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Abstract We show that the number of bifurcation values at infinity of a polynomial
function f : C

2 → C is at most the number of branches at infinity of a general fiber
of f and that this upper bound can be diminished by one in certain cases.

1 Introduction

Let f : C
2 → C be a polynomial function in a fixed coordinate system. It is well

known (as being proved originally by Thom [17]), that f is a locally trivial C∞ fibration
outside a finite subset of the target. The smallest such set is called the bifurcation set
of f and will be denoted here by B( f ). The set B( f ) might be larger than the set
of critical values f (Sing f ), like for instance in the following simple example due
to Broughton [1]: f (x, y) = x + x2 y, where Sing f = ∅ but B( f ) = {0}, and we
say that 0 is a critical value at infinity of f . The set B∞( f ) of bifurcation values at
infinity, or critical values at infinity, consists of points a ∈ C at which the restriction
of f to the complement of a large enough ball (centred at 0 ∈ C

2) is not a locally
trivial bundle. There are several criteria to detect such a value; one may consult e.g.
[2,3,5,16,18,19]. For instance: a ∈ B∞( f ) if and only if there exists a sequence of
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e-mail: najelone@cyf-kr.edu.pl

M. Tibăr
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1050 Z. Jelonek, M. Tibăr

points (pk)k∈N ⊂ C
2 such that ‖pk‖ → ∞, grad f (pk) → 0 and f (pk) → a as

k → ∞.
Upper bounds for #B∞( f ) have been found in the 1990’s by Lê and Oka [12]

in terms of Newton polyhedra at infinity. An estimation in terms of the degree d of
f was given by Gwoździewicz and Płoski [8]: if dim Sing f ≤ 0 then #B∞( f ) ≤
max{1, d − 3}. In the general case (dropping the condition dim Sing f ≤ 0) we have
#B∞( f ) ≤ d − 1, see e.g. [10,11]. Recently Gwoździewicz [9] proved the following
estimation of #B∞( f ): if ν0 denotes the number of branches at infinity of the (reduced)
fibre f −1(0), then the number of critical values at infinity other than 0 is at most ν0.
Here we refine and improve this statement by using a different method, in which results
by Miyanishi [13,14] and Gurjar [6] play an important role.

For a ∈ C, let us denote by νa the number of branches at infinity of the reduced
fiber f −1(a). This number is equal to νgen for all values a ∈ C except finitely many
for which one may have either νa < νgen or νa > νgen. Let νmin := inf{νa | a ∈ C}.
Let us denote by b the number of points at infinity of f , i.e. b := # f −1(a) ∩ L∞,
where L∞ is the line at infinity P

2\C2.
Under these notations, our main result is the following:

Theorem 1.1 Let f : C
2 → C be a polynomial function of degree d. Then:

(a) #B∞( f ) ≤ min{νgen, νmin + 1}.
(b) #{a ∈ C | νa < νgen} ≤ νgen − b.
(c) #{a ∈ C | νa > νgen} ≤ νmin (this remains true even if we count branches with

multiplicities).

In case νgen > d
2 , we moreover have:

(d) #B∞( f ) ≤ min{νgen − 1, νmin}.
(e) #{a ∈ C | νa > νgen} ≤ νmin − 1 (this remains true even if we count branches

with multiplicities).

Remark 1.2 Point (a) of Theorem 1.1 is equivalent to Gwoździewicz’s [9, Theorem
2.1]. His result is a by-product of the local study of pencils of curves of Yomdin-
Ephraim type. Our method is totally different and allows us to prove moreover several
new issues, namely (b)–(e) of Theorem 1.1.

Remark 1.3 As Gwoździewicz remarks, his inequality [9, Theorem 2.1] is “almost”
sharp, i.e. not sharp by one. Our new inequality (d) improves by one the inequality
(a) under the additional condition νgen > d

2 , thus yields the sharp upper bound, as
shown by the example f : C

2 → C, f (x, y) = x + x2 y, where d = deg f = 3,
νmin = νgen = 2, b = 2 and B∞( f ) = {0} with ν0 = 3.

The same example shows that our estimations (b) and (e) are also sharp.

2 Proof of Theorem 1.1

We need here the important concept of affine surfaces which contain a cylinder-like
open subset which was introduced by Miyanishi [13]. Let us recall it together with
some properties which we shall use.
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Bifurcation at infinity 1051

Definition 2.1 [14] Let X be a normal affine surface. We say that X contains a
cylinder-like open subset U , if there exists a smooth curve C such that U ∼= C × C .

Let X be as in the above definition and let π : U → C be the projection. After [14,
p.194], the projection π has a unique extension to a C-fibration ρ : X → C̄ , where
C̄ denotes the smooth completion of the curve C . We have the following important
result of Gurjar and Miyanishi:

Theorem 2.2 [6,7,13] Let X be a normal affine surface with a C-fibration f : X →
B, where B is a smooth curve. Then:

(a) X has at most cyclic quotient singularities.
(b) Every fiber of f is a disjoint union of curves isomorphic to C.
(c) A component of a fiber of f contains at most one singular point of X. If a com-

ponent of a fiber occurs with multiplicity 1 in the scheme-theoretic fiber, then no
singular point of X lies on this component. ��

Corollary 2.3 Let X be a normal affine surface, which contains a cylinder-like open
subset U. Then the set X\U is a disjoint union of curves isomorphic to C. Moreover,
every connected component li of this set contains at most one singular point of X. ��

Let f : C
2 → C be a polynomial function in fixed affine coordinates and denote

by f̃ (x, y, z) the homogenization of f by a new variable z, namely f̃ (x, y, z) =
fd + z fd−1 + · · · + zd f0. Let X := {([x : y : z], t) ∈ P

2 × C | f̃ (x, y, z) = t zd}
be the closure in P

2 × C of the graph � := graph( f ) ⊂ C
2 × C. Then X is a

hypersurface and the points at infinity of X (i.e. points outside of �) forms precisely
the set {a1, . . . , ab} × C, where {a1, . . . , ab} are all points at infinity of the curve
f = 0. In particular if ρ : P

2 × C → P
2 denotes the first projection, then ρ(X\�) =

{a1, . . . , ab}.
The second projection π : X → C, (x, t) 
→ t , is a proper extension of f . Let

ν : X ′ → X be the normalization of X . Composing ν with π yields π ′ : X ′ → C,
which is also a proper extension of f . We shall denote it by f̃ in the following.

On the other side composing ν with ρ yields ρ′ : X ′ → P
2 and ρ′(X ′\�) =

{a1, . . . , ab}, i.e., the points at infinity of X ′ lie over the points {a1, . . . , ab}.
Lemma 2.4 The set X ′\� is a disjoint union of affine curves, l1, . . . , lr , each curve li
is isomorphic to C. On each line li there is at most one singular point of X ′. Moreover,
b ≤ r ≤ νmin.

Proof Let us choose a line l ⊂ P
2 such that l ∩ {a1, . . . , ab} = ∅. Let X1 :=

(P2\l) × C ∩ X . The surface X1 is affine and X ′
1\� = ⋃r

i=1 li , where X ′
1 denotes the

normalization of X1. The surfaces X ′ and X ′
1 have the same points at infinity since

there is no points at infinity of X ′ which belongs to the line l.
Since the surface X ′

1 contains a cylinder-like open subset U := graph( f|C2\l)
∼=

C × C
∗ and X ′

1\U = ⋃r
i=1 li , the first part of our claim follows from Corollary 2.3.

Next, the map f̃ restricted to li is finite, hence surjective. This implies that every fiber
of f̃ has a branch at infinity which intersects li . In particular r ≤ νmin. The inequality
r ≥ b is obvious. ��
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Denote by fi : li ∼= C → C the restriction of f̃ to li . It can be identified with a one
variable polynomial, the degree of which is equal to the number νi of branches of a
generic fiber of f̃ which intersect li . In particular

∑r
i=1 νi = νgen.

The polynomial fi of degree νi can have at most νi − 1 critical points. If a fiber
f̃ −1(a) does not contain critical points of any fi and does not contain singular points
of X ′, then the point a �∈ B∞( f ). This follows from general arguments concerning
Whitney stratifications and Thom Isotopy Lemma, like in [3,15,19], but let us outline
a short proof here. Firstly, the fiber f̃ −1(a) cannot contain multiple components since
otherwise, for some i , the fiber f −1

i (a) will also have a multiple component, thus a
singularity, which contradicts our assumption. Therefore the fiber f̃ −1(a) is nonsin-
gular outside some large ball B(0, R) ⊂ C

2. By the Sard Theorem there is a real
value R′ > R such that the sphere ∂ B(0, R′) is transversal to f̃ −1(a). In particular
there is a small disc U (a, ρ) such that for every b ∈ U (a, ρ) the fiber f̃ −1(b) is
smooth outside B(0, R) and it is transversal to ∂ B(0, R′). We can also assume that
ρ is so small that f̃ −1(b) does not contain critical points of any of the polynomials
fi , for i = 1, . . . , r , and it does not contain any singular point of X ′. This means in
particular that all these fibers are transversal to all curves li , i = 1, . . . , r. Now take
Y = f̃ −1(U (a, ρ))\I nt (B(0, R′). It is a smooth manifold with boundary, where the
boundary ∂Y is ∂ B(0, R′) ∩ f̃ −1(U (a, ρ)). The set V := (

⋃r
i=1 li ) ∩ Y is a smooth

submanifold of Y . The mapping g := f̃|Y : Y → U (a, ρ) is proper and all fibers of g
are transversal to V and to ∂Y. By the Ehresmann Theorem [4] there is a trivialization
of g which preserves V and ∂Y. This proves our claim that a �∈ B∞( f ).

Finally we conclude that the bifurcation values at infinity for f can be only images
by f̃ of critical points of fi , i = 1, . . . , r and images of singular point of X ′. Summing
up, we get that f can have at most νgen critical values at infinity, which shows one of
the inequalities of point (a). Moreover, the inequality νa < νgen is possible only if a
is a critical value of some polynomial fi . This means that #{a ∈ C | νa < νgen} ≤∑r

i=1(νi − 1) ≤ νgen − r ≤ νgen − b, which proves (b).
Let us assume now νa = νmin. We have νa ≥ ∑r

i=1 #{x ∈ li | fi (x) = a} since
in every such point x there is at least one branch at infinity of the fiber f −1(a). Note
that if fi (x) = a then ordx ( fi − a) = ordx f ′

i + 1. Thus:

#{x ∈ li | fi (x) = a} =
∑

x∈li , fi (x)=a

[ordx ( fi − a) − ordx f ′
i ].

We have clearly the equality
∑

x∈li ordx ( fi − a) = νi . Hence

∑

x∈li , fi (x)=a

[ordx ( fi − a) − ordx f ′
i ] = νi −

∑

x∈li , fi (x)=a

ordx f ′
i .

Since
∑

x∈li ordx f ′
i = νi − 1 we have:

νi −
∑

x∈li , fi (x)=a

ordx f ′
i = 1 +

∑

x∈li , fi (x) �=a

ordx f ′
i .
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Note that:

1+
∑

x∈li , fi (x) �=a

ordx f ′
i ≥ #{x ∈ li | f (x) �= a, and either f ′

i (x)=0 or x ∈Sing(X ′)}.

The number at the right side is greater or equal to the number of critical values at
infinity of f different from a. Finally, taking the sum over all i ∈ {1, . . . , r} we get
#B∞( f ) ≤ νmin + 1, which completes the proof of (a).

To prove (c), note that if the fiber f̃ −1(a) does not contain a singular point of
X ′, which lies on some li , then the intersection multiplicity li · f̃ −1(a) is equal to
νi = deg fi , where we consider here f̃ −1(a) as a scheme-theoretic fiber of f̃ . Hence
the fiber f̃ −1(a) has at most νi branches on li (even if counted with multiplicity). This
implies νa ≤ νgen. Therefore #{a ∈ C | νa > νgen} ≤ r ≤ νmin.

To prove (d) and (e) it is enough to show that if νgen > d
2 , then at least one line

li does not contain singular points of X ′. Let di be the smallest positive integer such
that di li is a Cartier divisor in X ′ (such a number exists because X ′ has only cyclic
singularities). Since li is smooth, we have that di = 1 if and only if the line li does
not contain any singular point of X ′, by the following lemma, the proof of which is
left to the reader:

Lemma 2.5 Let Xn be an algebraic variety and let Zr ⊂ Xn be a subvariety which
is a complete intersection in Xn. If a point z ∈ Zr is nonsingular on Zr , then it is
nonsingular on Xn. ��

Now let Z be the closure of � in P
2 × P

1 and let Z ′ denote its normalization. We
have clearly the inclusion X ′ ⊂ Z ′. Let � : Z ′ → P

2 the first projection, where the
second projection Z ′ → P

1 is an extension of f̃ which we will denote by f̃ ′. Note
that for a �= ∞ fibers f̃ −1(a) and ( f̃ ′)−1(a) coincide.

Let ( f̃ ′)−1(∞) = S1 ∪ · · · ∪ Sk (where Si are irreducible and taken with reduced
structure). Recall that L∞ = P

2\C
2 is the line at infinity. We have �∗(L∞) =∑k

i=1 mi Si +∑r
i=1 ei li . Since �∗(L∞) is a Cartier divisor we have ei = ni di , where

ni is a positive integer.
Let us assume that every line li contains some singular point of X ′, i.e., that di > 1

for any i . Denoting by F ⊂ P
2 the closure of a general fiber of f , since � is a birational

morphism, we have:

d = F · L∞ = �∗(F) · �∗(L∞) =
(

f̃ ′)∗
(a) ·

(
k∑

i=1

mi Si +
r∑

i=1

ei li

)

.

Note that �∗(F) · ∑k
i=1 mi Si = 0 since |( f̃ ′)∗(a)| ∩ |∑k

i=1 mi Si | = |( f̃ ′)∗(a)| ∩
|( f̃ ′)∗(∞)| = ∅. Moreover we have νi = ( f̃ ′)∗(a) · li . Thus:

d =
r∑

i=1

ni diνi ≥
r∑

i=1

2νi = 2νgen

and this ends our proof. ��
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18. Tibăr, M.: Regularity at infinity of real and complex polynomial functions, singularity theory (Liver-

pool, 1996) , In: London Mathematical Society Lecture Note Series, vol. 263, pp. 249–264. Cambridge
University Press, Cambridge (1999)
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