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Abstract

In this paper we prove a quantitative multilinear limited range extrapolation theorem
which allows us to extrapolate from weighted estimates that include the cases where
some of the exponents are infinite. This extends the recent extrapolation result of Li,
Martell, and Ombrosi. We also obtain vector-valued estimates including £°° spaces
and, in particular, we are able to reprove all the vector-valued bounds for the bilinear
Hilbert transform obtained through the helicoidal method of Benea and Muscalu.
Moreover, our result is quantitative and, in particular, allows us to extend quantitative
estimates obtained from sparse domination in the Banach space setting to the quasi-
Banach space setting. Our proof does not rely on any off-diagonal extrapolation results
and we develop a multilinear version of the Rubio de Francia algorithm adapted to
the multisublinear Hardy-Littlewood maximal operator. As a corollary, we obtain
multilinear extrapolation results for some upper and lower endpoints estimates in
weak-type and BMO spaces.

Mathematics Subject Classification 42B25 - 42B20

1 Introduction

An essential tool in the theory of singular operators is extrapolation. In one of its
forms, the classical extrapolation theorem of Rubio de Francia [14] says that if an
operator T satisfies L4 (w) boundedness for a fixed ¢ € (1, 0o) and for all weights w
in the Muckenhoupt class A, then T is in fact bounded on L?(w) for all p € (1, c0)
andallw € Aj.
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Many variations of Rubio de Francia’s extrapolation theorem have appeared over
the years adapted to various situations. A multilinear version of the extrapolation result
was found by Grafakos and Martell [17]. Another version provided by Auscher and
Martell [1] dealt with operators bounded only for a limited range of p rather than for
all p € (1, 0o). Combining these approaches, it was shown by Cruz-Uribe and Martell
[7] that if there are 0 < r; < s5; < oo and ¢q; € [r}, ], g; # 0, 00, such that an
m-linear operator T satisfies

m
IT (i s < e [T 0, (L.1)
J

j=1

for all weights wjj in the restricted Muckenhoupt and Reverse Holder class Ay, /r; N

RH; /4,y Where w = ]_[71:1 wj, [ll = ZT:l qu’ then T satisfies the same bound-

edness for all p; € (rj,s;) and all wfj € Api/r; WRH(s/p;y as well as certain
vector-valued bounds.

In the linear setting for operators satisfying weighted bounds, it need not be the case
that they are bounded on L°°, as is the case, for example, for the Hilbert transform. In
particular, it is impossible to extrapolate estimates to this endpoint. This is in contrast
to what happens in the multilinear setting, where it may very well occur that singular
integral operators satisfy boundedness as in (1.1), but with some of the ¢ ; being equal
to oco. This brings an interest to the question whether it is possible to extrapolate to
bounds that include these endpoint cases p; = 0o, starting from an initial weighted
estimate where the g are also allowed to be infinite. In this work we develop a method
that does include these cases based on a multilinear Rubio de Francia algorithm. To
facilitate this we give a natural extension in the definition of the weight classes to
include these cases, see Definition 2.1 below. We point out that it is also possible to
obtain these endpoint cases through off-diagonal extrapolation methods [32].

As an application for the theory, one can consider the bilinear Hilbert transform
BHT given by

d
BHT(f1, f2)(x) :=p.Vv. /Rfl(x -0 f2(x +1) Tt

which plays a central role in the theory of time-frequency analysis. It was shown by
Lacey and Thiele [25] that BHT is bounded L?!' x LP? — LP? with % = % + %

if 1 < p1, pp» < o0 and % < p < oo. Through the helicoidal method of Benea and
Muscalu [2,4], vector-valued bounds of the form LP1(£9') x LP2(£92) — LP(£9)
were established in this range of pi, p», p for various choices of 1 < g1, ¢q> < oo,
% < g < oo with % = q]—l + ql—z. However, they left open the problem whether one can
obtain vector-valued bounds for all g1, g2, ¢ in the same range as Lacey and Thiele’s
theorem, i.e., forall 1 < g1, g2 < 00 with% < g < oo. While BHT satisfies weighted
bounds as well as more general sparse bounds, see [3,8], the extrapolation result by
Cruz-Uribe and Martell [7] does not allow one to cover the full range of exponents.

In particular, their result cannot retrieve any of the vector-valued bounds involving
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£>° spaces. Such bounds also fall outside of the extrapolation result of Lorist and the
author [35] where vector valued extensions of multilinear operators were considered
in the setting of UMD Banach spaces, since £ does not satisfy the UMD property.
The problem seems to be that the multilinear nature of the problem is not completely
utilized when one imposes individual conditions on the weights rather than involving
an interaction between the various weights.

In the recent work [33] by Li, Martell, and Ombrosi an extrapolation result was
presented where they work with a limited range version of the multilinear weight
condition introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzélez [30]
which also appears in [3] and, in the bilinear case, in [8]. Indeed, such weight classes
are characterized by boundedness of the multi-sublinear Hardy-Littlewood maximal
operator as well as by boundedness of sparse forms, meaning the theory can be applied
to important operators such as multilinear Calderén-Zygmund operators as well as
the bilinear Hilbert transform. They introduced the weight class Aj; where p =

(P1s-esPm), F = (r1, ..., Fme1) and 1 < rj < pj < oo and rr/n—H > p with
;_Z'j" 1—andw—(w1,.. s W) € Apyif
: 1o
/rm+1 r ’,/n+1
[&)’]A;; = Sup _/( w . )rm+l—[) dx
" Q acube O] 1_[

1 1
m

1 =\
I1 —/wjf 7 dx < . 1.2)
a\ler /o

They showed that if (1.1) holds for a ¢ with 1 < r; < g; < oo, 7, | > ¢ and
all (wi“, Lwimy e Az, then T satisfies the same boundedness for all p and
(wf‘,..., Wy, ) € Apy withr; < p; < oo and rr’,H_1 > p. Furthermore, their
result extends and reproves some of the vector-valued bounds found by Benea and
Muscalu [4] for BHT. This class of weights does seem to be adapted to the sit-
uation even when p; = oo, but one needs to be careful in how the constant is
interpreted in this case. Similar to the proof of the extrapolation result of Cruz-Uribe
and Martell, their proof of this extrapolation result is based upon an off-diagonal
extrapolation result, but in their work they left open exactly what happens in the
case that some of the exponents are infinite. They announced a paper in which these
cases were treated which had not appeared yet when our paper was first posted,
but is available now [32]. Here they show that, as a feature of off-diagonal extrap-
olation, it is also possible to obtain estimates that include the cases of infinite
exponents.

In this work we again prove an extrapolation result using the multilinear weight
classes, and our result includes these endpoint cases which, in particular, include the
possibility of extrapolating from the cases where in the initial assumption the exponents
can be infinite. Our proof is new and does not rely on any off-diagonal extrapolation
result. Rather, we generalize the Rubio de Francia algorithm to a multilinear setting
adapted to the multi-sublinear Hardy—Littlewood maximal operator. As a corollary,
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we are able to obtain vector-valued extensions of operators to spaces including £*°
spaces. Thus, applying this to BHT allows us to recover these endpoint bounds that
were obtained earlier through the helicoidal method [4].

Our construction is quantitative in the sense that it allows us to track the dependence
of the bounds on the weight constants. Such quantitative versions of extrapolation
results were first formalized by Dragicevi¢, Grafakos, Pereyra, and Petermichl in
the linear setting in [11], but are completely new in the multilinear setting. In the
linear setting this result is based on Buckley’s sharp weighted bound for the Hardy—
Littlewood maximal operator. This bound has been generalized to the multi-sublinear
Hardy-Littlewood maximal operator by Damidn, Lerner, and Pérez [10] to a sharp
estimate in the setting of a mixed type A — Ao estimates and a sharp A bound is
found in [34]. We give a different proof of this result for the limited range version of
this maximal operator by generalizing a proof of Lerner [28].

Finally, we also show how our quantitative extrapolation result recovers and extends
a bound obtained for multi-(sub)linear sparsely dominated operators, generalizing the
bound of Hytonen’s A Theorem [20]. More precisely, sparse domination yields sharp
bounds for an operator for exponents py, ..., p, only if % = Z;flzl me < 1 so that
we may appeal to duality. Our extrapolation result allows us to show that this same
control in terms of the weight also holds when % > 1.

1.1 Symmetry in Muckenhoupt weight classes

To facilitate our results, we heavily rely on the symmetric structure of the Muckenhoupt
classes.

For p € (1, 00), a standard method of obtaining weighted L? estimates with a
weight w is by using the duality (L”(w))* = LY (w'=r") given through the integral
pairing

(f.g) = / fodr.
Rll

Moreover, the Muckenhoupt A, class is defined through these two weights w and
w! =7 through

[w]a, :==su (Lv/wdx> (L/wl_"’/d)c)p_1
S ANTITH 01 J,

where the supremum is taken over all cubes Q C R”. One way to understand this
definition better is by noting that we can relate the weights w and w!~”" through

1 , L
w? (w!'=P)?” = 1. One can also make sense of this condition if p = 1 through

—1
[wla, == szlzp (|—;| /‘Qw dx) (eiseiélf w(x)) ,

and one usually defines Ao := U ¢[1,00) Ap-
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When we replace the weight w by the weight w?” we find, using the averaging
1

notation (h)g ¢ = (I_é\ fQ|h|q dx)g, that

1
[wPly = szp<w>p,g<w*‘>pf,g

for p € (1, 00). The symmetry in this condition is much more prevalent and this
condition seems to be more naturally adapted to the weighted L? theory. Indeed,
defining
1
[wlp == [w”1}

we note that [w], = [w™ p- If we denote the Hardy-Littlewood maximal operator
by M and if we define the bi-sublinear Hardy—Littlewood maximal operator M(j 1) by

Ma v (f1, ) (x) = Zup<f1)1,Q(f2)1,Q,

then we have the remarkable equivalences

IMa )l Lo ryx e w—r'y— L1oo = WML Py —Lrowr)
x~ ||M||L[)/(w—p/)_)L]?,,OC(w—p,) ~ [w]pv (13)

where the implicit constant depends only on the dimension, see Proposition 2.7 and
Proposition 2.14 below.
Another way of thinking of these equivalences is by setting w; := w, wy = w™
and py := p, p» := p’ so that we have the relations
1 1

wwy =1, —+—=1. (1.4)
P1 P2

1

Then one can impose a symmetric weight condition

[(wi, w2)](py, py) = SUP(W1) p;, 0 (W2) py, 0 < OO
0

and note that
[(w1, w2)(p1,po) = [wilp, = [w2lp,.
The equivalences in (1.3) can now be thought of as

”M(I,I)HLI’] (u,{’l)prz(wé’Z)_)Ll,oo >~ [(wy, w2)](p1,p2),
||M||Lp1 (wfl)ﬁLplyoO(wfl”l) x~ [wl]m ,

IMI L ps (h2) s 2o tzy = [W2ps.

@ Springer



Z.Nieraeth

We can even make sense of these expressions when p; = 1 and pp = oo or p; = 00
and py = 1, given that we use the correct interpretation and this is what allows us to
extrapolate using such classes. Indeed, one can think of f € L”(w?”) as the condition
| fwl|Lr < oo, which makes sense even when p = oo by requiring that the function
Jw is essentially bounded. Using the interpretation (h)cc, 0 = esssup,¢qlh(x)], we
see that the condition [w1]; < oo is equivalent to the usual A condition imposed on
the weight w; = w, while the condition [wi]s < 00 is equivalent to the condition
wr=w-le A We emphasize here that our condition [w]s < 00 is not equivalent
to the condition w € As = |J pell,o0) Ap and these notions should not be confused.
The condition w™" € A seems to be a natural upper endpoint condition and one can
show that this is equivalent to the boundedness

[(Mflwllre < cll fwllze,

see Proposition 2.14 below. It also turns out that this condition allows us to extrapolate
away from weighted L estimates. We point out that this idea has already been used
in the endpoint extrapolation result of Harboure, Macias and Segovia [19, Theorem
3].

We wish to view our symmetric weight condition in the context of extrapolation.
In proving Rubio de Francia’s extrapolation theorem, one usually starts with a pair of
functions (h, f) and assumes that one has the inequality

17l o qwey < el fllLawa) (1.5)

for some ¢ € [1, 0o] and all weights w satisfying [w], < oo. The idea is then that
givena p € (1, 00) and a weight w satisfying [w], < o0, one can construct a weight
W, possibly depending on f, i, and w, so that W satisfies [W]; < oo as well as some
additional properties to ensure that we can use (1.5) with W to conclude that

InllLewry < €Nl fllLewe)- (1.6)

Applying this with 2 = T f then gives the desired boundedness for an operator 7.
For the proof one usually splits into two cases, namely the case where p < ¢ and the
case where p > ¢. In the former case one can apply Holder’s inequality to move from
L? to L9 and in the latter case one uses duality and a similar trick to move from L?
to L4". The point is that both of these cases are essentially the same, but due to the
notation we use we have to deal with the cases separately. Here, we wish to come up
with a formalization to avoid this redundancy.

The extrapolation theorem is essentially a consequence of to the following propo-
sition:

Proposition Suppose we are given p1, p» € (1, 00) satisfying % + % = 1 and
weights w1, wy satisfying wiwz = 1 and [(w1, w2)](p,,p,) < 00. Moreover, assume
we have two functions fi € LPY(w{") and f» € LP*(w?) and q1, ¢> € [1, oo] with
qil + qiz = 1. Then there are weights W1, Wy satisfying Wi W, = 1,
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| AW Lo | o Wallpe2 < 21 frwillpe: | fow2llzea

and

P1 P2
w(52)

m
(W1, W2)l(g1.90) = Cl(wr, wz)](phpz)l

Indeed, the result of the extrapolation theorem follows by applying the proposition

with f1 == f.q1 '=q.q2 == ¢, p1 := p, p2 :== p,w; = w, w, = w™! and
Wi =W, Wy := W1 so that, by (1.5), we have

(B, < NEW | 2W g <ellf WilLall 2W e <2ell fwllze |l faw ™"l

Thus, by duality, we obtain (1.6), as desired.

The proof of the proposition uses the classical construction using the Rubio de
Francia algorithm and the novelty here is our symmetric formulation. A proof can
be found in this work, as it is a special case of Theorem 3.1. The case p < g in the
proposition takes the form p; < ¢ and p» > ¢» while the case p > ¢ takes the
form p; > g1 and p> < ¢». The fact that the proposition is formulated completely
symmetrically in terms of the parameters indexed over {1, 2}, where we note that
[(w1, w2)l(p,po) = [(w2, w1)](p,, p))- means that these respective cases can be proven
using precisely the same argument, up to a permutation of the indices. Thus, without
loss of generality, one only needs to prove one of the two cases.

These symmetries become especially important in the m-linear setting where we
are dealing with parameters indexed over {1, ..., m + 1} and the amount of cases we
have to consider increases. Thanks to our formulation, we will be able to reduce these
multiple cases back to a single case in our arguments again by permuting the indices.

We wish to point out here that to facilitate our symmetric formulation and to use
the duality argument involving the Rubio de Francia algorithm as above, we need
to essentially restrict ourselves to the Banach range % < 1. However, in the m-

linear setting one also has to deal with the quasi-Banach range L'~ 1. This means
that to employ our multilinear Rubio de Francia algorithm, we must first reduce to

m 1 1 : 1 1

. _= =< —_ = —_ = >
the case where E j=1 D » 1. In this case we can set il 1 » 0
and E . ! L = 1, which places us in the setting of Theorem 3.1. This is not a

Jj=1 pj
problem however, as reducing to this case is facilitated by the rescaling properties of
the multilinear weight classes, see also Remark 2.3. In conclusion, even though our

multilinear Rubio de Francia algorithm is applied in the Banach range % < 1, our

result also includes the quasi-Banach range Ls.
This article is organized as follows:

e In Sect. 2 we state our main result and give an overview of the multilinear weight
classes, proving some important properties as well as proving new quantitative
estimates with respect to the multisublinear maximal operator as well as sparse
forms.

e In Sect. 3 we prove the main result.
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e In Sect. 4 we apply the extrapolation result for weak type bounds and certain BMO
type bounds as well as for vector-valued bounds. Moreover, we give an application
of our results to the bilinear Hilbert transform.

2 Multilinear weight classes
2.1 Setting and main result

We work in R” equipped with the Lebesgue measure dx. This is mostly for notational
convenience and our results also hold in the more general setting of spaces of doubling
quasimetric measure spaces, provided one uses the right notion of dyadic cubes in this
setting, see [21]. For a measurable set E we denote its Lebesgue measure by |E|. A
measurable function w : R” — (0, 00) is called a weight. We can identify w with a
measure by w(E) := wa dx. For p € (0, oo], a weight w, and a measurable function
f on R" we say that f e LP(w?) provided that || fllzr@wr) = I fwllLr < o0.
Moreover, for a measurable set E € R” with 0 < |E| < co we write

1 ’
(1 p
e = (g [0 a)

when 0 < p < oo and (f)eo, £ :=esssup, gl f(x)].
We will use the notation A < B if there is a constant ¢ > 0, independent of the
important parameters, such that A < ¢B. Moreover, we write A >~ B if A < B and

B < A.

Letm € Nand letry,...,r, € (0,00), s € (0, 00]. For py,..., pm € (0, <],
writing ¥ = (r1, ..., ) and similarly for p, we write ¥ < p if r; < p; < oo for
all j € {1,...,m}. Moreover, we write (F,s) < pif ¥ < pand p < s, where p is
defined by

Lyl
Jj=1 Pj
Similarly, we write 7 < p ifr; < pj forall j € {1, ..., m} and we write (7, s) < p

iff < pandp <s.

Definition 2.1 Letry,...,r, € (0,00), s € (0,00], and py, ..., pm € (0, 00] with
(F,s) < p.Letwi, ..., w, be weights and write w = I—[T:1 wi, W= (Wi, ..., Wy).
We say that w € Aj ) if

m

[J)]ﬁ,(F,s) = sup H<w;l>i_lL'Q <w>,1_ 0 <,

Jj=1 Tj o Pj P

where the supremum is taken over all cubes O C R”.
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As a point of comparison, we note here that, for finite p;, our condition weA G
is equivalent to the condition (w{', ..., wh") € Aj (. .rn.s)» Where the latter con-
dition considers the weight class of Li, Martell, and Ombrosi defined in (1.2). Thus,
in this range their extrapolation result [33] consider the same weights as we do.

Our main theorem is as follows:

Theorem 2.2 (Quantitative multilinear limited range extrapolation) Let (fi, - . ., fm, h)
be an m + 1-tuple of measurable functions and let ry, ..., r, € (0,00), s € (0, co].
Suppose that for some q1, ..., qn € (0,00] with g > (¥, s) there is an increasing
function ¢z such that

m
I8llLawey < ¢ (D)g.6.0) [ T 15l o) 05, 2.1)
j= !

forall w € AZ.¢s)
Then for all py ..., pm € (0,00] with p > (F, s) there is an increasing function
©5.G.7,s such that

Bl wry < 5.7 (W]5,G.5)) H ”f]”LP/( o) 2.2

j=1

forall w € Aj ;). More explicitly, we can take

1_1 111
41 'm _qm 4 S
T 1 T 1 1

rmax(iii T
D57 s(t)—2 ¢>q Cp..7.5t o ' )

5|
|
=
3
|
| |
o] e
N——
~I—
—
o
%)
N

1 1
where . =371, -
We note that if there is equality in one of the components in ¢ > (7, s), i.e., if
q =sorgqg; =rjforsome j € {1,...,m}, then we may also include the respective

cases with p = s or p; = r; to the conclusion of the extrapolation result. In this
1_1 11

case one should respectively use the interpretation +—r = 1 or L’ i’ 1. To see
P s rjopj

this, one need only note that the proof we give of the theorem already accounts for the

respective cases when % = é or pl = -

Our result is stronger than that il’Jl [33]qjin the sense that we do not have to restrict our
exponents to the case where they are finite, i.e., in the initial assumption we include
all the cases where g; = oo and in the conclusion we similarly obtain all the cases
where p; = 00, see also [32]. We emphasize here that we use the interpretation
||fj||qu( ‘Ij) = || fjwjllLe in the case where g; = 0o and we need to impose the

weight condition from Definition 2.1 w1th = 0. For example, in the case m = 1,
r = landg = s = 00, onehastouse the COIldlthIlw € Ao, (1,00) inthe initial estimate
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(2.1) which, following our definition, is equivalent to the condition wl e Aj. This
stronger result is possible due to our use of a multilinear Rubio de Francia algorithm,
fully utilizing the multilinear nature of the problem. Our result also implies vector
valued estimates in these ranges and we refer the reader to Sect. 4 where we elaborate
on this further.

Next we make some remarks on the quantitative result (2.3).

Usually in applications, the increasing function will be of the form ¢ (t) = ct* for
some ¢, « > 0. Then we find from (2.3) that

Inthecasem = 1,r = 1, s = 00, this means that we have

Pop
Gp.g1.00(t) = Er“m‘“(q”q), (2.4)

and this coincides with the bound obtained in [11]. This result was used in Hytonen’s
A» theorem [20] to reduce proving the sharp estimate

mi\x(p/‘p)

ITfllLewry S [wp]Ap N fllLe ey (2.5)

for Calderén-Zygmund operators 7 to only having to prove the linear A, bound

ITF 122y S Tw?as I Fllz2an)-

1
Indeed, noting that [w], (1,00) = [w”]jp, we find that (2.5) follows from (2.4) by
taking « = 2 and g = 2.
The fact that we need to extrapolate from ¢ = 2 to obtain the sharp bounds for
Calderén-Zygmund operators speaks to their nature as operators revolving around
their properties in L. As a contrast, we note that the estimate

T Hwlpee S Tw™ a ll fwllzoe

is central, for example, for when 7 is the Hardy-Littlewood maximal operator M.
Indeed, by (2.4) with ¢ = oo and o = 1 and by noting that [w]so,(1,00) = [w‘l]Al s
this estimate extrapolates to the estimate

/

P

ITf e S wP1E 1 f e

for p € (1, oo], which is precisely Buckley’s sharp bound obtained for M. We point
out here that this argument is actually circular for when T = M, since the proof
of the quantitative estimate in the extrapolation result makes use of Buckley’s sharp
bound. Nonetheless, we think this example is heuristically interesting, since it exhibits
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how one can extrapolate away from weighted L estimates. Multilinear versions of
Buckley’s sharp bound have been found in [10,34] and can be recovered in a similar
way, see also Theorem 4.12.

The remainder of this section will be dedicated to a discussion on the quantitative
properties of the multilinear weight classes. We split this into two separate cases. In the
first case we adopt the symmetric notation from the introduction and think in terms of
m + 1-tuples of weights and parameters satisfying a symmetric relation. In the second
case we adopt the more classical approach of thinking in terms of m-tuples and we
prove some key results for our main theorem.

2.2 Quantitative properties of multilinear weight classes: the m + 1-tuple case

Letry,...,ry € (0,00),s € (0,00], and pq, ..., pm € (0,00] and let wy, ..., wy
be weights, with w := ]_['}1:1 w;. In terms of symmetries, the definition of the weight
class

m
S D -1
[@15.¢.0 = sup | [Twih o) w) 1o
j=1 TjPj P
seems to be best suited to the case where % < 1. Indeed, if we set ﬁ =1- % >0,
rml+1 =1 % and wy, 41 1= w1, then we have
m+1 1 m+1
S Lot Tlw=
=1 Pi j=1
The condition (7, s) < p is equivalentto r; < p; forall j € {1,...,m + 1} and the
constant for the weight class now takes the form
m+1
- . _ —1 _
(Wl5,¢.5) = sup I1 <wj > Lo = LW Wk D pi ). (11,000
j=1 o

joPj

where the last equality follows from the fact that the term involving the product weight
in the m + 1-linear weight class is equal to 1. The symmetry of this last expression also
emphasizes a certain permutational invariance. Indeed, if 7 € S;,41 is a permutation,
then, since

m+1 1 m—+1 1 m+1 m+1
—=) —=L Jluwwpy=]]wi=1
j=1 Pr(j) j=1 Dj j=1 j=1
we have
[w]ﬁ’(?v“) = [(w”(l)’ tto wﬂ(m))](pn(l)a~~'vp71(m))s((rn(l)v~~vrn(m))sr7/,(,,z+1))’
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and this will be used in the proof of our extrapolation theorem.

Remark 2.3 While we restrict ourselves to the Banach range % < 1 in this section,

we do point out that our main results do also apply in the cases where % > 1. This is
facilitated by the rescaling property

1 1 1
[ID]% F s = [(wlay""w}’?l>} ’
(e a) 5 (Fs)

which, in our arguments, allows us to reduce back to the case where % < 1, see also
the proof of Theorem 2.2.

1
1 I

It will sometimes also be useful to redefine v; := w; EA forjef{l,...,m+1}
so that
m+1 11
ri pj
(W1 s Wt D)1 s Do (st 1),00) = sup [Tene”
j=1

These weight classes are governed by a certain maximal operator, see also [30].

Definition 2.4 Given ry,...,r, € (0,00), we define the m-sublinear Hardy—
Littlewood maximal operator

Mi(fi, o ) @) = sup [ [(fi)r0
anjzl

for f; € Llréc, where the supremum is taken over all cubes Q9 € R” containing x.

Moreover, for a dyadic grid & we define

M7 (fi. .. ) @) = sup [ [(fidr0
03x
Q€9

for f; € L,/

loc*

For the relevant definitions and results regarding dyadic grids we refer the reader
to [29]. A property we need is the fact that there exist 3" dyadic grids (@“)Zn:] such
that for each cube Q C R” there is an « and a cube Q € 2% such that Q € Q and
|Q| < 6"|Q|. This implies the following:

Lemma2.5 Letry,...,ry € (0,00). Then there exist 3" dyadic grids (9"‘)2;:1 such
that
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Quantitative estimates and extrapolation for multilinear weight classes

3
M; < Z JVE
a=1

See also [29].

Definition 2.6 A collection of cubes . in a dyadic grid is called sparse if there is
a pairwise disjoint collection of measurable sets (Eg)pe.s such that Eg C Q and
0] < 2|Eq].

Givenry, ..., ry € (0, 00), for a sparse collection of cubes . we define the sparse
operator

m

A (fioo f) =Y [ T[(Fdr0 | xo-
Qe \Jj=1

and the sparse form

Ao (fio oty = > [ .0lQL.
Qe j=1

We point out here that the sparsity constant 2 appearing in the estimate |Q| < 2|Eg]|
is not too important and in most situations it can be replaced by any other constant
greater than 1. Note however, that we will be considering the form sup o» A7 o and
here it is important that one only considers sparse collections in this supremum with
the same sparsity constant. See [29] for further properties and results regarding sparse
collections of cubes.

Since this section contains results involving both m-tuples and m + 1-tuples with
the same parameters, it is convenient to separate these notationally. We will use the

following convention: for m + 1 parameters o1, . .., «;,+1 we shall use the boldface
notation ¢ = («q, ..., &y+1) for m 4+ 1-tuples while we will use the arrow notation
a = (ay, ..., ay) for m-tuples.

The main result for this section is the following:

1

Proposition 2.7 Letry, ..., rm+1 € (0,00), p1,..., pmt1 € (0, 00] satisfy pLj < 7
forall j e {l,...,m+1}and Z'j":]l % = 1. Moreover, let wy, . .., W1 be weights
J

satisfying ]_[;7‘:11 w; = 1. Then the following are equivalent:

(i) w e Ap (r,00);
(ii) | M,
(iii) ”Mr ”Ll’l (wlpl )X~~Xme+l (w:l’lTI)

(iv) | Sup A’sy”LPl(wlpl)xmeP'nH (wr’:l'j’rJlrl)_)R < 0.

lLpr ity oxrmsn oty proe < 09

LS o0,
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Moreover, we have

“Mr ”Ll’l (w{’l)x...xLl’m-H (U):,'iTI)—)Ll’OO ~ [w]p,(r,oo)’ (26)

Il My ”Lpl (w‘lnl)x'nprWHr1 (wZ’_’{_Tl)ﬁLl ~ s;p Arwy”Ll’l (wfl)xWprerl (wf:l’iTl)ﬁR

2.7)

where the implicit constants depend only on the dimension, and

where the implicit constant depends on the dimension and

m+1 1 rj

_ "
Cpr = l_[ T 1

J=1 L7 Pj

Remark 2.8 We again point out that the condition w € Ap  o0) is equivalent to the
condition w € A FRGEAE with equal constants. Moreover, the results containing the
sparse forms are formulated with the supremum taken inside of the norm. One can
equivalently put the supremum outside of the norm which follows from the fact that
there is a single sparse form that dominates all the other sparse forms, see [27, Section

4].

In the case m = 1, r; = rp = 1, the equivalence (2.6) takes the more familiar form

1
IMa DN Lpwrysrr w-r'y— L1 = [w”]ﬁ,,

which appeared in the introduction.
We note that the estimate (2.8) was already obtained in [8] in the case m = 2.
For r; = r, rp = s’ the estimate (2.8) takes the form

[ Sl;p A(r,s/),y”Lp(wp)pr’(wfp/)qR < |:w<

and when r = 1 and s = 0o we reobtain the sharp bound from the A, theorem. We
wish to compare (2.9) to the bound obtained in [5]. For their main result they prove
that

max ]_r,izl
I S;PA(r,s’),zsﬁ||Lp(w)pr’(w1—p’)_>R < ([w]AE [w]RH(S)/> (p p), (2.10)
r »
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Our result implies that

l su/p A(r,s’),f”Lp(w)xLP/(wl—p’)_)R < ([W]Ag [w]RH<S )/
B " P

see also [24], and this recovers the estimate (2.10).

Finally, we point out here that the estimate (2.8) already appears in [33, p. 12] for

the particular choice - = L —L— and it seems like this choice of p j is central

pi o yrErLe
J
for the theory of these sparse forms, see also the proof of Corollary 4.2.
For the proof of the proposition we will require several preparatory lemmata.

Lemma29 Let0 < ry,...,r, < 0o. Then for each dyadic grid 2 and all f; € L'
there is a sparse collection . C 9 such that

Zfreee ) <27 5 T 0xE0
Qe j=1

m L In particular we have

. . 1 _
pointwise almost everywhere, where . =3 =17

n+l
(i f) 27 Ap g (fieees f)

pointwise almost everywhere.

The proof is essentially the same as the well-known result in the case m = 1, r = 1.

Proof For k € Z we define
ntl
Qo i={x eR": M7 (f1,..., fu)(x) > 27K}

By taking the maximal cubes Q in €2; we obtain a pairwise disjoint collection Qy € ¥
such that @ = o, Q and

2L (k1)

m

ntl

27 < T[fidre < o (2.11)
j=1 ’

for all Q € Q. We define . := Uz O and claim that . is a sparse collection of
cubes. Indeed, for Q € Q it follows from (2.11) that for any Q' € Qy11 we have

- 1 2nrj(k+l) e
[0 > 272—l > 27 [[4fi)rr.0-
/:l r .

Jj=1
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Thus, by maximality of Oy and Holder’s inequality with Z;’?:l r’—/ =1, we have

1 m
Q1 NO| = "< —n ! A
Us1NQOl= Y. |Q|52n,}1=1<fj);1 Yo 1T 0

0'€Qyt1 @ 0'eQuy j=1
0'co o'co
Tosou T (Sl A1 dx)
_ 19l o<
2 2

[T (folsy17 dx)

| Tj= (fQHImQ'f/"dX)rL 10|

< —=.
-2

E

7

[T (Sl i1 dx)

Thus, defining E¢g := Q\x41, we have |Q| < 2|Eg].

To conclude that . is sparse, it remains to check that (£ g) g¢ o is pairwise disjoint.
Let 0,Q" € “ suchthat Eg N Eg # #.If Q € Qr and Q' € Qy, we have
Ep € @\Qk11 and Egr © Qu\Qr41. Since (2x\2k+1)kez is pairwise disjoint,
this means that we must have k = k’. Since Q N Q' # @, it follows from maximality
of Qi that O = Q’, as desired.

Finally, if x € R” and M@(fl, .. fm (x) # 0, then there is a unique k € Z such

that 2n»i-lk < M;@(fl, e ) < 25 H k1) . Hence, x € Q\ Q2+ and thus there
is a cube Q € Qy so thatx € O\Q41 = Ep and

NI

M2 (fi, .o fu) () < 27 25K <257 [T 0,0
j=1

=2 Z H(fj)rj,Q’XEQ/(x)'

Qe j=1
This proves the assertion. O
The following result is a reformulation of the definition of the weight class.

Lemma2.10 Letry, ..., rm+1 € (0,00), p1, ..., pm+1 € (0, 0o] satisfy plj < rl—jfor

all j e{l,...,m+ 1} and Zm“ — = 1. Moreover, let wy, ..., Wyt be weights

1
T_T
satisfying 1 w; = 1 and define v; := w; U Thenw e Ap (r.00) if and only

if vy, .. vm+1 are locally integrable and there is a constant ¢ > 0 such that for all
cubes Q we have

m—+1 1 m+1 1

[T 1@l <c[]vi@?.

j=1 j=1
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In this case, the optimal constant c in this inequality is given by [w]p (r,c0)-

The following lemma allows us to deal with weighted estimates involving sparse
forms.

Lemma 2.11 Letry, ..., rm+1 € (0,00), p1, ..., pm+1 € (0, 00] satlsfy - < —for
all j e{l,...,m+ 1} and Zr/":ll % = 1. Moreover, let wy, ..., Wyl be welghts

satisfying ]_[;'-1:11 wj = lwithw € Ap ¢ 0) and define vj := w; U Let Qbea

j
cube and let E C Q such that |Q| < 2|E|. Then

1
m+1 1 max;—i,.., m+l{i]m+l
[Twno [101 S wl, 4 ’ ]_[u,(E)" 2.12)
j=1

Remark 2.12 Having Lemma 2.10 in mind, it seems that the larger power of the weight
constant in (2.12) comes from the fact that we are passing from the weighted measure
of the set Q to the measure of the smaller set E. In fact, it seems like we are only using
the full weight condition w € Ajp (+ ~) Once and we are left with an estimate of the
form

m+1 m+1

H 0O < H o (E)P,

where the implicit constant depends on the weights. This estimate seems to only
require the weaker Fujii-Wilson A, condition satisfied by the weight v;, but we do
not pursue this further here. We refer the reader to [22] where quantitative estimates
involving this condition first appeared. We also point out that estimates of this type
for the limited range sparse operator in the case m = 1 have been studied in [13,31].
This condition has also been considered in the multilinear case in [10].

L
7

Proof We set y :=max;—1,. mt1 [ﬁ} and

P

sothat B; < Oforall j € {1,...,m+ 1} Thus since (v;)1,g < 2{(v;)1,0 by the

assumptions on E, we have (v])ﬁj <27k (v])1 - Then
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LLmerl

m+1 1 m+1 _ P
(W' | 101 = H vi)o [Twnto |10l
j=1 j=1 j=1
m—+1 p
, |
<l oo | [TV |11
=1
(2.13)
m+1 5,
Sl oo | TTONE | IEI
j=1
m+1
= wl) ooy | [T ui®® | 1EIEFA
j=1
—1
_NmHl (11 S S T
Next, set o := 3 7 (r,- p/_) >0andk; ==« (r,- p,-) . Then
m+1

and
m+1 m+1 m+1 m+1
1= B = Z——Z +y2< ) (y — Da
j=1 jlp
so that
1_2m+]ﬁ 1 1
k—’=(———)<y—1)———ﬂ,
J rj Pj p

1 1

Thus, since ]_[m+1 .' "= ]_[;'H'll w; = 1, it follows from Holder’s inequality that

_ymtlg
m+1 1(¢_¢> R
al\r; P
d

m+1
|E|1_Zf:]ﬂj= /ij AT
E

A
—]
\C

5

I

e
<
&
3
=

By combining this estimate with (2.13), we obtain (2.12). The assertion follows. O

1
L L
Proof of Proposition 2.7 We set v; := w; R forje{l,...,m+1}.
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Quantitative estimates and extrapolation for multilinear weight classes

The strategy for the proof will be as follows: We will prove the equivalence of (i)
and (ii) by proving (2.6) and we will prove the equivalence of (iii) and (iv) by proving
(2.7). Then, noting that the implication (iii)=-(ii) is clear, we conclude the proof by
showing that (i)=>(iv) through (2.8).

For (2.6), for the first inequality we note that it follows from Lemma 2.5 that it
suffices to consider the estimate for M 7 for a dyadic grid 2. First consider a finite
collection # C Z.LetA > 0, fj € LPi (wp’) and, defining M/ as M9 but with the
supremum taken over all Q € .%, we set

o = (M7 (i furr) = 2

and similarly for Q-@

Let & denote the collection of those cubes Q € . such that ]_[ f i > A
that have no dyadic ancestors in .%. Using the rule

1

(h)r.g = (hu™ T o (u)

—~—

Q0

1

where <h>?,Q = (@ fQ|h|’u dx) 7, it follows from Lemma 2.10 and the fact that

& gives a decomposition of sz , that

m—+1
M= > mol= Y | [Tn.e] el
Qe Qe \ j=I
m+1 _ 1 1
= > | TTtv "0l oteiio | 121
0e7 \ j=1
m—+1 0
<[w]p(roo) Z 1_[ f/ j r ij(Q)I’j
Qe j=I

mtl (L_L) Pi
PjT;
<[W]p(roo) Z 1_[ f|f]|171v D dx
Qe j=I
m+1

=< [w]p (r,00) 1_[ ”f/”Lp!( 1’/)

j=1

where in the fourth step we used Holder’s inequality with 7; < p; and in the last step
we used Holder’s inequality on the sum.

By considering an exhaustion of 2 of finite sets it follows from monotonicity of
the measure and by taking a supremum over A > 0 that

2
Il M; ”L”l (wfl)x---xL”"l“(w,’,i'ifl)eleoo = [wlp.¢.00)-
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For the converse inequality, fix a cube Q. Assuming for the moment that the v; are
1 1

locally integrable, we let 0 < & <[]} (v j>1r'7 o- Setting fj := vf X0» we obtain

m+1 m+1 1
Me(frooos fue)@ = [T 0 = [T p > &
j=1 j=1

forall x € Q sothat Q € {M,(f1,..., fm+1) > A}. Thus,

MOI= MM (fi, -, fnt1) > 2
m+1
o1ty mss ity groe [T 1Fi o, ()
j=1
m—+1 1

= UMl 1ot o | [ 077
Jj=1

< M,

Taking a supremum over such A, we conclude that

m+1 1 m+1 B
[T | 101 < UMl oy oty cromes oimit e [T 05(@77 214)
j=1 j=1

Thus, it follows from Lemma 2.10 that

[w]p,(r,oo) = ”Mr”Ll’l(wfl)><~~~Xme+l(w,€1'1Jlrl)~>L1~°°’

proving (2.6). To prove our initial assumption that the v; are locally integrable, we
repeat the above argument with the weights replaced by (vj_1 +e)"! fore > 0. As
these weights are bounded, they are locally integrable. An appeal to the Monotone
Convergence Theorem as ¢ | 0 after a rearrangement of (2.14) yields the desired
conclusion.

For (2.7),let f; € LPi (wfj) and let Z be a dyadic grid. By Lemma 2.9 there exists
a sparse collection . C & such that

IM7 (i furD it SNAr 2 (froees fut Dl < Ap o (fiaeees fns)
Thus, it follows from Lemma 2.5 that

| Mr

<
”LP[(wlpl)x...xLPm+l(wZ'iTl)_)Ll ~ ” S;p Ar,gy”Lpl(wlpl)xmepm+l(eriTl)_)R.
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For the converse inequality, we estimate

m+1
Aro(froe ) <2 Y [ TTdr0 | 1EQl

ey \ j=1
<2Z/ My(fi. . fu)d
Qe

=2IMr(f1s-eos S, O

As this estimate is uniform in ., this proves (2.7) and thus the equivalence of (iii)
and (iv).

To prove (2.8) and thus the implication (i)=>(iv), we note that it follows from
Lemma 2.11 that for a sparse collection . in a dyadic grid Z and for y =

1
ﬁ
max;—1,.m+1 | 1T ( W€ have

"joPj

+
Ap s (fiooo f) = ) ]_[ ()0 |10
Qe \ j=1
m+1 l 1
= Z l_[ f/ Jj r Q v/)]{Q |Q|
Qe \ j=1
m—+1 o
p(r 0) Z l_[ fl i r,QU./'(EQ)"j
Qe j=1
m—+1 1 #
<t XTI s
0eZ j=1
m+1 2 1
V4 Vi, ri
= [w]p,(r,oo) 1_[ ”Mr_/j (fjvj j)”LPj(yj)
Jj=1
m+1
Seprlwll o o 11 L3005 (1)
j=1

where in the last step we used the fact that the weighted dyadic maximal operator

M = supgex () oxo is bounded on L?(u) for g > r with constant bounded
1

1 r
by [ "1 | , uniformly in the weight u. As this estimate is uniform in the sparse

roq
collection ., this proves (2.8). The assertion follows. O
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2.3 Quantitative properties of multilinear weight classes: the m-tuple case

It is sometimes convenient to emphasize this separation of the parameter s from the r,
as it often plays a different role from the other parameters in the proofs. The following
lemma provides a way to deal with this parameter.

Lemma 2.13 (Translation lemma) Let ry,...,r, € (0,00), s € (0,00] and
DPls--s Pm € (0,00] with (F,s) < p and let wy, ..., w,, be weights with w =
]_[;":1 wj. Then W € Ap ;) if and only if there are é, e $ satisfying % < plj,
Zl;lzl i = %, and 17) (S Aﬁ(s),(?(x),oo): where

- 1 1 - 1 1

p(s) = 1 Toero | r(s) = 1 T sk

Pt P Sm s Fm Sm
Moreover, in this case we have
(W15, 7.5 = [W]5(s), (s),00)- (2.15)
Proof We have
1 i( 11 ) I
pe) - S \pj si) P

it remains to note that

m m

-1 -1

H(wj )L_IL’Q (w) lil’Q = H(wj >#’Q (w)p(s),Q-

J=1 R re J=1 (Tﬁ)*(fjﬁ)
Taking a supremum over all cubes Q yields (2.15), proving the assertion. O

We point out that the choice of the Yi in the lemma is not necessarily unique if
2]

m # 1. One could, for example, take SL = f % but a different choice will be made
later in the proof of the main result. We also note that this lemma can be used even
if % = 0. In this case it can occur that some of the % are negative, but this does not
seem to cause any problems.

Having reduced to the case where s = oo, the following proposition is the main

result for this subsection.

Proposition 2.14 Let ry,...,ry € (0,00), p1, ..., pm € (0, 00] with (F, 00) < p
andletwy, ..., wy, beweights withw = nTzl w ;. Then the following are equivalent:

(i) W € Ap F,00)s
(ii) ||M7||Lp1 (wfl)x.i.xu)m (wPmy—s Lpo(py = O
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In this case we have
”M? ”Lp] (wf’l)x,,.Xme (whmy—s Lp.oo (wP) =~ [J)][i,(?,oo)- (216)

Moreover, if ¥ < P, then (i) and (ii) are equivalent to
(lll) ||M?||Lpl (w{)l)x-“Xme (w’l_:lm)_)Lp(wp) < X0

and we have

M oy WPy LPm (wh" )= LP (wP) I~ W15 G o) )

where the implicit constant depends on the dimension and

Moreover, the power of the weight constant in (2.17) is the smallest possible one.

Remark 2.15 The equivalence (2.16) is also contained in the full range version in [30,
Theorem 3.3] in the case where the p; are finite, and the limited range versionis proven
in [3, Proposition 21], but here the cases p; = oo are only treated when w; = 1.

For our result here we use the interpretation that for ¢ = oo and a weight u we
have ||2]| gy = lIhllLa.ooway = Ilhull L.

Remark 2.16 The estimate (2.17) is a generalization of Buckley’s sharp weighted
bound for the Hardy-Littlewood maximal operator. It can be proven using the sparse
domination we obtained in Lemma 2.9, but we present an altogether different proof
which generalizes an approach due to Lerner [28]. This construction is important, as
it turns out to be key for our multilinear Rubio de Francia algorithm.

In the case r1 = --- = r,, = 1, the sharp bound (2.17) recovers the sharp bound
obtained by Li, Moen, and Sun in [34] where sparse domination techniques were

»

used. To see this, note given weights wy, ..., w, and setting vz := ]_[;’Zl w;j , the
multilinear weight constant they used is defined as

- 1 = 1 1-p’ A
C—sup(— [ wzd — [ w, ax )" 2.18
wlag :=sup (IQI /Q” x) [1 (IQI /Qw«f x) (18)

j=1

Writing 1= (1, ..., 1), the sharp result they prove is

(2.19)
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forall p1,..., pm € (1,00) and w € A 5~ To compare this to our result, we replace
)4
Pj PiNp: m
the w; by wj" and note that vz = ]_[Tzl(wj’)”/ = wP, [(w', ..., wy Na; =

[111]2 (.00’ Thus, (2.19) coincides with our bound found in (2.17) when 7 = 1.

Lemma217 Letry,...,1m € (0,00), p1,..., pm € (0,00] with ¥ < p and let
wi, ..., Wy be weights with w = ]_[Tzl wj and W € Aj 7 o). Then there exist
sublinear operators Np. . i LPi (wf'f) — LPj (w;'/)sothatforany fi € Lp.f(wfj)
we have ‘

1
"

max;=i,.., {7‘_7} m
Mi(fisooos ) <0015 6o 0 TN () (220)

j=1

Moreover, N, ;. i satisfies

”ij,rj,zf)“ij< D)oo 123 () Sl
J J -

Proof We first prove this result for the dyadic maximal operator M;g for a dyadic grid
2 to obtain the appropriate operators N 1—? + - Then it follows from Lemma 2.5 that
AR

m 3"
Mm<ZHmwmeZp,w; (2.21)
a=l1 j=1 j=la=l

The result then follows by setting

3n

I’/r/w' CZ pjr]w’

where ¢ is an appropriate constant determined by the implicit constant in (2.21).
1

Now, fix a dyadic grid 2. Let y := max;—i,. . m { T

i Pi

}, let Q € &, and set

1
T_ 1
L
e J
vj = w; S1nce|| lw Tw

Holder’s inequality that

w\—‘l‘.\—

= (]_[m leI) w = 1, it follows from
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1 oyl 1 1p11
" L\
-1 -1 1 -1 5
1=’ < wlw ? w=lw 7
j=17; J= r/»Q rj’Q
1 Yo
-1 1
= ]I (w; ) 1w P )p0
j=1 i Py
ri- 1 T
m L,pi 1 N\YT T T m . pT/rj j Pj
_ NG PP pyPi T Pj =rj 4
- 1_1 (U]>1’Q <w >1,Q l_[ wj w P
j=1 j=1 1,0
This implies that
~.y
SN (w15, ¢.00)
[Tent, < 7
Lo = (1 1 ) 1
j=1 e )Y T
m A\ P J y
[Ti=1(idi g (whp.o
11
- i’
m
_ [W15.¢.00 H( ! )r'fﬂlf
- ; w?)
7 w 1,0
11 1 \7~ T /=
AR Pj i Pj
[Tj=i [ wihilo " (wPi o
11
e
+ T
AL
m =T T]rj r
<w/ w r >1,Q
S| »
,(r, e (wP)1,0
Thus, for f; € LPi (wfj) and any x € Q, we have
m m 1\ 1
_ Y A\
[Tmo=T1{sn ") b
j=1 j=1 ri,0
1
L
SR L ToT
1 SR L/ TP
. v, 7 i > 7 —rj L
m lnf)’EQ Mrjj (fjvj "/> (y) 77t <wj ‘w7 )I,Q
< [wl% -
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-1V 79 U P 1
< (01, .00 [ 1M | M2 <f/ >,-’w | .
J

]

=t -1t
Pj7j
(2.22)
Setting
1 1
oA\ & ) 4
9 w”J vj, rj Pj = L1
Np_, »(fi) = | My fjvj vilw 7w ? w;
i ,/. P ! . .
T
PjTj

and by taking a supremum over all Q containing x in (2.22) we have proven (2.20) in
the dyadic case. We remark here that in the case that p% = 0, we use the interpretation

1
9 vi, 9 Ty 1
N2, s = 1m0 fw; 7 ) e

Noting that

==

—logr

’@ q T logg—logr
157, Wl S (1) 775 Mhlaw =€ Ihllzoa < el
g

—‘»m_

ey
~|—

for the case # > (, we compute
J

1
wP, @ v, 9 Ty P
||ij ri, (f])”Lp,( ”J) = ||Mr L Mrj/ fjvj ! Uj]w bi ||L”j(wp)
i D
PiTj
” i\ L,
Vj,Z rj ri 5
5 ||M J fJU] J vj’w Pj ”L”j(w”)

vi, 9 T
= ”Mrjj fjvj ! ”ij(v_,-)

1 Tj _1
rj rj
S T 1| Wiy i)
L~ by
_ -1
1 T
T
L7 P !
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and for the case % = 0, we compute
J
1 _ 1

IINC,@O, aUDwjlle = 11M; (f] Dl < Lfjv; iz = Nl fiwjllze.

The assertion follows. O

Proof of Proposition 2.14 We will prove the equivalence of (i) and (ii) by proving
(2.16).

For “ <", we note that it follows from Lemma 2.5 that it suffices to prove the
estimate for M;@ for a fixed dyadic grid 2. Note that by Holder’s inequality we have

(fidrj0 = (fjwj),,j,Q(wj_l) L0 for a cube Q, so that

)
m P
s p
l_[ ff rjiQ = w]l’ @, 00) l_[ fjwj rj,Q = [w]p (F,00) 1_[ fjw] Rz )ﬁj,Q'
j=1 = j= 1

Thus, by Holder’s inequality for weak type Lebesgue spaces, we have

m P
» _r
< [W]5,¢ 00) HM”’ j(fjij Pz)

j=1 LD (wP)

S [w],, (7, 00)1_[ <f,w] Pj)

S (015,00 1‘[ | £ IILp,( iy

j=1

|2 ... )

LP-(wP)

LPI* (wp)

where we used the fact that the weighted dyadic maximal operator M,'; 7 is bounded
L (u) — L7-°°(u) with constant uniform in ¢ and the weight u. Thus, we have shown
that

| M5 “Lp] (wll)>< X LPm (whmy s [P0 (wp) ~S [w]p (F,00)+

For the converse inequality, fix a cube Q and let f; € L/ (wj.7 7). Letting 0 < A <
]_[7:1 (fi)r;.0> We have

Mi(fro .o f) ) = [ [0 > 2
j=1
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for all x € Q sothat Q € {Mz(f1,..., fm) > A}. Hence,

Mw)p.o < 1O AP UMz (1. ... f) > AP

S UMzl o o1y e om o )ﬁm(wm]—hm ||f,||Lp,<wpf)
j=1

Taking a supremum over such A and by replacing f; with x¢ f;, we conclude that

m m
[Tt | @0 < IMAN Lo @y s om iy Loosqury | 1F10000,.0
j=1 j=
(2.23)
1
T 1
L T 1 T
rjoPj Pj,,Pi TjoPj

Nowset fj = w and assume for the moment that f'; Y= w;' =w;
is locally integrable. Then the product on the right-hand side of (2.23)is posmve and
finite so that we may take it to the left-hand side. This yields

H<w o | Wpeo S IMEl Lty oy Lroqury (224)

J”j

7

1
1 1

P

and taking a supremum over all cubes Q yields (2.16). To prove that w j is

1
1

indeed locally integrable, we choose f; such that ffj wj-’j =w,” " +&7!for
e > 0, the latter expression being bounded and thus locally integrable. Again taking
the product on the right-hand side of (2.23) to the left, an appeal to the Monotone
Convergence Theorem as ¢ |, 0 yields (2.24). The assertion follows.

Since the implication (iii)=>(ii) is clear, we may finish the proof of the equivalences
by showing (i)=>(iii) through (2.17).

By Lemma 2.17, it follows from Holder’s inequality that

1Mz (frs oo S lerry 015 60 ]"[nN,,,r,wf,uLp]( i

J=

1
|
- i P
Ko ) P ]‘[||f,-||Lp,-(we,~),
J

Jj=1
as desired.
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Quantitative estimates and extrapolation for multilinear weight classes

Finally, we prove optimality of (2.17). Let « > 0 denote the smallest possible
constant in the estimate

m
1Mz (frs s ) lerry S 0015 ooy [T, ()

Jj=1
1
We have shown that ¢ < max;—; lr—’l and it remains to prove the lower
P
bound. We assume that we are in dimension n = 1, the general case following

mutatis mutandis. Moreover, we assume without loss of generality that the maxi-
1

mum max;—i, .., » 1 L+ ' is attained for j = 1, the other cases following similarly

TP
by permuting the indices. For 0 < ¢ < 1 we define

_a( L __L
wi(x) = [x|" o3 m), wi(x) =1 forje{2,...,m},
1—¢

e e
1) = x] 1 xo.nx),  fix):=Ix| "7 xonx) forje{2,...,m}

Then, by Holder’s inequality and a computation, we have

1 1

[w]p (F,00) = [wl]m (rp,00) X P11,

Moreover, one computes

S

1‘[||f,||L,,( my=¢

and

1
[T eien 2 € = J1(x) ]_[ L1 fi.
j=1 p o d=ey;

Setting f(x) := 1_[?:1 fiw;(x) = |x| P X(O 1y(x), we find that

_1 _1_1
1Mz Cfroeos f)llrwry Z € I fller =& 707

and
n a(;,i),i
IMz(f1, .oy f)llLrwry S [w]p(,oo)nllfjlle,-(wti’j)58 s
Jj=1 :
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Letting ¢ | 0 shows that we must have o (% — L) — % — (—% — %) <0,i.e.,

S|

-1 _ 1 j=l,om | L — L
r p1 Tj Pj
1
Thus, we have ¢ = max 1, » 1 L+ | and the assertion follows. O
TjoPj

Remark 2.18 We point out here that in the unweighted case we actually have an equiv-
alence [|MzlLrix...xprm >pp == cj 7, Which follows from a similar calculation as

_l=
above, with f;(x) := [x| "/ x(,1)(x) forall j € {1,..., m}.

3 Proof of the main result

The proof of the main theorem essentially follows from the theorem below. In this
theorem we deal with m + 1-tuples as well as m-tuples of the same parameters,
which can be notationally confusing. To circumvent this problem, we shall use the

earlier established convention that for m + 1 parameters «fp, ..., a; 4+ we shall use
the boldface notation @ = («1, ..., oy41) for m 4+ 1-tuples while we will use the
arrow notation @ = (a1, . .., a,;,) for m-tuples, see also Sect. 2.2.

We again point out that even though this result is formulated for the Banach range
— < 1, it can be used to obtain results in the range including the cases ; > 1, see also
Remark 2.3 and the proof of Theorem 2.2.

1 1 . 1 1
Theorem 3.1 Let r—, e € (0, 1] and suppose we are given E’ T
[0, 1] satisfying p—/_ < rl—jfor all j € {1,...,m + 1} and Z’j"ﬂl o = 1. Assume
moreover that we are given weights w1, ... Wy, satisfying ]_[j ywj=1landw €
Ap,(r.00)- ,

Suppose we are given functions f; € Lpf(wl.)") and l ﬁ € [0, 1] saris-
fymg n < - and ijll T = 1. Then there are welghts Wi, ..., Wyt satisfying
I—[m+1 W = 1 and W € Ag (r.00) such that

m—+1 ) m—+1
m
[T, oty =2 [Turn,, (o) 3.1)
j=1 j=1 '
and
A
max;—i,.., m+1[ﬂ
i P
[W]q,(r,oo) =< Cp,q,r[w]p’(r’oo) s (3.2)

The proof of this theorem relies on a multilinear generalization of the Rubio de
Francia algorithm.

@ Springer



Quantitative estimates and extrapolation for multilinear weight classes

Lemma 3.2 (Multilinear Rubio de Francia algorithm) Let ry, ..., 7, P1,.--, Pm €
(0, 00) with 7 < p. Then for each w € Aj .« there exist operators R, ;; i

LPi (wfj) — LPi (wf’) satisfying

(i) |fj| = Rpj,rj,lf)fj;
() Wy, 50, < 20700 0

maxj-:1,...,mli L]
(iii) 1_[<RI’/ rii fjdr; ﬁ?[w]“(r 00) i

j=1
cubes Q, where the implicit constant depends on the dimension and

\.“'—

m
inf [T Rpy.ry.af0) for atl
j=1

Proof Letting N i be as in Lemma 2.17, we define

Ry eyl i U500
Piori-wlJ e 2k||NP/ rj, UJ” 7

pj pj(,Fi
LY ( w; >—>L /(wj )

where N ~(f) _|fj|andN’; rjw(f/) = Np, i SNk ().

Pj.rjw pjrjw
To prove property (1), it suffices to note that the k = 0 term in the sum is equal to
£
For (ii) we have
> H piryd D Loy (w})
||Rpj,rj,ﬁ)fj||LPj(w;)j) E sz k
k=0 T
HN,,,,r,, 273 ()= 27 ()
”fj”ij( 2
=) i =2ISill w2
- k J L[
=S )
To prove (iii), we first note that
00 k+1 (f
L r. P/ rjwJ
ij”'.fvﬁ)(RP.f"j’WfJ) - Z 2k||

P/’rf’w”Lp,< ;’J')_)ij (w;’j)

< 2”ij rj, w”Lp]( ! )_)Lp]( ! )Rpj,rj,lf)fj.
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Thus, it follows from Lemma 2.17 that

1
r
max]:l....,m[i_i} m
- . - 7 TP - L f.
MRy ry i f1s - Ry i ) < 1015 6 ) [T Ny (Rp, vy i f)
Jj=1
1
r
max;—i,..., mli*i’ m
m TjoPj o f.
S2 €p r[w]ﬁ,(?,oo) l_[ RPjs’.f’WfJ’
j=1
as desired. The assertion follows. O

Proof of Theorem 3.1 The proof will consist of two steps. In the first step we prove
the result for very specific q. In the second step we iterate the first step to obtain the
desired result.

Step 1. In this step we assume that there is some jy € {1, ..., m + 1} such that

1 1 1 1 . .
— < —, — > — for j#jo.
Pjo  4djo Pj 4j

Since none of the statements in the formulation of the proposition depend on the
order of the indices, we may assume without loss of generality that jo = m + 1.
More precisely, we can let 7 € §,,41 be the transposition given by 7 (j) = j for
Jj # jo,m+ land w(jo) = m + 1, w(m + 1) = jo. Replacing the index j by 7 (j)
everywhere then indeed allows us to reduce to the case jo = m + 1.

We define L (=1 - -1 20,1:21— 1 >0,l:=1— 1 > 0, and

§ Tm+1 P Pm+1 q qm+1
w ::. w,;;rl sothat w = ]—['};1 w;. Foranm + 1—tuple (og, .oy Opt1) We will use the
notation & = («7q, ..., &) so that the arrow notation will always refer to an m—tuple.

Thus, we have now reduced the problem to proving that there exist m weights W €
Aj.¢.s) such that fj € LU (W), fry1 € LY (W), where W := []7_, W;, with

m m
l_[ ”fj”LqJ(WqJ) ”fm-i—l ”Lq’(W—q’)fzm l_[ ”f]“Lp/ (wj',j) ||fm+1”Lp’(w—p/)»

J

j=1 j=l1
(3.3)
and
11
max;—i,..., m’ 'lj qu ’
- N I
[W]é,(f,s) = Cﬁ,[j,?,s[w]ﬁ’(;’s) e (34)
Indeed, the result then follows by setting Wy, 1 := W~ and by noting that
Wlg.orio0) = (Wi [Wlprio0) = [B]5,7,9)-
The construction of the m weights W1, ..., W), relies on the multilinear Rubio de

Francia algorithm as well as a clever usage of the translation lemma to deal with the
parameter s. Setting
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Quantitative estimates and extrapolation for multilinear weight classes

<1_1>L_<1_1>L
1\ 5)g qa  5)p;

=t

we have
1 G-Y)a-G-Ha o
5 P Kz

with equality if and only if q—lj = pl/ and so thats—i < qu < pij,and
SR ER GO
R

We set

11 1 1 1 1 1

pis) " pisit qis9) T g s ri(s) —rj s

and = ZT:] ﬁ = %— %, p(s) := (p1(5), ..., pm(s)), and similarly for — q(y),

1.
@)
q(s), and 7 (s).

We emphasize here that —— = 0 if and only if —- p = q— and we encourage the

(S)
reader to verify that the remamlng steps in this proof remain vahd in this particular case.

We may compute

1 1 1
- 1 k] —_— 1 PN .
Pj  4j o Pi® aj() 5 Pi)
1 L
P;©) 73'Ti
L N Ee
We set g := | fj| 7/ w; "I so that
rj(s)
%
Igill o, pio. =Ll T b
L @) LV (wjf)

and, using the notation from Lemma 3.2, we set

1

1 1
_P9 gy 4

I

Ps)

T
Wj = (Rpj(s),rj(s),i)(gj)) ) wj

Unwinding the definitions, it follows from (3.5) and property (i) of our multilinear
Rubio de Francia algorithm that
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2 11 g
T T
£ lg;” (R @n o
il owy) = g, pj(s).rj(s) w8 LP7O @
. ! ! (3.6)
‘Tj aj
Pj (v) pT
S 1871, i, = M3l oy
(w; wj
Next, it follows from (3.5), Holder’s inequality, and property (ii) that
il L oy < W fmrrw ™ W ]
L7 7
1
PG g(s) L1
m o) pGs) ()
= || fim+1 ||Lp’(w—p’) 1_[ Rpj(S),rj(S),U—J(gj) w e
Jj=1 1
T
L r&s) q(s)
1
) ()
m ﬁ
= sl oy | [ T Ry 01008 (8
Jj=1 LPG) (wP )
)
< Whmti g sty [ [ IR0, (€I y 'm )
j=1
a1
” Pj_d;
T
m . J
= 2" fin+1 ”Lp’(w—p’) l_[ Il f; ”ij (wp,)
j=1 /
By combining this estimate with (3.6), we have proven (3.3).
Finally, we prove (3.4). Noting that
1 1 1
1 1 _w g 1 +ﬂ<l_i)
) S 1 . 1 ) )
rjo 4j o ) oG\ P
it follows from Holder’s inequality and (iii) that for a cube Q we have
1 1 L
m m W;W qﬁx)
-1 o) —1\ p)
W > < <R, = > ) <w' >”
l—[( j : = l_[ P,,rj,w(gj) .0 j L_IL’Q
Jj=1 7Ty j=1 G
l (s) ]
Maxj=t..m) T T
_ - ri(s) pjs) f .
S| eho @ W56 6500 inf G.7
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Quantitative estimates and extrapolation for multilinear weight classes

® L
m R (0]
—1\ p(®)
[T Ros000.3(E) ) [ Jw; R
j=1 j=1 TiTPj
Moreover, we have
11
PE) 4 e s
m ﬁ q(]s) L
1 - . 706) _ p(s)
;Ielg 1 Rpj(s),rj(s),w(g,/)()’) (W) %il ) < (wr® >q(s),Q = (w) Ll . o
J= s 2

By combining this with (3.7) we find that

1 _ T 1_1°
j=1 T Tg; q7s
D N
p(s) _q(s)
1 T .
max;—j,..., )n[lr](s)l] e @
ri() pi) =5
<\ i) i [W]= . - / ! w] 2%
~ p(s),r(s)[ ]p(s),(r(s),oo) [ ]p,(r,s . (38)

By the translation lemma, Lemma 2.13, we have [W]5),G(s),00) = [W]5 .5) and,
moreover, by using (3.5) we compute

1 1 1 1 ( L1 ) (I ( L1 ) 1
rj(s) 6 q0) n g(s) _ \pjl)  q;(s) ) rj(s) r;(s) Pj(s) ) q;j(s)
B s 1 1 1 1
IO FONNIO Ps) (g - ,,—j) 56)
1 _ 1
_rioa4i
Tl
rio P
which we interpret as being equal to 1 when -~ = % = %, so that
J J J
1 L _ 1 _L 1 _ 1
max 1 ri(s) 1 p(s) 1 96) | 46 _ _max rj qu
U BT R T6) @) & Ty T

Hence, (3.4) follows by taking a supremum over all cubes Q in (3.8). This concludes
Step 1.
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Step 2. Now suppose g is arbitrary. For each j we either have % < % or pi > %.
J J J J
Assume without loss of generality that there is a j; € {1, ..., m} such that

1 1 1
>— ifjefl,....n}, —<— ifje{ji+1,....m+1}. (3.9
qj pj 4

|-

Indeed, if this is not the case then, just as in Step 1, we may permute the indices to
reduce back to this case.

The strategy will be to construct the m + 1 weights W in m — jj + 1 steps through
repeated application of Step 1.

We define
Y2 d 3
= qj pPj .
j=n+lgq;  p;
0 ifk =0,

we have

Now, we define

a' = (al - a) @i P

2 2 2
q = (fha--wq]‘l,(/Ijl—H,---’Qm—l,pmapm—i-l)

m—ji m—ji

- m—ji
q L (q] a"'ﬂqjl 7q]'|+1717j]+2w-~,Pm+1)~
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Quantitative estimates and extrapolation for multilinear weight classes

First we will check that the reciprocals of the coordinates of these m 4 1-tuples sum

to 1. Indeed, using Y74 -1 = Y 2 = 1, wehave
- J

> z—+ek2———=ii.

1q1 =14 =14
m—+1 1 m—+1 1
o 1= D —|-af1- > —
j=pi+1 Pi j=n1 i
j=1 i Jj=m—k+42 i Pj Jj=ji+1 i Jj=m—k+2 Pj
so that
1 1 m—k+1 1 m+1
oot 2 P P
j=1 qj j=j+1 1 j=m—k+2 Y
as desired.

Now, for k € {1,...,m — j; + 1} we define

1 1
G
Yk ‘= max -,
j=leeji L — L
o
which should be interpreted as being equal to 1 when ql—k = %, and we write
j J
(q1 e q,’;) for the m-tuple given by the first m coordinates of g*, with
L =y L
We may apply Step 1 with jo = ji + 1 to obtain weights W"™/1 =
Wy ::H”) such that
m—+1 m+1
Ifill m=in 0 <2 1 | £l »; (3.10)
jljl LW ]Hl L' (w7
and y
—j m—j1+1
[Wm '/l]qm—jl’(r’oo) 5 Cp’q’r[w]P’(rj’gg). (3.11)

Next we apply Step 1 with jo = j; + 2 to obtain weights W”—/1~! with

m—+1 m+1

. m . . .
[Tl it it <2 TS i e
j=1 L =1 LY wihh
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and
71] . < C [Wm j]])/m J1
q”’fjl*l,(r,oo) =Lpgq.r " 1 (r, OO)

[Wm*h
Combining these estimates with (3.10) and (3.11) we obtain
m+1 m+1
Ifill i wenmt < @]y
/l:[l J qu 1 « W:n j1— 1)q1 1- ) jl_[_l JWprj (wj])
and
— 1 — ‘m—j1 Ym—j
[(Wn=/ l]qm*h*l,(r’oo) = Cp,q,r[w];’(rj’]oo) jl+1~
Continuing this process, applying Step 1 with jo = ji+kfork =3,...,m—j+1,
we conclude, setting W := WO that
m+1 m+1 m+1
. R . mym— j1+1
[T 15300, ) = 1"[1 L7018 gty < @) 1‘[1 15307y G-12)
j= : J
and
m— j1+] "
[W]q (r,00) = [W ]q (roo) = Cp.q. r[w]p r, oo) . (3.13)

we note that (3.1) now follows from (3.12). Finally, we

Since (2m)m—/i+l < oM,
note that (3.2) follows from (3.13), provided we can show that

m—ji1+1 1 _ 1
rji d4j
| | Vk = max i ] (3.14)
j=1,..,m+1 = — —
i pj

Note that by our initial assumption (3.9), this maximum is attained at some j, €

{1, ..., ji}.
We claim that
1 1
4
T 4

— j1 + 1}. Assuming for the moment that the claim is true, we

forallk e {1,...,m
find that
X 1 1 1 1
m—j1+1 m—j1+1 7 - =T P 1
1_[ _ l_[ 2 q/z _ /2 9jp _Th 4ja
(e 1T _ 1 - T __1 _T71T_1°
k=1 k=1 r.,~2 q§2 rjz q;”szﬁ’l rjz p./Z
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Quantitative estimates and extrapolation for multilinear weight classes

proving (3.14).
To prove the claim, we compute

1 1 1 1 1 1 1 1
= — (== )+~ — —
Tj q; rj qj rj qj rj pPj

1 1
1 1 g
:<;_; (1 = 6k) 57— + 6k
J J rj o pj
so that
1 _ 1
1 1 i 4
1L (I = Ok—1)F—F + k-1 1 _ 1
J aj rj o pj - f j qi
T = 11 LN AT
. = - -
o4 (1 — 0 +—+ + & R
rjoPj
where

(I = Ok—1)x + Op—1
(1 —0p)x + 6

Sfilx) =

We note that proving the claim is equivalent to proving the equality

i q g

max  fx 1’ 1} = fi max 1’ 1]

j=1m+1 1_ L j=lom+1 L — L

rj i i i

The inequality

1_ 1 1 _ 1_ 1
T T a T
fr max 1’ 1" = fi —12 12 < max fi 1’ 1’
j=1,..m - - = - - = j=1,...m+1 - — =
rj  Pj Tih  Ph i P

is clear. To prove the converse inequality, it suffices to show that fj is an increasing
function for all k € {1, ..., m — j; + 1}. Computing

(1 = Ok—1)((1 = O)x 4+ 6r) — (1 = O) (1 — Op—1)x + Ok—1)
(1 = 6r)x + 6p)?

filx) =
Ok — Ok—1

- ’

(1 = O)x +6)> ~
we have proven the desired result. This concludes Step 2. The assertion follows. O

Proof of Theorem 2.2 The result essentially follows from an application of Theorem
3.1. However, in order to use this result we must reduce to a case where % < 1 so that
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we may set —1 =1 — — > 0. To reduce to this case, we employ a general rescaling
trick that also appears in the proof of the case m = 1 given by Auscher and Martell in
[1, Theorem 4.9].

First we will show that we may assume that 1 := Y L = 1. Indeed,
r J=1r;
assuming we have shown the result for % = 1, we consider the m + 1-tuple

(f1l" ..o 1 fmls |AI7). Then, since

1 1
[ﬁ)]'(,x):[(wl’,...,w,;)] )
e G.(7.9)

we find that forall w € A; (.+) We have

SRS =

~1N

1 1
A" o = ||AlI" ([( { w)] LA
LFw?) Le(wr)) ~ =%\ " 3.(F.s) H & Lq’«w )

Jj=1

1
—¢q< g ) ]_[Illf,l o %
r’ V V ] / )
Thus, since Z i—1 - = 1, applying the extrapolation result with 7 replaced by

replaced by £, and s replaced by £, we find that for any £ J with % >Tand 2 < f, or

equivalently, for all p > (¥, s), we have

121l e wry = AT ||
v LF (@)
<50z ([005 - wf)]s, ) ]‘[|||f,| ||7, Bt
r'r’r’r r r r w )
=¢; g,;,%( ]I;(”)) n”fj”LP< 25

forall w € Aj 7 ), with

11 11 1.1
41 m_qm g S
rmax| 7—i-,..., i =TT

1Pl m~ Pm P S

¢g% )2 ;([ ]p (7, ;))7 =2 ¢q Cﬁ(},?,s[ﬁ)]ﬁ’(;’s)
as desired.
Now that we have reduced to the case where 1 = 1, wehave 1 < 1 < Zm_l i =
r s P j=1r;
1 1 1 1
= _— = —_ = > = —_ = >
1. Thus, we may set p " =1—=>0, T 1 7= 0, e 1 i 0 and

. -1
Wp+1 ‘=W .
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Let fj,+1 € LPm+! (w,’;’fll) andlet W = (Wy, ..., W,11) be the weights obtained
from Theorem 3.1. Setting W = Wy, ..., Wp)and W = l—[;-"=1 W; we find, using
the assumption (2.2) and property (3.1) of W, that

m+1
(B, fos )] < Wl aown | fons il s ymsny < 85 (AWG.6.) [T 1514 W'
j=1
5 m+1
<27 ¢;(Wlz.e.s) [T 15700, (w7
j=1 !
(3.13)

Moreover, it follows from (3.2) that

1_ 1
TP Tq;
max_/:l,...‘m-#]{ lj j/ }

[W]Ej,(?,s) = [W]q,(r,oo) =< Cp,q,r[w]p’(,’oo)

By combining this estimate with (3.15) and by noting that

Al wry = sup KA, fmr)],

| sl P, Pm+1 =1
L m+](wm+] )

the assertion follows. O

4 Applications of the extrapolation theorem

In applying extrapolation theorems, one can obtain further results by making appro-
priate choices in the m + 1-tuples. We provide some applications in this section.

4.1 Boundedness of operators through extrapolation

Given an operator T defined on m-tuples of functions, one can apply the extrapola-
tion result to the m + 1-tuples (fi, ..., fu, T(f1, ..., fm)) to obtain the following
extension result:

Theorem 4.1 Let T be an m-linear or a positive valued m-sublinear operator and
suppose that there exist ry, ...,y € (0,00), s € (0,00] and q1, ...,qnm € (0, 00]
with g > (7, s) and an increasing function ¢z such that

T ||Lq1 (w(I“ Y- x Lam (wi™y— L4 (w4) = ¢¢}([ﬁ1]2j,(7,s)) 4.1

forallw € Aj i ).
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Then for all py, ..., pm € (0, 00l with p > (F, s) and all weights w € Aj .y the
operator T extends to a bounded operator LP! (wfl) X oo X LPm(whm™y — LP(wP).
Moreover, T satisfies the bound

I T”Lm (W] x LPm (wh™ )= LP (wP)

1
ri,qL 11 1.1 r
1 ] 'm__qm g S
r max 1 IR | T 1 1

1 P1 Tm~ Pm P S
p.(F.5) ’

m2 -
<27 ¢; | Cpgrslwl

1 _ m 1
where - =3 ot

Proof Let f1, ..., fi be simple functions. By (4.1) we have

m
IT (i fdlLswny < d(@1g.6.0) T T1510; 0,
J

j=1

for all w € Aj ). Thus, by applying Theorem 2.2 to the m + l-tuple
(fis--os fus T(f1, ..., fm)) wefind thatforall py, ..., pp, € (0, co] with p > (¥, s)
and all weights w € Aj 7 5) we have

m
1T ooy < 85,75 (815,600 [T 1510, (o)
j:l J

with @5 77 given by (2.3). Since this estimate holds for all simple functions
fis ..., fm,the assumptions on 7" allow us to conclude the results through density. O

The initial estimate (4.1) is often obtained through sparse domination. Once we
have an estimate of the form

it follows from duality and Proposition 2.7 that for py, ..., p, € (0, 00] with p >
(7, s) and % < 1, we have

4.2)

We are, however, still missing the cases outside of the reflexive range L —1.0Onecan
reach these cases through extrapolation, see [32,33]. The novelty in our result is that
we also obtain a quantitative weighted bound in this range through Theorem 4.1.
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Quantitative estimates and extrapolation for multilinear weight classes

Corollary 4.2 Let T be an m-linear or a positive valued m-sublinear operator and
suppose that there exist ry, ..., r, € (0,00), s € [1, oo] such that for all bounded
compactly supported f1, ..., fm, g we have

(T Cfrs oo fm) 8 S S;p Ay, Sy s &),

where the supremum runs over all sparse collections . with a fixed sparsity constant.
Then for all py, ..., pm € (0,00] with p > (7, s) and all weights w € Aj ) the
operator T extends to a bounded operator LP! (wfl) X oeox LPm(whmy — L”(wp)
Moreover, T satisfies the bound
e
ma\ T L e
P m Pm P S

71l p, W]y LPm (wh™)— LP (wP) ~ S [ ]* L, s) (4.3)
Proof We set % = , + Z i—1 7.+ Assuming the set of p satisfying p > (¥, s) is
non-empty, we have t < 1. Indeed for such a p we have

| GG |
-4y — =1
TP 1 Pi
j_
ing L =% L
Setting Tl < rj,we have
1 1 1 LT
. 1 T T
q ’+Z/ lr] j=1 J s
so that
1 1 1
TR A
JEE e E E A
rl q1 'm dm s/ q
Then by (4.2) with this specific choice of ¢; we obtain
.
”T”qu(wa)x L () L1 () S (Wl G
forall w € Aj.(7.5)- Thus, it follows from (4.1) that for all py, ..., py € (0, co] with

p > (¥, s) and all weights w € Aj 7 () we have

= max

”T”L"l(wpl)x S LPm (wh™y— LP (wP) ~ [w]ﬁ(rs)
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Noting that
1 _ 1 1 1_1 _1
Tor=0-ortT Tor=0-orCT
rpi riopi I 2

the estimate (4.3) now follows from (4.4). O

Remark 4.3 We note that in particular the quantitative bound (4.3) extends the bound
(4.2) obtained from the sparse form even though the proof only used the sparse bound
for the particular values p— =7 L with - 1 = , + 3 j=1 7.~ It seems that these values
are, in some sense, central for the sparse form and the quantltatlve bound for these
values has already appeared in [33], but giving a quantitative bound for the whole range
of p > (7, s) is new. In the case m = 1 this value becomes p = r(si, + %) =1+
which is the value central in the main theorem of [5]. In particular whenr = 1,5 = 0o
we have p = 2 which is central in the theory of Calderén-Zygmund operators.

In the full-range case, i.e., whenr; = --- = r,, = 1, s = 00, the particular case
we consider becomes p; = --- = p,, = m + 1 and in [10] a bound in this case
for multilinear Calderén-Zygmund operators was found. Using the sparse domination
result of [10], this result was extended by Li, Moen, and Sun in [34] to the range of
pj € (1,00) with % < 1. They showed that for a multilinear Calderén-Zygmund

operator T, all py, ..., pn € (1, 00) with % < 1 and all weights w € Aj we have
max(];—;l,..r,%,l)
IT 1 221 (wy) - x LPm ()= LP (v3) S (wly , (4.5)

P

where the class A is defined through the constant in (2.18), and vy := ]_['j": 1 wjpj .

They proved that this same bound holds even in the case - > 1 for multilinear sparse
operators, leading them to conjecture that the bound (4.5) should also extend to the
case - > 1. This conjecture was independently proven to be true by Conde-Alonso
and Rey [6] and Lerner and Nazarov [29] for kernels satisfying log—Dini conditions.
We also refer the reader to [23,26], where the weaker Dini condition was considered
in the linear case. The Dini condition was used in the multilinear setting by Damidn,
Hormozi and Li [9] where, in addition, quantitative mixed multilinear A ;—A bounds
were considered.

Our results yields another proof of the extension of the bound to the case % > 1.To

see this, we note that by replacing the w; by wfj we have vy = ]_[] l(wp’ ) 1’/ = w?
and

(]~ wi)], = 11
Thus, the result (4.5) takes the equivalent form

= MaX (P{seees Py D)
71 p, W]y x LPm (wh" y— LP (wP) ~ [
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Quantitative estimates and extrapolation for multilinear weight classes

which precisely corresponds to the bound (4.2). By applying our extrapolation result
we can now extend (4.5), proving the following:

Corollary4.4 Let T be an m-linear Calderon-Zygmund operator. Then for all
Pls---» Pm € (1,00) we have

/ /
max %‘pl—')"l)
IT 1121 (i) e x LPm ()= LP (v) S [w]Aﬁ

As in Corollary 4.2, our result actually yields weighted bounds for multilinear
Calderén-Zygmund operators in the more general case pi, ..., pnm € (1, 00] with
1
= > 0.

P

4.2 Vector-valued extrapolation

By Fubini’s Theorem we are able to extend the extrapolation theorem to a vector-valued
setting. In the following result we are considering spaces of the form L” (w?; L1(2))
for p,q € (0, 0o], a weight w, and 2 a o-finite measure space. Such spaces consist
of functions f : R" — L9(2) such that the function || || L¢(q) lies in L? (w?), with
I £llrwrizay = |[I1f e ||Lp(wp). In the case when p = ¢, we can use Fubini’s
Theorem to find that

1A lzaqua:zacy = [1F 1Loan | 1oy

valid for any g € (0, oo], allowing us to carry over scalar-valued estimates to the
vector-valued setting.

Theorem 4.5 (Vector-valued extrapolation) Let ry, ..., ry € (0,00), s € (0, oo]. Let
Q be a o-finite measure space, let qi,...,q, € (0,00] and ¢ > (¥, s), and let
(fts ..., fm, h) be an m + 1-tuple of measurable functions on R"* x Q. Assume that
there is an increasing function ¢g 7 g such that the inequality

m
Ihlzawe) < 6575 (B G.0) [ Tl o, 0, (4.6)
j=1 J

holds pointwise a.e. in Q for all w € A i ).
Then for all py ..., pm € (0,00] with p > (F, s) there is an increasing function
©5.G.7,s such that

m
IllLrwr;La@) < 05.5.7.s (W15,¢.s) 1_[ ||fj||Lp_,-(w;’j;Lq,-(Q))
j=1
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forall W € A (+.5)- More explicitly, we can take

1
1_1 1L _ 1 1_1\\r
5 7 max L dqr m an ’tf 31
m- JE S U A 111
5575 =27 @555 | Cpg.rst o T
where L =y L
r =l
Proof Set f; := | fill ;4 (Q),h := ||| L9 (), Which, by Fubini’s Theorem, are measur-

able functions on R". Then by Fubini’s Theorem, the assumption (4.6), and Holder’s
inequality, we have

2l aqway = [Wll oy 1] g e

m
< 955D 7.0 [T T 15105 5,
J

=1 L9(2)
m
< 9575070 [ T | 151105 0%,
j=1 7L Q)
m
= .75 (0], G.5)) 1"[1 £ 305
J:
Thus, we may apply Theorem 2.2 to the m + 1-tuple ( f], cees fm, h), proving the
result. O

By iterated uses of Fubini’s Theorem, a similar argument also allows us to extrapo-
late to vector-valued bounds with iterated L9-spaces which were considered by Benea
and Muscalu through their helicoidal method [4], but we do not detail this here.

We emphasize here that our extrapolation result goes through even if we have
qj = oo for some j € {1,...,m} in (4.6). The conclusion of our result then yields
vector-valued estimates in the mixed normed spaces L?J (L°°).

If we take 2 = N with the counting measure, we obtain vector-valued bounds
for £9-spaces. Given an m-linear operator 7' and sequences of measurable functions

(FHken, -« oo (fMken, we may define

T((FOkeNs - (FkeN) i= (T(FL o f™)ken- (4.7)

By combining the vector-valued extrapolation theorem with Corollary 4.2, we obtain
the following:

Corollary 4.6 Let T be an m-linear operator and suppose that there existry, ..., ry €
(0, 00), s € [1, 00] such that for all bounded compactly supported fi, ..., fm, g we
have
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|<T(f1’ cee fm)v g>| 5 S;pA(r],A.‘,rm,s’),y(fh S fmv g),

where the supremum runs over all sparse collections . with a fixed sparsity constant.

Then for all py ..., Pm.q1, ..., qm € (0,00] with p, g > (¥, s), the operator T
has a bounded extension LP! (w{71 SO X oo LPm (wh s g4y — LP(wP; £9) given
by (4.7). Moreover, there is an increasing function ¢ ; 7 s such that

Ir ||Lp1 (wfl S091) X oo LPm (wh™ s 04m ) — LP (wP;£9) = ¢p,q,r,s ([w]ﬁ,(F,s))

forallw € Aj ;). More explicitly, we can take

rL 1 -1 'L_qi 11 11
7 -5 2 Iz q S
max | g, e | max | A A
G5a7s(0) =1 TTar Tmdam q°s TP Fm pm P8 ) (4.8)

Proof For each j € {1,...,m}, let ( fkj )keN be a sequence of simple functions with
at most finitely many non-zero entries. Setting f;(x, k) := ka (x) and h(x, k) :=
T(fkl, e f,:")(x), it follows from Corollary 4.2 that (4.6) is satisfied with

L1
max( i s e i_i)
Girs() =1 NI i
The assertion now follows from Theorem 4.5 and density. O

Remark 4.7 If one can use an argument where extrapolation is only required once,
then we may be able to replace the exponent in (4.8) by the smaller exponent

L 1 11

Il I'm s
max(L_L""’L_L’L_l>

r P1 Tm Pm D s

which no longer depends on the exponents of the £9/ spaces. One way of doing this
is by considering a vector-valued sparse domination rather than a scalar one. Such a
sparse domination for the bilinear Hilbert transform is obtained in [3]. See also [18]
where such ideas are used for vector-valued Calder6n-Zygmund operators.

4.3 The bilinear Hilbert transform
The bilinear Hilbert transform
dr
BHT(f1, f2)(x) :=p.v. Rfl(x —t) falx +1) "

is an integral operator falling outside of the theory of bilinear Calderén-Zygmund
operators. It was introduced by A. Calderén and he wanted to know if it was bounded
as an operator from L? x L to L?. This question was answered by Lacey and Thiele
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and they showed that BHT is bounded L' x LP2 — LP? for all p1, pa € (1, o]

with % < p < 00, % = ﬁ + é, see [25]. It is an open problem whether one can

remove the condition + < % or not. However, in this range several weighted bounds

and vector-valued extensions have been obtained, some of which we detail here.
Let ry, 2, s € (1, 00). Then, under certain conditions on rq, 2, and s, the sparse
domination

[(BHT(f1, f2), &) < S;P Ary ), (15 2, 8)

was shown in [8]. These conditions can be formulated in the following equivalent
ways:

Lemma4.8 Letry,rp,s € (1,00). Then the following conditions are equivalent:

(i) We have max (% %) + max (% %) + max (S—l, %) < 2;

(ii) There exist 01,62, 03 € [0, 1) with 61 + 0, + 63 = 1 50 that

1 146 1 146, 1 1—63
, - > .

< , <
r 2 r 2 K 2

The sparse domination in terms of characterization (i) was obtained by Culiuc, Di
Plinio and Ou in [8] and characterization (ii) was used in [3] where more general
vector-valued sparse domination results were obtained.

Note that if we have r1, r2, s € (1, 0o) satisfying one of the equivalent conditions
(i) or (ii) and we have p1, p» € (1, oo] with p > (¥, s), then

1 1 1 11 11 11 3
—=—+ —<max| —, - )J+max|{—, - ) <2—max| —, - | < =
P P P2 r 2 r2 2 5" 2 2

so that we are still in the range of Lacey and Thiele.

From the sparse domination result for BHT, it was deduced in [8] that we have the
weighted bounds BHT : LP!(w!") x LP'(w!") — LP(wP) for all pi, p2 € (1, 00)
with p > (7, s) in the Banach range p > 1 and for all w € Aj 7 ). These weighted
bounds were used in [7] to obtain weighted and vector-valued estimates in the range
p < 1through extrapolation using products of A, classes. This result was extended in
[33] where the full multilinear weight classes were used, but only the cases for finite
pj were treated. However, their methods can be used to also obtain the cases with
pj = oo [32]. By applying Corollaries 4.2 and 4.6 we obtain the following result:

Corollary 4.9 Let ry,ry,s € (1,00) satisfy one of the equivalent conditions in
Lemma 4.8. Then for all py, p> € (1, 0o with p > (¥, s) we have

1 1 11

rl T -3

max{ T T T

< = . rn prr mn pP2 P S
|| BHT ||LP1(w{’l)XLpz(wé’Z)_)Lp(wp) ~ [w]p! .

forallw € Aj ).
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Moreover, for all p1, p2,q1, q2 € (1, 00] with p, ¢ > (7, s) there is an increasing
Sunction ¢ 5 7 s such that

|| BHT ”L!’l (wfl 1091 ) x LP2 (w;2;gq2)ﬁLp(wp;gq) 5 ¢a,tj,7‘,s([ﬁ)]ﬁ,(ﬂs)) (4.9)

forallw € Aj i ).

While Corollary 4.6 gives us an expression for the increasing function ¢ 7 7 s in
(4.9), this estimate will not be sharp in general, see also Remark 4.7. Rather, a better
quantitative estimate can be obtained if one applies our extrapolation result to weighted
bounds that can be obtained from the vector-valued sparse domination result obtained
in [3, Theorem 1], but we do not pursue this further here.

Our result should be compared with [33, Corollary 2.17] and [4, Theorem 3].
Qualitatively, we completely recover the results on weighted boundedness in [33,
Corollary 2.17] and extend it in the sense that we also include the cases where either
p1 or p; is equal to oo and where either g; or ¢ is equal to oo, but this can also be
done through their methods [32]. If, for example p; = oo, then we have p, = p and
our scalar bound takes the form

I Avwillzee 220l Lo )

forall p € (rp, s) and all weights wi, wy satisfying

[8] (00, 1,75 = SUPCw; oWy ) 1 {wiwa) 1 < oo.
o

)|

rzﬁ

||

This is also slightly more general than the weighted bounds in [3, Corollary 3] in this
endpoint case since they only formulate their result in the case p; = oo when wy = 1
(or more generally, p; = oo when w; = 1), but their methods do allow for this more
general case.

The result [4, Theorem 3] asserts thatif p1, p2, g1, g2 € (1, ool satisfy p, g > (F, s)
for r1, r2, s € (1, 00) satisfying one of the equivalent properties of Lemma 4.8, then
we have

| BHT || 1 a1y LP2 (092)— 1P (9) < OC. (4.10)

This result is completely recovered in Corollary 4.9 in the unweighted version of (4.9).

By again extrapolating from the weighted vector-valued bounds we can also con-
sider iterated €9 spaces in our results. For example, by applying Theorem 4.5 to the
weighted vector valued bounds (4.9), one can obtain

BHT : L' (£2(£%)) x LP2(£>®° (%)) — LP(£2(¢%))
for all p1, pa € (1, o0] with % < p < oo. Such bounds were already obtained in [2]

through the helicoidal method, but could not be obtained through earlier extrapolation
results. More precisely, to obtain this result through extrapolation one needs to be able
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to extrapolate away from weighted L estimates which is one of our novelties. These
type of multiple vector-valued bounds can be applied to prove boundedness results of
operators such as the tensor product of BHT and paraproducts and we refer the reader
to [2] for an overview of such operators.

4.4 Endpoint extrapolation results
Finally, we shall discuss some of the endpoint estimates one can extrapolate from.
The following is an extrapolation result involving weak-type estimates. The trick

used to obtain this result is well-known and can be found already in [17].

Theorem 4.10 (Weak type extrapolation) Let (f1, ..., fu,h) be an m + 1-tuple of

measurable functions and letry, ..., ry, € (0, 00), s € (0, 0o]. Suppose that for some
q1s ..., qm € (0,00 with g > (¥, s) there is an increasing function ¢g such that
m
o) = 5 @g.6.0) [Tl 0, (4.11)
j=1 '

forallw € Aj i ).
Then for all py ..., pm € (0,00] with p > (F, s) there is an increasing function
©p.G.7,s such that

m
Wl Lroequey < 65 475 (5.¢.0) [ T171,0, () (4.12)
j=1 !

forall W € A, +.5)- More explicitly, we can take

1 4q) Tm_gm_ q_S
11 01 1 1 1

1_ 1 1 1 1_1 T
m2 rmax( )
bp.5.7.s0) =27 ¢ | Cpg7.st o s ; (4.13)

1 _ m 1
where - =, .

Proof Let X > O andset E; := {x € R" : |h(x)| > A}. We define
hy 1= AXE,
and note that by (4.11) we have
1 R m
ol Laqway = Mw2(E)) 4 < Ikl Lacws < ¢5(W]g,¢.5) 1_[ IFilla; W)
j=1 !
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Thus, by applying Theorem 2.2 to the m + 1-tuple (f1, ..., f, k) we conclude that
forall py ..., pu € (0,00] with p > (¥, s) there is an increasing function ¢ ; 7
such that

m
allzery < 5575015650 [ TIF 0, ()
j=1 '

for all w € Ap 7,5) With ¢ 7 7 ¢ given by (4.13). As A > 0 was arbitrary, noting that
sups~o 171l Lpwry = Bl Lp.ocwpy proves (4.12). The assertion follows. O

As a consequence we can extrapolate from weak lower endpoint estimates in cases
where strong bounds are not available. Passing to the full-range case wherer; = - - - =
rm = 1 and s = oo, writing 1 for the vector consisting of m components all equal to
1, we obtain the following corollary:

Corollary 4.11 Let (f1, ..., fm,h) be an m + 1-tuple of measurable functions and
suppose that there is an increasing function ¢ such that

m
I, 3y = 90T G 0o) [T 1210
j=1

forall W € A7 (1 .00)

Then for all py ..., pm € (1, 00] with % > 0 there is an increasing function ¢3
such that

m
Ilroscun < @500 3.0 [T 1100 ()
j=1

forall w € A,}’ (1.00)- More explicitly, we can take

$(1) =2 (C5t")" .

On the other hand, we can also extrapolate from the upper endpoints. An application
of Theorem 2.2 in the s = oo case withq| = - - - = g, = 00, writing 5o for the vector
consisting of m components all equal to oo, yields the following:

Theorem 4.12 (Upper endpoint extrapolation) Let (f1, - - ., fm, h) be an m+1-tuple of
measurable functions and letry, ..., r, € (0, 00). Suppose that there is an increasing
function ¢ such that

m
lhwlizee < ¢([D]s,00) [ 5wl
j=1

forallw € Az 7.00)-
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Then for all pi ..., pm € (0, 00] with p > 7, there is an increasing function Dp.7
such that

m
I Leqry < @57 (015.¢.00) [T Il 0; (")

j=1 !

forall w € Aj 7 o). More explicitly, we can take
I 1
(o ]
¢pi(1) =279 | Cjt O )

1 1
where + = Y, ot
An interesting application is related to the space BMO of functions of bounded
mean oscillation. We define the sharp maximal operator M* by

M f= Sgp(lf —{(/.oh1.0x0

forlocally integrable functions f, where the supremum is taken over all cubes O € R”".
The classical definition of BMO can be given in terms of M* by saying a measurable
function f is in BMO if M* f € L°, with | fllgmo = ||M* f|lL~. The way we
have dealt with weighted estimates in L° so far suggests the following definition of
a weighted version of the BMO space:

Definition 4.13 Given a weight w, we define the space BMO(w) as those locally
integrable functions f such that

Il £ IlsMow) = II(M* fw|lp= < oo.

Weighted BMO spaces also appeared in the work of Muckenhoupt and Wheeden
in [36], and they showed that the estimate

ITfllBMOw) S I fwllzee, (4.14)

with an explicit constant depending on w, is satisfied when T is the Hilbert transform,
if and only if wle Aj. We recall here that the condition wle Aj is equivalent
to our condition w € Ao (1,00) With [W]eo (1,00) = [w_l]Al. Later it was shown
by Harboure, Macias and Segovia in [19] that one can extrapolate from the estimate
(4.14) for an operator T to obtain that T is bounded on L”(w?”) for all w” € A,,.
As a consequence of Theorem 4.12 we obtain a qualitative multilinear version of this
result.
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Corollary 4.14 (Extrapolation from BMO estimates) Let T be an m-(sub)linear oper-
atorand letry, ...,y € (0, 00). Suppose that there is an increasing function ¢ such
that

1T (fis- - ) IBMO@w) < (D), 3.00) [ | I £5wjillzes

j=1

forallw € Az .00y and all f; with fjw; € L.
Then for all pi ..., pm € (0, 00] with p > 7, there is an increasing function Q57
such that

0T Cfrs oo fdllrcwry < 657 15.G.00) [ 1510, ()

j=1
forallw € Aj 7 o) and all f; € LPi (w;j ), whenever the left-hand side is finite.

Proof We apply Theorem 4.12 to the m + 1-tuples (f1, ..., fu, M#(T(fl, ey fm))).
Then we find that for all p; ..., p,, € (0,00] with p > 7, there is an increasing
function ¢ 7 such that

15T (i S eron < 057056000 [T oy iy 19

o
i=1 !

forallw € Aj 7 o0y andall f; € LP (w;) 7). By the classical Fefferman-Stein inequal-
ity for the sharp maximal operator, see [12], we find that

ITCfrse s f)llerawry S UMPT 1y ooy f)) e oy,

for p > 1, with implicit constant depending on the Ay, constant of w”, which is
bounded by an increasing function of [w],, (,o0), Where % = Z'}':l % see also [15,
Chapter 7]. Since [w]p,(r,00) < [ﬂ)’]ﬁ’(;’s) by Holder’s inequality, the result for p > 1
follows from (4.15). By extrapolating again, we also obtain the cases p < 1, proving
the assertion. O

Examples of multilinear operators satisfying weak-type and BMO endpoint esti-
mates are multilinear Calderén-Zygmund operators, see also [16, Section 7.4.1].
Weighted estimates in these situations can be found in [30].
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