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Abstract Let −iA be the generator of a C0-group (U (s))s∈R on a Banach space X
and ω > θ(U ), the group type of U . We prove a transference principle that allows
to estimate ‖ f (A)‖ in terms of the Lp(R; X)-Fourier multiplier norm of f (· ± iω).
If X is a Hilbert space this yields new proofs of important results of McIntosh and
Boyadzhiev–de Laubenfels. If X is a UMD space, one obtains a bounded H∞

1 -calcu-
lus of A on horizontal strips. Related results for sectorial and parabola-type operators
follow. Finally it is proved that each generator of a cosine function on a UMD space
has bounded H∞-calculus on sectors.

Mathematics Subject Classification (2000) 47A60 · 47D06 · 44A40 · 42A45

1 Introduction

The name “transference principle’ was introduced by Coifman and Weiss in their
influential monograph [20], building on earlier work of Calderón [16]. The original
setting is in terms of a locally compact abelian group acting boundedly on some
space X = Lp(Ω,µ), but it was observed by Berkson, Gillespie and Muhly in [10]
that the restriction to Lp-spaces was unnecessary and one could in fact take as X
any Banach space. Their result was later on generalised by Berkson, Paluzyński and
Weiss to so-called transference couples [11]. For the group of real numbers, the “clas-
sical” transference principle has the following form (see [10, Theorem 2.8] or [32,
Theorem 10.5] for proofs).

M. Haase (B)
Delft Institute of Applied Mathematics, Delft University of Technology,
PO Box 5031, 2600 GA Delft, The Netherlands
e-mail: m.h.a.haase@tudelft.nl

123



246 M. Haase

Theorem 1.1 (Coifman–Weiss, Berkson–Gillespie–Muhly) Let U be a C0-group
on a Banach space X, such that ‖U (s)‖ ≤ M for all s ∈ R. Then

∥
∥
∥
∥
∥
∥

∫

R

U (s)x µ(ds)

∥
∥
∥
∥
∥
∥

≤ M2
∥
∥Lµ

∥
∥L(Lp(R;X))

‖x‖ (1)

for all x ∈ X, µ ∈ M(R), 1 ≤ p < ∞. Here, Lµ denotes the convolution operator
Lµ := ( f �→ µ ∗ f ).

So “transference” means that certain averages over the representation of the group
can be estimated by the norm of an associated convolution operator. In this man-
ner one can for example prove that restrictions to Z of Fourier multipliers on R are
Fourier multipliers on T, but there are plenty of other examples and applications of
transference, see [2,3,5–9,21,38].

Although the transference result in itself is valid in any Banach space, to be appli-
cable one usually needs special conditions. The by far most useful of these seems
to be the so-called UMD-property (see Sect. 3 below). It were Clément and Prüss
who observed in [18] the usefulness of the vector-valued (in particular: UMD-valued)
transference principle for treating problems in evolution equations. The link is via the
group of imaginary powers of a sectorial operator, and is based on the 1987 paper [23]
of Dore and Venni which established the relation between bounded imaginary powers
and the maximal regularity property of a sectorial operator. A few years later, when
McIntosh’s notion of a bounded H∞-calculus (from [34]) had become adopted by the
evolution equations community, Hieber and Prüss [31] used Theorem 1.1 to derive the
following result.

Theorem 1.2 (Hieber–Prüss) Let −iA generate a bounded C0-group on a UMD
space X. Then for every ϕ ∈ (0, π/2) the operator A has a bounded H∞(Σϕ)-calcu-
lus.

(The symbol Σϕ denotes the double sector of angle ϕ, see below.) For proofs see also
[32, Theorem 10.7] and Remark 3.8 below.

Around the year 2000 the notion of R-boundedness was fully developed and its
importance for operator-valued Fourier multiplier theorems and the maximal regu-
larity problem had been recognised by many authors; key steps were the paper [17]
and, of course, Weis’ paper [40]. In [19], using the notion of R-boundedness, Clément
and Prüss extended the transference principle and Theorem 1.2 to the operator-valued
setting and gave applications to the maximal regularity problem. See [19,22,32,40]
for more information.

Despite the wide range of applications, it is clear that confining oneself to bounded
representations of groups is a major restriction; however, it seems that no transfer-
ence result for unbounded groups is available yet in the literature. In this article we
shall fill this gap (Theorem 3.2). Moreover, we shall apply the transference principle
to obtain a generalisation of the Hieber–Prüss theorem to unbounded groups (Theo-
rem 4.6), and to obtain boundedness results for certain functional calculi of unbounded
operators (Theorem 5.1); these results are the UMD-analogues of the Hilbert space
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theorems of McIntosh [34] and of Boyadzhiev and de Laubenfels [13]. Other appli-
cations are to generators of cosine functions on UMD spaces (Theorem 5.3, Corol-
lary 5.6). Our results can also be used to obtain new proofs for important results of
Fattorini [1, Theorem 3.16.7], Dore and Venni [23] and Monniaux [35], see [29]. The
transference method was also used successfully in [30] to resolve an old problem
concerning bounded cosine functions on UMD spaces.

The paper is organised as follows. In Sect. 2 we provide without proofs the neces-
sary material on functional calculus. In Sect. 3 we prove the main transference result
(Theorem 3.2). Then we introduce UMD spaces and use Bourgain’s UMD-valued
multiplier result of Mikhlin type to derive our main result on functional calculus (The-
orem 3.6). In Sect. 4 we discuss some examples, in particular, we describe a class
of functions f such that the operator f (A) is explicitly given by a principal-value
integral (Theorem 4.4). We also give the generalisation of the Hieber–Prüss result to
unbounded groups. Section 5 is devoted to the consequences of our main results in the
context of sectorial and parabola-type operators.

Notation We usually consider (unbounded) closed operators A, B on a Banach space
X . By L(X) we denote the set of all bounded (fully-defined) operators on X . The
domain and the range of a general operator A are denoted by dom(A) and ran(A),
respectively. Its resolvent is R(λ, A) = (λ− A)−1, and �(A) denotes the set of λ ∈ C

where R(λ, A) ∈ L(X). Its complement σ(A) = C\�(A) is the spectrum. For given
ω > 0 we define

Stω := {z ∈ C | |Im z| < ω}

to be the horizontal strip of width 2ω. If ω = 0 we define St0 := R. Accordingly

Πω := {z2 | z ∈ Stω}

is the horizontal parabola, symmetric about R and unbounded to the right. Furthermore,
for ω ∈ [0, π ]

Sω := {ez | z ∈ Stω} =
{

{z �= 0 | |arg z| < ω}, ω ∈ (0, π ]
(0,∞), ω = 0

is the horizontal sector of angle 2ω, symmetric about the positive real axis. For ω ∈
[0, π/2)

Σω := Sω ∪ −Sω

is the horizontal double sector.
For each open subset Ω ⊂ C we denote by H∞(Ω) the Banach algebra of bounded

holomorphic functions on Ω . If Ω is an arbitrary locally compact space, then C0(Ω) is
the space of continuous complex-valued functions that vanish at infinity, and M(Ω) is
its dual space, the set of complex regular Borel measures on Ω . The Fourier transform
of a tempered distribution Φ on R is denoted by F(Φ) or Φ̂. We often write s and t
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(in the Fourier image) to denote the real coordinate, e.g. sin t/t denotes the function
t �→ sin t/t .

Let X be a Banach space. For a finite measure ν ∈ M(R) we denote by

Lν := ( f �→ f ∗ ν) : Lp(R; X) → Lp(R; X)

the convolution operator on the X -valued Lp-space.

2 Preliminaries on functional calculus

In this section we provide necessary facts on functional calculus. Most of the results
are well-known, cf. [31,37] and the comments in [27].

Let −iA be the generator of a C0-group (U (s))s∈R on a Banach space X . It is an
elementary fact that there exist constants M ≥ 1, ω ≥ 0 such that

‖U (s)‖ ≤ Meω|s| (s ∈ R). (2)

The infimum of all such ω ≥ 0 is called the group type of U and is (here) denoted by
θ(U ). Abstract semigroup theory yields that the resolvent of A satisfies the estimate

‖R(λ, A)‖ ≤ M

|Im λ| − ω
(|Im λ| > ω), (3)

hence A is a so-called strong strip-type operator of type ωsst (A) ≤ ω, as defined in
[27, Sect. 4.1]. There is a natural holomorphic functional calculus associated with
such operators: as a first step one uses the Cauchy formula to define

f (A) := 1

2π i

∫

Γ

f (z)R(z, A) dz, (4)

where f is a holomorphic function on a strip in the class E(θ) defined by

E(θ) :=
{

f ∈ H∞(Stθ ) | f (z) = O
(

|z|−2
)

(Re z → ±∞)
}

,

for some θ > ω. The contour Γ is the positively oriented boundary of a smaller strip
Stω′ , ω′ ∈ (ω, θ) being arbitrary. This yields an algebra homomorphism of the alge-
bra E(θ) into the algebra of bounded operators on X . In a second step, by so-called
regularisation, one defines f (A) for a much wider class of functions:

f (A) := e(A)−1(e f )(A), (5)

where e ∈ E(θ) is such that also e f ∈ E(θ) and e(A) is injective. The function e is
called a regulariser for f , and the definition of f (A) is independent of the chosen
regulariser. For example, if f ∈ H∞(Stθ ), then f is regularisable by any function
e(z) = (λ − z)−2, where |Im λ| > θ . Details of the construction as well as a listing
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of all the formal properties of the so constructed functional calculus can be found in
[27, Chapter 1 and 4].

Of particular importance in the theory of functional calculus is the so-called con-
vergence lemma. It goes back to McIntosh [34] in the sectorial case; for a proof see
[29] or [27, Prop. 5.1.4].

Proposition 2.1 (Convergence Lemma) Let A be a strong strip-type operator on
the Banach space X, with dense domain. Let θ > ωsst (A), and let ( fι)ι∈J be a net of
holomorphic functions on the strip Stθ , satisfying

(1) sup{| fι(z)| | z ∈ Stθ , ι ∈ J } < ∞;
(2) fι(z) → f (z) for every z ∈ Stθ ;
(3) supι ‖ fι(A)‖ < ∞.

Then f (A) ∈ L(X) and fι(A) → f (A) strongly.

In the case that −iA generates a C0-group there is a convenient tool to identify
functions f such that f (A) is a bounded operator. First of all, consider for s ∈ R the
function z �→ e−isz , which is bounded on every horizontal strip. We clearly expect
(e−isz)(A) = U (s) for all s ∈ R. More generally, let ω ≥ 0 be fixed such that
‖U (s)‖ ≤ Meω|s| for some M ≥ 1 and all s ∈ R, and let µ be a (complex) Borel
measure on R satisfying

‖µ‖Mω
:=

∫

R

eω|s| |µ| (ds) < ∞. (6)

Then one can set

Tµx :=
∫

R

U (s)x µ(ds) (x ∈ X). (7)

The set Mω(R) := {µ | (6) holds} is a Banach algebra with respect to convolution,
and the map (µ �→ Tµ) : Mω(R) → L(X) is a homomorphism of algebras, called the
Phillips calculus. Of course we expect Tµ = f (A) where f is the Fourier–Stieltjes
transform

f (z) = µ̂(z) :=
∫

R

e−isz µ(ds) (z ∈ Stθ )

of µ. Note that µ̂ ∈ H∞(Stω) ∩ Cb(Stω). Here is the precise result, a proof of which
is in [29], see also [31, Sect. 2].

Lemma 2.2 Let X, A, and U be as above, and let θ > ω.
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(a) Each function f ∈ E(θ) arises as a Fourier–Stieltjes transform, namely

f = ĝ with g(s) := 1

2π

∫

R

f (t)eist dt (s ∈ R).

One has g ∈ C0(R) and
∫ |g(s)| eα|s| ds < ∞ for all α ∈ [0, θ); in particular,

one has g(s)ds ∈ Mω(R).
(b) Let µ ∈ Mω(R), and suppose that f := µ̂ extends to a holomorphic function on

Stθ such that f (A) is defined. Then f (A) = Tµ ∈ L(X) and

sup
t∈R

‖ f (t + A)‖ ≤ M ‖µ‖Mω
.

The formulation of part (b) in the above proposition is due to the fact that in our
orginal set-up of the functional calculus functions had to be defined on strips strictly
larger than the spectral strip. By Lemma 2.2 we can extend the orginal definition and
write

f (A)x := Tµx :=
∫

R

U (t)x µ(dt) (x ∈ X)

whenever f = µ̂, µ ∈ Mω(R). This will induce also a compatible extension of the
unbounded functional calculus, see [27, Proposition 1.2.7].

However, as far as bounded operators are concerned, one cannot go beyond Fourier
transforms of measures µ ∈ Mω(R) in general. Indeed, if f (A) is bounded in the
special case of −iA = d/dt generating the shift group on

X := L1
ω(R) :=

⎧

⎨

⎩
f ∈ L1

loc(R) |
∫

R

f (t)eω|t | dt < ∞
⎫

⎬

⎭
,

then actually f = µ̂ for some µ ∈ Mω(R) (see for example [29, Proposition 2.3]).
One can put this remark in the form of a transference principle.

Proposition 2.3 (Transference Principle, L1-version) Let −iA generate a C0-group
U on a Banach space X, and let M ≥ 1, ω ≥ 0 be such that e−ω|t | ‖U (t)‖ ≤ M for
all t ∈ R. Then

‖ f (A)‖L(X) ≤ M ‖ f (id/dt)‖L(L1
ω(R)) (8)

for all f = µ̂, µ ∈ Mω(R).

Proof Let µ ∈ Mω(R), define f := µ̂. If A0 := id/dt on L1
ω(R), it is easily seen that

f (A0) is convolution with the measure µ∼, defined by µ∼(B) = µ(−B), and that
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the norm of this convolution operator is exactly ‖µ‖Mω
(see [29, (3)]). But it is trivial

that

‖ f (A)‖ = ∥
∥Tµ

∥
∥ ≤ M ‖µ‖Mω

and so we are done. ��
Let us mention that although this first example of a transference principle is fairly

elementary, it has important consequences. See, e.g. [4] for the case of bounded groups.
It is known for a long time that if −iA generates a group on a UMD space X , f (A)

is bounded even for functions f arising from certain principal value distributions (see
also Sect. 4 below.) In fact, this is the core of the results of Dore–Venni, Monniaux
and Fattorini, but this was fully brought to light only recently in [29]. (We are over-
simplifying here, but a more detailed discussion would lead us too far astray.) In the
following we shall extend the results from [29] towards a full bounded functional
calculus.

3 The transference principle

In the effort to obtain an analogue for unbounded groups of the classical Coifman–
Weiss transference principle (Theorem 1.1) a first progress was made recently in [29,
Theorem 3.1]. We reproduce the result here because its proof is short and instructive.

Theorem 3.1 (Transference principle, fixed compact support) Let p ∈ [1,∞), and
let U be a C0-group on a Banach space X Define M := sups∈[−2,2] ‖U (s)‖. Then

∥
∥
∥
∥
∥
∥
∥

∫

[−1,1]
U (s)x µ(ds)

∥
∥
∥
∥
∥
∥
∥

≤ 21/p M2
∥
∥Lµ

∥
∥L(Lp(R;X))

‖x‖ (9)

for all x ∈ X and all µ ∈ M[−1, 1].
Proof Let |t | ≤ 1. Then we write

Tµx =
1∫

−1

U (s)x µ(ds) = U (t)

1∫

−1

U (s − t)x µ(ds) = U (t)( f ∗ µ)(t)

where f (s) = 1[−2,2](s) U (−s)x . Hence

∥
∥Tµx

∥
∥ =

∥
∥
∥
∥
∥
∥

1

2

1∫

−1

U (t)( f ∗ µ)(t) dt

∥
∥
∥
∥
∥
∥

≤ 2
1
p′ −1

M ‖ f ∗ µ‖Lp(R;X)

≤ 2
1
p M2

∥
∥Lµ

∥
∥ ‖x‖ ,

where
∥
∥Lµ

∥
∥ = ∥

∥Lµ

∥
∥L(Lp(R;X))

. ��
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In Theorem 3.1 the actual growth type of the group is irrelevant since only measures
µ with a fixed compact support are considered. If we allow unbounded support, we
have to modify the proof. However, the strategy will be the same: we first convolve the
(slightly modified) measure µ with some function in Lp, then we integrate (against a
“test function”) and in the end obtain the operator Tµ. Given µ ∈ Mω(R) we define
the finite measure µω by

µω(ds) = cosh(ωs)µ(ds). (10)

Then the result is as follows.

Theorem 3.2 (Transference principle) Let 0 ≤ ω0 < ω, and let p ∈ [1,∞). Then
there is a constant C = C(p, ω0, ω) such that the following holds: If U is a C0-group
on a Banach space X such that

‖U (s)‖ ≤ M cosh(ω0s) (s ∈ R)

for some M ≥ 1, then

∥
∥
∥
∥
∥
∥

∫

R

U (s)x µ(ds)

∥
∥
∥
∥
∥
∥

≤ C M2
∥
∥Lµω

∥
∥L(Lp(R;X))

‖x‖ (11)

for all x ∈ X and all µ ∈ Mω(R).

Proof Fix α > ω and x ∈ X , and consider the function f , defined by

f (s) := [cosh(αs)]−1U (−s)x, (s ∈ R).

Clearly f ∈ Lp(R; X) and

‖ f ‖Lp(R;X) ≤ Mc1 ‖x‖

with c1 := ‖cosh(ω0s)/ cosh(αs)‖Lp(R). Hence

‖ f ∗ µω‖Lp = ∥
∥Lµω f

∥
∥

Lp ≤ M
∥
∥Lµω

∥
∥L(Lp(R;X))

c1 ‖x‖ .

Note that for every t ∈ R

( f ∗ µω)(t) =
∫

R

U (s − t)x
cosh(ωs)

cosh(α(s − t))
µ(ds)

= U (−t)
∫

R

U (s)x
cosh(ωs)

cosh(α(s − t))
µ(ds).
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Let ϕ be a scalar function such that ϕ(s) = O(cosh(ωs)−1) as |s| → ∞. Then

T :=
∫

R

ϕ(t)U (t)[ f ∗ µω](t) dt

=
∫

R

[ϕ ∗ cosh(α ·)−1](s) cosh(ωs) U (s)x µ(ds)

by Fubini’s theorem. If we can choose ϕ such that

[

ϕ ∗ cosh(α ·)−1
]

(s) = [cosh(ω s)]−1 (s ∈ R) (12)

then T = Tµ and

∥
∥Tµ

∥
∥ = ‖T ‖ ≤ M ‖ϕ cosh(ω0 ·)‖Lp′ M

∥
∥Lµω

∥
∥L(Lp(R;X))

c1 ‖x‖ .

To determine such a ϕ we take Fourier transforms on both sides of (12). It is known
that the function cosh−1 is almost its own Fourier transform. More precisely, one has

∫

R

e−isz

cosh(ωs)
ds = π/ω

cosh((π/2ω)z)
(|Im z| < ω)

(see [39, p. 81] for a proof). Hence we look for a function ϕ that satisfies

ϕ̂(z)
π/α

cosh((π/2α)z)
= π/ω

cosh((π/2ω)z)

that is

ϕ(t) = α

ω
F−1

(
cosh((π/2α) ·)
cosh((π/2ω) ·)

)

(t) = 2α

π
cos

(πω

2α

) cosh(ωt)

cos(πω/α) + cosh(2ωt)

(computed from the second formula of [36, p. 36]). For example, taking α = 2ω the
function

ϕ(t) =
√

8ω

π

cosh(ωt)

cosh(2ωt)
(t ∈ R)

will do. ��
Remark 3.3 It is worthwhile to compare Theorem 3.2 with Theorem 1.1. In the proof
of the former it is essential that ω is strictly larger than ω0, the exponential growth
type of the group. This matches the experience that bounded groups behave much
better than general ones. We do not expect the conclusion of Theorem 3.2 to hold for
ω = ω0.
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As in the classical case, one can phrase the transference principle in terms of norms
of Fourier multipliers. Namely, one has

2µω(ds) = 2 cosh(ωs)µ(ds) = eωsµ(ds) + e−ωsµ(ds),

and since

F(eω ·µ) = µ̂( · − iω) and F(e−ω ·µ) = µ̂( · + iω),

the convolution operator Lµω from above is the average of the two Fourier multiplier
operators with symbols µ̂( · ± iω). Denoting the space of bounded Lp(R; X)-Fourier
multipliers with Mp(X), we obtain the following.

Corollary 3.4 Let 0 ≤ ω0 < ω and p ∈ [1,∞). Then there is a constant C =
C(p, ω0, ω) such that the following holds: If U is a C0-group on a Banach space X
such that ‖U (s)‖ ≤ M cosh(ω0s) for all s ∈ R and some M ≥ 1, then

∥
∥
∥
∥
∥
∥

∫

R

U (s)x µ(ds)

∥
∥
∥
∥
∥
∥

≤ C M2
(

‖µ̂( · + iω)‖Mp(X) + ‖µ̂( · − iω)‖Mp(X)

)

‖x‖

for all x ∈ X and all µ ∈ Mω(R).

As in the classical case, the transference principle shows its full strength in a situ-
ation when one actually knows something about Lp(R; X)-Fourier multipliers. This
is the case when the Banach space has the so-called UMD property.

A Banach space X has the UMD property if every X -valued Lp-martingale has
unconditional differences. This notion was introduced by Burkholder [14] and it is
independent of p ∈ (1,∞). Burkholder [15] and Bourgain [12] showed that the UMD
property is in fact equivalent to the boundedness of the Hilbert transform on L2(R; X).
To make this explicit, consider the truncated Hilbert transform

Hε f (s) :=
∫

|t |≥ε

f (s − t)
dt

t
( f ∈ L2(R; X)).

Then X is UMD if and only if (Tε)ε is uniformly bounded in L(L2(R; X)) if and only
if (Hε)ε converges as ε ↘ 0 strongly in L(L2(R; X)) to a bounded operator H. The
operator H is called the Hilbert transform. On UMD spaces we have the following
Mikhlin-type multiplier theorem [41].

Lemma 3.5 (Mikhlin, UMD-valued) Let X be a UMD space and p ∈ (1,∞). Then
there is a constant C p such that every m ∈ C1(R\{0}) with

cm := sup
t∈R\{0}

|m(t)| + sup
t∈R\{0}

∣
∣tm′(t)

∣
∣ < ∞.

is a bounded Lp(R; X)-multiplier such that ‖m‖Mp(X) ≤ C pcm.
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Using this fact we can now state and prove the main result on functional calculus.
For θ > 0 define

H∞
1 (Stθ ) := {

f ∈ H∞(Stθ ) | z f ′(z) ∈ H∞(Stθ )
}

.

This set is a Banach algebra with the norm

‖ f ‖H∞
1

:= sup
z∈Stθ

| f (z)| + ∣
∣z f ′(z)

∣
∣ .

Every elementary rational function (λ − z)−1, |Im λ| > θ , belongs to H∞
1 (Stθ ).

Theorem 3.6 (Functional calculus) Let X be a UMD space and let −iA be the gen-
erator of a strongly continuous group U = (U (s))s∈R on X. Let θ > θ(U ). Then
there is a constant c > 0 such that f (A + r) is bounded for every f ∈ H∞

1 (Stθ ) and
every r ∈ R, and

‖ f (A + r)‖ ≤ c ‖ f ‖H∞
1 (Stθ ) . (13)

Proof Let M ≥ 1 and ω0 ∈ [0, θ) such that ‖U (s)‖ ≤ M cosh(ω0s), s ∈ R, and
choose ω ∈ (ω0, θ). In a first step, take f ∈ H∞

1 (Stθ ) ∩ E(Stθ ). Then by Lemma 2.2
there is a function g on R such that g(s)ds ∈ M(R) and ĝ = f . Fixing x ∈ X and
applying Corollary 3.4 yields

‖ f (A + r)x‖ =
∥
∥
∥
∥
∥
∥

∫

R

g(s)e−isr U (s)x ds

∥
∥
∥
∥
∥
∥

≤ C M2 ‖x‖ (‖ f ( · + iω)‖M2(X) + ‖ f ( · − iω)‖M2(X)

)

,

which by Lemma 3.5 can be estimated further by

≤ C ′M2 ‖x‖
(

‖ f ‖∞ + sup
t∈R

∣
∣t f ′(t + iω)

∣
∣ + ∣

∣t f ′(t − iω)
∣
∣

)

≤ C ′′M2 ‖x‖ ‖ f ‖H∞
1 (Stθ ) .

To complete the proof of the theorem, we employ the Convergence Lemma (Proposi-
tion 2.1). Let τn(z) := in(in−z)−1 for n ∈ N large. Then τn ∈ H∞

1 , supn ‖τn‖H∞
1

< ∞
and τn → 1 uniformly on compacts. Let f ∈ H∞

1 be arbitrary and define fn := f τ 2
n .

Then k := supn

∥
∥ f τ 2

n

∥
∥

H∞
1

< ∞, in particular: supn

∥
∥ f τ 2

n

∥
∥∞ < ∞ and fn → f

uniformly on compacts. Clearly fn ∈ E(Stθ ), so we know already that

‖ fn(A + r)‖ ≤ C ′′M2 ‖ fn‖H∞
1 (Stθ ) ≤ C ′′M2k
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independent of n ∈ N and r ∈ R. Applying the Convergence Lemma yields that
f (A + r) ∈ L(X) and

‖ f (A + r)‖ ≤ C ′′M2
(

lim sup
n

∥
∥
∥τ 2

n

∥
∥
∥

H∞
1

)

‖ f ‖H∞
1

for all r ∈ R. ��
If X happens to be a Hilbert space, one obtains a much better result. In fact, instead

of Lemma 3.5 one can use Plancherel’s theorem and estimate

∥
∥Lµω

∥
∥ ≤ 1

2
‖µ̂( · + iω)‖∞ + 1

2
‖µ̂( · − iω)‖∞ ≤ ‖µ̂‖H∞ .

By using the Convergence Lemma as in the previous proof, this leads to the following.

Corollary 3.7 (Boyadzhiev–de Laubenfels) Let −iA be the generator of a C0-group
U on a Hilbert space H. Then for every θ > θ(U ) the natural H∞(Stθ )-calculus is
bounded.

This theorem was originally proved in [13], but subsequently reproved in [24] and
[26], cf. also [27, Sect. 7.2].

Remark 3.8 The proof of Theorem 3.6 carries over to a proof of the Hieber–Prüss
Theorem 1.2; one has to use Theorem 1.1 instead of Theorem 3.2, and Lemma 4.5
below.

4 Some classes of examples

We are going to discuss some classes of functions f ∈ H∞
1 . The first avoids involving

derivatives.

Lemma 4.1 Let ω > 0 and let f ∈ H∞(Stω). If there exist a, b ∈ C such that

f (z) − a = O(z−1) as Re z → +∞ and

f (z) − b = O(z−1) as Re z → −∞,

then f ∈ H∞
1 (Stθ ) for every θ ∈ (0, ω).

Proof Define g(z) = z f (z)−az. This is bounded on the half-strip (Re z ≥ 0, |Im z| <

ω). Cauchy’s formula yields

g′(z) = 1

2π i

∫

Γ

g(w)

(w − z)2 dw,

where Γ is the positively oriented boundary of a right half-strip within the orginal one
and z is within this smaller half-strip. Consequently, g′ is uniformly bounded on every
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even smaller half-strip. But g′(z) = f (z) + z f ′(z) − a, and so z f ′(z) is bounded on
that half-strip. Analogously, z f ′(z) is bounded on left half-strips, and so we conclude
that z f ′(z) is bounded on whole strips Stθ , θ ∈ (0, ω). ��

We now turn to a class of examples where one actually has a representation of f (A)

as a principal value integral. For an even function g ∈ L1(−1, 1) (i.e., g(t) = g(−t))
we define the distribution PV − g(s)/s by the formula

〈

PV − g(s)

s
, ϕ

〉

:= lim
ε↘0

∫

ε<|s|<1

g(s)ϕ(s)
ds

s
=

1∫

0

g(s)
ϕ(s) − ϕ(−s)

s
ds

for any test function ϕ ∈ D(R). Then it is clear that

∣
∣
∣
∣

〈

PV − g(s)

s
, ϕ

〉∣
∣
∣
∣
≤ ‖g‖L1(−1,1)

∥
∥ϕ′∥∥∞

whence PV − g(t)/t is in fact a distribution of first order. The proof of the following
lemma is easy (see [29]).

Lemma 4.2 Let g ∈ L1(−1, 1) be even and define h := PV − g(t)/t as above. Then
the following assertions hold.

(a) h is an odd distribution.
(b) Its Fourier transform is

ĥ(z) = PV −
1∫

−1

g(t)e−isz ds

s
= (−2i)

1∫

0

sin(sz)

s
g(s) ds (z ∈ C).

(c) One has
d

dz
ĥ(z) = (−i)̂g(z), z ∈ C, and ĥ(0) = 0.

In [29] we considered even functions g ∈ L1(1, 1) such that, for some c ∈ C,

1∫

0

∣
∣
∣
∣

g(s) − c

s

∣
∣
∣
∣

ds < ∞;

this reduces the problem to the case that g is constant. Here we can give a generalisation
where we merely assume that g has bounded variation.

Lemma 4.3 Let g ∈ BV[−1, 1] be an even function and define f := F(PV−g(s)/s).
Then f ∈ H∞

1 (Stθ ) for every θ > 0. Moreover, for each θ > 0 there is a constant cθ

such that

‖ f ‖H∞
1 (Stθ ) ≤ cθ (Var[0,1](g) + g(1)) (14)

for all g ∈ BV[0, 1], f = F(PV − g(s)/s)).

123



258 M. Haase

Proof We first estimate
∣
∣z f ′(z)

∣
∣ and write

z f ′(z) = (−i)̂g(z) = (−2i)

1∫

0

z cos(sz)g(s) ds = (−2i)

1∫

0

g(s) d(sin(sz))

= (−2i)

⎛

⎝g(1) sin(z) −
1∫

0

sin(sz) dg(s)

⎞

⎠ .

This yields

∣
∣z f ′(z)

∣
∣ ≤ 2eθ (Var[0,1](g) + g(1)) (z ∈ Stθ ).

To estimate | f (z)| itself, we write

f (z) = (−2i)

1∫

0

sin(sz)

s
g(s) ds = (−2i)

1∫

0

g(s)d

⎛

⎝

s∫

0

sin(r z)

r
dr

⎞

⎠

= (−2i)

⎛

⎝g(1)

1∫

0

sin(r z)

r
dr −

1∫

0

s∫

0

sin(r z)

r
dr dg(s)

⎞

⎠

Hence | f (z)| ≤ 2c′
θ (Var[0,1](g) + g(1)), where c′

θ is the supremum norm of the func-

tion
∫ 1

0 sin(sz) ds/s on the strip Stθ ; this is easily seen to be finite, cf. [29, Lemma 3.3].
��

If g, f are as before, then by Theorem 3.6, f (A) is a bounded operator whenever
−iA generates a C0-group on a UMD space X . However, we can say (a little) more.

Theorem 4.4 Let g ∈ BV[−1, 1] be an even function, and let f := F(PV − g(s)/s).
Let X be a UMD space, and let −iA be the generator of a C0-group U = (U (s))s∈R

on X. Then f (A) is bounded, and

f (A)x = PV −
1∫

−1

g(s)U (s)x
ds

s
:= lim

ε↘0

∫

ε≤|s|≤1

g(s)U (s)x
ds

s

for every x ∈ X.

Proof Consider the function gε = g(1−1(−ε,ε)). Then gε(1) = g(1) and supε Var[0,1]
(gε) < ∞. Let fε := F(gε(s)/s). Clearly fε → f pointwise, and supε ‖ fε‖H∞

1 (Stθ ) <

∞, by Lemma 4.3. So the statement follows from Theorem 3.6 and the Convergence
Lemma. ��
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The last class of examples involve functions that are bounded and holomorphic not
only on a strip but on a region

Vϕ,θ := Stθ ∪ Σϕ

for some θ > 0, ϕ ∈ (0, π/2). (Recall that Σϕ is a double sector and Stθ is a horizontal
strip. The set Vϕ,θ is sometimes called a Venturi region—inspired by the Venturi tube
from fluid dynamics. We shall need the following fact.

Lemma 4.5 Let 0 < θ < ϕ < π/2. Then there is a constant c = c(θ, ϕ) such that

sup{∣∣z f ′(z)
∣
∣ | z ∈ Σθ } ≤ c ‖ f ‖H∞(Σϕ) ( f ∈ H∞(Σϕ)).

Analogously, for any 0 < θ < ϕ < π there is a constant c = c(θ, ϕ) such that

sup{∣∣z f ′(z)
∣
∣ | z ∈ Sθ } ≤ c ‖ f ‖H∞(Sϕ) ( f ∈ H∞(Sϕ)).

Proof The proof uses the Cauchy integral formula, and is easy. See [31, Sect. 4] or
[27, Lemma 8.2.6]. ��

Now we can state the theorem, which is an analogue for unbounded groups of the
Hieber–Prüss Theorem 1.2.

Theorem 4.6 Let X be a UMD space, and let −iA be the generator of a strongly
continuous group U = (U (s))s∈R on X. Let θ > θ(U ) and ϕ ∈ (0, π/2). Then A has
a bounded H∞(Vϕ,θ )-calculus. More precisely, there is a constant c > 0 such that

‖ f (A + r)‖ ≤ c ‖ f ‖∞ (r ∈ R, f ∈ H∞(Vϕ,θ )),

where ‖ f ‖∞ denotes the supremum norm of f on Vϕ,θ .

Proof By virtue of Theorem 3.6 it suffices to show the continuous inclusion

H∞(Vϕ,θ ) ⊂ H∞
1 (Stθ ′)

for θ ′ ∈ (θ(U ), θ). But this follows easily from Lemma 4.5, (a). ��

5 Sectorial operators and cosine generators

We briefly discuss applications of the previous results to sectorial operators and oper-
ators that generate cosine functions.

An operator A on a Banach space X is called sectorial of angle ω ∈ [0, π) if

{z ∈ C\{0} | ω < |arg z| ≤ π} ⊂ �(A)

and for every ω′ ∈ (ω, π)

M(A, ω′) := sup{‖z R(z, A)‖ | ω′ ≤ |arg z| ≤ π} < ∞.
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The minimum of all ω such that A is sectorial of angle ω is denoted by ωsect(A), and
is called the sectoriality angle. Basic properties of sectorial operators can be found
in [33, Chapter 1] or [27, Chapter 2]. As in the case of (strong) strip-type operators
one has a certain functional calculus for sectorial operators. (A detailed description
can be found in [27].) If the sectorial operator A is injective, then log A is defined,
as is f (A) for each f ∈ H∞(Sϕ), where ϕ ∈ (ω, π). Moreover, log(A) is a strong
strip-type operator, with ωsst (log(A)) = ωsect(A), and there is a composition rule:

f (log(A)) = ( f ◦ log z)(A) (ω ∈ (ωA, π), f ∈ H∞(Stω). (15)

See [27, Chapter 4] for these results. The sectorial operator A is said to have bounded
imaginary powers if it is injective and −i log(A) generates a C0-group U . In this case
U (s) = A−is , s ∈ R. One writes θA := θ(U ) for the type of this group. By a result
of Prüss and Sohr one has ωsect(A) ≤ θA, see [27, Corollary 4.3.4] or [25] for an
alternative proof. In the case that X = H is a Hilbert space then θA = ωsect(A) (a
result of McIntosh, see also [27, Corollary 4.3.5]). If A has bounded imaginary powers
one writes A ∈ BIP(X).

Let ϕ ∈ (0, π) and let

H∞
log(Sϕ) := { f ∈ H∞(Sϕ) | z(log z) f ′(z) ∈ H∞(Sϕ)}

with the obvious norm. Then we have the following theorem.

Theorem 5.1 Let X be a UMD space and let A ∈ BIP(X) such that θA < π . Then
the following assertions hold.

(a) A has a bounded H∞
log(Sϕ)-calculus, for every ϕ ∈ (θA, π).

(b) If X = H is a Hilbert space, then A has a bounded H∞(Sϕ)-calculus, for every
ϕ ∈ (ωA, π).

Statement (b) is due to McIntosh [34], statement (a) is new. Note that if f ∈
H∞(Stϕ) one anyway has that z f ′(z) is bounded on each smaller sector (see the proof
of Theorem 4.6 above).

Proof By virtue of the composition rule (15) (b) follows from Corollary 3.7 and (a)
follows from Theorem 3.6. Note that the mapping

( f �→ f ◦ (log z)) : H∞
1 (Stϕ) → H∞

log(Sϕ)

is an isometric isomorphism. ��
Let us turn to a different application. Note that if −A generates a bounded C0-semi-

group, then A is sectorial of angle ≤ π/2.

Theorem 5.2 Let −A generate an exponentially stable semigroup T on a UMD space
X. If T is a group, then for every ϕ ∈ (π/2, π) the H∞(Sϕ)-calculus for A is bounded.
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Proof This follows from Theorem 4.6 by rotating and shifting. Furthermore, one
needs a certain compatibility of functional calculi (for sectorial operators and for
(rotated, shifted) strip-type operators. This compatibility is straightforward on the
level of elementary calculi by path deforming, and so holds for extended calculi, cf.
[27, Proposition 1.2.7]. ��

Our techniques allow new proofs of the theorems of Monniaux [35] and Dore and
Venni [23]; this is discussed at length in [29].

Let us turn to generators of cosine functions. We shall be sketchy in providing the
background, referring to [1, Sect. 3.14–3.16] for the general facts, and to [28] for
functional calculus matters.

A cosine function on a Banach space X is a strongly continuous mapping Cos :
R → L(X) that satisfies the identity

Cos(t + s) + Cos(t − s) = 2 Cos(t) Cos(s) (t, s ∈ R)

and Cos(0) = I . One can prove from this that a cosine function is exponentially
bounded, i.e.,

θ(Cos) := inf
{

ω ≥ 0 | ∃M ≥ 1 : ‖Cos(t)‖ ≤ Meω|t |, t ∈ R

}

< ∞.

The generator of a cosine function Cos is defined as the unique operator A such that

λR(λ2, A) =
∞∫

0

e−λt Cos(t) dt (λ > θ(Cos)). (16)

The cosine function then provides solutions to the second-order abstract Cauchy prob-
lem

u′′(t) = Au, u(0) = x, u′(0) = 0.

From (16) it follows that B := −A is an operator of parabola type ω0 := θ(Cos), by
which we mean that σ(B) ⊂ Πω0 and for every ω > ω0 there exists Mω such that

‖R(µ, A)‖ ≤ Mω√|µ| (∣∣Im √
µ

∣
∣ − ω

) (µ /∈ Πω).

(Here
√

µ denotes any choice of a square root of µ.) As for strong strip-type or secto-
rial operators there is a natural holomorphic functional calculus associated with such
parabola-type operators. The procedure is canonical: one considers holomorphic func-
tions f living on parabolas Πω with ω > ω0. If such a function has good decay at
infinity, one may define

f (B) := 1

2π i

∫

∂Πω′

f (z)R(z, B) dz,
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where ω′ ∈ (ω0, ω) is arbitrary. This gives a primary calculus, and by regularisation
[27, Sect. 1.2] one extends this to a large algebra of meromorphic functions on Πω,
including in particular H∞(Πω). If A = −B happens to generate a cosine function,
one has

Cos(t) = cos(t
√

z)(B) (t ∈ R).

Note that since cos is even, cos(t
√

z) is a well-defined bounded holomorphic function
on Πω. See [28] for proofs and more information.

The idea of reducing the second-order equation to a first-order system leads to the
notion of phase space. Namely, the operator matrix

A :=
(

0 I
A 0

)

is the generator of a C0-group U on a space of the form X := X × V ⊂ X × X , the
so-called phase space. Kisyński has shown that there is a unique subspace of X × X
with this property, and therefore it was proposed recently that the space V (which
apparently determines the phase space) should be called the Kisyński space. It was
observed in [29, Appendix] that θ(U) = θ(Cos) and that V and hence X is UMD
(Hilbert) if X is UMD (Hilbert). (This was known before, but by an a posteriori
argument. See [29] for details on this admittedly cryptic remark.) Since

A2 =
(

A 0
0 A

∣
∣
V

)

on dom(A) × dom(A
∣
∣
V )

is in diagonal form, properties of A can be deduced from properties of A2. In particular,
one has

(

f (−A) 0
0 f (−A)

∣
∣
V

)

= f (−A2) = f (z2)(i A)

for bounded holomorphic functions f on the parabola Πω, ω > θ(Cos) = θ(U).
Writing B := i A we have that −i B generates U and we can apply our results from
above. As in the strip case we write

H∞
1 (Πω) := {

f ∈ H∞(Πω) | z f ′(z) ∈ H∞(Πω)
}

,

and endow it with the canonical norm.

Theorem 5.3 Let A = −B generate a cosine function Cos on the UMD space X, and
let ω > θ(Cos).

(a) The operator B has a bounded H∞
1 (Πω)-calculus.

(b) If X = H is a Hilbert space, then B has a bounded H∞(Πω)-calculus.

The same statements are true for the operator B
∣
∣
V .
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Proof By our remarks above, f (B)⊕ f (B
∣
∣
V ) = f (z2)(B). Now, writing w = z2 we

see that

2w f ′(w) = z
d

dz

(

f (z2)
)

so f ∈ H∞
1 (Πω) if and only if f (z2) ∈ H∞

1 (Stω). Since −i B generates the group
U on the UMD space X = X × V , we can apply Theorem 3.6, (a) to conclude that
f (z2)(B) is a bounded operator for all f ∈ H∞

1 (Πω), and this proves (a).
If X = H is a Hilbert space, then V is also a Hilbert space, and we may apply

Corollary 3.7 to prove claim b). ��
Remark 5.4 Part b) of Theorem 5.3 improves the known results [27, Sect. 7.4] in that
we now have the additional information that the group on V × H has the same growth
type as the original cosine function, and so no shifting is needed any more.

If B is an operator of parabola-type ω0, then for large λ > 0 the operator λ + B
will be sectorial. In fact, simple geometry yields that for θ ∈ (0, π/2] and ω ≥ 0

(ω/ sin θ)2 + Πω ⊂ Sθ , (17)

and some further computation shows that the operator Bθ := B + (ω0/ sin θ)2 is
sectorial of angle θ , see [28, Proposition 7.6]. Furthermore, if −B generates a cosine
function then so does −Bθ , by perturbation theory [1, Corollary 3.14.10].

Theorem 5.5 Let A = −B be the generator of a cosine function Cos on the UMD
space X. Let θ ∈ (0, π/2] and set Bθ := −A + (ω0/ sin θ)2, where ω0 := θ(Cos) is
the exponential growth type of the cosine function. Then the operator Bθ has bounded
H∞(Sϕ)-calculus for every ϕ ∈ (θ, π).

Proof Choose θ ′ ∈ (θ, ϕ) and define ω:=(ω0 sin θ ′/ sin θ)>ω0 and λ:=(ω/ sin θ ′)2=
(ω0/ sin θ)2. Let f ∈ H∞(Sϕ) and define g(z) := f (λ+ z). Then obviously f (Bθ ) =
f ((ω0/ sin θ)2 + B) = f (λ + B) = g(B). Now g ∈ H∞

1 (Πω). To see this note first
that by (17)

λ + Πω = (

ω/ sin θ ′)2 + Πω ⊂ Sθ ′ ⊂ Sϕ,

so g is bounded on Πω by ‖ f ‖H∞(Sϕ). Moreover,

∣
∣zg′(z)

∣
∣ =

∣
∣
∣
∣

z

z + λ

∣
∣
∣
∣

∣
∣(z + λ) f ′(z + λ)

∣
∣ ≤ c

∣
∣
∣
∣

z

z + λ

∣
∣
∣
∣
‖ f ‖H∞(Sϕ) (z ∈ Πω)

for some constant c, by Lemma 4.5; since −λ /∈ Πω, the first factor is bounded on
Πω. We may now apply Theorem 5.3 to conclude that f (Bθ ) = g(B) is bounded. ��
Corollary 5.6 Let A be the generator of a cosine function on the UMD space X. If
B := −A is sectorial and invertible, then B has bounded H∞(Sϕ)-calculus for every
ϕ ∈ (ωsect(B), π).
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Proof Fix ϕ ∈ (ωsect(B), π). Since B is assumed to be invertible, standard perturba-
tion theory [27, Corollary 5.5.5] shows that it suffices to prove that λ+ B has bounded
H∞(Sϕ)-calculus, for some λ > 0. By Theorem 5.3, λ := (ω0/ sin θ)2 will do, where
ω0 is the exponential growth type of the cosine function generated by A = −B and
θ ∈ (0, ϕ) is arbitrary. ��

Remark 5.7 In analogy with groups one would expect much stronger results for
bounded cosine functions. And indeed, in [30] a transference principle for bounded
cosine functions was established, and it was used to show that every bounded cosine
function on a UMD space has a uniformly bounded square root reduction group. This
had been an open problem for quite some time.
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