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Abstract For the Artin–Schreier curve yq − y = f (x) defined over a finite field Fq

of q elements, the celebrated Weil bound for the number of Fqr -rational points can
be sharp, especially in super-singular cases and when r is divisible. In this paper, we
show how the Weil bound can be significantly improved, using ideas from moment
L-functions and Katz’s work on �-adic monodromy calculations. Roughly speaking,
we show that in favorable cases (which happens quite often), one can remove an extra√

q factor in the error term.

1 Introduction

Let k = Fq be a finite field of characteristic p > 2 with q elements, and let f ∈ k[x]
be a polynomial of degree d > 1. Without loss of generality, we can and will always
assume that d is not divisible by p. Let C f be the affine Artin–Schreier curve defined
over k by

yq − y = f (x).

The research of A. Rojas-León was partially supported by P08-FQM-03894 (Junta de Andalucía),
MTM2007-66929 and FEDER. The research of D. Wan was partially supported by NSF.

A. Rojas-León (B)
Departamanto de Álgebra, Universidad de Sevilla, Seville, Spain
e-mail: arojas@us.es

D. Wan
Department of Mathematics, University of California, Irvine, USA
e-mail: dwan@math.uci.edu

123



418 A. Rojas-León, D. Wan

Let r be a positive integer, and let Nr ( f ) denote the number of Fqr -rational points on
C f . The genus of the smooth projective model of C f is given by

g = (q − 1)(d − 1)/2.

The celebrated Weil bound in this case gives the estimate

|Nr ( f )− qr | ≤ (d − 1)(q − 1)q
r
2 .

This bound can be sharp in general, for instance when C f is supersingular and r is
divisible. If qr is not a square, Serre’s improvement [14] leads to a somewhat better
bound:

|Nr ( f )− qr | ≤ (d − 1)(q − 1)

2
[2q

r
2 ],

where [x] denotes the integer part of a real number x .
In this paper, we shall show that if q is large compared to d (and thus the genus

g = (d − 1)(q − 1)/2 is small compared to the field size qr with r ≥ 2), then the
above Weil bound can be significantly improved in many cases. The type of theorems
we prove is of the following nature. For simplicity, we just state one special case.

Theorem 1 Let r ≥ 1 and p > 2. If the derivative f ′ is square-free and either r is
odd or the hypersurface f (x1)+ · · ·+ f (xr ) = 0 in A

r
k is non-singular, then we have

the estimate

|Nr ( f )− qr | ≤ Cd,r q
r+1

2 ,

where Cd,r is the constant

Cd,r =
r∑

a=0

|a − 1|
(

d − 2 + r − a

r − a

)(
d − 1

a

)
.

Note that the constant Cd,r is independent of q and it is a polynomial in d with degree
r . Thus, for fixed d and r , our result essentially removes an extra

√
q factor from

Weil’s bound. The non-singularity hypothesis cannot be dropped in general, as there
are cases for r even where we can have

|Nr ( f )− (qr + q
r
2 +1)| ≤ Cd,r q

r+1
2 ,

see Sect. 4 for more details. This gives further examples that the q-factor in the Weil
bound cannot be replaced by an O(

√
q) factor in general.

As an extreme illustration, we consider the elementary case that r = 1. It is clear
that N1( f ) = qn f , where n f is the number of distinct roots of f (x) in Fq which is at
most d. Thus, the best estimate in this case should be

|N1( f )− q| ≤ (d − 1)q,
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Improvements of the Weil bound for Artin–Schreier curves 419

which is precisely what our bound gives! It is far better than the Weil bound

|N1( f )− q| ≤ (d − 1)(q − 1)
√

q.

For r = 2, our bound takes the form

|N2( f )− q2| ≤ (d − 1)2q3/2,

which is better than the Weil bound

|N2( f )− q2| ≤ (d − 1)(q − 1)q

as soon as q ≥ (d − 1)2 + 3. For r = 3, our bound takes the form

|N3( f )− q3| ≤ (d − 1)(d2 − 3d + 3)q2,

which is better than the Weil bound

|N3( f )− q3| ≤ (d − 1)(q − 1)q3/2

as soon as q ≥ (d2 − 3d + 4)2.
Our idea is to translate Nr ( f ) to moment exponential sums and then calculate the

associated moment L-function as explicitly as possible. Let ψ be a fixed non-trivial
additive character of k. For f ∈ k[x], it is clear that we have the formula

Nr ( f ) =
∑

t∈k

∑

x∈kr

ψ(Tr(t f (x))),

where kr = Fqr and Tr denotes the trace map from kr to k. Separating the term from
t = 0, we obtain

Nr ( f )− qr =
∑

t∈k�

∑

x∈kr

ψ(Tr(t f (x))). (1)

Now, Weil’s bound for exponential sums gives the estimate

∣∣∣∣∣∣

∑

x∈kr

ψ(Tr(t f (x)))

∣∣∣∣∣∣
≤ (d − 1)q

r
2

for every t ∈ k�. It follows that

|Nr ( f )− qr | ≤ (q − 1)(d − 1)q
r
2 .

In order to improve this bound, we need to understand the cancelation of the outer sum
of (1) over t ∈ k�. Heuristically, one expects that the outer sum contributes another
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420 A. Rojas-León, D. Wan

O(
√

q) factor instead of the trivial q factor, if f is sufficiently “random”. This is in fact
what we shall prove using the full strength of Deligne’s general theorem on Riemann
hypothesis.

The double sum in (1) is precisely a moment exponential sum associated to the two
variable polynomial t f (x). Thus, we can use the techniques of moment L-functions
to get improved information about the solution number Nr ( f ). We now briefly outline
our method. Let � be a fixed prime different from p. Let G f denote the relative �-adic
cohomology with compact support associated to the family of one variable exponen-
tial sums attached to t f (x), where x is the variable and t is the parameter on the torus
Gm . Applying the �-adic trace formula fibre by fibre, we obtain

∑

t∈k�

∑

x∈kr

ψ(Tr(t f (x))) = −
∑

t∈k�
Tr(Frobr

q |(G f )t ),

where (G f )t is the fibre of G f at t , and Frobq is the geometric q-th power Frobenius
map. Alternatively, one can rewrite

Tr(Frobr
q |(G f )t ) = Tr(Frobq |[G f ]rt ),

where [G f ]r denotes the r -th Adams operation of G f . It is a virtual �-adic sheaf on
Gm . For example, Katz [9] used the formula

[G f ]r =
r∑

i=1

(−1)i−1i · Symr−iG f ⊗ ∧iG f .

We shall use the following optimal formula from [17] given by

[G f ]r =
r∑

i=0

(−1)i−1(i − 1) · Symr−iG f ⊗ ∧iG f .

Note that the term i = 0 does not occur in the first formula, and the term i = 1
does not occur in the second formula as the coefficient becomes zero for i = 1. The
coefficients of the second formula are smaller and thus lead to fewer number of zeros
and poles for the corresponding L-functions. In this way, we get the smaller constant
Cd,r in Theorem 1.1.

It follows that

Nr ( f )− qr =
r∑

i=0

(−1)i (i − 1) ·
∑

t∈k�
Tr(Frobq |(Symr−iG f ⊗ ∧iG f )t ).

This reduces our problem to the study of the L-function over Gm of the �-adic sheaves
Symr−iG f ⊗ ∧iG f for all 0 ≤ i ≤ r . By general results of Deligne [3], we deduce
that

|Nr ( f )− (qr + δ f,r q
r
2 +1)| ≤ Cd,r q

r+1
2 ,
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Improvements of the Weil bound for Artin–Schreier curves 421

where Cd,r comes from the Euler characteristic of the components of the virtual sheaf
[G f ]r , and

δ f,r =
r∑

i=0

(−1)i−1(i − 1) · dimH2
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ).

Under the conditions of Theorem 1, it follows that the sheaf Symr−iG f ⊗∧iG f has no
geometrically trivial component for any 0 ≤ i ≤ r , and thus we deduce that δ f,r = 0.

Our main result is somewhat stronger. We determine the weights, the trivial factors
and the degrees of the L-functions of all the sheaves Symr−iG f ⊗∧iG f , thus obtaining
a fairly complete information about the associated moment L-function, see [5,6,13]
for the study of moment L-functions in two other examples, namely, the family of
hyper-Kloosterman sums and the Dwork family of toric Calabi–Yau hypersurfaces.
Under slightly more general hypotheses, Katz’s results on monodromy group calcu-
lations [7,8] give stronger results which lead to further improvements of Theorem 1
(see Corollaries 5 and 6). See also [9] for a result on the average number of rational
points on hypersurfaces obtained using a similar approach.

The possibility of our improvement for the Weil bound in the case of Artin–Schreier
curves is due to the fact that the curve has a large automorphism group Fq , which is the
group of Fq -rational points on the group scheme A

1. We expect that similar improve-
ments should exist for many other curves (or higher dimensional varieties) with a large
automorphism group. For example, in the last section of this paper we treat the case
of Artin–Schreier hypersurfaces

yq − y = f (x1, . . . , xn).

This method leads to similar improvements of Deligne’s bound for such hypersurfaces
in many cases. As an explicit new example to try, we would suggest the affine Kummer
curve of the form

y
(q−1)

e = f (x),

where e is a fixed positive integer, q is a prime power congruent to 1 modulo e, and
f (x) ∈ k[x] is a polynomial of degree d. For r ≥ 1 and Nr ( f, e) denoting the num-
ber of Fqr -rational points on the above Kummer curve, we conjecture that for certain
generic f , there is the following estimate

|Nr ( f, e)− qr | ≤ sd,e,r q
r+1

2 ,

where sd,e,r is a constant independent of q. We do not know how to prove this con-
jecture, even in the case e = 1.

To conclude this introduction, we raise another open problem. In Theorem 1, we
assumed that the curve C f : yq − y = f (x) is defined over the subfield Fq of Fqr .
We believe that similar improvement is also true if C f is defined over the larger field
Fqr . But we could not prove this at present.
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422 A. Rojas-León, D. Wan

Remarks Weil’s estimate gives both an upper bound and a lower bound for the num-
ber of rational points on a curve of genus g over the finite field Fq . Improvements for
the lower bound are in general harder to get. Improvements for the upper bound can
often be obtained by more elementary means. In fact, there are already several such
results in the literature for large genus curves. The first result along these lines is due
to Stark [15] in the hyperelliptic case, using Stepanov’s method. Using the explicit
formula, Drinfeld-Vladut and Serre [14] obtained an upper bound improvement when
2g > qr − qr/2, which in our Artin–Schreier setting becomes

(d − 1)(q − 1) > qr − qr/2.

For r > 1, this means that q must be small compared to d. In comparison, our improve-
ments apply when q is large compared to d. Using a geometric intersection argument,
Stöher–Voloch [16] obtained another upper bound which in our case becomes

Nr ( f ) ≤ 1

2
D(D + qr − 1),

where D = max(d, q).

2 Cohomology of the family t �→ ∑
ψ(Tr(t f (x)))

Let k = Fq be a finite field of characteristic p, and f ∈ k[x] a polynomial of degree
d prime to p. Let C f be the Artin–Schreier curve defined on A

2
k by the equation

yq − y = f (x) (2)

and denote by Nr ( f ) its number of rational points over kr := Fqr .
Fix a non-trivial additive character ψ : k → C

�. It is clear that

Nr ( f ) =
∑

t∈k

∑

x∈kr

ψ(t · Tr( f (x))) =
∑

t∈k

∑

x∈kr

ψ(Tr(t f (x))) (3)

where Tr denotes the trace map kr → k.
Fix a prime � 
= p and an isomorphism ι : Q̄� → C. Consider the Galois étale

cover of Gm × A
1 (with coordinates (t, x)) given by u − uq = t f (x), with Galois

group k; and let Lψ(t f (x)) be the rank 1 smooth Q̄�-sheaf corresponding to the repre-
sentation of k given byψ−1 via ι. Define K f = Rπ!Lψ(t f (x)) ∈ Db

c (Gm,k, Q̄�), where
π : Gm × A

1 → Gm is the projection. The trace formula implies that the trace of the
action of the r -th power of a local geometric Frobenius element at t ∈ k� on K f is
given by

∑
x∈kr

ψ(Tr(t f (x))).
It is known [3, 3.7] that K f = G f [−1] for a smooth sheaf G f of rank d − 1 and

punctually pure of weight 1, whose local r -th power Frobenius trace at t ∈ k� is then
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Improvements of the Weil bound for Artin–Schreier curves 423

given by −∑
x∈kr

ψ(Tr(t f (x))). Therefore

Nr ( f )− qr =
∑

t∈k�

∑

x∈kr

ψ(Tr(t f (x))) (4)

= −
∑

t∈k�
Tr(Frobr

t |(G f )t ) = −
∑

t∈k�
Tr(Frobt |[G f ]rt )

where

[G f ]r =
r∑

i=0

(−1)i−1(i − 1) · Symr−iG f ⊗ ∧iG f

is the r -th Adams operation on G f .
The sheaf G f can also be interpreted in terms of the Fourier transform. Consider the

sheaf f�Q̄� on A
1
k . There is a canonical surjective trace map φ : f�Q̄� = f� f �Q̄� →

Q̄�, let F f be its kernel. It is a constructible sheaf of generic rank d − 1 on A
1
k .

Lemma 1 If j : Gm,k → A
1
k is the inclusion, the shifted sheaf j!G f [1] is the Fourier

transform of F f [1] with respect to ψ .

Proof Taking Fourier transform in the distinguished triangle in Db
c (A

1
k, Q̄�):

F f [1] → f�Q̄�[1] → Q̄�[1] →

we get a distinguished triangle:

FTψ(F f )[1] → FTψ( f�Q̄�)[1] → (Q̄�)0(−1)[0] → .

where (Q̄�)0 is a punctual sheaf supported at 0. Ifμ : A
1 ×A

1 → A
1 is the multiplica-

tion map, the Fourier transform of f�Q̄�[1] is given by Rπ1!(π�2 f�Q̄� ⊗ μ�Lψ)[2] =
Rπ1!(Lψ(t f (x)))[2], where πi : A

1 × A
1 → A

1 are the projections. In particular, by
proper base change j�FTψ( f�Q̄�)[1] = j�Rπ1!(Lψ(t f (x)))[2] = K f [2] = G f [1].
Applying j� to the triangle above we find quasi-isomorphisms

j�FTψ(F f )[1] ∼= G f [1]

and

j! j�FTψ(F f )[1] ∼= j!G f [1].

To conclude, it remains to show that the natural map j! j�FTψ(F f )[1] →
FTψ(F f )[1] is a quasi-isomorphism. Since its restriction to Gm,k is a quasi-
isomorphism, we only need to check that it induces a quasi-isomorphism on the stalks
at (a geometric point over) 0, that is, that FTψ(F f )0 = 0. By definition of the Fourier

123



424 A. Rojas-León, D. Wan

transform, FTψ(F f )0 = R	c(A
1
k̄
,F f ). We conclude by using the long exact sequence

of cohomology with compact support associated to the sequence

0 → F f → f�Q̄� → Q̄� → 0,

since Hi
c(A

1
k̄
, f�Q̄�) = Hi

c(A
1
k̄
, Q̄�) = 0 for i 
= 2 and H2

c(A
1
k̄
, f�Q̄�) = H2

c(A
1
k̄
,

Q̄�) = Q̄�(−1) is one-dimensional. �
We can now use Laumon’s local Fourier transform theory to determine the monodr-

omy actions at 0 and ∞ for G f . Recall that, for every character χ : k� → Q̄
�
�, there is

an associated Kummer sheaf Lχ on Gm,k : The (q − 1)-th power map Gm,k → Gm,k

is a Galois étale cover with Galois group canonically isomorphic to k�, and one just
takes the pull-back of the character χ̄ to π1(Gm,k, η̄) � k�. For every d|q − 1, if [d]
denotes the d-th power map Gm,k → Gm,k we have [d]�Q̄� = ⊕Lχ , where the sum
is taken over all characters of k� such that χd is trivial.

Assume that k contains all d-th roots of unity. The sheaf F f is smooth on the
complement U of the set of the critical values of f in A

1. Since d is prime to p,
in a neighborhood of infinity the map x �→ f (x) = ad xd(1 + ad−1

ad x + · · · + a0
ad xd )

is equivalent (for the étale topology) to the map x �→ ad xd (just by making the
change of variable x �→ αx , where αd = 1 + ad−1

ad x + · · · + a0
ad xd ). In particular,

the decomposition group D∞ at infinity acts on the generic stalk of f�Q̄� through
the direct sum of the tame characters (ad)�Lχ for all non-trivial characters χ of k�

such that χd = 1, where (ad) : Gm,k → Gm,k is the multiplication by ad map. Since
(ad)�Lχ = (a−1

d )�Lχ = χ̄ (ad)
deg ⊗ Lχ , we conclude that D∞ acts on the generic

stalk of F f via the direct sum
⊕
χ̄(ad)

deg ⊗ Lχ taken over all non-trivial characters
χ of k� such that χd is trivial.

Proposition 1 Suppose that k contains all d-th roots of unity. The action of the decom-
position group D0 at 0 on G f is tame and semisimple, and it splits as a direct sum⊕
(χ(ad)g(χ̄, ψ))deg ⊗ Lχ over all non-trivial characters χ of k� such that χd = 1,

where g(χ̄, ψ) := −∑
t χ̄ (t)ψ(t) is the Gauss sum.

Proof By ([12, Proposition 2.5.3.1], [8, Theorem 7.5.4]), the local monodromy at
0 of G f can be read from the local monodromy at infinity of F f . More precisely,
we have L FT (∞,0)(

⊕
χ̄ (ad)

deg ⊗ Lχ ) = ⊕
L FT (∞,0)(χ̄(ad)

deg ⊗ Lχ ). Now,
for every χ , since the Fourier transform commutes with tensoring by an unrami-
fied sheaf (by the projection formula, since π�1 (α

deg) = αdeg and μ�(αdeg) =
αdeg for π1 and μ : A

1
k × A

1
k → A

1
k the projection and multiplication) we have

L FT (∞,0)(χ̄(ad)
deg ⊗Lχ ) = χ̄ (ad)

deg ⊗ L FT (∞,0)Lχ = χ̄(ad)
deg ⊗g(χ,ψ)deg ⊗

Lχ̄ by [12, Proposition 2.5.3.1] (note that Lχ corresponds to Vχ̄ as a representation
of D∞ and to V ′

χ as a representation of D0 in the notation of [12] due to the choice
of uniformizers). �

For simplicity, we will assume from now on that f ′ is square-free and p > 2.
Suppose that k contains all roots of f ′ (and therefore all critical values of f ). Let
s ∈ k be a critical value of f . The polynomial fs := f − s has at worst double
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Improvements of the Weil bound for Artin–Schreier curves 425

roots and k contains all its double roots. Let gs be the square-free part of fs (i.e. fs

divided by the product of all its monic double linear factors), which lies in k[x]. Let
S0 be the henselization of A

1
k at s, z1, . . . , ze ∈ k the double roots of fs, S j the

henselization of A
1
k at z j for j = 1, . . . , e and T the union of the henselizations of

A
1
k at the closed points of the subscheme defined by gs = 0. We have a cartesian

diagram

(
∐

j S j )
∐

T −−−−→ A
1
k⏐⏐
(

∐
j h j )

∐
h

⏐⏐
 f

S0 −−−−→ A
1
k

where the map h j : S j → S0 is isomorphic (for the étale topology) to the
map x �→ b j (x − z j )

2 (where b j is fs(x)/(x − z j )
2 evaluated at z j , that is, f ′′(z j )/2)

via the change of variable mapping the local coordinate x − z j to α(x − z j ), where
α ∈ S j is a square root of fs(x)/b j (x − z j )

2 (which exists by Hensel’s lemma, since
its image in the residue field k is 1), and h : T → S0 is finite étale. In particular, the
decomposition group Ds at s acts on the generic stalk of f�Q̄� through the direct sum⊕

j (1 ⊕ (b j )�Lρ)
⊕

L = ⊕
j (ρ(b j )

deg ⊗ Lρ)
⊕
(e · 1 ⊕ L) where L is unramified

and ρ = ρ̄ : k� → Q̄
�
� is the quadratic character.

Proposition 2 Suppose that p > 2, f ′ is square-free and all its roots are in k.
The action of the decomposition group D∞ at infinity on G f splits as a direct sum⊕

z(ρ(bz)g(ρ, ψ))deg ⊗Lρ⊗Lψ f (z) where the sum is taken over the roots of f ′, bz =
f ′′(z)/2, ρ : k� → Q̄

�
� is the quadratic character and g(ρ, ψ) = −∑

t ρ(t)ψ(t) the
corresponding Gauss sum.

Proof By ([12], [8, Theorem 7.5.4]), the local monodromy at infinity of G f can be read
from the local monodromies of F f . More precisely, the part of slope> 1 corresponds
to the slope > 1 part of the local monodromy at infinity of F f , so it vanishes. The
part of slope ≤ 1 is a direct sum, over all critical values s of f , of Lψs tensored with
the local Fourier transform L FT (0,∞) applied to the action of Is on the generic stalk
of F f modulo its Is-invariant space.

Using [12, 2.5.3.1] and the fact that Fourier transform commutes with tensoring by
unramified sheaves, for every root z of f ′ L FT (0,∞)(ρ(bz)

deg ⊗ Lρ) = ρ(bz)
deg ⊗

g(ρ, ψ)deg ⊗ Lρ . So each critical value s contributes a factor
⊕

f (z)=s(ρ(bz)g(ρ,

ψ))deg ⊗ Lρ ⊗ Lψs to the monodromy of G f at infinity. �
We can now compute the determinant of G f :

Corollary 1 Suppose that k contains all d-th roots of unity. If d is odd, the determinant
of G f is the Tate-twisted Artin–Schreier sheaf Lψs ((1−d)/2), where s = s1+· · ·+sd−1
is the sum of the critical values of f and ψs(t) = ψ(st). If d is even, the determinant
of G f is Lρ ⊗ Lψs ⊗ (ερ(ad)g(ρ, ψ))deg((2 − d)/2), where ρ is the multiplicative
character of order 2, g(ρ, ψ) = −∑

t ρ(t)ψ(t) is the corresponding Gauss sum, ad

is the leading coefficient of f, ε = 1 if d ≡ 0 or 2 mod 8 and ε = (−1)(q−1)/d if
d ≡ 4 or 6 mod 8.
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426 A. Rojas-León, D. Wan

Proof The determinant of G f is a smooth sheaf of rank one on Gm,k . At 0, it is isomor-
phic by Proposition 1 to the product

⊗
χd=1,χ 
=1

(
(χ(ad)g(χ̄, ψ))deg ⊗ Lχ

)
. For any

χ we have
(
(χ(ad)g(χ̄, ψ))deg ⊗ Lχ

)⊗(
(χ̄(ad)g(χ,ψ))deg ⊗ Lχ̄

) = (g(χ̄, ψ)g(χ,
ψ))deg = (χ(−1)q)deg . If d is odd, the non-trivial characters with χd = 1 can
be grouped in conjugate pairs. Moreover, χ(−1) = χ((−1)d) = χd(−1) = 1.

We conclude that the determinant at 0 is the unramified character (q
d−1

2 )deg =
Q̄�(

1−d
2 ). At infinity, it is geometrically isomorphic by Proposition 2 to the prod-

uct
⊗

z(Lρ ⊗ Lψ f (z) ) = Lψs (the hypothesis that k contains all roots of f ′ is not
needed for the geometric isomorphism, since it is always satisfied in a sufficiently
large finite extension of k). So det(G f ) ⊗ Lψ−s is everywhere unramified and there-
fore geometrically constant. Looking at the Frobenius action at 0, it must be Q̄�(

1−d
2 ),

so det(G f ) = Lψs (
1−d

2 ).
If d is even, the factor at 0 corresponding to the quadratic character ρ stays

unmatched, so as a representation of D0 the determinant is (εq
d−2

2 )deg ⊗ (ρ(ad)g(ρ,
ψ))deg ⊗ Lρ , where ε = ∏(d−2)/2

i=1 χ i (−1) for a fixed character χ of exact order
d. At ∞ it is geometrically isomorphic to Lρ ⊗ Lψs , so det(G f ) ⊗ Lρ ⊗ Lψ−s is
everywhere unramified and therefore geometrically constant. Looking at the Frobe-

nius action at 0, it must be (εq
d−2

2 ρ(ad)g(ρ, ψ))deg , so det(G f ) = Lρ ⊗ Lψs ⊗
(ερ(ad)g(ρ, ψ))deg( 2−d

2 ).
It remains to compute the value of ε. We have

ε =
(d−2)/2∏

i=1

χ i (−1) = χd(d−2)/8(−1) = χ((−1)d(d−2)/8).

If d ≡ 0 or 2 mod 8, d(d − 2)/8 is even and therefore ε = 1. If d ≡ 4 or 6
mod 8, d(d − 2)/8 is odd so ε = χ(−1) = (−1)(q−1)/d . �

3 The moment L-function of G f

Recall the definition [4] of the moment L-function for the sheaf G f . For a fixed r ≥ 1,
let

Lr ( f, ψ, T ) :=
∏

t∈|Gm,k |

1

det(1 − Frobr
t T deg(t)|(G f )t )

,

where |Gm,k | denotes the set of closed points of Gm,k .
It is known ([4, Theorem 1.1]) that Lr ( f, ψ, T ) is a rational function, and we have

the formula
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Lr ( f, ψ, T ) = det(1 − Frobk T |H1
c(Gm,k̄, [G f ]r ))

det(1 − Frobk T |H2
c(Gm,k̄, [G f ]r ))

=
∏r

i=0 det(1 − Frobk T |H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

(−1)i−1(i−1)

∏r
i=0 det(1 − Frobk T |H2

c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))(−1)i−1(i−1)
.

(5)

Thus, we get a decomposition

Lr ( f, ψ, T ) = Q(T )P0(T )P∞(T )
P(T )P ′(T )

. (6)

We now describe each of the factors in this decomposition.
First,

Q(T ) =
r∏

i=0

det(1 − Frobk T |H1(P1
k̄
, j�(Symr−iG f ⊗ ∧iG f )))

(−1)i−1(i−1)

is the non-trivial factor. Notice that the dual of G f is G− f (1), since F f is self-dual and
D ◦ FTψ = FTψ̄ ◦ D(1) [11, Corollaire 2.1.5] and FTψ̄F f [1] = [t �→ −t]�G f [1] =
G− f [1]. Therefore the dual of Symr−iG f ⊗ ∧iG f is Symr−iG− f ⊗ ∧iG− f (r), so
the dual (in the derived category) of j�(Symr−iG f ⊗ ∧iG f )[1] is j�(Symr−iG− f ⊗
∧iG− f )[1](r + 1), cf. [2, 2.1]. Since P

1 is proper, by [2, Théorème 2.2] we get a
perfect pairing

H1(P1
k̄
, j�(Symr−iG f ⊗ ∧iG f ))×H1(P1

k̄
, j�(Symr−iG− f ⊗ ∧iG− f )) �→Q̄�(−r −1)

for every i = 0, . . . , r .
In particular, we get a functional equation relating the polynomial

Qi (T ) := det(1 − Frobk T |H1(P1
k̄
, j�(Symr−iG f ⊗ ∧iG f ))) =

si∏

j=1

(1 − γi j T ).

and the corresponding polynomial Q�
i (T ) for − f . The functional equation is given by

Q�
i (T ) =

si∏

j=1

(1 − qr+1γ−1
i j T )

= T si q(r+1)si

(−1)si γi1 · · · γisi

si∏

j=1

(1 − γi j q
−(r+1)T −1) = T si q(r+1)si

csi

Qi (q
−(r+1)T −1)
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where csi is the leading coefficient of Qi (T ). Therefore,

Q�(T ) :=
r∏

i=0

Q�
i (T )

(−1)i−1(i−1) = T sq(r+1)s

cs
Q(q−(r+1)T −1)

where s is the degree of the rational function Q(T ) and cs its leading coefficient (i.e. the
ratio of the leading coefficients of the numerator and denominator). By [3, Théorème
3.2.3], all reciprocal roots and poles of Q(T ) are pure Weil integers of weight r + 1.

The other factors of Lr ( f, ψ, T ) are the “trivial factors”:

P(T ) =
r∏

i=0

det(1 − Frobk T |H0(P1
k̄
, j�(Symr−iG f ⊗ ∧iG f )))

(−1)i−1(i−1)

and

P ′(T ) =
r∏

i=0

det(1 − Frobk T |H2(P1
k̄
, j�(Symr−iG f ⊗ ∧iG f )))

(−1)i−1(i−1)

are rational functions of the same degree and pure of weight r and r + 2 respectively,
and vanish if Symr−iG f ⊗∧iG f has no invariants for the action of π1(Gm,k̄) for any i .
The other two are the local factors at 0:

P0(T ) := det(1 − Frob0T |([G f ]r )I0)

=
r∏

i=0

det(1 − Frob0T |(Symr−iG f ⊗ ∧iG f )
I0)(−1)i−1(i−1)

and at infinity:

P∞(T ) := det(1 − Frob∞T |([G f ]r )I∞)

=
r∏

i=0

det(1 − Frob∞T |(Symr−iG f ⊗ ∧iG f )
I∞)(−1)i−1(i−1).

We now compute the local factors explicitly.

Corollary 2 (Local factor at 0 of the moment L-function) Suppose that k contains
all d-th roots of unity. For any positive integer r ≥ 1, the local factor at 0 of the r-th
moment L-function for G f is given by

det(1 − Frob0T |([G f ]r )I0) =
∏

χ

(1 − g(χ,ψ)r T )

where the product is taken over all non-trivial characters χ of k� such that χe = 1
for e = gcd(d, r) and g(χ,ψ) = −∑

t χ(t)ψ(t) is the corresponding Gauss sum.
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Proof As a representation of the inertia group I0, G f is the direct sum
⊕d−1

i=1 Lχ i for

a character χ of order d. So in the Grothendieck group of Q̄�[I0]-modules we have
[G f ]r = ⊕d−1

i=1 L⊗r
χ i = ⊕d−1

i=1 Lχ ir . For a given i , Lχ ir is trivial as a representation of

I0 if and only if χ ir is trivial, that is, if and only if ir is a multiple of d.
Writing d = d ′e with e = gcd(d, r), the trivial summands correspond to i =

d ′, 2d ′, . . . , (e − 1)d ′. The characters χ i are then exactly the non-trivial characters
of k� whose e-th power is trivial, and the corresponding Frobenius eigenvalues are
(χ i (ad)g(χ̄ i , ψ))r = χ ir (ad)g(χ̄ i , ψ)r = g(χ̄ i , ψ)r by Proposition 1. �
Corollary 3 (Local factor at ∞ of the moment L-function) Suppose that p > 2, f ′
is square-free and all its roots are in k. For any positive integer r ≥ 1, the local factor
at ∞ of the r-th moment L-function for G f is given by

det(1 − Frob∞T |([G f ]r )I∞)

=
⎧
⎨

⎩

(1 − (ρ(−1)q)r/2T )d−1 if 2p|r
(1 − (ρ(−1)q)r/2T )m if 2|r, (r, p) = 1 and f has double roots
1 otherwise

where ρ : k� → {1,−1} is the quadratic character and m is the number of double
roots of f .

Proof As a representation of the inertia group I∞, G f is the direct sum
⊕d−1

i=1 (Lψsi
⊗

Lρ) where ψsi (t) = ψ(si t). So in the Grothendieck group of Q̄�[I∞]-modules we
have [G f ]r = ⊕d−1

i=1 (L⊗r
ψsi

⊗ L⊗r
ρ ) = ⊕d−1

i=1 (Lψrsi
⊗ Lρr ). The term (Lψrsi

⊗ Lρr )

is trivial if and only if ρr and ψrsi are both trivial, that is, if and only if r is even and
rsi = 0. That can only happen when either r is divisible by 2p or r is even and si = 0.

In the first case the inertia group I∞ acts trivially on every term, and the Frobenius
eigenvalues are all equal to (±g(ρ, ψ))r = g(ρ, ψ)r = (ρ(−1)q)r/2 by Propo-
sition 2. In the second case, if (r, p) = 1, the inertia group only acts trivially on
the m terms for which si = 0, and the corresponding Frobenius eigenvalue is again
(ρ(−1)q)r/2. �

We now give some geometric conditions on f that ensure that the trivial factors
P(T ) and P ′(T ) disappear:

Proposition 3 Suppose that f ′ is square-free, and either:

1. r is odd, or
2. the hypersurface defined by f (x1)+ · · · + f (xr ) = 0 in A

r
k is non-singular.

Then P(T ) = P ′(T ) = 1.

Proof We will check that, for every i = 0, . . . , r , the action of π1(Gm,k̄) on the sheaf
Symr−iG f ⊗∧iG f has no non-zero invariants. Since Symr−iG f ⊗∧iG f is a subsheaf
of

⊗r G f for every i , it suffices to prove it for the latter.
By Proposition 2, the inertia group I∞ acts on G f through the direct sum of the

characters Lρ ⊗Lψ f (z) for every root z of f ′. Therefore it acts on its r -th tensor power
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as the direct sum of the characters Lρr ⊗Lψ f (z1)+···+ f (zr )
for all r -tuples (z1, . . . , zr ) of

roots of f ′. If r is odd, none of these is the trivial character, since Lρr = Lρ (which is
totally and tamely ramified at infinity) can not be isomorphic to Lψt (which is either
trivial or totally wild at infinity) for any t . If the hypersurface f (x1)+· · ·+ f (xr ) = 0
is non-singular, the sums f (z1) + · · · + f (zr ) are always non-zero, and therefore
Lρr ⊗ Lψ f (z1)+···+ f (zr )

is totally wild at infinity.

In either case, Symr−iG f ⊗ ∧iG f has no non-zero invariants under the action of
I∞ and, a fortiori, under the action of the larger group π1(Gm,k̄). �
Corollary 4 Let f ∈ k[x] be a polynomial of degree d prime to p > 2 and r a
positive integer. Suppose that f ′ is square-free. If r is even, suppose additionally that
the hypersurface defined by f (x1)+ · · · + f (xr ) = 0 in A

r
k is non-singular. Then the

number Nr ( f ) of kr -rational points on the curve

yq − y = f (x)

satisfies the estimate

|Nr ( f )− qr | ≤ Cd,r q
r+1

2

where

Cd,r =
r∑

i=0

|i − 1|
(

d − 2 + r − i

r − i

)(
d − 1

i

)

is independent of q.

Proof Under the hypotheses of the corollary, the previous result shows that π1(Gm,k̄)

has no non-zero invariants on Symr−iG f ⊗ ∧iG f . Therefore, H2
c(Gm,k̄,Symr−iG f ⊗

∧iG f ) = 0, and formula (5) reduces to

Lr ( f, ψ, T ) =
r∏

i=0

det(1 − Frobk T |H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

(−1)i−1(i−1)

In particular, by (4),

Nr ( f )− qr =
r∑

i=0

(−1)i−1(i − 1) · Trace(Frobk |H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f )).

Since H1
c(Gm,k̄,Symr−iG f ⊗∧iG f ) is mixed of weight ≤ r +1, we get the estimate

|Nr ( f )− qr | ≤
(

r∑

i=0

|i − 1| · dim(H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

)
· q

r+1
2 .
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Since H1
c is the only non-zero cohomology group of Symr−iG f ⊗ ∧iG f , we have

dim H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ) = −χ(Gm,k̄,Symr−iG f ⊗ ∧iG f )

= Swan∞(Symr−iG f ⊗ ∧iG f )

by the Grothendieck–Néron–Ogg–Shafarevic formula, since Symr−iG f ⊗ ∧iG f is
tamely ramified at 0. Now by Proposition 2, all slopes at infinity of Symr−iG f ⊗∧iG f

are 0 or 1, so

Swan∞(Symr−iG f ⊗ ∧iG f )

≤ rank(Symr−iG f ⊗ ∧iG f ) =
(

d − 2 + r − i

r − i

)(
d − 1

i

)
.

The proof is complete. �
The non-singularity condition is generic on f if r is not a multiple of p: in fact,

there can be at most
(d+r−2

r

)
values of λ ∈ k̄ for which f (x) + λ does not satisfy

the condition. If r is divisible by p, then f (x1) + · · · + f (xr ) = 0 always defines a
singular affine hypersurface and thus Theorem 1 is empty if r is further even. In such
cases, we can use the refinement in next section.

4 Refinements using global monodromy

In this section we will relax the hypotheses of Corollary 4 using Katz’s computation
of the global monodromy of G f . In particular, we will give conditions on f that make
the given bound hold for any r .

Let G = π1(Gm,k̄)
Zar ⊆ GL(V ) be the geometric monodromy group of G f ,

where V is its generic stalk. Let z1, . . . , zd−1 be the roots of f ′ in k̄, let si = f (zi )

and s = s1 + · · · + sd−1.

Proposition 4 Suppose that p > 2d − 1 and the (d − 1)(d − 2) numbers si − s j for
i 
= j are all distinct. Then G is given by

⎧
⎪⎪⎨

⎪⎪⎩

SL(V ) if d is odd and s = 0
GL p(V ) if d is odd and s 
= 0
GL2(V ) = ±SL(V ) if d is even and s = 0
GL2p(V ) if d is even and s 
= 0

where GLm(V ) = {A ∈ GL(V )| det(A)m = 1}.
Proof The hypothesis forces the si to be distinct (otherwise 0 would appear at least
twice as a difference of two critical values). Since p > d, [8, Lemma 7.10.2.3] shows
that F f is a geometrically irreducible tame reflection sheaf. Then by [8, Theorem
7.9.6], G must contain SL(V ). Since SL(V ) is connected, it must be contained in the
unit connected component G0 of G. On the other hand, since G f is also geometri-
cally irreducible (since Fourier transform preserves irreducibility), G0 is a semisimple
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algebraic group [3, Corollaire 1.3.9] so it must be SL(V ). In order to determine G
completely, we only need to know the image of its determinant, but by Corollary 1
we know it is trivial for d odd and s = 0 and the group of p-th roots (respectively
square roots, 2p-th roots) of unity for d odd and s 
= 0 (resp. d even and s = 0, d
even and s 
= 0). �
Corollary 5 Under the hypotheses of Proposition 4, for any integer r ≥ 1 the number
Nr ( f ) of kr -rational points on the curve

yq − y = f (x)

satisfies the estimate

|Nr ( f )− qr | ≤ Cd,r q
r+1

2

where

Cd,r =
r∑

i=0

|i − 1|
(

d − 2 + r − i

r − i

)(
d − 1

i

)
,

unless d is odd, s = 0 and r = d − 1, in which case there exists β = ±1 such that
Nr ( f ) satisfies the estimate

|Nr ( f )− (qr + βq
r
2 +1)| ≤ Cd,r q

r+1
2 .

Moreover, if k contains all d-th roots of unity then β = 1.

Proof For the first statement, we only need to show that π1(Gm,k̄) has no non-zero
invariants on Symr−iG f ⊗∧iG f for any i , the result follows exactly as in Corollary 4.
Equivalently, we need to show that Symr−i V ⊗∧i V has no non-zero invariants under
the action of G.

As a representation of SL(V ), we have

Symr−i V ⊗ ∧i V = Hom(∧i V �,Symr−i V ) = Hom(∧d−1−i V,Symr−i V )

whose invariant subspace, for i ≥ 0, is 0 except in the cases r − i = d − 1 − i = 0
and r − i = d − 1 − i = 1, where it is one-dimensional. In particular, SL(V ) (and, a
fortiori, G) has no non-zero invariants on Symr−i V ⊗∧i V for any i ≥ 0 if r 
= d −1.

Suppose that r = d −1, and let Wi be the one-dimensional subspace of Symr−i V ⊗
∧i V invariant under SL(V ), for i = r −1 or i = r . The factor group G/SL(V ) = μm

acts on Wi , where m is given in the previous Proposition. Let A = diag(ζ, . . . , ζ ) ∈ G
be a scalar matrix, where ζ ∈ Q̄� is a primitive m(d − 1)-th root of unity. Then the
class of A generates the cyclic group G/SL(V ), so G fixes Wi if and only if A does.
But A acts on Wi by multiplication by ζ r , so this action is trivial if and only if ζ r = 1,
that is, if and only if m(d − 1) divides r = d − 1, which can only happen for m = 1,
that is, in the case where d is odd and s = 0.
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It remains to prove the second estimate in this case. Since G = SL(V ), the deter-

minant of G f is geometrically trivial, so it is (q
d−1

2 β)deg for some β with |β| = 1. For
i = r , Symr−i V ⊗ ∧i V = ∧d−1V = det V and therefore Frobenius acts by multipli-

cation by q
d−1

2 β. For i = r−1, Symr−i V ⊗∧i V = V ⊗∧d−2V = Hom(V, V )⊗det V
and the G-invariant part is again det V , on which Frobenius acts by multiplication by

q
d−1

2 β. We conclude that

r∏

i=0

det(1 − Frobk T |H2
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

(−1)i−1(i−1)

= det(1 − Frobk T |(det G f )(−1))(−1)r−2(r−2)+(−1)r−1(r−1)

= (1 − q
r
2 +1βT )(−1)r−1 = (1 − q

r
2 +1βT )−1

since r − 1 = d − 2 is odd.
From Eq. (5) we then get that

Lr ( f, ψ, T )

1 − q
r
2 +1βT

=
r∏

i=0

det(1 − Frobk T |H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f )

(−1)i−1(i−1)

and, in particular, by (4)

Nr ( f )− qr − βq
r
2 +1

=
r∑

i=0

(−1)i−1(i − 1) · Trace(Frobk |H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f )).

But Lr ( f, ψ, T ) has real coefficients (since taking complex conjugate is the same
as replacing f by − f or, equivalently, taking the pull-back of G f under the automor-
phism t �→ −t , so it gives the same Lr ). Since q

r
2 +1β is its only reciprocal root of

weight r +2, we conclude that β = ±1. Moreover, if k contains all d-th roots of unity
then β = 1 by Corollary 1.

Using that Symr−iG f ⊗ ∧iG f is pure of weight r , we obtain the estimate

|Nr ( f )−(qr +βq
r
2 +1)|≤

(
r∑

i=0

|i − 1| · dim(H1
c(Gm,k̄,Symr−iG f ⊗∧iG f ))

)
· q

r+1
2

We conclude as in Corollary 4 using that, for the two values of i for which H2
c(Gm,k̄,

Symr−iG f ⊗∧iG f ) is one-dimensional, the sheaf Symr−iG f ⊗∧iG f has at least one
slope equal to 0 at infinity, and therefore

dim H1
c(Gm,k̄,Symr−iG f ⊗ ∧iG f )

= −χ(Gm,k̄,Symr−iG f ⊗ ∧iG f )+ dim H2
c(Gm,k̄,Symr−iG f ⊗ ∧iG f )

= Swan∞(Symr−iG f ⊗ ∧iG f )+ 1 ≤ rank(Symr−iG f ⊗ ∧iG f ).

�
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The hypothesis of Proposition 4 can easily be checked from the coefficients of f :
Let A f ′ be the companion matrix of f ′, and B = f (A f ′). The eigenvalues of the
(d − 1)× (d − 1) matrix B are s1, . . . , sd−1, and its trace is s. Next we construct the
(d −1)2 ×(d −1)2 matrix B ⊗ Id−1 − Id−1 ⊗ B, whose eigenvalues are all differences
si − s j . Its characteristic polynomial is then of the form T d−1g(T ). The hypothesis
of Proposition 4 are equivalent to the discriminant of g(T ) being non-zero.

We will now deal with an important class of polynomials to which Proposition 4
does not apply.

Definition 1 We say that a polynomial f ∈ k[x] is quasi-odd if there exist a, b ∈ k
such that f (a − x) = b − f (x). In this case, the degree d is necessarily odd.

Notice that a and b are then uniquely determined: if f = cd xd + · · · + c1x + c0,
a = −2cd−1

dcd
and b = 2 f ( a

2 ). If f is quasi-odd, the set of critical values of the map

f : A
1
k → A

1
k is invariant under the involution s �→ b − s. In particular, their sum is

b(d−1)
2 .

Lemma 2 If there is a ∈ k such that f (a − x) = − f (x), the Tate-twisted sheaf
G f (1/2) on Gm,k is self-dual.

Proof Since G f (x−c) ∼= G f (x) for any c ∈ k, we may assume that f is odd. The auto-
morphism x �→ −x induces an isomorphism F f ∼= [−1]�F f = F− f . Taking Fourier
transform, we get an isomorphism G f ∼= G− f . Composing with the duality pairing
(cf. Sect. 3) G f × G− f → Q̄�(−1) we get a perfect pairing G f × G f → Q̄�(−1) or,
equivalently, G f (1/2)× G f (1/2) → Q̄�. �
Proposition 5 Let f ∈ k[x] be quasi-odd. Label the critical values si so that sd−i =
b − si for i = 1, . . . , d − 1. Suppose that p > 2d − 1 and the only equalities among
the numbers si − s j for i 
= j are si − s j = sd− j − sd−i . Then G = Sp(V ) if b = 0 (if
and only if s = 0, since p > d − 1), and G = μp · Sp(V ) if b 
= 0.

Proof The hypothesis forces the si to be distinct: if si = s j for i 
= j then si − s j =
s j − si , so i = d − i and j = d − j , which is impossible since d is odd. Then by [8,
Lemma 7.10.2.3] F f is a geometrically irreducible tame reflection sheaf. If b = 0,
we may assume as in the previous lemma that f is odd. The self-duality of G f (1/2)
is symplectic (it suffices to show it geometrically, and that is done in [8, Lemma
7.10.4]), so we have G ⊆ Sp(V ). We now apply [8, Theorem 7.9.7], from which G
must contain SL(V ), Sp(V ) or SO(V ), and therefore we must have G = Sp(V ).

If b 
= 0, f (x) − b
2 is quasi-odd with b = 0, and G f = G f −b/2 ⊗ Lψb/2 . Let

H ⊆ π1(Gm,k̄) be the kernel of the character Lψb/2 , it is an open normal subgroup of
index p and the restrictions of the representations G f and G f −b/2 to H are isomorphic.
Since the monodromy group of G f −b/2 is Sp(V ), which does not have open subgroups
of finite index, the closure of the image of H on GL(V ) under G f is the whole Sp(V ).
Therefore, Sp(V ) ⊆ G and G ⊆ μp · Sp(V ), since π1(Gm,k̄) acts via Lψb/2 by multi-
plication by p-th roots of unity. Since the determinant of G is non-trivial by Corollary
1, it must be μp · Sp(V ). �
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Corollary 6 Under the hypotheses of Proposition 5, for any integer r ≥ 1 the number
Nr ( f ) of kr -rational points on the curve

yq − y = f (x)

satisfies the estimate

|Nr ( f )− qr | ≤ Cd,r q
r+1

2

where

Cd,r =
r∑

i=0

|i − 1|
(

d − 2 + r − i

r − i

)(
d − 1

i

)
,

unless r ≤ d − 1 is even and either b = 0 or p divides r , in which case it satisfies the
estimate

|Nr ( f )− (qr + q
r
2 +1)| ≤ Cd,r q

r+1
2 .

Proof As a representation of Sp(V ), we have

Symr−i V ⊗ ∧i V = Hom(∧i V,Symr−i V )

whose invariant subspace, by [9, lemma on p. 62], is 0 except when i is odd, r = i +1
and i ≤ d − 1, or when i is even, r = i and i ≤ d − 1. In particular, since d is odd,
G has no non-zero invariants on Symr−i V ⊗ ∧i V for any i if r is odd or r > d − 1.

Suppose from now on that r ≤ d − 1 is even, and let Wi be the one-dimensional
subspace of Symr−i V ⊗∧i V invariant under Sp(V ), for i = r −1 or i = r . Consider
the case where b = 0 first. Since G f (1/2) is self-dual, all Frobenius images are in
Sp(V ) = G. In particular, all Frobenii act trivially on Wi (r/2), and therefore they act
by multiplication by q

r
2 on Wi ⊆ ⊗r V . Therefore

r∏

i=0

det(1 − Frobk T |H2
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

(−1)i−1(i−1)

= det(1 − Frobk T |Wr−1(−1))(−1)r−2(r−2) det(1 − Frobk T |Wr (−1))(−1)r−1(r−1)

= (1 − q
r
2 +1T )(−1)r−2(r−2)+(−1)r−1(r−1)

= (1 − q
r
2 +1T )(−1)r−1 = (1 − q

r
2 +1T )−1

since r − 1 = d − 2 is odd.
In the case where b 
= 0, G/Sp(V ) ∼= μp acts on Wi . Let

A = diag(ζp, . . . , ζp) ∈ G
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be a scalar matrix, where ζp ∈ Q̄� is a p-th root of unity. Then the class of A generates
G/Sp(V ), so G fixes Wi if and only if A does. But A acts on Wi by multiplica-
tion by ζ r

p, so this action is trivial if and only if ζ r
p = 1, that is, if and only if p

divides r . In that case, Symr−iG f ⊗∧iG f = (Symr−iG f −b/2 ⊗∧iG f −b/2)⊗L⊗r
ψb/2

=
Symr−iG f −b/2 ⊗ ∧iG f −b/2, so we can apply the b = 0 case and we get again

r∏

i=0

det(1 − Frobk T |H2
c(Gm,k̄,Symr−iG f ⊗ ∧iG f ))

(−1)i−1(i−1)

= (1 − q
r
2 +1T )(−1)r−1 = (1 − q

r
2 +1T )−1.

We conclude as in Corollary 5. �

Again, the hypothesis of Proposition 5 can be checked from the coefficients of
f : After adding a constant, we may assume that b = 0. Let A f ′ be the companion
matrix of f ′, and B = f (A f ′). The eigenvalues of the (d − 1) × (d − 1) matrix

B are s1, . . . , sd−1, and its trace is s = b(d−1)
2 . Construct the (d − 1)2 × (d − 1)2

matrix B ⊗ Id−1 − Id−1 ⊗ B, whose eigenvalues are all differences si − s j . Its
characteristic polynomial is then of the form T d−1h(T/2)g(T )2, where h(T ) is the
characteristic polynomial of B, since all non-zero roots different from si − sd−i = 2si

for i = 1, . . . , d − 1 appear in pairs. The hypothesis of Proposition 5 is equivalent to
the discriminant of h(T/2)g(T ) being non-zero.

5 Generalization to Artin–Schreier hypersurfaces

In this section we will extend Corollary 4 to higher dimensional hypersurfaces. Since
the proofs are very similar, we will only sketch them, indicating the differences where
necessary.

Let f ∈ k[x1, . . . , xn] be a polynomial of degree d prime to p, C f the Artin–
Schreier hypersurface defined on A

n+1
k by the equation

yq − y = f (x1, . . . , xn). (7)

Denote by Nr ( f ) its number of rational points over kr . We have again a formula

Nr ( f )− qnr =
∑

t∈k�

∑

x∈kn
r

ψ(t · Tr( f (x))) =
∑

t∈k�

∑

x∈kn
r

ψ(Tr(t f (x))) (8)

where Tr denotes the trace map kr → k. Assume that f is a Deligne polynomial, that
is, the leading form of f defines a smooth projective hypersurface of degree d not
divisible by p. Applying Deligne’s bound [3] to the above inner sum, one deduces that

|Nr ( f )− qnr | ≤ (q − 1)(d − 1)nq
nr
2 .
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This is precisely Weil’s bound in the case n = 1. Our purpose of this section is to
improve the above bound and obtain the estimate of the following form

|Nr ( f )− qnr | ≤ Cd,r q
nr+1

2 ,

for some constant Cd,r depending only on d, r and n.
Define K f = Rπ!Lψ(t f (x)) ∈ Db

c (Gm,k, Q̄�), where π : Gm × A
n → Gm is the

projection. The trace formula implies that the trace of the action of the r -th power of
a local Frobenius element at t ∈ k� on K f is given by

∑
x∈kn

r
ψ(Tr(t f (x))). Suppose

from now on that the homogeneous part fd of highest degree of f defines a non-sin-
gular hypersurface. Then by [3, 3.7], K f is a single smooth sheaf G f placed in degree
n, of rank (d − 1)n and pure of weight n. Therefore

Nr ( f )− qnr = (−1)n
∑

t∈k�
Tr(Frobr

t |(G f )t ) = (−1)n
∑

t∈k�
Tr(Frobt |[G f ]rt )

where

[G f ]r =
r∑

i=0

(−1)i−1(i − 1) · Symr−iG f ⊗ ∧iG f

is the r -th Adams operation on G f .
We can give an interpretation of G f in terms of the Fourier transform like we did

in the one-dimensional case. Exactly as in Lemma 1, we can show

Lemma 3 The object G f [1] ∈ Db
c (Gm, Q̄�) is the restriction to Gm of the Fourier

transform of R f!Q̄�[n] with respect to ψ .

We compactify f via the map f̃ : X → A
1
k , where X ⊆ P

n × A
1 is defined by

the equation F(x0, x1, . . . , xn) = t xd
0 , F being the homogenization of f with respect

to the variable x0, and f̃ the restriction of the second projection to X . Suppose that
the subscheme of A

n
k defined by the ideal 〈∂ f/∂x1, . . . , ∂ f/∂xn〉 is finite étale over k,

and the images of its k̄-points under f are distinct. Then for every s ∈ k̄, the fibre
Xs has at worst one isolated non-degenerate quadratic singularity, which is located on
the affine part (since the part at infinity is defined for every fibre by fd(x) = 0 and is
therefore non-singular).

We have a distinguished triangle

R f!Q̄� → R f̃�Q̄� → R( f̃|X0)�Q̄� →

where X0 = X\A
n ∼= Y × A

1, Y being the smooth hypersurface defined in P
n−1 by

fd = 0. Since R( f̃|X0)�Q̄� is just the constant object R	(Y, Q̄�), its Fourier transform
is supported at 0. So

G f [1] ∼= (FTψR f!Q̄�[n])|Gm,k
∼= (FTψR f̃�Q̄�[n])|Gm,k .
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Proposition 6 Suppose p > 2. Under the previous hypotheses, let z1, . . . , z(d−1)n ∈
A

n
k̄

be the distinct points such that ∂ f
∂xi
(z j ) = 0 for all i = 1, . . . , n, and let si = f (zi ).

The action of the inertia group I∞ at infinity on G f decomposes as a direct sum
⊕ Lψsi

if n is even, and
⊕
(Lρ ⊗ Lψsi

) if n is odd, where ρ is the unique character of I∞ of
order 2.

Proof We will obtain, for every i , a factor Lψsi
(resp. Lρ ⊗ Lψsi

) in the local mo-
nodromy of G f at infinity. Since the rank is (d − 1)n and these characters are pairwise
non-isomorphic, this will determine the action of I∞ completely.

Let S = {si |i = 1, . . . , (d − 1)n}, and U = A
1\S. Since f̃ is proper and smooth

over U, Ri f̃�Q̄� is smooth on U for every i . Since Xs contains one isolated non-
degenerate quadratic singularity for each s ∈ S, by [1, 4.4] the sheaves Ri f̃�Q̄� are
smooth on A

1 for i 
= n − 1, n. In particular, their Fourier transforms are supported
at 0. We conclude that there is a distinguished triangle

(FTψRn−1 f̃�Q̄�[1])|Gm,k → G f [1] → (FTψRn f̃�Q̄�[0])|Gm,k →

and therefore an exact sequence of sheaves

0 → H−1(FTψRn−1 f̃�Q̄�[1])|Gm,k → G f → H−1(FTψRn f̃�Q̄�[0])|Gm,k →
→ H0(FTψRn−1 f̃�Q̄�[1])|Gm,k → 0 (9)

since FTψRn f̃�Q̄�[0] can only have non-zero cohomology sheaves in degrees 1, 0
and −1. Furthermore H0(FTψRn−1 f̃�Q̄�[1]) is punctual, so this induces an exact
sequence of I∞-representations

0 → H−1(FTψRn−1 f̃�Q̄�[1]) → G f → H−1(FTψRn f̃�Q̄�[0]) → 0. (10)

Let V be the generic stalk of Rn−1 f̃�Q̄�. Suppose that n is odd, and let s ∈ S. Then by
[1, 4.3 and 4.4], the inertia group Is acts on V with invariant space VIs of codimension
1 (the orthogonal complement of the ’vanishing cycle’ δ) and on the quotient V/VIs

via its quadratic character ρ. Moreover, Rn−1 f̃�Q̄� is isomorphic at s to the extension
by direct image of its restriction to the generic point. By Laumon’s local Fourier trans-
form [8, Section 7.4], the action of the inertia group I∞ on H−1(FTψRn−1 f̃�Q̄�[1])
(and thus on G f by (10)) contains a subcharacter isomorphic to Lρ ⊗ Lψs .

Suppose now that n is even, and let s ∈ S. By [1, 4.3 and 4.4], there are two pos-
sibilities: if the ‘vanishing cycle’ δ is non-zero, the inertia group Is acts on V with
invariant space VIs of codimension 1 (the orthogonal complement of δ) and trivially on
the quotient V/VIs . Moreover, Rn−1 f̃�Q̄� is isomorphic at s to the extension by direct
image of its restriction to the generic point. By Laumon’s local Fourier transform [8,
Section 7.4], the action of the inertia group I∞ on H−1(FTψRn−1 f̃�Q̄�[1]) (and thus
on G f by (10)) contains a subcharacter isomorphic to Lψs .

If δ = 0, then Is acts trivially on V , and there is an exact sequence of sheaves:

0 → (Q̄�)s → Rn f̃�Q̄� → js� j�s Rn f̃�Q̄� → 0
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where (Q̄�)s is the punctual object Q̄� supported on s and js : A
1 − {s} ↪→ A

1 is the
inclusion. Taking Fourier transform, we deduce a distinguished triangle

Lψs [1] → FTψRn f̃�Q̄�[0] → FTψ js� j�s Rn f̃�Q̄�[0] →

and in particular an injection

0 → Lψs → H−1(FTψRn f̃�Q̄�[0]).

By (10), this gives a subcharacter isomorphic to Lψs in the monodromy of G f at
infinity. �

For completeness, we determine also the monodromy of G f at 0.

Proposition 7 The inertia group I0 at 0 acts on G f as a direct sum
⊕

nχLχ where
the sum is taken over all characters χ of I0 such that χd is trivial, nχ = 1

d ((d −1)n −
(−1)n) if χ is non-trivial and nχ = (−1)n + 1

d ((d − 1)n − (−1)n) if χ is trivial.

Proof We will show that, for every χ , the action of I0 on G f contains nχ Jordan blocks
for the character χ . Since these numbers add up to (d − 1)n , which is the dimension
of the representation G f , this will prove that the action is semisimple and determine
it completely.

Let χ be non-trivial such that χd = 1. Since adding a constant a to f corre-
sponds to tensoring G f with the Artin–Schreier sheaf Lψa and this does not change
the monodromy at 0, we can assume that G f is totally wild at ∞ (or equivalently,
that the hypersurface f (x) = 0 is non-singular). Then so is G f ⊗ Lχ̄ . The number of
Jordan blocks associated of Lχ in the representation of I0 given by G f is the dimension
of the I0-invariant subspace of G f ⊗ Lχ̄ . If j : Gm,k̄ → A

1
k̄

and i : {0} → A
1
k̄

are the
inclusions, we have an exact sequence

0 → j!(G f ⊗ Lχ̄ ) → j�(G f ⊗ Lχ̄ ) → i�i
� j�(G f ⊗ Lχ̄ ) → 0

and therefore

0 → (G f ⊗ Lχ̄ )I0 → H1
c(Gm,k̄,G f ⊗ Lχ̄ ) → H1

c(A
1
k̄
, j�(G f ⊗ Lχ̄ )) → 0.

Since G f ⊗ Lχ̄ is totally wild at ∞, the latter cohomology group is pure of weight
n + 1. So the dimension of (G f ⊗ Lχ̄ )I0 is the dimension of the weight ≤ n part of
H1

c(Gm,k̄,G f ⊗ Lχ̄ ).
By the projection formula,

G f ⊗ Lχ̄ = (Rnπ!Lψ(t f (x)))⊗ Lχ̄ ∼= Rnπ!(Lψ(t f (x)) ⊗ Lχ̄ (t)),

so

H1
c(Gm,k̄,G f ⊗ Lχ̄ ) = Hn+1

c (Gm,k̄ × A
n
k̄
,Lψ(t f (x)) ⊗ Lχ̄ (t))
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since Riπ!Lψ(t f (x)) = 0 for i 
= n. Let Z ⊂ A
n
k be the closed subset defined by

f (x) = 0 and U its open complement. The sheaf Lψ(t f (x)) is trivial on Gm × Z , so
H�

c(Gm,k̄ × Z ,Lψ(t f (x))⊗Lχ̄ (t)) = H�
c(Gm,k̄ × Z ,Lχ̄ (t)) = H�

c(Gm,k̄,Lχ̄ )⊗H�
c(Z ⊗

k̄, Q̄�) = 0 since χ is non-trivial. By excision we get an isomorphism Hn+1
c (Gm,k̄ ×

A
n
k̄
,Lψ(t f (x)) ⊗ Lχ̄ (t)) ∼= Hn+1

c (Gm,k̄ × U,Lψ(t f (x)) ⊗ Lχ̄ (t)).
Consider the automorphismφ : Gm ×U → Gm ×U given byφ(t, x) = (t f (x), x).

Then φ�(Lψ(t f (x)) ⊗ Lχ̄ (t)) = Lψ(t) ⊗ Lχ̄ (t/ f (x)) = Lψ(t) ⊗ Lχ̄ (t) ⊗ Lχ( f (x)). So

Hn+1
c (Gm,k̄ × U,Lψ(t f (x)) ⊗ Lχ̄ (t)) ∼= Hn+1

c (Gm,k̄ × U,Lψ(t) ⊗ Lχ̄ (t) ⊗ Lχ( f (x)))

which, by Künneth, is isomorphic to H1
c(Gm,k̄,Lψ ⊗ Lχ̄ )⊗ Hn

c (U ⊗ k̄,Lχ( f )) (since
Hi

c(Gm,k̄,Lψ ⊗ Lχ̄ ) = 0 for i 
= 1). The first factor is one-dimensional and pure of
weight 1, so we want the dimension of the weight ≤ n − 1 part of Hn

c (U ⊗ k̄,Lχ( f )).
By [10, Theorem 2.2], this dimension is nχ = 1

d ((d − 1)n − (−1)n).
Similarly, if χ = 1 is the trivial character, the searched dimension is the dimension

of the weight ≤ n part of Hn+1
c (Gm,k̄ × A

n
k̄
,Lψ(t f (x))). From the exact sequence

· · · → Hn
c ({0} × A

n
k̄
, Q̄�) → Hn+1

c (Gm,k̄ × A
n
k̄
,Lψ(t f (x))) →

→ Hn+1
c (A1

k̄
× A

n
k̄
,Lψ(t f (x))) → Hn+1

c ({0} × A
n
k̄
, Q̄�) → · · ·

we get an isomorphism Hn+1
c (Gm,k̄ × A

n
k̄
,Lψ(t f (x))) ∼= Hn+1

c (A1
k̄

× A
n
k̄
,Lψ(t f (x))).

Now let π : A
1 × A

n → A
n be the projection, by the base change theorem we have

R2π!Lψ(t f (x)) = i�Q̄�(−1), where i : Z → A
n is the inclusion of the closed set where

f (x) = 0, and Riπ!Lψ(t f (x)) = 0 for i 
= 2. So we need the dimension of the weight
≤ n − 2 part of Hn−1

c (Z , Q̄�). Let Z be the projective closure of Z and Z0 = Z\Z ,
we have an exact sequence

· · · → Hn−2(Z , Q̄�) → Hn−2(Z0, Q̄�) → Hn−1
c (Z , Q̄�) → Hn−1(Z , Q̄�) → · · ·

Since Z is smooth, Hn−1(Z , Q̄�) is pure of weight n − 1, and therefore the weight ≤
n −2 part of Hn−1

c (Z , Q̄�) is the cokernel of the map Hn−2(Z , Q̄�) → Hn−2(Z0, Q̄�),
that is, the primitive part Primn−2(Z0, Q̄�) of the middle cohomology group of Z0,
which has dimension n1 = (−1)n + 1

d ((d − 1)n − (−1)n). �
Corollary 7 Let s = ∑(d−1)n

i=1 si . Over k̄, the determinant of G f is the Artin–Schreier
sheaf Lψs if n(d − 1) is even, and the product Lρ ⊗ Lψs if n(d − 1) is odd.

Proof The determinant is a smooth sheaf on Gm of rank 1. At 0, its monodromy is the
product of χnχ for all characters χ of I0 such that χd is trivial. Since the non-trivial
characters (except for the quadratic one) appear in conjugate pairs, the product is triv-
ial if d is odd, and comes down to ρnρ , which is ρ or 1 depending on the parity of
nρ = 1

d ((d − 1)n − (−1)n), which is congruent to n mod 2, if d is even.
At infinity, its monodromy is the product of the Lψsi

(resp. of the Lρ ⊗ Lψsi
) if n

is even (resp. if n is odd), which is Lψs (resp. Lρ ⊗ Lψs ) if n(d − 1) is even (resp. if
n(d − 1) is odd). We conclude as in Corollary 1. �
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We now give the higher dimensional analogue of Corollary 4:

Corollary 8 Let f ∈ k[x1, . . . , xn] be a polynomial of degree d prime to p and
r a positive integer. Suppose that p > 2, the highest degree homogeneous part of
f defines a non-singular hypersurface, the subscheme of A

n
k defined by the ideal

〈∂ f/∂x1, . . . , ∂ f/∂xn〉 is finite étale over k and the images of its k̄-points under
f are distinct. If nr is even, suppose additionally that the hypersurface defined by
f (x1,1, . . . , x1,n)+ · · · + f (xr,1, . . . , xr,n) = 0 in A

nr
k = Spec k[xi, j |1 ≤ i ≤ r, 1 ≤

j ≤ n] is non-singular. Then the number Nr ( f ) of kr -rational points on the hyper-
surface

yq − y = f (x1, . . . , xn)

satisfies the estimate

|Nr ( f )− qnr | ≤ Cd,r q
nr+1

2

where

Cd,r =
r∑

i=0

|i − 1|
(
(d − 1)n + r − i − 1

r − i

)(
(d − 1)n

i

)

is independent of q.

The proof is identical to the one of Corollary 4, using Proposition 6. In the n even
case we need the non-singularity hypothesis for any r , since the Kummer factor does
not appear in the monodromy at infinity.
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