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Abstract Viterbo demonstrated that any (2n − 1)-dimensional compact hypersur-
face M ⊂ (R2n, ω) of contact type has at least one closed characteristic. This result
proved the Weinstein conjecture for the standard symplectic space (R2n, ω). Various
extensions of this theorem have been obtained since, all for compact hypersurfaces.
In this paper we consider non-compact hypersurfaces M ⊂ (R2n, ω) coming from
mechanical Hamiltonians, and prove an analogue of Viterbo’s result. The main result
provides a strong connection between the top half homology groups Hi (M), i =
n, . . . , 2n − 1, and the existence of closed characteristics in the non-compact case
(including the compact case).

1 Introduction

It was proven by Rabinowitz [24,25] that any starshaped and compact hypersurface
in R

2n , i.e., a hypersurface that occurs as a regular energy surface of the Hamilton
equations, contains at least one periodic orbit for the Hamilton equations, also called a
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248 J. B. van den Berg et al.

closed characteristic. At the same time a similar result was obtained by Weinstein for
convex hypersurfaces [33] and under the assumption of compactness he reformulated
this problem in symplectically invariant terms, generalizing the convexity hypothesis.
Triggered by these results Weinstein [34] conjectured that compact smooth hyper-
surfaces M ⊂ R

2n (in fact an arbitrary symplectic manifold) with H1(M) = 0, that
satisfy a specific geometric property, always contain a closed characteristic for the
(normalized) Hamilton equations

x ′ = JnM .

Here nM is the outward pointing normal on M and J = (
0 −1
1 0

)
the standard symplec-

tic matrix, i.e. ω(·, J ·) = 〈·, ·〉, with ω the standard symplectic form on R
2n , and 〈·, ·〉

the standard inner product. Viterbo [31] proved Weinstein’s conjecture in R
2n with-

out the condition on the first homology group. The geometric condition in Weinstein’s
conjecture, known as the contact type condition, can be explained as follows. A hyper-
surface M ⊂ R

2n is of contact type if there exists a so-called Liouville vector field Y
(i.e. a vector field Y such that LYω = ω) defined on a neighborhood of M , which is
transverse to M . Given such a Liouville vector field Y , the associated 1-form α = iYω

is a contact form on M . There are examples by Ginzburg of compact hypersurfaces
which are not of contact type and contain no closed characteristics [11,12].

To give some more background, the problem posed by Weinstein can also be phrased
in purely geometric terms. The characteristic line bundle of M is defined by

�M = {
ξ ∈ T M

∣
∣ iξω = 0 on T M

}
.

A closed characteristic of M is an embedded circle γ : S1 → M such that T γ = �M

on γ . For a hypersurface M ⊂ (R2n, ω) the contact type condition is equivalent to the
existence of a 1-form α on M such that dα = ω|M , and α is non-vanishing on �M\{0}.
As we mentioned before, Viterbo proved that any compact hypersurface M ⊂ (R2n, ω)

of contact type has a closed characteristic for the characteristic line bundle. We note
that regular compact and starshaped hypersurfaces, as considered by Rabinowitz, are
automatically of contact type [16]. In that sense the results on compact hypersurfaces
of contact type are an extension of the results by Rabinowitz.

The objective of this paper is to investigate this result in the case of non-compact
hypersurfaces. In particular the connection between the existence of closed character-
istics and the topology and geometry of a hypersurface. The complications encountered
in dealing with the non-compactness of a hypersurface lead to formidable difficulties.
Therefore, in this paper, we choose to consider the class of hypersurfaces that occur as
energy surfaces of a classical mechanical Hamiltonians. For compact hypersurfaces
coming from mechanical Hamiltonians existence of closed characteristics was proven
by Weinstein [33]. To be precise about this definition, let (p, q) be the standard sym-
plectic coordinates on R

2n , and consider a hypersurface M ⊂ R
2n given as 0-level set

of a Hamiltonian function H(p, q) = 1
2 |p|2 + V (q), i.e.

M = H−1(0) =
{
(p, q) ∈ R

2n
∣∣ 1

2 |p|2 + V (q) = 0
}
,
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where the potential V is a C2(Rn; R) function (in particular, it is not singular). From
now on we will restrict our attention to hypersurfaces of the above type, which we refer
to as mechanical hypersurfaces. There is some freedom in the choice of the potential.
Let N be the projection of M onto the q-coordinate:

N = π(M) = {q ∈ R
n | V (q) ≤ 0},

where π is the projection (p, q) �→ q. The shape of M only fixes the function V on
N ⊂ R

n , hence on R
n − N the potential can be suitably altered. We point out that for

mechanical systems the energy surfaces M are non-compact if and only if the config-
uration space N = π(M) is non-compact. If one were to consider an indefinite kinetic
energy term 1

2 〈Ap, p〉, then such systems would allow non-compact energy surfaces
with sometimes compact components in N . Problems of that type were considered for
example in [8,17,18], and they also occur for second order Lagrangians [1,6,19,30].

Regular energy surfaces of mechanical systems are always of contact type, also in
the non-compact case, cf. [1]. Some simple counterexamples show that non-compact
hypersurfaces of contact type need not contain any closed characteristics in general.
Consider M1 = {|p|2 −|q|2 −1 = 0} ∼= Sn−1 ×R

n , which is of contact type by virtue
of the contact form α = 1

2 (pdq −qdp), but clearly contains no closed characteristics.
The nonzero homology groups in this cases are H0(M1) = Hn−1(M1) ∼= Z. The topo-
logically different example M2 = {|p|2 +∑n−1

i=1 q2
i + 2

π
arctan qn = 1} ∼= S2n−2 × R

also contains no closed characteristics, and its homology is given by H0(M2) =
H2n−2(M2) ∼= Z, and zero elsewhere.

For compact hypersurfaces Poincaré duality reveals that the first n Betti numbers
are equal to the last n Betti numbers: βi = β2n−1−i , or more precisely Hi (M) ∼=
H2n−1−i (M). In the non-compact case this result is not true; since M is orientable it
holds that M is non-compact if and only if H2n−1(M) = 0. Our main theorem states
that the latter n homology groups give information about the existence of closed char-
acteristics. In the above examples, the manifold M1 has nontrivial homology for i < n
only, while M2 has nontrivial homology for i = 2n − 2. Nevertheless, both examples
have no closed characteristics. Topology is thus not the only requirement for existence.
An additional geometric condition is needed in the non-compact case. The topolog-
ical information about M will be used to construct critical values of an appropriate
action functional and therefore construct closed characteristics. In Viterbo’s proof of
the Weinstein Conjecture compactness is used analytically for the convergence of
Palais–Smale sequences, and topologically to construct critical points of the action
functional. We want to replace compactness by a geometric condition that still ensures
Palais–Smale sequences to converge, yet allows for hypersurfaces to be non-compact.

Let us fix some notation: DV denotes the gradient of V , while D2V is the matrix
of second derivatives of V . As usual, the hypersurfaces under consideration should
be regular (i.e. not containing any critical points, or equivalently DV 
= 0 on ∂N ). In
addition, hypersurfaces are assumed to satisfy the asymptotic regularity condition

|DV (q)| ≥ c > 0 and
‖D2V (q)‖
|DV (q)| → 0, as |q| → ∞.
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Here the constant c is a q-independent positive constant. Intuitively, the former assump-
tion excludes large (near-) critical points (which obviously would lead to difficulties
in Palais–Smale sequences). The latter, slightly more technical, assumption gives us,
asymptotically, some control over the rate of change of DV . Note that many polyno-
mial potentials satisfy these conditions. In Sect. 7 we discuss a set of slightly different
sufficient assumptions (also including the possibility of exponential growth of V ).
Under this geometric assumption on the asymptotic behavior of the potential, which
ensures the necessary compactness properties for our problem, a topological condition
implies the existence of a closed characteristic on M .

Theorem 1 Let M be a regular mechanical hypersurface of dimension 2n − 1 which
is asymptotically regular. If Hi (M) 
= 0 for some i ≥ n, then M contains a closed
characteristic.

Notice that this topological condition means that we need one nonzero homology
group among the top half, which implies that compact hypersurfaces always contain
a closed characteristic since H2n−1(M) ∼= Z. The example M1 given above shows
that Theorem 1 is sharp in its setting with respect to the topological condition. On the
other hand, the example M2 shows that an additional geometric condition is indeed
necessary. This theorem deals with general non-compact hypersurfaces. As opposed
to compact hypersurfaces very few results are known about the non-compact case.
A special case, namely when the complement of N is disconnected, was studied by
Offin [22], where some rather complicated additional conditions were needed. Other
examples of closed characteristics on non-compact hypersurfaces occur in singular
potentials, see e.g. [27,28]. Also for systems with indefinite kinetic energy, yield-
ing non-compact energy surfaces, various existence results for closed characteristics
have been obtained, see e.g. [8,17–19,30]. In this paper we consider a very general
topological property [see also Proposition (2)] that leads to the existence of closed
characteristics. Furthermore, the asymptotic regularity condition is not too restrictive,
very concrete and easily checked for examples.

The proof of Theorem 1 hinges on two ideas. The analytical part is to formulate
a variational setting for finding closed characteristics as critical points, establishing
a version of the Palais–Smale condition along the way. We allow variations in both
the profile and the period in order to be able to determine a priori the energy level in
which the closed orbit is found. We introduce a penalizing function for the Lagrangian
action. In essence, this allows us to reduce Palais–Smale sequences to ones consisting
of periodic solutions for approximating problems (on nearby or not-so-nearby energy
levels) in which we then take the appropriate limit (Sect. 3). Another essential step
in this analysis is to obtain the right function space bounds, for which we employ
geometric properties of V and thus of M . The fact that the contact type condition
always holds for mechanical hypersurfaces also plays an important role. The asymp-
totic regularity condition introduced above enables us to carry out these analytical
steps. We emphasize again that the asymptotic regularity is a very mild condition. As
examples, any asymptotically quadratic potential, i.e. D2V (q) tends to some invert-
ible matrix as |q| → ∞, is asymptotically regular. More generally, if the spectrum of
the matrices D2V (q) is bounded away from zero and infinity for large q, then V is
asymptotically regular. Also, the class of compact hypersurfaces forms a special case
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of Theorem 1 (the potential outside the compact projection N can easily be chosen
to be asymptotically regular). Another family of examples covered by Theorem 1 are
potentials of the form V (q) = Pk(q) + ∑n

j=1 C j q
k+1
j , where C j 
= 0, and Pk(q) is

any k-th order polynomial. In this case Theorem 1 immediately applies. We should
point out that this argument also holds for potentials which are obtained by compactly
supported perturbations of such polynomials. In Sect. 7 we present some alternatives
for the asymptotic regularity condition. In that context we also discuss the relation with
the contact type condition. This is best postponed until after the proof of Theorem 1,
where the main analytical steps are explained.

Concerning the topological part we employ a variational linking principle that leads
to Theorem 1. This linking principle is completely homological in nature (see Sect. 4).
Since we allow variations in the periodic profiles as well as in the period, the link-
ing sets have to be chosen in a rather subtle way (see Sect. 5) using the homological
characterization of the topology of M provided in Proposition (2) below. Let us give
the intuitive idea behind the linking principle. Two sets A0 and S0 in R

n are said to
homologically link if the inclusion-induced homomorphism

ji : Hi (A0) −→ Hi (R
n − S0),

is nontrivial for some 0 ≤ i ≤ n, i.e., ji does not map the whole of Hi (A0) to the
zero element in Hi (R

n − S0). This means that there exists a nontrivial homology class
[a0] ∈ Hi (A0)which is also a nontrivial class in Hi (R

n − S0), and since H∗(Rn) = 0,
the representative a0 can be ‘filled’ so that S0 intersects any such filled set. From link-
ing sets A0 and S0 in R

n we can ‘grow’ a link in R
n+1, see Fig. 1 for an example from

R
2 to R

3. Since our variational setup is not in R
n but in an infinite dimensional func-

tion space (H1(S1)×R) we need to grow, or lift, a link (A0, S0) in R
n to a link (A, S)

in the function space. The minimax principle in e.g. [7] or [23] then states that for
any link (A, S) one can minimax a functional over the link as follows: maximize over
a ‘fill’ of A, and minimize over all admissible ‘fills’, see Sect. 4. The difficulty is
twofold: find an appropriate “initial” link (A0, S0) in R

n , and then construct a lift to
a link (A, S) in the function space. In Sect. 5.3 all details are explained. As for the
initial link, we invoke the topology of M . This topology is characterized in terms of
the 0-sublevel set of the potential V as follows. Recalling that N is the projection of

Fig. 1 The left and middle picture show linking sets in R
2 and R

3, respectively. The filled sets are indicated
in each one. The figure on the right depicts how a link (A0, S0) in R

2 can be grown into a link ( Ā0, S0) in R
3
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M onto the q-coordinate, we have that

M ∼=
(

Sn−1 × N
)

∪Sn−1×∂N

(
Dn × ∂N

)
.

The topological information from Hi (M) is closely related to the topology of the
projection N , and, in particular, its complement.

Proposition 2 Let M be a regular mechanical hypersurface of dimension 2n−1, then

Hi+n(M) ∼= H̃i (R
n − N ), 0 ≤ i ≤ n − 1.

As usual, H̃∗ denotes reduced homology. The nontrivial topology of the comple-
ment of the projection of M is used in an essential way to construct an initial link
(A0, S0). We take S0 = N , and since Hi (M) 
= 0 for some i ≥ n implies that
H̃i−n(R

n − N ) 
= 0, one can, roughly speaking, find a set A0 ⊂ R
n such that [A0]

is a nonzero element of H̃i−n(R
n − N ). Crucial for the minimax construction is that

V |N ≤ 0, and V |A0 > 0. The second part of the argument in Sect. 5 (and Appendix A)
is to lift the link (A0, S0) to the function space. Here one also has to take into account
that the period is a variable. In the end we find a nontrivial relative homology class
in the function space, based on the homological data in Hi (M), i ≥ n. Reformu-
lated in terms of the topology of sublevel sets, one can show that there are nontrivial
homomorphisms

h : Hi−n+2(X ,Aā) −→ Hi (M) for some n ≤ i ≤ 2n − 1,

ĥ : Hi−n+2(Aâ,Aā) −→ Hi (M) for some n ≤ i ≤ 2n − 1.

Here X denotes the space of periodic functions, A is the Lagrangian action functional,
and Aā its ā-sublevel set. The level ā is chosen such that supA A < ā < inf S A, and â
is some suitable level above ā. Nontriviality of Hi−n+2(Aâ,Aā) leads, in view of the
established Palais–Smale property, to a critical value between ā and â, and the critical
point corresponds to a closed characteristic on M .

The theorem that we prove in this paper says nothing about multiplicity of solu-
tions. In some special cases however, the homological information can also provide
multiplicity results, e.g. [19]. Recent results by Long [20] show that such statements
are extremely hard to prove in general. In Sect. 7 we will elaborate some more on the
question of multiplicity, and possible future directions. Furthermore, we obviously did
not choose the most general class of Hamiltonians in this paper, and in Sect. 7 we also
discuss some generalizations that can easily be made. These include Hamiltonians of
the form H(p, q) = 1

2 〈A(q)p, p〉 + V (q), cf. [8,17,18], Hamiltonians defined on an
underlying configuration space different from R

n and Hamiltonians stemming from
higher order Lagrangians, cf. [1,6,19,30].

The outline of the paper is as follows. In Sect. 2 some preliminary observations are
made, which are subsequently used in Sect. 3 to establish the Palais–Smale property.
The linking (or minimax) characterization of existence of a closed characteristic is
presented in Sect. 4, while the linking sets are constructed in Sect. 5. Proposition 2 is
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proved in Sect. 6. As already mentioned, Sect. 7 deals with variations on asymptotic
regularity and other generalizations, as well as a view towards the future. Appendix A
presents the construction of an important auxiliary function needed in the construction
of the linking sets.

2 Mechanical Lagrangian systems

In the introduction we defined a hypersurface M to be the 0-energy surface of a Ham-
iltonian H(p, q) = 1

2 |p|2 + V (q). Closed characteristics on such hypersurfaces can
be regarded as critical points of a suitable action functional. For this purpose we define
the Lagrangian function

L(q, q ′) = 1

2
|q ′|2 − V (q).

The variational principle for finding closed characteristics on M can be formulated as
follows:

δq,T

T∫

0

L
(
q, q ′) dt = 0, (1)

where the variations are with respect to T -periodic functions q : [0, T ] → R
n and

periods T > 0. Indeed, extremals of the variational problem (1) are related to closed
characteristics on hypersurfaces due to the ‘conservation of energy’; extremals q(t)
of (1) satisfy a conservation law 1

2 |q ′(t)|2 + V (q(t)) = E = constant, as well as
the differential equation q ′′ + DV (q) = 0. In canonical coordinates this yields the
first order (Hamiltonian) system: q ′ = p, and p′ = −DV (q), where the right-hand
side is the Hamiltonian vector field X H defined by the relation iX Hω = −d H . From
the equation it is immediately clear that solutions lie on level sets of H . Therefore,
X H restricted to H−1(E) satisfies iX Hω = 0, which implies that X H is a section in
the characteristic line bundle of H−1(E). The variational principle in (1) produces
characteristics in the specific level set H−1(0) due to variations in both q and T , see
Lemma 3 below.

Let us start with a functional analytic framework for the variational principle. Define
the set

X =
{
(q, T )

∣
∣ q ∈ H1(R/T Z; R

n), T ∈ R
+}
,

which can be given the structure of a Hilbert manifold over H1(R/Z; R
n)× R. This

can be done via a global coordinate transformation:

(q(t), T ) �→ (q(sT ), log(T )) = (u(s), τ ).

123



254 J. B. van den Berg et al.

We will denote the inverse of this coordinate transformation by ξ . For the action
A(q, T ) = ∫ T

0 L(q, q ′)dt this yields

B(u, τ ) = (A ◦ ξ)(u, τ ) = eτ
1∫

0

L(u, e−τu′)ds
def=

1∫

0

eτ L̂(u, u′, τ )ds

= e−τ

2

1∫

0

|u′|2ds − eτ
1∫

0

V (u)ds. (2)

Extremals of A (or B) are in the energy level H = 0.

Lemma 3 Extremals of (1) satisfy H = 0.

Proof With respect to variations δu and δτ , the integral in (1), using its reformulation
in (2) via the coordinate transformation ξ , yields (with periodic boundary conditions)

δu,τ

1∫

0

eτ L̂(u, u′, τ )ds =
1∫

0

eτ
{
∂ L̂

∂u
− d

ds

∂ L̂

∂u′

}
δu ds

+
1∫

0

eτ
{

L̂(u, u′, τ )+ ∂ L̂

∂τ

}
δτ ds.

For extremals the Euler–Lagrange equations are satisfied so that

1∫

0

eτ
{

L̂ + ∂ L̂

∂τ

}
ds =

T∫

0

{
L(q, q ′)− ∂L

∂q ′ q
′
}

dt =
T∫

0

H(p, q)dt = 0,

which proves that extremals lie in the level set H = 0.

For future reference, the variational formula for mechanical systems reads

B′(u, τ )(δu, δτ ) =
1∫

0

{
e−τ

〈
u′, d(δu)

du
u′

〉
− eτ 〈DV (u), δu〉

}
ds

−
1∫

0

{[
1

2
e−τ |u′|2 + eτV (u)

]
δτ

}
ds. (3)
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On the Sobolev space H1(R/Z; R
n) we will use two equivalent norms:

‖u‖2
H1 =

1∫

0

|u′(s)|2 + |u(s)|2ds,

‖u‖2
1 =

1∫

0

|u′(s)|2ds +
∣∣∣∣∣∣

1∫

0

u(s)ds

∣∣∣∣∣∣

2

.

The interpretation is that a function u is split into its average u0 = ∫ 1
0 u(s)ds and

its oscillatory part u+ = u − u0 (which has zero average). We will use the notation
u = u0 + u+ throughout, as well as the decomposition H1(R/Z; R

n) ∼= E0 ⊕ E+,
where E0 ∼= R

n and E+ = {u ∈ H1 | ∫ 1
0 u(s)ds = 0}. A straightforward esti-

mate shows that the deviation of u from its average is controlled by the norm of the
oscillatory part:

|u(t)− u0| ≤ ‖u+‖1 for all t. (4)

The next lemma states how asymptotic regularity of V controls the variability of DV .

Lemma 4 If ‖D2V ‖ ≤ C |DV | on the line segment joining u and u0, then

|DV (u)− DV (u0)| ≤ |DV (u0)| (eC|u−u0| − 1).

Proof The proof is analogous to that of Gronwall’s inequality and is left to the reader.

3 The Palais–Smale condition

We start by introducing a penalizing function. For ε > 0 consider the functional

Bε(u, τ ) = B(u, τ )+ ε(e−τ + eτ/2). (5)

A sequence (un, τn) ∈ H1 × R is called a Palais–Smale sequence if

B′
ε(un, τn) → 0, 0 < c1 ≤ Bε(un, τn) ≤ c2 < ∞, as n → ∞.

The following proposition states that the functionals Bε , ε > 0 satisfy the Palais–Smale
condition. We will use this in Sect. 4 to find critical points of Bε.

Proposition 5 Let (un, τn) be a Palais–Smale sequence for Bε, then there exists a
convergent subsequence (un′ , τn′) → (uε, τε) in H1 ×R, n′ → ∞. The limit function
satisfies B′

ε(uε, τε) = 0, and 0 < c1 ≤ Bε(uε, τε) = cε ≤ c2.

The next proposition states that the critical points of the penalized functional Bε
converge to a critical point of B as ε → 0. The latter critical point corresponds to a
closed characteristic on the energy surface M .
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Proposition 6 Let (uε, τε), ε → 0 be a sequence satisfying B′
ε(uε, τε) = 0, and 0 <

c1 ≤ Bε(uε, τε) ≤ c2. Then there exists a convergent subsequence (uε′ , τε′) → (u, τ )
in H1×R, ε′ → 0. The limit function satisfies B′(u, τ ) = 0, and 0 < c1 ≤B(u, τ )≤c2.

Using the transformation ξ from Sect. 2 and Lemma 3 we see that the limit function
from Proposition 6 leads to a closed characteristic q(t) = u(e−τ t) on M of period
T = eτ . Combining the two propositions above thus implies that existence of Palais–
Smale sequences for Bε, for all sufficiently small ε > 0, leads to a proof of Theorem 1.
Those Palais–Smale sequences will be obtained in Sects. 4 and 5 using homological
linking arguments.

The proof of these propositions is based on several auxiliary lemmas. The total
variation of Bε with respect to variations (δu, δτ ) ∈ H1 × R is given by [cf. (3)]:

B′
ε(u, τ )(δu, δτ ) = B′(u, τ )(δu, δτ )+ ε

(
−e−τ + 1

2
eτ/2

)
δτ

=
1∫

0

{
e−τ

〈
u′, d(δu)

du
u′

〉
− eτ 〈DV (u), δu〉

}
ds

−
1∫

0

{[
1

2
e−τ |u′|2+eτV (u)

]
δτ

}
ds+ε

(
−e−τ + 1

2
eτ/2

)
δτ.

For fixed ε > 0, let (un, τn) be a Palais–Smale sequence for Bε. Extracting a subse-
quence we may assume that Bε(un, τn) → cε for some cε ∈ [c1, c2]. The derivative
of Bε(un, τn) going to zero is equivalent to

B′
ε(un, τn)(δu, δτ ) = o(1)(‖δu‖H1 + |δτ |), as n → ∞, (6)

uniformly for all variations (δu, δτ ) ∈ H1 × R. The first step is to obtain estimates
on the integrals

∫ 1
0 e−τn |u′

n|2ds and
∫ 1

0 eτn V (un)ds.

Lemma 7 A Palais–Smale sequence (un, τn) satisfies

1∫

0

e−τn |u′
n|2ds + ε

(
2e−τn + 1

2
eτn/2

)
= cε + o(1), as n → ∞; (7)

1∫

0

eτn V (un)ds − ε
3

4
eτn/2 = −cε

2
+ o(1), as n → ∞. (8)
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Proof Consider variations of the form (δu, δτ ) = (0, 1). From the variation formula
and (6) we then derive that

1

2

1∫

0

e−τn |u′
n|2ds +

1∫

0

eτn V (un)ds = −ε
(

e−τn − 1

2
eτn/2

)
+ o(1),

as n → ∞. On the other hand, Bε(un, τn) → cε means that

1

2

1∫

0

e−τn |u′
n|2ds −

1∫

0

eτn V (un)ds = −ε
(

e−τn + eτn/2
)

+ cε + o(1).

Combining these two estimates completes the proof.

This leads to bounds from below and above on τn .

Lemma 8 Let (un, τn) be a Palais–Smale sequence. There are constants T0 < T1
(depending on ε) such that T0 ≤ τn ≤ T1 for sufficiently large n.

Proof Equation (7) implies that ε(2e−τn + 1
2 eτn/2) ≤ cε + 1 for sufficiently large n.

The assertion follows immediately from this inequality.

With these bounds on τn we obtain a bound on un .

Lemma 9 Let (un, τn) be a Palais–Smale sequence. There is a constant C (depending
on ε) such that ‖un‖1 ≤ C for sufficiently large n.

Proof Equation (7), combined with the bounds on τn from Lemma 8, implies that
‖u+

n ‖1 = (
∫ 1

0 |u′
n|2ds)1/2 is bounded, say by C0. It remains to estimate u0

n = ∫ 1
0 unds.

Let us argue by contradiction, and assume that |u0
n| → ∞ as n → ∞. Note that

‖un − u0
n‖∞ ≤ C0 by (4). It now follows from asymptotic regularity and Lemma 4

that DV (un(t)) 
= 0 and

‖D2V (un)‖
|DV (un)|2 → 0 uniformly as n → ∞. (9)

Consider variations of the form

δu = − DV (un)

|DV (un)|2
and δτ = 0.
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The variation formula gives

B′
ε(un, τn)(δu, δτ )

= −
1∫

0

e−τn

(〈
u′

n, D2V (un)u′
n

〉

|DV (un)|2 − 2

〈
u′

n, DV (un)
〉 〈

DV (un), D2V (un)u′
n

〉

|DV (un)|4
)

ds

+
1∫

0

eτn
〈DV (un), DV (un)〉

|DV (un)|2 ds.

= eτn + o(1), as n → ∞, (10)

where we have used (9) and the bounds on
∫ 1

0 |u′
n|2ds and τn . On the other hand,

(un, τn) is a Palais–Smale sequence, hence, again using asymptotic regularity,

B′
ε(un, τn)(δu, δτ )= o(1)‖δu‖H1 = o(1)(c−1 + C0o(1))= o(1), as n → ∞, (11)

where the bound on ‖δu‖H1 is obtained as follows. Clearly, |δu| ≤ c−1, and

|(δu)′| =
∣
∣∣∣∣
− D2V (u)u′

|DV (u)|2 + 2

〈
DV (u), D2V (u)u′〉

|DV (u)|4 DV (u)

∣
∣∣∣∣

≤
∣∣∣
∣

D2V (u)u′

|DV (u)|2
∣∣∣
∣ + 2

∣∣∣
∣∣

〈
DV (u), D2V (u)u′〉

|DV (u)|3
∣∣∣
∣∣

≤ 3
‖D2V (u)‖
|DV (u)|2 |u′| = o(1)|u′|,

with (
∫ 1

0 |u′|2ds)1/2 ≤ C0. Since τn is bounded below by Lemma 8, Estimate (11)
contradicts (10).

We now finish the proof of the Palais–Smale property for the (penalized) func-
tional Bε.

Proof of Proposition 5 The sequence τn is bounded by Lemma 8, hence it has a conver-
gent subsequence, say τn → τε ∈ R. Let ∂uBε(u, τ ) = B′

ε(u, τ )(·, 0), then ∂uBε(·, τn)

is of the form e−τε id + K + Rn , where K is compact and Rn → 0 as n → ∞. Since
B′
ε → 0 as n → ∞, the boundedness of un implies that there exists a convergent

subsequence un′ → uε ∈ H1. Since Bε is continuously differentiable, this establishes
the Palais–Smale property.

We can characterize the critical points of Bε as follows.

Lemma 10 A critical point (uε, τε) of Bε solves the Euler–Lagrange equation

e−τεu′′
ε + eτε DV (uε) = 0,
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and satisfies the energy identity

Eε
def= e−2τε

2
|u′
ε|2 + V (uε) = ε

(
−e−2τε + 1

2
e−τε/2

)
. (12)

Proof Since B′
ε(uε, τε) = 0, taking variations (δu, 0) leads to the first statement,

while variations (0, δτ ) then prove the energy identity.

A consequence of Lemma 10 is that qε(t) = uε(e−τε t) is a closed characteristic
on H−1(Eε) with period Tε = eτε . To prove Proposition 6 we need to show that τε is
bounded, and in turn the same for uε. We start with an upper bound on τε.

Lemma 11 Let (uε, τε) be critical points of Bε with 0 < c1 ≤ Bε(uε, τε) ≤ c2. Then
there is a constant T2, independent of ε, such that τε ≤ T2 for sufficiently small ε.

Proof Let τε ≥ 0, then from (12) we see that 0 ≤ |Eε| ≤ ε. We are going to use
variations

δu = −κ DV (uε)

1 + |DV (uε)|2
and δτ = −1, (13)

for some small κ > 0 to be chosen shortly.
The first claim is that (similar to Lemma 9), for some C1 > 0,

|(δu)′| = κ

∣∣∣∣
∣

D2V (uε)u′
ε

1 + |DV (uε)|2 − 2
DV (uε)

〈
DV (uε), D2V (uε)u′

ε

〉

(1 + |DV (uε)|2)2
∣∣∣∣
∣

≤ C1κ|u′
ε|. (14)

For uε sufficiently large, say |uε| > R, this follows from asymptotic regularity. On
the other hand, inside the ball BR(0), since V is a C2 function, the derivatives D2V
and DV are uniformly bounded. This proves the claim |(δu)′| ≤ C1κ|u′

ε|.
Next we choose κ = 1

2C1
and claim there is a constant C2 > 0 such that

e−2τε
(
|u′
ε|2 + 〈

u′
ε, (δu)

′〉) − 〈DV (uε), δu〉 ≥ e−2τε

2
|u′
ε|2 + κ

|DV (uε)|2
1 + |DV (uε)|2

≥ C2. (15)

The first inequality follows from (13) and (14). To prove the second inequality we
again start by exploiting asymptotic regularity to infer that it holds for uε(s) outside
some large ball BR(0) with C2 ≤ κ c2

1+c2 .

When uε(s) is inside the ball the argument is more subtle. Since M = H−1(0) is
a regular energy level, we have DV (u) 
= 0 at the level set V (u) = 0. By continuity
this also holds for nearby level sets of V , at least when restricted to the ball BR(0).
We conclude that |DV (u)| ≥ C3 > 0 for all u ∈ BR(0) with V (u) sufficiently small.
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If 1
2 e−2τε |u′

ε|2 ≤ C4, then it follows from (12) that |V (uε)| ≤ |Eε| + C4 ≤ ε + C4.
Hence for C4 and ε sufficiently small, |DV (uε)| ≥ C3 whenever 1

2 e−2τε |u′
ε|2 ≤ C4.

Taking C2 ≤ min{κ C2
3

1+C2
3
,C4} we see that (15) also holds in BR(0).

We are now suitably prepared to use the variations (13):

cε = Bε(uε, τε)+ B′
ε(uε, τε)(δu, δτ )

= eτε
1∫

0

{
e−2τε

(
|u′
ε|2 + 〈

u′
ε, (δu)

′〉) − 〈DV (uε), δu〉
}

ds + ε

(
2e−τε + 1

2
eτε/2

)

≥ C2eτε .

Since cε ≤ c2, we find the upper bound τε ≤ max{log(c2/C2), 0}.
Next we establish a lower bound on τε, corresponding to a lower bound on the

period Tε.

Lemma 12 Let (uε, τε) be critical points of Bε with 0 < c1 ≤ Bε(uε, τε) ≤ c2. Then
there is a constant T3, independent of ε, such that τε ≥ T3 for sufficiently small ε.

Proof We argue by contradiction and assume that τε → −∞ as ε → 0. From (7) we
have that

1∫

0

|u′
ε|2ds = cεe

τε − 2ε − ε

2
e3τε/2 → 0, as ε → 0.

We decompose uε in its average and its oscillatory part: uε = u0
ε + u+

ε . It follows
from (4) that u+

ε → 0 uniformly. If u0
ε is bounded as ε → 0, then

∫ 1
0 eτεV (uε)ds → 0.

On the other hand, Equation (8) implies that
∫ 1

0 eτεV (uε)ds = − cε
2 + o(1) as ε → 0,

and cε ≥ c1 > 0, contradicting the assumption that u0
ε is bounded as ε → 0.

It remains to show that |u0
ε | → ∞ also leads to a contradiction. We now use what is

in essence a flow box argument. The periodic functions uε satisfy the Euler–Lagrange
equation e−2τεu′′

ε + DV (uε) = 0, and therefore (component-wise)

1∫

0

DV (uε(s)) ds = 0. (16)

Since |u0
ε | → ∞ it follows from asymptotic regularity that |DV (u0

ε)| ≥ c > 0 for
small ε, so there is a component iε of the vector DV (u0

ε), denoted by DiεV (u
0
ε), such

that |DiεV (u
0
ε)| ≥ |DV (u0

ε)|/n > 0. From Lemma 4, asymptotic regularity, and the
fact that ‖uε−u0

ε‖∞ → 0, it follows that |DV (uε(t))− DV (u0
ε)| ≤ |DV (u0

ε)|/2n for
all t , provided ε is sufficiently small. In particular, |DiεV (uε(t))| ≥ |DV (u0

ε)|/2n > 0
for all t , which contradicts (16).
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Finally, we prove that the critical points of Bε converge to a critical point of B.

Proof of Proposition 6 Lemmas 11 and 12 provide a uniform bound on τε, We then
observe that the arguments in the proof of Lemma 9 lead to an ε-independent bound
on ‖uε‖1. An argument analogous to the one in the proof of Proposition 5 shows that
(uε, τε) converges along a subsequence to a critical point of B.

4 Minimax characterizations

In this section, we will link the topology of M to minimax values of the functionals
B and Bε. Here we follow the general setup of [23]. Consider disjoint sets A and S in
H1 × R. The sets A and S are said to (homologically) link if the inclusion induced
homomorphism

iq : H̃q(A) −→ H̃q(H
1 × R − S)

is nontrivial for some q ≥ 0. We will drop the tilde from our notation to prevent
cluttered symbols, but we always silently assume that for q = 0 we are considering
reduced homology. In order to use the linking sets A and S for finding a critical value
we assume that the functional B satisfies the following conditions with respect to A
and S:

(i) B|S ≥ a > 0,
(ii) B|A ≤ b < a.

Lemma 13 Let A and S be linking subsets of H1 × R. If B satisfies (i) and (ii), and
A is bounded, then B has a critical value cA,S with 0 < a

2 ≤ cA,S < ∞.

Proof Let q be the dimension for which the homomorphism iq is nontrivial. Choose
auxiliary values ā ≥ a

2 and b̄ such that b < b̄ < ā < a. For the penalized functional
Bε defined by (5) we have:

Bε
∣∣
S ≥ B

∣∣
S ≥ a > ā,

Bε
∣∣

A = B
∣∣

A + ε(e−τ + eτ/2)
∣∣

A ≤ b + ε(e−τ + eτ/2)
∣∣

A ≤ b̄,

for all ε ≤ ε∗, when ε∗ > 0 is chosen sufficiently small. Here we have used that A is
bounded (and ε∗ depends on A). For any d, let Bd

ε = {(u, τ ) ∈ H1×R | Bε(u, τ ) ≤ d}
be the sublevel set of Bε. Then we have, for all ε ≤ ε∗, the following inclusions:

A ⊂ Bb̄
ε ⊂ Bā

ε ⊂ H1 × R − S,

and iq factors as

Hq(A) −−−−→ Hq(Bb̄
ε ) −−−−→ Hq(Bā

ε ) −−−−→ Hq(H1 × R − S).

Since iq is nontrivial by assumption, Hq(Bb̄
ε ) 
= 0 and Hq(Bā

ε ) 
= 0 for all ε ≤ ε∗.
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Notice that for ε ≤ ε∗, the corresponding functionals satisfy Bε ≤ Bε∗ , so we also
have inclusions

Bā
ε∗ ⊂ Bā

ε , Bb̄
ε∗ ⊂ Bb̄

ε ,

with induced maps in homology.
Consider the long exact homology sequence of the pair (H1 × R,Bā

ε ):

Hq+1(H1×R) −−−−→ Hq+1(H1× R,Bā
ε )

∂q+1−−−−→ Hq(Bā
ε ) −−−−→ Hq(H1× R).

(17)

Since Hq(H1 × R) ∼= 0 for all q ≥ 0 (reduced homology for q = 0), the connecting
morphism ∂q+1 is an isomorphism between Hq+1(H1 × R,Bā

ε ) and Hq(Bā
ε ) 
= 0,

hence Hq+1(H1 × R,Bā
ε ) 
= 0 for all ε ≤ ε∗.

In exactly the same way one shows that Hq+1(H1 × R,Bb̄
ε ) 
= 0 for all ε ≤ ε∗.

In particular, Hq+1(H1 × R,Bb̄
ε∗) 
= 0, so we can choose a class θ ∈ Hq+1(H1 ×

R,Bb̄
ε∗), θ 
= 0. More precisely, using the fact that iq is nontrivial, let x ∈ Hq(A)

be such that iq x 
= 0 in Hq(H1 × R − S), and denote by y the image of x under

the map Hq(A)−→Hq(Bb̄
ε∗). Since y gets mapped to iq x 
= 0 (hence y 
= 0) by

Hq(Bb̄
ε∗)−→Hq(H1 ×R− S), and since ∂q+1 is an isomorphism, there exists a θ 
= 0

such that ∂q+1θ = y.

The inclusions Bb̄
ε∗ ⊂ Bb̄

ε induce maps in homology

Hq+1(H
1 × R,Bb̄

ε∗) −→ Hq+1(H
1 × R,Bb̄

ε ), θ → θε,

Hq(Bb̄
ε∗) −→ Hq(Bb̄

ε ), y → yε,

which fit into the commutative diagram

Hq (A) −−−−−→ Hq (Bb̄
ε∗ ) −−−−−→ Hq (Bb̄

ε ) −−−−−→ Hq (H1 × R − S)

∂q+1

�
⏐⏐∼= ∂q+1

�
⏐⏐∼=

Hq+1(H1 × R,Bb̄
ε∗ ) −−−−−→ Hq+1(H1 × R,Bb̄

ε )

where the horizontal maps are induced by inclusions. This shows that ∂q+1θε = yε 
= 0.

On the other hand, we also have an inclusion Bb̄
ε∗ ⊂ Bā

ε∗ , which induces

Hq+1(H
1 × R,Bb̄

ε∗) −→ Hq+1(H
1 × R,Bā

ε∗), θ → θ̂ ,

Hq(Bb̄
ε∗) −→ Hq(Bā

ε∗), y → ŷ. (18)
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By commutativity of

Hq (A) −−−−−→ Hq (Bb̄
ε∗ ) −−−−−→ Hq (Bā

ε∗ ) −−−−−→ Hq (H1 × R − S)

∂q+1

�⏐
⏐∼= ∂q+1

�⏐
⏐∼=

Hq+1(H1 × R,Bb̄
ε∗ ) −−−−−→ Hq+1(H1 × R,Bā

ε∗ )

we have ∂q+1θ̂ = ŷ 
= 0. The class θ̂ descends to θ̂ε ∈ Hq+1(H1 × R,Bā
ε ) such that

∂q+1θ̂ε = ŷε 
= 0 for all ε ≤ ε∗ (exactly as above for θε and yε).
Now let

cε = inf
θ ′
ε∈θε

max
|θ ′
ε |

Bε,

where the infimum is over all relative cycles θ ′
ε in Cq+1(H1 × R,Bb̄

ε ) that represent
the class θε, and |θ ′

ε| denotes the support of such a cycle. By definition ∂θ ′
ε is a q-cycle

in Bb̄
ε , so

sup
θ ′
ε∈θε

max
|∂θ ′

ε |
Bε ≤ b̄ < ā.

By (18) we may regard θ ′
ε as a relative cycle θ̂ ′

ε ∈ Cq+1(H1×R,Bā
ε ), which represents

the class θ̂ε ∈ Hq+1(H1 × R,Bā
ε ). Since the support does not change we get

max
|θ ′
ε |

Bε = max
|θ̂ ′
ε |

Bε > ā,

otherwise we would have |θ̂ ′
ε| ⊂ Bā

ε and hence θ̂ε = [θ̂ ′
ε] = 0, which is a contradiction.

It follows that

inf
θ ′
ε∈θε

max
|θ ′
ε |

Bε ≥ ā > b̄.

Since Bε satisfies the Palais–Smale condition (see Proposition 5), the Linking Theorem
(e.g. [7]) now implies that cε is a critical value for Bε for all ε ≤ ε∗.

Clearly cε ≥ c1 = ā for all ε ≤ ε∗, and choosing a particular representative θ̃ ′ ∈ [θ ]
we have cε ≤ c2 = max|θ̃ ′| Bε∗ for all ε ≤ ε∗. Due to these a priori bounds on cε,
Proposition 6 produces a critical value cA,S ≥ ā ≥ a

2 for B.

In order to conclude that B has a critical value (and thus prove Theorem 1) we need
to find linking sets A and S satisfying the conditions (i) and (ii) given above. In the
forthcoming section we specify such sets A and S using the topology of M .
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5 The construction of the linking sets

5.1 Preliminaries: a link in R
n

We need to find linking sets A and S in H1 ×R satisfying the conditions (i) and (ii) in
Sect. 4. We start by constructing linking sets in R

n . By assumption, Hn+i (M) 
= 0 for
some i =0, . . . , n−1, and from Proposition 2 we see that Hn+i (M)∼= H̃i (R

n − N ) 
= 0.
We infer that one of the homology groups of the complement R

n − N of the projec-
tion of M is nonzero. It is more convenient to use the index k = i + 1, hence let
k ∈ {1, . . . , n} be such that H̃k−1(R

n − N ) 
= 0.
Notice that the case k = n corresponds to the compact case, namely M closed and

N compact (with boundary). In this case, in order to find a link it suffices to take a ball
in R

n , large enough to contain N : then the boundary of this ball links with any point
in the interior of N . We focus on the non-compact case, but the case of compact M
is included in this construction as well. Furthermore, note that in the case k = 1 we
obtain

H̃0(R
n − N ) 
= 0,

and hence we conclude that H0(R
n − N ) is at least 2-dimensional, that is, the com-

plement of N consists of at least two connected components. In this situation a link
is also easy to find, namely between N and a pair of points in different connected
components of R

n − N . For this special case, the reader might want to compare the
present work with [22].

We want to find a non-vanishing homology class in the complement of N , and
from that a link between the support W of a representative of this class and a subset
of N (cf. Fig. 2). In order to get a clear (although simplified) picture of the situation,
consider first the case where R

n − N is simply connected and the lowest non-van-
ishing homology group Hk−1(R

n − N ) has k ≤ n/2. Let χ be a nonzero element of
Hk−1(R

n − N ). By Hurewicz’s theorem, Hk−1(R
n − N ) ∼= πk−1(R

n − N ), so we
find a (k − 1)-dimensional sphere representing the class χ . Since k − 1 < n/2, we
may assume such a sphere to be embedded [14]. By the assumption on its co-dimen-
sion, this embedding, as a map into R

n , is isotopic to the standard embedding of the

Fig. 2 An example of a cycle W linking with N in E0 ∼= R
n , with n = 3. The set N extends to infinity in

this example
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Fig. 3 The left part of the figure shows a simultaneous triangulation of N (extending to infinity) and R
2,

together with a linking cycle σ0 and its fill σ ′
1. The right part of the figure depicts a cycle and its fill in R

3

(k − 1)-sphere. In fact, by compactness the two embeddings are also ambient isoto-
pic, so our sphere bounds an embedded k-dimensional ball Bk (cf. [14]). Obviously,
Bk ∩ N 
= ∅.

More generally, since H̃k−1(R
n − N ) 
= 0, there exists a cycle σk−1 that represents

a non-trivial homology class in H̃k−1(R
n − N ). We set W = |σk−1|, the support of

σk−1. Since H̃∗(Rn) = 0 it follows that in R
n any cycle is a boundary and therefore

there is a chain σ ′
k ∈ Ck(R

n) such that ∂σ ′
k = σk−1. The support U = |σ ′

k | “fills” W ,
and U ∩ N 
= ∅.

Since in the case of triangulated spaces the singular and simplicial chain complexes
give rise to isomorphic homology groups, we will allow ourselves the freedom to deal
at times with singular and at times with simplicial chains, depending on what fits
more properly with a certain argument. To make the construction a little easier, in the
beginning, for example, we choose to exploit simplicial homology, so that σk−1 and σ ′

k
are simplicial chains (cf. Fig. 3). Here we use that there exists a triangulation T of R

n

such that TN ⊂ T and TRn−N ⊂ T are triangulations of N and R
n − N respectively

(i.e. T is a simultaneous triangulation of N and R
n , see e.g. [21]). For the bounded

sets W = |σk−1| and U = |σ ′
k | we have that

∂U ⊂ W. (19)

The sets W and N link: the map H̃k−1(W ) → H̃k−1(R
n − N ) induced by inclusion,

is nontrivial. We will now use W and U to construct A and S. In other words, we will
grow a link (A, S) of homological dimension k from the link (W, N ) of homological
dimension k − 1.

As before, we have the decomposition H1(R/Z) = E+ ⊕ E0, where E0 ∼= R
n ,

and E+ = {u ∈ H1 | ∫ 1
0 u(s)ds = 0}. Throughout this section, we will identify

u0 ∈ E0 ∼= R
n with the constant function u0 ∈ H1. For analytic reasons to be clar-

ified later, we need W to link with a subset of N . For ν sufficiently small we define
the sets Nν as follows:

Nν =
{

u0 ∈ E0
∣∣ V (u0) ≤ −ν

√
1 + |DV (u0)|2

}
,

so that Nν � N = N0 for ν > 0.
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Lemma 14 For ν sufficiently small the sets Nν (resp. R
n − Nν) are homeomorphic

to N (resp. R
n − N), and W links with Nν . Moreover, for each sufficiently small ν > 0

there exists a ρν > 0 such that V |Bρν (u
0) ≤ −ν/2 for all u0 ∈ Nν .

Proof We start by proving that for ν sufficiently small the sets Nν and N are homeo-
morphic. This is illustrated in Fig. 4. To construct the homeomorphisms we shall use
a gradient flow of the function

F(u0) = V (u0)
√

1 + |DV (u0)|2 .

The gradient of F is given by

∇F(u0) = DV (u0)
√

1 + |DV (u0)|2 − F(u0)
D2V (u0)DV (u0)

1 + |DV (u0)|2 .

We only use the gradient flow on the strip T2ν = {u0 | −2ν ≤ F(u0) ≤ 2ν} around
the boundary ∂N . Provided ν is small, on T2ν we have the bounds |DV (u0)| ≥ C1
and ‖D2V (u0)‖ ≤ C2|DV (u0)|, for some (small) C1 > 0 and (large) C2 > 0.
Namely, for large u0, say |u0| > R, this follows from asymptotic regularity. For u0

in the ball BR(0) the first inequality follows from regularity of the energy surface:
DV 
= 0 on ∂N = {V = 0} = T0, which extends to T2ν ∩ BR(0), provided ν
is sufficiently small. The second inequality then follows from boundedness of D2V
on BR(0).

For u0 ∈ T2ν we thus have the estimate

|∇F(u0)| ≥ |DV (u0)|
√

1 + |DV (u0)|2 − |F | |D
2V (u0)DV (u0)|

1 + |DV (u0)|2

≥ C1√
1 + C2

1

− 2νC2 ≥ C1

2
√

1 + C2
1

> 0,

Fig. 4 The (sublevel) sets N = {F ≤ 0} and Nν = {F ≤ −ν} are homeomorphic for small ν. A cut-off
function ξν is used to extend the local gradient flow ψt to the whole of R

n . The way the rescaled flow φs
acts on the level curves of F is depicted at the bottom right
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provided ν is sufficiently small. This estimate shows that on T2ν the initial value
problem for the differential equation

du0

dt
= − ∇F(u0)

|∇F(u0)|2 , for u0 ∈ T2ν,

is well-posed, and that solutions exist for all time, as long as they stay in T2ν . Denote
this gradient flow by ψt (u0), where u0 is the initial value at t = 0. An easy calcula-
tion shows that d

dt F(ψt (u0)) = −1. To extend the flow to R
n we introduce a cut-off

function ξν ∈ C0(R), see also Fig. 4,

ξν(x) =
{
ν − 1

2 |x | |x | ≤ 2ν,

0 |x | > 2ν.

The properties of ξν that are needed in the following are: ξν is continuous with sup-
port in [−2ν, 2ν], ξν(0) = ν, and dξν

dx < 1. We now use the flow ψt and the cut-off
function ξν to construct an isotopy between N (resp. R

n − N ) and Nν (resp. R
n − Nν),

for ν sufficiently small, namely

φs(u
0) = ψsξν(F(u0))(u

0) for all u0 ∈ R
n,

with 0 ≤ s ≤ 1. It follows from the choice of the cut-off function ξν , that the fam-
ily φs , s ∈ [0, 1] are homeomorphisms on R

n . Indeed, one may also interpret φs as a
flow acting on level curves of F : it sends the level {F = F0} to {F = F0 − sξν(F0)},
i.e. F(φs(u0)) = F(u0) − sξν(F(u0)). The property dξν

dx < 1 therefore guarantees
that as a map on level curves φs is bijective for all s ∈ [0, 1]. Finally, by construc-
tion φ1(N ) = Nν and φ1(R

n − N ) = R
n − Nν . This proves that N ∼= Nν and

R
n − N ∼= R

n − Nν .
Since W is a bounded set in R

n − N , we have that W ∩ T2ν = ∅ for ν sufficiently
small. By construction, φs = id on T2ν for s ∈ [0, 1], hence W links with Nν for
sufficiently small ν.

Finally, let u0 ∈ Nν and consider points of the form u = u0 + v with |v| ≤ ρν ,
for some 0 < ρν ≤ 1 to be determined. Recall that by asymptotic regularity, we have
|DV | ≥ c outside some large ball BR(0). We now consider two cases: u0 inside the
slightly larger ball BR+1(0), and u0 outside this ball.

In the latter case, i.e. |u0| > R + 1, we use asymptotic regularity and Lemma 4 to
conclude that |DV (u0 + ṽ)| ≤ 2|DV (u0)| for all |ṽ| ≤ ρν , provided ρν is sufficiently
small. We then estimate

V (u0 + v) = V (u0)+
〈
DV (u0 + θv), v

〉
for some θ ∈ [0, 1],

≤ −ν
√

1 + |DV (u0)|2 + 2|DV (u0)| |v|
≤ − ν√

2
− ν√

2
|DV (u0)| + 2|DV (u0)| ρν,

and if we choose ρν ≤ 2−3/2ν, it follows that V (u0 + v) ≤ −ν/2 for |ṽ| ≤
ρν .
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In the former case, i.e. u0 ∈ BR+1(0), since |DV | is uniformly bounded in
the slightly larger ball BR+2(0), an estimate similar to the one above shows that
V (u0 + v) ≤ −ν/2 for |v| ≤ ρν , if ρν is sufficiently small. This finishes the
proof.

5.2 Definition of the linking sets in H1 × R

The above lemma implies that the sets W and Nν also form a link for all admissible
ν. For small ν and ρ ≤ ρν we define

S =
{
(u, τ )

∣∣ τ ∈ R, u0 ∈ Nν, ‖u+‖1 = ρ
}

⊂ H1 × R.

The set A is defined as follows. Let A = AI ∪ AI I ∪ AI I I , with

AI =
{
(u, τ )

∣∣ u = u0 ∈ U ⊂ E0, τ = R1

}

AI I =
{
(u, τ )

∣∣ u = u0 ∈ W ⊂ E0, R1 ≤ τ ≤ R2

}
,

AI I I =
{
(u, τ )

∣∣ u = g(u0), u0 ∈ U, τ = R2

}
,

where the parameters are R1 < R2, and g : U → H1(R/Z) is a continuous map, with
the properties

1. g(u0) ≡ u0 for all u0 ∈ W ;
2. g(u0)+ ≡ 0 if and only if u0 ∈ W ;
3.

∫ 1
0 V (g(u0)(s))ds > 0 for all u0 ∈ U .

In the “ideal” case described at the beginning of this section, namely that the sets
U and W are an embedded ball and its boundary, respectively, a map g satisfying
the properties listed above is easily defined. It can be helpful to (over)simplify even
further and hypothesize that g is even defined in such a way that its image is the graph
of a function g̃ : U → E+, that is, g(u0) = (u0, g̃(u0)). This leads to simple pictures
and the reader may keep this case in mind through the more general (and technical)
arguments and use it to interpret them, because it already contains the essential ideas
of the proof.

The existence of such a continuous map g in the general case is established in the
appendix [where we will use the fact that W and U consists of simplices, so that
∂U ⊂ W , cf. (19)]. Property 1 guarantees that the set A is connected. Property 2 will
be used in Lemma 16 to establish that A and S link (for sufficiently small ρ). The
idea is that the “belly” in Fig. 5, i.e. the set AI I I defined by g, goes around S. Prop-
erty 3 is needed in Lemma 15 to prove estimates on B|A. Here the idea is to choose
g(u0)(s) ∈ W for almost all s, since by construction W ⊂ R

n − N = {V > 0}.
Figure 5 gives a schematic account of the sets A and S. The above definition of A

and S yields a possible link in H1 × R grown out of the (W, N ). If the parameters
ν, ρ, R1 and R2 are chosen properly, and if g satisfies the three properties listed above,
A and S indeed form a (homological) link. In fact, for linking only the parameters ρ
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Fig. 5 A schematic view of the sets A and S. The set A consists of three pieces marked I , I I and I I I .
The belly AI I I goes around S

and ν matter; for ν so small that the assertion in Lemma 14 holds, the sets A and S link
for all ρ ≤ ρg , where ρg > 0 is some g-dependent constant. This will be established
a little later in Lemma 16. First we show in Lemma 15 below that with the remaining
parameters the sets A and S can be tuned in such a way that the estimates (i) and (ii)
from Sect. 4 on B|S and B|A are satisfied.

Lemma 15 If ν and ρ are sufficiently small, then there exist constants R1 < R2 ∈ R

and a > b > 0 such that A and S satisfy B|S ≥ a and B|A ≤ b.

Proof Let us start with S. From (4) we have that ‖u+‖L∞ ≤ ‖u+‖1, and if follows
from Lemma 14 that V (u) ≤ −ν/2 for all u ∈ S if ρ ≤ ρν . For the functional B we
obtain:

B|S = e−τ

2

1∫

0

|u′(s)|2ds − eτ
1∫

0

V (u(s))ds ≥ e−τ ρ2

2
+ eτ ν

2
≥ ρ

√
ν.

Therefore we choose ρ ≤ ρν and set a = ρ
√
ν > 0.

As for the set A, a more detailed analysis is required. As Fig. 5 indicates, A consists
of three parts, hence let us estimate B on the successive parts of A. We start with the
boundaries AI and AI I which are contained in E0. For AI we have

B|AI = −eR1

1∫

0

V (u(s))ds ≤ eR1 M,

where M = maxU (−V ) (the set U is bounded). Now choose R1 ≤ log a
2M , then

BAI ≤ a
2 = b. The section AI I is characterized as W × [R1, R2] and consequently,
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independent of the choice of R1 and R2,

B|AI I = −eτ
1∫

0

V (u(s))ds < 0,

for τ ∈ [R1, R2], since V > 0 on W ⊂ R
n − N . Finally, to estimate B on AI I I , recall

that g is a continuous map from U to H1, so that C = maxU
∫ 1

0 |g(u)′(s)|2ds < ∞.
Then

B|AI I I = e−R2

2

1∫

0

∣∣g(u)′(s)
∣∣2

ds − eR2

1∫

0

V (g(u)(s)) ds ≤ 1

2
e−R2 C,

using Property 3 of the map g. Choosing R2 ≥ log C
a , we obtain B|AI I I ≤ a

2 = b.
Combining the estimates on the three pieces of A, we infer that B|A ≤ b = a

2 .

5.3 Proof of the linking property

In order the find a minimax we need to show that the sets A and S link. We again take
ν so small that the assertion in Lemma 14 holds.

Lemma 16 If ν and ρ are chosen sufficiently small then the sets A and S link, i.e. the
map Hk(A) → Hk(H1 × R − S) is non-trivial. The choice of ρ depends only on the
function g, i.e. ρ ≤ ρg.

Proof We start with some preliminary observations and the introduction of some nota-
tion. As explained by Lemma 14, for linking it is irrelevant whether we consider N
or Nν , and hence, to relieve notation, we write N instead of Nν throughout this proof.
To reduce confusion between Sobolev spaces and homology, we denote the Sobolev
space H1 = H1(R/Z; R

n) by E . Let Z be the union of U and g(U ) in the function
space E :

Z = U ∪ g(U ) ⊂ E .

Consider the projection

π̂ : E = E0 × E+ −→ R
n+1 = R

n × R,

(u0, u+) �−→ (u0, ρ − ‖u+‖1),

where ρ is as in the definition of the set S. Our proof is a generalization to homology
of a well-known degree argument that uses a similar projection (cf. [2,26]). Under this
projection, U is mapped homeomorphically onto π̂(U ) = U × {ρ}, and S (or rather
Su defined below) is mapped to N × {0}. The set S is of the form Su × R, where

Su = {u ∈ E | u0 ∈ N , ‖u+‖1 = ρ}.
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Fig. 6 On the left a sketch of the situation in the infinite dimensional space E = E0 × E+. The belly g(U )
goes around Su for ρ ≤ ρg . Note that U ∩g(U ) = W . On the right the projections π̂(Z) = π̂(U )∪π̂(g(U ))
and π̂(Su) = N × {0} are shown in the finite dimensional space R

n+1

It has the property that π̂−1π̂(Su) = Su . We observe that since N is closed and g
is continuous, the set G

def= {u ∈ U | g(u)0 ∈ N } is closed. Since G ∩ W = ∅ by
Property 1, it follows from Property 2 that

ρg
def= 1

2 min
G

‖g(u)+‖1 > 0.

This implies that AI I I ∩ S = ∅, provided that ρ ≤ ρg . Since π̂−1π̂(Su) = Su , this
is equivalent to π̂(Su) ∩ π̂(g(U )) = (N × {0}) ∩ π̂(g(U )) = ∅. The arrangement
of Z = U ∪ g(U ) and Su in E , as well as the projection π̂ to R

n+1, are depicted in
Fig. 6.

The proof of Lemma 16 proceeds in three steps. The first one lifts the link from R
n

to R
n+1, the second from R

n+1 to E , and the third from E to E × R.

Step 1 W (k − 1)-links with N in R
n �⇒ π̂(Z) k-links with N × {0} in R

n+1.

Starting from the nontrivial homomorphism ik−1 : Hk−1(W )→ Hk−1(R
n −N ), we

are going to show that ik : Hk(π̂(Z))→ Hk(R
n+1 − N ×{0}) cannot be trivial either.

From Property 2 it follows that π̂(Z) = π̂(U ) ∪ π̂(g(U )) and π̂(U ) ∩ π̂(g(U )) =
π̂(W ).

First of all, we introduce a new set Z̃ , which is obtained by gluing a copy of W × I
between π̂(U ) = U × {ρ} and π̂(g(U )), with I the interval [0, ρ], cf. Fig. 7. More
precisely, if �−ρ denotes translation by ρ in the negative xn+1-direction, then

Z̃ = π̂(U ) ∪ (W × I ) ∪�−ρπ̂(g(U )).

We claim that π̂(Z) links N if and only if Z̃ links N . We define a homotopy ht :
Z̃ → R

n+1 − N by

ht (x) =

⎧
⎪⎨

⎪⎩

x x ∈ U × {ρ},
(x1, . . . xn, tρ + (1 − t)xn+1) (x1, . . . , xn, xn+1) ∈ W × I,

x + tρ(0, . . . , 0, 1) x ∈ �−ρπ̂(g(U )).
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Using that ρ ≤ ρg , we see that the inclusion ĩk of Z̃ in R
n+1 − N is thus homotopic

(as a map from Z̃ to R
n+1 − N ) to the map h1 followed by the inclusion ik of π̂(Z).

This leads to the following commutative diagram on the level of homology groups:

Hk(Z̃)
ĩk−−−−→ Hk(R

n+1 − N × {0})
(h1)∗

⏐
⏐&

∥
∥∥

Hk(π̂(Z))
ik−−−−→ Hk(R

n+1 − N × {0}).
In fact h1 has a homotopy inverse: its construction is based on the observation that
�ρ Z̃ and π̂(Z) are both deformation retracts of (U × [ρ, 2ρ]) ∪ π̂(g(U )). A ho-
motopy inverse of h1 is produced as follows: take the inclusion of π̂(Z) into (U ×
[ρ, 2ρ])∪ π̂(g(U )), followed by a map which is the identity on π̂(g(U )) and retracts
U ×[ρ, 2ρ] onto (U ×{2ρ})∪ (W ×[ρ, 2ρ]); the pair (U,W ) is a CW-complex pair,
so U ∪ (W × I ) is a deformation retract of U × I . In the end perform a translation by
ρ in the negative xn+1-direction. This yields the desired map from π̂(Z) to Z̃ . Thus
(h1)∗ is an isomorphism, which shows that ĩk and ik can only be simultaneously trivial
or nontrivial.

The new set Z̃ can be seen as the union of the two sets

U1 = U × {ρ} ∪ W × [0, ρ] and U2 = �−ρ(π̂(g(U ))),

which intersect in W ×{0}, as illustrated in Fig. 7. Then π̂(U ) is a deformation retract
of U1, whereas U2 is isomorphic to π̂(g(U )). The Mayer–Vietoris sequence for the
triad (Z̃ ,U1,U2) looks as follows:

Hk(U1)⊕ Hk(U2)−→ Hk(Z̃)
δ−→ Hk−1(W × {0}).

Let [w] ∈ Hk−1(W ) be the class such that ik([w]) 
= 0 ∈ Hk−1(R
n − N ). Identify

the following isomorphic sets: W with W × {0}, U with π̂(U ) and U2 with π̂(g(U )),
the latter isomorphism being induced by h1. We know that the cycle w is equal to

Fig. 7 The sets π̂(Z) = π̂(U ) ∪ π̂(g(U )) on the left and Z̃ = U1 ∪ U2 in the middle are homotopic. The
right picture illustrates that �ρ Z̃ and π̂(Z) are both deformation retracts of (U × [ρ, 2ρ]) ∪ π̂(g(U ))
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∂v, with v a chain of U with boundary on W . Then it is also the boundary of a chain
v′ = v +w × I of U1, which satisfies (h1)∗(v′) = v. Moreover, v induces a singular
chain π̂∗g∗(v) in U2, where g∗ and π̂∗ are the chain maps associated to g and π̂ . We
have: ∂π̂∗g∗(v) = π̂∗g∗∂(v) = π̂∗g∗(w) = w. This implies that y = v′ − π̂∗g∗(v) is
a closed chain in Z̃ . By construction, and by definition of the connecting morphism δ

in the Mayer–Vietoris sequence, δ[y] = [w].
Consider another triad, namely (Rn+1−N ×{0},Rn+1+ −N ×{0},Rn+1− −N ×{0}),

where R
n+1+ = {x = (x1, . . . , xn+1)|xn+1 ≥ 0} is the upper half-space, and R

n+1− is
the analogously defined lower half-space. Notice that (Rn+1+ − N × {0}) ∩ (Rn+1− −
N × {0}) = (Rn − N ) × {0}. By naturality of Mayer–Vietoris sequences, and by
inclusion of the triads, we get the commutative diagram

Hk(Z̃)
δ−−−−→ Hk−1(W )

ik

⏐⏐&
⏐⏐&ik−1

Hk(R
n+1 − N × {0}) δ−−−−→ Hk−1(R

n − N )

Let y be the chain constructed earlier. Then

δik[y] = ik−1δ[y] = ik−1[w] 
= 0 ∈ Hk−1(R
n − N ),

which implies in particular that ik[y] cannot be zero and therefore the morphism ik is
not trivial.

Step 2 π̂(Z) k-links with N × {0} in R
n+1 �⇒ Z k-links with Su in E .

We start with the observation that the pre-image of N × {0} under π̂ is exactly Su ,
so that π̂ maps E − Su to R

n+1 − N × {0}. Hence we may consider the following
diagram, where the inclusions commute with the (restrictions of the) projection:

Z
π̂ |Z−−−−→ π̂(Z)

ik

⏐⏐&
⏐⏐&ik

E − Su
π̂ |E−Su−−−−→ R

n+1 − N × {0}.
In turn this induces a commutative diagram on the level of homology groups, namely

Hk(Z)
(π̂ |Z )∗−−−−→ Hk(π̂(Z))

ik

⏐⏐&
⏐⏐&ik

Hk(E − Su)
(π̂ |E−Su )∗−−−−−−→ Hk(R

n+1 − N × {0}).
Just as in the arguments in Step 1, denote by g∗ the map induced by g on the level
of singular chains and notice that ∂g∗v = g∗∂v = w, where w and v are as in
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Step 1, so we may define a closed chain in Z by z = v − g∗(v). This satisfies
π̂∗(z) = (h1)∗(v′ − π̂∗g∗(v)) = (h1)∗(y), using the identification of π̂(g(U )) with
U2. Therefore it represents a class [z] ∈ Hk(Z), which is mapped to (h1)∗[y] under
π̂∗. Since (h1)∗ is an isomorphism, we have

π̂∗ik[z] = ik π̂∗[z] = ik(h1)∗[y] 
= 0.

In particular, ik[z] 
= 0, which implies that ik : Hk(Z)→ Hk(E − Su) is not trivial.

Step 3 Z k-links with Su in E �⇒ A k-links with S in E × R.

Identify Z with Z×{R2} ⊂ E×R. We define a homotopy rt : A −→ (E×R)−S =
(E − Su)× R, which is the identity along AI I I and sends points (u, τ ) on either AI

or AI I to (u, (1− t)τ+ t R2). Then r1(A) = Z and the inclusion of A in (E − Su)×R,
followed by projection π̃ onto E − Su is homotopic to the composition of r1 with
the inclusion in E − Su (a homotopy being given by π̃ ◦ rt ), thus giving rise to the
following commutative diagram of homology groups:

Hk(A)
ik−−−−→ Hk((E − Su)× R)

(r1)∗
⏐⏐&

⏐⏐&π̃∗

Hk(Z)
ik−−−−→ Hk(E − Su)

Following the same line of arguments as in Step 1, we observe that A and Z are both
deformation retracts of the set

{
(u, τ )

∣
∣ u = u0 ∈ U ⊂ E0, R1 ≤ τ ≤ R2

} ∪ g(U ),
so we may construct a suitable homotopy inverse of r1. We then have that both the
vertical maps in the above diagram are isomorphisms, and we conclude that the hori-
zontal ones can only be either both trivial or both nontrivial. This completes the proof
of Lemma 16.

This concludes the construction of the linking sets A and S. Lemma 16 proves that
they link for ν and ρ sufficiently small, while Lemma 15 establishes that B|S and B|A

satisfy the minimax estimates for appropriate choices of R1 and R2 (and in particular
we take ρ ≤ min{ρν, ρg}). In turn, Sects. 3 and 4 show that this implies the existence
of a critical point of B, corresponding to a closed characteristic on M . To finish the
argument though, we still need to prove Proposition 2, which is the subject of the next
section.

6 The homology of M

In this section, we prove Proposition 2. The theorem is obviously true when N = R
n .

In the remainder of this section we consider the case N 
= R
n . For notational purposes

it is easier to work with indices k = i + 1. We will prove that

Hk+n−1(M) ∼= Hk(N , ∂N ) ∼= H̃k−1(R
n − N ), (20)
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for k = 1, . . . , n. The second isomorphism is fairly straightforward. Indeed, by Poin-
caré duality for non-compact manifolds (cf. [13]) we have Hk(N , ∂N ) ∼= Hn−k

c (N ),
where H∗

c denotes compactly supported cohomology. On the other hand, from Alex-
ander duality (cf. [9, VIII. 8.15]) we get Hn−k

c (N ) ∼= H̃k−1(R
n − N ), so that

Hk(N , ∂N ) ∼= H̃k−1(R
n − N ).

To establish Proposition 2, it remains to prove the first isomorphism in (20).

Lemma 17 For every k = 1, . . . , n there is an isomorphism (N 
= R
n)

Hk+n−1(M) ∼= Hk(N , ∂N ).

Proof Recall that we have from the introduction the following description of the
topology of M :

M ∼=
(

Sn−1 × N
)

∪Sn−1×∂N

(
Dn × ∂N

)
,

and since our arguments will be of purely topological nature, we will from now on
identify M with the above boundary sum. Notice that the restriction of the projec-
tion π : R

2n→R
n to M is a proper map (i.e. pre-images of compact sets are com-

pact). In fact, if K ⊂ N is a compact subset, then (π |M )
−1(K ) = K × Sn−1 if

K ∩ ∂N = ∅, whereas if K ∩ ∂N 
= ∅, then the spheres over points of K ∩ ∂N
are collapsed to points in the pre-image (or, using the above identification, disks are
glued in). Since the functor �∗

c (i.e. taking compactly supported forms) is contra-
variant with respect to proper maps [4], the pullback π∗ : H∗

c (N )→H∗
c (M) is well

defined.
Let π! : Hk(N , ∂N )→Hk+n−1(M) be the transfer map (cf. [5, VI.11.2]) defined

by the commutative diagram

Hk(N , ∂N )
PD−−−−→∼=

Hn−k
c (N )

⏐⏐&π!
⏐⏐&π∗

Hk+n−1(M)
PD−−−−→∼=

Hn−k
c (M)

where PD denotes the Poincaré isomorphism for non-compact manifolds. In other
words, π! = P D−1

M π∗ P DN . We are going to show that the pull-back map π∗ :
Hn−k

c (N )→Hn−k
c (M) is an isomorphism, hence in turn π! also is. Notice first of

all that it has a left inverse j∗ : Hn−k
c (M)→Hn−k

c (N ), induced by the inclusion
j : N→M given by q �→ [(q, x0)] for some fixed x0 ∈ Sn−1. Again, we remark
that this induced morphism is well defined because the inclusion map of N in M is
proper: since j (N ) is closed in M , the pre-image of a compact set K is compact ( j
is a homeomorphism between N and j (N ), and j ( j−1(K )) = K ∩ j (N ) is com-
pact).
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With inclusions denoted by i1 : ∂N ×Sn−1→N ×Sn−1, i2 : ∂N ×Sn−1→∂N ×Dn ,
j1 : N × Sn−1→M and j2 : ∂N × Dn→M , the Mayer–Vietoris sequence for com-
pactly supported cohomology of the triad (M, N × Sn−1, ∂N × Dn) looks as fol-
lows:

Hn−k
c (M)

( j∗1 ,− j∗2 )−−−−−→ Hn−k
c (N × Sn−1)⊕ Hn−k

c (∂N × Dn)

i∗1 +i∗2−−−−→ Hn−k
c (∂N × Sn−1), (21)

and from it we would like to show that the map j∗ is in fact an isomorphism. Using
the Künneth formula for compactly supported cohomology (cf. [9, VIII. 8.20]), for
k > 1 we may rewrite the sequence as follows:

−→ Hn−k
c (M)

α−→ Hn−k
c (N )⊕ Hn−k

c (∂N )
β−→ Hn−k

c (∂N )−→

Since the Künneth isomorphism Hn−k
c (N × Sn−1) ∼= Hn−k

c (N ) coincides in this case
with the pullback map induced by the inclusion of N in N × Sn−1 [4], we see that
the first component of α is in fact j∗. In turn, β is of the form i∗1 + id, where by a
slight abuse of notation i1 is also taken to denote the inclusion ∂N→N . Therefore
β is surjective and its kernel is isomorphic to Hn−k

c (N ). Surjectivity implies that the
maps at both outer ends of the sequence are trivial, hence α is an isomorphism onto
its image Hn−k

c (N )⊕ 0. In other words, j∗ : Hn−k
c (M)→Hn−k

c (N ) is bijective. By
uniqueness of the inverse, π∗ also is an isomorphism, as is π!, proving the assertion
for the case k > 1.

If k = 1, the Künneth formula yields Hn−1
c (N × Sn−1) ∼= Hn−1

c (N ) ⊕ H0
c (N ),

and the sequence (21) may be rewritten as

·0−→ Hn−1
c (M)

α′−→ Hn−1
c (N )⊕ H0

c (N )⊕ Hn−1
c (∂N )

β ′
−→ Hn−1

c (∂N )⊕ H0
c (∂N ),

with the map on the far left hand side being trivial because of the previous step.
By naturality of the Künneth isomorphism with respect to maps between spaces,
α′ is of the form ( j∗, γ, in−1

1 j∗) and β ′ of the form (in−1
1 + 0 + id, 0 + i0

1 + 0),
where i1 is again taken to denote the inclusion of ∂N in N and we have indicated
the degree of the induced maps in cohomology. Notice that H0

c consists of
constant functions with compact support; in particular, it is trivial in the case of
a (connected) non-compact space, and in general H0

c (N )→H0
c (∂N ) is an injective

morphism. Because of this, i0
1 is injective. This shows that ker β ′ consists of elements

of the form (a, 0, in−1
1 a), with a ∈ Hn−1

c (N ) and hence that j∗ : Hn−1
c (M) →

Hn−1
c (N ) is an isomorphism because Hn−1

c (M) ∼= im α′ ∼= ker β ′ ∼= Hn−1
c (N ).

Thus π∗ and π! are isomorphisms, finishing the proof for the remaining case
k = 1.
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7 Further extensions and generalizations

1. Hypotheses on V . For the mechanical Hamiltonians H(p, q) = 1
2 |p|2 + V (q) we

have chosen the asymptotic regularity conditions as given in the introduction. Certain
variations on these conditions lead to the same results. For example, if we consider

|DV (q)| → ∞ and
‖D2V (q)‖
|DV (q)| ≤ c̄, as |q| → ∞, (22)

for some c̄ > 0, all the arguments still work with only very minor adjustments. Hence
these conditions also guarantee the existence of a closed characteristic, provided the
topological condition of Theorem 1 is met. The geometric conditions on the potential
are used at four different stages, namely in Lemmas 9, 11, 12 and 14. Of those, Lemma 9
stands out. For the (proofs of the) other three lemmas slightly weaker conditions, such
as

|DV (q)| ≥ c > 0 and
‖D2V (q)‖
|DV (q)| ≤ c̄, as |q| → ∞, (23)

suffice. Alternatively, for these latter three lemmas a different set of sufficient condi-
tions is

|DV (q)| ≥ c > 0 and
〈
p, D2V (q)p

〉
≤ c̃|p|2 for all p ∈ R

n, as |q|→∞, (24)

for some c̃ > 0, with thus only a one-sided bound on the quadratic form D2V . Note
that conditions (24) require significant alterations to the proofs of the above-mentioned
lemmas (and to the definition of Nν). For brevity the proofs, some less straightforward
than others, are omitted.

We stress that neither (23) nor (24) suffices to prove Lemma 9. We would thus need
an additional condition to establish the existence of a closed characteristic. One such
condition is [cf. (9)]

‖D2V (q)‖
|DV (q)|2 → 0, as |q| → ∞, (25)

which, due to the square in the denominator, is a very weak condition. That this con-
dition indeed suffices in the proof of Lemma 9 is easily checked. This implies that
Theorem 1 holds under the pair of conditions (23) and (25), or under the pair (24) and
(25), of course always under the constraint that the topological condition is met. If
some specific potential V (u) does not satisfy any of these sufficient conditions, one
could still try to make the proofs of those lemmas work, but we shall not pursue that
here.
2. More general Hamiltonian systems. The above generalizations all apply to the stan-
dard mechanical systems. There are several classes of systems to which one could
attempt to extend the results of this paper.
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(i) Hamiltonian functions H(p, q) which are the sum of a potential energy V (q)
and a “kinetic energy” which is quadratic in p, i.e. H(p, q) = 1

2 〈A(q)p, p〉 +
V (q). Here the matrices A(q) are symmetric and positive definite, with both
‖A(q)‖ and ‖A−1(q)‖ uniformly bounded in q. One may view the kinetic
energy as a metric g(·, ·) = 〈A(q)·, ·〉 on R

n and therefore the topological char-
acterization in Proposition 2 remains unchanged. The Lagrangian in the case
is L(q, q ′) = 1

2

〈
A−1(q)q ′, q ′〉 − V (q), which reveals that in order to extend

the proof from this paper one will need some appropriate growth condition on
A(q) as q → ∞. An other generalization is to consider kinetic terms that are
indefinite, see e.g. [6,8,17,18].

(ii) More generally, when the Hamiltonian H(p, q) is convex in p, then we may
employ the Legendre transform to convert the problem to the Lagrangian set-
ting. One example in which the calculations remain surveyable is when we
add a linear term of the form 〈B(q)p, q〉, i.e. H(p, q) = 1

2 〈A(q)p, p〉 +
〈B(q)p, q〉 + V (q). The Legendre transform now leads to the explicit relation
p = A−1(q)[q ′ − B∗(q)q], and a straightforward calculation shows that the
Lagrangian becomes

L(q, q ′) = 〈
p, q ′〉 − H(p, q)

= 1

2

〈
A−1q ′, q ′〉 −

〈
A−1q ′, B∗q

〉
− V (q)+ 1

2

〈
A−1 B∗q, B∗q

〉
.

Only minor changes are needed to establish a topological characterization of
M = H−1(0), namely replacing V (q) by V (q)− 1

2

〈
A−1(q)B∗(q)q, B∗(q)q

〉

in the definition of N . One may then proceed along the same lines as in the
present paper to establish an existence theorem in the spirit of Theorem 1.

(iii) Another possible extension is to generalize the underlying configuration space
R

n . Let P be any smooth n-dimensional Riemannian manifold (without bound-
ary), and consider the cotangent space T ∗ P with its canonical symplectic struc-
ture. By considering mechanical Hamiltonians H : T ∗ P → R we obtain the
generalization of our problem for cotangent bundles. To prove the analogue of
Theorem 1 requires additional thought, although we believe that the result still
holds under a suitable geometric conditions. In the compact case results like
these were obtained by Bolotin [3] and Hofer and Viterbo [15].

(iv) An interesting class of Hamiltonian systems that does not fall into any of the
above categories are the so-called higher order Lagrangian systems. To illus-
trate this let us consider second order Lagrangians of the form L(q, q ′, q ′′) =
1
2 |q ′′|2 + β

2 |q ′|2 + V (q), where q is scalar. The associated Hamiltonian then

is H(p1, p2, q1, q2) = p1q2 + 1
2 p2

2 − β
2 q2

2 − V (q1). A topological charac-
terization of the energy manifolds is not hard to obtain, see e.g. [1]. Let us
illustrate the important issues by specializing further to the specific example
V±(q) = ±( 1

4 q4 − 1
2 q2 + E) with E ∈ (0, 1

4 ). For these choices we have
H2(M+) ∼= Z, while H2(M−) ∼= Z

2 (and H1(M+) ∼= Z
2 and H1(M−) ∼= Z).

For β ≥ 0 the energy manifold is of contact type, whereas for sufficiently large
β < 0 it is not [1]. The results in [19,30] show that for either sign of β there
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are closed characteristics. Moreover, on M− (whose second homology group
has rank 2) there are at least two different closed characteristics [19,30]. On
the other hand, varying E outside [0, 1

4 ] one easily arrives at situations where
H2(M+) = 0 (but H1(M+) ∼= Z). In such a case there are values of β (for
example β > 0 sufficiently large) for which no closed characteristics exists on
M+ (cf. [29]).

The above generalizations are all in the setting where the Hamiltonian problem
can be converted into a Lagrangian one. The challenge is to obtain a similar result
on non-compact energy surfaces in the general Hamiltonian setting. The above con-
siderations, as well as those put forward in the introduction, seem to indicate that
the existence of closed characteristics on non-compact hypersurfaces depends on two
main ingredients, namely on the topology of the hypersurface, and on some well-cho-
sen geometrical condition. The topological condition that we propose in this paper is
that at least one of the homology groups of M in the top half be nontrivial.
3. Multiplicity. Finally, our result concerns the existence of at least one closed char-
acteristic. In most situations the topology implies the existence of many different
closed characteristics. This problem has sparked, especially in the compact case, many
interesting results in Hamiltonian mechanics, and still is a mostly uncharted field of
research, although in the past decades various multiplicity result were obtained by
Ekeland and Hofer [10], Viterbo [32], and more recently by Long [20]. To get a fla-
vor of how the topological information in the top half homology groups is related
to multiplicity let us consider M ∼= S2n−1 given by a quadratic Hamiltonian: H =∑n

i=1
1
2

(
p2

i + ζ 2
i q2

i

)−1, with ζi > 0. For the associated linear Hamiltonian system we
know all the closed characteristics at M = H−1(0). We find exactly n periodic orbits
if the ζi -s are independent over Z. The conjecture is that n is a lower bound in the case
M ∼= S2n−1, where the only nontrivial top half homology group is H2n−1(M) ∼= Z.
This shows that the Betti numbers should probably be counted with a weight. To further
substantiate this, recall from the discussion of second order Lagrangians above that if
H2(M) ∼= Z

k , then M has at least k closed characteristics. Although this has only been
proved so far for second order Lagrangians, it suggests that a Betti number βn = k
implies at least k closed characteristics. Summarizing, multiplicity is an extremely
interesting but difficult direction for further research, and (non-compact) mechanical
hypersurfaces could serve as a useful initial step towards an understanding of general
non-compact energy surfaces.

Acknowledgments We thank Sigurd Angenent and Hansjörg Geiges for helpful discussions.
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Appendix A: Filling a simplex

The objective of this appendix is to prove the existence of the map g used in the con-
struction of the linking sets in Sect. 5.2. The properties of the map g are repeated below
for convenience. Recall that σk−1 is a simplicial (k − 1)-cycle, and σ ′

k is a simplicial
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k-chain such that ∂σ ′
k = σk−1. Their (bounded) supports W = |σk−1| and U = |σ ′

k |
satisfy W ⊂ {V > 0} = R

n − N and ∂U ⊂ W . The triangulation of U is denoted by
TU , and its restriction to W by TW . We use the notation u (rather than u0) for points
in U throughout. We construct a continuous map g : U → H1(R/Z; R

n) satisfying

1. g(u) ≡ u for all u ∈ W ;
2. g(u)+ ≡ 0 if and only if u ∈ W ;
3.

∫ 1
0 V (g(u)(s))ds > 0 for all u ∈ U .

As before, we identify points in R
n with constant functions in H1.

We proceed by first constructing a continuous map ḡ from U to L2(R/Z; R
n),

and subsequently smoothing it. For any u ∈ U the function ḡ(u) will be piecewise
constant with values in {V > 0}, so that it satisfies Property 3. In view of Property 1,
let ḡ : W → L2 be given by ḡ(u) = u for all u ∈ W . We will extend the domain of
definition gradually to all of U .

We start the construction by explaining an interpolation procedure for individual
simplices. Define the standard m-simplex by

�m =
{

η = (η1, . . . , ηm)

∣∣∣
m∑

i=1

ηi ≤ 1, ηi ≥ 0

}

.

Given a continuous map h on the boundary ∂�m , we describe a way to extend/inter-
polate h to a continuous map on all of�m , denoted by I�m (h). Define the base of the
simplex by �m

B = {η | ∑m
i=1 ηi = 1, ηi ≥ 0}, and its normal by 1 = ∑m

i=1 ei , where
ei are the standard unit vectors in R

m . On �m we can give alternative coordinates
(η̄, λ) so that η = η̄ − λ1, with η̄ ∈ �m

B and λ ∈ [0, λη̄], where λη̄ = min1≤i≤m η̄i

depends on η̄. Let h be a continuous map from the boundary ∂�m to L2. We now
define an interpolation of h on �m (see Fig. 8):

I�m (h(η̄ − λ1))(s) =

⎧
⎪⎨

⎪⎩

h(η̄)(s), s ∈
[
0, 1 − λ

λη̄

)
,

h(η̄ − λη̄1)(s), s ∈
(

1 − λ
λη̄
, 1

]
.

This map is then defined on all of �m , it is a continuous map from �m to L2, and it
coincides with h on the boundary. The interpolation operator I�m thus sends a map
h ∈ C(∂�m; L2) to a map I�m (h) ∈ C(�m; L2).

As in singular homology, we consider linear (affine) maps

�m
j : �m −→ TU ,

which map the standard m-simplex to an m-dimensional “triangle” in TU . The image
�m

j (�
m) is again called an m-simplex, denoted by Lm

j . When h is a map defined

on ∂Lm
j , then ILm

j
(h)

def= �m
j ◦ I�m ◦ (�m

j )
−1(h) is its interpolation to Lm

j .
We need to do some careful bookkeeping. We order the 0-simplices in TU and denote

them by {L0
i }p

i=1. For any m-simplex Lm
j in TU , we denote the 0-simplices that form the
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Fig. 8 A map h defined on the boundary of an m-simplex �m is interpolated to a map I�m (h) on all of
�m . On the left a picture of the standard 2-simplex with an interpolation line. Interpolated profiles along
this line are shown on the right. The dotted lines indicate the value s = 1 − λ

λη̄

corners of Lm
j by {L0

i(l)}m
l=0, ordered in such a way that i(0) < i(1) < · · · < i(m). Here

the i(l) depend on the simplex Lm
j under consideration, and which simplex is meant

should be clear from the context. We choose all the maps �m
j so that �m

j (0, 0, . . . , 0) =
L0

i(0), i.e., they map the origin to the “first” corner point. The importance of this choice
will become clear later. For now, notice that the role of the origin in �m in the inter-
polation construction is geometrically different from that of the other corner points
in �m

B .
Having defined ḡ(u) = u on all simplices in TW , we use the interpolation operator

to extend its domain of definition to TU . We begin with defining ḡ on the 0-simplices
in TU − TW , and then inductively/recursively deal with the m-simplices, 0 < m ≤ k.
Let {v±

i }p
i=1 be a set of 2p distinct points in R

n − (N ∪ W ) ⊂ {V > 0}. On all
0-simplices L0

j ∈ TU − TW we define ḡ to be piecewise constant, but not uniformly
constant:

ḡ
(

L0
j (�

0)
)
(s) =

{
v−

j , s ∈ [0, 1
2 ),

v+
j , s ∈ ( 1

2 , 1].

On
⋃

j L0
j we now have that ḡ satisfies the three required properties.

Next, we consider the 1-simplices. On all L1
j ∈ TU − TW we define ḡ via the

interpolation operator. Namely, since ḡ is already defined on the 0-simplices that form
the boundary ∂L1

j , we may define ḡ = IL1
j
ḡ on L1

j . On
⋃

j L1
j we have that ḡ is

continuous and satisfies the three required properties. First, ḡ(u) = u for u ∈ W by
definition. Second, ḡ(u) is not a constant for

⋃
j L1

j − W , since the points v±
i /∈ W
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Fig. 9 We depict the argument why ḡ(u)+ 
≡ 0 for u /∈ W for a 3-simplex in TU −TW , where we assume
for simplicity that {Li(l)}3

l=0 ∩ W = ∅. For any u = (η̄, λ) in the interior of the 3-simplex it follows that

η̄ ∈ �3
B and hence ḡ(u)(0) = ḡ(η̄)(0) ∈ � = {v±i(1), v±i(2), v±i(3)}. On the other hand, ḡ(u)(1) = ḡ(u1)(1).

Repeating this argument twice we see that ḡ(u)(1) = ḡ(u1)(1) = ḡ(u2)(1) = ḡ(u3)(1) = v∗ = v+i(0) /∈ �.
In particular, we conclude that ḡ(u)(0) 
= ḡ(u)(1), so that ḡ(u) is not identically constant

and they are all different. Third, ḡ(u)(s) ∈ W ∪ {v±
i }p

i=1 a.e. by construction, and

W ∪ {v±
i }p

i=1 ⊂ {V > 0}, hence
∫ 1

0 V (ḡ(u)(s))ds > 0.
We now proceed recursively. Let 2 ≤ m ≤ k and let ḡ be defined on all Lm−1

j ∈ TU ,

where it satisfies the three required properties, and ḡ(u)(s) ∈ W ∪{v±
i }p

i=1 a.e.. On the
m-simplices Lm

j ∈ TU − TW we define ḡ again via the interpolation operator: since ḡ
is defined in the boundary ∂Lm

j , we may define ḡ = ILm
j
ḡ on Lm

j . On
⋃

j Lm
j we have

that ḡ is continuous and we claim that it satisfies the three properties. Properties 1
and 3 are straightforward, but Property 2 requires a more detailed investigation. Let
u ∈ int(Lm

j )with Lm
j ∈ TU −TW . We need to show that ḡ(u) is not a constant function.

In particular, we assert that ḡ(u)(0) 
= ḡ(u)(1).
Since �m

j is a bijection between �m and Lm
j , let us identify them, and write

u = (η̄, λ). The function ḡ(u) is an interpolation between ḡ(η̄) and ḡ(u1), where
u1 = η̄ − λη̄1. In particular, ḡ(u)(0) = ḡ(η̄)(0) and ḡ(u)(1) = ḡ(u1)(1). Let us
single out the special corner point L∗ = L0

i(0) = (0, 0, . . . , 0), and let v∗ = v+
i(0).

Since η̄ ∈ �m
B , and the corners of �m

B are {L0
i(l)}m

l=1, we see that ḡ(η̄) takes values in

the set �
def= (W ∩�m

B ) ∪ {v±
i(l)}m

l=1. In particular, ḡ(u)(0) = ḡ(η̄)(0) ∈ �. Note that
u1 /∈ �m

B , and if u1 ∈ W then u1 /∈ �, see also Fig. 9.
To prove our assertion, we show that ḡ(u)(1) = ḡ(u1)(1) /∈ �. This is true if

u1 ∈ W , since then ḡ(u1) = u1 /∈ �. It is also true if u1 /∈ W is a corner point,
since then u1 = L∗, and hence ḡ(u1)(1) = v∗ = v+

i(0) /∈ �. The final possibility is
that u1 /∈ W is not a corner point. This means that u1 is in some lower dimensional
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simplex, i.e. u1 ∈ int(Lm1
j ) ∈ TU − TW for some 1 ≤ m1 < m. Notice that the

corner points of Lm1
j are a subset of those of Lm

j , and in particular, by our ordering of

the corner points, L∗ = L0
i(0) also for this m1-simplex. Furthermore, since we have

chosen �m1
j (0, . . . , 0) = L0

i(0) = �m
j (0, . . . , 0), we see that �m1

j (�
m1
B ) ⊂ �m

j (�
m
B ).

Identifying Lm1
j with �m1 , we write u1 = (η̄1, λ1). The function ḡ(u1) is an

interpolation between ḡ(η̄1) and ḡ(u2), where η̄1 ∈ �
m1
B and u2 = η̄1 − λη̄1 1. As

before, ḡ(u1)(1) = ḡ(u2)(1), and the same arguments apply to u2 as to u1 above. If
u2 ∈ W then ḡ(u)(1) = ḡ(u1)(1) = ḡ(u2)(1) /∈ �. If u2 /∈ W is a corner point, then
u2 = L∗, and hence ḡ(u)(1) = ḡ(u2)(1) = v∗ /∈ �. Finally, if u2 /∈ W ∪ L∗, then
u2 ∈ int(Lm2

j ) ∈ TU −TW for some 1 ≤ m2 < m1, and we repeat the argument. Since
1 ≤ · · · < mi+1 < mi < · · · < m1 < m, this construction breaks off after at most m
steps, and we conclude that ḡ(u)(1) /∈ �, and hence ḡ(u)(0) 
= ḡ(u)(1).

This finishes our proof of the assertion that ḡ satisfies Property 2. We have thus
found a continuous map ḡ : U → L2 that satisfies the three required properties, and
ḡ(u)(s) ∈ W ∪ {v±

i }p
i=1 ⊂ {V > 0} a.e.. Furthermore, it follows from compactness

of U that
∫ 1

0 V (ḡ(u)(s))ds ≥ C for some u-independent positive constant C . The
final step is to smoothen ḡ. Using a standard mollifier ϕε , let ḡε be the convolution
ϕε � ḡ. It is not difficult to derive that ḡε is a continuous map from U to H1, and that
it satisfies the three required properties for small ε. Choosing a sufficiently small ε̄,
this completes the construction of the map g = ḡε̄ .
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