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In Lemma 3.9 of [2], we stated that acylindrical hyperbolicity of a group is invariant
under commensurability up to finite kernels (for definitions and background material
we refer to [2,4]). This lemma was used to prove some of the main results in [2] and
the subsequent paper [4]. Unfortunately, its proof contains a gap. The goal of this
erratum is to point out the gap and correct the statements and proofs of results of [2,4]
affected by it. The arXiv versions of the papers [2,4] will be updated accordingly.

1.1 The gap

The arguments given in [2] correctly prove some parts of Lemma 3.9, which are
summarized below.

Lemma 1 Let H be an acylindrically hyperbolic group. Suppose that G is a finite
index subgroup of H, or a quotient of H modulo a finite normal subgroup, or an
extension of H with finite kernel. Then G is also acylindrically hyperbolic.

However, we do not know the answer to the following.

The original article can be found online at https://doi.org/10.1007/s00208-014-1138-z.
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Question 2 Suppose that a group G contains a finite index subgroup which is acylin-
drically hyperbolic. Does it follow that G is acylindrically hyperbolic itself?

The attempt to give the affirmative answer in the first paragraph of the proof of
Lemma 3.9 of [2] is unsuccessful. Indeed, it claims that if X is a generating set of
H and Y is a finite set of representatives of cosets of H in G, then the natural map
between the Cayley graphs �(H, X) → �(G, X ∪ Y ) is a quasi-isometry. In general,
this is false if X is infinite. The simplest counterexample is

G = 〈a, b, t | t2 = 1, t−1at = b〉, H = 〈a, b〉, X = {b} ∪ 〈a〉.

In this case one can take Y = {1, t}. Then for all n ∈ Z, we have |bn|X = n while
|bn|X∪Y = |t−1ant |X∪Y ≤ 3.

1.2 Necessary corrections in [2]

Lemma3.9was used in the proof ofTheorem5.6 to dealwith non-orientablemanifolds.
In turn, Theorem5.6was used to derive a number of corollaries, includingTheorem2.8
and Corollaries 2.9–2.11 and 7.1–7.3. Note, however, that Lemma 3.9 is not required
for dealing with orientable manifolds. Thus we have the following corrected statement
of [2, Theorem 5.6]:

Theorem 3 Let M be a compact orientable 3-manifold and let G be a subgroup of
π1(M). Then exactly one of the following three conditions holds.

(I) G is acylindrically hyperbolic with trivial finite radical.
(II) G contains an infinite cyclic normal subgroup Z and G/Z is acylindrically hyper-

bolic. In fact, G/Z is virtually a subgroup of a surface group in this case.
(III) G is virtually polycyclic.

Similarly, the proofs of Theorem 2.8 and Corollaries 2.9–2.11, 7.1–7.3 from [2]
remain valid if all the manifolds are assumed to be orientable. In particular, we re-
define M3 as the class of groups consisting of subgroups of fundamental groups of
compact orientable 3-manifolds.

Another result of [2] whose proof involves Lemma 3.9 is Corollary 2.16. Its state-
ment should be modified as follows.

Corollary 4 The conditions G ∈ Creg, G ∈ Dreg, and G is acylindrically hyperbolic
are equivalent for any group G from the following classes.

(a) Subgroups of fundamental groups of compact orientable 3-manifolds.
(b) Subgroups of graph products of amenable groups. In particular, this class includes

subgroups of right angled Artin groups.

The proof of Corollary 2.16 provided in [2] becomes correct after the following
modification: instead of proving the result for a group K which is commensurable up
to a finite kernel to a group H of type (a) or (b), we prove the result for H itself. Then
the reference to Lemma 3.9 in the third paragraph of the proof can be removed.
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1.3 Finite extensions of AH-accessible groups

In fact, it is also possible to prove the above mentioned results of [2] for fundamental
groups of closed (but possibly non-orientable) manifolds using tools from [1]. Let us
briefly recall the necessary notation and terminology introduced in [1].

Given a group H and generating sets X , Y of H , we write X � Y if the identity map
on H induces a Lipschitz map between the metric spaces (H, dY ) → (H, dX ), where
dX and dY denote the corresponding wordmetrics. Then� is a preorder which induces
an equivalence relation and an ordering on the equivalence classes in the standard way.
The obtained poset of equivalence classes of generating sets of H is denoted by G(H).
ByAH(H) we denote the subset of G(H) consisting of equivalence classes [X ] such
that the Cayley graph �(H, X) is hyperbolic and the natural action of H on �(H, X)

is acylindrical. The setAH(H) endowed with the order inherited from G(H) is called
the poset of acylindrically hyperbolic structures on H .

Definition 5 A group H is called AH-accessible if the poset AH(H) contains a
largest element.

It is shown in [1, Theorem 2.18] that there exist finitely presented groups which
are notAH-accessible. On the other hand, many groups of geometric origin areAH-
accessible; these include fundamental groups of closed orientable 3-manifolds, see [1,
Theorem 2.19].

We first show that the answer to Question 2 is affirmative in the special case when
the finite index subgroup of G is normal and AH-accessible.

Lemma 6 Suppose that a group G contains a normal acylindrically hyperbolic sub-
group H of finite index which isAH-accessible. Then G is acylindrically hyperbolic.

Proof We will show that the original strategy suggested in the proof of Lemma 3.9
in [2] works in this case. Given a generating set Z of a group, we denote by | · |Z the
corresponding length function. Let us fix a (finite) set of representatives of H -cosets
in G, such that the representative of H is 1, and denote it by Y .

It is easy to show (see Lemma 5.23 in [1]) that the formula α([X ]) = [α(X)] for
all α ∈ Aut (H) and [X ] ∈ AH(H) gives a well-defined order preserving action of
Aut (H) on AH(H). From now on, let [X ] ∈ AH(H) denote the largest element.
Since the largest element is unique, [X ] is fixed by every automorphism of H . In
particular, there exists a constant A such that

|y−1x−1y|X = |y−1xy|X ≤ A (1)

for all x ∈ X and all y ∈ Y .
Let us first prove that the natural inclusion of Cayley graphs�(H, X) → �(G, X ∪

Y ) is an H -equivariant quasi-isometry. This inclusion is quasi-surjective since H has
finite index in G, hence it remains to check that there exists a constant C > 0 such
that

|h|X ≤ C |h|X∪Y (2)

for all h ∈ H .
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Let a1 . . . an be a shortest word in the alphabet X±1 ∪Y±1 representing an element
h ∈ H in G. For every i = 0, . . . , n, there exists yi ∈ Y such that wi yi ∈ H , where
w0 = 1 and wi = a1 . . . ai ; of course, we have y0 = yn = 1 as h ∈ H . Then we have

h = (y−1
0 a1y1)(y

−1
1 a2y2) · · · (y−1

n−1an yn).

Let hi = y−1
i−1ai yi . It is easy to see by induction on i that hi ∈ H for all i . Thus to

prove (2) it suffices to show that
|hi |X ≤ C (3)

for all i . We consider two cases. First, assume that ai ∈ X±1. Then ai ∈ H and since
H �G and y−1

i−1ai yi ∈ H , we must have yi−1 = yi , so the inequality (3) follows from
(1) for any C ≥ A. Next, assume that ai ∈ Y±1. Since Y is finite, and |hi |Y ≤ 3 in
this case, we can guarantee (3) for the finite set of such elements hi by taking C large
enough.

Thus we have an H -equivariant quasi-isometry �(H, X) → �(G, X ∪ Y ). Since
the Cayley graph�(H, X) is hyperbolic, the same follows for�(G, X ∪Y ). It remains
to show that the natural action of G on �(G, X ∪ Y ) is acylindrical.

Let dX∪Y (·, ·) and dX (·, ·) denote the standard edge-path metrics on �(G, X ∪ Y )

and �(H, X) respectively. For any ε > 0 we need to find constants R and N such that
given any element z ∈ G, with dX∪Y (1, z) ≥ R, the size of the set

�ε,R(z) = {g ∈ G | dX∪Y (1, g) ≤ ε and dX∪Y (z, gz) ≤ ε}

is bounded by N . Since |Y | < ∞ it is enough to show that there is N ′ ∈ N such that
|�ε,R(z) ∩ yH | ≤ N ′ for each y ∈ Y .

Consider any y ∈ Y with �ε,R(z) ∩ yH 
= ∅, and fix some h0 ∈ H such that
yh0 ∈ �ε,R(z). By the definition of Y there is w ∈ H such that dX∪Y (z, w) ≤ 1,
hence dX∪Y (gz, gw) ≤ 1 for all g ∈ G. Therefore, given any yh ∈ �ε,R(z), we have

dX∪Y (yh0w, yhw) ≤ dX∪Y (yh0w, yh0z) + dX∪Y (yh0z, z)

+dX∪Y (z, yhz) + dX∪Y (yhz, yhw)

≤ 1 + ε + ε + 1 = 2ε + 2.

Consequently, dX∪Y (w, h−1
0 hw) ≤ 2ε + 2 whenever yh ∈ �ε,R(z). We also see

that in this case

dX∪Y (1, h−1
0 h) = dX∪Y (yh0, yh) ≤ dX∪Y (yh0, 1) + dX∪Y (1, yh) ≤ 2ε.

Now, the inequality (2) implies that in �(H, X) we have

dX (w, h−1
0 hw) ≤ 2Cε + 2C and dX (1, h−1

0 h) ≤ 2Cε ≤ 2Cε + 2C. (4)

On the other hand,

dX (1, w) ≥ dX∪Y (1, w) ≥ dX∪Y (1, z) − dX∪Y (z, w) ≥ R − 1. (5)
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Since the action of H on �(H, X) is acylindrical, there exist R′, N ′ ∈ N, depending
only on ε′ = 2Cε + 2C , such that whenever dX (1, w) ≥ R′ the set of elements
h−1
0 h ∈ H satisfying (4) has size at most N ′. Since C is a fixed constant, in view of

(5) we can choose R = R′ + 1 to ensure that |�ε,R(z) ∩ yH | ≤ N ′, as required.
Therefore the action of G on �(G, X ∪Y ) is acylindrical, thus [X ∪Y ] ∈ AH(G).

Since H is acylindrically hyperbolic and [X ] ∈ AH(H) is maximal, the action of H
on �(H, X) is non-elementary by [3, Theorem 1.1]. Hence so is the action of G on
�(G, X ∪ Y ). In particular, the group G is acylindrically hyperbolic. ��

1.4 Non-orientable closed 3-manifold groups

Lemma 6, together with the fact that fundamental groups of closed orientable 3-
manifolds are AH-accessible from [1, Theorem 2.19], imply the following: to show
that the fundamental group of a non-orientable closedmanifold is acylindrically hyper-
bolic it suffices to show this for the fundamental group of its orientable double cover.
Replacing references to Lemma 3.9 with this observation in the proof of [2, Theorem
5.6], we obtain the following analogue of Theorem 3 for non-orientable manifolds.

Theorem 7 Let G be the fundamental group of a closed non-orientable 3-manifold.
Then exactly one of the following three conditions holds.

(I) G is acylindrically hyperbolic with trivial finite radical.
(II) G contains an infinite cyclic normal subgroup Z and G/Z is acylindrically

hyperbolic. In fact, G/Z is virtually a subgroup of a surface group in this case.
(III) G is virtually polycyclic.

Note that, Theorem 7 (unlike Theorem 3) does not cover subgroups of fundamental
groups of non-orientable 3-manifolds and also assumes that the 3-manifolds are closed.
It follows that

Theorem 2.8, Corollaries 2.9–2.11 and 7.1–7.3, and Corollary 2.16 (a) from [2]
hold for fundamental groups of closed non-orientable manifolds (with M3 replaced
by the class of such fundamental groups).

1.5 Necessary corrections in [4]

In Theorem 1.6 and Corollary 1.4, the assumption that G virtually surjects onto Z

should be replaced with the assumption that G itself surjects onto Z. The conclusion
of Corollary 1.2 should be changed to “then G is virtually acylindrically hyperbolic”.
Other results remain true as stated.

In addition, the proof ofTheorem1.6 should bemodified (and simplified) as follows.
Let G be a finitely presented group with β

(2)
1 (G) > 0 which admits a surjective

homomorphism ε : G → Z. It is shown in the first paragraph of the proof of Lemma
3.1 in [4] that G splits as an HNN-extension of a finitely generated group A with
finitely generated associated subgroups C and D and the stable letter t such that ε(t)
is a generator of Z.
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We first observe that C 
= A 
= D. Indeed, assume A = C or A = D. Let Kn

denote the preimage of nZ under ε. Then β
(2)
1 (Kn) = nβ(2)

1 (G) → ∞ as n → ∞.
On the other hand, it is straightforward to check that Kn is generated by A and tn ,
which yields a uniform upper bound on the number of generators of G. Since the first
�2-Betti number of any group is bounded above by the number of generators minus 1,
we get a contradiction.

Thus C 
= A 
= D. By a theorem of Peterson and Thom [5, Theorem 5.12], a
countable group with positive first �2-Betti number cannot contain finitely generated
s-normal subgroups of infinite index. In particular, C is not s-normal in G, i.e., there
exists g ∈ G such that |g−1Cg ∩ C | < ∞. Now applying Corollary 2.2 from [2] we
conclude that G is acylindrically hyperbolic.
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