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Abstract We prove that every non-trivial structure of a rationally connected fibre
space on a generic (in the sense of Zariski topology) hypersurface V of degree M in
the (M+1)-dimensional projective space forM ≥ 16 is givenby apencil of hyperplane
sections. In particular, the variety V is non-rational and its group of birational self-
maps coincides with the group of biregular automorphisms and for that reason is
trivial. The proof is based on the techniques of the method of maximal singularities
and inversion of adjunction.

1 Introduction

1.1 Statement of the main result

Fix an integer M ≥ 4. Denote by the symbol P the complex projective space P
M+1.

Let V = VM ⊂ P be a non-singular hypersurface of degree M . Obviously, V is a
Fano variety of index two:

Pic V = ZH, KV = −2H,

where H is the class of a hyperplane section. On the variety V there are the following
structures of a non-trivial rationally connected fibre space: let P ⊂ P be an arbitrary
subspace of codimension two, αP : P ��� P

1 the corresponding linear projection, then
its restriction
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722 A. V. Pukhlikov

πP = αP |V : V ��� P
1

fibres V into Fano hypersurfaces of index one and for that reason defines on V a
structure of rationally connected fibre space. Recall [24], that a (non-trivial) rationally
connected fibre space is a surjective morphism λ : Y → S of projective varieties,
where dim S ≥ 1 and the variety S and the fibre of general position λ−1(s), s ∈ S, are
rationally connected (and the variety Y itself is automatically rationally connected by
the theorem of Graber, Harris and Starr [9]).

Here is the main result of the present paper.

Theorem 1.1 Assume that M ≥ 16 and the hypersurface V is sufficiently general (in
the sense of Zariski topology on the space of coefficients of homogeneous polynomials
of degree M on P). Let χ : V ��� Y be a birational map onto the total space of a
rationally connected fibre space λ : Y → S. Then S = P

1 and for some isomorphism
β : P

1 → S and some subspace P ⊂ P of codimension two we have

λ ◦ χ = β ◦ πP ,

that is, the following diagram commutes:

V
χ��� Y

πP ↓ ↓ λ

P
1 β→ S.

Corollary 1.1 For a generic hypersurface V of dimension dim V ≥ 16 the following
claims hold.

(i) On the variety V there are no structures of a rationally connected fibre space
with the base of dimension ≥2. In particular, on V there are no structures of a
conic bundle and del Pezzo fibration, and the variety V itself is non-rational.

(ii) Assume that there is a birational map χ : V ��� Y, where Y is a Fano variety of
index r ≥ 2 with factorial terminal singularities, such that Pic Y = ZHY , where
KY = −r HY , and the linear system |HY | is non-empty and free. Then r = 2 and
the map χ is a biregular isomorphism.

(iii) The group of birational self-maps of the variety V coincides with the group of
biregular automorphisms:

Bir V = Aut V

and for that reason is trivial.

Proof of the corollary. The claims (i–iii) follow from Theorem 1.1 in an obvious way.
Q.E.D.

Conjecture 1.1 Assume that Vd ⊂ P is a smooth hypersurface of degree d ≤ M,

where d ≥ [(M + 5)/2] (in that case Vd is a Fano variety of index r = M + 2 − d).
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Birational geometry of Fano hypersurfaces of index two 723

Let χ : V ��� Y be a birational map onto the total space of a rationally connected
fibre space λ : Y → S. Then dim S ≤ r − 1 and if dim S = r − 1, then there is a
linear subspace P ⊂ P of codimension r and a birational map β : P

r−1 ��� S such
that λ ◦ χ = β ◦ πP , that is, the following diagram commutes

Vd
χ��� Y

πP ↓ ↓ λ

P
r−1 β��� S.

Remark 1.1 For d ≤ M − 1 (that is, for r ≥ 3) one can certainly not expect that
all structures of a rationally connected fibre space (or of a Fano–Mori fibre space)
are linear projections. Already for a hypersurface of index 3 every pencil of quadrics
defines a rational map onto P

1, the fibre of which is a complete intersection of the
type 2 · (M − 1) in P

M+1, that is, a Fano variety of index one. Conjectures, similar to
Conjecture 1.1 have been discussed informally for some time, but until very recently
never published, as there were nomethods to approach them realistically. The situation
is changing now—see the last section in [7].

The purpose of the present paper is to prove Theorem 1.1. As usual, its claimwill be
derived from a lot more technical and less visual description of maximal singularities
of mobile linear systems on V . However, before explaining the structure of the proof
of Theorem 1.1, let us give a precise meaning to the assumption of the hypersurface
V being generic in the sense of Zariski topology.

1.2 The regularity conditions

Let

F = P(H0(P,OP(M)))

be the space parametrizing hypersurfaces of degree M in P. The local regularity
conditions, given below, define an open subsetFreg ⊂ F . A separate (but not difficult)
problem is to show that for M ≥ 14 the set Freg is non-empty.

Let o ∈ P be an arbitrary point, (z1, . . . , zM+1) = (z∗) a system of affine coordi-
nates with the origin at the point o and V 
 o a non-singular hypersurface of degree
M . It is given by an equation f = 0, where

f = q1 + q2 + · · · + qM

is a non-homogeneous polynomial in the variables z∗, qi is its homogeneous com-
ponent of degree i . Let � ⊂ C

M+1 be an arbitrary linear subspace of codimension
c ∈ {0, 1, 2, 3}, on which q1 does not vanish identically, that is, � �⊂ ToV . We will
need the following regularity conditions.

(R1) For any subspace � the sequence of polynomials

q1|�, q2|�, . . . , qM−c|�
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724 A. V. Pukhlikov

is regular in Oo,�, that is, the system of equations

q1|� = q2|� = · · · = qM−c|� = 0

determines a finite set of lines.
(R2) The rank of the quadratic form

q2|{q1=0}

is at least M − [ 12 (
√
8M + 1 − 1)] (where the square brackets [, ] mean the

integral part of a real number).
(R3) The restriction of the equation q3 = 0 onto the quadric hypersurface {q2|� = 0},

where � is an arbitrary linear subspace of codimension two in the tangent
hyperplane, defines an irreducible reduced closed set.
The last (forth) regularity condition is a global one.

(R4) The intersection of the hypersurface V with an arbitrary linear subspace P ⊂ P

of codimension two has at most isolated quadratic singularities.
The following claim is true.

Theorem 1.2 For M ≥ 16 there exists a non-empty Zariski open subset Freg ⊂ F ,

such that every hypersurface V ∈ Freg is non-singular and satisfies the conditions
(R1–R3) at every point, and also the condition (R4).

For the proof of Theorem 1.2 see Sect. 2.6.

1.3 Plan of the proof of Theorem 1.1

For an arbitrary subspace P ⊂ P of codimension two denote by the symbol VP the
blow up of V along the subvariety V ∩ P . For a mobile linear system 	 on V its strict
transform on VP denote by the symbol 	P . Considering instead of 	 its symmetric
square, we can always assume that 	 ⊂ |2nH |. Recall that cvirt(	) is the virtual
threshold of canonical adjunction [24, Sec. 2.1]. Theorem 1.1 is an easy corollary
from the technical fact formulated below.

Theorem 1.3 Assume that M ≥ 16 and V ∈ Freg. If the mobile system 	 ⊂ |2nH |
satisfies the inequality

cvirt(	) < n, (1)

then there exists a unique linear subspace P ⊂ P of codimension two, such that the
subvariety B = P ∩ V satisfies the inequality

multB	 > n, (2)

whereas for the strict transform 	P the following equality holds:

cvirt(	) = cvirt(	P ) = c(VP , 	P ).
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Birational geometry of Fano hypersurfaces of index two 725

The integer M ≥ 16, the system 	 and the integer n ≥ 1 are fixed throughout the
paper. In its turn, Theorem 1.3 will be derived from the following two key facts.

Theorem 1.4 Assume that for some subvariety B ⊂ V of codimension two the
inequality (2) holds. Then B = P ∩ V, where P ⊂ P is a linear subspace of codi-
mension two.

Theorem 1.5 Assume that the inequality (1) holds. Then for some irreducible subva-
riety B of codimension two the inequality (2) holds.

Theorems 1.4 and 1.5 are given in the order in which they are shown. Theorem 1.5
(the exclusion of the infinitely near case) is the most difficult to prove. Further work
is organized as follows.

In Sect. 1, assuming Theorem 1.3, we show Theorem 1.1, and after that, obtain
Theorem 1.3, assuming Theorems 1.4 and 1.5. In Sect. 2 we show Theorem 1.4. In
Sects. 3–5 we prove Theorem 1.5.

1.4 Historical remarks and acknowledgements

The result, completely similar to Theorem 1.1, has been shown for Fano double spaces
of index two in [23], see also Chapter 8 in [24]. Prior to the paper [23], the only result
giving a complete description of the structures of a rationally connected fibre space on
a Fano variety of index two, was Grinenko’s theorem [10,11] on the Veronese double
cone, a very special Fano threefold.

A series of important results on birational geometry of Fano varieties of index two
and higher was obtained by other methods: by the transcendent method of Clemens
and Griffiths [3] and its subsequent generalizations (see [2]), and also by means of
Kollár’s technique [15,16]. For the details, see the introduction to the paper [23],
where, in particular, the dramatic story of studying the birational geometry of the
Veronese double cone and (not completed to this day) studying of the double space of
index two is described.

Note that the problem of description of the birational type of Fano varieties of index
higher than one was discussed already in the classical paper [13]; Fano himself also
worked on the problem (for the cubic threefold V3 ⊂ P

4) [6].
Wewould also like to draw the reader’s attention to the note [25], where the problem

of stable rationality was negatively solved for a large class of Fano hypersurfaces of
higher index.

The author thanks the referee for numerous suggestions about improving the expo-
sition and, especially, for spotting a miscalculation in the dimension count that proves
that a general hypersurface satisfies the regularity condition (R2).

The results presented in this paper and the techniques used in itwere discussedby the
author in his talks given in 2009–2014 in Steklov Mathematical Institute. The author
is grateful to the members of the divisions of Algebraic Geometry and Algebra and
Number Theory for the interest in his work. The author also thanks his colleagues in
the Algebraic Geometry research group at the University of Liverpool for the creative
atmosphere and general support.
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2 Pencils of hyperplane sections

In this section, we prove Theorem 1.1, assuming the claim of Theorem 1.3. After that,
Theorem 1.3 is obtained from Theorems 1.4 and 1.5. Finally, we discuss the (routine)
proof of Theorem 1.2.

2.1 Fano fibre spaces over P
1

Let us prove Theorem 1.1. Let 	 ⊂ |2nH | be the strict transform on V of a free
linear system on Y , which is the λ-pull back of a very ample linear system on the
base S. Then the inequality (1) holds, because cvirt(	) = 0. The system 	 ⊂ |2nH |
is now fixed. Assuming the claim of Theorem 1.3, consider the subspace P ⊂ P of
codimension two, such that for B = P ∩ V the inequality (2) holds. Let ϕ : V+ → V
be the blow up of the subvariety B and EB = ϕ−1(B) ⊂ V+ the exceptional divisor.

Lemma 2.1 (i) The variety V+ is factorial and has at most finitely many isolated
double points (not necessarily non-degenerate).

(ii) The linear projection πP : P ��� P
1 from the subspace P generates the regular

projection

π = πP ◦ ϕ : V+ → P
1,

the generic fibre of which Ft = π−1(t), t ∈ P
1 is a non-singular Fano variety of

index one, and a finite number of singular fibres have isolated double points.
(iii) The following equalities hold:

Pic V+ = ZH ⊕ ZEB = ZK+ ⊕ ZF,

where H = ϕ∗H for simplicity of notations, K+ = KV+ is the canonical class
of the variety V+, F is the class of the fibre of the projection π, where

K+ = −2H + E, F = H − E .

Proof These claims are obvious by the regularity condition (R4) and the well known
factoriality of an isolated hypersurface singularity in the dimension 4 and higher, see
[1]. (Note that the smoothness of V is contained in the regularity condition (R1).)
Indeed, it follows from (R4) that the section of V by a generic hyperplane, contain-
ing the subspace P , in non-singular, whereas it is well known that any hyperplane
section of a non-singular hypersurface in a projective space can have at most isolated
singularities. As the fibres of π are isomorphic to the sections of V by hyperplanes,
containing the subspace P , we conclude that V+ has at most finitely many isolated
singular points, hence V+ is factorial by Grothendieck’s theorem [1]. Those isolated
singularities are double points as they are double points on the corresponding fibres
of π by the condition (R1). The rest is trivial. Q.E.D. for the lemma.

Let 	+ be the strict transform of the system 	 on V+.
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Birational geometry of Fano hypersurfaces of index two 727

Lemma 2.2 The linear system 	+ is composed from the pencil |F |: 	+ ⊂ |2nF |.
Proof For some m ∈ Z+ and l ∈ Z we have:

	+ ⊂ | − mK+ + l F |,

wherem = 2n−multB	 and l = 2(multB	−n) ≥ 2. Thus the threshold of canonical
adjunction is

c(	+, V+) = m.

By Theorem 1.3, c(	+, V+) = cvirt(	) = 0, so that m = 0 and l = 2n, as we
claimed. Q.E.D. for the lemma.

Therefore, the mobile linear system 	 is composed from the pencil of hyperplane
sections, containing B, which completes the proof of Theorem 1.1.

2.2 Mobile systems on the variety V

Assume the claims of Theorems 1.4 and 1.5. Let us prove Theorem1.3. In the notations
of Sect. 1.1 we have to show that for the mobile linear system

	+ ⊂ | − mK+ + l F |

with l ∈ Z+ the equality

cvirt(	
+) = c(	+, V+) = m

holds. (This is precisely the claim of Theorem 1.3.) Assume the converse:

cvirt(	)+ < m,

then the pair (V+, 1
m	+) is not canonical, that is, the linear system	+ has a maximal

singularity. Since a general fibre of the fibre space π : V+ → P
1 is a non-singular

birationally rigid variety (in fact, every fibre is birationally superrigid, see, for instance,
[5]), the centre of every maximal singularity is contained in some fibre Ft = π−1(t).
Restricting the linear system 	+ onto such a fibre F = Ft , we obtain an effective
divisor D ∈ | − mKF |, such that the pair

(
F,

1

m
D

)
(3)

is not canonical (in fact, not log canonical, but we do not use that). For any curve
C ⊂ F , C ∩ Sing F = ∅, it is known, see [24, Chapter 2], that multC D ≤ m, which
implies that the centre of every non canonical singularity of the pair (3) is either a
point, or a curve, passing through a singularity of F . Furthermore, it is well known
[24, Chapter 7], that a smooth point can not be the centre of a non canonical singularity,
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and the proof of that fact excludes also the case when the centre is a curve (since F has
only isolated singularities). Therefore, we may assume that the centre of a maximal
(non canonical) singularity of the pair (3) is a singular point o.

At this moment, and up to the end of this section, it is convenient to slightly change
the notations. We denote the variety F by the symbolW . It is a hypersurface of degree
M in P

M with an isolated quadratic point o ∈ W . On W there is an effective divisor
D ∼ mH , where H is the class of a hyperplane section of W , such that the pair
(W, 1

m D) is not canonical at the point o. We have to show that this is impossible, that
is, to obtain a contradiction. We do it in several steps, modifying the proof in [22].

2.3 Step 1: Effective divisors on quadrics

Let Q ⊂ P
M−1 be an irreducible quadric hypersurface of rank ≥5, HQ ∈ Pic Q =

ZHQ the class of a hyperplane section and B ⊂ Q an irreducible subvariety, which is
not contained entirely in Sing Q.

Definition 2.1 We say that the effective divisor D on Q satisfies the condition H(m)

with respect to B, where m ≥ 1 is a fixed integer, if for any point of general position
p ∈ B (in particular, p /∈ Sing Q) there exists a hyperplane F(p) ⊂ Ep in the
exceptional divisor E(p) = ϕ−1

p (p) of the blow up ϕp : Qp → Q of the point p, such
that the inequality

mult pD + multF(p) D̃ > 2m

holds, where D̃ ⊂ QP is the strict transform of the divisor D.
Note that the divisor D is not assumed to be irreducible, and the integer m does not

depend on the point p. It is assumed that the hyperplane F(p) depends algebraically
on the point p. Let l ≥ 1 be the degree of the hypersurface in P

M−1, which cuts out
D on Q, that is, D ∼ lHQ .

Now, repeating the proof of Proposition 2.1 in [22] word for word, we obtain

Proposition 2.1 Assume that the inequality

dim B + rk Q ≥ M + 3

holds. Assume, moreover, that an effective divisor D satisfies the condition H(m)

with respect to B. Then the following alternative takes place:
1. either the inequality l > 2m holds (and we say that this is the simple case),
2. or there is a hyperplane section Z ⊂ Q, which contains entirely the subvariety

B, such that for a point of general position p ∈ B in the notations above

F(p) = Z̃ ∩ Ep,
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Birational geometry of Fano hypersurfaces of index two 729

where Z̃ ⊂ Qp is the strict transform of Z on Qp, and moreover, Z is contained
in the divisor D with the multiplicity

a > 2m − l

(in other words, D = aZ + D∗, where the effective divisor D∗ does not contain
Z as a component; this case we say to be the hard one).

Remark 2.1 If the quadric E is non-degenerate, that is, rk E = M , then we obtain
precisely Proposition 2.1 in [22]. Proof of the latter proposition works in our case
without modifications.

2.4 Step 2: The germ of a quadratic singularity

In this subsection we consider o ∈ W as a germ of a quadratic singularity

q2(z∗) + q3(z∗) + · · · = 0,

where (z∗) = (z1, . . . , zM ) (that is, disregarding the embedding W ⊂ P
M ), so that

dimW = M − 1. Let ϕ : W+ → W be the blow up of the point o and E = ϕ−1(o) ⊂
W+ the exceptional divisor, a quadric of rank rk q2 in P

M−1. Consider an effective
divisor D 
 o and assume that for the pair (W, 1

m D) the point o is an isolated centre
of a non-canonical singularity. Let D+ ⊂ W+ be the strict transform of the divisor
D, so that D+ = ϕ∗D − l E for some l ≥ 1. Assume that l ≤ 2m, so that the
pair (W+, 1

m D+) is not log canonical. Finally, let S ⊂ E be the centre of a non log
canonical singularity of that pair, which has the maximal dimension, in particular, S
is not strictly contained in the centre of another non log canonical singularity, if they
exist. Obviously, the inequality

multSD
+ > m (4)

holds.
The following claim generalizes Proposition 2.2 in [22]:

Proposition 2.2 Assume that the inequality

dim S + rk q2 ≥ M + 3

holds. Then one of the two cases takes place:
1. either S is a hyperplane section of the quadric E (the simple case),
2. or there exists a hyperplane section Z ⊃ S of the quadric E, satisfying the inequal-

ity

multZ D
+ >

2m − l

3
. (5)
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Proof is obtained partially by repeating the proof of Proposition 2.2 in [22] word for
word, partially by reduction to that proposition via restricting the divisor D onto a
generic section of the singularity o ∈ W by a linear subspace of dimension rk q2.

More precisely, arguing as in [22], we obtain from the inequality (4), that if S ⊂ E
is a prime divisor, then S ∼ HE is a hyperplane section of the quadric E , that is, the
case (1) takes place. Therefore, we assume that codim(S ⊂ E) ≥ 2. Now, arguing
as in [22] (replacing Proposition 2.1 in that paper by Proposition 2.1), we obtain that
there exists a hyperplane section Z ⊃ S, which is uniquely determined by the log pair
(W+, 1

m D+), satisfying the description of the case (2) of Proposition 2.1.
Now let us restrict the divisor D onto the sectionW� = W ∩� of the varietyW ⊂

C
M by a generic linear subspace � of dimension rk q2. In this way we obtain the pair

(W�, 1
m D�) satisfying the assumptions of Proposition 2.2 in [22] (the germ o ∈ W�

is a germ of a non-degenerate quadratic singularity), the subvariety S� = S ∩ W+
�

is the centre of a non log canonical singularity of the pair (W+
� , 1

m D+
�), which has

the maximal dimension, so that the hyperplane section Z� = Z ∩ W+
� satisfies the

inequality

multZ� D
+
� >

2m − l

3
,

which by genericity of the linear subspace � implies the required inequality (5).
Proposition 2.2 is shown. Q.E.D.

2.5 Step 3: Exclusion of the maximal singularity

Let us come back to the hypersurfaceW ⊂ P
M of degree M with an isolated quadratic

singularity o ∈ W of rank ≤5. Let ϕ : W+ → W be its blow up, E = ϕ−1(o) the
exceptional quadric. Consider an effective divisor D ∼ mH , where H is the class of
a hyperplane section of W , and let D+ ∼ mH − νE be its strict transform on W+.

Proposition 2.3 The inequality ν ≤ 3
2m holds.

Proof Since the inequality to be shown is linear in D, without loss of generality we
assume that D is a prime divisor. Assume the converse: ν > 3

2m. To begin with,
consider the first hypertangent divisor D2 = {q2|W = 0}. Since by the regularity
condition (R3) q3|E �≡ 0, we have D+

2 ∼ 2H − 3E , which implies that the divisor
D2 is reduced.

Lemma 2.3 The divisor D2 is irreducible.

Proof Assume the converse. Then D2 = �1+�2, where�1,2 are distinct hyperplane
sections. Since the quadric E is irreducible, �+

i ∼ H − αi E , where αi ∈ {0, 1}, so
that we have D+

2 = �+
1 + �+

2 ∼ 2H − αE , where α ∈ {0, 1, 2}. The contradiction
proves the lemma. Q.E.D.
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Therefore, D and D2 are distinct prime divisors, so that the scheme-theoretic inter-
section Y = (D ◦ D2) is well defined and satisfies the inequality

multo
deg

Y ≥ 3

2

2ν

mM
>

9

2M
.

Now, repeating the proof of Proposition 3.1 in [22] word for word, we obtain a
contradiction by means of the method of hypertangent divisors. Note that here and
everywhere else in this paper, whenever the method of hypertangent divisors is used, it
is based on the regularity condition (R1), which makes it possible to apply the method
to the hypersurface V and its sections by linear subspaces of codimension 1, 2 and 3.
Proposition 2.3 is shown. Q.E.D.

Now let us complete the proof of Theorem 1.3. Assume that the point o is an
isolated centre of a non-canonical singularity of the pair (W, 1

m D). By linearity of the
Noether–Fano inequality we may assume that D is a prime divisor. Since ν ≤ 3

2m,
the pair (W+, 1

m D+) is not log canonical and a certain irreducible subvariety S ⊂ E
is the centre of a non log canonical singularity of that pair. We assume that S has the
maximal dimension among all centres of non log canonical singularities of the pair
(W+, 1

m D+), so that by [22, Proposition 1.1] we have dim S ≥ M − 5 (this is a well
known consequence of the inversion of adjunction) and by the regularity condition
(R2) the assumption of Proposition 2.2 is satisfied.

Proposition 2.4 The subvariety S has codimension at least 2 in the exceptional
quadric E.

Proof repeats the proof of Proposition 3.2 in [22] word for word. Following the scheme
of arguments in Sec. 3.2 in [22], we conclude that the second case of Proposition 2.2
takes place: there is a hyperplane section Z ⊃ S of the exceptional quadric E , satisfying
the inequality (5). Let P ⊂ P

M be the (unique) hyperplane, cutting out Z on E , that
is, W+

P ∩ E = Z , where WP = W ∩ P . Obviously, the prime divisors WP and D
are distinct, so that the effective cycle DP = (D ◦WP ) of codimension 2 satisfies the
inequality

multoDP ≥ multoD + 2multZ D
+ >

4

3
(l + m) >

8

3
m. (6)

Now consider the pair (WP , 1
m DP ). Its strict transform (W+

P , 1
m D+

P ) is not log canon-
ical. We may assume that the inequality multoDP ≤ 4m holds, otherwise we obtain
a contradiction, repeating the proof of Proposition 2.3 word for word. The subvariety
S is contained in the maximal centre S′ of a non log canonical singularity of the pair
(W+

P , 1
m D+

P ). It is easy to see that S′ ⊂ EP = Z (otherwise, dim ϕ(S′) ≥ 5, so that,
as dim SingWP ≤ 1, there is a curve C ⊂ ϕ(S′), C ∩ SingWP = ∅, satisfying the
inequality multC DP > m, which is impossible for DP ∼ mHP ). For simplicity of
notations we assume that S′ = S.

Applying Proposition 2.2 once again, we obtain that one of the following two cases
takes place:
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1. either S is a hyperplane section of the quadric EP ,
2. or there is a hyperplane section Z∗ ⊃ S of the quadric EP , satisfying the inequality

multZ∗ D+
P >

2m − l∗

3
, (7)

where D+
P ∼ mHP −l∗EP . By the inequality (6), the integer l∗ satisfies the inequality

l∗ > 4
3m. Now, repeating the arguments in the beginning of Sec. 3.3 in [22] word for

word (using the regularity condition (R3) instead of the condition (R2.2) in [22]), we
exclude the case (1).

Now let us consider the hardest case (2). Since we can not use the strong regularity
condition (R2.2) that was used in [22], we need to slightly modify the arguments of
Sec. 3.3 in that paper; in particular, we have to assume that M ≥ 14. Let R ⊂ P =
P
M−1 be the unique hyperplane, cutting out Z∗ on the exceptional quadric EP , that is,

W+
R ∩ EP = Z∗, where WR = WP ∩ R. Since WR ∼ HP − EP , the pair (W+

P ,WR)

is canonical. Furthermore, multoWR = 2 < 8
3 , so that by linearity of the inequality

(6) and linearity of the condition of non log canonicity of the pair (W+
P , 1

m D+
P ) at S,

we may assume that DP does not contain the hyperplane section WR as a component
(in other words, removing that component, we only make the inequality (6) and the
log Noether–Fano inequality stronger). Therefore, we can take the effective cycle
DR = (DP ◦ WR) of codimension 2 on WP , which satisfies the inequality

multoDR ≥ multoDP + 2multZ∗ D+
P >

28

9
m. (8)

Since by the regularity condition (R3) the quadric q2|R = 0 is irreducible and
q3|R∩{q2=0} �≡ 0, we may repeat the proof of Lemma 2.3 and conclude that the divisor
D2|R is irreducible and has the multiplicity precisely 6 at the point o. Therefore,

multo
deg

(D2|R) = 3

M
.

Let Y = Y3 be an irreducible component of the effective cycle DR with the maximal
value of the ratio (multo/deg). We have

multo
deg

Y >
28

9M
,

so that Y �= D2|R , that is, Y �⊂ D2 and we may take the effective cycle (Y3 ◦ D2) of
codimension 2 on WR and 4 on W , respectively. At least one of its components Y4
satisfies the inequality

multo
deg

Y4 >
3

2
· 28

9M
= 14

3M
.
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Now let us apply the technique of hypertangent divisors to the varietyWR at the point
o, satisfying the regularity condition.We obtain a sequence of irreducible subvarieties

Y4,Y5, . . . ,YM−2,

dim Yi = M − 1 − i , where the curve YM−2 satisfies the inequality

multo
deg

YM−2 >
14

3M
· 5
4

· 6
5

· · · · · M − 2

M − 3
= 7(M − 2)

6M
.

This is impossible for M ≥ 14.
Proof of Theorem 1.3 is complete. Q.E.D.

2.6 Regular Fano hypersurfaces

Let us consider Theorem 1.2. We may prove that a generic Fano hypersurface V
satisfies the conditions (R1–R4) separately for each of these conditions.

First, we outline the proof for the condition (R1). It is convenient to start with the
following general situation.

Let P be the linear space, consisting of tuples of homogeneous polynomials
(p1, . . . , pN ) of degrees deg pi = i + 1 on the projective space P

N , where N ≥ 10.
Consider the closed subset

Pnon-reg = { (p∗) ∈ P | dim{p1 = · · · = pN = 0} ≥ 1}.

Proposition 2.5 The following equality holds:

codim(Pnon-reg ⊂ P) = N (N + 1)

2
+ 2.

Remark 2.2 The claim can be made more precise: the closed subset Pnon−reg is
reducible and only one of its components has the codimension given above, namely, the
component, consisting of such tuples (p∗) that the closed subset {p1 = · · · = pN = 0}
contains a line in P

N . The codimensions of the other components of the set Pnon-reg
are higher. However, we do not need this more precise claim.

Proof of Proposition 2.5 is obtained by means of the methods of the papers [17,18]
(see also [24, Chapter 3]): it is completely similar to the arguments of [17, Section 1],
when regularity of the sequence of polynomials p1, . . . , pN is violated for the first
time for the i-th polynomial, i = 1, . . . , N −2, and to the arguments of [18, Section 3]
in the case when regularity is for the first time violated at one of the last two steps,
that is, either the set

{p1 = · · · = pN−1 = 0} ⊂ P
N
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734 A. V. Pukhlikov

is a curve and the polynomial pN vanishes identically on one of its components, or
the set

{p1 = · · · = pN−2 = 0} ⊂ P
N

is a surface and the polynomial pN−1 vanishes identically on one of its components.
If the regularity fails for the first time for the i-th polynomial, where i ≤ N −2, the

computations are identical to [17, Section 1] and quite elementary, so we leave them
to the reader.

In the remaining two cases, we give a sketch of the arguments, based on [18,
Section 3]. We consider the case when the regularity first fails at the last step, that is,
for pN , the other case being similar.

Taking into account Remark 2.2 above, we can assume that the set {p1 = · · · =
pN−1 = 0} is a union of irreducible curves, and pN vanishes on one of them, say C ,
where degC ≥ 2. Set 〈C〉 = P

k to be the linear span of C , k ∈ {1, . . . , N }. If k = N ,
then the condition pN |C ≡ 0 imposes at least

N (N + 1) + 1

independent conditions on the coefficients of pN (see [18, Section 3]), which is more
than we need, so we can discard this option and assume that k ∈ {1, . . . , N −1}. Now,
following [18, Section 3]), let us fix 〈C〉, a k-plane in P

N ; then there exists a good
sequence of polynomials pi1 , . . . , pik−1 , for which C is an associated subvariety (we
use the terms and facts from [18, Section 3]). Fixing these polynomials, we get the
following set of independent conditions for the remaining ones:

p j |C ≡ 0, j /∈ {i1, . . . , ik−1}, 1 ≤ j ≤ N − 1,

and pN |C ≡ 0.
The worst estimate for the codimension of the irregular set corresponds to the

choice

{i1, . . . , ik−1} = {N − k + 1, . . . , N − 1}

and (taking into account the dimension of the Grassmannian of k-planes in P
N ) is

given by the expression

f (k) = 1 + k2 + 1

2
k(N + 1 − k)(N + 2 − k).

Calculating the derivative f ′(t), we see that on the interval [2, N − 1] the function
f (t) is first increasing (until t = t∗ ≈ N

3 ), then decreasing. Therefore, its minimum
on that interval is equal to

min{ f (2), f (N − 1)},

and elementary calculations show that both numbers are higher than 1
2N (N + 1) + 2.
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The case when the regularity fails first for pN−1, is completely similar. Q.E.D. for
Proposition 2.5.

Corollary 2.1 A generic (in the Zariski sense) hypersurface V satisfies the condition
(R1) for M ≥ 13.

Proof In the notations of the condition (R1) it is sufficient to consider the worst
case c = 3. Taking into account the dimension of the Grassmannian of subspaces of
codimension 3 inC

M+1 and the fact that the point o ∈ V is arbitrary, by Proposition 2.5
we get that the hypersurface V satisfies the condition (R1), if the inequality

(M − 4)(M − 3)

2
+ 2 − 3(M − 2) − M ≥ 1

holds. It is easy to check that the latter inequality is true for M ≥ 13. Proof of the
corollary is complete.

Now let us look at the remaining conditions (R2–R4).
In order to show that a general Fano hypersurface V satisfies (R2), it is sufficient

to demonstrate that for an integer

a >
1

2
(
√
8M + 1 − 1)

the condition rk q2|{q1=0} ≤ M − a imposes on the coefficients of the quadratic form
q2 (with q1 fixed) at least M + 1 independent conditions. One checks easily that
1
2a(a + 1) (the number of independent conditions) is indeed higher than M , which
proves the claim of Theorem 1.2 for the condition (R2).

Let us consider the condition (R3). The tangent hyperplane at the point o is {q1 =
0} = C

M , so the subspace � moves in a 2(M − 2)-dimensional family. For a fixed �,
the restriction q2|� by the condition (R2) is of rank at least

rM = M −
[
1

2
(
√
8M + 1 − 1)

]
− 4,

which is at least 6 (for M = 14). Projectivizing the set q2|� = 0, we get a quadric
G of rank at least rM ≥ 6 in P(�) ∼= P

M−3. Now G is a factorial variety with the
Picard group generated by the class of a hyperplane section. Therefore, the restriction
q3|G = 0 defines a reducible or non-reduced set if and only if this divisor is a sum of
a hyperplane section and a section of G by a quadric in P(�). As

h0(G,OG(3)) =
(
M

3

)
− M − 2 and h0(G,OG(2)) =

(
M − 1

2

)
− 1

and h0(G,OG(1)) = M − 2, we see that violation of the condition (R3) imposes
(taking into account the dimension of the Grassmannian of subspaces �)

1

6
(M − 2)(M2 − 4M − 21) + 2
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736 A. V. Pukhlikov

independent conditions on the coefficients of the cubic form q3, which is higher (and
much higher) than M . Thus the claim of Theorem 1.2 is shown for the condition (R3).

Finally, let us consider the condition (R4). Unlike the previous three conditions, it is
a global one. First, we recall that since V is a smooth hypersurface, dim Sing V∩P ≤ 1
for any linear subspace P ⊂ P of codimension 2. Thus we need to show that the set of
non-singular hypersurfaces V ∈ F such that for some subspace P ⊂ P of codimension
2 the hypersurface V ∩ P in P has at least one irreducible curve C of singular points,
has a positive codimension in F . For the curve C we have three options:

1. C is a line,
2. C is a plane curve of degree at least 2 in the plane 〈C〉 ∼= P

2,
3. the linear span is a k-subspace in P , k ≥ 3.

It is easy to check that the set of hypersurfaces V such that for some P the hypersurface
V ∩ P is singular along a line, is of codimension M2 − 3M + 3 in F , so the option
(1) is excluded for a general V . It is not much harder to exclude the option (2). By the
condition (R1), we may assume that the plane 〈C〉 �⊂ V (through every point o ∈ V
there are only finitely many lines on V ). Now the set of hypersurfaces V such that for
some 2-plane� the intersection V ∩� contains a double curveC of degree at least 2 is
of codimension 5M − 13 (this particular value corresponds to the case degC = 2; for
higher degrees the codimension is much higher). So we may assume that 〈C〉 ∼= P

k ,
k ≥ 3 (the option (3) takes place).

For a polynomial F ∈ H0(PN ,OPN (m)) we denote by Sing (F) the set

{
p ∈ P

N | ∂F

∂X0
(p) = · · · = ∂F

∂XN
(p) = 0

}

of singular points of the hypersurface {F = 0}.
Lemma 2.4 Assume that m ≥ 3. For any set of k linearly independent points
P1, . . . , Pk ∈ P

N , where k ≤ N + 1, the condition

{P1, . . . , Pk} ⊂ Sing (F)

defines a linear subspace of codimension k(N + 1) in H0(PN ,OPN (m)).

Proof We may assume that P1 = (1 : 0 : 0 : · · · : 0), P2 = (0 : 1 : 0 : · · · : 0) etc.
correspond to the first k vectors of the standard basis of C

N+1. Taking into account
that m ≥ 3, the claim of the lemma becomes obvious. Q.E.D.

Now let us consider a pencil � of hyperplanes in P
N through a linear subspace

� ⊂ P
N of codimension 2, Bs� = �. Fix an integer m ≥ 3 and take any l = m − 2

distinct hyperplanes

H1, . . . , Hl ∈ �.

Further, consider a set of kl distinct points

{Pi j | i = 1, . . . , l, j = 1, . . . , k} ⊂ P
N ,
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such that for every i = 1, . . . , l the points Pi j ∈ Hi\� and {Pi1, . . . , Pik} is a set of
linearly independent points in Hi (so that k ≤ N ).

Lemma 2.5 The condition

{Pi1, . . . , Pik} ⊂ Sing (F |Hi ), i = 1, . . . , l,

defines a linear subspace of codimension klN in H0(PN ,OPN (m)).

Proof It is easier to see this claim in the affine setting: Pi j ∈ C
N with affine coordinates

(u, v) = (u1, . . . , uN−1, v), the hyperplanes Hi are given by the equations v = λi ,
where λ1 = 0 and λ1, . . . , λl are distinct. Every (non-homogeneous) polynomial
g(u, v) can be written in a unique way as

g(u, v) = gm(u) + (v − λ1)gm−1(u) + (v − λ1)(v − λ2)gm−2(u) + · · ·

= gm(u) +
m∑
i=1

gm−i (u)

i∏
e=1

(v − λe),

where {λ1, . . . , λm} is a set of distinct values, extending the given set {λ1, . . . , λl}, and
gm−i are polynomials in u = (u1, . . . , uN−1) of degree ≤m − i , uniquely determined
by g(u, v). Now the condition {P11, . . . , P1k} ⊂ Sing

(
F |H1

)
is a condition for the

polynomial gm(u), which is the affine formof the polynomial F |H1 , so byLemma2.4 it
defines a linear subspace of codimension kN in the linear space {gm(u)}of polynomials
of degree ≤m in u1, . . . , uN−1. Now fix any polynomial g+

m (u) in that subspace. The
condition {P21, . . . , P2k} ⊂ Sing

(
F |H2

)
defines an affine (not linear) subspace of

codimension kN in the linear space {gm−1(u)} of polynomials of degree ≤m − 1 in
u1, . . . , uN−1, whose corresponding linear subspace is given by the condition

{P21, . . . , P2k} ⊂ Sing (gm−1).

(Once again, when gm(u) = g+
m (u) is fixed.) Continuing in this way, for fixed poly-

nomials

g+
m (u), . . . , g+

m−i+1(u)

the condition {Pi+1,1, . . . , Pi+1,k} ⊂ Sing
(
F |Hi+1

)
defines an affine subspace in the

linear space {gm−i (u)} of polynomials of degree ≤m − i in u1, . . . , uN−1, whose
underlying linear subspace is given by the condition

{Pi+1,1, . . . , Pi+1,k} ⊂ Sing (gm−i ),

so is of codimension kN . The last polynomial, to which Lemma 2.4 can be applied,
is g3(u). Proof of Lemma 2.5 is complete.
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738 A. V. Pukhlikov

Corollary 2.2 For a fixed pencil � and hyperplanes H1, . . . , Hl as above, the condi-
tion that there exist points Pi j ∈ Hi , i = 1, . . . , l, j = 1, . . . , k as described above,
such that

{Pi1, . . . , Pik} ⊂ Sing
(
F |Hi

)
, i = 1, . . . , l,

(that is, the set of points depends on the polynomial F), defines a subset of codimension
kl in H0(PN ,OPN (m)).

Proof Indeed, this is an obvious dimension count, as for the hyperplanes Hi being
fixed, every point Pi j varies in a (N − 1)-dimensional family. Q.E.D.

Now let us prove the condition (R4) in the case (3). Fix the linear subspace P ⊂ P

of codimension 2 and consider the set XP of smooth hypersurfaces V ⊂ P of degree
M such that Sing (V ∩ P) contains a curve C with 〈C〉 at least 3-dimensional. The
degree of C and the number of such curves in the set Sing (V ∩ P) are bounded by a
constant depending on M . For a pencil� of hyperplanes in P and distinct hyperplanes
H1, . . . , HM−2 ∈ � let

XP (H1, . . . , HM−2) ⊂ XP

be the subset defined by the condition that Sing (V ∩ P) contains a curve C with the
linear span 〈C〉 at least 3-dimensional and such that for every i = 1, . . . , M − 2 the
intersection C ∩ Hi contains dim〈C〉 linearly independent points. It is obvious that
XP (H1, . . . , HM−2) is Zariski open in XP (the curve C depends algebraically on V ).
By Corollary 2.2 we have

codim (XP (H1, . . . , HM−2) ⊂ F) ≥ 3(M − 2),

so codim (XP ⊂ F) ≥ 3(M − 2) as well. As P varies in a 2M-dimensional family,
the dimension count tells us that in the case (3) the codimension is at least M − 6.

Proof of Theorem 1.2 is complete.

Remark 2.3 More precise arguments, taking into consideration every possible value
of the dimension dim〈C〉, lead to a much stronger estimate in the case (3) of the
condition (R4), which is quadratic in M .

3 Subvarieties of codimension two

In this section we prove Theorem 1.4: if B is a maximal subvariety of codimension
two for the system 	, then B is a section of the hypersurface V by a linear subspace
of codimension two. The proof makes use of the cone technique, see [24, Chapter 2].
The main idea of our arguments is to consider two-dimensional cones, swept out by
secant lines of the subvariety B.
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3.1 The secant space of the subvariety B

Assume that the inequality (2) holds. We need to show that B = P ∩V , where P ⊂ P

is a linear subspace of codimension two. If B is contained in a hyperplane, B ⊂ �,
then the claim of the theorem is almost obvious: the hyperplane section V� = V ∩ �

is a factorial variety, Pic V� = ZH�, where H� is the class of a hyperplane section,
so that B ∼ mH� on V� for some m ≥ 1. The restriction 	� of the linear system 	

onto V� is a non-empty system of divisors, 	� ⊂ |2nH�|, whereas multB	� > n,
that is, B is a fixed component of the system 	� of multiplicity (multB	�). This
implies that m = 1, so that B ∈ |H�| is a hyperplane section of the variety V� ⊂ �,
which is what we need.

Starting from this moment, we assume that B is not contained in a hyperplane, that
is, 〈B〉 = P. Let us show that the inequality (2) is impossible for the mobile linear
system	 ⊂ |2nH |. In order to do this, we assume that this inequality is true and show
that this assumption leads to a contradiction.

Define the secant space

Sec(B) ⊂ B × B × P

as the closure of the set

Sec∗(B) ⊂ (B × B\�B) × P, Sec∗(B) = {(p, q, r) | r ∈ [p, q]},

where �B ⊂ B × B is the diagonal, [p, q] is the line, connecting the distinct points
p, q. Let πB and πP be the projections of the irreducible variety Sec(B) onto B × B
and P, respectively.

Proposition 3.1 The projection πP is surjective.

Proof is given below in Sect. 2.3.
Proposition 3.1 implies that the image of the restriction of the projection πP onto

the set Sec∗(B) contains an open subset in P. In the sequel, speaking about a point x
of general position in P, we will always mean, in particular, that x /∈ V , so that the
restriction of the projection from the point x onto V is a finite morphism V → P

M .
Let Sec(B, x) and Sec∗(B, x) be the fibres of the projection πP and its restriction onto
Sec∗(B, x) over a point of general position x ∈ P.

Obviously, Sec(B, x) can be considered as a closed subset in B× B, invariant with
respect to the involution τ : (p, q) �→ (q, p), and Sec∗(B, x) as a closed subset in
B × B\�B , where for a sufficiently general point x ∈ P)

Sec(B, x) = Sec∗(B, x).

We have dim Sec(B) = 2M − 3, so that dim Sec(B, x) = M − 4. Taking the sections
of the closed set Sec(B, x) by generic very ample divisors on B × B, we obtain for
every irreducible component of the set Sec(B, x) a dense family of curves �, where
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a general curve � of the family is not τ -invariant and does not meet any fixed closed
subset of codimension ≥2 in Sec(B). Set

C+ = π1(�), C− = π2(�),

where π1,2 : B × B → B are the projections onto the first and second direct factors,
respectively. By construction, C− is contained in the cone with the vertex x and the
base C+ and the other way round. The properties of that cone (swept out by the lines
[p, q] 
 x , for p, q ∈ �) and of the curves C± can be made more precise.

The following fact is true.

Proposition 3.2 For some positive integers dC and dR there is an algebraic family

A = {A = (C, R, x)}

of triples (C, R, x),where C is an effective 1-cycle of degree dC on P, R is an effective
1-cycle of degree dR on P and x ∈ P is a point, satisfying the following conditions:
1. the projection πP : A → P,

πP : (C, R, x) �→ x,

is dominant, that is, πP(A) contains a non-empty Zariski open subset,
2. C = C+ + C−, where C± are distinct irreducible curves, C± ⊂ B,

3. for the cone C(x) ⊂ Pwith the vertex x and the base C+ we have:C± are sections
of the cone and the equality

(C(x) ◦ V ) = C+ + C− + R = C + R

holds, where the effective 1-cycle R does not contain C± as a component,
4. for any point p ∈ C± we have x /∈ TpC±,

5. if p ∈ C± is a singular point of the curve C±, then x /∈ TpV,

6. for any point of intersection p ∈ C+ ∩ C− the generator [p, x] of the cone C(x)
has at the point p a simple tangency with the hypersurface V :

([p, x] · V )p = 2,

that is, p /∈ R,

7. the components of the curves R sweep out V :
⋃
A∈A

R = V .

Proof, which makes use of the construction, immediately preceding the statement of
Proposition 3.2, is given below in Sect. 2.2.

Let us complete the proof of Theorem 1.4. In the notations of Proposition 3.2,
consider an arbitrary irreducible component of the residual curve R, which we for
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simplicity denote by the same symbol. Let D ∈ 	 be a generic divisor. By the property
(7), we may assume that R �⊂ D. Since B ⊂ D and, moreover, multBD > n, the
inequality

2ndeg R = (R · D) ≥
∑

p∈R∩B

(R · D)p > n
∑

p∈R∧B

multpR (9)

holds, where the last sum is taken over the usual and infinitely near points of inter-
section of the curve R and the subvariety B: the set of those points is denoted by the
symbol R ∧ B (see [20]).

Since C± ⊂ B and, by the property (6), the curve R does not contain the points of
the intersection C+ ∩ C−, we have

R ∧ B ⊃ (R ∧ C+) � (R ∧ C−), (10)

� means a disjoint union. By the property (5), the curve R meets C± at non-singular
points of those curves. The following lemma is a version of a very well known claim
[20].

Lemma 3.1 The following equality holds:
∑

p∈R∧C±
mult p R = deg R.

In the last formula we mean any choice of the sign + or −.
Now from the inequality (9), taking into account (10), we obtain: 2ndeg R >

n(deg R + deg R), which is impossible. Q.E.D. for Theorem 1.4.

Remark 3.1 Repeating the previous arguments word for word, we exclude the possi-
bility of two maximal subvarieties of codimension two for the system 	. Therefore,
the section B = V ∩ P is uniquely determined.

3.2 Proof of technical facts

Let us show Lemma 3.1. By genericity of the curve C = C+ +C−, each of the curves
C± is a section of the cone C(x). The normalizations C̃± of these curves are naturally
isomorphic. Let C+(x) be the blow up of the vertex of the cone C(x) and

C̃(x) = C̃± ×C± C+(x)

the non-singular ruled surface over C̃±, where the smooth curves C̃+ and C̃− are
realized as its sections. Set R̃ to be the strict transform of R on C̃(x). By the properties
(4)–(6) at each point p ∈ (R ∩C+) � (R ∩C−) the corresponding curve C+ or C− is
non-singular and transversal to the generator of the cone [p, x], so that

∑
q∈R∧C±(p)

multq R =
∑

q∈R̃∧C̃±(p)

multq R̃ = (R̃ · C̃±)p,

123



742 A. V. Pukhlikov

where the subset R∧C±(p) ⊂ R∧C± consists of the point p and infinitely near points
over it, where the point of the surface C̃(x), corresponding to the point p of intersection
of the curves R and C+ (or C−), is denoted by the same symbol p. Therefore,

∑
p∈R∧C±

mult p R =
∑

p∈R̃∩C±

(R̃ · C̃±)p = (R̃ · C̃±),

but the last number is equal to deg R, see [20]. Q.E.D. for the lemma.

Proof of Proposition 3.2 The construction, immediately preceding the statement of
Proposition 3.2, gives an algebraic family A, satisfying the property (1) by Proposi-
tion 3.1. Let us show that, somewhat shrinking the family A (that is, taking a Zariski
open subset in that family), one can ensure that the remaining properties (2)–(7)
hold. Indeed, our construction yields in the general case distinct irreducible curves
C± �= C−, so that the property (2) can be assumed. Proof of Proposition 3.1 implies
easily that a generic secant line [p, q] of the variety B is not a 3-secant (see Remark 3.2
in Sect. 2.3 below), that is, C± are sections of the cone C(x), whereas C± come into
the 1-cycle (C(x) ◦ V ) with multiplicity 1, which gives the property (3).

For any point p ∈ B we have B �⊂ TpV (since B is not contained in a hyperplane
by assumption), and for that reason for a general point x ∈ P the direction of the
line [p, x] defines a field of directions on a proper closed subset of the set Sec(B, x)
(consisting of the points p ∈ B, at which [p, x] ⊂ TpB) and for that reason for a
general curve � its projections C± are nowhere tangent to the lines [p, x] (that is,
at no point p ∈ C±), that is, the property (4) is satisfied (one should also take into
account that for a general point p ∈ B the set

Sing B ∩ TpV

has dimension at most M − 4, since the hypersurface V is non-singular and the linear
system

∑M+1
i=0 λi (∂F/∂xi ) defines a finite morphism P → P).

The property (5) again follows from the fact that B is not contained in a hyperplane:
obviously,

πB(Sing (Sec(B))) ⊂ (Sing B × B) ∪ (B × Sing B),

so that the point (p, q) ∈ � is a singularity of that curve (for a general curve �) if and
only if p or q belongs to Sing B. Since the pairs of points (p, q) ∈ B × B such that
p ∈ Sing B and q ∈ TpV , form a subset of codimension al least 2, a general curve �

does not contain such pairs. This proves the property (5).
Let us consider the property (6). The subsetπ−1

B (�B) is a closed subset of codimen-
sion 1 in Sec(B), which may consist of several irreducible components of different
codimensions. A general curve � does not intersect the components of codimension
two, so we are only interested in the divisorial components.

It is easy to see that the closure of the set

π−1
B (�B\Sing�B) ⊂ Sec(B)
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is a prime Weil divisor on Sec(B). For a non-singular point p ∈ B\Sing B we have

π−1
B ((p, p)) = {(p, p)} × TpB.

Let (z1, . . . , zM+1) be a system of affine coordinates with the origin at the point p ∈ P

and

f = q1 + q2 + · · · + qM

the equation of the hypersurface V . By the condition on the rank of the quadratic form
q2 we have q2|Tp B �≡ 0, so that the set of triples (p, p, x) ∈ Sec(B) such that

([p, x] · V )p ≥ 3 (11)

has in Sec(B) codimension 2, which is what we need. Therefore, it is sufficient to
prove the property (6) for singular points p ∈ Sing B, that is (p, p) ∈ Sing�B .

Let Y ⊂ Sing B be an irreducible subset of codimension ≥2 with respect to B.
Since obviously for p ∈ Y

π−1
B ((p, p)) ⊂ {(p, p)} × TpV

and q2|TpV �≡ 0, we obtain once again, that the set of triples (p, p, x) ∈ Sec(B), such
that the inequality (11) holds, is of codimension at least two in Sec(B), which is what
we need. Therefore, it is sufficient to consider a divisorial component Q ⊂ Sing (B),
codim(Q ⊂ B) = 1.

Lemma 3.2 There exists a non-empty Zariski open subset UQ ⊂ Q such that for any
point p ∈ UQ the set

πP(π−1
B ((p, p))) ⊂ P

is a union of finitely many linear subspaces of dimension M − 1, contained in TpV
and containing TpQ.

Proof Straightforward local computations. Since Q is a divisorial component of the
set of singular points Sing B, over a non-empty Zariski open subset UB ⊂ B with a
non-empty intersection UQ = UB ∩ Q, the resolution of singularities of the variety
B is just the normalization B̃ → B, so that at every point p ∈ UQ the variety B
admits a simple analytic parametrization and easy local computations give an explicit
description of the limit set of secant lines [q, r ] when q → p and r → p.
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We will explain briefly how these limit sets are obtained, leaving it to the reader to
perform the computations.

As a model example, let us consider the following problem: determine the limit set
of all secant lines [q, r ] as q, r → o, where C ⊂ P

N , N ≥ 3, is a (possibly reducible
but reduced) curve with a singular point o ∈ C , multoC ≥ 2. Even if irreducible,
the curve C can have several (possibly singular) branches at o. We have therefore to
consider the limits of secant lines [q, r ], as
(i) q, r → o along the same singular branch C1 of C (if the branch is non-singular,

then the limit is obviously the tangent line to the branch, ToC1),
(ii) q → o along a branch C1, r → o along a branch C2, where C1 �= C2 and

ToC1 �= ToC2 (one or both of these branches may be non-singular),
(iii) the same as (ii), but the tangent lines coincide, ToC1 = ToC2.

Let us show that in each of the three cases the limit set of secant lines [q, r ] sweeps
out a union of 2-planes containing the point o. In the case (ii) this is obvious: this set
is the plane 〈ToC1, ToC2〉. Let us consider the case (i).

Making a linear change of coordinates and re-parameterizing the branch C1, we
may assume that with respect to a system (z1, . . . , zN ) of affine coordinates, where
o = (0, . . . , 0), the branch C1 has the following parameterization at the point o:

z(t) =
∑
i≥0

vi t
di ,

where the summay be finite or infinite, di are increasing integerswith d0 = multoC1 ≥
2, 〈v0〉 = ToC1, vi is not parallel to v0 for all i in the sum above and gcd(d0, d1, . . . ) =
1 (so that the parameterization can not be factored through t �→ tk , k ≥ 2). Now using
1-dimensional families of secant lines [q(s), r(s)], where

q(s) = z(s) and r(s) = z(ζ s + ase),

ζ d0 = 1, e ≥ 2 and a ∈ C any constant, it is easy to obtain the limit set of secant lines
of this branch as a union of 2-planes. Their explicit description is as follows. Set

i1 = min{ j ≥ 1 | d j is not divisible by d0}

and inductively

ik = min{ j ≥ ik−1 + 1 | d j is not divisible by mk},

where mk = gcd(d0, di1 , . . . , dik−1). This procedure terminates, giving us a finite set
of indices

i0 = 0 < i1 < · · · < il ,

with gcd(d0, di1 , . . . , dil ) = 1. Now choosing an appropriate root of unity ζ and a
suitable value of e in the parameterization above, it is easy to check that the limit set
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of the branch C1 is the union of planes

〈v0, vik 〉, k = 1, . . . , l.

We leave the computations to the reader as well as checking that for any parameteri-
zation of q(s) and r(s) the limit of the secant line [q(s), r(s)] is inside the union of
the planes above.

This completes the case (i). The case (iii) is very similar to (i) and is also left to the
reader.

Keeping in mind this model example, let us come back to the proof of Lemma 3.2.
At a generic point p ∈ Q we choose a system of linear coordinates

(z1, z2, z3, z4, y1, . . . , yM−3) = (z, y)

with the origin at the point p, such that the projection TpQ → {z1 = z2 = z3 =
z4 = 0} is an isomorphism, so that near p the non-singular subvariety Q admits a
parameterization of the form

(z, y) = (v−1(y), y).

Near p the subvariety B is a union of branches, each of which admits a uniform
parameterization

v−1(y) +
∑
i≥0

vi (y)t
di ,

satisfying the same properties as the local parameterization of the branchC1 discussed
above (which can be seen, as wementioned in the beginning of the proof of this lemma,
through considering the normalization B̃ → B).

Now elementary local computations, similar to those sketched above for the 1-
dimensional case, show that the limit set of secant lines at the point p is a union
of linear space of dimension M − 1, containing TpQ (and, naturally, contained in
TpV ). We leave these easy explicit computations to the reader. Proof of Lemma 3.2
is complete.

Now for any point p ∈ UQ and some linear subspace � ⊂ πP(π−1
B ((p, p))) we

have q2|� �≡ 0, so that the closed set

{q2 = 0} ∩ πP(π−1
B ((p, p))) ⊂ P

is of dimension M − 2. Therefore, the set of triples (p, p, x) ∈ Sec(B), satisfying the
inequality (11), where p ∈ UQ , has the dimension (M − 3) + (M − 2) = 2M − 5,
that is, the codimension 2 in Sec(B). This completes the proof of the property (6).

Finally, the property (7) is obvious (for instance, follows immediately from the
proof of Proposition 2.1, given below).

Proposition 3.2 is shown. Q.E.D.
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3.3 The secant variety

Set

Sec(B) = πP(Sec(B)) =
⋃

B
p �=q∈B
[p, q] ⊂ P

and let us call Sec(B) the secant variety of the subvariety B ⊂ P (as opposed to
the secant space, introduced in Sect. 2.1). We need to show that Sec(B) = P. Let
α : C

M+2\{0} → P be the canonical projection. For a closed set Y ⊂ P the symbol
Y aff stands for the affine cone

α−1(Y ) = α−1(Y ) ∪ {0} ⊂ C
M+2.

Let σ : Baff × Baff × C
2 → C

M+2 be the map of taking the linear combination

σ : (v,w, (λ, μ)) �→ λv + μw.

Obviously, Sec(B)aff is the closure of the image of the map σ . Furthermore, it is
obvious that for a non-singular point p ∈ B the tangent space TvBaff does not depend
on the choice of a non-zero vector v ∈ α−1(p) and for that reason we denote it by
the symbol TpBaff . It is clear that the embedded tangent space TpB ⊂ P satisfies the
equality

(TpB)aff = TpB
aff .

Let p, q ∈ B be a pair of non-singular points. Obviously, the differential dσ at the
point (v0, w0, (λ0, μ0)) is

dσ : TpB
aff × Tq B

aff × C
2 → C

M+2,

dσ : (v,w, (λ, μ)) �→ λ0v + μ0w + λv0 + μw0,

so that for a non-singular point r ∈ Sec(B), r ∈ [p, q], we have TrSec(B)aff =
Imdσ = TpBaff + Tq Baff (taking into account that v0 ∈ TpBaff and w0 ∈ Tq Baff ).
Set

T (p, q) = TpB
aff + Tq B

aff .

Therefore, Sec(B) = P if and only if dσ is surjective, that is T (p, q) = C
M+2.

Remark 3.2 At this point we observe that the equality T (p, q) = C
M+2 implies that

a general secant line is not a 3-secant.
Assume now that Sec(B) �= P is a proper irreducible subvariety. Since codim(B ⊂

P) = 3, this implies that

codim(TpB
aff ∩ Tq B

aff) ≤ 5,
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and the latter holds for any non-singular points p, q ∈ B. Let us show that our
assumption leads to a contradiction.

The symbol πp stands for the linear projection P ��� P
2 from the tangent space

TpB for a non-singular point p ∈ B. The projection πp is the projectivization of the
linear map

πaff
p : C

M+2 → (CM+2/TpB
aff) ∼= C

3.

The differential of the restriction of the latter map onto Baff is not surjective at a point
of general position. Indeed, for any smooth point q ∈ B we have:

dim πaff
p (Tq B

aff) ≤ 2.

Therefore, πp(B) �= P
2 and for that reason πp(B) is either a point or some irreducible

curve C ⊂ P
2. If πp(B) is a point or C is a line, then the subvariety B is contained in

a hyperplane, which contradicts the assumption. Therefore, πp(B) = C is a curve of
degree d ≥ 2.

Let c ∈ C be a point of general position,

Bc = (B ∩ π−1
p (c))\TpB

the fibre of the projection πp|B . Obviously, Bc is a closed subset of pure codimension

two in the fibre π−1
p (c) ∼= P

M−1. For that reason the secant variety Sec(Bc) coincides
with its linear span 〈Bc〉 (it is sufficient to check this almost obvious fact for a curve
in P

3).
Therefore, we have three options:

1. Sec(Bc) = P
M−1,

2. Sec(Bc) is a hyperplane in π−1
p (c) ∼= P

M−1,
3. Sec(Bc) = Bc is a subspace of codimension two in P

M−1.

Assume that the case (1) takes place. Since Sec(Bc) ⊂ Sec(B), we have

π−1
p (C) ⊂ Sec(B).

On the left we have an irreducible divisor in P, so that by our assumption that

Sec(B) �= P the equality Sec(B) = π−1
p (C) holds. However, it is obvious, that Sec(B)

contains points outside the set π−1
p (C): let c1, c2 ∈ C be a general pair of points,

qi ∈ Bci general points, then [q1, q2] ⊂ Sec(B), but πp([q1, q2]) = [c1, c2] �⊂ C .
This contradiction excludes the case (1).

The case (3) is impossible, as V does not contain linear subspaces of dimension
M − 3.

Therefore, the case (2) takes place.Againwe take a general pair of points c1, c2 ∈ C .

Let L = [c1, c2] ⊂ P
2 be the line through them, H = π−1

p (L) the corresponding
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hyperplane in P. Set also

Pi = π−1
p (ci ) ⊂ H ∼= P

M .

The linear space P = TpB is of codimension two in H and P1∩P2 = P . Furthermore,
set

Bi = Bci and �i = Sec(Bi ) = 〈Bi 〉,

these are hyperplanes in Pi , i = 1, 2.

Proposition 3.3 The following equality holds:

Sec(B1 ∪ B2) = H.

It is clear that since the points c1, c2 are general, Proposition 3.3 implies the equality
Sec(B) = P, which contradicts the initial assumption and proves Proposition 3.1.

Proof of Proposition 3.3 None of the irreducible components of the sets B1, B2 is a
cone, as by the regularity condition (R1) there are only finitely many lines through
every point on V . Let � ⊂ H be a 5-dimensional subspace of general position,
Qi = Pi ∩� and Si = Bi ∩�, i = 1, 2. Now S1, S2 are (possibly reducible) surfaces
in � ∼= P

5, the linear spans 〈Si 〉 of which are 3-planes Ri = �i ∩�. The components
of the surfaces S1, S2 are not cones and for that reason

⋂
s∈Si

Ts Si = ∅

for i = 1, 2. If R12 = R1 ∩ R2 is a line, then we conclude that for a general pair of
points (s1, s2) ∈ S1 × S2 the planes Ts1 S1 and Ts2 S2 are disjoint. This implies, that
Sec(S1 ∪ S2) = �, so that Proposition 3.3 is shown in this case.

Therefore we assume that R12 is a plane, that is,

R1 ∩ R2 = R1 ∩ Q2 = Q1 ∩ R2.

By the genericity of the subspace � this means that

�12 = �1 ∩ �2 = �1 ∩ P2 = P1 ∩ �2,

and for that reason �12 = �1 ∩ P = �2 ∩ P . The points c1, c2 are chosen indepen-
dently of each other, so that we can conclude that there exists (a uniquely determined)
hyperplane Q ⊂ P such that for a point of general position c ∈ C we have

〈Bc〉 = Sec(Bc) ⊃ Q.

Let πQ : P ��� P
3 be the projection from the linear subspace Q. By what we proved,

πQ(〈Bc〉) is a point and for that reason πQ(Bc) is a point, so that the image πQ(B)
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is a curve C+ (the projection of which from the point πQ(P) is the curve C ⊂ P
2).

If C+ is contained in some plane in P
3, then B is contained in some hyperplane in P,

either, which contradicts our assumption. Thus

〈C+〉 = Sec(C+) = P
3.

Now let ξ1, ξ2 ∈ C+ be a general pair of points,�i = π−1
Q (ξi ) ⊂ P the corresponding

subspaces of codimension 3, B+
i = π−1

Q (ξi ) ∩ B the fibres of the projection πQ |B .
We know that B+

i ⊂ �i are hypersurfaces (possibly reducible) and

〈B+
i 〉 = Sec(B+

i ) = �i .

Since B+
i are not cones, we conclude that

Sec(B+
i ∪ B+

2 ) = π−1
Q ([ξ1, ξ2]),

whence, finally, it follows that Sec(B) = P. Proof of Propositions 3.3 and 3.1 is
complete.

4 Infinitely near case: I—preparatory work

In this section we start the proof of Theorem 1.5, that is, the exclusion of the infinitely
near case. Here we carry out preparatory work: we come over to a hyperplane section
of the hypersurface V , in order to use the 8n2-inequality, list all particular cases that
need to be considered and obtain aprioric estimates for the multiplicity of the self-
intersection. We use the following tools: the inversion of adjunction, the technique of
counting multiplicities and the method of hypertangent divisors.

4.1 The method of hypertangent divisors

Let 	 ⊂ |2nH | be a mobile linear system with no maximal subvarieties of codimen-
sion two. Fix a maximal singularity E∗ ⊂ Ṽ of the system 	 with the centre B ⊂ V
of maximal dimension.

Lemma 4.1 B is a point or a curve on V .

Proof By the 4n2-inequality we have

multB Z > 4n2,

where Z = (D1 ◦ D2) is the self-intersection of the system 	. Since Z ∼ 4n2H2, by
[19, Proposition 5] it follows that dim B ≤ 1. Q.E.D. for the lemma.

The cases dim B = 1 and dim B = 0 are dealt with in word for word the same
way, the assumption on the existence of a maximal singularity leads to a contradiction,
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excluding both cases. We will assume that B = o is a point (if B is a curve, take a
general point o ∈ B, and then the proof for the case dim B = 0 applies; note that all
local information about the linear system 	 at the point o and its strict transform with
respect to the blow up of this point is obtained through restricting the system onto the
section of V by a generic linear subspace through o in the dim B = 0 case, so the
arguments work in the dim B = 1 case as well). The following fact is true.

Proposition 4.1 The following inequality holds: multo	 ≤ 3n.

Proof Assume the converse: multo	 > 3n. Let T = ToV ∩ V be the intersection of
the hypersurfaces V with the tangent hyperplane. Obviously,

T ⊂ ToV ∼= P
M

is a Fano hypersurface with the isolated double point o ∈ T . The tangent cone at the
point o is the quadric {q2|{q1=0} = 0}. For a generic divisor D ∈ 	 we have D �= T ,
so that (D ◦ T ) is an effective cycle of codimension two, satisfying the inequality

multo(D ◦ T ) > 6n.

Let Y be a component of the cycle (D ◦ T ) with the maximal value of the ratio
(multo/deg). Therefore, the prime divisor Y ⊂ T satisfies the inequality

multo
deg

Y >
3

M
.

The first hypertangent divisor T2 = {q2|T = 0} is irreducible and by the regularity
conditions multoT2 = 6, deg T2 = 2M , so that T2 �= Y . Let us form the effective cycle
({q2|T = 0}◦Y ) and choose in it an irreducible component Y3 with the maximal value
of the ratio (multo/deg). Now we apply to Y3 the standard technique of hypertangent
linear systems [24, Chapter 3]: take generic hypertangent divisors Ti , that is, the
divisors, the strict transforms T+

i of which on the blow up V+ of the point o with the
exceptional divisor E ∼= P

M−1 are

T+
i ∈ |i H − (i + 1)E |, i = 4, . . . , M − 1,

and construct a sequence of irreducible subvarieties

Y3,Y4, . . . ,YM−1,

where codim(Yi ⊂ V ) = i , and Yi+1 is an irreducible component of the effective
cycle (Yi ◦Ti+1)with the maximal value of (multo/deg). For the curve YM−1 we have
the inequality

1 ≥ multo
deg

YM−1 >
3

M
· 3
2

· 5
4

· 6
5

· · · · · M

M − 1
= 9

8
· (12)

This contradiction proves our proposition. Q.E.D.
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Arguing in a similar way, we obtain the following fact.

Proposition 4.2 For any irreducible subvariety Y ⊂ V of codimension two the fol-
lowing inequality holds:

multo
deg

Y ≤ 3

M
. (13)

Proof Set again T = ToV ∩ V . If Y ⊂ T , that is, Y is a prime divisor on the
hypersurface T ⊂ ToV ∼= P

M , then we argue in word for word the same way as in
the proof of Proposition 4.1, deriving a contradiction from the assumption that the
inequality (13) does not hold.

Assume now, that Y �⊂ T and the inequality (13) is not true. Then for the effective
cycle (Y ◦ T ) the inequality

multo
deg

(Y ◦ T ) >
6

M

holds, so that there is an irreducible component Y3 of the cycle (Y ◦ T ), satisfying
that inequality. Now we argue in the same way as in the proof of Proposition 4.1:
taking generic hypertangent divisors T4, . . . , TM−1, we construct a sequence of irre-
ducible subvarieties Y3,Y4, . . . ,YM−1, the last one of which is a curve, satisfying the
inequality

1 ≥ multo
deg

YM−1 >
6

M
· 5
4

· 6
5

· · · · · M

M − 1
= 6

4
.

This contradiction completes the proof of the proposition.

Remark 4.1 The second part of the proof of Proposition 3.2 gives a much stronger
estimate for the ratio (multo/deg) in the case Y �⊂ T :

multo
deg

Y ≤ 2

M
.

Now let � ⊂ P be a linear subspace of codimension 1 or 2, containing the point
o, but not contained in the hyperplane ToV , so that V� = V ∩ � is an irreducible
hypersurface of degree M in �, non-singular at the point o. Let Y ⊂ V� be an
irreducible subvariety of codimension two.

Proposition 4.3 (i) If Y ⊂ ToV�, then for codim(� ⊂ P) = j ∈ {1, 2} the following
estimate holds:

multo
deg

Y ≤ 1

M
max

(
3,

8M

3(M − j)

)
.
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(ii) If Y �⊂ ToV�, then for codim(� ⊂ P) = j ∈ {1, 2} the following estimate holds

multo
deg

Y ≤ 1

M

(
2M

M − j

)
.

(The somewhat strange writing of the right hand part of the inequality (ii) will
become clear below.)

Proof (i) Repeating the arguments of the first part of the proof of Proposition 4.2 word
for word and taking into account the regularity conditions for the hypersurface V�,
we obtain the inequality

1 >
3

M
· 3
2

· 5
4

· 6
5

· · · · · M − 1

M − 2
= 9

8

(
1 − 1

M

)

for codim(� ⊂ P) = 1, and the inequality

1 >
3

M
· 3
2

· 5
4

· 6
5

· · · · · M − 2

M − 3
= 9

8

(
1 − 2

M

)

for codim(� ⊂ P) = 2. It is easy to see that these inequalities are impossible. The
contradiction proves the claim (i).

In the case (ii) we repeat the arguments of the second part of the proof of Proposi-
tion 4.2 word for word, once again taking into account that by the considerations of
dimension we take codim(� ⊂ P) = 1 or 2 hypertangent divisors less. Again we get
a contradiction, which proves the claim (ii).

Proof of Proposition 4.3 is complete.

4.2 The restriction onto a hyperplane section

The next step in the proof of Theorem 1.5 is the restriction of the linear system 	

onto a suitable hyperplane section of the variety V , which allows us to make the
estimate for the multiplicity of the self-intersection at the point o twice stronger. If the
inequality multoZ > 8n2 holds (where Z is the self-intersection of the mobile linear
system 	), then this step can be skipped, considering below instead of the hyperplane
section P 
 o the hypersurface V itself: in that case, the dimension does not drop and
all estimates become only stronger, so that the proof given below works without any
modifications. Keeping this in mind, assume that multoZ ≤ 8n2. Recall that V+ is the
blow up of V at the point o with the exceptional divisor E ∼= P

M−1. The following
fact is true.

Proposition 4.4 (The 8n2-inequality) There exists a subspace� ⊂ E of codimension
2 (uniquely determined by the system 	), satisfying the inequality

multoZ + mult�Z+ > 8n2.
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Proof This is [23, Proposition 4.1].

Now let us consider the linear system |H − �|, consisting of hyperplane sections
that cut out � on E , that is, for a general divisor P ∈ |H − �| we have: P ∈ |H | is a
hyperplane section, smooth at the point o and P+ ⊃ �. Obviously,

dim|H − �| = 2 codimBs|H − �| = 3.

Therefore for a general divisor P ∈ |H − �| the effective cycle ZP = (Z ◦ P) of
codimension two is well defined and satisfies the inequality

multoZP = multoZ + mult�Z+ > 8n2.

Let 	P = 	|P be the restriction of the linear system 	 onto P . Obviously,
	P ⊂ |2nHP |, where HP = H |P is the positive generator of the group Pic P ∼= Z,
whereas the system 	P is mobile (has no fixed components). The cycle ZP is the
self-intersection of the system 	P :

ZP = (D1 ◦ D2),

where D1, D2 ∈ 	P are generic divisors. The variety P is a hypersurface of degree
M in P

M , which may have isolated singular points, but the point o ∈ P itself is
non-singular.

Proposition 4.5 The pair (P, 1
n	P ) is not log canonical at the point o, that is, it has

a non log canonical singularity with the centre at that point. If the pair (P, 1
n	P ) has

a non-canonical singularity with the centre B 
 o, B �= o, then either dim B ≤ 2, or
B = � = Bs|H − �| (and in the latter case the inequality mult�	 > n) holds.

Proof The first claim follows from the inversion of adjunction [14]. Let us consider the
second one (it is not used in the subsequent proof). If B �= �, then codim(B ⊂ P) ≥ 3
(otherwise, by the genericity of P , the original system 	 has a maximal subvariety of
codimension 2, which is not true by assumption). Therefore, the 4n2-inequality holds:

multB ZP > 4n2.

Let Q ∈ |HP | be a general (in particular, everywhere non-singular) hyperplane section
of P and ZQ = (ZP ◦ Q). Then on Q the cycle ZQ ∼ 4n2HQ of codimension two
satisfies the inequality

multB∩Q ZQ > 4n2

and dim B ∩ Q ≤ 1 by Proposition 5 in [19]. Proof is complete.

Note that by the genericity of the hyperplane section P the linear system	P satisfies
the inequality

ν = multo	P (= multo	) ≤ 3n.
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Now let �1 ⊂ �2 be a generic pair of linear subspaces of dimensions 5 and 6 in
P
M = 〈P〉, containing the point o, and Xi = P∩�i the corresponding sections of the

hypersurface P . By the inversion of adjunction the pair (Xi ,
1
n	i ), where	i = 	P |Xi ,

has the point o as an isolated centre of a non log canonical singularity. Let X+
i ⊂ P+

be the strict transform of Xi , so that

ϕi : X+
i → Xi

is the blow up of the point o ∈ Xi and E (i) = E ∩ X+
i the exceptional divisor of the

morphism ϕi . The pairs

�1 =
(
X+
1 ,

1

n
	+

1 + ν − 3n

n
E (1)

)
(14)

and

�2 =
(
X+
2 ,

1

n
	+

2 + ν − 4n

n
E (2)

)
(15)

are not log canonical (recall that ν ≤ 3n) and satisfy the conditions of the connected-
ness principle with respect to the birational morphisms ϕ1 and ϕ2, respectively (see
[14, Section 17.4]). The centre of any non log canonical singularity of the pair �i ,
intersecting E (i), is contained in E (i) (Proposition 4.5), so that we conclude that the
union LCS(�)i of centres of non log canonical singularities of the pair �i , intersect-
ing E (i), is a connected closed subset in E (i). Recall that E (1) ∼= P

3 and E (2) ∼= P
4.

For the pair �1 there are three options:

– LCS(�1) is a point p ∈ E (1),
– LCS(�1) is a connected curve,
– LCS(�1) is a union of curves and surfaces, and in this union there is at least one
surface.

For the pair �2 there are, respectively, four options, dim LCS(�2) ∈ {0, 1, 2, 3},
and if LCS(�2) is zero-dimensional, then this set consists of one point.

Now looking at the pair

�12 =
(
X+
2 ,

1

n
	+

2 + ν − 3n

n
E (2)

)
,

we see that LCS(�12) is either a line in E (2) ∼= P
4, or a connected union of surfaces

(every hyperplane section of which is connected), or a union of surfaces and divisors
in E (2). Since the pair �12 is obviously “more effective” than the pair �2, we have
the inclusion

LCS(�2) ⊂ LCS(�12),

in particular, (LCS(�2) ∩ X+
1 ) ⊂ LCS(�1).
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Now let us come back to the hypersurface P and its blow up ϕP : P+ → P at the
point o. From what was said, it follows that the pairs

� =
(
P+,

1

n
	+

P + ν − 3n

n
EP

)

and

�∗ =
(
P+,

1

n
	+

P + ν − 4n

n
EP

)

are not log canonical, and moreover, one of the following six cases takes place.
Case 1.1.There are non log canonical singularities of the pairs�∗ and�, the centres of
which on P+ are linear subspaces� ⊂ � ⊂ EP of codimension 4 and 3, respectively.
Case 1.2. There exists a non log canonical singularity of the pair �∗, the centre of
which on P+ is a linear subspace � ⊂ EP of codimension 3.
Case 2.1. There exist non log canonical singularities of the pairs�∗ and�, the centres
of which on P+ are a linear subspace � ⊂ EP of codimension 4 and an irreducible
subvariety B ⊂ EP of codimension 2, respectively, where � ⊂ B.
Case 2.2. There are non log canonical singularities of the pairs �∗ and �, the centres
of which on P+ are irreducible subvarieties B∗ ⊂ B ⊂ EP of codimension 3 and 2,
respectively.
Case 2.3. There is a non log canonical singularity of the pair �∗, the centre of which
on P+ is an irreducible subvariety B ⊂ EP of codimension 2.
Case 3. There is a non log canonical singularity of the pair �, the centre of which on
P+ is an irreducible subvariety B ⊂ EP of codimension 1.

The six cases listed above correspond to three possible values of the integer
dim LCS(�1), taking into account the type of the set LCS(�2).

The last case is the simplest one.

Proposition 4.6 The case 3 does not realize: codim(B ⊂ EP ) ≥ 2.

Proof Assume the converse: B ⊂ EP is a prime divisor. We argue as in the proof of
Proposition 4.1 in [23] or in [4]: for the self-intersection ZP of the system 	P , taking
into account that the pair � is not log canonical at B, we obtain the estimate

multoZP > ν2 + 4
(
4 − ν

n

)
n2 = (ν − 2n)2 + 12n2 ≥ 12n2.

Therefore, there is an irreducible subvariety Y ⊂ P of codimension two, satisfying
the inequality

multo
deg

Y >
3

M
.

However, this contradicts Proposition 4.3. Proposition 4.6 is shown. Q.E.D.
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Remark 4.2 Once again, we emphasize that Proposition 4.3 implies the inequality

multoZP ≤ 12n2,

which we will use in the sequel without special references.

4.3 The techniques of counting multiplicities: the aprioric estimates

Following the standard procedure of the method of maximal singularities, let us obtain
now bounds from below for the multiplicities of the cycle ZP , improving the 8n2-
inequality.We call these estimates aprioric, because they donotmake use the additional
geometric information available in the cases 1.1–2.3. To exclude those cases, the
aprioric estimates are not sufficient and we will need some additional work, which
will be carried out in Sects. 4 and 5.

Proposition 4.7 (i) If the case 1.1 takes place, then the following inequalities hold:

multoZP + mult�Z+
P > 12n2 (16)

and mult�ZP > 4n2. If the case 1.2 takes place, then the following estimate
holds:

mult�Z+
P > 4n2. (17)

(ii) If either of the cases 2.1 or 2.2 takes place, then the following inequality holds

multoZP + multB Z
+
P > 12n2, (18)

in addition in the case 2.1 the estimate mult�Z+
P > 4n2 and in the case 2.2 the

estimate multB∗ Z+
P > 4n2 hold.

(iii) If the case 2.3 takes place, then the following inequality holds:

multB Z
+
P > 4n2.

Proof All the inequalities, listed above, belong to one of the two types: the type (16)
for a non log canonical singularity of the pair � and the type (17) for a singularity of
the pair �∗. The proofs for each of the two types are completely identical, and for this
reason we will show only these two inequalities.

Let us prove the inequality (16). It is true under a weaker assumption that the pair
� has a non canonical singularity, the centre of which is the subspace �. This is what
we will assume. Let

σi,i−1 : Pi → Pi−1
∪ ∪
Ei → Bi−1
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be the resolution of the non canonical singularity of the pair �, where P1 = P+,
σ1,0 = ϕP , E1 = EP , σ2,1 is the blow up of the subvariety � = B1, and in general,
Bi−1 is the centre of the fixed non canonical singularity of the pair � on Pi−1, Ei =
σ−1
i,i−1(Bi−1) is the exceptional divisor, finally, i = 1, . . . , K and EK realizes the fixed

non canonical singularity. Let � be the oriented graph of that resolution, that is, its set
of vertices is the set of exceptional divisors

E1, . . . , EK ,

and the vertices Ei and E j are joined by an oriented edge (an arrow; notation: i → j),
if and only if i > j and Bi−1 is contained in the strict transform Ei−1

j of the exceptional
divisor E j on Pi−1, see [17] or [21, Chapter 2], also [24, Chapter 2] for the details.
By the symbol pi j we denote the number of paths from the vertex Ei to the vertex E j ,
if i �= j ; we set pii = 1. The fact that EK realizes a non canonical singularity of the
pair �, means that the inequality of the Noether–Fano type holds:

K∑
i=1

pKiνi > n

(
3pK1 +

K∑
i=2

pKiδi

)
, (19)

where νi = multBi−1	
i−1, and δi = codimBi−1 − 1 is the discrepancy of Ei with

respect to Pi−1. By linearity of the inequality (19) we may assume that νK > n (if
νK ≤ n, then EK−1 is a non canonical singularity of the pair� and K can be replaced
by K − 1). Set

L = max{2 ≤ i ≤ K | codimBi−1 ≥ 3}.

The graph � breaks into the lower part with the vertices E1, . . . , EL and the upper
part with the vertices EL+1, . . . , EK . Now let us the well known trick of removing
arrows (see, for instance, [23, §4] or [24, Chapter 2] for the details): let us remove all
arrows that go from the vertices of the upper part to the vertex E1, if such arrows exist.
This operation does not change the numbers pK2, . . . , pKK , but, generally speaking,
decreases the number of paths from EK to E1. Set pi = pKi for i = 2, . . . , K and let
p1 be the number of paths from EK to E1 in the modified graph. Since ν1 ≤ 3n, the
inequality (19) remains true:

K∑
i=1

piνi > n

(
3p1 +

K∑
i=2

piδi

)
, (20)

in addition, the modification of the graph � yields the estimate

p1 ≤
L∑

i=2

pi . (21)
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Set Zi
P to be the strict transform of the cycle ZP on Pi , i = 1, . . . , L; in particular,

Z1
P = Z+

P . Set also for i = 1, . . . , L

mi = multBi−1 Z
i−1
P .

Applying the technique of counting multiplicities (see, for example [21, Proposi-
tion 2.11] or [24, Chapter 2]), we obtain the inequality

L∑
i=1

pimi ≥
K∑
i=1

piν
2
i ,

whence in the standardway (computing theminimumof the quadratic form
∑

piν2i on
the hyperplane, which we obtain, replacing the inequality sign in (20) by the equality
sign) we deduce the estimate

(
K∑
i=1

pi

) (
L∑

i=1

pimi

)
>

(
3p1 +

K∑
i=2

piδi

)2

n2.

Now set

	0 =
∑

δi=3,i≥2

pi , 	1 =
∑
δi=2

pi , 	2 =
∑
δi=1

pi ,

so that, in particular, p1 ≤ 	0 + 	1. Taking into account that the multiplicities mi do
not increase, we obtain the inequality

(p1 + 	0 + 	1 + 	2)(p1m1 + (	0 + 	1)m2) > (3p1 + 3	0 + 2	1 + 	2)
2n2.

(22)

Recall thatm1 = multoZP andm2 = mult�Z+
P are precisely the multiplicities, which

we are interested in, and we prove the inequality m1 + m2 > 12n2. By linearity in
m1,m2 and the last inequality (that is, the inequality (16)) and the inequality (22), it
is sufficient to check that the estimate (22) does not hold for m1 = 8n2, m2 = 4n2

and for m1 = 12n2, m2 = 0. Since p1 ≤ 	0 + 	1, it is sufficient to consider the first
case. Setting in (22) m1 = 8n2 and m2 = 4n2, cancelling n2 and moving everything
to the right hand side, we obtain the inequality

0 > �(p1, 	0, 	1, 	2)

where

�(s, t0, t1, t2) = (s − t2)
2 + 6st0 + 5t20 + 4t0t1 + 2t0t2.

We obtained a contradiction, which proves the inequality (16).
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Now let us show the inequality (17). The arguments are completely similar to
those above, with the only difference that the coefficient at p1 in the Noether–Fano
inequality is 4, the elementary discrepancies can take four, not three values, that is,
δi ∈ {1, 2, 3, 4}, so that there are, generally speaking, four groups of vertices of the
graph � and we must set

	0 =
∑

δi=4,i≥2

pi , 	1 =
∑
δi=3

pi , 	2 =
∑
δi=2

pi , 	3 =
∑
δi=1

pi ,

and the inequality p1 ≤ 	0+	1+	2 holds. The technique of counting multiplicities
gives the following estimate, which is similar to the inequality (22):

(p1 + 	0 + 	1 + 	2 + 	3)(p1m1 + (	0 + 	1 + 	2)m2)

> (4p1 + 4	0 + 3	1 + 2	2 + 	3)
2n2. (23)

Sincem1 ≤ 12n2, to prove the inequality (17) (which in the notations of the resolution
of singularities takes the form of the inequality m2 > 4n2), it is sufficient to check
that the inequality (23) can not be true for m1 = 12n2 and m2 = 4n2. Substituting
these values into (23), cancelling n2 and moving everything to the right hand side, we
get the inequality

0 > �(p1, 	0, 	1, 	2, 	3),

where

�(s, t0, t1, t2, t3) = (2s − t3)
2 + (. . . ),

where in the brackets we have a quadratic form in s, t0, t1, t2, t3 with nonnegative
coefficients. We obtained a contradiction, proving the inequality (17).

The remaining inequalities of Proposition 4.7 are shown word for word in the same
way as the inequality (16) or (17), depending on the type of the inequality.

Proof of Proposition 4.7 is complete.

The furtherwork, completing the proof ofTheorem1.5, is organized in the following
way: we exclude the cases 1.1–2.3, inspecting all geometric possibilities.

5 Infinitely near case: II—exclusion of the linear case

In this section we prove that the cases 1.1 and 1.2 do not realize: it is sufficient to
exclude the first one, which immediately implies that the second one is impossible.

5.1 Decomposition of an effective cycle

Let us forget for amoment about the proof ofTheorem1.5 and consider one very simple
construction which will be used below many times. Let X be an arbitrary algebraic
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variety, Y ⊂ X an irreducible subvariety and Z an effective cycle of codimension two
on X . Assume first that codim(Y ⊂ X) ≤ 2, that is, Y is a prime Weil divisor on X or
an irreducible subvariety of codimension two.

Definition 5.1 We say that the presentation

Z = Z0 + Z1

is a Y -decomposition of the cycle Z , if both cycles Z0, Z1 are effective and an irre-
ducible component of the cycle Z is contained in Z0 (respectively, in Z1) if and only
if it is contained in Y (respectively, not contained in Y ).

Assume now that codim(Y ⊂ X) ≥ 3.

Definition 5.2 We say that the presentation

Z = Z0 + Z1

is a Y -decomposition of the cycle Z , if both cycles Z0, Z1 are effective and an irre-
ducible component of the cycle Z is contained in Z0 (respectively, in Z1) if and only
if it does not contain Y (respectively, does contain Y ).

Note that the definitions are not symmetric.
Let us come back to the proof of Theorem 1.5.

5.2 Restriction onto a hyperplane section

The main result of this section is the following

Proposition 5.1 The case 1.1 does not take place.

Proof Assume the converse: the case 1.1 takes place. Our purpose is to get a contra-
diction. We will do it in several steps, since the case under consideration is the hardest
of the six ones. We use both inequalities of Proposition 4.7 for the case 1.1 without
special comments.

First of all, let us repeat the operation of restricting onto a hyperplane section that
was used in Sect. 3.

Let R ⊂ P be a general hyperplane section, such that:

• o ∈ R, the variety R is non-singular at that point,
• the hyperplane ER = R+ ∩ EP in EP contains the subspace �.

Let us restrict the system 	P onto R and obtain a mobile linear system 	R on the
hypersurface R ⊂ 〈R〉 ∼= P

M−1 with the self-intersection ZR = ZP |R , satisfying the
estimates

multoZR + mult�Z+
R > 12n2

and

mult�ZR > 4n2.
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The advantage of this situation is that the subspaces� ⊂ � ⊂ ER are of codimension
3 and 2, respectively. Let

ZR = Z0 + Z1

be the TR-decomposition of the cycle ZR , where TR = (ToR) ∩ R is the tangent
hyperplane section at the point o. Set

d0 = 1

Mn2
deg Z0, d1 = 1

Mn2
deg Z1,

μ0 = 1

n2
multoZ0, μ1 = 1

n2
multoZ1.

We obtain the equality

d0 + d1 = 4 (24)

and the inequality

μ0 + μ1 > 8. (25)

Furthermore, set λ1 = 1
n2
mult�Z+

1 , where Z+
1 is the strict transform of the cycle Z1

on R+, so that the following inequality holds:

μ0 + μ1 + λ1 > 12. (26)

Proposition 4.3 implies that the multiplicities μi can be estimated in terms of the
degrees di in the following way: for M ≥ 18 the inequality

μ0 ≤ 3d0 (27)

holds, for M ≤ 17 a weaker estimate is true:

μ0 ≤ 8M

3(M − 2)
d0. (28)

Since none of the components of the cycle Z1 is contained in the tangent section
TR = {q1|R = 0} = R ∩ ToR, by the part (ii) of Proposition 4.3 the inequality

μ1 ≤ 2M

M − 2
d1 (29)

holds. Finally, it is obvious that the following estimate holds:

μ1 ≥ λ1. (30)
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The system of six equations and inequalities (24–30) (it is six, because depending
on whether M ≥ 18 or M ≤ 17, we choose the inequality (27) or (28)) forms the first
system of relations for the five parameters introduced above.

Since q2|� �≡ 0, the components of the cycle ZR , the strict transforms of which
contain the linear subspace�, can not be contained in TR . For that reason, multoZ1 ≥
mult�Z+

1 > 4n2, so that the following inequality holds:

μ1 > 4. (31)

5.3 Additional estimates for the cycle Z1

Now let us consider the cycle Z1, the most important part of the self-intersection ZR ,
since it contains the linear subspace�. First of all, none of the components of the cycle
Z1 is contained in the tangent section TR = R ∩ ToR and for that reason (Z1 ◦ TR) is
an effective cycle of codimension 2 on the hypersurface TR . The latter has a quadratic
singularity at the point o, so that

{q2|ToR = 0}

is its tangent cone at that point. Its projectivization will be denoted by the symbol QR .
Obviously,

QR = T+
R ∩ E .

By the condition (R2) the intersection [QR ∩ �] is an irreducible quadric; it is subva-
riety of codimension two on QR . Now let us compute the multiplicity multo(Z1 ◦TR).
By the rules of the intersection theory (see [8] or [24, Chapter 2]), write

(Z+
1 ◦ T+

R ) = (Z1 ◦ TR)+ + ZQ,

where ZQ is an effective divisor on the quadric QR (outside QR the effective cycles
(Z+

1 ◦ T+
R ) and (Z1 ◦ TR)+ obviously coincide). Now we have

multo(Z1 ◦ TR) = 2μ1n
2 + deg ZQ .

Setting μ2 = 1
n2
multo(Z1 ◦ TR), and deg ZQ = 2δn2, we obtain the equality

μ2 = 2μ1 + 2δ. (32)

Obviously, deg(Z1 ◦ TR) = deg Z1. Furthermore, set

λ2 = 1

n2
mult[QR∩�](Z1 ◦ TR)+.
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Since the following inequality is obviously true:

mult[QR∩�](Z+
1 ◦ T+

R ) ≥ mult�Z+
1 ,

by Corollary 5.1, which is shown below, we get the estimate

λ2 ≥ λ1 − δ. (33)

Finally, since multo(Z1 ◦ TR) ≥ mult[QR∩�](Z1 ◦ TR)+, we obtain the estimate

μ2 ≥ λ2. (34)

Now we have to take into account the input of the infinitely near subvariety [QR ∩�].
Proposition 5.2 The following estimate holds:

μ2 + 2λ2 ≤ 4
M

M − 3
d1. (35)

Proof Let HR be the class of a hyperplane section of the hypersurface R ⊂ 〈R〉 ∼=
P
M−1. Consider the pencil |HR − �| of hyperplane sections of R, defined by the

condition: for S ∈ |HR − �| we have S+ ⊃ �. The base set �R of the pencil
|HR − �| is an irreducible subvariety of codimension two in TR , of codimension 3 in
R; more precisely, �R ⊂ 〈�R〉 ∼= P

M−3 is a hypersurface of degree M , where the
linear span 〈�R〉 is determined by the condition

〈�R〉+ ∩ E = �.

Now let Y be an arbitrary subvariety of codimension 2 in R. For a general divisor
S ∈ |HR − �| we have Y �⊂ S, so that (Y ◦ S) is an effective cycle of codimension 3
on R. By construction,

multo(Y ◦ S) ≥ multoY + 2mult[QR∩�]Y+

(since deg[QR∩�] = 2). However, S is a section of the singular hypersurface V ∩ToV
by a linear subspace of codimension 3, so that, applying the regularity condition (R1)
and arguing inword for word the sameway as in the proof of Proposition 4.3, bymeans
of the technique of hypertangent divisors, applied to the cycle (Y ◦ S), we obtain the
estimate

multoY + 2mult[QR∩�]Y+ ≤ 4

M − 3
deg Y (36)

(recall that on S the cycle (Y ◦ S) has codimension 2, so that this cycle can be consid-
ered as an effective cycle of codimension 3 on a section of the hypersurface V by a
linear subspace of codimension 3, which by the condition (R1) satisfies the regularity
condition).

123



764 A. V. Pukhlikov

The inequality (35) follows from (36) in a trivial way.
Proof of Proposition 5.2 is complete.

5.4 On the multiplicities of subvarieties on a quadric

Let us put off the proof of Theorem 1.5 and show the fact about multiplicities of
subvarieties on a quadric hypersurface that was used in Sect. 4.3. Let Q ⊂ P

N be an
irreducible quadric, dim Sing Q = sQ , and Y ⊂ X ⊂ Q irreducible subvarieties.

Proposition 5.3 Assume that the inequality

dim X + dim Y > N + sQ + 1 (37)

holds. Then the following estimate is true:

multY X ≤ 1

2
deg X. (38)

Proof Assume the converse:

2multY X > deg X.

By the assumption on the dimensions Y �⊂ Sing Q. Take an arbitrary point p ∈
Y\Sing Q.

Lemma 5.1 The variety X is contained in the tangent hyperplane TpQ.

Proof Assume the converse: X �⊂ TpQ. Then the effective cycle (X ◦ (TpQ ∩ Q)) is
well defined. Its degree is equal to deg X and its multiplicity at the point p is at least
2mult p X > deg X , which is impossible. Q.E.D. for the lemma.

Therefore, the following inclusion takes place

X ⊂
⋂

p∈Y\Sing Q
TpQ.

Proof of the proposition will be complete, if we show that the dimension of the right
hand side of the inclusion is strictly smaller than dim X . Note that Sing Q ⊂ P

N is a
linear subspace and for any non-singular point p ∈ Q we have Sing Q ⊂ TpQ.

Consider the section Q∗ of the quadric Q by a general linear subspace of codimen-
sion sQ + 1 (in particular, not meeting Sing Q). The quadric Q∗ is non-singular. Let
Y ∗ ⊂ X∗ be the corresponding sections of the varieties Y and X .

Obviously, Y ∗ contains at least

dim Y ∗ = dim Y − sQ − 1
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linearly independent points, so that the linear space

⋂
p∈Y ∗

TpQ
∗

has the dimension not higher than the number

N − (sQ + 1) − (dim Y − sQ − 1) = N − dim Y.

Therefore, dim X∗ = dim X − sQ − 1 ≤ N − dim Y . However, by assumption the
opposite inequality holds. This contradiction completes the proof of Proposition 5.3.

Corollary 5.1 Let o ∈ V be an arbitrary point, � ⊂ ToV a linear subspace of
codimension two in the vector tangent space ToV ∼= C

M , P(�) ∼= P
M−3 its projec-

tivization. Let X, Y be irreducible subvarieties of codimension 1 and 2 on the quadric
hypersurface Q = {q2|P(�) = 0} ⊂ P(�). Then the estimate (38) holds for M ≥ 16.

Proof Obviously in the notations ofProposition5.3wehave: dim X = M−5, dim Y =
M − 6, N = M − 3 and by the regularity condition (R2) the estimate

sQ ≤
[
1

2
(
√
8M + 1 − 1)

]
+ 1

holds. Therefore, the inequality (37) follows from the estimate M − 10 >

[ 12 (
√
8M + 1 − 1)] which holds for M ≥ 16. Applying Proposition 5.3, we com-

plete the proof.

5.5 Exclusion of the linear case

Let us complete the proof of Proposition 5.1. The six linear equations and inequalities
(32–35) form the second system of relations for now 5+ 3 = 8 parameters d∗, μ∗, λ∗
and δ. Joining the first and second systems of relations, adding to them the inequality
(31), we obtain 11 linear equations and inequalities for 8 nonnegative real parameters.
replacing the strict inequalities everywhere by the non-strict ones, we obtain 11+8=19
linear equations and non-strict linear inequalities, defining some (obviously, compact)
convex subset

� ⊂ R
8.

Proposition 5.4 The set � is empty.

Proof It is sufficient to apply any computer program to solve a suitable problem of
linear programming, for example

μ0 → max�.

For MAPLE the corresponding command can be written in the following way:

123



766 A. V. Pukhlikov

>with(Optimization):
>M:=15:LPSolve(m0,{m0+m1>=8,d0+d1=4,m0<=(8*M/(3*(M-2)))
*d0,
m1<=2*(M/(M-2))*d1,m0+m1+l1>=12,m1>=l1,m1>=4,m0>=0,
d0>=0,d1>=0,l1>=0,m2=2*m1+2*de,l2>=l1-de,m2+2*l2
<=4*(M/(M-3))*d1,
m2>=l2,de>=0,l2>=0}, maximize);

and its application gives the following result:

Error, (in Optimization:-LPSolve) no feasible solution
found

Note that the inequalities (28, 29, 35), that is, the only relations that depend on the
parameter M in the set of relations examined by the computer, get sharper as M gets
higher, so it is sufficient to consider the case M = 15: if � = ∅ for M = 15, then
it is the more so empty for higher values of M . (This remark applies to other cases
excluded with the help of the computer in the sequel.) This completes the proof of
Proposition 5.4. (The convex set � is defined by 17 linear inequalities in the affine
subspace of codimension two

{d0 + d1 = 4, μ2 = 2μ1 + 2δ} ⊂ R
8,

so that to solve the problem of linear programming, one needs to inspect a finite set
of points of bounded cardinality. Each of these points is checked for being a point of
the set �. Therefore, the proof of Proposition 5.4 can be given over to the computer.)

Therefore, the first and second systems of relations, obtained above, define the
empty set in R

8. Therefore, the case 1.1 does not take place. Proposition 5.1 is shown.
Q.E.D.

Corollary 5.2 The case 1.2 does not take place.

Proof Since a non log canonical singularity of the pair �∗ is automatically a non log
canonical singularity of the pair �, the case 1.2 is a version of the case 1.1 (for � one
can take any hyperplane in �). Q.E.D. for the corollary.

6 Infinitely near case: III—exclusion of the non-linear case

In this section we exclude the case 2, which completes the exclusion of the infinitely
near case (and so the proof of Theorem 1.5).

6.1 The case 2.1, B is not contained in a quadric

Let us consider first the 2.1 and assume that the subvariety B is not contained in any
quadric hypersurface in EP . (Note, that in the case 2.1 the subvariety B is certainly
not contained in the quadric QP , since B ⊃ � and � �⊂ QP .)
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Proposition 6.1 The following inequality holds:

5multB	+
P ≤ 2multo	P .

Proof Recall that the multiplicity multo	P is denoted by the letter ν and set νB =
multB	+

P . In terms of the resolution of the maximal singularity of the system 	P we
have ν = ν1 and νB = ν2. Assume that the opposite inequality holds: 5νB > 2ν. Let
us show that this assumption leads to a contradiction with the mobility of the linear
system 	+

P : the divisor EP can not be a fixed component of 	+
P , that is,

EP �⊂ Bs	+
P .

We will obtain a contradiction, thus proving the claim of our proposition.
Since the subvariety B is not contained in any quadric hypersurface, its degree

deg B (as a subvariety of the projective space EP ) is at least 5.
Indeed, dB = deg B ≥ 3. Furthermore, B is not a cone over a curve: otherwise, B

contains a linear subspace of codimension 3 in EP , which is excluded by the proof of
Proposition 5.1. Now, projecting from a point of general position p ∈ B, we exclude
the option dB = 3. If dB = 4 and B has at least one singular point of multiplicity
2 or 3, then B is contained in a hyperplane or an irreducible quadric, contrary to the
assumption. Since a non-singular projective subvariety of codimension 2 and degree 4
in P

k , k ≥ 4, is a complete intersection of two quadrics (this is a well known fact; see
also [12]), then B is a complete intersection of two quadrics, either, if B is non-singular
or is a cone over a subvariety of degree 4 and dimension ≥2. We have inspected all
options. Therefore, dB ≥ 5.

Let � ⊂ EP be a 2-plane of general position, so that B� = B ∩ � is a finite set,
consisting of dB ≥ 5 distinct points. Let R1, . . . , Rm be all irreducible hypersurfaces
in EP , containing B and contained in Bs	+

P , if there are any. Then deg Ri ≥ 3 and
the irreducible curves Ri ∩ � are all irreducible curves in the plane �, contained in
Bs	+

P and containing at least one point of the finite set B�.

Lemma 6.1 Neither three points of the set B� are collinear.

Proof Assume the converse: there are three distinct points p1, p2, p3 ∈ B�, lying on
the line L . Since νB > n and ν ≤ 3n, we obtain, that L ⊂ Bs	+

P . As we noted above,
this is impossible. Q.E.D. for the lemma.

Now let us consider any 5 distinct points p1, . . . , p5 ∈ B� and the unique conic
C ⊂ �, containing those points. As the plane� is generic, the conicC is not contained
in the base locus Bs	+

P , therefore, the restriction 	C = 	+
P |C is well defined. It is a

linear series of degree 2ν with 5 base points of multiplicity νB . Since 5νB > 2ν, we
have C ⊂ Bs	+

P , which is impossible. Proof of Proposition 6.1 is complete.

Now we can apply the technique of counting multiplicities and estimate the multi-
plicity of the self-intersection ZP at the point o and its strict transform Z+

P along the
subvariety B.

Set μ = multoZP , μB = multB Z
+
P .
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Proposition 6.2 The following inequality holds:

μ + μB >
81

5
n2. (39)

Proof As in the proof of Proposition 4.7, fix a maximal singularity, the centre of
which on P+ is a subvariety B and take its resolution. We use the standard notations,
associated with the resolution. The graph � is assumed to be modified, so that the
inequality

p1 ≤ 	0 =
L∑

i=2

pi

holds. We have the inequality of Noether–Fano type

K∑
i=1

piνi > (3p1 + 2	0 + 	1)n, (40)

where 	1 = ∑K
i=L+1 pi , and, besides, we know that ν1 ≤ 3n and 5ν2 ≤ 2ν1; the

multiplicities νi do not increase,

ν2 ≥ ν3 ≥ · · · ≥ νK .

By the technique of counting multiplicities, taking into account the inequalities

multBi Z
i
P ≥ multBi+1 Z

i+1
P ,

we obtain the estimate

p1μ + 	0μB ≥
K∑
i=1

piν
2
i .

For ν1 = ν fixed, the minimum of the right hand side of the latter inequality on the
hyperplane

K∑
i=1

piνi = (3p1 + 2	0 + 	1)n

is attained at ν2 = · · · = νK = θ , where the value θ is computed from the equation

p1ν + (	0 + 	1)θ = (3p1 + 2	0 + 	1)n. (41)

123



Birational geometry of Fano hypersurfaces of index two 769

Therefore, the inequality

p1μ + 	0μB > p1ν
2 + (	0 + 	1)θ

2 (42)

holds. On the other hand, the equality (41) can be re-written in the following way:

	1 = 3n − ν

θ − n
p1 + 2n − θ

θ − n
	0.

Recall that ν and θ are connected by the inequality 5θ ≤ 2ν. As a result, we obtain
that the sum μ + μB is strictly higher than the minimum of the function x + y on the
interval, cut out by the inequalities

x ≥ ν2, x ≥ y, y ≥ 0

on the line

{p1x + 	0y = �(ν, θ)} ⊂ R
2
x,y,

where

�(ν, θ) = p1

(
ν2 + 3n − ν

θ − n
θ2 + nθ2

θ − n
	0

)
.

The more so, this minimum is strictly higher than the number

ν2 + nθ2

θ − n
. (43)

It is easy to check that the minimum of the function (43) on the triangle

{θ > n, ν ≤ 3n, 5θ ≤ 2ν} ⊂ R
2
ν,θ

is attained for ν = 3n, θ = 6
5n and is equal to 81

5 n
2. This completes the proof of

Proposition 6.2.

The inequality (39) is so strong that it makes it possible to easily complete the
exclusion of the case 2.1 (under the assumption that B is not contained in any quadric
hypersurface in EP ). Indeed, since dB ≥ 5, we have the inequality

μ ≥ 5μB .

It is easy to check that it is incompatible with the inequalities (39) andμ ≤ 12n2. This
excludes the case under consideration (that is, the case 2.1 under the assumption that
B is not contained in any quadric in EP ).
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6.2 Case 2.1, B is contained in a quadric, but not in a hyperplane

Now let us consider the case 2.1 under the assumption that B is contained in some
quadric in EP , but 〈B〉 = EP , that is, B is not contained in any hyperplane in EP .

Proposition 6.3 The following inequality holds:

2multB	+
P ≤ multo	P .

Proof Again we write νB = multB	+
P and ν = multo	P . Since B is not contained in

a hyperplane, Sec(B) = EP . Let L be a general secant line of the variety B. Since the
system	+

P has no fixed components, for a general divisor D ∈ 	P we have L �⊂ D+.
Therefore,

2νB ≤
∑

x∈L∩B

(L · D+)x ≤ (L · D+) = ν,

as we claimed. The proposition is shown.

Corollary 6.1 The following estimate is true: νB ≤ 3
2n.

The following claim is an analog of Proposition 6.2 in the situation under consid-
eration

Proposition 6.4 The following inequality holds:

μ + μB > (10 + 2
√
2)n2. (44)

Proof is completely similar to the proof of Proposition 6.2 given above: we argue in
word for word the same way and, recalling thatμ > 8n2, we get that the valueμ+μB

is strictly higher than the minimum of the function

max(ν2, 8n2) + nθ2

θ − n

on the triangle

{θ > n, ν ≤ 3n, 2θ ≤ ν} ⊂ R
2
ν,θ .

This minimum is attained for ν = 2
√
2n, θ = √

2n and is equal to (10 + 2
√
2)n2,

which is what we need. Q.E.D.

Remark 6.1 Since 10+ 2
√
2 ≈ 12.8, the inequality (44) is considerably sharper than

the aprioric inequality (18).
The estimate (44) is essentially weaker than (39), however, this is compensated by

the additional geometric information about the subvariety B: we know that B ⊂ Q∗,
where Q∗ �= QP is some irreducible quadric, and moreover by assumption B is not
a hyperplane section of the quadric Q∗.
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Lemma 6.2 The degree of the subvariety B is at least 4.

Proof We must exclude the option dB = deg B = 3. Assume that this is the case.
Then the rank of the quadratic form, defining Q∗, is equal to 3 or 4, so that B is
swept out by a one-dimensional family of linear subspaces of codimension 3 in EP .
Proposition 5.1 excludes this situation. Q.E.D. for the lemma.

Corollary 6.2 The following inequality holds:

μ ≥ 4μB .

Nowwe exclude the case under consideration in the sameway aswe used to exclude
the case 1.1, with some simplifications. Let ZP = Z0 + Z1 be the TP -decomposition
of the cycle ZP . Since B �⊂ QP = T+

P ∩ EP , we have multB Z
+
1 = μB . Now,

introducing the normalized parameters di , μi , i = 0, 1, and λ1, we obtain for them
the system of the following inequalities: (24), (25), instead of (27) and (28) we have
the estimate

μ0 ≤ max

(
3,

8M

3(M − 1)

)
d0,

instead of (29) we have the estimate

μ1 ≤ 2M

M − 1
d1,

finally, instead of (26) we have the estimate

μ0 + μ1 + λ1 > 10 + 2
√
2

and instead of (30) the stronger estimate

μ1 ≥ 4λ1.

Using MAPLE, it is easy to check that this system of linear equations and inequalities
has no solutions already for M ≥ 5. This completes the exclusion of the case 2.1 under
the assumption that 〈B〉 = EP .

6.3 The case 2.1, B is contained in a hyperplane

Assume that B is contained in some hyperplane � ⊂ EP . By Proposition 5.1, B is a
hypersurface of degree dB ≥ 2 in �. Consider the linear system |HP − �|, that is,
the pencil of hyperplane sections, the base set of which is the intersection � of the
tangent section TP with the hyperplane in 〈P〉 that has � as the tangent cone. Let
ZP = Z0 + Z1 be such a decomposition of the cycle ZP , that Z

+
P = Z+

0 + Z+
1 is the

B-decomposition of the effective cycle Z+
P .
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Let R ∈ |HP − �| be a general divisor. For the effective cycle (Z1 ◦ R) we have:

deg(Z1 ◦ R) = deg Z1,

multo(Z1 ◦ R) ≥ multoZ1 + 2multB Z
+
1 ,

since dB ≥ 2. However, in the case under consideration (Z1 ◦ R) is an effective cycle
of codimension two on the hyperplane section R, which itself satisfies the regularity
conditions, and for that reason the inequality

multo
deg

(Z1 ◦ R) ≤ max

(
3

M
,

8

3(M − 2)

)

holds; the right hand side for M ≥ 18 does not exceed 3/M . Taking into account that
multoZ0 ≤ 3

M deg Z0, we obtain a contradiction with the aprioric inequality (18). This
excludes the case under consideration for M ≥ 18.

Remark 6.2 In the argument given above we used the fact that B �⊂ QP : it is for that
reason that the scheme-theoretic intersection (Z1 ◦ R) is well defined. However, if
B ⊂ QP , then B = � ∩ QP . Set � = Bs|HP − �| (see above). Obviously,

deg� = M, multo� = 2

(because �+ ∩ EP = B), so that writing

Z1 = a� + Z∗,

where a ∈ Z+ and Z∗ does not contain � as a component, we repeat the previous
argument and come to a contradiction for M ≥ 18.

If we use all the information available, we can exclude the case under consideration
for smaller values of M as well. Namely, write ZP = Z0+ Z1, where Z

+
P = Z+

0 + Z+
1

is the �-decomposition of the effective cycle Z+
P . The cycle (Z1 ◦ R) is well defined

for a general divisor R ∈ |HP − �|. Furthermore, write

(Z1 ◦ R) = Z10 + Z11,

where the strict transform of this equality on P+ is the �-decomposition of the cycle
(Z1 ◦ R)+. The cycle Z10 satisfies the estimate

multo
deg

Z10 ≤ 8

3(M − 2)
d10,

but for Z11 a much stronger inequality holds:

multo
deg

Z11 ≤ 2

M − 2
d11,
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since none of the components of the cycle Z11 is contained in the tangent section
TR = R ∩ ToR, so that we can form the effective cycle (Z11 ◦ TR) and then apply to
this cycle of codimension two on TR the technique of hypertangent divisors. Finally,
setting

ξ1 = 1

n2
mult�Z+

P , ξ2 = 1

n2
mult�Z+

11,

we get the following system of linear equations and inequalities: (24)–(27), and also

μ10 + μ11 = μ1 + 2λ1 + δ1, ξ1 > 4,

d10 + d11 = d1, ξ2 ≥ ξ1 − δ1, μ11 ≥ ξ2,

μ10 ≤ 8M

3(M − 2)
d10, μ11 ≤ 2M

(M − 2)
d11.

Applying MAPLE we see that this system is incompatible (even when we replace
all strict inequalities by the non-strict ones) already for M ≥ 11. This completes the
exclusion of the case 2.1.

6.4 The case 2.2, B is not contained in QP

Now assume that the case 2.2 takes place, where B �⊂ QP . Now, if B is not contained
in a quadric, we obtain a contradiction, arguing as in Sect. 5.1. If B is contained in a
quadric, but not contained in a hyperplane, then we obtain a contradiction, arguing as
in Sect. 5.2. Therefore we assume that B ⊂ �, where � ⊂ EP is some hyperplane.
Now, if M ≥ 18 or if B∗ �⊂ QP , then we obtain a contradiction in word for word
the same way as in Sect. 5.3. Therefore we assume that M ≤ 17 and B∗ ⊂ QP is a
subvariety of codimension 2.

Let us consider the pencil of hyperplane sections |HP − �|. Its base set � =
Bs|HP − �| is a hyperplane section of the tangent section TP . Write

ZP = a� + Z∗,

where a ∈ Z+ and Z∗ does not contain � as a component. For the subvariety � we
have:

deg� = M, multo� = 2, multB�+ = 0

and multB∗�+ = 1. Therefore for the cycle Z∗ we have: deg Z∗ = (4n2 − a)M ,

multoZ∗ = multoZP − 2a > 8n2 − 2a, multB Z
+∗ = multB Z

+
P

and multB∗ Z+∗ = multB∗ Z+
P − a > 4n2 − a. Now let R ∈ |HP − �| be a general

divisor. By construction, R does not contain irreducible components of the cycle Z∗
and for that reason the effective cycle (Z∗ ◦ R) of codimension 2 on R is well defined.
Let ZR = (Z∗ ◦ R) = Z0 + Z1 be the TR-decomposition of the cycle ZR .
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Let QR = QP ∩ � = T+
R ∩ EP be the (projectivized) tangent cone to TR , a

quadric in ER = R+ ∩ EP = �. The subvariety B∗ is a prime divisor on QR and
for that reason is cut out on QR by a hypersurface in ER of degree δ∗ ≥ 1, so that
2δ∗ = d∗ = deg B∗.

Proposition 6.5 The equality δ∗ = 1 holds, that is, B∗ is a hyperplane section of
QR.

Proof Assume the converse: δ∗ ≥ 2. In that case d∗ ≥ 4. Therefore, the inequality

multoZR ≥ 4multB∗ Z+
R (45)

holds. To compute the left hand part, write

(Z+∗ ◦ R+) = Z+
R + βB + N ,

where N is an effective divisor on �, not containing B as a component and β ≥ μB .
By the intersection theory,

multoZR = multoZ∗ + βdB + dN ,

where dN = deg N . On the other hand, by assumption B∗ is not contained in a
hyperplane �, that is, 〈B∗〉 = � and for that reason the inequalities

2multB∗N ≤ dN 2multB∗ B ≤ dB

hold. Therefore, we have the estimate

multB∗ Z+
R ≥ multB∗ Z+∗ − 1

2
βdB − 1

2
dN .

Besides, we remember that the inequalities

multo
deg

Z0 ≤ 8

3(M − 2)
and

multo
deg

Z1 ≤ 2

M − 2

hold, and also the inequalitiesμ > 8n2 andμ+μB > 12n2. UsingMAPLE, it is easy
to check (replacing, as usual, strict inequalities by non-strict ones), that the system of
linear equations and inequalities, obtained above, has no solutions for M ≥ 13. Proof
of Proposition 6.5 is complete.

Therefore, B∗ = � ∩ QR , where � ⊂ � = ER is a hyperplane. Instead of the
inequality (45) we have a weaker estimate

multoZR ≥ 2multB∗ Z+
R

and it is no longer sufficient to obtain a contradiction. Let us consider the linear
system |HR − �| on R and set �∗ = Bs|HR − �| to be its base set (a divisor on the
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tangent section). By the regularity conditions we have multB∗(�∗)+ = 1. Write down
Z0 = c�∗ + Z�, where c ∈ Z+ and Z� does not contain �∗ as a component. For a
general divisor D ∈ |HR −�| the effective cycle (D ◦ Z�) of codimension two on TR
is well defined and satisfies the inequalities

multo(D ◦ Z�) ≥ multoZ� + 2multB∗ Z+
�

and

multo
deg

(D ◦ Z�) ≤ 4

M − 2
.

Adding the corresponding normalized inequalities to the previous ones and using
MAPLE, we see that for M ≥ 13 the case under consideration is impossible.

This completes the exclusion of the case 2.2 under the assumption that B �⊂ QP .

6.5 The case 2.2, B is contained in QP

Assume that B ⊂ QP . Note, first of all, that B is not contained in a hyperplane (that
is, it is not a hyperplane section of QP ): such an option is excluded by word for word
the same arguments as those that were used in the case B �⊂ QP , B ⊂ �, where
� ⊂ EP is a hyperplane. In particular, dB ≥ 4 and the estimate (44) holds.

Proposition 6.6 The subvariety B∗ ⊂ QP of codimension two is contained in a
hyperplane � ⊂ EP.

Proof Assume the converse. Let � ⊂ QP be a general linear subspace of maximal
dimension, B∗

� = B∗ ∩� ⊂ � an irreducible subvariety of codimension two. For the
linear span 〈B∗

�〉 there are three options:
1. 〈B∗

�〉 = �,
2. 〈B∗

�〉 is a hyperplane in �,
3. 〈B∗

�〉 = B∗
� is a subspace of codimension two in �.

Note at once, that the third option does not realize: (3) implies that deg B∗ = 2 and
then B∗ is contained in a hyperplane, contrary to our assumption.

Furthermore, Sec(B∗
�) = 〈B∗

�〉. Set

W =
⋃

�⊂QP

〈B∗
�〉.

It follows from what was said that either W is an irreducible divisor on QP , or W =
QP . However, in the first caseW ∩� is an irreducible hypersurface in� (for a general
�) and for that reasonW ∩� = 〈B∗

�〉 is a hyperplane in�, and thenW is a hyperplane
section of the quadric QP , where B∗ ⊂ W , contrary to our assumption. Therefore,
W = QP . From here we get the following fact.
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Lemma 6.3 For any effective divisor Y on the quadric QP the inequality

deg Y ≥ 4multB∗Y

holds (the degree deg Y is understood as the degree of an effective cycle of codimension
2 on EP ).

Proof Denote by the symbol HQ the class of a hyperplane section of the quadric QP ,
so that Y ∼ γ HQ for some γ ≥ 1, where deg Y = 2γ . Let � be a general linear
subspace of maximal dimension on QP and L ⊂ � a general secant line of the variety
B∗

�. Since the lines L sweep out QP , we may assume that L �⊂ |Y |. Let x, y ∈ B∗
� be

general points, where L = [x, y]. We have

(L · Y )QP = γ ≥ (L · Y )x + (L · Y )y ≥ 2multB∗Y,

when the claim of the lemma follows. Q.E.D.
Now let ZP = Z0+ Z1 be, as usual, the TP -decomposition of the cycle ZP . Setting

λi = 1
n2
multB Zi , i = 0, 1, we obtain the following system of linear equations and

inequalities: (24, 25, 27), and also the estimate

μ0 + μ1 + λ0 + λ1 > 10 + 2
√
2 (46)

instead of (26), and also the estimates

2μ1 + dBλ1 ≤ 4M

M − 1
d1, (47)

μ0 ≥ dBλ0, μ1 ≥ dBλ1. (48)

Now set ξi = 1
n2
multB∗ Z+

i , i = 0, 1. By the lemma shown above, the estimate

μ0 ≥ 4ξ0

holds, besides, μ1 ≥ ξ1 and, as we know, ξ0 + ξ1 > 4. The inequality (47) can be
sharpened. Write down

(Z+
1 ◦ TP ) = (Z1 ◦ TP )+ + N ,

where N is an effective divisor on the quadric QP . Set dN = 1
n2
deg N , then we get

dN ≥ dBλ1

and the estimate

2μ1 + dN ≤ 4M

M − 1
d1
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holds. Setting ξN = 1
n2
multB∗N and applying Lemma 6.3, we obtain the inequality

dN ≥ 4ξN . (49)

Obviously,

1

n2
multB∗(Z1 ◦ TP )+ ≥ ξ1 − ξN ,

so that, applying Lemma 6.3 once again, we get the inequality

2μ1 + dN ≥ 4(ξ1 − ξN ).

UsingMAPLE, we check that the system of linear equations and inequalities, obtained
above, is incompatible. Q.E.D. for Proposition 6.6.

6.6 Exclusion of the case 2.2

Now let us assume that the hyperplane � ⊃ B∗ is the only hyperplane in EP with
that property, that is, B∗ is not the intersection of QP with a linear subspace � ⊂ EP

of codimension two. In particular, d∗ = deg B∗ ≥ 4. Let R ∈ |HP − �| be a general
divisor of the pencil. Write down ZP = a� + Z∗, where � = Bs|HP − �|, a ∈ Z+
and Z∗ does not contain � as a component. To simplify the formulas, we will assume
that a = 0 and Z∗ = ZP : if a ≥ 1, then the system of linear equations and inequalities,
obtained below, remains incompatible, which is easy to check.

So ZP = Z0 + Z1 is the TP -decomposition of the cycle ZP and � is not an
irreducible component of the cycle Z0. Setting, as usual,

μi = 1

n2
multoZi , λi = 1

n2
multB Z

+
i ,

and di = 1
Mn2

deg Zi , i = 0, 1, we obtain the standard set of linear equations and
inequalities: (24, 25, 46), and also the inequalities (27), (48) with dB = 4 and the
estimate

μ1 ≤ 2M

M − 1
d1.

Set ξi = 1
n2
multB∗ Z+

i , i = 0, 1. In our case ξ0 + ξ1 > 4.

Lemma 6.4 The following inequality holds:

μ0 ≥ 2(λ0 + ξ0).

Proof Z+
0 is an effective divisor on T+

P , and its projectivized tangent cone Z+
0 ∩ EP

is an effective divisor on the quadric QP . Let � ⊂ QP be a general linear subspace.
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Let p ∈ B∗ ∩ � and q ∈ B ∩ � be points of general position. The lines L = [pq]
sweep out � and for that reason we may assume that L �⊂ Z+

0 . Therefore, for the
intersection numbers on QP we have:

1

2
μ0n

2=(L · (Z+
0 ∩ EP ))QP ≥(L · (Z+

0 ∩ EP ))p+(L · (Z+
0 ∩ EP ))q ≥(ξ0+λ0)n

2,

which is what we claimed. Q.E.D. for the lemma.
Now write down

(Z+
i ◦ R+) = (Zi ◦ R)+ + Ni ,

where N1 is an effective divisor on�, and N0 = c(�∩QP ), c ∈ Z+. Since 〈B∗〉 = �,
the inequality

deg Ni ≥ 2multB∗Ni

holds (for i = 0 it is the equality, since obviously multB∗N0 = 1). Setting

ζi = 1

n2
multB∗(Zi ◦ R)+,

we obtain inequalities

ζi ≥ ξi − 1

2
ni ,

where ni = 1
n2
deg Ni . Setting αi = 1

n2
multo(Zi ◦ R), i = 0, 1, we obtain the set of

standard estimates

αi ≥ μi + ni , α0 ≤ max

(
3,

8M

3(M − 2)

)
· d0, αi ≥ 4ζi , i = 0, 1

(the last is true by the inequality deg B∗ ≥ 4, as 〈B∗〉 = �). Besides, one more
important inequality holds.

Lemma 6.5 The following estimate holds:

4n0 ≥ 4ξ0 − μ0.

Proof Once again, let� ⊂ QP be a general linear subspace of themaximal dimension
and L a general secant line of the variety B∗∩�. The lines L sweep out the hyperplane
section � ∩ QP and for that reason it is sufficient to show the inequality

β = 1

n2
multL Z

+
0 ≥ 1

4

(
2ξ0 − 1

2
μ0

)
. (50)

Since n0 ≥ 2β, the inequality (50) implies the claim of our lemma.
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Consider a general line L∗ ⊂ �, intersecting L , and let S 
 o be a generic two-
dimensional germ of an isolated quadratic singularity at the point o, S ⊂ TP , such
that S+ ∩ EP = L + L∗, and S+ is a non-singular surface. Obviously,

Z+
0 |S+ ∼ −

(
1

2
multoZ0

)
EP |S+ ,

whereas the effective 1-cycle Z+
0 |S+ has the line L as a component of the multiplicity

βn2. Taking this component out, we obtain that the effective 1-cycle

C = (Z+
0 |S+ − βn2L)

does not have L as a component, and its multiplicity at two distinct points p, q ∈ L
is at least

(ξ0 − β)n2.

Computing the intersection (C · L), we obtain the inequality

1

2
μ0 + 2β ≥ 2(ξ0 − β),

which is what we need. Q.E.D. for the lemma.
Finally, adding the inequality of Lemma 6.5 to the previous estimates, we obtain

an incompatible system of linear equations and inequalities (checked using MAPLE),
which completes the exclusion of the case under consideration.

Therefore, the only remaining possibility is when B∗ = � ∩ QP , where � ⊂ EP

is a linear subspace of codimension two. The claim of Lemma 6.4 is valid. Let R ∈
|HP − �| be a general divisor, ZR = (ZP ◦ R) an effective cycle of codimension two
on R, ZP = Z0 + Z1 is, as usual, the TP -decomposition of the cycle ZP . We get the
standard set of linear equalities and inequalities for that decomposition: (24, 25, 27,
46, 48) and (47) with dB = 4. Now let us consider the cycle ZR more carefully. Set

(Zi ◦ R) = Z �
i + cin

2�,

where � = Bs|HP − �| is a hyperplane section of the hypersurface TR ; note that
none of the components of the cycle Z �

1 is not contained in TR . The support of the

cycle Z �
2 is contained in TR . For the subvariety � we obviously have: deg� = M ,

multo� = 2 and multB∗�+ = 1. Obviously,

multo(Z1 ◦ R) = multoZ1, multB∗(Z1 ◦ R)+ = multB∗ Z+
1 .

Setting μ
�
i = 1

n2
multoZ

�
i for i = 0, 1, we obtain the inequality

μ
�
1 + (ξ1 − c1) ≤ 2M

M − 2
(d1 − c1).
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Furthermore, the following equalities

multo(Z0 ◦ R) = multoZ0, multB∗(Z0 ◦ R)+ = multB∗ Z+
0

hold. The cycle Z �
0 is an effective divisor on TR , which does not contain � as a

component. Let R∗ ∈ |HP − �| be another general divisor. Obviously,

R∗ ∩ TR = R ∩ R∗ ∩ TP = �,

so that none of the components of the cycle Z �
0 is not contained in R∗ and therefore

the cycle Z∗
0 = (Z �

0 ◦ R∗) of codimension two on TR is well defined. The cycle Z∗
0 is

an effective divisor on �. Setting μ∗
0 = multoZ∗

0 , we obtain the inequality

μ∗
0 ≥ μ

�
0 + 2(ξ0 − c0).

By the regularity conditions on the hypersurface R the inequality

μ∗
0 ≤ 4M

M − 2
(d0 − c0)

holds. But it is not hard to obtain a stronger estimate. By the regularity conditions and
the Lefschetz theorem we have:

(� ◦ To(TR)) = � ∩ To(TR) = � ∩ To(TP )

is an irreducible reduced divisor on �, which has the degree 2M and the multiplicity
precisely 6 at the point o. Let Y be an irreducible component of the cycle Z∗

0 . Then
either the inequality (multo/deg)Y ≤ (3/M) holds, or Y is not contained in the
hypertangent divisor To(TP ), so that the estimate

multo
deg

Y ≤ 10

3(M − 2)

is true. From this it follows, that the inequality

μ∗
0 ≤ max

(
3,

10M

3(M − 2)

)
(d0 − c0)

holds.
UsingMAPLE, it is easy to check that the systemof linear equations and inequalities

for μ∗, d∗, c∗, μ�∗ and μ∗
0, obtained above, has no solutions.

The case 2.2 is completely excluded.
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6.7 Exclusion of the case 2.3

Assume that the case 2.3 takes place. We have μB = multB Z
+
P > 4n2, so that we get

the following sequence of inequalities:

12n2 ≥ multoZP ≥ dBμB > 4dBn
2,

wheredB = deg B ≥ 2 (the case of a linear subspacewas excluded byProposition 5.1),
whence we conclude that dB = 2, that is, B is a quadric in some hyperplane � ⊂ EP .

If B �⊂ QP , then we argue as in Sect. 5.3: we write down ZP = Z0 + Z1 and
intersect Z1 with a general divisor R ∈ |HP − �|. Since μB > 4n2, we obtain the
linear inequalities

multoZ0 ≤ 3

M
deg Z0,

multoZ1 + 8n2 <
8

3(M − 2)
deg Z1 ≤ 4

M
deg Z1

which hold for M ≥ 6. Putting together and recalling that multoZP > 8n2, we obtain
a contradiction, excluding the possibility B �⊂ QP .

So let us assume that B = � ∩ QP is a hyperplane section of the quadric QP .
Consider � = Bs|HP − �|, which is a hyperplane section of the variety TP . Write
down

ZP = a� + Z∗,

where a ∈ Z+ and Z∗ does not contain� as a component. For�we have: deg� = M ,
multo� = 2 and multB�+ = 1. Therefore, deg Z∗ = (4n2 − a)M , and for the
multiplicities we have the equalities

multoZ∗ = μ − 2a, multB Z
+∗ = μB − a.

Now, arguing in word for word the same way as above in the case B �⊂ QP , where
ZP is replaced by Z∗, we obtain a contradiction. The case 2.3 is excluded.

Proof of Theorem 1.5 is complete.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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