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Abstract

We prove the extensions of Birkhoff’s and Cotlar’s ergodic theorems to multi-
dimensional polynomial subsets of prime numbers P*. We deduce them from
ep (Zd)—boundedness of r-variational seminorms for the corresponding discrete oper-
ators of Radon type, where p > 1 and r > 2.

1 Introduction
Let (X, B, u) be a o-finite measure space with dy invertible commuting and measure
preserving transformations 77, ..., Ty, : X — X.LetP = (P], el Pdo) CRF
R% denote a polynomial mapping such that each #; is a polynomial on RF having
integer coefficients without a constant term. Let B be an open bounded convex subset
in R* containing the origin such that for some ¢ > O and all N € N,

[-N,«N1* € By € [-N, NT, (1.
where for A > 0, we have set

sz{xeRk:)leeB}.

In this paper we consider the following averages

Ay f(x )_W > Y (T ) 1 0 ),

neN¥ peP!”
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where k = k' + k”, P denotes the set of prime numbers, and

mg(N)= Y Y dpy(n p).

X K
neN" pelP

One of the results of this article establishes the following theorem.

Theorem A Assume that p € (1,00). For every f € LP(X, u) there exists f* €
L? (X, u) such that

Jim Y fx) = ),

for pw-almost all x € X.

Sums over prime numbers are irregular, thus it is more convenient to work with
weighted averaging operators,

k//
P Py (n,p)
M) = 5 (N) X (e ) sy p) | [T102 ).
neN¥ pePkﬁ j=1
where
k//
Ip(N) = Y Y 1p,(n.p) ]"[logp,

neNF pePkN
Then the pointwise convergence of («y f : N € N) can be deduced from the proper-
ties of (#n f : N € N), see Proposition 2.1 for details.

Next to the averaging operators we also study pointwise convergence of truncated
discrete singular operators. To be more precise, let K € C! (]Rk \ {O}) be a Calderén—
Zygmund kernel satisfying the differential inequality

1K 0l + VR @) < 1, (1.2)

for all x € R¥ with |x] = 1, and the cancellation condition
/ K(r)dx =0, (1.3)
B;\By/

for every 0 < A’ < A. Then the truncated discrete singular operator %I\SID is defined as

k//
t%ﬂ]\g;)f(x) Z Z f( 7>1(n p Pdo(n P) )K(n, p)lp,(n, p) (l_[log |pj|) .

ne Z " pePy” j=1
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The logarithmic weights in .# ]7; and %”133 correspond to the density of prime numbers.
In this article we prove the following theorem, which may be thought as an extension
of Cotlar’s ergodic theorem, see [4].

Theorem B Assume that p € (1,00). For every f € LP(X, ) there exists f* €
L? (X, u) such that

Jim L f(x) = f*(x),

for p-almost all x € X.

The classical approach to the pointwise convergence in L”(X, i) proceeds in two
steps. Namely, one needs to show L? (X, ) boundedness of the corresponding maxi-
mal function reducing the problem to showing the convergence on some dense class of
L?(X, n) functions. However, finding such a class may be a difficult task. This is the
case of one dimensional averages along (n” : n € N) studied by Bourgain in [2]. To
overcome this issue Bourgain introduced the oscillation seminorm defined for a given
lacunary sequence (N; : j € N) and a sequence of complex numbers (a, : n € N) as
; i 1/2

Oj(a, :neN) = Z sup ‘an—aNj]

j=1 Ni=n=Nji
Then the pointwise convergence of (<y f : N € N) is reduced to showing that

10 (Inf:NeN)2=o0 (11/2) ,

while J tends to infinity. In place of the oscillation seminorm, we investigate
r-variational seminorm. Let us recall that r-variational seminorm of a sequence
(a, : n € N) is defined by

1/r
J

Vi(a, :n eN) = sup Z |ak_/ — Akj |r
1

ko<ky<--<ky i=

In fact, r-variational seminorm controls O, as well as the maximal function. Indeed,
for any r > 2, by Holder’s inequality we have

Oy :neN)< J> FV,(a, :n €N).
Moreover, for any ng € N,

sup |ay| < lan,l + Vr(ay : n € N).
neN

Nevertheless, the main motivation to study L” (X, i) boundedness of r-variational
seminorm is the following observation: if V,(a, : n € N) < oo for any r > 1 then the
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1600 B. Trojan

sequence (a, : n € N) converges. Therefore, we can deduce Theorems A and B from
the following result.

Theorem C For every p € (1, 00) there is C, > 0 such that for all r € (2, 00) and
all f € LP (X, ),

|
|

The constant C, is independent of the coefficients of the polynomial mapping P.

v, (//zﬁf:NeN)HLP 5cpr+2||f||”, (1.4)

and

.
v, (%ff:NeN)HU < Cp—If - (1.5)

The variational estimates for discrete averaging operators have been the subject of
many papers, see [8,10,12,13,15,16,26]. In [10], Krause studied the case dy = k =
k' = 1 and has obtained the inequality (1.4) for p € (1, 00) and r > max{p, p'}.
On the other hand, Zorin-Kranich in [26] for the same case obtained (1.4) for all
r € (2,00) but for p in some vicinity of 2. Only recently in [12] the variational
estimates have been established in the full range of parameters, thatis p € (1, co) and
r € (2, 00), covering the case k” = 0. In [26], Zorin-Kranich has proved (1.4) also for
the averaging operators modeled on prime numbers, that is when dyp = k = k” = 1
with a polynomial P(n) = n. It is worth mentioning that the variational estimates
for discrete operators are based on a priori estimates for their continuous counterparts
developed in [9], see also [12, Appendix].

The variational estimates for discrete singular operators have been studied in [3,
12,13,16]. In [16], the authors obtained the inequality (1.5), for the truncated Hilbert
transform modeled on prime numbers, which corresponds to dy = k = k” = 1 and
a polynomial P(n) = n. In fact, discrete singular operators of Radon type required a
new approach. An important milestone has been laid by Ionescu and Wainger in [7].
Ultimately, the complete development of the discrete singular operators of Radon type
has been obtained in [12].

Concerning pointwise ergodic theorems over prime numbers, there are some results
using oscillation seminorms. In [1], Bourgain has shown pointwise convergence for
the averages along prime numbers for functions from L?(X, ). Then his result was
extended to all LP(X, n), p > 1, by Wierdl in [24], see also [2, Section 9]. Not
long afterwards, Nair in [18] has proved Theorem A for L*>(X, 1), dy = k = k" = 1,
and any integer-valued polynomial. Nair also studied ergodic averages for functions in
LP(X, u) for p # 2, however, [19, Lemma 14] contains an error. In fact, the estimates
on the multipliers Wy are insufficient to show that the sum considered at the end of the
proof has bounds independent of | — a/b|. Lastly, the extension of Cotlar’s ergodic
theorem to prime numbers has been established in [14], see also [16].

In view of the Calderdn transference principle, while proving Theorem C, we may
work with the model dynamical system, namely, 7% with the counting measure and
the shift operators. Let us denote by M ﬁ and HK,), the corresponding operators, namely,
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Variational estimates for discrete operators... 1601

k//
1
Mﬁf(x)=m Y fa=Pm p) gy p) | [[logp |, (1.6)
neNk/ pe]P)kN Jj=1
and
k//
H{f)y= Y Y  f&—=Pnp)Ka plgn p) |]]log|p;l
neZl peEP =1

1.7
We now give some details about the method of the proof of Theorem C for the model
dynamical system. To simplify the exposition we restrict attention to the averaging
operators. Let us denote by my the discrete Fourier multiplier corresponding to M]f,).
To deal with r-variational estimates we apply the method recently used [13], see also
[26]. Namely, given p € (0, 1) we consider the set D, = {N, : n € N}, where
N, = L2”pJ. Then in view of (5.6) we can split the r-variation into two parts: long
variations and short variations, and study them separately. For each p € (1, 0c0) we
can choose p so that the estimate for £7-norm of short variations is straightforward.
Next, to control long variations we adopt the partition of unity constructed in [12],
that is

for some parameter B € Ny. Each projector EE s 1s supported by a finite union of

disjoint cubes centered at rational points belonging to %’f . In this way, we distin-
guish the part of the multiplier where we can identify the asymptotic from the highly
oscillating piece. The oscillating part is controlled by a multi-dimensional version of
Weyl-Vinogradov’s inequality with a logarithmic loss together with £7 (Zd) estimates
for multipliers of Ionescu—Wainger type. By the triangle inequality, to control the first
part it is enough to show

First, by the circle method of Hardy and Littlewood, we find the asymptotic of the
multiplier my,. Here we encounter the main difference from [12]. Namely, for &
sufficiently close to the rational point a/g we have

Vi (7:71 <mNn Efsf) = s) H@p < Cps+ D720 S Nler- (1.8)

my, (6) = G(a/)w, € —a/g) + O (exp (—cy/logN,) ). (1.9)

provided that 1 < ¢ < (log N,,)ﬂ/, where G(a/q) is the Gaussian sum and ®, is an
integral version of my, . The limitation on the size of the denominator is a consequence
of the fact that for larger g the Siegel-Walfisz theorem has an additional term due to
the possible exceptional zero of the exceptional quadratic character. The second issue
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1602 B. Trojan

is the slower decay of the error term in (1.9). In particular, the later has its impact
on the size of the cubes in the partition of unity. Both facts made the analysis of the
approximating multipliers v;;,n harder. To overcome this we directly work with my.
Moreover, we get completely unified approach to the variational estimates for the
averaging operators and the truncated discrete singular operators.

Going back to the sketch of the proof, in order to show (1.8), we divide the variation
into two parts: s < n < 2% and 2 < n, where k; >~ (s + 1)?/10. For large scales
2% < n, we transfer a priori estimates on L”-norm for r-variation of the related
continuous multipliers. Since the Gaussian sums satisfies |G (a/q)| < ¢~ for some
8 > 0, we gain a decay (s + 1)~ on £2. Consequently, by interpolation the £” norm
of r-variation for large scales is bounded by (s + 1)~ provided that £ is sufficiently
large. In the case of small scales s < n < 2, the estimate on £2 is obtained with
a help of the numerical inequality (2.3). We again show that ¢> norm is bounded
by (s + 1)~%p+1 Because of the weaker asymptotic (1.9), to obtain £” bounds for
r-variations over small scales required a new approach. We further divide the index
set into dyadic blocks, then on each block we construct a good approximation to the
multiplier giving bounds on £ norm independent of the block. At the cost of additional
factor of KSZ, we control £” norm of r-variation. Again, by interpolation combined with
a choice of f large enough we can make the £” norm bounded by (s + 1)72.

Let us briefly describe the structure of the article. In Sect.2.1 we collect basic
properties of the variational seminorm. In Sect. 2.2, we show how to deduce Theorem
A from r-variational estimates (1.4) and (1.5). Then we present the lifting procedure,
which allows us to replace any polynomial mapping # by a canonical one Q. In the next
section, we describe multipliers of lonescu—Wainger type whose ¢ norm estimates are
essential to our argument. In Sect. 3, we show a multi-dimensional version of Weyl—
Vinogradov’s inequality with a logarithmic loss. Moreover, we prove the estimate
on the Gaussian sums of a mixed type. Sections 4.1 and 4.2 are devoted to study the
asymptotic behavior of multipliers My and Hy, respectively. Finally, to get completely
unified approach to the variational estimates for the averaging operators and truncated
singular operators, at the beginning of Sect.5, we list the properties shared by them
which are sufficient to prove Theorem C. In the next two sections we show the estimates
on long and short variations.

Notation

Throughout the whole article, we write A < B (A 2 B) if there is an absolute
constant C > O such that A < CB (A > CB). Moreover, C stand for a large positive
constant whose value may vary from occurrence to occurrence. If A < Band A 2 B
hold simultaneously then we write A >~ B. Lastly, we write A <s B (A =5 B) to
indicate that the constant C depends on some § > 0. Let No = N U {0}. For a vector
x € R?, we set [¥]oo = max{|x;]| : 1 < j < d}. Givenasubset A C Z and x € R, we
set Ay = ANJ[O, x].
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Variational estimates for discrete operators... 1603

2 Preliminaries
2.1 Variational norm

Letr € [1, 00).Forasequence (a; : j € A), A C Z, we define r-variational seminorm
by

J r
. r
Viaj:j € A)= sup Z |akj — ak;_,
ko<--<ky i—1
k/-eA J=

The function r — V,(a; : j € A) is non-decreasing, thus
Viajij e A) < Vilaj:j €A,

and by Minkowski’s inequality

~|—

Vitaj:jed) <2 |a|
JjeEA

Moreover, for any jy € A,

sup |aj| < Vi(aj i j € A) + |aj|, @2.1)
JjeA
Finally, for any increasing sequence (u; : 0 < k < K), we have
1
K v
Vilaj tug < j <ug) < K7V (Z Vilaj:ug—1 < j =< uk)r) . (2.2)
k=1

The following lemma is essential in studying variational seminorms.

Lemma1 [15,Lemma 1] Ifr > 2 then for any sequence (aj : 0 < j < 2°) of complex
numbers

i 1/2
K 25711
. 2
Vilaj :0<j <2 <V2Y | D ag e — ajo .3
i=0 \ j=0

2.2 Pointwise ergodic theorems

In this section we show how to deduce the pointwise ergodic theorem (Theorem A)
from a priori r-variational estimates for ///K,).
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1604 B. Trojan

Proposition 2.1 Let p € (1, 00) and r € (2, 00). Suppose that there is C > 0 such
that for all f € LP(X, ),

Then there is C > 0 such that for all f € L?(X, ),

v, (///;’f ‘Ne N) HN <Clfller 2.4)

sup |y f|
NeN

=Clfler,

124
and the averages (%N f(x):N € N) converges for pu-almost all x € X.

Proof Letus fix N € N.Foreachm € {1,...,N}ands € {1,...,k"}, we set

k//
¥ Py (n,p)
Sl(\i)m (x) = Z Z f( 1(n,p) d()do x) 1y (n, p) l_[ Ingj s
neNY Pt J=stl

ps<m

and S,(\(,)’)Nf = Up (N)L//,Z,)f. For 0 < s < k”, by the partial summation we obtain
N
SO\ f = Z (SVF = Sy ) togm

= (log N)SY N + Z (logm — log(m + 1)) Sy 1V £.

m=2
Hence,
N—1
6) (s+1) (s+1)
s\ s = Goemsy i r| = Do siil s, !
m=2
N—1
SN og Ny Y 1 fllee (logm) ™!
m=2
< NEog N) ™71 fllwo, (2.5)

where we have used the trivial estimate
541 - - -
[suilr], < N dog ) mdtogm) ™ I f e,
which is a consequence of (1.1) and the prime number theorem. Observe that
k//
Sy f =7B(N) ],
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Variational estimates for discrete operators... 1605

thus by repeated application of (2.5), we arrive at the conclusion that
[os .45 1 = tog ¥ s | S 0s(N)Mog M7 I f ey (26)

because the prime number theorem implies that 95 (N) ~ NX. In particular, by taking
f =1x and p = oo in (2.6) we get

75 (N) = 9p(N)og )™ (140 ((og M) ™")).

Hence, for any p € [1,00] and f € LP (X, n),

| k= r| s dog M~ I e @7

Next, if p > 1 then we can write

sup | f|| = | sup [ AL g|| + |sup |2 f - Ay
nEN Ly nEN Lr nGN Lr
1/p
< swlaZr|l ] e
neN LP neN

In view of (2.1), a priori estimate (2.4) entails that

sup %I\?f’
NeN

S fllee.
Lp

Hence, while proving p-almost everywhere convergence of the averages (.@71\/ fiNe
N) for f € LP(X, 1), we may assume that the function f is bounded. By (2.7), for
p = 00, we can write

LG 1) — | < | s - s S tog M flne.

Therefore, the convergence of (///K,) f(x) : N € N) implies the convergence of
(/) f(x) : N € N) to the same limit. ]

Thanks to the Calderén’s transference principle we can restrict attention to the model
dynamical system, that is, Z% with the counting measure and the shift operator. Hence,
it suffices to study the operators (1.6) and (1.7) on £7 (Z%).
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1606 B. Trojan

2.3 Lifting lemma
For the polynomial mapping £ = (P1, ..., Py, ), let us define
deg®? = max {deg®; : 1 < j < do}.
It is convenient to work with the set
r— [)/ € ZM\{0}: 0 < y; < deg®, foreach j = 1,...,k}

equipped with the lexicographic order. Then each #; can be expressed as

Pi(x) = Z cjyx?,

yell

for some ¢}, € Z. The cardinality of the set T is denoted by d. We identify RY with
RI . Let Abea diagonal d x d matrix such that forall y e " and v € Rd,

(Av)y = lylvy. 2.8)
Fort > 0, we set
Ay = (tly‘vy = l").
Finally, we introduce the canonical polynomial mapping,
Q=(Qy:y€F):Rk—>Rd,

by setting @, (x) = x¥. Now, if we define L : R? — R% to be the linear transforma-
tion such that for v € Rd,

(Lv); = Z CjyVys

yell

then LQ = P. The following lemma allows us to reduce the problems to studying the
canonical polynomial mappings.

Lemma2 [11, Lemma 2.1] Let Rﬁ be any of the operators Mﬁ or H]ic;. Suppose that
for some p € (1,00) andr € (2, 00),

Ve (Rﬁf N e N) Hu(Zd) = Corllf ozt

then

|

vr (Rﬁf N e N) Hzp(Z"O) < Crrll fllgp oy
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In the rest of the article by My and Hy we denote the averaging and the truncated
discrete singular operator for the canonical polynomial mapping Q, thatis My = Mf\}

and Hy = Hf\,z.

2.4 lonescu-Wainger type multipliers

Let # denote the Fourier transform on RY, that is for any f € L' (Rd),

FrE) = /R L f e dx,
If fet (Zd), then we set

fE& =) fresr,
xeZ!
To simplify the notation, by ' we denote the inverse Fourier transform on R? as

well as the inverse Fourier transform on the d-dimensional torus identified with (0, l]d.
We also fix n : RY — R, a smooth function such that 0 < n < 1, and

1 if xleo < 537,
n(x) = o
0 if |X|Oo > T6d -

We additionally assume that 7 is a convolution of two non-negative smooth functions
with supports contained inside [—%, é]d.

Next, let us recall necessary notation to define auxiliary multipliers of Ionescu—
Wainger type. For details we refer to [11]. The following construction depends on a
parameter S € N.

Forn € N, we set ng = Lnl/zoj and Qg = (no")? where D = 208 + 1. We define

D
=)
k=1
wherein for k € {1, ..., D} we have set
Mg ={p]" - pl* 1 v e Np and p; € PN (ng, n”] are distinct forall 1 < j < k}.
Let
P,={Q-w:Q| Qoandw € ITU {1}}.

Notice that N, € P, C Nenl/l(). For g € N, let us define

qu{aeNq:(a,q)zl},
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1608 B. Trojan

and
Aq={aeNZ:gcd(q,m,...,ak):l}.

Lastly, we set
P ={a/q:aeA,andq € P,}. (2.9)

Given (®; : j € Z) a sequence of multipliers on R¢ such that for each r € (1, 00)
there is A, > 0 such that for all f € L? (Rd) NnL" (]Rd),

. , 1/2
> |7 @75

jeZ

< Arllfllzr,

Lr

its discrete counterpart is given by the formula

ofer= Y n(&'€-a/)0,E-asm).

alqe%!

where &, being a diagonal d x d matrix with positive entries (¢,,, : y € I') such
that €, , < exp ( — nl/s). Then by [13, Theorem 2.1], for each p € (1, 00) and any

finitely supported function f : 74 C,
172
1 g 2\ |2
Z ‘7: (®,~ f)‘ Spop log(n + D) Ao fller, (2.10)

jel ow

where r = max {|'p/21, [p'/2] } The scalar-valued version of (2.10) was proved
in [7], see also [11]. The vector-valued extension was recently observed in [13].
Essentially its proof follows the same line as scalar-valued except that in place of
Marcinkiewicz—Zygmund inequality one uses Kahane’s vector-valued extension of
Khinchine’s inequality, see [13, Theorem 2.1] for details.

3 Trigonometric sums

3.1 Weyl-Vinogradov sum

We say that a subset of integers A is polynomially regular, if for all o, o1 > 0, there

are Bp > 0 and a constant C > 0 so that for any integer 1 < Q < (log N)*!, 8 > Bo
and any polynomial P of a form

a d
P(x):;x + -+ &1,
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for some coprime integers a and g, such that 1 <a < ¢, and
(logN)? < q < N¥(log N)~F,
we have

Z TP ()| < CO N (log )9, (3.1

neA
n=r mod Q

forallr € {1,...,Q}and N € N.
Let us check that Z is polynomially regular. We write

IN/Q] .
Z ezan(n)]l[],N](n) — Z eZmP(m) _I_O(Q)’ (32)
ne m=l

n=r mod Q

where

P(m) = P(QOm+r) = 4 Qdmd + lower powers of m.
q

Set M = |[N/Q] and a’/q’ = Q%a/q with (a’, ¢') = 1. Then
(log M)P "1 < g0~ < ¢' < g < M?(log M) P T,

and hence, by Weyl estimates with logarithmic loss (see e.g. [25, Remark after Theorem
1.5]),

< CM(log M) 1 n 1 n q' 2d2—]2d+|
o) —+ — 4+ — .
=< g g M M

M ~
Z eZmP(m)

m=1

Therefore, for 8 > Bo = (1 + «)(2d?> — 2d + 1) + day, by (3.2), we conclude that

Z TP )| < COT N (log N) ™,
neZi

n=r mod Q

proving the claim. Another example of polynomially regular sets is the set of prime
numbers. This is a consequence of [6, Theorem 10].

Our aim is to understand exponential sums over Cartesian products of polynomially
regular sets. Let us fix a function ¢ : R¥ — C satisfying

P <C, V)| <+ 1xh~" (3-3)

The main result of this section is the following theorem.

@ Springer



1610 B. Trojan

Theorem 1 Let Ay, ... Ay be polynomially regular subsets of Z. For all « > 0 there
are Bo > 0 and a constant C > 0 so that for all B > Bo and any polynomial P of a
form

Px)= ) &7,

O<|yl=d
wherein for some 0 < |yg| < d,

a

gVo__

1
ql” q*

q

or some coprtme mtegers a an q such that S a S q, an
j ] d h that 1 d
(log N)? < g < Nl (log N)7#,

we have

sup > T PWigm)g(n)| < CNFlog N
agl N |nediy - Ay

The constant C depends on o, d and a constant in (3.3).

Proof Let us first assume that ¢ = 1. The proof consists of three steps.

Step 1. We consider the case when k = 1 and |yy| = d. Take @ > 0 and &1 > 0, and
let 8 > Bo = 3B1 + 3da, where B is the value of By determined by A; for o and «;.
Suppose that a and ¢ are coprime integers such that 1 < a < ¢, and

a
£ ——
q

1
5_27
q

with (log N)? < ¢ < N?(log N)~#. By Dirichlet’s principle, there are coprime
integers a’ and ¢’ such that 1 < ¢’ < ¢’ < N%(log N)’%ﬂ, and

/

a
&a — —
q

| - 1
< ZN 4(log N)3P.

Ifa’/q’ # a/q then

/! /

a
— = sd—_/
q9 q q

<

/

a
§a— —|+
q

< iz + N~ (log N)3P.
q
Hence, we obtain

< = +gN~og N)3P < (log N)~F + (log N)~3F.

_Q | =

1
q

@ Springer



Variational estimates for discrete operators... 1611

Thus
(log N)3# < ' < N(log N) ™37,

Observe that the last estimate is also valid if ¢’ = ¢. Let Q be an integer such that
1 <Q <(logN)*.Givenr € {1,..., Q}, we set

Sr,N — Z e2niP(n)]1[1’N](n)’ and Sr,N — Z eZm’P(n)]l[l’N](n)’

neA| neA|
n=r mod Q n=r mod Q

where

/

a
P(x) = q—xd+~~+§1x.

/

We first show that

S,n| < CO 'N@IogN)™®, (3.4

sup
I<N'<N

forall B > Bo. If 1 < N’ < N(log N)~?, then there is nothing to be proven. For
N(log N)~® < N’ < N, we have

(log N')3# < ¢' < N¥(log N)"3# < (N")(log N)**~3# < (N')! (log Ny~ 3P

thus, by (3.1), we obtain

S, n| < CO7'N'(logN) ™ < €' 'N(log N) ™,

proving (3.4). We now set @ = &; — a’/q’ and apply the partial summation to get

N/
~ ~ 2iond
|Sr,N’} = Z(Sr,n — Sr.n-1)e mont <
n=1

SV,N” +

Sr,O‘

0 ,d : d
eZnt@n _ eZm@(n+l)

Sr.n

N'—1
+ 2
n=l1
Since
L _a 1g —d
0] < —N"“(log N)3¥ S N7,
q
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1612 B. Trojan

by (3.4), we obtain
N—-1
sup [S, | S Q7 N(og N)™* Y 10 n !
1<N’'<N n=1

< O 'N(ogN)™*,

which finishes the proof of Step 1.

Step 2. We next consider k > 2 and 9 # (0,...,0,¢,0,...,0) for any £ < d.
Without loss of generality we may assume that yo(1) > 1. By the triangle inequality
followed by Cauchy—Schwarz inequality we get

Z e2rriP(n)ILQ(n)

>

Z leriP(nl;ft)]lQ(nh }7[)

neA x - x Ay REA X -+ x Ay |n1€A;
2\ 2
<N(k71)/2 Z Z eZm’P(m;ﬁ)-ﬂQ(nl ﬁ)
AEA X x Ay |n1€A
(3.5)
Next, we have
2
Z Z eZﬂiP(nl;ﬁ)]IQ(n]’ﬁ)
nEA X+ x Ay |n1€A
2
< Z Z esz("“")]lQ(nl,ﬁ)
ﬁGZk*I nieA
< Y| YD AP PEI g 0y i)l (). i)
moedt [sezi!
< Y| Y PP oy, i) lg(n).A)|.  (3.6)

ni.n el ezt !

which, by another application of Cauchy—Schwarz inequality, is bounded by

1
2\ 2

N Y| Y ememi-reim g iyt i)

n el |77k
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Finally,
2
Yoo Y P I gy, i) I (), i)
ni,ny€Z ezt (3.7)
= > X ST g i),
nini el ek
where
O ={(x, %, x[,X) € Qx Q: (x1, %), (x], ) € Q},
and

Ox1, %, x1, %) = P(x1;X) — P(x; %) — P(x1; &) + P(x(; X).

Notice that the set © is a convex subset of a cube [— N, N]%*. Moreover, the polynomial
Q(x, x") has degree at least || having a coefficient &, in front of the monomial x7°.
Therefore, by [11, Theorem 3.1], there are Sy > 0 and C > 0 such that

Z Z eZniQ(nl,fz,n’],ﬁ/)]l@(nl’ }71, 1’1/1, ﬁ/) S CNzk(log N)—4O[’

ni,n e, ﬁ,;,/EZk’l

provided that 8 > By. Hence, by (3.5), (3.6) and (3.7) we obtain

> M PMigm)| < NFlog N

neA; X x A

Step 3. Suppose that k > 1 and yp = (0,...,0,£,0,...,0) for 1 < £ < d. Without
loss of generality we may assume that yp = (¢, ..., 0). The proof is by a backward
induction over £ € {1, ..., d}. We write

Z eZniP(n)]lQ(n) < Z Z ezniP(m;ﬁ)]lQ(nl’ﬁ)_ (3.8)

neA x---x Ay neAyx--x A |n1€A

If £ = d the conclusion follows by Step 1. Suppose that £ < d. In view of Step 2 and
the inductive hypothesis, the estimate holds for any |y = j, £ < j < d. Let 81 be
the largest value of By among those that were determined in Step 2 and resulting from
the inductive hypothesis. By Dirichlet’s principle, for each £ < |y| < d, we select
coprime integers a, and g, such that1 <a, <¢q, <N |V'(log N )’ﬁ', satisfying

a
£ _ Y
y 7,

1
< —N""og NP1,
qy
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1614 B. Trojan

If for some y € I', £ < |y| < d we have (log N)ﬁ1 < gy, then the conclusion
follows by the inductive hypothesis or Step 2. Otherwise, we set 0, = &, — a, /q,
and Q = Iem{qg, : £ < |y| < d}. We have

1
6,| < —N"dog NP1, (3.9)
9y

and
0 < (log N)*1,

where o = B - #{y € N§ : £ < |y| < d}. We have

Z Z TP o () 71)

neAy x - x Ay |n1€A;

=3

k-1
e,

< Z Z Z esz(”“ﬁ)ﬂQ(nl,ﬁ) .

Z eZniP(nl;ﬁ)nQ(n] , fl)
njeA]

(r],f)ENZ ﬁﬁEe’_Z":);IQ nl;rlleféd 0
(3.10)
Setting
Por) = ) &,
O<|yl=t
we can write
P(@m+r)= Y &(Qm+r) + Py(Qm+r) (mod 1)
l<|yl=d
a
= Z —LrV Z 0, (Qm +r)Y + Po(Qm +r) (mod 1).
t<iyi<d I t<ly|<d
Thus
XX | X e
(neNg acZl ! |, LIS
Q isFmod @ | M= Md 2 3.11)
= ~ (r) (r)
= > X Y (S50
(r1,)eNy 7eZ " Inmel
n=r mod Q
where

2mi 0, (n1,n)"
Apy i = €71 Xciyi=a O .
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Variational estimates for discrete operators... 1615

and

I L T,
n’1 <ny

",1 =r| mod Q

To estimate the inner sum on the right-hand side of (3.11), we apply the partial sum-
mation. Setting

(Mo, Mo+ 1,... M) ={n,€Z:(n,n) e},

we can write

(r)
Sn| n

M
Zl A N S(”) S(") S(")
ni,n ni,n ni—1,n
ni=My n1=My

A i — Anysral-

By (3.9), for (n1, n) € Q2 we have

|Ani = A S )0 |0y NPT < N og NP
l<lyl=d

Recall that 9 = (£, 0, ...,0) and

£ 1
Yo qz
thus, by Step 1 applied to Sflr]);l we obtain
sup ~Hlog Ny~ P,
Mo<n|<M,

whenever 8 > B>, where f, is the value of By determined in Step 1 for & + f1 and
«1. Hence,

M,
3 ,,l,,(s,g?n S,i?ln) < 0" 'N(log N)™.

ni=My

Consequently, by (3.8), (3.10) and (3.11) we get

Yo P MIgm)| < NF(log N) ™,
neA X - x Ay

provided that 8 > By = max{Bi, B2}.
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1616 B. Trojan

Finally, we deal with a general ¢. Given «, let Sy be such that

sup > T PWigm)| < CNFlog N)~kHDe kK, (3.12)

k
QC[—-N,N] Xeee X
Q convex ne A

We divide the cube [—N, N1¥ into J closed cubes (Q; : 1 = j < J) with sides
parallel to the axes and having side lengths O(N (log N )_"‘_1). Thus

J=0 ((log N)"<“+1>) . (3.13)

By Q9% we denote the interior of Q ;. We assume that Q¢ are disjoint with the axes.
Letn; be the vertex of Q ; at the largest distance to the origin. Then by the mean value
theorem and (3.3), we have

Z eZ”iP(”)]lQ;?mQ(”) (q‘)(n) - ¢(nj))

neA| x - x Ay
<Y sup [Vo (tn+(1—0nj)| - |n—njl
neg, (€01
SNUog )™ ' Y+ 17",

neQ;j
thus
J
Yo Y TP gengm) ($(n) —p(n))| S NlogN) Y. (3.14)
j=lneA; x---xAy
On the other hand, in view of (3.12), we get
¢ Yy D gengm)| S NFlog Ny Dk,
neA X - X Ay
hence, by (3.13),
J
. zﬂlP(l’l) k —
Dy D> e Lgong(n)| < N*(log N)™*,
j=1 neEA X - X A
which together with (3.14) completes the proof. O

We next apply Theorem 1 to get the following variant of Weyl—Vinogradov’s inequality.
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Theorem 2 Let & € T¢. Assume that there is a multi-index yo € T, such that

<1
_qza

E a
Yo q

for some coprime integers a and q such that 1 < a < q. Then for all @ > 0, there is
Ba > 0, so that for any B > Bq, if

(log N)? < g < Nl (og N)7#,
then

k//
sup [ Y Y eTEAP g, p)p(n, p) | [[logps || < CNFlog N)™.

Qcr-~, NIk / ” il
Q convex n ENk [?E]Pk =

The constant C depends on o, d and a constant in (3.3).
Proof We claim that the following holds true.

Claim1 For all @« > O, there is B4 > 0, such that for all 8 > By, N € N, and
r €{0,..., k"), if there is a multi-index yy € T, such that

<1
_qz’

a
S — -
Yo q

for some coprime integers a and q, such that 1 < a < g, and
(logN) < q < N"™(logN)~7,
then

SUP gy nk ZneNk/ ZpePk” eZniE-Q(n,P)]lQ(n, p)¢(n, p) (l_[.];:r-i-l log pJ')‘

Q convex

< CN*(log N)=+K'=r,

The proof is by a backward induction over r. For r = k” the assertion follows by
Theorem 1. Forr € {1,...,k"}, N e Nandm € {1, ..., N}, we set

k//
SO =3 Y TP 1m pgnpy | [] logp; |
neNk, pE]P’k” j=r+l

pr=m
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1618 B. Trojan

and

k//
Syn@E = Y > AP 19m, pyp(n. p) | [Tlogp; | -

/ 1" §—
neNF pe]P)k j=1

where 2 is a convex subset of [-N, N ]k. For 0 < r < k”, by the partial summation,
we can write

N

S\ = D0 (S5 = S ) togm
N—1
= Sy (og N) + > Sy D (log(m) — log(m + 1)) .
m=1

Hence, by the inductive hypothesis we get

S| = [V dog ) + Z sy !
< C/Nk(log N)foH’k, 7r’
proving the claim. Now, the theorem follows by Claim 1 for » = 0. O

3.2 Gaussian sums

Given g € Nand a € A, the Gaussian sum is

G(a/q) = . Z Z o2mi(a/q)Qx, y)
) //

Nk/ Ak//

where ¢ is Euler’s totient function, i.e ¢(q) equals to the number of elements in A,.
The following theorem provides a very useful estimate on the Gaussian sums.

Theorem 3 There are C > 0 and 8 > O such that for allq e Nand a € A,
G(a/g)| < Cq~°.
Proof Let us recall that for a, g € N, (see e.g. [17, Theorem 4.1])

Z 2riax/q _ n(q/ ged(a, q))

3.15
@(gq/ ged(a, q))’ @.13)

w(q)

X€Ay
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Variational estimates for discrete operators... 1619

wherein p(g) is Mobius function defined for g = p{ Lo.. p,{;", p; are distinct prime
numbers, as

gy = 1D == =1,
0 otherwise.

For each € > 0 there is C¢ > 0, such that (see e.g. [17, Theorem 2.9])

9(q) = Ceq' ™. (3.16)

We start the proof of the theorem by considering d = 1. Then

q
G(a/q) = l—[ (cl] Zezmayx/q) H L Z e2miayx/q

y=(y’,0)el x=1 y=(0,y")el’ @(‘]) XEAq

Suppose that k¥ > 1. If G(a/q) # 0 then g | a, for all y = (y’,0) € I'. Since
a € Ay, we must have k” > 1. For y = (0, y") € I, we set b, /q,, = a, /q, where
(by,qy,) = 1. By (3.15), G(a/q) # O entails that each g, is square-free. Since for
any p, a prime factor of ¢, there is y = (0, y”) € I such that p { ¢/q,, we conclude
that g is square-free. Because ¢ = lem (g, 1 y = (0,y") € T),

1 1
Ga/pl < ] P
y—ymer P@r) 9@

which together with (3.16) gives
|Gla/g)| < Ceq“™".

Next, let us consider the case d > 2. For a given polynomial P on R¥ with integral
coefficients we define

S, Py= Y D expCmiP(x,1)/q).

k/ k//
xeNq yeAy

Let

O<lyl=d

where a € A,. Our aim is to show that there are C > 0 and § > 0 such that for all
g € Nanda € Ay,

1S(g, P)| < Cq*=. (3.17)
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1620 B. Trojan

First, observe that for ¢ = ¢q192, (q1, g2) = 1, we have
S@. P) =S (a1.a5'P@2) S (42,07 Pla1 ).

Therefore, if ¢ = p{ R p,{,’" for some distinct prime numbers p;, then

m

s@. P =TTs(pi. R).

s=1

where

i
Pix) =2 P(%x).
q s

Since w(q), the number of distinct prime factors of ¢, satisfies (see e.g. [17, Theorem
2.10])

logg

w(g) = Co——r—-o,
loglog g

we have
20@ < Clq°.

Hence, it is enough to proof (3.17) for ¢ = p/ with p being a prime number and
Jj > 1. Since for any arithmetic function F, we have

Y Fx)= Y Fx)— Y  F(px),

XEApj XENP.,' XENP./—I

if j > 2 we write

SplLPy= Y 17 Y exp(2miP( px)/pl),

oef0, 1) (', x")eQe
where for o € {0, l}k//, we have set
Q% = N];/j X Np_;_ol X - X ij—(rk,/.
Fix o € {0, l}k”. For each y € I', we define

by _aypr’”
qy p’

’
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Variational estimates for discrete operators... 1621

where (by, g,) = 1. Let
g=Ilem(g, :y €T, ly|=2), and Q=lem(q, :yeT).

Observe that _
3 exp <2mP(x Pox ”)/pf) £0 (3.18)

(x',x" e

entails that ¢ = Q. To obtain a contradiction, let us suppose thatg < Q. Letyg € I,
[yol = 1 be such that g, = Q. Thus g | pI=°1 Forany r € N we can write

Z exp(ZmP(x pox ”)/Pj>

' x"eQd
x=r mod g

= exp (Zniﬁ(r/,p” "/ p’ ) Z 1_[ exp (2mibyx” /qy),

xeQ? vel
x=rmod g |y|=1

where

P(x) = Z a,x’.

yel
lyl=2

Thus (3.18) implies that g, | by,q, which is impossible. Hence, g = Q.
Now, let yp € I, [yo| > 2, be such that ¢,, = Q. Then

QV():QZQS qufq;lo,
yel
ly1=2

and thus
0" < g,y = @ < @MIZ14, (3.19)

Suppose that Q < p/. Since a € A,, we must have 0 # 0. Then for j < D =
max{|y”| : y € T'}, by a trivial estimate we have

Z exp (ZmP(x p°x")/p’ ) < phi—lol < pkid=d),
(' x")eQe
provided 0 < §; < (kD)_l. Since Q > pf_D, for j > D + 1 we have
o' > pie,
whenever 0 < € < (d(D + 1))~!. Hence, by (3.19),
ple < qy < plnl=o),
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1622 B. Trojan

Obviously, the last estimate is also valid for O = pj. Since Q° C N’; ;» by [21,
Proposition 3], there are C > 0 and 6, > 0 such that

> exp (2mi PG pTa"/p7 )| < CpIE,

', x" e
which finishes the proof of (3.17) for ¢ = p/, and the theorem follows. O

4 Multipliers

In this section we develop some estimates on discrete Fourier multipliers correspond-
ing to operators My and Hy.

4.1 Averaging operators

For a function f : Z¢ — C with a finite support we have

My f0) =7 (my f) @,

where my is the discrete Fourier multiplier

K
2mi&-Q(n, p)
my(§) = - (N) Z/ Z//e Lgy (n, p) H]logp’ :
neN pe]P)A J
wherein 95 is the Chebyshev function
k//
Ip(N)= Y Y 1p,(n.p) ]"[logp,
neNF pePkﬁ
By (1.1) and the prime number theorem,
5(N) ~ N*. 4.1)

Next, let us define

1 .
q)N(E) — m'/\ e27‘[l%"Q(NX) dx,
B
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where |B| denotes Euclidean measure of B. By a multi-dimensional version of van
der Corput’s lemma (see [22, Proposition 2.1]) we have

. R
[®n @] S min {1, [N
o0
where A is the matrix defined in (2.8). Moreover,
|®N($)—1|§min{l,‘NA§‘ } 4.2)
o0

Therefore, for N < N’ < 2N, we have

(@ (E) — Dy (§)] S min {(NAS\OO,

NAé‘:/d} . 4.3)

We start with the following proposition.

Proposition 4.1 For each 8’ > O there are C,c > 0 such that for all N € N, and
£ € TY satisfying

£, — Yl < NWIL, forally €T, (4.4)

q

where 1 < g < (log N)ﬁ/, acAy andl < L <exp (cx/log N), we have

[m (&) — Ga/q) @ (& — a/q)| = CLexp (—cy/logN).

The constant c is absolute.

Proof Observe that for a prime number p, p | ¢ if and only if (p mod ¢, q) > 1.
Hence, for each s € {1, ..., k"}, we have

k//
Yooy D Ew g wop) [ []logp;
uENk/ r”ENI‘;” pE]P)kH j=1
! >1 p=r"" mod q
< Nk Zlogp < N*logg.
rlq
Let0 =& — a/q. Then by (4.4),
|6, < NTIL,  forally eT. 4.5)

@ Springer



1624 B. Trojan

Since for (u, p) € N¥' x PX’ such that u = ' mod ¢, and p = r” mod ¢,

’ ” a ’ ” ’ ”
gu’ p’ = ?yu}’ pY +6,n" p¥ (mod 1)

%(r/)y’(r”)y” +0,u” p’" (mod 1),

we have
k//
Z Z eZmSQ(Lt,P)]lBN (u, p) 1_[ log pj
uENk/ Pe]pk// =
o
= 3 Y griwarth N N b ey, py | [] log py
r’eNg/ rHEA,‘;N uENk/ Pepk” =

u=r’ mod ¢ p=r" mod ¢

+O<Nk’110glog N).
) , (4.6)
Letus fixu € N¥, p e P* ~Land r|/ € A,. Then

fveN:@,v,p)eBy}=MVo+1,....V1),

forsome 0 < Vy < V| < N. Let \70 = max {Nl/z, Vo} and \71 = max{Nl/z, Vl}.
We have

Z £27mi0-Qu.p1.p) log p1 = Z 27i0-Qu, p1.p) log p1 + O(Nl/z).
Pl EHDvl \]P)VO r1 EP\?, \P%
Plzri, mod ¢ [)1£ri/ mod ¢

By the partial summation we obtain

Yoo A Diogp = Y 2RI TR (n)) log vy

neP; Py Vo<vi=¥
,,l J 0 vlzr;/ mod g
p1=ry mod g

= 9 (Vi: q. r{))e?™0Qu1.9) @.7)

— 9 (Vo: g, r)e? Q0 Vo-P)

V
_/ lﬁ(t;q,r)% (e2ni0-Q(u,t,ﬁ)) dr,

Vo

where for x > 2, we have set

U(x;q,r) = Z log p.
Per

p=r mod ¢
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Analogously, we can write

Z Q2Ti0-QUu.v1. ) _ VleZHiH-Q(u,Vl,ﬁ) . ‘}062711'0@(14,‘70,17)

Vo<v1 <V

(4.8)

1%
_/ 1ti (eznie.a(u,z,ﬁ)) dt+0(N]/2).
v, dr

Furthermore, in view of the Siegel-Walfisz theorem ([20,23], see also [17, Corollary
11.21]), there are C, ¢ > O such thatforallx > 2, (r,g) =land1 < g < (10gx)2’3 s

< Cxexp (—c@) . 4.9)

S(x:q,r) — ——
b o(q)

Hence, by (4.7), (4.8) and (4.5), we obtain

Z eZﬂiG'Q(u,pl,ﬁ) log pL— 1 Z eZniO-Q(u,vl,ﬁ)

I’1€IPV1 \PVQ (p(q) fosu=h
p|sri’modq
) 7 . Vi
SN+ 0V q.r) = —= |+ |9V q.r]) = —
(@) ()
’ ‘ lyl—1 v mo L
+{ 3 Jo, | M- f ‘0(r;q,r)— d
= 4 i ! w(q)

N
< Nexp (—c\/log N) +LN"! / t exp (—c\/log t) dr.
N1/2
Thus,

4 ; 1 . .
27i0-Q(u, p1,p) _ 27i0-Q(u,vy, p)
E e logp = — E e
¢(q)

nePy Py Vo<vi1=V)

plzri/ mod ¢
+0 (NL exp (—c‘/log N)) .
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In view of (4.1), similar arguments applied to the sums over p», ..., px~ lead to
‘ k//
Z Z eZHzQ-Q(u,p)]lBN (u, p) l_[ log p;
NP =1

u=r' mod q pfr’/ mod ¢

)k” Z Z eZmQQ(qu-i—r v)]l (qu+r v)
ueNE veN

+0 (NkL exp (—c\/log N)) .

w(q

By [11, Proposition 3.1], the number of lattice points in By at the distance < g
from the boundary of By is O(qu_l). Moreover, for each (x, y) € [0, 17%, and
(qu +qx,v+y) € By, we have

0 Qqu +qx.v+y) —0-Qqu.v)| < Cq »_ |6, | NVI7H < gNT'L.

yel
Hence, by (4.6) and (4.1),
) k//
Yoo Y NP1 wop) | [Tlogp;
NP J=l

u=r' mod ¢ p—r” mod ¢

Z Z 20U o (qu 41, v)+O(NkLexp<—C\/10W))

so(q)" )
ueNE veN
LT 8 et o ).
T @V ,
ueNE peNF

Finally, another application of the mean value theorem allows us to replace the sums
by the corresponding integrals. Indeed, we have

Z Z 27i60-Q(qu, v)]lB (qu,v) — /:/ 2i0-Qgx, \)]lB (gx,y)dxdy
ueNY yeNY

— Z / / 27119 Q(qu, v)]lB (qu l)) 27110 Q(gx, ))]lBN (qx y) dy dx
o w0, 1F Jo+(0, 1
weNY peNY
< Z // 27{19 ‘Q(qu,v) _ 2711(-) ‘Q(qugx,v+y) ]lB (qu v) dx dy
T .1
weNY e
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+ 2D /(01]k |1y (qu,v) — Lp, (q(u + x), v+ y)| dxdy,

L~
weNY beN

which is again bounded by ¢ N~ L. Therefore,

Pp(N)m (§) = G(a/q) | BIN*®y (& — a/q)| = CN*Lexp (—cy/logN)

In particular, taking § = 0,a = 0 and L = 1, we obtain

95(N) = | B| N¥ (1 +0(exp (—c\/@))). (4.10)
This completes the proof. O

Lemma3 For each a > O there is C > 0 such that for all N € N, and £ € T¢
satisfying

£, — d <N WL, forally e, (4.11)

q

wherel <gq < L,ae€ Ay, and1 < L <exp (ca/log N)(log N)™%, we have

Imy(§) — Gla/@)Pn(E —a/q)| = Clog N)™®.

Proof Given a > 0, let B/ > d B, where B, is the value determined in Theorem 2.
Suppose that (4.11) holds for some (log N W <g <Landa € A,. For each
y € T, by Dirichlet’s principle there are coprime integers a,, and g), such that I <

a;, < q)’, < N”IL=Y(log N)~#'/4  and satisfying

a/

& —

1 ,
Ll< —N"Log NP /4.
qy

14

Assume that for some y € I', (log N)ﬁ//d < q)’/ < N""L‘l(log N)_/S//d. Then, by
Theorem 2, we have

[my (&) < ClogN)™“.

Ifforally e I, 1 < ¢q), < (log N)P'/4 then we set ¢” = lem (q;, :y €T)and

ay = ay,q"/q, getting 1 < g” < (log N)# and a” € A, with

"

a
£, — e
v q//

< N ILdog N)F'/4.
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Since a’/q’ # a/q,

"
v _ %
q q

a//
)4
= ‘i:y_? +

a
g__”
g

logN)FL™! < — <

q"q

4

<N (1 + (log N)ﬂ’/d) ,

which is possible only for finite number of N’s.
Finally, in the case when 1 < ¢ < (log N )/3 , by Proposition 4.1, we obtain

my(§) = Ga/q)®n(E —a/q) + O (logN)™®),

which concludes the proof. O

Lemma4 Forall p € [1,00), Ni, N2 € N, N < Ny, and any f € ¢P(Z¢),

No—1
D My f = Mufl| < CpNTK @p(N2) = 95(ND) 1 f ller-
n=Ni o

Proof Let us denote by m, the convolution kernel corresponding to M,. Consider
(x,y) € N x P*'If (x,y) € By, then

k//

Ny—1 1 1
" g (e y) = max, >|=( - ) log .
o T IS V= sy T sy ) 118
=1iV] j=

If (x, y) € Bn,\ By, then by setting
no=min{n € N:x € B,},

we have

Nr—1 No—1 14
D Imagi (e, y) = mu(x, y)| = S > Lo log y,
R e 9p(ng) |~ vpn) vpmn+1) )Ll
n=N n=n j=1

k//

2 1
= - 1 .
(193('10) ﬂB<N2)> 1_[ 08V

j=1

Therefore,

N2~ 1 1
[myp1 —myul| =< < — )193(1\’1)
;; B Dp(N1)  9p(N2)
=IV] el

+ (¥p(N2) — p(Ny)),

Up(N1)
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and hence, by Young’s inequality,

Nr—1 Nr—1
DMyt f =My 1| < | D0 Imagr —mal| 1 fller
n=N op n=N 7l
Up(N2) — 9p(Ny)
S I fller-
Un(Ny)
which finishes the proof since 95 (N7) =~ N{‘ . O

4.2 Truncated discrete singular operators

In this section we investigate the asymptotic of Fourier multipliers corresponding to
the truncated discrete singular operators Hy with akernel K satisfying (1.2) and (1.3).
Let b be the Fourier multiplier corresponding to Hy, that is for a finitely supported
function f : 74 C,

Hyf=%" (th) )

where
k//
by@ =Y Y FTEQD K pyig o, p) | []log]p]
neZ¥ peEPY J=
We also define

\I’N(f) = p.V. /f eZNii:'Q(x,y)K(x’ y) dX dy
By

In view of a multi-dimensional version of van der Corput’s lemma (see [22, Proposition
2.1]), for N < N’ < 2N,

W (©) = Uy ©)] S min {1 N1
Moreover, by (1.3),
W () = Wi (§)] S min {1 N |

Hence,
Wx () = W (§)] S min [N, V€17 *.12)

We start with a proposition analogous to Proposition 4.1.
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1630 B. Trojan

Proposition 4.2 For each B’ > 0 there C, ¢ > 0 such that forall N < N’ < 2N, and
£eT? satisfying

<N VL = forally eT,

a
E__V
g

where 1 < g < (logN)?, a € Ay, and 1 < L < exp (c4/log N), we have

[bar (&) — by (&) — Gla/q) (Wi (E —a/q) — Wn(E —a/q))|
< CLexp(—cy/IogN).

Proof For a prime number p, p | ¢ if and only if ( p mod ¢, q) > 1. Therefore, by

(1.1), (1.2), and the prime number theorem, for any s € {1, ..., k"},
- k//
Z SOy FHED K, pylg, sy p) | [Tl0g ps
MGN r”eNl‘ pe]Pk// j=1

(QH q)>l p=r""mod ¢

<N7! Zlogp < N 'logg.
rlg

To simplify the notations, for (x, y) € Rk\{O}, we set
Flx,y) =DK1, y),

where 6 = & — a/q. For any (u, p) € N x P¥" such that u = ' mod q, and
p =r" mod g, we have

’ " a / " ’ "
sur p’ =L@ 0" +0,u” p’ (mod 1),
q

thus

k//
S PEQDK (u, pYl g,y (. p) (l_[log pj)

ueN* peP*’ /=t
&
Z Z e2ia/q): Q(r',r'") Z Z F(u, P)]IBN/\BN(H ) l_[k)g pj
r’ GNk rNEAk/ MENA/ pe]P)k//

u=r' mod ¢ p=y"" mod ¢

+0(N"'loglogN).
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Fixu € N¥, p e P““Land r] € A,. Then
{veN:@,v,p)e By\By}=Vo+1,.... V1),

forsome 1 < Vo < V; < N < 2N. Let Vy = max {N'/2, Vy} and Vv, =
max {N1/2, Vl}. We have

Z F(u, p1, p)logpi = Z F(u, p1, p)log p; +O<N‘k+1/2)'
r1 EPVI \PVO r1 E]P)Vl \PVO
plEri, mod g P]Er;/ mod ¢

By the partial summation

Y F.pi.plogpi= Y. Fu, v, p)lp(v)logy

P \P- Vo<vi=V)
4 Yo .
1 vy=r| mod g
pi=r{ mod g

=0(Vi;q,r])Fu, Vi, p) — 0 (Vo; ¢, 1) F (u, Vo, p)

Vi d
—/ O(t; q,r{)—F(u,t, p)dr.
7 dt

0
Analogously, we have

Y Fu,vi, p) = ViF@, Vi, p) = VoF(n, Vo, p)

Vo<vi=Vi

- /Vl 'L Pt pydi+0 (N—k+1/2) :
v, dt

0

Hence, by (4.9) and (1.2), we obtain

1
> F(u,pl,ﬁ)logpl—m > F(u,vi p)

nePy Py Vo<vi=Vi
plzri’modq
. Vv - 1%
SN2 Ly (Vg r)) = ——| N~* + |0 (Vos ¢, 1)) — —— | N7+
(q) v (q)
—k—1+y] —k—1 " oot
e DN +N g - —| dr
yel Vo (p(Q)

N
< N " lexp (—c,/log N) + LN~k /

N2

t exp (—c\/@) dr.
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1632 B. Trojan

Therefore,

_ 1 .
> F,pi,plogpi=—— > Fvi,p)

p]ePVl \]P)VO w(q) Vo<v1=V)
plzri/ mod g
+0 (ka“ L exp (—c\/log N)) .
By similar reasonings applied to the sums over p», ..., py», one can show that
k//
> ) Fu,p)lpyasy @, p) H log p;
NPt

n=r’ mod g p=r" mod q

)k,, Z Z F(qu +r',v)1p,\py(qu +r',v)
ueNy veN"'

+0 (L exp (—c,/log N)) .

Since for each (x, y) € [0, 17% and (qu +gx,v+y) € By/\By, we have

<p(q

0 Qqu+qx.v+y)—0-Qqu.v)| gy |6, NV < gNTIL,
yell

and

K (qu +qx,v+y) = K(qu,v)| S gN ",
thus by the mean value theorem, we obtain

|F(qu +gx,v+y) — F(qu,v)| <gN* L.

Moreover, in view of [11, Proposition 3.1], the number of lattice points in By of
distance < ¢ from the boundary of By is O(q N¥~1). Therefore,

k//

YooY Fplpgsy p) Hlogp,

¥ i’
uEN pE]P)

n=r’ mod ¢ p=r" mod q

— Z Z F(qu,v)lp,\py(qu+r', v)+O<Lexp( c@))

o ) I
I ueNp veN*

ga(q)k” Z Z F(qu,v)1p,\By(qu, v)—i—O(Lexp( cdlogN))
ueNS/ veN¥
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Lastly, we can replace the sums by the corresponding integrals because

> > Flqu.v)lpysy(qu,v) - / / F(gx, )L,y (qx. y) dx dy

k//
ueNY veN

=Y % /0 VPG Fgut v, v4 91 Ly, G ) dx dy
MENk/ UE k//

+ Z Z / |F(qu+gx,v+y) (1, \ay(qu, v)
ueNk/ veNY’ 011

—1p, 8y (qu +qx,v+y))| dx dy,

which is bounded by g N~ L. O

Analogously to Lemma 3, we can prove the following statement.

Lemma5 Foreacha > 0 thereis C > 0 suchthatforall N < N' < 2N, and & € T
satisfying

a
& — Ll <N, forally €T,

q

wherel1 <q < L,a €Ay, and1 < L <exp (ca/log N)(log N)™¢,
|hnr(€) — by (&) — G(a/q) (Wi (E —a/q) — Wn(E —a/q))| < Clog N) ™.
Lemma6 Forall p € [1,00), Ni, Ny € N, N < N, and any [ € Z”(Zd),

No—1
D Hupi f = Hofl| < CpNT* @9(N2) = 95(ND) [ fller-

n=N) o

Proof Let h, denote the convolution kernel corresponding to H,. Observe that for
(x.y) € ZF x (xP)¥if (x, y) € By,\By;, then

Nr—1 K’
D s, y) = ha(x, )1 = 1K (e, 0 [ log [y
n=N) j=I1

otherwise the sum equals zero. Thus, by (1.2), we obtain
Nr—1

D Mt —hal| S NTE@p(N2) = D5(NY)
n=N 01
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hence, by Young’s inequality,

No—1 No—1
S\ Hprf = Hofl] < D Vgt = hal | 1 ller
n=Ni op n=Ni N

SN @B(N2) — 9 (ND) I fller

which completes the proof. O

5 Variational estimates

In this section we present the estimates for £7 (Zd ) norm of the r-variational seminorm
for the averaging operators (My : N € N) and the truncated discrete singular operators
(Hy : N € N). In order to give a unified approach, we set (Yn : N € N) to be any of
them. By (hy : N € N) we denote the corresponding discrete Fourier multipliers and
by (Yn : N € N) its continuous counterparts. We start by listing properties that are
sufficient to obtain r-variational estimates. Let p € (0, 1) and set N, = [2"" |.

Property 1 In view of [12] (see also [9]) for each p € (1, 00) there is C;, > 0 such
that for all € (2, 00) and any function f € L?(RY) N L2(RY),

v, (7 tvF ) N e N) H” < Cpéllfllu,

and
172
-1 n An+l 2
S v (FTeF )N e 2027 < Cpllfler.
n>0
Lpr
Property 2 By (4.3) and (4.12), foreachn € N,
0, ) = Yot ©)] < min { N, INEI ] (5.1)

where A is the matrix defined in (2.8).

Property 3 By Lemmas 4 and 6 we deduce that for each p € (1, 00) and any f €
er(z7),
Npt1—1
DO Wi f = Ynfl| = Cppn” NI ller, (5.2)
N=N,

because by (4.10),

p

NTE @ (Npy1) — Dp(Ny)) < 2KOHD =kn? g pmen® < o1,
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In particular,
YN, = Y, “U’%Z!’ =C. (5.3)

Property 4 By Theorem 2 and partial summation for each o > 0, there is S, > 0 so
that for any B > By, and n € N, if there is yog € I', such that

<1
_qza

S a
Yo q

for some coprime numbers a and g such that 1 < a < ¢, and (log Nn)ﬁ <gq <
jed (log N,)~#, then

oy, ., &) — by, ()] < Cog Ny) ™.

Property 5 By Propositions4.1 and 4.2, for each 8’ > 0 there is C > 0 such that for
alln € N, and & € T¢, satisfying

éy—a—y <N, forall y €T,

q

where 1 < g < (log N,,)ﬂ/, ac€Ay,andl < L <exp (ca/log Nn), we have

N, §) =W, ) = G(a/q) (T, —a/q) — YN, —a/q))

+0 (L exp (—c\/log N,,)) . (5.4)
Property 6 By Lemmas 3 and 5, for each o > 0, all n € N, and & € T?, satisfying

éy_a_y <N ”IL,  forally eT,

q

where 1 <g < L,acAy,and1 < L <exp (cﬂ/log N,,)(log N,)~%, we have

DNy €)= 0, () = G(a/q) (Yw,,, (6 —a/q) — Yn, (¢ —a/q))+O ((log Np) ™).
(5.5)

Before we embark on proving variational estimates, we show the following auxiliary
result.

Proposition 5.1 For each p € (1, 00) there is C > 0, such that for all increasing
sequences of integers (nj : j € N) and any function f € Lp(Rd) NnL? (Rd),

1/2
<Clflrr.

Lp

‘ 2

ST (O = Y0 DT S)
j=1
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Proof For each j € N, such that
27l < < 2" <2 <pjyy <2
we write
T (g = T )T f)] = 77 (s = Ton)F 7))
+ |77 (O = Ty )|
+|F (Vg1 = Tu )T f)

<V (?‘1 (YNFf): N e[2", 2m+1))

+ |77 (O = Ty )|
A (T‘l (YNFf): N e[2" ", 2”)) .
For every ji, j» € N, ji < j» such that
nj—1 <2"<nj <nj <2" <nj,
we estimate

f: ‘7:71 ((T"j - Tnj—l)j(tf)‘z <V (7771 (YNF f): N e[2", 2n+1))2.

J=n+1

Hence, for some increasing sequence of integers (m; : j € N), we have

Z ‘7:_1 ((Cnjy = Y )T f) ‘ Z Vz( Y(YNFf): N e[2/, 2/ 1))
oo
+y ‘7—‘ Ly — T2n1j+,)7-'f))
j=1
The conclusion now follows by [5] and Property 1. O

The aim of this section is to prove the following theorem.

Theorem 4 For each p € (1,00) and r € (2, 00) there is C > 0 such that for any
finitely supported function f : Z¢ — C,

-
IV Ynf:NeN)lep < lelfllzp'
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We split a variational seminorm into two parts long variations V-, and short variations
Vrs , where

VE@WNf:NeN) =V, (Yy,f:neNy,

and

~ =

VINS N eN) =YV, (Ynf: N €Ny, Noy)) |

n>0
respectively. Then
Vi(¥nf:NeN)< V,L(YNf:NeN)—i—VrS(YNf:NeN). (5.6)
We first estimate £”-norm of long variations.

5.1 Long variations

Let B € N which value will be determined later. Take p € (0,1) and 0 < x <
% min{1, ¢} where c is the constant from Lemma 3. For each n € N, we define the
multiplier

ey = > mE—a/g.

a/qe%ﬁ,7J

where the sets %L/Z p) are given by (2.9) and
(&) = (271VPEVN ).

We write

[Ve (¥, f :n e N) [, =

v, (if‘l (n, =9, ) f )i e N)

o

=

Vr (Z(F_l ((UN/ - UN_/,I)E?}?) ‘ne€ N)
j=1

Lp

+

v, (ZTI ((UN,- =y, )= Ef)f) ‘ne N)
j=1

yag
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We now separately estimate each term on the right-hand side of (5.7). We notice that
in view of (5.3) and (2.10), we have

|77 (On —on) =B 07)|, S 11 + |77 (B4 )
< Tog(n + D f ller-

e (5.8)

In fact, for p = 2, we can gain some decay in n. Given o > 0, we select B, to be
determined by Property 4. Let 8 > df,. Take any £ € T¢. By Dirichlet’s principle,
for each y € T, there are coprime integers a, and g,, such that 1 < a, < g, <

N,lzyl(log Nn)_ﬂ/d, and

1 _
< —N, "dog NP,
qy

Suppose that 1 < g, < (log N,)#/¢,forally € . Wesetq' =lem (g, : y € T) and

a), = ayq'/qy. Observe that for all y € I, we have

a _ 1
& — ) < Ny log N < - N 71 g3 VIoE
q

provided that

32d(log Ny,)P/d < 2xv1og N

which excludes only a finite number of n’s depending on 8 and p. In particular,
mE —d'/q) = 1.Since 1 < ¢’ < (logN,)?, a’ € Ay, we conclude that
E,41(6) = 1. Hence, the condition E,’fH(S) < 1 implies that (log N,)#/¢ < qy <
N,lzy| (log N,,) 8/ for some y € I'. Now, by Property 4, we obtain

[, (€) — v, )] < (log N 7@,

which entails that

S (og Nu) ™[I f 1l g2 (5.9

HT_I ((UN"H —ow,) (1 = Eﬁﬂ)f)

02

Interpolation between (5.8) and (5.9), shows that for each p € (1, oo) and @ > 0 there
is Bp,o > O such that for all 8 > B, , and n € N, we have

HS‘"I ((UN,IH =y, = Ef+1)f> ng = Callog N) Il fller-
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Taking B > B, 5,-1, we get

V| 2 F (=, D =8N F) inen
j=1

17

S |7 (on, = ow, 0 - ED )

n>1

-2
SO e

n>1

o (5.10)

We now turn to bounding the first term on the right-hand side of (5.7). Foreachn € N
and s € {0, ..., n — 1} let us define the multiplier

Bl &)= ) mE—a/g,

a/qe,%éS

where %f = %sz 1) \%Lf »)- By the triangle inequality we can write

n j—1
Ve ZZTﬁ] ((UN,- - UNj,l)Ef’sf> :neN
j=1s=0 ep
(5.11)
o n
= Z Vi, Z 7! ((UNj - UNj—l)Ef,sf) s <n
s=0 Jj=s+1 ep

Thus, the aim is to show that foreach 8 € N, p € (1, 00), s € Np, and r € (2, 00),
n
Vol 3 7 (on, —ow, DB F) s < || S DTSN
j=s+l1 2
We split the variational seminorm into two parts: s < n < 2% and 2 < n, where
Ky = 20d (Lp—‘(s £ P10y 1) .

We begin with p =2 and s < n < 2.

Theorem 5 For each B € N there is C > 0 such that for all s € Ny, r € (2, 00) and
any finitely supported function f : Z¢ — C, we have

n
Vol X 7 (o, — o, 0ELF) s <n< 2|l < C6 DT g,
j=s+1 2
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where § is determined in Theorem 3.

Proof First, let us see that for each m > s, supports of functions n,,(- — a/q) are

disjoint while a /g varies over ,%’f} .Indeed, otherwise there wouldbe a/q,a’/q’ € ,%’f ,
a'/q' # a/qand & € T¢, such that n,,(€ —a/q) > 0and n,,(§ —a’/q’) > 0. Hence,

/ a’
<— < e 2= lylpxm?’?.
=< =< 7=

q9

_ p/10 1
o265+ :

which is impossible.
Next, we consider the following multiplier

A& = ) Gla/g) (Tw,E —a/q) — Y, (¢ —a/q) n(E —a/q).

alqedtl

Let us see that Afys is sufficiently close to (hy, — 9y, ) E'fs For each a/q € %’f,

we have g < exp (%«/log N,,), thus by (5.5), on the support of n,(- — a/q) we can
write

(O, €) =y, (&) =Gla/q) (YN, —a/q) — Y, ,(E —a/q))
+0 ((log Nn)*P"I*ﬂ'S).

Therefore,

|71 ((0n, = 9w, 0B, = AL ) ‘gz <Cn PP f e,

and hence,

Jj=s+1 2

n (0.¢]
< ||V, Z 71 (Af’sf):s<n§2"s +( Z n_l_’%p> 1S llg2-
j=s+1 02 n=s+1
(5.12)
Therefore, our task is reduced to showing boundedness of the first term on the right-
hand side of (5.12). Observe that for n > s, n, = n,n;, thus we can write

where

Of &= Y (Tw,(E—alg)—Tn, & —a/q)mE—a/q),

ajqeR!
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and

FE) = Y Gla/gmsE —a/q)f&).
alqet

Now, in view of Lemma 1,

v, Xn: F! (@fsf) is <n <25

j=s+1 02

2 172
K 2K

SO | IDVNID IR CA] 1 BN ICE
i=0

J=0 " |mell+s+1
J 62

where 11'2 ={j2, j2' +1,..., (j+ 12" —1}. Let us consider a fixedi € {0, ..., ks}.
To bound the norm of the square function on the right-hand side of (5.13), we first
study its continuous counterpart, that is

2\ 1/2
2k =i |

Z Z 7! <(TN771 - TN,,,A)’?mf)

J=0 " |melits+1
If n,, () < 1 then

&, | > @N LVoxVlogNn - for some y e T,

thus by Property 2,
—1/d 3
[ ) = T, ©)] 5 [Njte| " 2mnioERrd,

Therefore,

o 172
2Ks—i_]

ool > FH N, = YN, )G — DFF)

Jj=0 mel;+s+1
26

< Z H}'—l ((TN,,, — YN, )M — l)ff)‘ 12

DL NV

m>1
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Now, by Proposition 5.1, we have

2\ 172
2k =i |
Z Z 7:7] ((TNm - TN))I*I)?f) 5 ”f”Lzs
J=0 Imelits+1
. 12
thus, in view of (2.10), we conclude that
2\ 1/2

26—

o X F(ehF) < log(s + 2)[| Fll 2.

Jj=0 melli+s+1

J 132

Therefore, by (5.13), we arrive at the

n
vl Y ! (@f’sf) s<n<2 || <kslogls +DIF . (5.14)
j=s+1 02

Finally, by Plancherel’s theorem
2 2 e |2
IFZ= 3 G/ /w 1€ — a/)? F©)[ e,
ajqe?
and hence, by Theorem 3,
IF],2 S s+ D772 f e,

which together with (5.14) and (5.12) concludes the proof. O

Theorem 6 Foreach B € Nand p € (1, 00) there is C > 0, such that for all s € Ny,
r € (2, 00), and any finitely supported function f : Z¢ — C, we have

n
Vil X F (o, —ow, 8] F) s <n=20
j=s+1 op
< C(s + D log(s +2)[ £l

Proof For the proof, let us consider the following multiplier

&= Y (Tw,E—a/g)—Tn,_ & —a/q)nE —a/q).

alqedtt

Fix s < ny < ny < min{2%,2n}. Let J,, = Nn12_3XV1°gN"'. We claim the
following holds true.
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Claim 2 For each B € Nand p € (1, 00) there is C > 0, such that for alln; < n <
ny < 2ny,

7 (o, — om0 8L — g, 12, £)

-2
w= Cn7|| fller- (5.15)

The constant C is independent of n1 and n».

Let us first observe that, by (5.3), we can write

|7 ((on, =88 —ma, 1) )],
< |7 (0w, = vw, ) EELF) ot |71 (s, 1 )
Jr (), < )

o

)

.

thus, by (2.10),

|77 (0w, =9, D8R =y, 1) £)| | Slogta+ DIfler. (5.16)

We can improve the estimate for p = 2. Namely, we are going to show that for each
a>0,andn; <n <np <2n,

HTil (((UN" - UN"*I)EQJ My Hfl},S) f) 2 SN fllge (5.17)

Given « > 0, let ¢ be the minimal value among those determined in Lemmas 3 and 5.
Then for each a/q € 2,

(0, &) = n,_, ) a(§ —a/q)
—my, (&) (Yn,(E —a/q) = TN, (& —a/q) ns(E —a/q)
= Gla/q) (Tn, & = a/q) = T, & —a/@) (1= By, & —a/9)) ma(& — a/q)
—my, &) (YN, —a/q) = v, (& —a/q)) (15 —a/q) — (& —a/q)
+ O ((log No) ™) ns(§ — a/q).

If ny(§ —a/q) —nu(é —a/q) # 0O, then

ay U —¥lyxJ/log N,
Ey_? Z%Nn XNV Nn | for some y €T,

thus, by Property 2,
—yd
N, 6 = a/g) = Yo 6 —a/)| < N —aj)| [ g2V RER,
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Moreover, if 1,(§ —a/q) > 0O then

a
Y
& - L

| i oo
< — N, axvleNn < gl maloeNu - forall y e T
q

= 16d

hence, by (4.2), we obtain

1=y, ¢ —a/)| 5 |23 —a/q)| 5270 /PEmn

Therefore,

(0n, €)=, (E)) (& —a/q)
=my, &) (Yn, (¢ —a/q) — TN, (¢ —a/9) ns( —a/q) (5.18)
+ O ((log No) ™) ns(§ — a/q).

Since the functions n,(- — a/g) have disjoint supports provided that a € A, and

1<qg=< e(“‘l)p“o, by (5.18) and Plancherel’s theorem we conclude (5.17). Now, by
interpolation between (5.17) and (5.16) we arrive at (5.15).
With a help of Claim 2, we obtain

n
Vr Z 7 (((UNj - UNj—l)Ef,s — My Hﬁ'}vf) f) Tm=mnsm

j=ni o

N f HTﬁ1 <<(‘3Nn — vy, DEL, —my, Uf,s> f)

n=nj

S (Zn‘z) £ ller-
n=1

o

Hence,

V. Z 71 ((UN, —Uqu)Ef,sz) np <n=<ny

Jj=ni o

(5.19)

n
Sl + Ve | o7 (mg, 10 F) i == 2m ||

Jj=ni or

with an implied constant independent of n;. We next claim that the following holds
true.
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Claim 3 Foreach B € Nand p € (1, 0) there is C > 0, such that for all s € Ny, we
have

n
A Ian (nff) 0<n<2% < Cislog(s + )| fller.  (5.20)
=0
o

Let us see that (5.20) suffices to finish the proof of the theorem. Indeed, (5.19) together
with (5.20) imply that

n
Vol o F (O, =, 8L F) im = n= e || S ks log(s + 2l f e

J=ni or

Therefore, by (2.2) and Minkowski’s inequality

Ve ( Z F! ((UNj - UN,-fl)Ef,sz) ts<n < 2"‘)

Jj=s+1

er

A

r 1/r
Zﬂ)

o ( 3

logy s<m<ky

v, (Z 7 (O, = 0w, )] f) im = < nz)

V, (Z 7! ((l)Nj - UNj_])Ef,Sf) M <p< 2m+1)

j=2m

< ks max

s<ny<np=<2ny

ny <2Ks Jj=ni o
S g log(s + 211 fler-
It remains to prove Claim 3. By Lemma 1, we can write
n
v Y F (0, f)0=n =28
Jj=0 op
. 2\ 1/2 (5.21)
Ks PALIES|
—1 B ;
<Vay Il 3 | (M - 1) /) ,
i=0 Jj=0 mel_;

L

where 1§ = {j2', j2" +1,..., (j + 1)2" — 1}. Letus fixi € {0, 1, ... s}. In view of
Proposition 5.1,

o 12
26—l B
> I (O = T /) S 1 fler,
Jj=0 melji-

Lr
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where the implied constant is independent of i. Hence, by (2.10), we obtain

o 172
2K =i
> (M - 1) f) < log(s +2)11 fler,
J=0 " |mert
J op
which together with (5.21) implies (5.20). m]

We now turn to studying the part of the variational seminorm where 2 < n. For

s € Ny we set
0, = (|~ )

Theorem 7 For each B € N there is C > 0, such that for allr € (2, 0), s € Ny, and
any finitely supported function f : Z¢ — C, we have

n

vl X 7 (o, 0w, 8] F) 20 <
J=2ks41 02

r _
(s + D7) £l,2,

<C
- r=2

where § is determined in Theorem 3.

Proof Let us define

Q= > Gla/g)(Yn, & —a/q) = Tn,_, (& —a/q)) esE — a/q).

alqedtt

where
o) =n(0318).
Our first goal is to show that the multipliers Qf ,s approximate (hy, — b, ,) Ef s well.

Claim 4 For each B € N there is C > 0, such that for all s € Ny, and n > 2%,

[7 ((0n, = 9w, 0EE, — 26 f) le < €2V py s (5.22)

Since n > 2, for each a/q € .%’f} we have ¢ < log N,,. Therefore, by (5.4), we
obtain

(0n, E) — 9y, (E)) ma (€ —a/q)
—G(a/q) (YN, —a/q) — Tn,_,(§ —a/q)) os(E —a/q)
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= G(a/q) (Tn, & —a/q) — Tn, & —a/q)) (& —a/q) — 05 (& — a/q))
+0 (exp ((xlog2 = 0)log N, ))

Next, if o5(§ —a/q) — n,(§ —a/q) # 0, then

1 _
> N VaxvogNy  for some y T,

ay
5 =~ 32d

q

and thus, by (5.1), we have
A —l/d —x/1og N, /d
N, (6 = a/a) = Yn, € —a/@)| S [N —ajq| " g 2mn/Remd,

Hence,

(0, E) =, () ma (€ —a/q)
=G(a/q) (Yn,(E —a/q) — YN, ,(E —a/q) os(E —a/q)
+ 0] (2—X«/M/d> .

Since the functions n,(- — a/q) have disjoint supports while a/g varies over 3?48 , by
Plancherel’s theorem we obtain (5.22).
Now, by applying Claim 4,

n

vl X F (o, —ow, 8, —90,) f) 20 <

Jj=2Ks +1 02

oo
< (s + 17 ( > 2—W1°gNn/<2‘“> 112,

n=2Ks +1

thus

n
vl X 7 (o, = w08 F) 125 <

Jj=2Ks +1 02

n
SGHDUfle+ |V [ D (R F) 2 <

j=2Ks 41 2

Our next task is to show that there is C > 0 such that

n
v, Z 7! (vaf) :2% <n < CGs+ D7) flle. (5.23)
j=25 41 e
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1648 B. Trojan

For the proof, let us define

Ix.y) =V, | Y Gla/ge i @ax
alqe Rt
Z a <(TN-/' - TN./—I)QSf(' +‘1/Q)) »:2% <n],

=2k 41

and

Sy = Y Gla/ge ™S F (o (- +a/)) ().

alqedy

By Plancherel’s theorem, for any u € N‘és anda/q € %’f , we have

HT_l ((TNJ' - TNJ‘—I) osf(+ 0/61)) (x +u)
—F ((TN' - TNJ—I)st(' + a/CI)) (x) .

- H eI ") (TN, 6 — TNj—l(E))QS(E)f(S +a/q)

—1/d

L2(d§)

SNl - llos +a/g) fll 2,

because in view of (5.1), for each & € T¢,

El- TN (8) = T, ()] S N; Vg 1-17d < Nj—l/d

Therefore,

‘Hl(x,x + u)||€z(x) - ”I(x,x)”@(x)
< Jul Z NS et —a/) £ o
=25 +1 a/qe@f

yp/10

Since the set Z° has at most e@+D(+1 elements, and

no 10g22Kx < s+ 1)

(d + D)(s + )P0 4 (5 + 1)P/10,6+D” Lt

we obtain
1760 oy S 1100 x + 0] 2 + 27T fll2.
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Hence,
. 2
v S F @) 2 < 5& > e x+w]hg,
=25 +1 02 4 ueN‘éS
+2726ED7) )12, (5.24)

Let us observe that the functions x — I(x, y) and x +— J(x, y) are QSZd—periodic.
Therefore, by repeated change of variables, we get

Z ”I(x,x—i—u)“?z(x)z Z Z I(x—u,x)2= Z Z I(u,x)2

uest xeZ! ueNdQS xeZ? uENdQs

= Z Hl(“’x)H?Z(x)'

d
ueNp,

By [11, Proposition 4.1] (see also [15, Proposition 3.2]), Property 1 entails that for
eachu € N‘és, we have

n
160 oy = Ve | Do F (0 = Yoy ) I w,)) 12 <
j=2 2w
-
= C:”J(”’)‘)“zz(x)'

Observe that

o = Y e x+w] g,

d d
ueNd, ueNd,

Since by Theorem 3 and disjointness of supports of o;(- —a/q) while a/q varies over
%Aﬂ , we get

2

|7 Gex+ w5y, = fT YD Gla/geT Do & —a/g)| @) dg

alqeRt
S+ D2 £,

we obtain

2
M et S (5) s+ )28 04 £,

d
L‘GNQS
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which together with (5.24) implies (5.23) and the proof of theorem is completed. O

Theorem 8 Foreach B € Nand p € (1, o0) there is C > 0, such that for all s € Ny,
r € (2, 00), and any finitely supported function f : 7% - C,

n

Vel 2 F N on —ow DB 20 < || <C

J=255+1 or

’
r—2

log(s +2)[1 fller-

Proof First, we are going to refine Claim 4.

Claim5 Foreach B € Nand p € (1, 00) thereis c,, > 0 such that for all s € Ny, and
n > 2%,

< C-27xepvloRNuy £y (5.25)

st 5200,

We notice the following trivial bound

|771QE )], S eI Flln < (og NS llers

thus, by (5.3) and (2.10), we also have

”7:_1 (((UN,, — vy, )EE - ng)f) o

= H¢_l ((UNn - Uanl)Eg,xf) HEP + ||7:_1 (ngf) HZP
< (og NI fller- (5.26)

Now, interpolation between (5.26) and (5.22) leads to (5.25).
Next, using Claim 5, we obtain

n
vil > 7! (((an - UN_,_I)EiX - Qf’x)f) 2% < p

j=25+1 o
o
—1 — N
s X |F ((on, —ow 0B - 250 F)],
n=2Ks 41
o
5( > 2"“”“"””) 1 fller-
n=2Ks 41
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Hence,
n
Vel Do TN o, — o, DB S) 2% <
J=2F5+1 o

n
Sifle+ v | 3 7@ f) s <]
J=265+1 o

and the proof is reduced to showing the following claim.

Claim 6 Foreach B € Nand p € (1, ) there is C > 0 such that for all r € (2, 00),
and s € Ny,

n
ol Y 7@ ) 2o <n]| =<c
=265 1 o

r
r—2

log(s + )1 fller-

For any a/q € %’f, xeZFandm e Nst’ we have

7 (T~ afa) = T ¢ = afa))osC — a/g) ) (Qox +m)

=7 ((n, = Tw, )0 +a/@)) Qo +mye 2ri@am,

Therefore,

p

(5 e

j=2ks 41 o
n 14
= Z Vr ( Z F((rn; = Ty )es Fim)) (Qsx +m) 2% < n) ,
mENZS J=25s 41 ()
where

FEm =Y Gla/q)f&+ajge ™ @am,

alqedt
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By [11, Proposition 4.2] (see also [15, Proposition 3.2]), we can write

p
n
Z V, Z FI ((TNJ. — TNFI)QSFC; m)) (Qsx +m):2 <n
meNp, J=2el € (x)
p
(Y > Ga/pF os(-—a/g)f)
=\, s
alqedt o
Therefore, the problem is reduced to showing
> Ga/p)F os(-—a/g)f)| = Clog(s +2)|fller- (5.27)

a/qe,%f op

For the proof, let N = Le(”])ﬂ/loj + 1and J = 2N. We write

> Gar e —af) =| X 7 (s - G@/)ost —a/a)f)

a/qe%f a/qe%f

124 op

+| Yo F N (me —a/g)f)

“/‘75%5 o

In view of (2.10), we have

S Fl e —a/f)| = | Y F e —a/q)f)
a/qe%f o a/qe?x?f o
< log(s +2)|| fller- (5.28)

Next, we have the following trivial bound

> 7 (s = Ga/@)os¢ —a/g)f)| =TI gy

2
a/qe) 629

124
< (Qog N fller
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We want to improve the above estimate for p = 2. We have

2
> 7! ((m, —Gla/q))os(- — a/q)f)
/4l e (5.30)
= Y ffd|m1<s>—G(a/q>|2gs<s—a/q)2|f(s>|2ds.

alqeRty

Since each fraction a/q belonging to %’f has its denominator g < e +1)/10

by Proposition 4.1,

<logJ,

(ms (&) — Gla/q)os(E —a/q) = Gla/q)(Ps(E —a/q) — 1)os(E —a/q)
+0 (exp (—cy/log J)) .

(5.31)

If o5(§ —a/q) > 0 then

& — %’ < Qs_jflyl < gt forally €T,

thus, by (4.2), we get
@y —a/q) 1| S[I4GE —a/a)|,, ST
Hence, (5.31) takes the following form
(&) — G(a/9)os (& — a/q) = O (exp (- cy/log 7).

Therefore, by (5.30), we get

> 7 (s - Ga)et—a/@f)| S fa (532
a/qe?]?_? 02

Now, interpolating (5.29) with (5.32), we obtain

> 7 ((ms - G@/es —a/af)| S Ifle,
alqeR? o
which together with (5.28) implies (5.27), and the proof of the theorem is completed.
O
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Theorem 9 For each p € (1,00) and p € (0, 1), there is C > 0 such that for all
r € (2, 00) and any finitely supported function f : 7Z¢ — C,

|V (Yn, f 2 n € No)

.
<C——- o,
o= C—IfI

where N,, = LZ”pJ.

Proof In view of (5.7), (5.10) and (5.11), we have

Vr ZT_I ((UN,- - UNj,l)f) :neN
j=1

o

o0 n
= Cppllfler+ D01V | 22 F (o, = 0w, )ESF) s < ]|

s=0 j=s+1 op

provided g > B, 5 1. Next, we split the index set

N Z F-1 ((UN]_ _UNj—l)E/?,Sf) 15 <n<2%

j=s+1 op

+ |V, Z F1 ((UN,- _UNj—l)Ell/?,sf) 2% <

j=2%s+1 o
By interpolation between Theorems5 and 6, and between Theorems7 and 8, for g
sufficiently larger we get
n
Vol 3 7 (o, —ow, )8, F) s <n =29 || =G+ D7 SN,
j=s+1 o

and

< Cp—5 6+ D72 fler,

ep

J=255 41

A ( > 7! ((UN, —an_l)Ef,xf) D26 < n)

and the theorem follows. O
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5.2 Short variations

Theorem 10 For each p € (1, 00) there are p € (0, 1) and C > 0 such that for all
r € (2, 00) and any finitely supported function f : 7 — C, we have

1/r
> Vi((Yw = Yn,)f 1 N € [Ny, Nys))' < Clifller-

n>0
op
Proof Let u = min{2, p}. By monotonicity and Minkowski’s inequality, we get

1

7

Z Vr(YNf N €[N, Nn+l))r

n>0
o
u L
Npy1—1 "
= 2| X2 v —vus
n>0 \ N=N, o
1
Nus1—1 AN
<> D0 Ivwaf =] :
n>0 || N=N, op

which together with (5.2) gives

> Ve (YN f N €[Ny Nag1)) S e

n>0 n>1
123

which is bounded whenever 0 < p < ”T’l O

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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