DOI: 10.1007/s00208-004-0584-4

Erratum

The Bando-Calabi-Futaki character as an obstruction to semistability

T. Mabuchi · Y. Nakagawa

Math. Ann., http://dx.doi.org/10.1007/s002080200336

Received: 19 November 2003 / Revised version: 11 May 2004 / Published online: 14 September 2004 – © Springer-Verlag 2004

Abstract. The purpose of this note is to correct some errors in (b) and (c) of Main Theorem in [MN], and to make an additional observation. In particular, we shall give a first nonvanishing example of the obstruction $Obstr_{asymp}(M, L)$ introduced in [M2].

1. Corrections

In this note, we use the same notation as in [MN]. Fix once for all a compact connected n-dimensional complex manifold M with an integral Kähler class η , a linear algebraic group G defined over $\mathbb C$ acting biregularly on M, and an ample G-linearized holomorphic line bundle L over M such that $c_1(L) = \eta$. For an ample G-linearized holomorphic line bundle N over M and a positive integer $m \in \mathbb Z$ such that N^m is very ample, we put

$$V_{N^m} := H^0(M, N^m)^*, \quad W_{N^m} := \left\{ S^d(V_{N^m}) \right\}^{\otimes n+1},$$

where $d = d(N^m)$ is the degree of $M \subset \mathbb{P}(V_{N^m})$. For the dual $V_{N^m}^*$ of the complex vector space V_{N^m} , we naturally have an algebraic group homomorphism

$$\nu_{N^m}: G \to \mathrm{GL}(V_{N^m}^*).$$

Define a positive integer $\beta = \beta(N^m)$ by setting $\beta := \dim_{\mathbb{C}} V_{N^m}$. Then ν_{N^m} induces an algebraic character det $\nu_{N^m} \colon G \to \operatorname{GL}(\wedge^{\beta} V_{N^m}^*) \cong \mathbb{C}^*$, and let $(\det \nu_{N^m})_* \colon \mathfrak{g} \to \mathbb{C}$ be the associated Lie algebra character. For a suitable finite

Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan (e-mail: mabuchi@math.sci.osaka-u.ac.jp)

Y. NAKAGAWA

Department of Mathematics, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan (e-mail: yasunaka@kenroku.kanazawa-u.ac.jp)

T. MABUCHI

unramified cover $\iota : \tilde{G} \to G$ of G, the composite $(\det \nu_{N^m}) \circ \iota$ is expressible as a multiple $(\chi_{N^m})^{\beta}$ for some algebraic character $\chi_{N^m} : \tilde{G} \to \mathbb{C}^*$ of \tilde{G} . In particular,

$$(\det \nu_{N^m})_* = \beta \cdot (\chi_{N^m})_*, \tag{1}$$

where $(\chi_{N^m})_*: \mathfrak{g} \to \mathbb{C}$ denotes the Lie algebra character associated with χ_{N^m} . We now define an algebraic group homomorphism $\tilde{\nu}_{N^m}: \tilde{G} \to \mathrm{SL}(V_{N^m}^*)$ by

$$\tilde{\nu}_{N^m}(\tilde{g}) := \chi_{N^m}(\tilde{g})^{-1}(\nu_{N^m} \circ \iota)(\tilde{g}), \quad \text{for all } \tilde{g} \in \tilde{G}.$$
 (2)

Let $\mu_{N^m}: G \to \operatorname{GL}(W_{N^m})$ and $\tilde{\mu}_{N^m}: \tilde{G} \to \operatorname{SL}(W_{N^m})$ be the algebraic group homomorphisms induced naturally by ν_{N^m} and $\tilde{\nu}_{N^m}$, respectively. Then by (2) and the definition of W_{N^m} , we obtain

$$\tilde{\mu}_{N^m}(\tilde{g}) := \chi_{N^m}(\tilde{g})^{(n+1)d} (\mu_{N^m} \circ \iota)(\tilde{g}), \quad \text{for all } \tilde{g} \in \tilde{G}.$$
 (3)

In [MN], the factors $\chi_{N^m}(\tilde{g})^{-1}$ and $\chi_{N^m}(\tilde{g})^{-(n+1)d}$ in the expression of $\tilde{\nu}_{N^m}(\tilde{g})$ and $\tilde{\mu}_{N^m}(\tilde{g})$, respectively, were disregarded by mistake. Let us first consider the case $N = K_M^{-1}$. Then in view of (1) above, (c) of Main Theorem in [MN] should be replaced by

Theorem A. Assume that $\eta = c_1(M) > 0$ with $L = K_M^{-1}$. Let $G = \operatorname{Aut}^0(M)$, where G acts naturally on M. If M is Chow-semistable with respect to K_M^{-m} for some $0 < m \in \mathbb{Z}$, then F belongs to $\mathbb{Q}(\det v_{K_M^{-m}})_*$.

Similarly, in view of Remark 3.6 in [MN], we next consider the case $N = K_M \otimes L^k$ with m = 1. Then (b) of Main Theorem in [MN] should be replaced by the following:

Theorem B. Assume, for some positive integer λ , the following conditions are satisfied for all integers k with $\lambda \le k \le \lambda + 2n + 1$:

- (a) $K_M \otimes L^k$ is very ample,
- (b) M is Chow-semistable with respect to $K_M \otimes L^k$.

Then F belongs to $\sum_{k=\lambda}^{\lambda+2n+1} \mathbb{Q} (\det \nu_{K_M \otimes L^k})_*$.

In Theorem A, recall that $F = -2\pi(n+1)^{-1}\mathcal{C}\{c_1^{n+1}, K_M^{-1}\} = \alpha_m(\det \nu_{K_M^{-m}})_*$ for some $\alpha_m \in \mathbb{Q}$, where $\alpha_m \neq 0$ as we see later. Then by (a) of Main Theorem in [MN], we obtain

Corollary C. In Theorem A above, we assume in addition that (M, K_M^{-1}) is semi-stable in the sense of Tian. Then $(\det v_{K_M^{-m}})_* = 0$, i.e., $G = \operatorname{Aut}^0(M)$ acts on $H^0(M, K_M^{-m})$ as a subgroup of $\operatorname{SL}(H^0(M, K_M^{-m}))$.

It is very plausible that the existence of Kähler-Einstein metrics for Fano manifolds implies a very strong stability condition for polarized algebraic manifolds (M, K_M^{-1}) . Hence, in view of Corollary C above, we pose the following:

Conjecture D. If a Fano manifold M admits a Kähler-Einstein metric, then $\operatorname{Aut}^0(M)$ acts naturally on $H^0(M, K_M^{-m})$ as a subgroup of $\operatorname{SL}(H^0(M, K_M^{-m}))$ for all $m \gg 1$.

2. An additional observation

In this section, we make the following additional observation. Let m be a positive integer such that L^m is very ample and let $[\hat{M}] \in \mathbb{P}(W_{L^m})$ be the Chow point of the irreducible reduced effective algebraic cycle M on $\mathbb{P}(V_{L^m})$, where $[\hat{M}]$ is the natural image of $0 \neq \hat{M} \in W_{L^m}$ in $\mathbb{P}(W_{L^m})$. Let G be the maximal connected linear algebraic subgroup of $\mathrm{Aut}^0(M)$, so that $\mathrm{Aut}^0(M)/G$ is an Abelian variety. Then G is known to be an algebraic subgroup of $\mathrm{PGL}(V_{L^m}^*)$ by a natural inclusion:

$$G \hookrightarrow PGL(V_{Im}^*).$$
 (4)

On the other hand, the G-linearization of L allows us to regard G as an algebraic subgroup of $GL(V_{L^m}^*)$, and the corresponding inclusion

$$j: G \hookrightarrow GL(V_{L^m}^*)$$

is written as ν_{L^m} by the notation in Section 1. Next, let \tilde{G} be the identity component of the isotropy subgroup of $SL(V_{L^m}^*)$ at $[\hat{M}]$ for the natural $SL(V_{L^m}^*)$ -action on $\mathbb{P}(W_{L^m})$. Let $\varphi: SL(V_{L^m}^*) \to PGL(V_{L^m}^*)$ be the natural isogeny. Then by the definition of \tilde{G} , we see that \tilde{G} and the identity component of $\varphi^{-1}(G)$ coincide for (4) above. Hence the natural inclusion

$$\tilde{j}: \tilde{G} \hookrightarrow \mathrm{SL}(V_{L^m}^*)$$

is expressible as $\tilde{\nu}_{L^m}$ by the notation in Section 1, because the representations $j \circ \varphi$ and \tilde{j} of G differ only by a character of \tilde{G} .

Assume now that M is Chow-semistable with respect to L^m . Let $(\tilde{\mu}_{L^m|\mathbb{C}\cdot\hat{M}})_*$: $\mathfrak{g}\to\mathbb{C}$ denote the Lie algebra character associated with the isotropy representation

$$\tilde{G} \times \mathbb{C} \cdot \hat{M} \to \mathbb{C} \cdot \hat{M}, \qquad (\tilde{g}, \ell) \mapsto {\{\tilde{\mu}_{L^m}(\tilde{g})\}(\ell)}$$

of \tilde{G} at $[\hat{M}]$. Similarly, we have the Lie algebra character $(\mu_{L^m|\mathbb{C}.\hat{M}})_*: \mathfrak{g} \to \mathbb{C}$. By virtue of the G-linearization of L, we see from (3.5) in [MN] that the equalities $(\mu_{L^m|\mathbb{C}.\hat{M}})_* = 2\,\mathcal{C}\{c_1^{n+1}; L^m\} = 2\,m^{n+1}\,\mathcal{C}\{c_1^{n+1}; L\}$ hold, while the Chow-semistability implies that the isotropy representation is trivial, i.e., $(\tilde{\mu}_{L^m|\mathbb{C}.\hat{M}})_* = 0$. Now by (2) and (3), we have $(\tilde{\mu}_{L^m})_* = (\mu_{L^m})_* + \beta(L^m)^{-1}(n+1)d(L^m)(\det \nu_{L^m})_*$. Hence, in view of the identity $d(L^m) = m^n c_1(L)^n[M]$, we see that

$$\frac{(\det \nu_{L^m})_*}{m \, \beta(L^m)} = \frac{\{(\tilde{\mu}_{L^m}|_{\mathbb{C}.\hat{M}})_* - (\mu_{L^m}|_{\mathbb{C}.\hat{M}})_*\}}{m \, (n+1) \, d(L^m)} = \frac{-2 \, \mathcal{C}\{c_1^{n+1}, L\}}{(n+1) \, c_1(L)^n[M]}.$$

Here the right-hand side is a Lie algebra character of \mathfrak{g} independent of the choice of m, and will be denoted by \mathcal{F}_0 . Thus, we obtain

Theorem E. If M is Chow-semistable with respect to L^m , then $\{m \ \beta(L^m)\}^{-1}$ (det ν_{L^m})* coincides with \mathcal{F}_0 .

By this theorem applied to the case $L = K_M^{-1}$, we immediately obtain Theorem A and the nonvanishing of α_m above.

3. An example of (M, L) such that $Obstr_{asymp}(M, L) \neq 0$

In this section, we assume for simplicity that L is very ample. Consider the infinitesimal action $(\nu_L)_*: \mathfrak{g} \to \operatorname{End}(V_L^*)$ of \mathfrak{g} on V_L^* induced by the G-linearization of L. Put

$$\rho_m := (\nu_L)_* - m^{-1} (\chi_{L^m})_* \operatorname{id}_{V_I^*} = (\nu_L)_* - \{ m \ \beta(L^m) \}^{-1} (\det \nu_{L^m})_* \operatorname{id}_{V_I^*}.$$

As seen from Theorem E above, vanishing of the obstruction $Obstr_{asymp}(M, L)$ to asymptotic Chow-semistability for (M, L) introduced in [M2] is expressible as the stability

$$\rho_{m_0} = \rho_{m_0+1} = \rho_{m_0+2} = \dots$$

of the actions ρ_m , $m \gg 1$, or equivalently, as the coincidence of $\{m \beta(L^m)\}^{-1}$ (det ν_{L^m})* with \mathcal{F}_0 for all sufficiently large integers m.

We shall now give an example of (M,L) such that $Obstr_{asymp}(M,L) \neq 0$. Let M be $\mathbb{P}^2(\mathbb{C})$ blown up at a point, and let $L=K_M^{-1}>0$. Then there exists an extremal Kähler metric ω on M in the anticanonical class, and M as a toric variety admits an almost homogeneous action of $T:=\mathbb{C}^*\times\mathbb{C}^*$. Let $\mathfrak{t}_{\mathbb{R}}$ be the Lie algebra of the maximal compact subgroup $T_{\mathbb{R}}:=S^1\times S^1$ of T. Let m be an arbitrary positive integer. Then for a suitable choice of a basis for $\mathfrak{t}_{\mathbb{R}}^*$, the image of the moment map $\mu:M\to\mathfrak{t}_{\mathbb{R}}^*$ for the Kähler metric $m\omega$ is a compact convex polygon P with integral vertices (-m,m), (0,m), (2m,-m), (-m,-m) (see for instance [M1]). Let b_m be the barycenter of the polygon P and let b_m' be the barycenter of the set of all integral points in P. Then by setting $q(m):=2(m+1)(2m+1)^{-1}$, we see that

$$b_m = (m/12, -m/6)$$
 and $b'_m = q(m)(m/12, -m/6)$.

Note that $\{m \beta(L^m)\}^{-1}(\det \nu_{L^m})_* = \mathcal{F}_0$ if and only if $b'_m = b_m$. By q(m) > 1, we obtain $b_m \neq b'_m$ for all positive integers m. Thus, we obtain $Obstr_{asymp} \neq 0$ in this case.

Added in proof. After the completion of this note, we hear that the vanishing of the obstruction $Obstr_{asymp}(M, L)$ is characterized by Futaki [F1] as the vanishing of a series of integral invariants (including the Bando-Calabi-Futaki character F) by virtue of the equivariant Riemann-Roch theorem.

References

- [F1] Futaki, A.: Asymptotic Chow stability and integral invariants. Preprint
- [M1] Mabuchi, T.: Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. **24**, 705–737 (1987)
- [M2] Mabuchi, T.: An obstruction to asymptotic semistability and approximate critical metrics. arXiv:math. DG/0404210, to appear in Osaka J. Math. **41**, 463–472 (2004)
- [MN] Mabuchi, T., Nakagawa, Y.: The Bando-calabi-Futaki character as an obstruction to semistability. Math. Ann. **324**, 187–193 (2002)