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Abstract
We formulate and prove finite dimensional analogs for the classical Balian–Low the-
orem, and for a quantitative Balian–Low type theorem that, in the case of the real
line, we obtained in a previous work. Moreover, we show that these results imply their
counter-parts on the real line.

Mathematics Subject Classification 42C15 · 42A38 · 39A12

1 Introduction

1.1 A Balian–Low type theorem in finite dimensions

Let g ∈ L2(R). The Gabor system generated by g with respect to the lattice Z
2 is

given by

G(g) = {e2π int g(t − m)}(m,n)∈Z2 . (1)

The classical Balian–Low Theorem [3,4,9,21] states that if the Gabor system G(g)
is an orthonormal basis, or a Riesz basis, in L2(R), then g must have much worse
time-frequency localization than what the uncertainty principle permits. The precise
formulation is as follows (see [7] for a detailed discussion of the proof and its history).
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Theorem A (Balian, Battle, Coifman, Daubechies, Low, Semmes) Let g ∈ L2(R). If
G(g) is an orthonormal basis or a Riesz basis in L2(R), then

∫
R

|t |2|g(t)|2dt = ∞ or
∫
R

|ξ |2|ĝ(ξ)|2dξ = ∞. (2)

We note that by Parseval’s identity, condition (2) is equivalent to saying that we
must have either

∫
R

|ĝ′(ξ)|2dξ = ∞ or
∫
R

|g′(t)|2dt = ∞. (3)

That is, these integrals are considered infinite if the corresponding functions are not
absolutely continuous, or if they do not have a derivative in L2.

In the last 25 years, the Balian–Low theorem inspired a large body of work in time-
frequency analysis, including, among others, a non-symmetric version [6,12,13,23],
an amalagam space version [19], versions which discuss different types of systems
[10,17,18,23], versions not on lattices [8,16], and a quantified version [24]. The latter
result will be discussed in more detail in the second part of this introduction.

Although it provides for an excellent “rule of thumbs” in time-frequency analy-
sis, the Balian–Low theorem is not adaptable to many applications since, in realistic
situations, information about a signal is given by a finite dimensional vector rather
than by a function over the real line. The question of whether a finite dimensional
version of this theorem holds has been circling among researchers in the area.1 In
particular, Lammers and Stampe pose this as the “finite dimensional Balian–Low
conjecture” in [20]. Our main goal in this paper is to answer this question in the
affirmative.

Let N ∈ N and denote d = N 2. We consider the space �d2 of all functions defined
over the cyclic group Zd := Z/dZ with the normalization,

‖b‖d = 1

N

d−1∑
j=0

|b( j)|2 b = {b( j)}d−1
j=0. (4)

Tomotivate this normalization, let g be a continuous function in L2(R) and put b( j) =
g( j/N ), j ∈ Z∩[−N 2/2, N 2/2). That is, the sequence b ∈ �d2 consists of samples of
the function g, at steps of length 1/N over the interval [−N/2, N/2]. Then, for “large
enough” N , the above �2 norm can be interpreted as a Riemann sum approximating
the L2(R) norm of g. Note that in Sect. 2, we define the finite Fourier transform Fd

so that it is unitary on �d2 .
Let NZd denote the set {Nk : k ∈ Z} modulo d. For b ∈ �d2 , the Gabor system

generated by b with respect to (NZd)
2, is given by

Gd(b) := {e2π i � j
d b( j − k)}(k,�)∈(NZd )2 . (5)

1 For more on other uncertainty principles in the finite dimensional setting, we refer the reader to [15] and
the references therein.
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Balian–Low type theorems in finite dimensions 645

We point out that, with the choice b( j) = g( j/N ), the discrete Gabor system
Gd(b) yields a discretization of the Gabor system G(g) restricted to the interval
[−N/2, N/2).

To formulate the Balian–Low theorem in this setting, we use a discrete version
of condition (3). To this end, we denote the discrete derivative of a function b =
{b( j)}d−1

j=0 ∈ �d2 by

�b :=
{
b( j + 1) − b( j)

}d−1

j=0
,

and put

α(N ) = inf{‖N�b‖2d + ‖N�(Fdb)‖2d}, (6)

where the infimum is taken over all sequences b ∈ �d2 for which the system Gd(b)
is an orthonormal basis in �d2 . We note that for the choice b( j) = g( j/N ), samples
of the derivative of g at the points j/N are approximated by N�b. Therefore, the
expression inside of the infimum is a discretization of the integrals in the condition
(3). Our finite dimensional version of the Balian–Low theorem, that answers the finite
Balian–Low conjecture in the affirmitive, may now be formulated as follows.

Theorem 1.1 There exist constants c,C > 0 so that, for all integers N ≥ 2, we have

c log N ≤ α(N ) ≤ C log N .

In particular, α(N ) → ∞ as N tends to infinity.

Remark 1.2 Theorem 1.1 also holds in the case that the infimum in α(N ) is taken over
all b ∈ �d2 for which the system Gd(b) is a basis in �d2 with lower and upper Riesz
basis bounds at least A and at most B, respectively. In this case, the constants c,C in
Theorem 1.1 depend on A and B. (For a precise definition of the Riesz basis bounds
see Sect. 2). The dependence on the Riesz basis bounds is necessary, in the sense that
it can not be replaced by a dependence on the �d2 norm of b (see Remark 4.3).

Remark 1.3 The classical Balian–Low theorem (Theorem A) follows as a corollary of
Theorem 1.1, as we show in Sect. 6.

Remark 1.4 By restricting to N ≥ N0, for large N0, the constants in the above theorem
improve. Indeed, combining Proposition 4.1 with Remarks 4.4 and 4.6, respectively,
we obtain the asymptotic bounds

1

4 log 2

(
1 − √

2
)

≤ lim
N0→∞

(
inf

N≥N0

α(N )

log N

)
and lim

N0→∞

(
sup
N≥N0

α(N )

log N

)
≤ 16π2.
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646 S. Nitzan, J.-F. Olsen

1.2 A finite dimensional quantitative Balian–Low type theorem

In [22], F.Nazarov obtained the following quantitative version of the classical uncer-
tainty principle: Let g ∈ L2(R) and Q,R ⊂ R be two sets of finite measure, then

∫
R\Q

|g(t)|2dt +
∫
R\R

|ĝ(ξ)|2dξ ≥ De−C|Q||R|‖g‖2L2(R)
.

In [24], we obtained the following quantitative Balian–Low theorem, which is a mod-
est analog of Nazarov’s result for generators of Gabor orthonormal bases and, more
generally, Gabor Riesz bases.

Theorem B (Nitzan, Olsen) Let g ∈ L2(R). If G(g) is an orthonormal basis or a Riesz
basis then, for every Q, R > 1, we have

∫
|t |≥Q

|g(t)|2dt +
∫

|ξ |≥R
|ĝ(ξ)|2dξ ≥ C

QR
, (7)

where the constant C > 0 depends only on the Riesz basis bounds of G(g).

This quantitative version of the Balian–Low theorem implies the classical Balian–Low
theorem (TheoremA), as well as several extensions of it, including the non-symmetric
cases and the amalgam space cases referred to above. Here, we prove the following
finite dimensional version of this theorem.

Theorem 1.5 There exists a constant C > 0 such that the following holds. Let N ≥
350, and let b ∈ �d2 (where d = N 2) be such that Gd(b) is an orthonormal basis in
�d2 . Then, for all positive integers Q, R ∈ [1, N/30], we have

1

N

d−1∑
j=NQ

|b( j)|2 + 1

N

d−1∑
k=N R

|Fdb(k)|2 ≥ C

QR
.

Remark 1.6 The comments made in Remarks 1.2 and 1.3 hold also for Theorem 1.5
(see Theorem 5.3 and Sect. 6.3, respectively).

Remark 1.7 The conditions appearing in Theorem 1.5 are not optimal, but rather, these
conditions were chosen to avoid a cumbersome presentation. In particular, we point
out that a more delicate estimate in Lemma 5.1, or the use of a different function, will
improve the condition N ≥ 350. Some modifications in the proof of Lemma 5.2 will
improve this condition as well. In addition, a careful analysis of the proof will allow
one to improve each one of the conditions N ≥ 350 and Q, R ≤ N/30 at the expense
of making the constant C smaller. In fact, any two of the previous conditions can be
improved at the cost of the third.
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Balian–Low type theorems in finite dimensions 647

1.3 Finite dimension Balian–Low type theorems over rectangular lattices

The conclusions of the classical Balian–Low theorem (TheoremA) and its quantitative
version (Theorem B), still hold if we replace Gabor systems over the square lattice Z2

by Gabor systems over the rectangular lattices λZ × 1
λ
Z, where λ > 0. Indeed, this

is immediately seen by making an appropriate dilation of the generator function g. In
the finite dimensional case, however, such dilations are in general not possible. The
question of which finite rectangular lattices allowBalian–Low type theorems therefore
has an interest in its own right. We address this in the extensions of Theorems 1.1 and
1.5 formulated below.

Let M, N ∈ N and denote d = MN . We consider the space �
(M,N )
2 of all functions

defined over the cyclic group Zd := Z/dZ with normalization

‖b‖2(M,N ) = 1

M

d−1∑
j=0

|b( j)|2 b = {b( j)}d−1
j=0. (8)

This non-symmetric normalization is motivated by the fact that if g is a continuous
function in L2(R) and b( j) = g( j/M), j ∈ Z ∩ [−MN/2, MN/2), then the above
�2-norm can be interpreted as a Riemann sum for the L2(R) norm of g over the interval
[−N/2, N/2]. Note that in Sect. 7, we define the finite Fourier transform F(M,N ) so

that it is a unitary operator from �
(M,N )
2 to �

(N ,M)
2 .

Let b ∈ �
(M,N )
2 . The Gabor system generated by b with respect to MZd × NZd is

given by

G(M,N )(b) := {e2π i � j
d b( j − k)}(k,�)∈MZd×NZd . (9)

We point out that making the choice b( j) = g( j/M), the discrete Gabor sys-
tem G(M,N )(b) yields a 1/M–discretization of the Gabor system G(g) restricted to
[−N/2, N/2].

To formulate the discrete Balian–Low theorem in this setting, we put

α(M, N ) = inf{‖M�b‖2(M,N ) + ‖N�(F(M,N )b)‖2(N ,M)}, (10)

where the infimum is taken over all sequences b ∈ �
(M,N )
2 for which the system

G(M,N )(b) is an orthonormal basis in �
(M,N )
2 . We note that for the choice b( j) =

g( j/M), the expression inside of the infimum is a discretization of the integrals in
condition (3).

We are now ready to formulate the extensions of Theorems 1.1 and 1.5 to Gabor
systems over rectangles.

Theorem 1.8 There exist constants c,C > 0 so that, for all integers M, N ≥ 2, we
have

c logmin{M, N } ≤ α(M, N ) ≤ C logmin{M, N }.
In particular, α(M, N ) → ∞ as min{M, N } tends to infinity.
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648 S. Nitzan, J.-F. Olsen

Theorem 1.9 There exists a constant C > 0 such that the following holds. Let M, N ≥
350, and let b ∈ �

(M,N )
2 be such that G(M,N )(b) is an orthonormal basis in �

(M,N )
2 .

Then, for all positive integers Q ≤ N/30, R ≤ M/16, we have

1

M

d−1∑
j=MQ

|b( j)|2 + 1

N

d−1∑
k=N R

|F(M,N )b(k)|2 ≥ C

QR
.

We point out that Remarks 1.2 and 1.6 also hold for Theorems 1.8 and 1.9, respec-
tively. That is, these theorems can be extended to generators of general bases with the
constants depending only on the Riesz basis bounds. Remark 1.7 also holds in this
case.

1.4 The structure of the paper

In Sect. 2 we discuss some preliminaries, in particular the finite and continuous Zak
transform. In Sect. 3 we present two improved versions of a lemma that we first proved
in [24]. These results quantify the discontinuity of the argument of a quasi-periodic
function. In Sect. 4, we apply these lemmas to prove Theorem 1.1, while in Sect. 5,
we use them to prove Theorem 1.5. In Sect. 6, we show how the Balian–Low theorem
(TheoremA) and its quantitative version (TheoremB) can be obtained from their finite
dimensional analogs. Finally, in Sect. 7 we discuss Theorems 1.8 and 1.9. We give
only a sketch of a proof for Theorem 1.8, as the proofs in the rectangular case are very
similar to the proofs in the square lattice case.

2 Preliminaries

2.1 Basic notations, and the continuous and finite Fourier transforms

Throughout the paper, we usually denote by f a function defined over the real line,
and by g a function defined over the real line which is a generator of a Gabor system.
Similarly, we usually denote by a a discrete function in �d2 , and by b a function in �d2
which is a generator of a Gabor system.

For f ∈ L1(R), and with the usual extension to f ∈ L2(R), we use the Fourier
transform

F f (ξ) =
∫
R

f (t)e−2π iξ t dξ.

We let S(R) denote the Schwartz class of functions φ which are infinitely many times
differentiable, and that satisfy supt∈R |tkφ(�)(t)| < ∞ for all k, � ∈ N.

Recall from the introduction that for N ∈ N and d = N 2, we denote by �d2 the space
of all functions defined over the cyclic group Zd := Z/dZ with the normalization
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Balian–Low type theorems in finite dimensions 649

‖a‖2d = 1

N

d−1∑
j=0

|a( j)|2, a = {a( j)}d−1
j=0 ∈ �d2 .

For a ∈ �d2 , we use the finite Fourier transform

Fd(a)(k) = 1

N

d−1∑
j=0

a( j)e−2π i jkd .

With the chosen normalization, the finite Fourier transform is unitary on �d2 . We define
the periodic convolution of a, b ∈ C

d , by

(a ∗ b)(k) = 1

N

d−1∑
j=0

a(k − j)b( j),

and note the convolution relation Fd(a ∗ b) = Fd(a) · Fd(b). Observe that, for the
choice a( j) = f ( j/N ), the discrete Fourier transforms and convolutions yield natural
discretizations of their respective counterparts on R.

Also, recall that for a sequencea ∈ �d2 ,wedenote the discrete derivative by�a( j) =
a( j + 1)− a( j). From time to time, we encounter sequences depending on more than
one variable, say a

(
k + ψ(s)

)
where ψ is some function depending on the integer s.

In this case, we write �(s) if we want to indicate that the difference is to be taken with
respect to s. That is, �(s)a

(
k + ψ(s)

) = a
(
k + ψ(s + 1)

)− a
(
k + ψ(s)

)
.

We will also consider functions W : Z2
d → C for which we use the notations

�W (m, n) := W (m + 1, n) − W (m, n) and


W (m, n) := W (m, n + 1) − W (m, n).

Finally, we let �2([0, N−1]2) denote the space of sequences supported onZ2∩[0, N−
1]2 with norm

1

d

N−1∑
m,n=0

|W (m, n)|2,

where, as usual, d = N 2. We note that this normalization can be related to the process
of sampling an L2 function over [0, 1]2, on the vertices of squares of side length 1/N ,
and computing the corresponding Rieman sum.

2.2 The continuous and finite Zak transforms

On L2(R), the Zak transform is defined as follows.
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650 S. Nitzan, J.-F. Olsen

Definition 2.1 Let f ∈ L2(R). The continuous Zak transform of f is given by

Z f (x, y) =
∑
k∈Z

f (x − k)e2π iky, (x, y) ∈ R
2.

We summarise the basic properties of the continuous Zak transform in the following
lemma. Proofs for these properties, as well as further discussion of the Zak transform,
can be found, e.g., in [14, Chapter 8].

Lemma 2.2 Let f ∈ L2(R). The following hold.

i. The Zak transform is quasi-periodic on R
2 in the sense that

Z f (x + 1, y) = e2π iy Z f (x, y) and Z f (x, y + 1) = Z f (x, y). (11)

In particular, thismeans that the function Z f is determined by its values on [0, 1]2.
ii. The Zak transform is a unitary operator from L2(R) onto L2([0, 1]2).
iii. The Zak transform and the Fourier transform satisfy the relation

Z(F f )(x, y) = e2π ixy Z f (−y, x).

iv. For φ ∈ S(R), the Zak transform satisfies the convolution relation

Z( f ∗ φ) = Z( f ) ∗1 φ,

where the subscript of ∗1 indicates that the convolution is taken with respect to
the first variable of the Zak transform.

Next, we discuss a Zak transform for �d2 which appears in, e.g., [2].

Definition 2.3 Let N ∈ Z and set d = N 2. The finite Zak transform of a ∈ �d2 , with
respect to (NZd)

2, is given by

Zd(a)(m, n) =
N−1∑
j=0

a(m − N j)e2π i
jn
N , (m, n) ∈ Z

2
d .

Note that with this definition, Zd(a) is well-defined as a function on Z
2
d (that is, it

is d-periodic separately in each variable).
The basic properties of the finite Zak transform mirror closely those of the contin-

uous Zak transform and are stated in the following lemma. Parts (i), (ii) and (iii) of
this Lemma can be found as Theorems 1, 3 and 4 in [2]. Part (iv) follows immediately
from the definitions of the Zak transform and the convolution.

Lemma 2.4 Let N ∈ N, d = N 2 and a ∈ �d2 . Then the following hold.

(i) The function Zd(a) is N-quasi-periodic on Z2
d in the sense that

Zd(a)(m + N , n) = e2π i
n
N Zd(a)(m, n),

Zd(a)(m, n + N ) = Zd(a) (m, n).
(12)
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Balian–Low type theorems in finite dimensions 651

In particular, Zd(a) is determined by its values on the set Z2 ∩ [0, N − 1]2.
(ii) The transform Zd is a unitary operator from �d2 onto �2([0, N − 1]2).
(iii) The finite Zak transform and the finite Fourier transform satisfy the relation

Zd(Fda)(m, n) = e2π i
mn
d Zd(a)(−n,m). (13)

(iv) The finite Zak transform satisfies the convolution relation

Zd(a ∗ φ) = Zd(a) ∗1 φ, a, φ ∈ �d2 .

where the subscript of ∗1 indicates that the convolution is taken with respect to
the first variable of the finite Zak transform.

Remark 2.5 We will make use of a somewhat more general property than the N -quasi
periodicity. Namely, we will be interested in functions W : Z2

d → C satisfying

W (m + N , n) = η e2π i
n
N W (m, n),

W (m, n + N ) = W (m, n).
(14)

where η is a unimodular constant. In particular, we note that if a function is N -quasi-
periodic then any translation of it satisfies the relations (14). For easy reference to this
property we will call a function satisfying it N -quasi-periodic up to a constant.

We will make use of the following lemma, which is a finite dimensional analog of
inequality (16) from [24].

Lemma 2.6 Let N ∈ N and d = N 2. Suppose that a, φ ∈ �d2 and k ∈ N, then it holds
that

|Zd(a ∗ φ)(m + k, n) − Zd(a ∗ φ)(m, n)| ≤ k

N
‖Zd(a) ‖L∞

d−1∑
j=0

|�φ( j)|. (15)

Proof For a function a ∈ �d2 , write �ka(n) = a(n + k) − a(n). Property (iv) of
Lemma 2.4 implies that �k Zd(a ∗ φ) = Zd(a) ∗1 (�kφ). The result now follows by
applying the triangle inequality to

∑ |�kφ|. 
�

2.3 Gabor Riesz bases and the Zak transform

A system of vectors { fn} in a separable Hilbert space H is called aRiesz basis if it is the
image of an orthonormal basis under a bounded and invertible linear transformation
T : H �→ H . Equivalently, the system { fn} is a Riesz basis if and only if it is complete
in H and satisfies the inequality

A
∑

|cn|2 ≤ ‖
∑

cn fn‖2 ≤ B
∑

|cn|2 (16)
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652 S. Nitzan, J.-F. Olsen

for all finite sequences of complex numbers {cn}, where A and B are positive constants.
The largest A and smallest B for which (16) holds are called the lower and upper Riesz
basis bounds, respectively. We note that every basis in a finite dimensional space is a
Riesz basis.

The proof for Part (i) of the following proposition can be found, e.g., in [14, Corol-
lary 8.3.2(b)], while part (ii) can be found in [2, Theorem 6].

Proposition 2.7 (i) Let g ∈ L2(R). Then, G(g) is a Riesz basis in L2(R) with Riesz
basis bounds A and B if and only if A ≤ |Zg(x, y)|2 ≤ B for almost every
(x, y) ∈ [0, 1]2.

(ii) Let N ∈ N, d = N 2 and b ∈ �d2 . Then, Gd(b) is a basis in �d2 with Riesz
basis bounds A and B if and only if A ≤ |Zd(b)(m, n)|2 ≤ B for all (m, n) ∈
[0, N − 1]2 ∩ Z

2.

2.4 Relating continuous and finite signals

In the introduction, we motivated our choices of normalizations by relating finite
signals to samples of continuous ones. In this subsection, we formulate this relation
precisely.

Fix N ∈ N and let d = N 2. For a function f in the Schwartz class S(R) and a
continuous N -periodic function h, we define their N -periodisation and N -samples,
respectively, by

PN f (t) =
∞∑

�=−∞
f (t + �N ) and SN h =

{
h
( j

N

)}d−1

j=0
.

First we relate these operators to the Fourier transform and the Zak transform via
Poisson–type formulas. We note that part (i) of the following proposition is stated
without proof in [1].

Proposition 2.8 For f in the Schwartz class S(R), the following hold.

(i) For every N ∈ N and (m, n) ∈ Z
2, we have

Zd(SN PN f )(m, n) = Z f (m/N , n/N ). (17)

(ii) For every N ∈ N, we have

Fd SN PN f = SN PNF f . (18)

Proof (i): Since f ∈ S(R), we can change the order of summation in the expression
for Zd(SN PN f )(m, n). This immediately yields the formula.

(ii): Observe that part (i) holds for both f and F f . With this, in combination with
parts (iii) of Lemmas 2.2 and 2.4, the proof of part (ii) follows. 
�
Remark 2.9 (i) Although Proposition 2.8 is formulated for functions in the Schwartz

class S(R), it is readily checked that it holds for all functions f ∈ L2(R) which
satisfy both supt∈R |t2 f (t)| < ∞ and supξ∈R |ξ2 f̂ (ξ)| < ∞.
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Balian–Low type theorems in finite dimensions 653

(ii) In Sect. 6, we extend Proposition 2.8 to f ∈ L2(R).

The following lemma relates the discrete and continuous derivatives.

Lemma 2.10 Let f ∈ L2(R) be a function that satisfies the condition of Remark 2.9(i),
and denote a = SN PN f . Then,

d−1∑
j=0

|�a j | ≤
∫
R

| f ′(x)|dx .

Proof The inequality follows by applying the Fundamental Theorem of Calculus to
the differences �a j and then applying the triangle inequality. 
�

3 Regularity of the Zak transforms

Essentially, this paper is about the regularity of Zak transforms (or rather, their lack
of such). In this section, we formulate a few lemmas in this regard.

3.1 ‘Jumps’of quasi-periodic functions onZ2
d

It is well known that the argument of a quasi-periodic function on R
2 cannot be

continuous (see, e.g., [14, Lemma 8.4.2]). In [24, Lemma 1], we show that such a
function has to ‘jump’ on all rectangular lattices (see Remark 3.2, below). The latter
lemma is finite dimensional in nature. For easy reference we formulate it below. To
this end, we use the notation

|h| > δ (mod 1)

to denote that

inf
n∈Z |h − n| > δ.

Lemma 3.1 Fix integers K , L ≥ 2. Let γ ∈ C and let H be a function on ([0, K ] ×
[0, L]) ∩ Z

2 that satisfies

H(i, L) = H(i, 0) (mod 1) i ∈ [0, K ] ∩ Z and

H(K , j) = H(0, j) + γ + j

L
(mod 1) j ∈ [0, L] ∩ Z.

Then, there exist (i, j) ∈ ([0, K − 1] × [0, L − 1]) ∩ Z
2 such that

|�H(i, j)| ≥ 1

8
(mod 1) (19)
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654 S. Nitzan, J.-F. Olsen

or

|
H(i, j)| ≥ 1

8
(mod 1). (20)

Remark 3.2 From time to time, we refer to functions satisfying conditions such as (19)
or (20) as having ‘jumps’. This notion of ‘jumps’ is imprecise and merely meant to
be descriptive, and will depend on the context of the given situation.

Remark 3.3 Note that for K = L = N , the argument of an N -quasi-periodic up to a
constant function (see (14)) satisfies the conditions of Lemma 3.1.

3.2 ‘Jumps’of quasi-periodic functions on subsets ofZ2
d

In this subsection, we extend Lemma 3.1 to show that it also holds when the function
is restricted to certain subsets of Z2

d , which we want to treat as if they were sublattices
of Z2

d , even if they, strictly speaking, are not. To this end, for integers K , L ∈ [2, N ],
we define the functions

σs =
[ sN
K

]
, s ∈ [0, K ] ∩ Z, ωt =

[ t N
L

]
, t ∈ [0, L] ∩ Z, (21)

where [a] denotes the integer part of a. Note that σK = ωL = N . We can now state
the following lemma.

Lemma 3.4 Fix positive integers N ≥ 9, K , L ∈ [2, N ], and denote d = N 2. Let W
be a function defined over Z2

d that is N-quasi-periodic up to a constant (see (14)).
Denote by H any branch of the argument of W , so that W = |W |e2π iH . Then, there
exist (s, t) ∈ ([0, K − 1] × [0, L − 1]) ∩ Z

2 so that either

|�(s)H(σs, ωt )| ≥ 1

8
− 1

N
(mod 1) (22)

or

|
(t)H(σs, ωt )| ≥ 1

8
− 1

N
(mod 1). (23)

Proof Suppose that (14) holds for W with the constant η = e2π iγ . We start by modi-
fying the argument H(σs, ωt ) ofW to obtain a function that satisfies the conditions of
Lemma 3.1. To this end, for (s, t) ∈ Z

2, set hs,t = H(σs, ωt ), and define a function
�(s, t) on ([0, K ] × [0, L]) ∩ Z

2 as follows:

�(s, t) =
{
hs,t if (s, t) ∈ ([0, K − 1] × [0, L]) ∩ Z

2,

h0,t + γ + t
L if s = K .
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We note that since ωL = N , and H is the argument of a function that is N -periodic in
the second variable, we have

hs,L = H(σs, N ) = H(σs, 0) = hs,0 (mod 1).

Therefore, �(s, L) = �(s, 0) (mod 1) for every s ∈ [0, K ] ∩ Z. It follows that �

satisfies the conditions of Lemma 3.1 on ([0, K ]×[0, L])∩Z
2, and, as a consequence,

there exists a point (s, t) ∈ ([0, K − 1] × [0, L − 1]) ∩ Z
2 so that either

|��(s, t)| ≥ 1

8
or |
�(s, t)| ≥ 1

8
(mod 1)

hold. The jumps for hs,t now follow from the jumps of �. Indeed, if the jump is
in the vertical direction, or if it is in the horizontal direction at a point (s, t) with
s ≤ K − 2, then this is immediate from the definition of �. If the jump is in the
horizontal direction, at a point (s, t)with s = K −1, then we note that, since σK = N ,
the N -quasi-periodicity up to a constant of W implies that

hK ,t = H(N , ωt ) = H(0, ωt ) + γ + ωt

N
= �(K , t) +

(ωt

N
− t

L

)
.

Since, by definition �(K − 1, t) = hK−1,t , it follows that

|hK ,t − hK−1,t | ≥ |�(K , t) − �(K − 1, t)| −
∣∣∣ωt

N
− t

L

∣∣∣ ≥ 1

8
−
∣∣∣ωt

N
− t

L

∣∣∣.
The lemma now follows from the fact that,

∣∣∣∣ωt

N
− t

L

∣∣∣∣ =
∣∣∣∣ [t N/L]

N
− t

L

∣∣∣∣ ≤
∣∣∣∣ t N/L

N
− t

L

∣∣∣∣+ 1

N
= 1

N
.


�
We obtain the following corollary of Lemma 3.4.

Corollary 3.5 Fix an integer N0 ≥ 9 and a constant A > 0. Let

δ = 2
√
A sin

(
π
(1
8

− 1

N0

))
.

For any integers N ≥ N0 and K , L ∈ [2, N ], the following holds (with d = N 2). If
W is an N-quasi periodic function satisfying A ≤ |W |2 over the lattice Z2

d , then, for
every (u, v) ∈ Z

2
d , there exists at least one point (s, t) ∈ ([0, K −1]×[0, L−1])∩Z

2

such that

|�(s)W (u + σs, v + ωt )| ≥ δ, or (24)

|
(t)W (u + σs, v + ωt )| ≥ δ, (25)

where σs, ωt are defined in (21).
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Proof First, we point out that we define the argument arg(z) of a complex number z
so that z = |z|e2π iarg(z). Since any translation of a quasi-periodic function is quasi-
periodic up to a constant, as defined in (14), it follows from Lemma 3.4 that on an
N × N square the argument of W jumps by more than 1/8 − 1/N in at least one of
the inequalities (24) or (25). As the modulus ofW is bounded from below by

√
A, the

conclusion now follows from basic trigonometry. 
�

4 A proof for Theorem 1.1

Here we give a proof for Theorem 1.1 in the general Riesz basis case referred to in
Remark 1.2. In the first subsection below, we reformulate the theorem in terms of the
Zak transform. Using this, we proceed to prove the bound from below, and, finally,
we prove the bound from above.

4.1 Measures of smoothness for finite sequences

Fix N ∈ N and set d = N 2. For b ∈ �d2 , denote

α(b, N ) := N
d−1∑
j=0

|�b( j)|2 + N
d−1∑
k=0

|�Fdb(k)|2,

and

β(b, N ) :=
N−1∑
m,n=0

|�Zd(b) (m, n)|2 +
N−1∑
m,n=0

|
Zd(b) (m, n)|2.

Note that with these notations the quantity α(N ) defined in the introduction satisfies

α(N ) = inf α(b, N )

where the infimum is taken over b ∈ �d2 for which G(b) is an orthonormal basis.

Proposition 4.1 Let b ∈ �d2 be such that |Zd(b)(m, n)|2 ≤ B for all (m, n) ∈ Z
2
d .

Then, for all integers N ≥ 2, we have

1

2
β(b, N ) − 8π2B ≤ α(b, N ) ≤ 2β(b, N ) + 8π2B (26)

Proof We will only prove the right-hand side inequality in (26) since the left-hand
side inequality is proved in the same way.

As the finite Zak transform commutes with the difference operation �, that is
Zd(�b) = �Zd(b), and the finite Zak transform is unitary from �d2 to �2([0, N −1]2),
we find that
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‖�b‖2
�d2

= ‖Zd(�b)‖2
�2([0,N−1]2) = ‖�Zd(b)‖2�2([0,N−1]2).

Multiplying the above equation by d = N 2, we get

N
d−1∑
j=0

|�b( j)|2 =
N−1∑
m,n=0

|�Zd(b) (m, n)|2. (27)

Similarly,

‖�Fdb‖2�d2 = ‖�Zd(Fdb)‖2�2([0,N−1]2). (28)

To relate the expression on the right-hand side to 
Zd(b), we use the relation between
the finite Fourier transform and the Zak transform (13) to compute

|�Zd(Fdb) (n,−m)|2=|e−2π im(n+1)/d Zd(b) (m, n + 1) − e−2π imn/d Zd(b)(m, n)|2
≤ 2|
Zd(b) (m, n)|2 + 2|(e−2π im/d − 1)Zd(b) (m, n)|2

≤ 2|
Zd(b) (m, n)|2 + 8π2m
2

d2
B.

Combining this estimate with (28), and recalling that the Zak transform is N -periodic
in the second variable, we find that

‖�Fdb‖2�d2 = 1

N 2

N−1∑
m,n=0

|�Zd(Fdb)(n,−m)|2 ≤ 2‖
Zd(b)‖2�2([0,N−1]2)+ 8π2 1

N 2 B,

where in the last estimate, we used the facts that m ≤ N and d = N 2. Multiplying
this inequality by N 2, and combining it with (27), the right-hand inequality of (26)
follows. 
�
For A, B > 0, we put

αA,B(N ) = inf{α(b, N )} and βA,B(N ) = inf{β(b, N )},

where the infimums are taken over all b ∈ �d2 for which the system Gd(b) is a basis
with Riesz basis bounds at least A and at most B.

Proposition 4.1 now implies that with the notations above, the following inequality
holds for every N ∈ N:

1

2
βA,B(N ) − 8π2B ≤ αA,B(N ) ≤ 2βA,B(N ) + 8π2B. (29)

In light of this inequality, Theorem 1.1 (as well as the version discussed in
Remark 1.2) can be reformulated as follows.

123



658 S. Nitzan, J.-F. Olsen

Theorem 4.2 There exist constants c,C > 0 so that, for all integers N ≥ 2, we have

c log N ≤ βA,B(N ) ≤ C log N .

Remark 4.3 To see that it is necessary to include the the Riesz basis bounds in the
definitions of αA,B(N ) and βA,B(N ) (and that these bounds cannot be replaced by
�d2 normalization) consider the following example. Let h = e−π(x−τ)2 with τ ∈
(0, 1/2)\Q. By [11, Lemma 3.40], it follows that Zh has exactly one zero on the unit
square located at (1/2 + τ, 1/2). Since the first coordinate of this point is irrational,
it follows by Proposition 2.8 that the function Zd(bN ) with bN = SN PNh, where
d = N 2, does not have a zero on Z

2
d . Consequently, Proposition 2.7 implies that the

finite Gabor system Gd(bN ) is a basis for �d2 , though the (lower) Riesz basis bounds
of these bases decay as N increases. Straight-forward computations, using only the
regularity and decay of the Gaussian, show that there exist constants C, D, E > 0,
such that the following hold:

(i) C ≤ ‖bN‖d ≤ D for every N ∈ N, (ii) α(bN , N ) ≤ E as N → ∞.

This example shows that the constant c in Theorem 1.1 depends on the lower Riesz
basis bounds in the definition of αA,B(N ). Similarly, it may be shown that C depends
on the upper Riesz basis bound.

4.2 Proof for the lower bound in Theorem 4.2

Proof Given N ≥ 9, we set d = N 2 and let J ∈ N be such that 2J ≤ N < 2J+1. Fix
j ∈ [0, J − 1] ∩ Z. Let σ

( j)
t and ω

( j)
t be as defined in (21) with K j = L j = 2J− j .

That is,

σ
( j)
t = ω

( j)
t =

[
t

N

2J− j

]
t ∈ Z.

We note that

2 j ≤ inf{�σ
( j)
t } ≤ sup{�σ

( j)
t } ≤ 2 j+1, (30)

where both the infimum and supremum are taken over all t ∈ Z. Indeed, to see this,
consider separately the cases N = 2J and N > 2J , and use the fact that all of the
numbers involved in these inequalities are integers.

For u, v ∈ [0, 2 j − 1] ∩ Z, write

Lat j (u) = {u + σ
( j)
s : s ∈ [0, 2J− j − 1] ∩ Z

}
, and

Lat j (u, v) = {(u + σ
( j)
s , v + σ

( j)
t ) : s, t ∈ [0, 2J− j − 1] ∩ Z

}
.

Note that due to (30), if u1 �= u2 then Lat j (u1) ∩ Lat j (u2) = ∅, and if (u1, v1) �=
(u2, v2) then Lat j (u1, v1) ∩ Lat j (u2, v2) = ∅.

123



Balian–Low type theorems in finite dimensions 659

Given b ∈ �d2 , we denote W = Zd(b). Set δ = 2
√
A sin(π/72), then, since N ≥ 9

Corollary 3.5 implies that each of the sets Lat j (u, v) contains a point on which the
function W ‘jumps’, i.e., where

δ2 ≤ |�(s)W (u + σ
( j)
s , v + σ

( j)
t )|2 + |�(t)W (u + σ

( j)
s , v + σ

( j)
t )|2. (31)

Our goal is to collect ‘jumps’ of W that are, in some sense, separated. We do this in
an inductive process.

In the first step, let j = 0. By Corollary 3.5, there exists a point (m0, n0) in
Lat0(0, 0) so that (31) holds for this point. Let S̃0 = S0 = {(m0, n0)}. Next, let j = 1.
For u ∈ {0, 1}, the sets Lat1(u) are disjoint, and so at least one of them does not
contain the numberm0. Let u11 ∈ {0, 1} be such that the set Lat1(u11) has this property,
and, similarly, let v11 ∈ {0, 1} be such that Lat1(v11) does not contain the number n0.
By Corollary 3.5, there exists a point (m1, n1) in Lat1(u11, v

1
1) so that (31) holds for

this point. Let S1 = {(m1, n1)}, and put S̃1 = S0 ∪ S1. Note that the two points in S̃1
do not have the same value in either coordinate.

We now consider the general case. Assume that for some 1 ≤ j ≤ J − 2 we have
found sets S j , S̃ j and S̃ j−1 so that S̃ j = S̃ j−1 ∪ S j and

i. |S̃ j−1| = |S j | = 2 j−1 and |S̃ j | = 2 j .
ii. Every point in S j satisfies condition (31).
iii. No two points in S̃ j have the same value in either coordinate.

We now construct the sets S j+1 and S̃ j+1. Consider the sets Lat j+1(u) for u ∈
[0, 2 j+1 − 1] ∩ Z. These 2 j+1 sets are disjoint and therefore at least 2 j of them
do not contain any of the numbers that are the first coordinates of the points in S̃ j . We

let these sets correspond to u j+1
k ∈ [0, 2 j+1 − 1] ∩ Z for 1 ≤ k ≤ 2 j , and similarly,

let v
j+1
k ∈ [0, 2 j+1 − 1] ∩ Z, for 1 ≤ k ≤ 2 j , be so that no integer in Lat j+1(v

j+1
k )

coincide with the second coordinate of any point in S̃ j . By Corollary 3.5, there is a

point in each of the sets Lat j+1(u
j+1
k , v

j+1
k ) so that (31) holds. Let S j+1 be the set

containing all these points and let S̃ j+1 = S̃ j ∪ S j+1. Note that S j+1 and S̃ j+1 satisfy
conditions (i),(ii) and (iii) above, with j replaced by j + 1.

Now, for a fixed 0 ≤ j ≤ J − 1, each point (m, n) ∈ S j is of the form (m, n) =
(u+σ

( j)
s , v+σ

( j)
t ) for some (u, v) ∈ [0, 2 j −1]2∩Z

2 and (s, t) ∈ [0, 2J− j −1]2∩Z
2.

We observe that condition (31) implies the following for such a point (m, n) (where
we apply the Cauchy–Schwarz inequality and (30) in the third step):

δ2 ≤ |�(s)W (u + σ
( j)
s , v + σ

( j)
t )|2 + |
(t)W (u + σ

( j)
s , v + σ

( j)
t )|2

=
∣∣∣
u+σ

( j)
s+1−1∑

k=u+σ
( j)
s

�W (k, n)

∣∣∣2 +
∣∣∣
v+σ

( j)
t+1−1∑

�=v+σ
( j)
t


W (m, �)

∣∣∣2
)
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≤ 2 j+1

⎛
⎜⎝

u+σ
( j)
s+1−1∑

k=u+σ
( j)
s

|�W (k, n)|2 +
v+σ

( j)
t+1−1∑

�=v+σ
( j)
t

|
W (m, �)|2
⎞
⎟⎠

≤ 2 j+1

(
N−1∑
k=0

|�W (k, n)|2 +
N−1∑
�=0

|
W (m, �)|2
)

.

The last step of the above computation follows by combining the observation that the
summands are N -periodic, that is, |�W (m, n)| = |�W (m−N , n)| and |
W (m, n)| =
|
W (m, n−N )|, with the fact that, by (30), the number of terms in each sum is bounded
by 2J , and therefore also by N .

Since no two points of S̃J−1 = ∪J−1
j=0 S j have the same value in either coordinate,

and |S j | = 2 j−1, we obtain

β(b, N ) =
N−1∑
m,n=0

|�W (m, n)|2 +
N−1∑
m,n=0

|
W (m, n)|2

≥
∑

(m,n)∈S̃J−1

(
N−1∑
k=0

|�W (k, n)|2 +
N−1∑
�=0

|
W (m, �)|2
)

=
J−1∑
j=0

∑
(m,n)∈S j

(
N−1∑
k=0

|�W (k, n)|2 +
N−1∑
�=0

|
W (m, �)|2
)

≥
J−1∑
j=0

∑
(m,n)∈S j

δ2

2 j+1 = Jδ2

4
.

(32)

As J + 1 ≥ log N/ log 2, the desired lower inequality now follows. 
�
Remark 4.4 Given the restriction N ≥ N0, it follows from Corollary 3.5 that the
δ appearing in the last proof may be choosen to be δ = 2

√
A sin π(1/8 − 1/N0).

Moreover, the inequality J + 1 ≥ log N/ log 2 yields

J ≥ log N ·
( 1

log 2
− 1

log N0

)
.

Plugging this into the estimate (32), we find that

β(N ) ≥ log N ·
( 1

log 2
− 1

log N0

)
· A sin2 π

(1
8

− 1

N0

)
.

For N0 = 9, this yields the estimate βA,B(N ) ≥ A log N/533, while as N0 → ∞ we
get that

lim
N0→∞

(
inf

N≥N0

βA,B(N )

log N

)
≥ A

1

2 log 2

(
1 − 1√

2

)
.
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4.3 Proof for the upper bound in Theorem 4.2

We consider a function that first appeared in [5] (see also [23]). In these ref-
erences, this function was used for similar purposes as here, namely, to provide
examples of generators of orthonormal Gabor systems with close to optimal local-
isation.

To define the function, we first define the smooth functions φ : R → [0, 1] and
γ : (0, 1] → [0, 1] by

φ(t) =
{
1 t ≥ 1

0 t ≤ 0
and γ (t) =

{
1 t ∈ (0, 1/4]
0 t ∈ [1/2, 1] .

Using these functions, we define (see Fig. 1)

H(x, y) =
{

γ (x)φ
(
y
x

)
+ (1 − γ (x)

)
y if x ∈ (0, 1]

1 if x = 0
.

Finally, on [0, 1]2, we define the function

G(x, y) = e2π iH(x,y),

which we extend (continuously on R
2\Z2) to a quasi-periodic function on all of R2

(in a mild abuse of notation, we also denote the quasi-periodic extension by G(x, y)).
Since the finite Zak transform is unitary, it follows that there exists a sequence b ∈ �d2
of unit norm so that

Zd(b)(m, n) = G
(m
N

,
n

N

)
. (33)

In particular, sinceG is unimodular, it follows by Proposition 2.7 that theGabor system
Gd(b) is an orthonormal basis for �d2 .

The following proposition provides the required estimate from above on β1,1(N ).

Proposition 4.5 Let b be the sequence defined above. Then, there exists a constant
C > 0 so that for all N ≥ 2 and d = N 2, we have

β(b, N ) ≤ C log N . (34)

Proof In this proof, we denote by C positive constants which may change from line
to line. In light of (33), we need to estimate the expression

N−1∑
m,n=0

∣∣∣�G
(m
N

,
n

N

)∣∣∣2
︸ ︷︷ ︸

:=(I )

+
N−1∑
m,n=0

∣∣∣
G
(m
N

,
n

N

)∣∣∣2
︸ ︷︷ ︸

:=(I I )

.
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Fig. 1 Illustration of the function H(x, y) from [5] used in the proof of the upper bound for Theorem 4.2

To estimate (I ), we make the following partition of the set [0, N − 1]2 ∩ Z
2:

A0 = {(m, n) ∈ Z
2 : m ∈ [0, N/8], n = 0}

A1 = {(m, n) ∈ Z
2 : m ∈ [1, N/8] and n ∈ [1,m]}

A2 = ([0, N − 1]2 ∩ Z
2)\(A0 ∪ A1)

On A0, the values of G(m/N , n/N ) are constant, so

∑
(m,n)∈A0

∣∣∣�G
(m
N

,
n

N

)∣∣∣2 = 0.

On A2, we use the fact that the function G is C∞ on R
2\Z2, and moreover, that

on the set {(x, y) ∈ [0, 1]2 : y ≥ x ∨ x ≥ 1/8} both G, and its derivatives, are
continuous. Indeed, this means that we are justified in using the Mean Value theorem
for (m, n) ∈ A2 to make the estimate

∣∣∣�G
(m
N

,
n

N

)∣∣∣ = 1

N
·
∣∣∣(∂xG)

(
μm,n,

n

N

)∣∣∣ ≤ C

N
,

where μm,n ∈ (m/N , (m + 1)/N ) and C = C(G) > 0 is a constant not depending
on N . It follows immediately that

∑
(m,n)∈A2

∣∣∣�G
(m
N

,
n

N

)∣∣∣2 ≤ 1

N 2 · C |A2| ≤ C .
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On A1, we do the computation

∑
(m,n)∈A1

∣∣∣�G
(m
N

,
n

N

)∣∣∣2 =
[N/8]∑
m=1

m∑
n=1

∣∣∣(∂xG
(
μm,n,

n

N

)∣∣∣2 1

N 2

︸ ︷︷ ︸
:= (∗)

,

where μm,n ∈ (m/N , (m + 1)/N ) as before. To estimate (∗), we compute

∣∣∣(∂xG)
(
x,

n

N

)∣∣∣ = 2π
∣∣∣(∂x H)

(
x,

n

N

)∣∣∣ = 2π
∣∣∣φ′( n

Nx

)∣∣∣ · n

Nx2
.

This allows the bound

(∗) = 4π2
[N/8]∑
m=1

m∑
n=1

∣∣∣φ′( n

Nμm,n

)∣∣∣2 n2

N 4μ4
m,n

≤ 4π2‖φ′‖2∞
N 4

[N/8]∑
m=1

m∑
n=1

n2

(m/N )4
≤ 4π2‖φ′‖2∞

(
C + log N

)
.

Toestimate (II),we consider the corresponding sumsover A2 and over B = A0∪A1.
We skip the estimates for A2, which are completely analogous to the corresponding
estimates made above. Instead, we turn our focus to the estimate for B. As above, we
begin by using the Mean Value Theorem to write

∑
(m,n)∈B

∣∣∣
G
(m
N

,
n

N

)∣∣∣2 =
[N/8]∑
m=1

m∑
n=0

|(∂yG)
(m
N

, νm,n

)
|2 1

N 2

︸ ︷︷ ︸
:= (∗∗)

,

where νm,n ∈ [n/N , (n + 1)/N ]. To estimate (∗∗), we compute

∣∣∣(∂yG)
(m
N

, y
)∣∣∣ = 2π

∣∣∣(∂y H)
(m
N

, y
)∣∣∣ = 2π

∣∣∣φ′(Ny

m

)∣∣∣ · N
m

.

This allows the estimate
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(∗∗) = 4π2
[N/8]∑
m=1

m∑
n=0

∣∣∣φ′(Nνm,n

m

)∣∣∣2 · 1

N 2 · N
2

m2

≤ 4π2‖φ′‖2∞
[N/8]∑
m=1

m∑
n=0

1

m2 ≤ 4π2‖φ′‖2∞
(
C + log N

)
.


�
Remark 4.6 To determine a bound for the constant C of inequality (34), observe that
we can actually choose φ to be piecewise linear, and therefore to satisfy ‖φ′‖2∞ ≤ 1.
Moreover, observe that

(∗) + (∗∗) ≤ 8π2(C0 + log N ),

whereC0 is some positive constant. Since the remaining sums over A2 only contribute
to C0, we conclude that asymptotically,

C ≤ lim
N0→∞

(
sup
N≥N0

β1,1(N )

log N

)
≤ 8π2.

5 A quantitative Balian–Low type theorem in finite dimensions

In this section, we prove a finite dimensional version of the quantitative Balian–Low
inequality. For the most part, we follow the main ideas appearing in our paper [24].

5.1 Auxiliary results

The estimate in the following lemma is not optimal, but rather, chosen to simplify the
presentation. We leave the proof, which is straight-forward, to the reader.

Lemma 5.1 Let ρ : R → R be the inverse Fourier transform of

ρ̂(ξ) =
⎧⎨
⎩
1 |ξ | ≤ 1/2,
2(1 − ξ sgn(ξ)) 1/2 ≤ |ξ | ≤ 1,
0 |ξ | ≥ 1.

Then
∫
R

|ρ′(t)|dt ≤ 10.

Lemma 5.2 Let A, B > 0 and N ≥ 350
√
B/A. There exist positive constants δ =

δ(A) and C = C(A, B) such that the following holds (with d = N 2). Let

(i) Q, R ∈ Z such that 1 ≤ Q, R ≤ (N/30) · √
A/B,
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(ii) φ,ψ ∈ �d2 such that
∑

n |�φ(n)| ≤ 10R and
∑

n |�ψ(n)| ≤ 10Q,
(iii) b ∈ �d2 such that A ≤ |Zd(b)|2 ≤ B.

Then, there exists a set S ⊂ ([0, N − 1] ∩ Z)2 of size |S| ≥ CN 2/QR such that all
(u, v) ∈ S satisfy either

|Zd(b)(u, v) − Zd(b ∗ φ)(u, v)| ≥ δ, or (35)

|Zd(Fdb)(u, v) − Zd((Fdb) ∗ ψ)(u, v)| ≥ δ. (36)

Proof of Lemma 5.2 For the given A and for N0 = 350, let δ1 = 2
√
A sin(π/8 −

π/350) be the constant from Corollary 3.5. Notice that the integers Q, R and N
satisfy

√
B

δ1
max

{200R
9

,
200Q

9
, 80π

}
≤N .

Therefore, there exist integers K and L that satisfy

200
√
BR

9δ1
≤K ≤ N and

√
B

δ1
max

{200Q
9

, 80π
}
≤L ≤ N . (37)

We choose K , L to be the smallest such integers.
For s, t ∈ Z, let σs and ωt be as defined in (21), that is,

σs =
[ sN
K

]
, and ωt =

[ t N
L

]
.

Note that σK = ωL = N and denote � = inf{�(s)σs} and � = inf{�(t)ωt }. The
conditions on K and L imply that, for some constant C1 = C1(A, B),

� · � ≥ C1
N 2

QR
.

For (u, v) ∈ ([0, � − 1] ∩ Z) × ([0,� − 1] ∩ Z), write

Lat(u, v) = {(u + σs, v + ωt ) : (s, t) ∈ ([0, K − 1] ∩ Z) × ([0, L − 1] ∩ Z)
}

and

Lat∗(u, v) = {(N − v − ωt , u + σs) : (s, t) ∈ ([0, K − 1] ∩ Z) × ([0, L − 1] ∩ Z)
}
.

Note that if (u1, v1) �= (u2, v2) then it follows from the definition of � and � that
Lat(u1, v1) ∩ Lat(u2, v2) = ∅ and Lat∗(u1, v1) ∩ Lat∗(u2, v2) = ∅. We will show
that for each (u, v), either the set Lat(u, v) or the set Lat∗(u, v) contains a point from
([0, N−1]∩Z)2 which satisfies condition (35) or (36), respectively. PuttingC = C1/2
our proof will then be complete.

123
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So, fix (u, v) ∈ ([0, � − 1] ∩ Z) × ([0,� − 1] ∩ Z). Due to Corollary 3.5, there
exists at least one point (s, t) ∈ ([0, K − 1] ∩Z) × ([0, L − 1] ∩Z) such that (24) or
(25) hold with W = Zd(b).

Assume first that (24) holds. Lemma 2.6, the estimate |�(s)σs | ≤ 2N/K , and
condition (37), imply that

|�(s)Zd(b ∗ φ)(u + σs, v + ωt )| ≤ 2N/K

N
· √

B · 10R ≤ 9δ1
10

.

It follows that either (u+σs, v+ωt ) or (u+σ(s+1), v+ωt ) satisfy (35)with δ = δ1/20.
It may happen that this chosen point does not belong to ([0, N − 1] ∩Z)2, that is, it is
of the form (u + N , v + ωt ). In that case, due to the N -quasi-periodicity of the Zak
transform, the point (u, v+ωt ) satisfies the same inequality, and is in ([0, N−1]∩Z)2.

Assume now that (25) holds for (u, v) and (s, t). Then (13), the N -quasi-periodicity
of Zd(b), and the estimate |�(t)ωt | ≤ 2N/L , imply that

|�(t)Zd(Fdb)(N − v − ωt , u + σs)|
=
∣∣∣Zd(b)(u + σs, v + ωt+1) − e2π i

(ωt+1−ωt )(u+σs )
d Zd(b)(u + σs, v + ωt )

∣∣∣
≥ |
(t)Zd(b)(u + σs, v + ωt )| − √

B|e2π i (ωt+1−ωt )(u+σs )
d − 1|

≥ δ1 − 4π
√
B

L
≥ 19δ1

20
.

On the other hand, as in the previous case, we have

|�(t)Zd(Fdb ∗ ψ)(N − v − ωt , u + σs)| ≤ 20
√
BQ

L
<

9δ1
10

.

It follows that either (N − v − ωt , u + σs) or (N − v − ω(t+1), u + σs) satisfy (36)
with δ = δ1/40. It may happen that this chosen point is the point (−v, u +σs). In that
case, due to the N -quasi-periodicity of the Zak transform, the point (N − v, u + σs)

satisfies the same inequality, and is in ([0, N − 1] ∩ Z)2. 
�

5.2 A proof for Theorem 1.5

We are now ready to prove Theorem 1.5. In fact, we prove the more general version
referred to in Remark 1.6 which we formulate as follows:

Theorem 5.3 Let A, B > 0. There exists a constant C = C(A, B) > 0 so that the
following holds. Let N ≥ 350

√
B/A and let b ∈ �d2 (where d = N 2) be such that

Gd(b) is a basis in �d2 with Riesz basis bounds A and B. Then, for all positive integers
1 ≤ Q, R ≤ (N/30) · √

A/B, we have

1

N

d−1∑
j=NQ

|b( j)|2 + 1

N

d−1∑
k=N R

|Fdb(k)|2 ≥ C

QR
.
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Proof of Theorem 1.5 Let ρ : R → R be as in Lemma 5.1 and put �(t) = Rρ(Rt)
and �(t) = Qρ(Qt). Denote φ = SN PN� and ψ = SN PN�. By Lemma 2.10, in
combination with Lemma 5.1, it follows that

∑
n |�φ(n)| ≤ 10R and

∑
n |�ψ(n)| ≤

10Q. As a consequence, the integers Q, R and N , as well as the functions φ,ψ and
b, all satisfy the requirements of Lemma 5.2.

As Q, R < N/2, by Proposition 2.8, and Remark 2.9(i), we have 0 ≤ Fdφ,Fdψ ≤
1 over �d2 . Moreover, we also have Fdφ( j) = 1 for j ∈ [0, RN/2] ∪ [N 2 − RN/2+
1, N 2] and Fdψ( j) = 1 for j ∈ [0, QN/2] ∪ [N 2 − QN/2 + 1, N 2]. It therefore
follows from Lemma 5.2, and the fact that both the finite Zak transform and the finite
Fourier transform are unitary, that, for some constant C > 0,

C

QR
≤ ‖Zd(b) − Zd(b ∗ φ)‖2

�2([0,N−1]2)

+ ‖Zd(Fdb) − Zd(Fdb ∗ ψ)‖2
�2([0,N−1]2)

= ‖b − b ∗ φ‖2
�2d

+ ‖Fdb − Fdb ∗ ψ‖2
�2d

= ‖Fdb(1 − Fdφ)‖2
�2d

+ ‖b(1 − Fdψ)‖2
�2d

≤ 1

N

d−1−[N R/2]∑
k=[N R/2]+1

|Fdb(k)|2 + 1

N

d−1−[NQ/2]∑
j=[NQ/2]+1

|b( j)|2.

The result now follows by applying a suitable time-frequency translate to the sequence
b. 
�

6 Applications to the continuous setting

In this section we show that both the classical and quantitative Balian–Low theorems
follow from their finite dimensional analogs.

6.1 Relating continuous and finite signals – revisited

We start by extending Proposition 2.8 to the space L2(R). We do this in four steps. In
the first, we introduce some additional notations. To this end, fix N ∈ N, N ≥ 2, and
let d = N 2.

Step I: By (L2[0, 1/N ]2)d , we denote the space of all d-tuples {φ( j)}d−1
j=0 with

function entries φ( j) ∈ L2([0, 1/N ]2), equipped with the norm given by

‖{φ( j)}‖2
(L2[0,1/N ]2)d = N

d−1∑
j=0

‖φ( j)‖2L2([0,1/N ]2). (38)

Note that the factor N appears in the norm in order to take the measure of [0, 1/N ] into
account. Similarly, by (L2[0, 1/N ]2)N×N , we denote the space of all N × N matrices
{φ( j, k)}N−1

j,k=0 with function entries φ( j, k) ∈ L2([0, 1/N ]2), equipped with norm
given by
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‖{φ( j, k)}‖2
(L2[0,1/N ]2)N×N =

N−1∑
j,k=0

‖φ( j, k)‖2L2([0,1/N ]2). (39)

(The reader should note the different in normalisations used in (38) and (39).)
Step II:We consider functions h(u, v; t) defined over [0, 1/N ]2 ×R, that are N -

periodicwith respect to the variable t , and are such that, for everyfixed t0, the restriction
h(u, v; t0) is well defined almost everywhere and belongs to L2([0, 1/N ]2). Observe
that the operator

SN h := {h(u, v; j/N )}d−1
j=0

trivially satisfies

SNh ∈ (L2[0, 1/N ]2)d , (40)

Fd SNh ∈ (L2[0, 1/N ]2)d , (41)

Zd SNh ∈ (L2[0, 1/N ]2)N×N . (42)

Above, we understand the notations Fd SNh and Zd SNh to mean that Fd and Zd

operate on SNh with respect to the variable j with (u, v) being considered fixed.
Step III: Let f ∈ L2(R). For (u, v) ∈ [0, 1/N ]2, we define the function

f(u,v)(t) := e2π ivt f (t + u), t ∈ R

and formally put

PN f(u,v)(t) :=
∞∑

�=−∞
f(u,v)(t + �N ).

Note that if f is in the Schwarz classS(R), then the function h(u, v; t) := PN f(u,v)(t)
satisfies the conditions on h(u, v; t) described in Step II. The following lemma shows
that this is true for all f ∈ L2(R).

Lemma 6.1 For f ∈ L2(R), let f(u,v)(t) be the function defined above. Then, for every
fixed t0 ∈ R, we have

PN f(u,v)(t0) ∈ L2([0, 1/N ]2).

That is, the series defining PN f(u,v)(t0) converges in the norm of L2([0, 1/N ]2).
Proof Use the fact that {√Ne2π iN�v}�∈Z is an orthonormal basis over [0, 1/N ]. 
�

It follows that, for f ∈ L2(R), the operator SN PN f(u,v) is well defined and that
conditions (40), (41), (42) hold with h(u, v; t) = PN f(u,v)(t).

Step IV: For f in L2(R), we understand the notations F f(u,v)(t) and Z f(u,v)(t)
to mean that the Fourier transform and the Zak transform are taken with respect to
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the variable t , with (u, v) being fixed. Since S(R) is dense in L2(R), we obtain the
following extension of Proposition 2.8.

Proposition 6.2 Let f ∈ L2(R). Then, the following hold.

(i) For all N ∈ N and (m, n) ∈ Z
2, we have

Zd(SN PN f(u,v))(m, n) = Z f(u,v)(m/N , n/N ), (43)

where the equality holds in the sense of L2([0, 1/N ]2).
(ii) For all N ∈ N, we have

Fd SN PN f(u,v) = SN PNF f(u,v), (44)

where the equality holds in the sense of (L2[0, 1/N ]2)d .
Proof First, Proposition 2.8 implies that (43) and (44) hold for f ∈ S(R) pointwise
everywhere. Since S(R) is dense in L2(R), it is enough to show that the four operators
implicitly defined by the left and right-hand sides of (43) and (44) are isometric (in
fact, they are unitary). This easily follows by using the fact that {√Ne2π iN�v}�∈Z is
an orthonormal basis over [0, 1/N ]. 
�

In light of Proposition 2.7, we get the following from part (i) of Proposition

Corollary 6.3 Let g ∈ L2(R) be such that the Gabor system G(g) is a Riesz basis
in L2(R) with lower and upper Riesz basis bounds A and B, respectively. Then, for
almost every (u, v) ∈ [0, 1/N ]2, the Gabor system Gd(SN PN g(u,v)) is a Riesz basis
in �d2 with lower and upper Riesz basis bounds Ã and B̃ satisfying A ≤ Ã and B̃ ≤ B,
respectively.

6.2 The classical Balian–Low theorem

Westartwith the following lemmawhich relates the discrete and continuous derivatives
of L2(R) functions.

Lemma 6.4 Let f ∈ L2(R) and N ∈ N. Denote F(u,v) = SN PN f(u,v). Then,

N 2‖�( j)F(u,v)( j)‖2(L2[0,1/N ]2)d ≤ 2
∫
R

| f ′(t)|2dt + 8π2

N 2

∫
R

| f (t)|2dt,

where the integral on the right-hand side is understood to be infinite if f is not
absolutely continuous, or if its derivative is not in L2(R).

Proof Put au( j, l) = f (u + j
N + �N ) and fix j ∈ [0, N 2 − 1] ∩Z. Since f ∈ L2(R),

we have, with respect to the variable �, that au( j, �) ∈ �2(Z) for almost every u. We
compute
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∫∫
[0, 1

N ]2
|�( j)F(u,v)( j)|2 dvdu

=
∫∫

[0, 1
N ]2

∣∣∣∣∣
∞∑

�=−∞

(
au( j + 1, l) e2π i

v( j+1)
N − au( j, l) e

2π i v j
N

)
e2π ivlN

∣∣∣∣∣
2

dvdu

≤ 2
∫∫

[0, 1
N ]2

∣∣∣∣∣
∞∑

�=−∞
�( j)au( j, l) e

2π ivN�

∣∣∣∣∣
2

dudv

+ 2
∫∫

[0, 1
N ]2

∣∣∣
(
e2π i

v
N − 1

) ∞∑
�=−∞

au( j, l) e
2π ivlN

∣∣∣2 dvdu

≤ 2

N

∞∑
�=−∞

∫ 1
N

0
|au( j + 1, l) − au( j, l)|2 du + 8π2

N 5

∞∑
�=−∞

∫ 1
N

0
|au( j, l)|2 du,

where we applied the inequalities |a + b|2 ≤ 2|a|2 + 2|b|2 and |eix − 1| ≤ |x |. By
the Cauchy-Schwartz inequality, we get

∫ 1
N

0

∣∣∣au( j + 1, l) − au( j, l)
∣∣∣2 du ≤ 1

N

∫ 1
N

0

∫ j+1
N +�N

j
N +�N

| f ′(t + u)|2 dtdu.

Combining these two estimates, the result follows. 
�

We are now ready to show that the classical Balian–Low theorem (Theorem A)
follows from our finite Balian–Low theorem (Theorem 1.1).

Proof of the Classical Balian–Low Theorem Let g ∈ L2(R) be such that the Gabor
systemG(g) is a Riesz basis with lower and upper Riesz basis bounds A and B, respec-
tively. For all integers N ≥ 2, d = N 2, and u, v ∈ [0, 1/N ]2, we consider the finite
dimensional signal SN PN g(u,v). By Corollary 6.3, for almost every u, v ∈ [0, 1/N ]2,
this is a basis in �d2 with Riesz basis bounds Ã, B̃ satisfying A ≤ Ã and B̃ ≤ B. By
Theorem 1.1, (see also Remark 1.2) we have

c log N ≤ N
d−1∑
j=1

|�( j)SN PN gu,v( j)|2 + N
d−1∑
k=1

|�(k)Fd SN PN gu,v(k)|2.

Integrating both parts with respect to (u, v) over the set [0, 1/N ]2, and applying
Proposition 6.2 (ii), we get

c log N ≤N 2‖�( j)SN PN gu,v( j)‖2(L2[0,1/N ])d +N 2‖�(k)SN PNFgu,v(k)‖2(L2[0,1/N ])d .

By Lemma 6.4, we obtain
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c log N ≤2
∫
R

|g′(t)|2dt + 8π2

N 2

∫
R

|g(t)|2dt

+ 2
∫
R

|(Fg)′(t)|2dt + 8π2

N 2

∫
R

|Fg(t)|2dt .

Finally, letting N tend to infinity, the result follows. 
�

6.3 A quantiative Balian–Low theorem

Discrete and continuous tail estimates are related by the following lemma.

Lemma 6.5 Let f ∈ L2(R) and Q, N ∈ N be such that Q ≤ N. Denote F(u,v) =
SN PN f(u,v). Then,

N
d−1∑
j=QN

‖F(u,v)( j)‖2L2[0, 1
N ] ≤

∫
R\[0,Q]

| f (t)|2dt .

Proof This follows by using the fact that {√Ne2π iN�v}�∈Z is an orthonormal basis
over [0, 1/N ]. 
�
We are now ready to show that the Quantitative Balian–Low theorem (Theorem B)
follows from Theorem 1.5 (or rather, the more general Theorem 5.3).

Proof of the Quantitative Balian–Low Theorem Let g ∈ L2(R) be such that G(g) is a
Riesz basis with lower and upper Riesz basis bounds A and B, respectively, and let
Q, R be positive integers. Let N ≥ 200max{Q, R} · √

B/A and set d = N 2. For
fixed u, v ∈ R, consider the finite dimensional signal SN PN g(u,v). By Corollary 6.3,
for almost every u, v ∈ [0, 1/N ]2, this is a basis in �d2 with Riesz basis bounds Ã, B̃
satisfying A ≤ Ã and B̃ ≤ B. By Theorem 5.3 we have

C

QR
≤ 1

N

d−1∑
j=2QN

|SN PN gu,v( j)|2 + 1

N

d−1∑
j=2RN

|Fd SN PN gu,v( j)|2.

Integrating both terms with respect to (u, v) over the set [0, 1/N ]2, and applying
Proposition 6.2 (ii), we get

C

QR
≤ N

d−1∑
j=2QN

‖SN PN gu,v( j)‖2(L2[0,1])d + N
d−1∑

j=2RN

‖SN PNFgu,v( j)‖2(L2[0,1])d .

By Lemma 6.5 we obtain,

C

QR
≤
∫
R\[0,2Q]

|g(t)|2dt +
∫
R\[0,2R]

|Fg(ξ)|2dt .
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The result now follows by applying an appropriate translation and modulation to g
(note that a translations and modulations of g preserve the Riesz basis properties of
G(g)). 
�

7 Balian–Low theorems for Gabor systems over rectangles

In this section, we turn to theorems 1.8 and 1.9. As the proofs are very similar to those
of theorems 1.1 and 1.5, respectively, we only provide an outline of the main ideas,
and leave it to the reader to fill in the details.

7.1 The finite Zak transforms over rectangles.

Throughout this section, we let M, N ∈ N and denote d = MN . With the normaliza-
tion

F(M,N )a(k) = 1

M

d−1∑
j=0

a( j)e−2π i jkd ,

it is readily checked that the Fourier transform is a unitary operator from �
(M,N )
2 to

�
(N ,M)
2 (for the definition av this space, recall (8)).

We use the periodic convolution, defined for a, b ∈ �
(M,N )
2 , by

(a ∗ b)(k) = 1

M

d−1∑
j=0

a(k − j)b( j).

This yields the convolution relation F(M,N )(a ∗ b) = F(M,N )a · F(M,N )b.
We will also make use of the space �2([0, M − 1] × [0, N − 1]), with the normal-

ization

1

d

M−1∑
m=0

N−1∑
n=0

|W (m, n)|2.

The finite Zak transform for a ∈ �
(M,N )
2 is given by

Z(M,N )(a) (m, n) =
N−1∑
j=0

a(m − Mj)e2π i
jn
N , (m, n) ∈ Z

2
d .

Note that with this definition, Z(M,N )(a) is well-defined as a function on Z
2
d (that is,

it is d-periodic separately in each variable).
The basic properties of Z(M,N ) are stated in the following two results (compare

with Lemma 2.2 and part (ii) of Proposition 2.7).

123



Balian–Low type theorems in finite dimensions 673

Lemma 7.1 Let M, N ∈ N and d = MN. For a ∈ �
(M,N )
2 , the following hold.

(i) The function Z(M,N )(a) is (M, N )-quasi-periodic on Z
2
d in the sense that

Z(M,N )(a)(m + M, n) = e2π i
n
N Z(M,N )(a)(m, n),

Z(M,N )(a)(m, n + N ) = Z(M,N )(a)(m, n).
(45)

In particular, the finite Zak transform is determined by its values on the set
Z
2 ∩ ([0, M − 1] × [0, N − 1]).

(ii) The transform Z(M,N ) is a unitary operator from �
(M,N )
2 onto �2([0, M − 1] ×

[0, N − 1]).
(iii) The finite Zak transform and the finite Fourier transform satisfy the relation

Z(N ,M)(F(M,N )a)(n,m) = e2π i
mn
d Z(M,N )(a)(−m, n). (46)

Proposition 7.2 Let M, N ∈ N and b ∈ �
(M,N )
2 . Then the Gabor system G(M,N )(b),

defined in (9), is a basis in �
(M,N )
2 with Riesz basis bounds A and B, if and only if

A ≤ |Z(M,N )(b)(m, n)|2 ≤ B for all (m, n) ∈ Z
2 ∩ ([0, M − 1] × [0, N − 1]).

7.2 Regularity of the finite Zak transforms over rectangles

Lemma 3.1 is already formulated in a rectangular version. One can obtain a similar
analog of Lemma 3.4 with the notations

σs =
[ sM
K

]
, s ∈ [0, K ] ∩ Z, ωt =

[ t N
L

]
, t ∈ [0, L] ∩ Z, (47)

for integers K ∈ [2, M] and L ∈ [2, N ]. Note that, similar to the square case, we have
σK = M and ωL = N . With this we get the following extension of Corollary 3.5.

Corollary 7.3 Fix an integer N0 ≥ 9 and a constant A > 0. Let

δ = 2
√
A sin

(
π
(1
8

− 1

N0

))
.

For any integers M, N ≥ N0, K ∈ [2, M], and L ∈ [2, N ], the following holds (with
d = MN). Let W be an (M, N )-quasi periodic function over the lattice Z2

d satisfying
A ≤ |W (m, n)|2, for all (m, n) ∈ Z

2
d . Then, for every (u, v) ∈ Z

2
d there exists at least

one point (s, t) ∈ ([0, K − 1] × [0, L − 1]) ∩ Z
2 such that

|�(s)W (u + σs, v + ωt )| ≥ δ, or (48)

|
(t)W (u + σs, v + ωt )| ≥ δ, (49)

where σs, ωt are defined in (47).

123



674 S. Nitzan, J.-F. Olsen

7.3 A Balian–Low type theorem in finite dimensions over rectangles

For b ∈ �
(M,N )
2 , denote

α(b, M, N ) := M
d−1∑
j=0

|�b( j)|2 + N
d−1∑
k=0

|�F(M,N )b(k)|2,

and

β(b, M, N ) := M

N

M−1∑
m=0

N−1∑
n=0

|�Z(M,N )(b) (m, n)|2 + N

M

M−1∑
m=0

N−1∑
n=0

|
Z(M,N )(b) (m, n)|2.

Given A, B > 0 set

αA,B(M, N ) = inf{α(b, M, N )} and βA,B(M, N ) = inf{β(b, M, N )},

where both infimums are taken over all b ∈ �
(M,N )
2 for which the system G(M,N )(b)

is a basis with lower and upper Riesz basis bounds A and B, respectively. The analog
of Proposition 4.1 for the rectangular case gives the inequalities

1

2
βA,B(M, N ) − 8π2B ≤ αA,B(M, N ) ≤ 2βA,B(M, N ) + 8π2B. (50)

Theorem 1.8 is a consequence of the following result, which is analogue to Theo-
rem 4.2.

Theorem 7.4 There exist constants c,C > 0 so that, for all integers M, N ≥ 2, we
have

c logmin{M, N } ≤ βA,B(M, N ) ≤ C logmin{M, N }. (51)

Proof In what follows we let c,C denote different constants which may change from
line to line. Let b ∈ �

(M,N )
2 be so that G(M,N )(b) is a basis with Riesz basis bounds A

and B, and put W = Z(M,N )(b). To obtain the lower inequality, we first consider the
case M > N . Put σs = [sM/N ], and consider square product sets

Latk = {(k + σs, t) : s, t∈ [0, N − 1] ∩ Z}.

Note that similar to (30), it holds that

[M
N

]
≤ inf �σs ≤ sup�σs ≤

[M
N

]
+ 1. (52)

This implies that, for integers 0 ≤ k < [M/N ], the N × N squares Latk are disjoint
as subsets of the M × N rectangle ([0, M − 1] × [0, N − 1]) ∩ Z

2. Since, when
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restricted to each of the square sets {(k + σs, t) : s, t∈ [0, N ] ∩ Z}, the function W is
N–quasi–periodic, it follows by Theorem 4.2 that

c log N ≤
N−1∑
s,t=0

(
|�(s)W (k + σs, t)|2 + |
(t)W (k + σs, t)|2

)
. (53)

By (52), and the Cauchy–Schwarz inequality, we have

N−1∑
s=0

|�(s)W (k + σs, t)|2 =
N−1∑
s=0

∣∣∣
k+σs+1−1∑
j=k+σs

�( j)W ( j, t)
∣∣∣2

≤
([M

N

]
+ 1
) N−1∑

s=0

k+σs+1−1∑
j=k+σs

|�( j)W ( j, t)|2

≤
([M

N

]
+ 1
) M−1∑

j=0

|�( j)W ( j, t)|2,

where the last step of the above computation follows from the fact that the summands
are M-periodic. Plugging this into (53) we get,

c log N ≤
[M
N

] N−1∑
t=0

M−1∑
j=0

|�( j)W ( j, t)|2 +
N−1∑
s,t=0

|
(t)W (k + σs, t)|2.

Since each of the [M/N ] sets Latk are disjoint, we may sum up these inequalities to
obtain

c
[M
N

]
log N ≤

[M
N

]2 M−1∑
m=0

N−1∑
n=0

|�Z(M,N )(b) (m, n)|2 +
M−1∑
m=0

N−1∑
n=0

|
Z(M,N )(b) (m, n)|2.

Dividing by [M/N ] on both sides, and using the inequalities x/2 ≤ [x] ≤ x valid for
x ≥ 1, it follows that

c log N ≤ β(b, M, N ). (54)

By repeating the same type of argument for the case M < N , the estimate from below
in (53) follows.

To obtain the upper inequality in (53), we consider the same function G(x, y) that
was used in the proof for Theorem 1.1, and split into two cases as above.

We begin with the case M > N , where it suffices to go through essentially the
same computations as in the proof of Proposition 4.5, this time considering a vector
b ∈ �

(M,N )
2 so that Z(M,N )(b)(m, n) = G(m/M, n/N ), where G is the same function

used in square case. With this, we obtain the inequality
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β(b, M, N ) ≤ C log N , (55)

for some constant C > 0.
We turn to the case M < N . Swapping the roles of m, M and n, N , respectively, it

follows that the vector b ∈ �
(N ,M)
2 which satisfies Z(N ,M)b(n,m) = G(n/N ,m/M)

is the same as in the above case, whence β(b, N , M) ≤ C logM . Now, since
α(b, N , M) = α(F(N ,M)b, M, N ), the relation (50) implies that

β(F(N ,M)b, M, N ) ≤ Cβ(b, N , M) ≤ C logM . (56)

In combination, the inequalities (55) and (56) yield the desired upper bound for
β(M, N ). 
�
Remark 7.5 The quantitative Balian–Low theorem in finite dimensions over finite rect-
angular lattices (Theorem 1.9) may be proved as in the square case, with the only
modification being putting φ = SM PN� and ψ = SN PM�.
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