute

1
r j (s)

1
r j (s)

− 1
p j (s)

1
p(s) − 1

q(s)
1

p(s)

+
1

q(s)
1

p(s)

=
(

1
p j (s)

− 1
q j (s)

)
1

r j (s)
+
(

1
r j (s)

− 1
p j (s)

)
1

q j (s)(
1
r j

− 1
p j

)
1

p j (s)

=
1
r j

− 1
q j

1
r j

− 1
p j

,

which we interpret as being equal to 1 when 1
q j

= 1
p j

= 1
r j
, so that

max
j=1,...,m

⎧
⎨

⎩

1
r j (s)

1
r j (s)

− 1
p j (s)

⎫
⎬

⎭

1
p(s) − 1

q(s)
1

p(s)

+
1

q(s)
1

p(s)

= max
j=1,...,m

⎧
⎨

⎩

1
r j

− 1
q j

1
r j

− 1
p j

⎫
⎬

⎭ .

Hence, (3.4) follows by taking a supremum over all cubes Q in (3.8). This concludes
Step 1.
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Step 2. Now suppose qqq is arbitrary. For each j we either have 1
p j

< 1
q j

or 1
p j

≥ 1
q j
.

Assume without loss of generality that there is a j1 ∈ {1, . . . ,m} such that

1

p j
≥ 1

q j
if j ∈ {1, . . . , j1}, 1

p j
<

1

q j
if j ∈ { j1 + 1, . . . ,m + 1}. (3.9)

Indeed, if this is not the case then, just as in Step 1, we may permute the indices to
reduce back to this case.

The strategy will be to construct the m + 1 weightsWWW in m − j1 + 1 steps through
repeated application of Step 1.

We define

θk :=

⎧
⎪⎨

⎪⎩

∑m+1
j=m−k+2

1
q j

− 1
p j∑m+1

j= j1+1
1
q j

− 1
p j

if k ∈ {1, . . . ,m − j1 + 1};
0 if k = 0,

so that 0 = θ0 ≤ θ1 ≤ · · · ≤ θm− j1+1 = 1. Thus, defining,

1

qkj
:= 1

q j
+ θk

(
1

p j
− 1

q j

)
,

we have

1

q j
= 1

q0j
≤ 1

q1j
≤ · · · ≤ 1

qm− j1
j

≤ 1

qm− j1+1
j

= 1

p j
.

Now, we define

qqq1 :=
(
q11 , . . . , q

1
j1 , q j1+1, . . . , qm, pm+1

)

qqq2 :=
(
q21 , . . . , q

2
j1 , q j1+1, . . . , qm−1, pm, pm+1

)

...

qqqm− j1 :=
(
qm− j1
1 , . . . , qm− j1

j1
, q j1+1, p j1+2, . . . , pm+1

)
.
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First we will check that the reciprocals of the coordinates of these m + 1-tuples sum
to 1. Indeed, using

∑m+1
j=1

1
p j

= ∑m+1
j=1

1
q j

= 1, we have

j1∑

j=1

1

qkj
=

j1∑

j=1

1

q j
+ θk

j1∑

j=1

1

p j
− 1

q j
=

j1∑

j=1

1

q j

+ θk

⎛

⎝1 −
m+1∑

j= j1+1

1

p j

⎞

⎠− θk

⎛

⎝1 −
m+1∑

j= j1+1

1

q j

⎞

⎠

=
j1∑

j=1

1

q j
+

m+1∑

j=m−k+2

1

q j
− 1

p j
= 1 −

m−k+1∑

j= j1+1

1

q j
−

m+1∑

j=m−k+2

1

p j

so that

j1∑

j=1

1

qkj
+

m−k+1∑

j= j1+1

1

q j
+

m+1∑

j=m−k+2

1

p j
= 1,

as desired.
Now, for k ∈ {1, . . . ,m − j1 + 1} we define

γk := max
j=1,..., j1

1
r j

− 1
qk−1
j

1
r j

− 1
qkj

,

which should be interpreted as being equal to 1 when 1
qkj

= 1
r j
, and we write


qk = (qk1 , . . . , q
k
m) for the m-tuple given by the first m coordinates of qqqk , with

1
qk

:= ∑m
j=1

1
qkj
.

We may apply Step 1 with j0 = j1 + 1 to obtain weights WWWm− j1 =
(Wm− j1

1 , . . . ,Wm− j1
m+1 ) such that

m+1∏

j=1

‖ f j‖
L
q
m− j1
j ((W

m− j1
j )

q
m− j1
j )

≤ 2m
m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

) (3.10)

and
[WWWm− j1 ]qqqm− j1 ,(rrr ,∞) ≤ Cppp,qqq,rrr [www]γm− j1+1

ppp,(rrr ,∞) . (3.11)

Next we apply Step 1 with j0 = j1 + 2 to obtain weightsWWWm− j1−1 with

m+1∏

j=1

‖ f j‖
L
q
m− j1−1
j ((W

m− j1−1
j )

q
m− j1−1
j )

≤ 2m
m+1∏

j=1

‖ f j‖
L
q
m− j1
j ((W

m− j1
j )

q
m− j1
j )
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and

[WWWm− j1−1]qqqm− j1−1,(rrr ,∞) ≤ Cppp,qqq,rrr [WWWm− j1 ]γm− j1

qqqm− j1 ,(rrr ,∞)
.

Combining these estimates with (3.10) and (3.11) we obtain

m+1∏

j=1

‖ f j‖
L
q
m− j1−1
j ((W

m− j1−1
j )

q
m− j1−1
j )

≤ (2m)2
m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

)

and

[WWWm− j1−1]qqqm− j1−1,(rrr ,∞) ≤ Cppp,qqq,rrr [www]γm− j1γm− j1+1

ppp,(rrr ,∞) .

Continuing this process, applying Step 1with j0 = j1+k for k = 3, . . . ,m− j1+1,
we conclude, settingWWW := WWW 0, that

m+1∏

j=1

‖ f j‖Lq j (W
q j
j )

=
m+1∏

j=1

‖ f j‖
L
q0j ((W 0

j )
q0j )

≤ (2m)m− j1+1
m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

) (3.12)

and

[WWW ]qqq,(rrr ,∞) = [WWW 0]qqq0,(rrr ,∞) ≤ Cppp,qqq,rrr [www]
∏m− j1+1

k=1 γk

ppp,(rrr ,∞) . (3.13)

Since (2m)m− j1+1 ≤ 2m
2
, we note that (3.1) now follows from (3.12). Finally, we

note that (3.2) follows from (3.13), provided we can show that

m− j1+1∏

k=1

γk = max
j=1,...,m+1

1
r j

− 1
q j

1
r j

− 1
p j

. (3.14)

Note that by our initial assumption (3.9), this maximum is attained at some j2 ∈
{1, . . . , j1}.

We claim that

γk =
1
r j2

− 1
qk−1
j2

1
r j2

− 1
qkj2

for all k ∈ {1, . . . ,m − j1 + 1}. Assuming for the moment that the claim is true, we
find that

m− j1+1∏

k=1

γk =
m− j1+1∏

k=1

1
r j2

− 1
qk−1
j2

1
r j2

− 1
qkj2

=
1
r j2

− 1
q0j2

1
r j2

− 1

q
m− j1+1
j2

=
1
r j2

− 1
q j2

1
r j2

− 1
p j2

,
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proving (3.14).
To prove the claim, we compute

1

r j
− 1

qkj
= 1

r j
− 1

q j
− θk

(
1

r j
− 1

q j

)
+ θk

(
1

r j
− 1

p j

)

=
(
1

r j
− 1

p j

)⎛

⎝(1 − θk)

1
r j

− 1
q j

1
r j

− 1
p j

+ θk

⎞

⎠

so that

1
r j

− 1
qk−1
j

1
r j

− 1
qkj

=
(1 − θk−1)

1
r j

− 1
q j

1
r j

− 1
p j

+ θk−1

(1 − θk)

1
r j

− 1
q j

1
r j

− 1
p j

+ θk

= fk

⎛

⎝
1
r j

− 1
q j

1
r j

− 1
p j

⎞

⎠ ,

where

fk(x) = (1 − θk−1)x + θk−1

(1 − θk)x + θk
.

We note that proving the claim is equivalent to proving the equality

max
j=1,...,m+1

fk

⎛

⎝
1
r j

− 1
q j

1
r j

− 1
p j

⎞

⎠ = fk

⎛

⎝ max
j=1,...,m+1

1
r j

− 1
q j

1
r j

− 1
p j

⎞

⎠ .

The inequality

fk

⎛

⎝ max
j=1,...,m+1

1
r j

− 1
q j

1
r j

− 1
p j

⎞

⎠ = fk

⎛

⎝
1
r j2

− 1
q j2

1
r j2

− 1
p j2

⎞

⎠ ≤ max
j=1,...,m+1

fk

⎛

⎝
1
r j

− 1
q j

1
r j

− 1
p j

⎞

⎠

is clear. To prove the converse inequality, it suffices to show that fk is an increasing
function for all k ∈ {1, . . . ,m − j1 + 1}. Computing

f ′
k(x) = (1 − θk−1)((1 − θk)x + θk) − (1 − θk)((1 − θk−1)x + θk−1)

((1 − θk)x + θk)2

= θk − θk−1

((1 − θk)x + θk)2
≥ 0,

we have proven the desired result. This concludes Step 2. The assertion follows. ��
Proof of Theorem 2.2 The result essentially follows from an application of Theorem
3.1. However, in order to use this result we must reduce to a case where 1

p ≤ 1 so that
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we may set 1
pm+1

= 1− 1
p ≥ 0. To reduce to this case, we employ a general rescaling

trick that also appears in the proof of the case m = 1 given by Auscher and Martell in
[1, Theorem 4.9].

First we will show that we may assume that 1
r := ∑m

j=1
1
r j

= 1. Indeed,

assuming we have shown the result for 1
r = 1, we consider the m + 1-tuple

(| f1|r , . . . , | fm |r , |h|r ). Then, since

[ 
w]
1
r

q
r ,( 
r

r , sr )
=
[
(w

1
r
1 , . . . , w

1
r
m)

]


q,(
r ,s)
,

we find that for all 
w ∈ A 
q
r ,( 
r

r , sr )
we have

‖|h|r‖
L
q
r (w

q
r )

= ‖h‖r
Lq ((w

1
r )q )

≤ φ
q
([

(w
1
r
1 , . . . , w

1
r
m

)]


q,(
r ,s)
)r

m∏

j=1

‖ f j‖r
Lq j ((w

1
r
j )

q j )

= φ
q
(

[ 
w]
1
r

q
r ,( 
r

r , sr )

)r m∏

j=1

‖| f j |r‖
L
q j
r (w

q j
r
j )

.

Thus, since
∑m

j=1
r
r j

= 1, applying the extrapolation result with 
r replaced by 
r
r , 
q

replaced by 
q
r , and s replaced by

s
r , we find that for any


p
r with 
p

r > 
r
r and p

r < s
r , or

equivalently, for all 
p > (
r , s), we have

‖h‖L p(w p) = ‖|h|r‖
1
r

L
p
r ((wr )

p
r )

≤ φ 
p
r ,


q
r , 
r

r , sr

([(
wr
1, . . . , w

r
m

)]

p
r ,( 
r

r , sr )

) 1
r

m∏

j=1

‖| f j |r‖
1
r

L
p j
r ((wr

j )
p j
r )

= φ 
p
r ,


q
r , 
r

r , sr

(
[ 
w]r
p,(
r ,s)

) 1
r

m∏

j=1

‖ f j‖L p j
(
w

p j
j

),

for all 
w ∈ A 
p,(
r ,s), with

φ 
p
r ,


q
r , 
r

r , sr
([ 
w]r
p,(
r ,s))

1
r = 2

m2
r φ
q

⎛

⎜⎜⎝C 
p,
q,
r ,s[ 
w]
r max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)


p,(
r ,s)

⎞

⎟⎟⎠

1
r

as desired.
Now that we have reduced to the case where 1

r = 1, we have 1
s ≤ 1

p ≤ ∑m
j=1

1
r j

=
1. Thus, we may set 1

pm+1
:= 1− 1

p ≥ 0, 1
qm+1

:= 1− 1
q ≥ 0, 1

rm+1
:= 1− 1

s ≥ 0 and

wm+1 := w−1.
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Let fm+1 ∈ L pm+1(w
pm+1
m+1 ) and letWWW = (W1, . . . ,Wm+1) be the weights obtained

from Theorem 3.1. Setting 
W = (W1, . . . ,Wm) and W := ∏m
j=1 Wj we find, using

the assumption (2.2) and property (3.1) ofWWW , that

|〈h, fm+1〉| ≤ ‖h‖Lq (Wq )‖ fm+1‖Lqm+1 (W
qm+1
m+1 )

≤ φ
q([ 
W ]
q,(
r ,s))
m+1∏

j=1

‖ f j‖Lq j (W
q j
j )

≤ 2m
2
φ
q([ 
W ]
q,(
r ,s))

m+1∏

j=1

‖ f j‖L p j
(
w

p j
j

).

(3.15)
Moreover, it follows from (3.2) that

[ 
W ]
q,(
r ,s) = [WWW ]qqq,(rrr ,∞) ≤ Cppp,qqq,rrr [www]
max j=1,...,m+1

{ 1
r j

− 1
q j

1
r j

− 1
p j

}

ppp,(rrr ,∞)

= C 
p,
q,
r ,s[ 
w]
max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)


p,(
r ,∞)
.

By combining this estimate with (3.15) and by noting that

‖h‖L p(w p) = sup
‖ fm+1‖L pm+1 (w

pm+1
m+1 )

=1
|〈h, fm+1〉|,

the assertion follows. ��

4 Applications of the extrapolation theorem

In applying extrapolation theorems, one can obtain further results by making appro-
priate choices in the m + 1-tuples. We provide some applications in this section.

4.1 Boundedness of operators through extrapolation

Given an operator T defined on m-tuples of functions, one can apply the extrapola-
tion result to the m + 1-tuples ( f1, . . . , fm, T ( f1, . . . , fm)) to obtain the following
extension result:

Theorem 4.1 Let T be an m-linear or a positive valued m-sublinear operator and
suppose that there exist r1, . . . , rm ∈ (0,∞), s ∈ (0,∞] and q1, . . . , qm ∈ (0,∞]
with 
q ≥ (
r , s) and an increasing function φ
q such that

‖T ‖Lq1 (w
q1
1 )×···×Lqm (w

qm
m )→Lq (wq )

≤ φ
q([ 
w]
q,(
r ,s)) (4.1)

for all 
w ∈ A
q,(
r ,s).
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Then for all p1, . . . , pm ∈ (0,∞] with 
p > (
r , s) and all weights 
w ∈ A 
p,(
r ,s) the
operator T extends to a bounded operator L p1(w

p1
1 ) × · · · × L pm (w

pm
m ) → L p(w p).

Moreover, T satisfies the bound

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

≤ 2
m2
r φ
q

⎛

⎜⎜⎝C 
p,
q,
r ,s[ 
w]
r max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)


p,(
r ,s)

⎞

⎟⎟⎠

1
r

,

where 1
r = ∑m

j=1
1
r j
.

Proof Let f1, . . . , fm be simple functions. By (4.1) we have

‖T ( f1, . . . , fm)‖Lq (wq ) ≤ φ
q([ 
w]
q,(
r ,s))
m∏

j=1

‖ f j‖Lq j (w
q j
j )

for all 
w ∈ A
q,(
r ,s). Thus, by applying Theorem 2.2 to the m + 1-tuple
( f1, . . . , fm, T ( f1, . . . , fm))wefind that for all p1, . . . , pm ∈ (0,∞]with 
p > (
r , s)
and all weights 
w ∈ A 
p,(
r ,s) we have

‖T ( f1, . . . , fm)‖L p(w p) ≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))
m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

with φ 
p,
q,
r ,s given by (2.3). Since this estimate holds for all simple functions
f1, . . . , fm , the assumptions on T allow us to conclude the results through density. ��
The initial estimate (4.1) is often obtained through sparse domination. Once we

have an estimate of the form

|〈T ( f1, . . . , fm), g〉| � sup
S

�(r1,...,rm ,s′),S ( f1, . . . , fm, g),

it follows from duality and Proposition 2.7 that for p1, . . . , pm ∈ (0,∞] with 
p >

(
r , s) and 1
p < 1, we have

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� [ 
w]
max

(
1
r1

1
r1

− 1
p1

,...,
1
rm

1
rm − 1

pm
,

1
s′

1
s′ − 1

p′

)


p,(
r ,s) . (4.2)

We are, however, still missing the cases outside of the reflexive range 1
p < 1. One can

reach these cases through extrapolation, see [32,33]. The novelty in our result is that
we also obtain a quantitative weighted bound in this range through Theorem 4.1.
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Corollary 4.2 Let T be an m-linear or a positive valued m-sublinear operator and
suppose that there exist r1, . . . , rm ∈ (0,∞), s ∈ [1,∞] such that for all bounded
compactly supported f1, . . . , fm, g we have

|〈T ( f1, . . . , fm), g〉| � sup
S

�(r1,...,rm ,s′),S ( f1, . . . , fm, g),

where the supremum runs over all sparse collectionsS with a fixed sparsity constant.
Then for all p1, . . . , pm ∈ (0,∞] with 
p > (
r , s) and all weights 
w ∈ A 
p,(
r ,s) the
operator T extends to a bounded operator L p1(w

p1
1 ) × · · · × L pm (w

pm
m ) → L p(w p).

Moreover, T satisfies the bound

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� [ 
w]
max

(
1
r1

1
r1

− 1
p1

,...,
1
rm

1
rm − 1

pm
,
1− 1

s
1
p − 1

s

)


p,(
r ,s) . (4.3)

Proof We set 1
τ

:= 1
s′ + ∑m

j=1
1
r j
. Assuming the set of 
p satisfying 
p > (
r , s) is

non-empty, we have τ < 1. Indeed, for such a 
p we have

1

τ
>

1

p′ +
m∑

j=1

1

p j
= 1.

Setting 1
q j

:= τ
r j

< 1
r j
, we have

1

q
= 1

1
s′ +∑m

j=1
1
r j

m∑

j=1

1

r j
= 1 − τ

s′

so that

1
r1

1
r1

− 1
q1

= · · · =
1
rm

1
rm

− 1
qm

=
1
s′

1
s′ − 1

q ′
= 1

1 − τ
.

Then by (4.2) with this specific choice of q j we obtain

‖T ‖Lq1 (w
q1
1 )×···×Lqm (w

qm
m )→Lq (wq )

� [ 
w]
1

1−τ


q,(
r ,s)

for all 
w ∈ A
q,(
r ,s). Thus, it follows from (4.1) that for all p1, . . . , pm ∈ (0,∞] with

p > (
r , s) and all weights 
w ∈ A 
p,(
r ,s) we have

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� [ 
w]
1

1−τ
max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)


p,(
r ,s) . (4.4)
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Noting that

1
r j

− 1
q j

1
r j

− 1
p j

= (1 − τ)

1
r j

1
r j

− 1
p j

,

1
q − 1

s
1
p − 1

s

= (1 − τ)
1 − 1

s
1
p − 1

s

,

the estimate (4.3) now follows from (4.4). ��
Remark 4.3 We note that in particular the quantitative bound (4.3) extends the bound
(4.2) obtained from the sparse form, even though the proof only used the sparse bound
for the particular values 1

p j
= τ

r j
with 1

τ
= 1

s′ +∑m
j=1

1
r j
. It seems that these values

are, in some sense, central for the sparse form and the quantitative bound for these
values has already appeared in [33], but giving a quantitative bound for thewhole range
of 
p > (
r , s) is new. In the case m = 1 this value becomes p = r( 1

s′ + 1
r ) = 1 + r

s′
which is the value central in the main theorem of [5]. In particular when r = 1, s = ∞
we have p = 2 which is central in the theory of Calderón-Zygmund operators.

In the full-range case, i.e., when r1 = · · · = rm = 1, s = ∞, the particular case
we consider becomes p1 = · · · = pm = m + 1 and in [10] a bound in this case
for multilinear Calderón-Zygmund operators was found. Using the sparse domination
result of [10], this result was extended by Li, Moen, and Sun in [34] to the range of
p j ∈ (1,∞) with 1

p ≤ 1. They showed that for a multilinear Calderón-Zygmund

operator T , all p1, . . . , pm ∈ (1,∞) with 1
p ≤ 1 and all weights 
w ∈ A 
p we have

‖T ‖L p1 (w1)×···×L pm (wm )→L p(v 
w) � [ 
w]
max

(
p′1
p ,...,

p′m
p ,1

)

A 
p , (4.5)

where the class A 
p is defined through the constant in (2.18), and v 
w := ∏m
j=1 w

p
p j
j .

They proved that this same bound holds even in the case 1
p > 1 for multilinear sparse

operators, leading them to conjecture that the bound (4.5) should also extend to the
case 1

p > 1. This conjecture was independently proven to be true by Conde-Alonso
and Rey [6] and Lerner and Nazarov [29] for kernels satisfying log–Dini conditions.
We also refer the reader to [23,26], where the weaker Dini condition was considered
in the linear case. The Dini condition was used in the multilinear setting by Damián,
Hormozi and Li [9] where, in addition, quantitative mixedmultilinear A 
p–A∞ bounds
were considered.

Our results yields another proof of the extension of the bound to the case 1
p > 1. To

see this, we note that by replacing the w j by w
p j
j we have v 
w = ∏m

j=1(w
p j
j )

p
p j = w p

and

[(
w

p1
1 , . . . , w

pm
m
)]

A 
p = [ 
w]p
p,(
1,∞)
.

Thus, the result (4.5) takes the equivalent form

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� [ 
w]max(p′
1,...,p

′
m ,p)


p,(
1,∞)
,
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which precisely corresponds to the bound (4.2). By applying our extrapolation result
we can now extend (4.5), proving the following:

Corollary 4.4 Let T be an m-linear Calderón-Zygmund operator. Then for all
p1, . . . , pm ∈ (1,∞) we have

‖T ‖L p1 (w1)×···×L pm (wm )→L p(v 
w) � [ 
w]
max

(
p′1
p ,...,

p′m
p ,1

)

A 
p .

As in Corollary 4.2, our result actually yields weighted bounds for multilinear
Calderón-Zygmund operators in the more general case p1, . . . , pm ∈ (1,∞] with
1
p > 0.

4.2 Vector-valued extrapolation

ByFubini’sTheoremweare able to extend the extrapolation theorem to a vector-valued
setting. In the following result we are considering spaces of the form L p(w p; Lq(�))

for p, q ∈ (0,∞], a weight w, and � a σ -finite measure space. Such spaces consist
of functions f : Rn → Lq(�) such that the function ‖ f ‖Lq (�) lies in L p(w p), with
‖ f ‖L p(w p;Lq (�)) := ∥∥‖ f ‖Lq (�)

∥∥
L p(w p)

. In the case when p = q, we can use Fubini’s
Theorem to find that

‖ f ‖Lq (wq ;Lq (�)) = ∥∥‖ f ‖Lq (wq )

∥∥
Lq (�)

,

valid for any q ∈ (0,∞], allowing us to carry over scalar-valued estimates to the
vector-valued setting.

Theorem 4.5 (Vector-valued extrapolation) Let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞]. Let
� be a σ -finite measure space, let q1, . . . , qm ∈ (0,∞] and 
q ≥ (
r , s), and let
( f1, . . . , fm, h) be an m + 1-tuple of measurable functions on Rn × �. Assume that
there is an increasing function φ
q,
r ,s such that the inequality

‖h‖Lq (wq ) ≤ φ
q,
r ,s([ 
w]
q,(
r ,s))
m∏

j=1

‖ f j‖Lq j (w
q j
j )

(4.6)

holds pointwise a.e. in � for all 
w ∈ A
q,(
r ,s).
Then for all p1 . . . , pm ∈ (0,∞] with 
p > (
r , s) there is an increasing function

φ 
p,
q,
r ,s such that

‖h‖L p(w p;Lq (�)) ≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))
m∏

j=1

‖ f j‖L p j (w
p j
j ;Lq j (�))
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for all 
w ∈ A 
p,(
r ,s). More explicitly, we can take

φ 
p,
q,
r ,s(t) = 2
m2
r φ
q,
r ,s

⎛

⎜⎝C 
p,
q,
r ,s t
r max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)⎞

⎟⎠

1
r

,

where 1
r = ∑m

j=1
1
r j
.

Proof Set f̃ j := ‖ f j‖Lq j (�), h̃ := ‖h‖Lq (�), which, by Fubini’s Theorem, aremeasur-
able functions on Rn . Then by Fubini’s Theorem, the assumption (4.6), and Hölder’s
inequality, we have

‖h̃‖Lq (wq ) = ∥∥‖h‖Lq (wq )‖
∥∥
Lq (�)

≤ φ
q,
r ,s([ 
w]
q,(
r ,s))

∥∥∥∥∥∥

m∏

j=1

‖ f j‖Lq j (w
q j
j )

∥∥∥∥∥∥
Lq (�)

≤ φ
q,
r ,s([ 
w]
q,(
r ,s))
m∏

j=1

∥∥∥∥‖ f j‖Lq j (w
q j
j )

∥∥∥∥
Lq j (�)

= φ
q,
r ,s([ 
w]
q,(
r ,s))
m∏

j=1

‖ f̃ j‖Lq j (w
q j
j )

.

Thus, we may apply Theorem 2.2 to the m + 1-tuple ( f̃1, . . . , f̃m, h̃), proving the
result. ��

By iterated uses of Fubini’s Theorem, a similar argument also allows us to extrapo-
late to vector-valued bounds with iterated Lq -spaces which were considered by Benea
and Muscalu through their helicoidal method [4], but we do not detail this here.

We emphasize here that our extrapolation result goes through even if we have
q j = ∞ for some j ∈ {1, . . . ,m} in (4.6). The conclusion of our result then yields
vector-valued estimates in the mixed normed spaces L p j (L∞).

If we take � = N with the counting measure, we obtain vector-valued bounds
for �q -spaces. Given an m-linear operator T and sequences of measurable functions
( f 1k )k∈N, . . . , ( f mk )k∈N, we may define

T (( f 1k )k∈N, . . . , ( f mk )k∈N) := (T ( f 1k , . . . , f mk ))k∈N. (4.7)

By combining the vector-valued extrapolation theorem with Corollary 4.2, we obtain
the following:

Corollary 4.6 Let T be an m-linear operator and suppose that there exist r1, . . . , rm ∈
(0,∞), s ∈ [1,∞] such that for all bounded compactly supported f1, . . . , fm, g we
have
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|〈T ( f1, . . . , fm), g〉| � sup
S

�(r1,...,rm ,s′),S ( f1, . . . , fm, g),

where the supremum runs over all sparse collectionsS with a fixed sparsity constant.
Then for all p1 . . . , pm, q1, . . . , qm ∈ (0,∞] with 
p, 
q > (
r , s), the operator T

has a bounded extension L p1(w
p1
1 ; �q1)×· · ·× L pm (w

pm
m ; �qm ) → L p(w p; �q) given

by (4.7). Moreover, there is an increasing function φ 
p,
q,
r ,s such that

‖T ‖L p1 (w
p1
1 ;�q1 )×···×L pm (w

pm
m ;�qm )→L p(w p;�q )

≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))

for all 
w ∈ A 
p,(
r ,s). More explicitly, we can take

φ 
p,
q,
r ,s(t) � t
max

(
1
r1

1
r1

− 1
q1

,...,
1
rm

1
rm − 1

qm
,
1− 1

s
1
q − 1

s

)
·max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)

. (4.8)

Proof For each j ∈ {1, . . . ,m}, let ( f j
k )k∈N be a sequence of simple functions with

at most finitely many non-zero entries. Setting f j (x, k) := f j
k (x) and h(x, k) :=

T ( f 1k , . . . , f mk )(x), it follows from Corollary 4.2 that (4.6) is satisfied with

φ
q,
r ,s(t) � t
max

(
1
r1

1
r1

− 1
q1

,...,
1
rm

1
rm − 1

qm
,
1− 1

s
1
q − 1

s

)

.

The assertion now follows from Theorem 4.5 and density. ��
Remark 4.7 If one can use an argument where extrapolation is only required once,
then we may be able to replace the exponent in (4.8) by the smaller exponent

max

( 1
r1

1
r1

− 1
p1

, . . . ,

1
rm

1
rm

− 1
pm

,
1 − 1

s
1
p − 1

s

)

which no longer depends on the exponents of the �q j spaces. One way of doing this
is by considering a vector-valued sparse domination rather than a scalar one. Such a
sparse domination for the bilinear Hilbert transform is obtained in [3]. See also [18]
where such ideas are used for vector-valued Calderón-Zygmund operators.

4.3 The bilinear Hilbert transform

The bilinear Hilbert transform

BHT( f1, f2)(x) := p. v.
∫

R
f1(x − t) f2(x + t)

dt

t

is an integral operator falling outside of the theory of bilinear Calderón-Zygmund
operators. It was introduced by A. Calderón and he wanted to know if it was bounded
as an operator from L2 × L∞ to L2. This question was answered by Lacey and Thiele
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and they showed that BHT is bounded L p1 × L p2 → L p for all p1, p2 ∈ (1,∞]
with 2

3 < p < ∞, 1
p = 1

p1
+ 1

p2
, see [25]. It is an open problem whether one can

remove the condition 1
p < 3

2 or not. However, in this range several weighted bounds
and vector-valued extensions have been obtained, some of which we detail here.

Let r1, r2, s ∈ (1,∞). Then, under certain conditions on r1, r2, and s, the sparse
domination

|〈BHT( f1, f2), g〉| � sup
S

�(r1,r2,s′),S ( f1, f2, g)

was shown in [8]. These conditions can be formulated in the following equivalent
ways:

Lemma 4.8 Let r1, r2, s ∈ (1,∞). Then the following conditions are equivalent:

(i) We have max
(

1
r1

, 1
2

)
+ max

(
1
r2

, 1
2

)
+ max

( 1
s′ ,

1
2

)
< 2;

(ii) There exist θ1, θ2, θ3 ∈ [0, 1) with θ1 + θ2 + θ3 = 1 so that

1

r1
<

1 + θ1

2
,

1

r2
<

1 + θ2

2
,

1

s
>

1 − θ3

2
.

The sparse domination in terms of characterization (i) was obtained by Culiuc, Di
Plinio and Ou in [8] and characterization (ii) was used in [3] where more general
vector-valued sparse domination results were obtained.

Note that if we have r1, r2, s ∈ (1,∞) satisfying one of the equivalent conditions
(i) or (ii) and we have p1, p2 ∈ (1,∞] with 
p > (
r , s), then

1

p
= 1

p1
+ 1

p2
< max

(
1

r1
,
1

2

)
+ max

(
1

r2
,
1

2

)
< 2 − max

(
1

s′ ,
1

2

)
≤ 3

2

so that we are still in the range of Lacey and Thiele.
From the sparse domination result for BHT, it was deduced in [8] that we have the

weighted bounds BHT : L p1(w
p1
1 ) × L p1(w

p1
1 ) → L p(w p) for all p1, p2 ∈ (1,∞)

with 
p > (
r , s) in the Banach range p > 1 and for all 
w ∈ A 
p,(
r ,s). These weighted
bounds were used in [7] to obtain weighted and vector-valued estimates in the range
p ≤ 1 through extrapolation using products of Ap classes. This result was extended in
[33] where the full multilinear weight classes were used, but only the cases for finite
p j were treated. However, their methods can be used to also obtain the cases with
p j = ∞ [32]. By applying Corollaries 4.2 and 4.6 we obtain the following result:

Corollary 4.9 Let r1, r2, s ∈ (1,∞) satisfy one of the equivalent conditions in
Lemma 4.8. Then for all p1, p2 ∈ (1,∞] with 
p > (
r , s) we have

‖BHT ‖L p1 (w
p1
1 )×L p2 (w

p2
2 )→L p(w p)

� [ 
w]
max

(
1
r1

1
r1

− 1
p1

,

1
r2

1
r2

− 1
p2

,
1− 1

s
1
p − 1

s

)


p,(
r ,s) .

for all 
w ∈ A 
p,(
r ,s).
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Moreover, for all p1, p2, q1, q2 ∈ (1,∞] with 
p, 
q > (
r , s) there is an increasing
function φ 
p,
q,
r ,s such that

‖BHT ‖L p1 (w
p1
1 ;�q1 )×L p2 (w

p2
2 ;�q2 )→L p(w p;�q )

� φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s)) (4.9)

for all 
w ∈ A 
p,(
r ,s).

While Corollary 4.6 gives us an expression for the increasing function φ 
p,
q,
r ,s in
(4.9), this estimate will not be sharp in general, see also Remark 4.7. Rather, a better
quantitative estimate can be obtained if one applies our extrapolation result toweighted
bounds that can be obtained from the vector-valued sparse domination result obtained
in [3, Theorem 1], but we do not pursue this further here.

Our result should be compared with [33, Corollary 2.17] and [4, Theorem 3].
Qualitatively, we completely recover the results on weighted boundedness in [33,
Corollary 2.17] and extend it in the sense that we also include the cases where either
p1 or p2 is equal to ∞ and where either q1 or q2 is equal to ∞, but this can also be
done through their methods [32]. If, for example p1 = ∞, then we have p2 = p and
our scalar bound takes the form

‖BHT( f1, f2)‖L p(w p) � [ 
w]
max

(
1
r2

1
r2

− 1
p

,
1− 1

s
1
p − 1

s

)

(∞,p),(
r ,s) ‖ f1w1‖L∞‖ f2‖L p(w
p
2 )

for all p ∈ (r2, s) and all weights w1, w2 satisfying

[ 
w](∞,p),(
r ,s) = sup
Q

〈w−1
1 〉r1,Q〈w−1

2 〉 1
1
r2

− 1
p

〈w1w2〉 1
1
p − 1

s

< ∞.

This is also slightly more general than the weighted bounds in [3, Corollary 3] in this
endpoint case since they only formulate their result in the case p1 = ∞ when w1 = 1
(or more generally, p j = ∞ when w j = 1), but their methods do allow for this more
general case.

The result [4, Theorem3] asserts that if p1, p2, q1, q2 ∈ (1,∞] satisfy 
p, 
q > (
r , s)
for r1, r2, s ∈ (1,∞) satisfying one of the equivalent properties of Lemma 4.8, then
we have

‖BHT ‖L p1 (�q1 )×L p2 (�q2 )→L p(�q ) < ∞. (4.10)

This result is completely recovered in Corollary 4.9 in the unweighted version of (4.9).
By again extrapolating from the weighted vector-valued bounds we can also con-

sider iterated �q spaces in our results. For example, by applying Theorem 4.5 to the
weighted vector valued bounds (4.9), one can obtain

BHT : L p1(�2(�∞)) × L p2(�∞(�2)) → L p(�2(�2))

for all p1, p2 ∈ (1,∞] with 2
3 < p < ∞. Such bounds were already obtained in [2]

through the helicoidal method, but could not be obtained through earlier extrapolation
results. More precisely, to obtain this result through extrapolation one needs to be able
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to extrapolate away from weighted L∞ estimates which is one of our novelties. These
type of multiple vector-valued bounds can be applied to prove boundedness results of
operators such as the tensor product of BHT and paraproducts and we refer the reader
to [2] for an overview of such operators.

4.4 Endpoint extrapolation results

Finally, we shall discuss some of the endpoint estimates one can extrapolate from.
The following is an extrapolation result involving weak-type estimates. The trick

used to obtain this result is well-known and can be found already in [17].

Theorem 4.10 (Weak type extrapolation) Let ( f1, . . . , fm, h) be an m + 1-tuple of
measurable functions and let r1, . . . , rm ∈ (0,∞), s ∈ (0,∞]. Suppose that for some
q1, . . . , qm ∈ (0,∞] with 
q ≥ (
r , s) there is an increasing function φ
q such that

‖h‖Lq,∞(wq ) ≤ φ
q([ 
w]
q,(
r ,s))
m∏

j=1

‖ f j‖Lq j (w
q j
j )

(4.11)

for all 
w ∈ A
q,(
r ,s).
Then for all p1 . . . , pm ∈ (0,∞] with 
p > (
r , s) there is an increasing function

φ 
p,
q,
r ,s such that

‖h‖L p,∞(w p) ≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))
m∏

j=1

‖ f j‖L p j
(
w

p j
j

) (4.12)

for all 
w ∈ A 
p,(
r ,s). More explicitly, we can take

φ 
p,
q,
r ,s(t) = 2
m2
r φ
q

⎛

⎜⎝C 
p,
q,
r ,s t
r max

(
1
r1

− 1
q1

1
r1

− 1
p1

,...,
1
rm − 1

qm
1
rm − 1

pm
,
1
q − 1

s
1
p − 1

s

)⎞

⎟⎠

1
r

, (4.13)

where 1
r = ∑m

j=1
1
r j
.

Proof Let λ > 0 and set Eλ := {x ∈ Rn : |h(x)| > λ}. We define

hλ := λχEλ

and note that by (4.11) we have

‖hλ‖Lq (wq ) = λ
(
wq(Eλ)

) 1
q ≤ ‖h‖Lq,∞(wq ) ≤ φ
q([ 
w]
q,(
r ,s))

m∏

j=1

‖ f j‖Lq j (w
q j
j )
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Thus, by applying Theorem 2.2 to the m + 1-tuple ( f1, . . . , fm, hλ) we conclude that
for all p1 . . . , pm ∈ (0,∞] with 
p > (
r , s) there is an increasing function φ 
p,
q,
r ,s
such that

‖hλ‖L p(w p) ≤ φ 
p,
q,
r ,s([ 
w] 
p,(
r ,s))
m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

for all 
w ∈ A 
p,(
r ,s), with φ 
p,
q,
r ,s given by (4.13). As λ > 0 was arbitrary, noting that
supλ>0 ‖hλ‖L p(w p) = ‖h‖L p,∞(w p) proves (4.12). The assertion follows. ��

As a consequence we can extrapolate from weak lower endpoint estimates in cases
where strong bounds are not available. Passing to the full-range case where r1 = · · · =
rm = 1 and s = ∞, writing 
1 for the vector consisting of m components all equal to
1, we obtain the following corollary:

Corollary 4.11 Let ( f1, . . . , fm, h) be an m + 1-tuple of measurable functions and
suppose that there is an increasing function φ such that

‖h‖
L

1
m ,∞(w

1
m )

≤ φ([ 
w]
1,(
1,∞))

m∏

j=1

‖ f j‖L1(w j )

for all 
w ∈ A
1,(
1,∞).

Then for all p1 . . . , pm ∈ (1,∞] with 1
p > 0 there is an increasing function φ 
p

such that

‖h‖L p,∞(w p) ≤ φ 
p([ 
w] 
p,(
1,∞))

m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

for all 
w ∈ A 
p,(
1,∞). More explicitly, we can take

φ 
p(t) = 2m
3
φ
(
C 
pt p

)m
.

On the other hand, we can also extrapolate from the upper endpoints. An application
of Theorem 2.2 in the s = ∞ case with q1 = · · · = qm = ∞, writing 
∞ for the vector
consisting of m components all equal to ∞, yields the following:

Theorem 4.12 (Upper endpoint extrapolation)Let ( f1, . . . , fm, h) be anm+1-tuple of
measurable functions and let r1, . . . , rm ∈ (0,∞). Suppose that there is an increasing
function φ such that

‖hw‖L∞ ≤ φ([ 
w] 
∞,(
r ,∞))

m∏

j=1

‖ f jw j‖L∞

for all 
w ∈ A 
∞,(
r ,∞).
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Then for all p1 . . . , pm ∈ (0,∞] with 
p > 
r , there is an increasing function φ 
p,
r
such that

‖h‖L p(w p) ≤ φ 
p,
r ([ 
w] 
p,(
r ,∞))

m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

for all 
w ∈ A 
p,(
r ,∞). More explicitly, we can take

φ 
p,
r (t) = 2
m
r φ

⎛

⎜⎝C 
p,
r t
r max j=1,...,m

{ 1
r j

1
r j

− 1
p j

}⎞

⎟⎠

1
r

,

where 1
r = ∑m

j=1
1
r j
.

An interesting application is related to the space BMO of functions of bounded
mean oscillation. We define the sharp maximal operator M# by

M# f = sup
Q

〈| f − 〈 f 〉1,Q |〉1,QχQ

for locally integrable functions f , where the supremum is taken over all cubes Q ⊆ Rn .
The classical definition of BMO can be given in terms of M# by saying a measurable
function f is in BMO if M# f ∈ L∞, with ‖ f ‖BMO := ‖M# f ‖L∞ . The way we
have dealt with weighted estimates in L∞ so far suggests the following definition of
a weighted version of the BMO space:

Definition 4.13 Given a weight w, we define the space BMO(w) as those locally
integrable functions f such that

‖ f ‖BMO(w) := ‖(M# f )w‖L∞ < ∞.

Weighted BMO spaces also appeared in the work of Muckenhoupt and Wheeden
in [36], and they showed that the estimate

‖T f ‖BMO(w) � ‖ f w‖L∞ , (4.14)

with an explicit constant depending on w, is satisfied when T is the Hilbert transform,
if and only if w−1 ∈ A1. We recall here that the condition w−1 ∈ A1 is equivalent
to our condition w ∈ A∞,(1,∞) with [w]∞,(1,∞) = [w−1]A1 . Later it was shown
by Harboure, Macías and Segovia in [19] that one can extrapolate from the estimate
(4.14) for an operator T to obtain that T is bounded on L p(w p) for all w p ∈ Ap.
As a consequence of Theorem 4.12 we obtain a qualitative multilinear version of this
result.
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Corollary 4.14 (Extrapolation from BMO estimates) Let T be an m-(sub)linear oper-
ator and let r1, . . . , rm ∈ (0,∞). Suppose that there is an increasing function φ such
that

‖T ( f1, . . . , fm)‖BMO(w) ≤ φ([ 
w] 
∞,(
r ,∞))

m∏

j=1

‖ f jw j‖L∞

for all 
w ∈ A 
∞,(
r ,∞) and all f j with f jw j ∈ L∞.
Then for all p1 . . . , pm ∈ (0,∞] with 
p > 
r , there is an increasing function φ 
p,
r

such that

‖T ( f1, . . . , fm)‖L p(w p) ≤ φ 
p,
r ([ 
w] 
p,(
r ,∞))

m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

for all 
w ∈ A 
p,(
r ,∞) and all f j ∈ L p j (w
p j
j ), whenever the left-hand side is finite.

Proof We apply Theorem 4.12 to them+1-tuples ( f1, . . . , fm, M#(T ( f1, . . . , fm))).
Then we find that for all p1 . . . , pm ∈ (0,∞] with 
p > 
r , there is an increasing
function φ 
p,
r such that

‖M#(T ( f1, . . . , fm))‖L p(w p) ≤ φ 
p,
r ([ 
w] 
p,(
r ,∞))

m∏

j=1

‖ f j‖L p j
(
w

p j
j

) (4.15)

for all 
w ∈ A 
p,(
r ,∞) and all f j ∈ L p j (w
p j
j ). By the classical Fefferman-Stein inequal-

ity for the sharp maximal operator, see [12], we find that

‖T ( f1, . . . , fm)‖L p(w p) � ‖M#(T ( f1, . . . , fm))‖L p(w p),

for p > 1, with implicit constant depending on the A∞ constant of w p, which is
bounded by an increasing function of [w]p,(r ,∞), where

1
r = ∑m

j=1
1
r j
, see also [15,

Chapter 7]. Since [w]p,(r ,∞) ≤ [ 
w] 
p,(
r ,s) by Hölder’s inequality, the result for p > 1
follows from (4.15). By extrapolating again, we also obtain the cases p ≤ 1, proving
the assertion. ��

Examples of multilinear operators satisfying weak-type and BMO endpoint esti-
mates are multilinear Calderón-Zygmund operators, see also [16, Section 7.4.1].
Weighted estimates in these situations can be found in [30].
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