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Abstract

In this paper, we introduce Prodi–Serrin like criteria which enable us to provide
a priori estimates for the solutions to the spatially homogeneous Landau equation
for all classical soft potentials and dimensions d � 3. The physical case of Coulomb
interaction in dimension d = 3 is included in our analysis; this generalizes the work
of Silvestre (J Differ Equ 262:3034–3055, 2017). Our approach is quantitative and
does not require a preliminary knowledge of elaborate tools for nonlinear parabolic
equations.

1. Introduction

1.1. The Spatially Homogeneous Landau Equation

In this work, we are interested in the regularity properties of the solutions to
the (spatially homogeneous) Landau equation

∂t f (t, v) = Q( f (t, ·))(v), t � 0, v ∈ R
d , (1.1a)

supplemented with the initial condition

f (t = 0, v) = fin(v), v ∈ R
d , (1.1b)

where Q denotes the (quadratic) Landau collision operator

Q( f )(v) := ∇v ·
∫
Rd

|v − v∗|γ+2 �(v − v∗)
{

f∗∇ f − f ∇ f ∗
}

dv∗ , (1.2)

with the usual shorthands f := f (v), f∗ := f (v∗), and where �(z) is the orthog-
onal projector onto z⊥:

�(z) := Id − z ⊗ z

|z|2 .
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In the present contribution we obtain new results for the Landau equation in the
case of so-called very soft potentials

−d � γ < −2,

including the physically relevant Coulomb case d = 3, γ = −3, in which the Lan-
dau operator models collisions between charged particle; see Lifschitz-Pitaevskii
[43]. We nevertheless point out that the results presented here still hold when
−2 � γ < 0 (so-called moderately soft potentials), and this enables us to get new
proofs of already known results (see for example Wu [59]; Desvillettes [18] and
Alonso et al. [5]). The case of Maxwell molecules (γ = 0) and hard potentials
(γ ∈ (0, 1]) is quite different (see for example Desvillettes, Villani [22]), and is
not considered in this work.

1.2. Notations

For k ∈ R and p � 1, we define the Lebesgue space L p
k = L p

k (Rd) through
the norm

‖ f ‖L p
k

:=
(∫

Rd

∣∣ f (v)
∣∣p 〈v〉k dv

) 1
p

, L p
k (Rd ) :=

{
f : Rd → R; ‖ f ‖L p

k
< ∞

}
,

where 〈v〉 := √
1 + |v|2, v ∈ R

d . For k = 0, we simply denote ‖ · ‖p as the
L p-norm. We also denote the homogeneous Sobolev space Ḣ

m through the norm

‖ f ‖2
Ḣm =

∫
Rd

|ξ |2m |F[ f ](ξ)|2 dξ, m ∈ N

and the weighted homogenous Sobolev space Ḣ
m
k through the norm

‖ f ‖2
Ḣ

m
k

=
∫
Rd

|ξ |2m
∣∣∣F[〈·〉 k

2 f ](ξ)

∣∣∣2 dξ, m ∈ N, k ∈ R,

where F[ f ] denotes the Fourier transform of f . Given k ∈ R and f ∈ L1
k(R

d), we
also define the statistical moments as

mk( f ) =
∫
Rd

f (v)〈v〉kdv.

In relation to the coefficients of the Landau equation, we introduce, for γ ∈ [−d, 0),
⎧⎪⎨
⎪⎩

a(z) := (
ai, j (z)

)
i, j with ai, j (z) = |z|γ+2

(
δi, j − zi z j

|z|2
)

,

bi (z) := ∑
k ∂kai,k(z) = −(d − 1) zi |z|γ ,

c(z) := −∑
k,l ∂2

klak,l(z).

Therefore,

c(z) =
{

(d − 1) (γ + d) |z|γ , for γ ∈ (−d, 0),

(d − 1)(d − 2)|Sd−1|δ0(z), for γ = −d.
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For any f ∈ L1
2+γ (Rd), we define then the matrix-valued mapping A[ f ] given by

A[ f ] := (Ai j [ f ])i j := (
ai j ∗ f

)
i j . (1.3)

In the same way, we define b[ f ] ∈ R
d and cγ [ f ] ∈ R by

bi [ f ] := bi ∗ f, i = 1, . . . , d; cγ [ f ] := c ∗ f.

We emphasize the dependency with respect to the parameter γ in cγ [ f ] since, in
several places, we apply the same definition with γ + 1 replacing γ . Notice that

cγ [ f ](v) =
⎧⎨
⎩

(d − 1) (γ + d)

∫
Rd

|v − v∗|γ f (v∗)dv∗ for γ ∈ (−d, 0),

cd f (v) for γ = −d,

(1.4)

where cd := (d − 1)(d − 2)|Sd−1|.
With these notations, the Landau equation can then be written alternatively under
the form{

∂t f = ∇ · (A[ f ] ∇ f − b[ f ] f
) = Tr

(A[ f ]D2 f
)+ cγ [ f ] f,

f (t = 0) = fin ,
(1.5)

where D2 f is the Hessian matrix of f . Notice that, with respect to previous existing
works on the field, we adopt here a convention in which the term cγ [ f ] in (1.5) is
nonnegative. With such a convention, cγ [ f ] = −∇ · b[ f ].

1.3. Solutions to the (Spatially Homogeneous) Landau Equation

We discuss here some of the results existing in the literature for the Landau
equation in dimension d = 3.

In the case of hard potentials (γ ∈ (0, 1]), existence, uniqueness, appearance
of smoothness and of moments is known Desvillettes, Villani [22]. Exponential
convergence towards equilibrium also holds, see Alonso et al. [8] and Desvillettes
[20]. The situation for Maxwell molecules (γ = 0) and moderately soft potentials
(γ ∈ [−2, 0)), is almost identical in terms of existence, uniqueness and appearance
of smoothness. The main difference concerns the statistical moments, which are
propagated (and grow at most linearly with time) but are not created (see Wu [59];
Desvillettes [18]; Desvillettes, Villani [22]). Moreover, the speed of convergence
towards equilibrium is proved under suitable assumptions on the initial datum
to be "stretched exponential" (see Theorem 1.4 of Carrapatoso [15] for the case
−1 < γ < 0 or Section 6 of Alonso et al. [7] for the more general case of Landau-
Fermi-Dirac equation, covering in particular the Landau case). A systematic study
of the Landau equation for moderately soft potentials, including in particular the
“critical case” γ = −2 has been addressed recently with techniques partly similar
to those of the present paper in Alonso et al. [5].

The case of very soft potentials (γ ∈ [−3,−2)), which includes the physically
relevant case of Coulomb potential (γ = −3) is different. Up to the appearance of
the very recent paper [34], only weak solutions (including H-solutions) were known



   42 Page 4 of 63 Arch. Rational Mech. Anal.          (2024) 248:42 

to exist and uniqueness was an open problem as discussed in Desvillettes [18].
Notice that stretched exponential convergence to equilibrium still holds Carrapatoso
et al. [16].

Focusing on Coulomb interactions γ = −3, the main a priori estimate in
Lebesgue spaces states that H-solutions f satisfy

f ∈ L1([0, T ]; L3
3γ (R3)),

see Desvillettes [18]. We point out the very recent improvement in terms of moments
for Coulomb potential γ = −3 which shows that f ∈ L1([0, T ]; L3

s (R
3)) with

s � −5, see Ji [36]. Such an estimate is deduced from a careful study of the entropy
production of the Landau collision operator and can be interpolated with the energy
estimate stating that f ∈ L∞([0, T ]; L1

2(R
3)).

As far as the regularity of solutions is concerned, it is possible to get a bound on
the Hausdorff dimension of the times in which the solution might be singular (see
Golse et al. [27] for the Coulomb case and Golse et al. [28] for general very soft
potentials). Various perturbative results are also available in the literature: we refer
to Golding et al. [24] for a recent construction of close-to-equilibrium solutions in
the case of Coulomb interactions while local in time solutions for large data and
global in time solutions for data close to equilibrium have been recently obtained
in Desvillettes et al. [21].

Finally, in [53, Theorem 3.8], conditional results show that if the solution lies
in L∞([0, T ]; L p

κ (R3)) for p > 3
2 and κ sufficiently large, then it is bounded and

consequently smooth. We refer also to [12] for a local version of a close result.
We end this description of the literature on the Landau equation with very in-

teresting results about a related model, known as the isotropic Landau equation,
introduced in Ben Porath [38] and investigated later in Gressman et al. [29]; Gual-
dani and Guillen [31,32]. For such a model, the projection �(z) in the Landau
equation is simply replaced with �(z) = Id and this simplification yields strik-
ing results. In particular, there exists γ∗ ∈ (− 5

2 ,−2) such that, for γ ∈ (γ∗,−2),
L p-norms are propagated for p > d

d+γ+2 and become instantaneously bounded.
Therefore, classical solutions of the isotropic Landau equation remain smooth for
every finite time (see Theorem 1.1 of Gualdani and Guillen [32]). Similar results
have been obtained recently for an isotropic version of the Boltzmann equation;
see Snelson [54].

1.4. Link Between the Landau Equation and the Navier–Stokes Equation

Some striking analogies between the spatially homogeneous Landau for very
soft potentials and the incompressible 3d-Navier–Stokes have been observed in
recent contributions. More precisely, recall the incompressible 3d-Navier–Stokes
with viscosity ν > 0:

∂t u +u ·∇u −ν �u +∇ p = 0, ∇ ·u = 0, u(t = 0) = uin, ∇ ·uin = 0.

(1.6)
Here u = u(t, x) ∈ R

3. It appears that the H -solutions constructed in Villani
[57] share several common points with Leray solutions to the incompressible 3d-
Navier–Stokes equations Leray [41]; Ożański and Pooley [47]:
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• One first evidence is the contribution of the third author about the role of entropy
dissipation, showing that H -solutions to Landau equation satisfy (1.13) for any
T > 0 providing an a priori estimate for solutions f to (1.1). In particular,
H -solutions to Landau equation are weak-solutions just like Leray solutions to
Navier–Stokes equations are weak solutions and the entropy H plays for the
Landau equation a similar role as the energy ‖u(t)‖2

2 for the Navier–Stokes
equation. Note that in this analogy,

√
f plays the role of u, since on one hand√

f ∈ L∞
t (L2

v), and on the other hand
√

f belongs to some weigthed L2
t (H1

v )

space.
• Based on this estimate, it has been shown in Golse et al. [27] that the Hausdorff

dimension of the set of time singularities is at most 1
2 for solutions to (1.1)

in the Coulomb case (γ = −3, d = 3). This result has been extended to
soft potentials −3 < γ < −2 in Golse et al. [28] and is the analogue of the
celebrated Caffarelli-Kohn-Nirenberg Theorem Caffarelli et al. [14]; Ożański
[48] for the Navier-Stokes equations.

• Finally, a new monotonicity formula for a functional involving entropy, regu-
larity and moments has been obtained in Desvillettes, He and Jiang [21]. This
formula entails in particular that, if

H( fin)
(‖ fin − M‖

Ḣ1 + C
)

� 5

2
,

then no blow-up can occur for solutions to (1.1). Here, H( fin) is the entropy
of the initial datum, M is the associated Maxwellian steady state, and C > 0
is some fixed universal constant. Such a result can be compared to the re-
sult of Leray [41] for Navier–Stokes equation which shows that, provided
‖uin‖2 ‖∇uin‖2  1, the Navier–Stokes equations admit global smooth so-
lutions (see also Ożański and Pooley [47]). Regularity of solutions after a given
(sufficiently large) time can also be considered as a common feature of both
equations.

An important criterion about the existence of global classical solutions to 3d-
incompressible Navier–Stokes equation is the celebrated Prodi–Serrin criterion
which reads as follows (see [11, Theorems 4.8 and 4.9]):

Theorem 1.1. (Prodi–Serrin criterion for 3d-incompressible Navier–Stokes equa-
tion) Consider two Leray-Hopf weak solutions u, ũ of the Navier–Stokes equation
with u(0) = ũ(0) = uin. If

u ∈ Lr ([0, T ]; Lq(R3)), wi th
2

r
+ 3

q
= 1, q ∈ (3,∞], (1.7)

then u = ũ on [0, T ). Moreover, for q = 3 (and r = ∞), there exists a universal
constant δ > 0 such that, if

sup
t∈[0,T ]

‖u(t)‖3 � δν,

then u = ũ on [0, T ). Finally, in both cases, u is a strong solution on [0, T ] provided
uin ∈ H1(R3) whereas, if uin ∈ L2(R3), then u is a strong solution solution on
[t∗, T ] for any t∗ > 0.
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We refer to Bedrossian and Vicol [11]; Lemarié-Rieusset [40] for more de-
tails on the notions of Leray-Hopf weak solutions in the above Theorem. The
aforementioned result has been proven first in Prodi [50] (with some additional as-
sumption) for q > 3 and derived in the present form in Serrin [52], still for q > 3.

The statement here above for q = 3 is a very special case called the endpoint
Prodi–Serrin criterion. It is somehow possible to remove the smallness assump-
tion on ‖u‖L∞([0,T ];L3(R3)) in that case, but the corresponding result reads then a
bit differently: the breakthrough result Iskauriaza et al. [35] dealing with the case
r = ∞, q = 3 shows indeed smoothness and uniqueness in some indirect way.
Precisely, result of Iskauriaza et al. [35] rather reads as follows: if u is a classical
solution to Navier-Stokes equation whose maximal time of existence T is finite,
then

lim sup
t→T

‖u(t)‖3 = +∞.

We also refer the reader to Chapters 12 and 15 of Lemarié–Rieusset [40]. Similar
criteria have been established for other types of problems, spanning from the study
of MHD equations Jia and Zhou [37] to stochastic differential equations Neves and
Olivera [46]; Krylov and Röckner [39]; Rööckner and Zhao [51]. We notice that the
proof of Theorem 1.1 is fully quantitative whereas the endpoint proof of Iskauriaza
et al. [35] is obtained by contradiction and thanks to a compactness argument (we
refer to the recent contributions Tao [56]; Palasek [49] for a quantitative approach
of the same result).

1.5. Main Results of the Paper

In the present paper, we intend to obtain a result which extends the bounds
obtained in Silvestre [53], and which is the equivalent for the Landau equation of
the Prodi–Serrin result for the Navier–Stokes equation. As mentioned already, our
results cover all dimensions d � 3, any soft potentials γ ∈ [−d, 0), and are valid
for a suitable range of admissible Lr

t (Lq
v ) spaces (with exception of the end-point

estimate r = ∞, see Section 5.2).
As it is the case for the Navier–Stokes equation, the Prodi–Serrin criteria that we

obtain are actually the fundamental conditional assumptions which allow to prove
the propagation and appearance of L p-norms for suitable p, for the solutions to the
spatially homogeneous equation. Such propagation/appearance of L p-norms can
be seen as the main result of the present contribution and such conditional results
are completely new to our knowledge (for r < ∞). We will see that they are also
the cornerstone for uniqueness and further smoothness of solutions to (1.1).

For the clarity of presentation, and due to the physical relevance of the Coulomb
case, we distinguish the two cases γ = −d and γ ∈ (−d, 0), beginning with the
Prodi–Serrin criterion for Landau equation in the Coulomb case γ = −d.

Theorem 1.2. (Prodi–Serrin criterion for Landau equation and Coulomb interac-
tion) We consider an integer dimension d � 3 and let fin and f = f (t, v) define
a solution to Eq. (1.1) in the sense of Definition 1.15 with

γ = −d.
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Assume that the solution f satisfies one of the following conditions:

f ∈ L1([0, T ] ; L∞(Rd)), (1.8a)

or

〈·〉d f ∈ Lr ([0, T ] ; Lq(Rd)),
2

r
+ d

q
= 2, r ∈ (1,∞), q ∈

(
d

2
,∞

)
.

(1.8b)
Then, the following holds:

(a) (Propagation of L p-norms). Given p ∈ (1,∞), if fin ∈ L p(Rd) then

sup
t∈[0,T ]

‖ f (t)‖p � C p,q,T ‖ fin‖p

where C p,q,T is an explicit constant depending on p, d, q and the norms
‖ f ‖L1([0,T ]; L∞(Rd )) or ‖〈·〉d f ‖Lr ([0,T ]; Lq (Rd )) according to the above condi-
tion (1.8).

(b) (Appearance of L p-norms). Given p ∈ (1,∞), assume that

fin ∈ L1
νp

(Rd), νp = d2

2

p − 1

p

then

‖ f (t)‖p � C p,T ( fin) t
− d

2

(
1− 1

p

)
, ∀t ∈ (0, T ]

for some explicit positive constant C p,T ( fin) which depends on T, p, d, q, the
initial datum fin through the quantifies 
in, Ein, H( fin) defined in Definition
1.11, ‖ fin‖L1

νp
, and the norms associated to the above condition (1.8).

Remark 1.3. We emphasise here the different nature of the two Prodi–Serrin criteria
in (1.8). The assumption (1.8a) does not require any moment assumption on f
whereas the Prodi–Serrin criterion (1.8b) involves the weighted solution 〈·〉d f ,
see Remark 1.6 for more details. We also point out that, under the assumption
f ∈ L1([0, T ] , L∞(Rd)), the conclusion of point (a) still holds for p = ∞ (see
Proposition 2.1).

The full proof of the above Theorem is presented in Section 2 and is based on
several intermediate results. Typically, Proposition 2.1 shows the propagation of
L p-norm under the L1

t (L∞
v ) criterion while Proposition 2.2 shows the appearance

of L p-norms under this assumption. The general Lr
t (Lq

v ) case is dealt with in
Proposition 2.5 and Corollary 2.7 for appearance and propagation of L p-norms
respectively. Note also that constants are explicitly given in those propositions.

An analogue of the above result holds true for general soft-potentials γ ∈
(−d, 0).
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Theorem 1.4. (Prodi–Serrin criterion for Landau equation with soft potentials) We
consider an integer dimension d � 3 and let fin and f = f (t, v) define a solution
to Eq. (1.1) in the sense of Definition 1.15 with

−d < γ < 0.

Assume that the solution f satisfies either

f ∈ L1
(
[0, T ] ; L

d
d+γ (Rd)

)
(1.9a)

or

〈·〉|γ | f ∈ Lr ([0, T ] ; Lq(Rd)),
2

r
+ d

q
= 2 + d + γ, (1.9b)

where r ∈ (1,∞), q ∈
(

max
(

1, d
d+γ+2

)
, d

d+γ

)
. Then, the following holds:

(a) (Propagation of L p-norms). If fin ∈ L p(Rd) with p ∈ (1, d
d+γ

) under condi-
tion (1.9a) or p ∈ (1,∞) under condition (1.9b), then

sup
t∈[0,T ]

‖ f (t)‖p � C p,γ,q,T ‖ fin‖p

where C p,γ,q,T is an explicit constant depending on p, d, q, γ the initial datum
fin through 
in, Ein, H( fin), and the norms associated to the above conditions
(1.9).

(b) (Appearance of L p-norms). Let p ∈ (1, d
d+γ

) under condition (1.9a) or p ∈
(1,∞) under condition (1.9b). Assume that

fin ∈ L1
νγ,p

(Rd), νγ,p := |γ |d
2

(
1 − 1

p

)
,

then

‖ f (t)‖p � C p,γ,q,T ( fin) t−
d
2 (1− 1

p )
, ∀t ∈ (0, T ]

for some explicit positive constant C p,γ,q,T ( fin)which depends on d, γ, T, p, q,
the initial datum fin through 
in, Ein, H( fin), ‖ fin‖L1

νγ,p
, and the norms asso-

ciated to the above condition (1.9).

Remark 1.5. Notice that the link 2
r + d

q = 2 + d + γ , with r, q > 1 implies

max

(
1,

d

d + 2 + γ

)
< q <

d

d + γ
,

so that this condition is automatically satisfied in Theorem 1.4.
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Remark 1.6. As in the Coulomb case, one notices the discrepancy between the two
sets of assumptions for our Prodi–Serrin like criteria. In particular, the assumption
(1.9a) does not require any moment assumption on f whereas the Prodi–Serrin
criterion (1.9b) applies to the weighted solution 〈·〉|γ | f instead of the mere solution
f . We point out that, by using a simple interpolation argument, we can reformulate
the Prodi–Serrin assumption with an inequality linking the two parameters (r, q).
Namely, if one assumes that γ + 2 < 0 and

f ∈ Lr0([0, T ], Lq0(Rd))
2

r0
+ d

q0
< d + γ + 2

then given max
(

1, d
d+γ+2

)
< q < ∞, assuming

fin ∈ L1
μ(Rd), μ = |γ |q(q0 − 1)

q0 − q

one can find r > 1 such that

〈·〉|γ | f ∈ Lr ([0, T ], Lq(Rd)),
2

r
+ d

q
= d + γ + 2.

We also refer to Golding et al. [24] for consideration on another kind of inequality
relating the parameters r and q.

The above result is similar to its analogue for the Coulomb case but we point
out here that, dealing with soft-potentials γ ∈ (−d, 0) leads to additional technical
difficulties due to the fact that the lowest order term cγ [ f ] in (1.1) is a convolution.
To overcome this difficulty, we give here a general estimate involving such a term,
which is a variant of estimates introduced in Gualdani and Guillen [30], who named
it ε-Poincaré inequality. For moderately soft potentials, the ε-Poincaré inequality
has been already used to show the appearance of L p-norms in the contributions
Alonso et al. [7]; Alonso et al. [5]. We propose here a version, possibly sharp, of
such a functional inequality, which involves suitable Lq -space estimates.

Proposition 1.7. (General ε-Poincaré inequality) Assume that d ∈ N, d � 3,
−d � γ < 0, and

max

(
1,

d

d + 2 + γ

)
< q <

d

d + γ
,

(
d

d + γ
= ∞ if γ = −d

)
.

Then there exists C0 > 0 depending only on d, γ, q such that, for any ε > 0 (and
suitable functions φ and g � 0),

∫
Rd

φ2cγ [g]dv � ε

∫
Rd

∣∣∣∇
(
〈v〉 γ

2 φ(v)
)∣∣∣2 dv

+C0

(
‖g‖1 + ε− s

1−s

∥∥∥〈·〉|γ |g
∥∥∥

1
1−s

q

)∫
Rd

φ2〈v〉γ dv, (1.10)

where s ∈ (0, 1) is given by s = d − q(d + γ )

2q
.
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Remark 1.8. With the above notations, if one sets r = 1
1−s , one notices that 2

r + d
q =

d +γ +2. When applied to the solution g = f (t) to the Landau equation (1.1), one

sees therefore that the integrability in time of
∥∥〈·〉|γ | f (t)

∥∥ 1
1−s
q exactly corresponds

to our Prodi–Serrin criterion (1.9b).

The proof of this fundamental functional inequality is given in Section 3.2. This
is the main tool in the proof of Theorem 1.4, under assumption (1.9b). The proof
of Theorem 1.4 is then given in Section 3, in which Proposition 3.2 shows the
propagation of L p-norm under condition (1.9a) while Proposition 3.4 shows the
appearance of L p-norms under this same condition. The general Lr

t (Lq
v ) case (1.9b)

is dealt with in Proposition 3.6 and Corollary 3.7, for appearance and propagation
of L p-norms respectively. The constants in Theorem 1.4 are made explicit in those
results.

1.6. Relevance of Our Main Results

We chose to present the main results of the paper as conditional theorems en-
suring the propagation and appearance of L p-norms for the solutions to the Landau
equation. Besides their specific interest, such propagation and appearance results
are the fundamental tools which allow to deduce both uniqueness and regularity
of solutions to the Landau equation. Precisely, as already observed in Chern and
Gualdani [13] in the Coulomb case, suitable bounds on L p-norms for solutions
to Landau equation imply uniqueness of the solution. While the result is stated in
Chern and Gualdani [13] as a consequence of L∞([0, T ], L p(Rd)) norms with
p > 3

2 in the Coulomb case γ = −3, d = 3, our main results Theorem 1.2 and
1.4 can be seen as suitable conditional result yielding such bounds valid for any
dimension d � 3 and for any choice γ ∈ [−d, 0). Then, as in Chern and Gualdani
[13], such bounds yield uniqueness of suitable strong solutions. This question is
addressed in Section 4 and the main result of this section can then be stated as
follows:

Theorem 1.9. We consider an integer dimension d � 3. Let γ ∈ [−d,−2) and
assume that 2 > d

d+γ+2 . Let f = f (t, v), g = g(t, v) define two solutions to Eq.
(1.5) in the sense of Definition 1.15, with

f (0, ·) = g(0, ·) = fin ∈ L2
k+2|γ |(Rd) ∩ L1

N (Rd),

where k > d, and N is defined in Proposition 4.2. If f, g satisfy one of the two
assumptions (1.9a) or (1.9b) if γ ∈ (−d, 0), or (1.8a) or (1.8b) in the Coulomb
case γ = −d, then

f (t) = g(t) ∀t ∈ [0, T ].
Remark 1.10. We restrict our uniqueness result to the case of very soft potentials
−d � γ < −2 only, since the case of moderate soft potentials γ ∈ [−2, 0) is well-
understood (see Alexandre et al. [1]; Wu [59] and the recent contribution Alonso et
al. [5]). Notice that because of the condition 2 > d

d+γ+2 , our analysis is restricted
in the Coulomb case to the physical dimension d = 3.
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The above result can be seen as a generalisation and an improvement on ex-
isting conditional uniqueness results for Landau equation. As mentioned already,
the uniqueness of weak solutions with bounded mass, momentum, energy, and
entropy which further lie in L1([0, T ]; L∞(Rd)) (that is, under condition (1.8a))
has been established in the Coulomb case in Fournier [23] via probabilistic ar-
guments, whereas the results of Chern and Gualdani [13] provide uniqueness of
solutions to (1.1) under some L∞([0, T ], L p(Rd)) bound (and decay) with p > 3

2 .
Our uniqueness result generalises these two results and extends them to general
soft potentials γ ∈ [−d, 0), d � 3, and the whole range Lr ([0, T ]; Lq(Rd)),
2
r + d

q = 2 + d + γ , with r ∈ [1,∞).
Besides the above uniqueness result, our two main results also allow to deduce

suitable unique continuation and regularity results for the solutions to Landau
equation. Even though we do not elaborate on this point in the present contribution,
we mention here that, due to the parabolic nature of the Landau equation, the
appearance of L p-bounds is of paramount important in order to deduce regularity
estimates:

(1) Elaborating on the pioneering work of De Giorgi [17] (suitably adapted to
spatially homogeneous kinetic equations in Alonso [3]), it is a well-established
fact that the appearance of (uniform in time) L p-bounds (for p large enough)
yields the appearance of L∞-bounds for solutions to Landau equation. Such
a L p − L∞ De Giorgi’s argument has been already introduced in the study of
Landau equations in Alonso et al. [7]; Golding et al. [24]; Alonso et al. [5].
More specifically, one can deduce from Theorems 1.2 or 1.4 the following: if
f = f (t, v) is a solution to the Landau equation (1.1) satisfying (1.8) or (1.9b)
(according to γ = −d or −d < γ < 0), and suitable L1-moments estimates,
then for any t ∈ (0, T ) there exists K (t, T ) > 0 such that

sup
t∈[t∗,T ]

‖ f (t, ·)‖∞ � K (t∗, T ). (1.11)

A full proof of such an estimate is given in the case of moderately soft potentials
γ ∈ [−2, 0) in Alonso et al. [5] and in Alonso et al. [6] for general −d � γ <

−2. This appearance of L∞-bounds (uniform in time on [t∗, T ]) is close to
results presented in Silvestre [53]. While the approach of the latter is based upon
general results regarding strong solutions to parabolic equations, the approach
in Alonso et al. [6]; Alonso et al. [5] is, as said, based upon an adaptation
of the approach of De Giorgi [17] to spatially homogeneous kinetic equations
introduced in Alonso [3].

(2) Suitable L∞-bounds like (1.11) can then be combined with parabolic regular-
ising effect to deduce the smoothness of the solution. We refer to [28, Propo-
sition A.1] for a full proof of the fact that, in dimension d = 3 and for any
γ ∈ [−3,−2), for any weak solution f = f (t) to (1.1) in the sense of Defini-
tion 1.15, it holds

f ∈ L∞([t∗, T ]; L∞(Rd)) �⇒ f ∈ C∞((t∗, T ] × R
d).

Therefore, our main results Theorems 1.2 and 1.4, provide conditional results
(in the form of the assumptions (1.8) or (1.9)) ensuring the smoothness of the
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solution to the Landau equation. We recall also that such smoothness provides
also unique continuation criteria of the solution. We refer to the recent contri-
bution Snelson and Solomon [55] for more details about this question.

The above two points illustrate the importance of devising sufficient conditions
yielding the appearance and/or propagation of L p-norms for solutions to the Lan-
dau equation and, on this basis, we strongly believe that the Prodi–Serrin criteria
(1.8) (in the case γ = −d) or (1.9) (in the case γ ∈ (−d, 0)) provide a signifi-
cant contribution to the conditional uniqueness and regularity of Landau equation,
yielding an analogue of the Theorem 1.1 for Navier-Stokes equation.

We end this description mentioning that the method and ideas developed in this
paper can be adapted to derive Prodi–Serrin criterion for the spatially homogeneous
Boltzmann equation with soft potentials without cut-off assumptions. We refer to
the work in progress Alonso et al. [9] for further details.

1.7. About the Class of Solutions

Our main results Theorems 1.2 and 1.4 have to be interpreted as practical criteria
to get a priori estimates for weak solutions to the Landau equation in an explicit and
quantitative way. In this context, most of the computations that we are providing
may be seen as formal, especially since they use one or several integrations by parts.
Those estimates can however be fully justified under some extra assumption and,
in particular, we strongly believe that our formal estimates are actually valid for
any weak solutions to the Landau equation, which satisfy the Prodi–Serrin criteria
that we stated. We define here weak solutions in the following way:

Definition 1.11. Given d ∈ N, d � 3, γ ∈ [−d, 0) and T > 0, let fin � 0 lie in
L1

2(R
d)∩ L log L(Rd), that is fin admits finite mass, energy and entropy as defined

respectively by


in :=
∫
Rd

fin(v)dv > 0, Ein :=
∫
Rd

fin(v)|v|2dv,

and

H( fin) :=
∫
Rd

fin(v) log fin(v)dv.

We say that a family f = f (t, v) � 0 is a weak solution to (1.1) with initial
condition f (0, v) = fin(v) if the following hold:

(1) f ∈ C([0, T );D′(Rd)) and

∫
Rd

f (t, v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv =

∫
Rd

fin(v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv . (1.12)

(2) One has

H( f (t)) � H( fin) ∀t ∈ [0, T ] , and∫ T

0
dt
∫
Rd

∣∣∣∇√ f (t, v)

∣∣∣2 〈v〉γ dv < ∞ . (1.13)
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(3) For any ϕ = ϕ(t, v) ∈ C 2
c ([0, T ) × R

d),

−
∫ T

0
dt
∫
Rd

f (t, v)∂tϕ(t, v)dv −
∫
Rd

fin(v)ϕ(0, v)dv

= 1

2

d∑
i, j=1

∫ T

0
dt
∫
Rd×Rd

f (t, v) f (t, w)ai, j (v − w)

[
∂2
vi ,v j

ϕ(t, v) + ∂2
wi ,w j

ϕ(t, w)
]

dvdw

+
d∑

i=1

∫ T

0
dt
∫
Rd×Rd

f (t, v) f (t, w)bi (v − w)

[
∂vi ϕ(t, v) − ∂wi ϕ(t, w)

]
dvdw. (1.14)

Remark 1.12. Notice that slightly weaker solutions to Landau equation have been
shown to exist in Villani [57] for initial data considered in Def. 1.11 (and called
H-solutions) which are not assumed to satisfy estimate (1.13). It has been shown
later (when d = 3) in Desvillettes [18] that such solutions (when they are built
thanks to a suitable approximation process) do satisfy (1.13) and are in fact weak
solutions in the sense of Def. 1.11. Subsequently, it has been shown in Gualdani,
Zamponi [33] that such solutions satisfy the estimates

A[ f ] ∈ L∞
(

[0, T ], L
d

d−2
loc (Rd)

)
, b[ f ] ∈ L∞([0, T ]; L

d
2
loc(R

d))

and, for any test-function φ ∈ L∞((0, T ) , W
1,∞
c (Rd)), it holds that

∫ T

0
dt
∫
Rd

∂t f (t, v)φ(t, v)dv

+
∫ T

0
dt
∫
Rd

(A[ f (t)](v)∇ f (t, v) − f b[ f (t)](v)) · ∇φ(t, v)dv = 0.(1.15)

Here,W1,∞
c (Rd) denotes the collection of all bounded and compactly supported

functions φ such that ∇φ ∈ L∞(Rd), and all terms can be well defined.

Remark 1.13. We point out that weak solutions f = f (t) as defined in Definition
1.11 are such that there exists a constant K0 > 0, depending on H( fin) and ‖ fin‖L1

2
such that∑

i, j

Ai, j [ f (t)](v) ξi ξ j � K0〈v〉γ |ξ |2, ∀ v, ξ ∈ R
d , t � 0.

We refer to Lemma A.3 in Appendix A for a full proof of this estimate.

To avoid technical complications and keep the presentation as simple as pos-
sible, we rather consider in the paper a class of solutions which already enjoy a
sufficient regularity to justify the computations in the next sections. Such local-
in-time solutions were recently constructed in Desvillettes et al. [21] in dimension
d = 3, and can be as expressed as follows:
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Theorem 1.14. (Desvillettes et al. [21]) Let fin ∈ L log L(R3)∩L1
55(R

3)∩Ḣ
1(R3)

be nonnegative. There exists some explicit T > 0 depending on m55( fin), ‖ fin‖Ḣ1

and H( fin), 
in, Ein such that (1.1) admits a unique solution f on the time interval
[0, T] such that

f ∈ C ([0, T], Ḣ1(R3)) ∩ L2
(
[0, T], Ḣ2

γ (R3)
)

.

Motivated by the above existence and uniqueness result, we define the following
notion of solutions, which we will use through out the sequel:

Definition 1.15. In all the sequel, given d ∈ N, d � 3, γ ∈ [−d, 0) and T > 0,
we will say that an initial datum fin � 0 and a family f = f (t, v) � 0 define a
solution to (1.1) if f = f (t, v) is a weak solution to (1.1) in the sense of Definition
1.11 that further satisfies

f ∈ C ([0, T ], Ḣ1(Rd)) ∩ L2
(
[0, T ], Ḣ2

γ

)
.

Remark 1.16. The computations in the next section will consist in choosing for-
mally φ as a power of f as test function in the identity (1.15). Under the above
additional regularity, we point out that this can be made rigorous simply by choos-
ing, as in Chern and Gualdani [13], for the test function φ in (1.15) a suitable
truncation of a power of f using a cutoff function ηR(v) = η

(
R−1v

)
, R > 1,

where η is a smooth cutoff function identically equal to 1 on the unit ball of Rd and
vanishing on the ball centered at the origin and with radius 2. The computations
are then valid for such φ and all the estimates turn out to be independent of R so,
letting R → ∞, we justify our computations.

1.8. Organization of the Paper

The proof of Theorem 1.2 is given in Section 2 where the two different criteria
(1.8a) and (1.8b) are treated separately as well as propagation (point (a)) and
appearance (point (b)) of L p-norms.

Section 3 gives the full proof of Theorem 1.4 with again the various cases (a),
(b) under conditions (1.9a) or (1.9b) treated separately. In particular, the full proof
of the ε-Poincaré Proposition 1.7 is given in Section 3.2.

The stability and uniqueness of solutions to the Landau equation is discussed
in Section 4, which culminates with the proof of Theorem 1.9.

A final Section 5 is devoted to additional features of the Landau equation.
Namely, we show in Section 5.1 how the Prodi–Serrin criteria in Theorem 1.4
applies to the case of moderate soft potentials −2 � γ < 0. It is well-known
that, for such potentials, propagation/appearance of L p-norms occurs as well as
the uniqueness and regularity of the solution (see Alexandre et al. [1]; Wu [59];
Alonso et al. [5]) but we believe that Theorem 1.4 sheds a new light on this case,
showing that Prodi–Serrin criteria (1.9) are met in this case. We also discuss the
end-point case r = ∞, q = d

d+γ+2 of the Prodi–Serrin criterion (1.8b)–(1.9b) in
Section 5.2, showing an analogue of the end-point case r = ∞, q = 3 in Theorem
1.1 for Navier–Stokes equations. We point out here that the role of viscosity ν in
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Theorem 1.1 is played by the coercivity constant K0 in Remark 1.13 (see Theorem
5.2 for details).

In Appendix A we recall some known results about weak solutions to the Landau
equation. Some of them are found in the literature only in dimension d = 3, so that
we also give some sketches of proof to extend them to arbitrary dimension d � 3.

Finally, Appendix B gives some technical results regarding the evolution of
weighted L p-norms which are useful for the proof of the uniqueness result Theorem
1.9.

2. Prodi–Serrin like Criteria for Coulomb Interactions

In this section, we focus on the Landau equation for charged particles associated
to Coulomb interactions. In this situation, we recall from (1.4)–(1.5) that

{
∂t f = ∇ · (A[ f ] ∇ f − b[ f ] f

) = Tr
(A[ f ]D2 f

)+ cd f 2,

f (t = 0) = fin ,
(2.1)

where D2 f is the Hessian matrix of f and cd := (d − 1)(d − 2)|Sd−1|.
We start with a simple proposition which shows the propagation of L p norms

(including the case when p = ∞) under one of the end point of Prodi–Serrin
condition.

Proposition 2.1. Let fin and f = f (t, v) define a solution to Eq. (2.1) in the sense
of Definition 1.15. Assume that

f ∈ L1([0, T ]; L∞(Rd))

for some T > 0, and fin ∈ L p(Rd) for some p ∈ [1,∞]. Then f also lies in
L∞([0, T ]; L p(Rd)). More precisely, the following estimate holds:

‖ f ‖L∞([0,T ],L p(Rd )) � ‖ fin‖p exp

(
cd

∫ T

0
‖ f (t)‖∞dt

)
.

Proof. Using the multiplicator f p−1 for p ∈ [1,∞[ in Eq. (2.1), we see that, using
the nonnegativity of the matrix A[ f ], and the identity −∇ · b[ f ] = c[ f ] = cd f ,

1

p

d

dt

∫
Rd

f pdv = −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv

+ (p − 1)

∫
Rd

f p−1 b[ f ] · ∇ f dv

� cd
(p − 1)

p

∫
Rd

f p+1dv � cd
(p − 1)

p
‖ f ‖∞

∫
Rd

f pdv .

Thanks to Grönwall’s lemma, we end up with, for t ∈ [0, T ],
∫
Rd

f p(t, v) dv �
∫
Rd

f p
in (v) dv exp

(
cd (p − 1)

∫ t

0
‖ f (s)‖∞ ds

)
, ∀t ∈ [0, T ]
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and consequently,

‖ f ‖L∞([0,T ],L p(Rd )) � ‖ fin‖p exp

(
cd

∫ T

0
‖ f (s)‖∞ ds

)
.

This concludes the proof when p ∈ [1,∞[. Passing to the limit when p → ∞ in
the above estimate shows that the proposition also holds when p = ∞. ��

We then show the appearance when t > 0 of L p norms for finite 1 < p < ∞
(notice that the result now excludes the case when p = ∞) under one of the end
point of Prodi–Serrin condition, assuming that the initial datum has some moments
in L1.

Proposition 2.2. Let fin and f = f (t, v) define a solution to Eq. (2.1) in the sense
of Definition 1.15. Given p ∈ (1,∞), assume that

fin ∈ L1
νp

(Rd), νp = d2

2

p − 1

p
,

and that

f ∈ L1([0, T ]; L∞(Rd))

for some T > 0. Then, the solution f = f (t, v) satisfies the following estimate,
for any t ∈ (0, T ]:

‖ f (t)‖p � C p

[
sup

τ∈[0,T ]
mνp (τ )

]
t−

d
2 (1− 1

p )
, (2.2)

where

C p = C p(T ) :=
[

4 K0

dpCSob

]− d
2 (1− 1

p )

exp

(
d2

p2 K0(p − 1) T + cd

(
1 − 1

p

)∫ T

0
‖ f (τ )‖∞ dτ

)
,

K0 is the constant (depending on 
in, Ein and H( fin)) appearing in Remark
1.13, and CSob is the constant appearing in the Sobolev embedding Ḣ

1(Rd) ↪→
L

2d
d−2 (Rd) as defined in (2.5).

Remark 2.3. Recall that, under the assumption fin ∈ L1
νp

(Rd), one has

sup
τ∈[0,T ]

mνp (τ ) � Cd,p(1 + T ),

where Cd,p is a positive constant depending only on d, p and mνp (0) = ‖ fin‖L1
νp

(see Proposition A.8).
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Proof. Proceeding as in the proof of Proposition 2.1, we write

1

p

d

dt

∫
Rd

f p(t, v)dv = −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv

+ (p − 1)

∫
Rd

f p−1 b[ f ] · ∇ f dv

= −4 (p − 1)

p2

∫
Rd

∇ f
p
2 · A[ f ] ∇ f

p
2 dv

+ cd
p − 1

p

∫
Rd

f p+1(t, v)dv ,

(2.3)

where we notice that

∇ f
p
2 · A[ f ] ∇ f

p
2 = p2

4
f p−2A[ f ]∇ f · ∇ f.

Using the uniform ellipticity of the diffusion matrix A[ f ] (recall Proposition 1.13),
we deduce that

1

p

d

dt

∫
Rd

f p(t, v)dv + 4 K0 (p − 1)

p2

∫
Rd

〈·〉−d
∣∣∣∇ f

p
2 (t, v)

∣∣∣2

� cd
p − 1

p

∫
Rd

f p+1(t, v)dv.

Multiplying this inequality by p and using the elementary inequality

∣∣∣∇
[
〈·〉− d

2 f
p
2

]∣∣∣2 � 2〈·〉−d
∣∣∣∇ f

p
2

∣∣∣2 + d2

2
〈·〉−d−2 f p,

this turns into

d

dt

∫
Rd

f p(t, v)dv + 2 K0 (p − 1)

p

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv

� cd (p − 1)

∫
Rd

f p+1(t, v)dv + d2 K0 (p − 1)

p

∫
Rd

〈v〉−d−2 f p(t, v)dv.(2.4)

At this point, we combine Sobolev’s inequality with a suitable interpolation
inequality with weights to conclude. Namely, recall that Sobolev’s inequality reads

(with CSob the best constant in the Sobolev embedding Ḣ
1(Rd) ↪→ L

2d
d−2 (Rd)) as

∥∥∥〈·〉− d
p f
∥∥∥p

pd
d−2

=
∥∥∥〈·〉− d

2 f
p
2

∥∥∥2

2d
d−2

� CSob

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2

]∣∣∣2 dv . (2.5)

Now, we use the standard Hölder interpolation inequality (with weights), which
holds for all functions g for which the norms are

‖〈·〉ag‖r � ‖〈·〉a1 g‖θ
r1

‖〈·〉a2 g‖1−θ
r2

, (2.6)

with r, r1, r2 � 1, a, a1, a2 ∈ R,

1

r
= θ

r1
+ 1 − θ

r2
, a = θ a1 + (1 − θ)a2, θ ∈ (0, 1).
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Using inequality (2.6) for g := f (t, ·) with

a := 0, a1 := νp, a2 := − d

p
, r := p, r1 := 1,

r2 := dp

d − 2
, θ := 2

dp + 2 − d
,

we get

∫
Rd

f p(t, v)dv � ma1(t)
pθ
∥∥∥〈·〉− d

p f (t, ·)
∥∥∥p(1−θ)

dp
d−2

� ma1(t)
pθC1−θ

Sob

(∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv

)1−θ

,

where we used (2.5) in the last inequality. Recalling now the expression of a1 and
θ , we use this estimate under the form

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv � C−1
Sob mνp (t)

− 2p
d(p−1)

(∫
Rd

f p(t, v)dv

)1+ 2
d(p−1)

.

(2.7)
Plugging this in (2.4), we end up with

d

dt

∫
Rd

f p(t, v)dv + 2 K0 (p − 1)

p CSob
mνp (t)

− 2p
d(p−1)

(∫
Rd

f p(t, v)dv

)1+ 2
d(p−1)

�
[

cd (p − 1)‖ f (t)‖L∞(Rd ) + d2 K0 (p − 1)

p

] ∫
Rd

f p(t, v)dv,

after having dropped the weight 〈·〉−d−2. Defining

y(t) :=
(∫

Rd
f p(t, v) dv

)
exp

(
− (p − 1)

∫ t

0

[
cd‖ f (s)‖L∞(Rd ) + d2 K0

p

]
ds

)
,

we see that y(t) satisfies the differential inequality

y′(t) � −2 K0 (p − 1)

p CSob
mνp (t)

− 2p
d(p−1) y(t)1+ 2

dp−d ,

which can be solved (for t ∈ [0, T ]) as

y(t) �
[

4 K0

dp CSob

(
sup

τ∈[0,T ]
mνp (τ )

)− 2p
d(p−1)

t

]− d(p−1)
2

.

Recalling the definition of y, we get the desired estimate.
��
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Remark 2.4. Following the dependency with respect to p in the proof, we can prove
that, if fin ∈ L1

d2
2

(Rd) then, for all t∗, T > 0 and κ > 0 small enough, the following

estimate holds:

sup
t∈[t∗,T ]

∫
Rd

exp
(
κ f (t, v)

2
d

)
dv � C.

Here C > 0 is a constant depending only on t∗, T , 
in, Ein, H( fin), d, ‖ fin‖L1
d2
2

(Rd ),

and ‖ f ‖L1([0,T ], L∞(Rd )).

We now turn to the general case, in which the Prodi–Serrin condition appears
as a weighted Lr

t (Lq
v ) norm assumed to be finite. More precisely, we have

Proposition 2.5. Let fin and f = f (t, v) define a solution to Eq. (2.1) in the sense
of Definition 1.15. Assume that

〈·〉d f ∈ Lr ([0, T ] ; Lq(Rd)) with
2

r
+ d

q
= 2 (2.8)

for some T > 0, where r ∈ (1,∞), q ∈ ( d
2 ,∞). Given p ∈ (1,∞), assume that

fin ∈ L1
νp

(Rd), νp := d2

2

(
1 − 1

p

)
,

then the solution f = f (t, v) satisfies, for any t ∈ (0, T ]

‖ f (t)‖p � K p,q

[
sup

τ∈[0,T ]
mνp (τ )

]
t−

d
2 (1− 1

p )
, (2.9)

where

K p,q =K p,q(T ) :=
[

2K0

dp CSob

]− d
2

(
1− 1

p

)

exp

(
d2

p2 K0(p − 1) T + 1

p
C p,q

∫ T

0

∥∥∥〈·〉|γ | f (τ )

∥∥∥r

q
dτ

)
,

C p,q :=
(

1 − d

2q

) [
cd (p − 1) CSob,q

] 2q
2q−d

(
K0 (p − 1)

p

2q

d

) −d
2q−d

,

(2.10)

and where K0 is the constant (depending on 
in, Ein and H( fin)) appearing in
Remark 1.13, CSob is the Sobolev constant defined in (2.5), and CSob,q is the Sobolev

constant relative to the embedding Ḣ
d
2q (Rd) ↪→ L

2q
q−1 (Rd).

Proof. We start from inequality (2.4) obtained in the proof of Proposition 2.2 and
we estimate the term∫

Rd
f p+1(t, v)dv =

∫
Rd

[
〈v〉d f (t, v)

] [
〈v〉− d

2 f
p
2 (t, v)

]2
dv
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thanks to Hölder’s inequality. Denoting q ′ = q
q−1 , where q is the exponent in the

Prodi–Serrin condition, we obtain∫
Rd

f p+1(t, v)dv �
∥∥∥〈·〉d f (t)

∥∥∥
q

∥∥∥〈·〉− d
2 f

p
2 (t)

∥∥∥2

2q ′ .

Now using the inequality ‖ · ‖2
2q ′ � CSob,q‖ · ‖2

Ḣ

d
2q

resulting from the Sobolev

embedding Ḣ
d
2q (Rd) ↪→ L

2q
q−1 (Rd) ) (see Bahouri et al. [10], Theorem 1.38), we

first deduce that∫
Rd

f p+1(t, v)dv � CSob,q

∥∥∥〈·〉d f (t)
∥∥∥

q

∥∥∥〈·〉− d
2 f

p
2 (t)

∥∥∥2

Ḣ

d
2q

.

Observing now that, since q > d
2 , 0 < d

2q < 1, we can invoke the interpolation

inequality Ḣ1(Rd)∩L2(Rd) ⊂ Ḣ
d
2q (Rd) (see Bahouri et al. [10], Proposition 1.32)

to deduce that
∥∥∥〈·〉− d

2 f
p
2 (t)

∥∥∥2

Ḣ

d
2q

�
∥∥∥〈·〉− d

2 f
p
2 (t)

∥∥∥2− d
q

2

∥∥∥∇
[
〈·〉− d

2 f
p
2 (t)

]∥∥∥
d
q

2
.

Plugging this in inequality (2.4), we obtain

d

dt

∫
Rd

f p(t, v)dv + 2 K0 (p − 1)

p

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv

� cd (p − 1) CSob,q

∥∥∥〈·〉d f (t)
∥∥∥

q

∥∥∥〈·〉− d
2 f

p
2 (t)

∥∥∥2− d
q

2

∥∥∥∇
[
〈·〉− d

2 f
p
2 (t)

]∥∥∥
d
q

2

+d2 K0 (p − 1)

p

∫
Rd

〈v〉−d−2 f p(t, v)dv. (2.11)

We now resort to Young’s inequality (for x, y � 0, ε > 0) in the form

x y �
(

2q

d

)−1

(εx)
2q
d +

(
2q

2q − d

)−1 ( y

ε

) 2q
2q−d

,

with the choice

x :=
∥∥∥∇

[
〈·〉− d

2 f
p
2 (t)

]∥∥∥
d
q

2
, y := cd (p − 1) CSob,q

∥∥∥〈·〉d f (t)
∥∥∥

q

∥∥∥〈·〉− d
2 f

p
2 (t)

∥∥∥2− d
q

2
,

and

ε :=
[

K0 (p − 1)

p

2q

d

] d
2q

.

Inserting this into (2.11), we obtain

d

dt

∫
Rd

f p(t, v)dv + K0 (p − 1)

p

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv

�
(

1 − d

2q

)[
cd (p − 1) CSob,qε−1

] 2q
2q−d

∥∥∥〈·〉d f (t)
∥∥∥

2q
2q−d

q

∥∥∥〈·〉− d
2 f

p
2 (t)

∥∥∥2

2
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+d2 K0 (p − 1)

p

∫
Rd

〈v〉−d−2 f p(t, v)dv.

Observing that
∥∥∥〈·〉− d

2 f
p
2 (t)

∥∥∥2

2
=
∫
Rd

〈v〉−d f p(t, v)dv, we can deduce from the

above that

d

dt

∫
Rd

f p(t, v)dv + K0 (p − 1)

p

∫
Rd

∣∣∣∇
[
〈v〉− d

2 f
p
2 (t, v)

]∣∣∣2 dv

�
[

C p,q ‖〈·〉d f (t)‖
2q

2q−d
q + d2 K0 (p − 1)

p

] ∫
Rd

〈v〉−d f p(t, v)dv,(2.12)

where

C p,q :=
(

1 − d

2q

) [
cd (p − 1) CSob,q

] 2q
2q−d

(
K0 (p − 1)

p

2q

d

) −d
2q−d

. (2.13)

We now plug estimate (2.7) in this inequality to deduce (neglecting the negative
weight in the last integral):

d

dt

∫
Rd

f p(t, v)dv + K0 (p − 1)

p CSob
mνp (t)

− 2p
d(p−1)

(∫
Rd

f p(t, v)dv

)1+ 2
d(p−1)

�
[

C p,q ‖〈·〉d f (t)‖
2q

2q−d
q + d2 K0 (p − 1)

p

] ∫
Rd

f p(t, v)dv.

We now proceed as at the end of the proof of Proposition 2.2, introducing

y(t) :=
∫
Rd

f p(t, v) dv exp

(
−
∫ t

0

[
C p,q ‖〈·〉d f (s, ·)‖

2q
2q−d
q + d2 K0 (p − 1)

p

]
ds

)
,

and checking that

y′(t) � − K0 (p − 1)

p CSob
mνp (t)

− 2p
d(p−1) y(t)1+ 2

d(p−1) ,

so that (for t ∈ [0, T ])

y(t) �
[

2K0

dp CSob

(
sup

τ∈[0,T ]
mνp (τ )

)− 2p
d(p−1)

t

]− d(p−1)
2

.

Recalling the definition of y, we get estimate (2.9) after observing that r = 2q
2q−d .

��
Remark 2.6. In both Propositions 2.2 and 2.5, whenever p � d2

d2−4
, we observe

that d2

2

(
1 − 1

p

)
� 2, so that no extra moment (beyond the kinetic energy) for the

initial datum is required in this case.

One can also deduce from the proof above the following propagation result:
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Corollary 2.7. Let fin and f = f (t, v) define a solution to Eq. (2.1) in the sense
of Definition 1.15. Assume that (2.8) holds for some T > 0, where r ∈ (1,∞),
q ∈ ( d

2 ,∞). Given p ∈ (1,∞), assume that fin ∈ L p(Rd). Then, the solution
f = f (t, v) satisfies the estimate

‖ f ‖L∞([0,T ]; L p(Rd )) � ‖ fin‖p exp

(
C p,q

p

∫ T

0
‖〈·〉d f (t)‖r

q dt + d2 K0 (p − 1)

p2 T

)
,

where C p,q is defined in (2.10).

Proof. We start from inequality (2.12) for the evolution of the L p(Rd)-norm of f
(note that this inequality does not use the assumption that L1-moments are initially
finite). Then, dropping the weight 〈·〉−d and the nonnegative term involving the
integral of the gradient on the right-hand-side, we deduce that

d

dt

∫
Rd

f p(t, v)dv �
[

C p,q ‖〈·〉d f (t, ·)‖r
q + d2 K0 (p − 1)

p

] ∫
Rd

f p(t, v)dv,

where C p,q is given by (2.10). According to Gronwall’s Lemma, one deduces that,
for all t ∈ [0, T ],
∫
Rd

f p(t, v)dv �
(∫

Rd
f p
in (v)dv

)
exp

(∫ t

0

[
C p,q ‖〈·〉d f (τ )‖r

q + d2 K0 (p − 1)

p

]
dτ

)
,

from which the result easily follows. ��
Proof of Theorem 1.2. It is a direct consequence of Proposition 2.1 and Proposition
2.2 when the L1

t (L∞
v ) condition is considered, and of Proposition 2.5 and Corollary

2.7 when the Lr
t (Lq

v ) condition is considered. ��

3. Prodi–Serrin like Criteria for Soft Potentials −d < γ < 0

We present here an analysis, similar to the one of the previous section, for the
Landau equation with soft potentials −d < γ < 0. The main difference between
the Coulomb case treated in Section 2 and the present one is the nature of the lower
order term cγ [ f ] which is now a convolution operator. The analysis of this term
requires then the specific use of the Hardy-Littlewood-Sobolev inequality, which
we recall here for the sake of completeness.

Proposition 3.1. (Hardy-Littlewood-Sobolev inequality) Let d ∈ N, d � 1, 1 <

r, p < ∞ and 0 < λ < d with

1

p
+ λ

d
+ 1

r
= 2.

Then there exists CHLS > 0 (depending on d, p, λ) such that the estimate∫
R2d

g(x)|x − y|−λh(y)dxdy � CHLS ‖g‖p ‖h‖r (3.1)

holds for any smooth g, h : R
d → R.



Arch. Rational Mech. Anal.          (2024) 248:42 Page 23 of 63    42 

3.1. Appearance of L p-norms - the L1
t (L

d
d+γ ) case

As in the Coulomb case, we are already in position to prove the propagation of
L p norms for p < d

d+γ
under one of the end point of Prodi–Serrin condition

Proposition 3.2. We consider d ∈ N, d � 3 and γ ∈ (−d, 0). Let fin and f =
f (t, v) define a solution to Eq. (2.1) in the sense of Definition 1.15. Assume that

f ∈ L1
(
[0, T ] ; L

d
d+γ (Rd)

)
(3.2)

for some T > 0 and that fin ∈ L p(Rd) for some p ∈ (1, d
d+γ

). Then f also lies in

L∞([0, T ]; L p(Rd)). More precisely, the following estimate holds:

‖ f ‖L∞([0,T ],L p(Rd )) � ‖ fin‖p exp

(
Cd,γ,p

∫ T

0
‖ f (t)‖ d

d+γ
dt

)
.

Here Cd,γ,p > 0 is an explicit constant depending only on d, γ, p.

Proof. Since only propagation of L p-norms are involved here, we simply notice
that

1

p

d

dt

∫
Rd

f pdv = −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv + (p − 1)

∫
Rd

f p−1 b[ f ] · ∇ f dv

= −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv + p − 1

p

∫
Rd

f pcγ [ f ] dv ,

(3.3)

so that

d

dt

∫
Rd

f p(t, v)dv � (p − 1)

∫
Rd

cγ [ f (t)](v) f p(t, v)dv,

and we only need to estimate this last integral. Using Hardy-Littlewood-Sobolev
inequality (3.1) with g = f (t, ·) ∈ L p, h = f p(t, ·) and λ = −γ , we observe that
p < d

d+γ
implies

1

r
= 2 + γ

d
− 1

p
< 1,

and conclude that∫
Rd

cγ [ f (t)](v) f p(t, v)dv � Cd,γ,p‖ f (t)‖p‖ f p(t)‖r = Cd,γ,p‖ f (t)‖p‖ f (t)‖p
pr ,

where Cd,γ,p := (d − 1)(d + γ ) CHLS is depending only on d, γ, p. Writing
q0 = d

d+γ
and recalling that p < d

d+γ
, we use an interpolation based on Hölder’s

inequality, namely,

‖ f (t)‖p
pr � ‖ f (t)‖pθ

p ‖ f (t)‖p(1−θ)
q0 ,

with

1

pr
= θ

p
+ 1 − θ

q0
, θ = q0 − pr

r(q0 − p)
.
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Observing that 1
r = 1

q0
+ 1 − 1

p , one actually has θ = 1 − 1
p , so that p (1 − θ) = 1

and
∫
Rd

cγ [ f (t)](v) f p(t, v)dv � Cd,γ,p ‖ f (t)‖p
p‖ f (t)‖q0 = �0(t)

∫
Rd

f p(t, v)dv,

(3.4)
with

�0(t) := Cd,γ,p ‖ f (t)‖q0 ∈ L1([0, T ])
by assumption. Thanks to Grönwall’s lemma, we obtain that, for t ∈ [0, T ],

∫
Rd

f p(t, v) dv �
(∫

Rd
f p
in (v) dv

)
exp

(
Cd,γ,p(p − 1)

∫ t

0
‖ f (s)‖q0 ds

)
, ∀t ∈ [0, T ]

which gives the desired result. ��
In order to show the appearance of L p-norms, we need to investigate more

carefully the evolution of L p-norms for solutions to the Landau equation (1.5). We
use in the sequel the notation, for k ∈ R and p ∈ (1,∞),

Mk,p(t) :=
∫
Rd

f (t, v)p〈v〉kdv, Dk,p(t) :=
∫
Rd

∣∣∣∇
(
〈v〉 k

2 f
p
2 (t, v)

)∣∣∣2 dv,

together with the shorthand notation Mp(t) := M0,p(t).

Lemma 3.3. We consider d ∈ N, d � 3 and γ ∈ [−d, 0), and assume that fin and
f = f (t, v) define a solution to Eq. (1.1) in the sense of Definition 1.15. Then, for
all p ∈ (1,∞), if

fin ∈ L1
νγ,p

(Rd), νγ,p := |γ |d
2

(
1 − 1

p

)
, (3.5)

it holds that

d

dt
Mp(t) + 2K (p)

CSob
mνγ,p (t)

− 2p
d(p−1)Mp(t)

1+ 2
d(p−1) � K (p)γ 2Mp(t)

+(p − 1)

∫
Rd

cγ [ f (t)](v) f p(t, v)dv, (3.6)

where K (p) := p−1
p K0, K0 being the constant appearing in Remark 1.13 and CSob

is the Sobolev constant appearing in the Sobolev embedding Ḣ1(Rd) ↪→ L
2d

d−2 (Rd)

(see (2.5)).

Proof. As in the proof of the previous proposition, we start with

1

p

d

dt

∫
Rd

f pdv = −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv + (p − 1)

∫
Rd

f p−1 b[ f ] · ∇ f dv

= −(p − 1)

∫
Rd

f p−2∇ f · A[ f ] ∇ f dv + p − 1

p

∫
Rd

f pcγ [ f ] dv ,

(3.7)



Arch. Rational Mech. Anal.          (2024) 248:42 Page 25 of 63    42 

where we recall that ∇ · b[ f ] = −cγ [ f ]. Now, as previously observed,

(p − 1)

∫
Rd

f p−2A[ f ]∇ f · ∇ f dv � 4K0(p − 1)

p2

∫
Rd

〈v〉γ
∣∣∣∇( f

p
2 )

∣∣∣2 dv.

Moreover, writing

∇
(
〈v〉 γ

2 f
p
2

)
= 〈v〉 γ

2 ∇( f
p
2 ) + γ

2
v 〈v〉 γ

2 −2 f
p
2 ,

which implies

〈v〉γ
∣∣∣∇( f

p
2 )

∣∣∣2 � 1

2

∣∣∣∇
(
〈v〉 γ

2 f
p
2

)∣∣∣2 − γ 2

4
〈v〉γ−2 f p, (3.8)

we observe that

(p − 1)

∫
Rd

f p−2A[ f ]∇ f · ∇ f dv � 2K0(p − 1)

p2

∫
Rd

∣∣∣∇
(
〈v〉 γ

2 f
p
2

)∣∣∣2 dv

− K0(p − 1)γ 2

p2

∫
Rd

〈v〉γ−2 f pdv.

Inserting this into (3.7) we obtain

d

dt
Mp(t)+2K (p)Dγ,p(t) � K (p)γ 2Mp(t)+(p−1)

∫
Rd

cγ [ f (t)](v) f p(t, v)dv,

(3.9)
where we simply observe that 〈v〉γ−2 � 1.

Now, as in the proof of Proposition 2.2, we combine a Sobolev inequality with
a suitable interpolation inequality with weights to estimate Dγ,p(t) in terms of
mνγ,p (t) and Mp(t). Namely, one can reformulate the Sobolev embedding inequal-
ity (2.5) as

∥∥∥〈·〉 γ
p f
∥∥∥p

pd
d−2

=
∥∥∥〈·〉 γ

2 f
p
2

∥∥∥2

2d
d−2

� CSob

∫
Rd

∣∣∣∇
[
〈v〉 γ

2 f
p
2

]∣∣∣2 dv = CSobDγ,p(t) .

(3.10)
We now use the interpolation inequality (2.6) with the choice

a = 0, a1 = νγ,p, a2 = γ

p
, r := p,

r1 := 1, r2 := dp

d − 2
, θ := 2

dp + 2 − d
.

We can reformulate (2.7) as

∫
Rd

∣∣∣∇
[
〈v〉 γ

2 f
p
2 (t, v)

]∣∣∣2 dv � C−1
Sob mνγ,p (t)

− 2p
d(p−1)

(∫
Rd

f p(t, v)dv

)1+ 2
d(p−1)

.

(3.11)
Plugging this into (3.9), we get the result. ��
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Thanks to the above evolution, we can now show the analogue of Proposition
2.2 and prove the appearance of L p-norms, for p < d

d+γ
under the endpoint

Prodi–Serrin criterion (3.2)

Proposition 3.4. We consider d ∈ N, d � 3 and γ ∈ (−d, 0), and assume that
fin and f = f (t, v) define a solution to Eq. (1.1) in the sense of Definition 1.15.
Assume that

f ∈ L1
(
[0, T ] ; L

d
d+γ (Rd)

)

for some T > 0. Assume moreover that

fin ∈ L1
νγ,p

(Rd), p ∈
(

1,
d

d + γ

)
,

with νγ,p defined by (3.5). Then, for any t ∈ (0, T ],

‖ f (t)‖p � Cγ,p t−
d
2 (1− 1

p ) sup
τ∈[0,T ]

mνγ,p (τ ) , (3.12)

where

Cγ,p = Cγ,p(T ) =
[

4 K0

dpCSob

]− d
2 (1− 1

p )

exp

(
γ 2

p2 K0(p − 1)T + Cd,γ,p

(
1 − 1

p

)∫ T

0
‖ f (τ )‖ d

d+γ
dτ

)
,

K0 is the constant (depending on 
in, Ein and H( fin)) appearing in Remark 1.13,

CSob is the constant appearing in the Sobolev embedding Ḣ
1(Rd) ↪→ L

2d
d−2 (Rd)

(see (2.5)), and Cd,γ .p is the positive constant (depending on d, γ and p) appearing
in Proposition 3.2.

Proof. We already observed (see (3.4)) that, under assumption (3.2),
∫
Rd

cγ [ f (t)](v) f p(t, v) dv � �0(t) ‖ f (t)‖p
p = �0(t)Mp(t),

where �0(t) := Cd,γ,p‖ f (t)‖ d
d+γ

and 1 < p < d
d+γ

. Inserting this in the evolution

of Mp(t) given in (3.6), we deduce that

d

dt
Mp(t) + 2K (p)

CSob
mνγ,p (t)

− 2p
d(p−1)Mp(t)

1+ 2
d(p−1)

�
(

K (p)γ 2 + (p − 1)�0(t)
)
Mp(t), (3.13)

with �0 ∈ L1([0, T ]). As in the proof of Proposition 2.2, we can now define

y(t) := Mp(t) exp

(
−
∫ t

0

[
K (p)γ 2 + (p − 1)�0(s)

]
ds

)
,
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and we see that y(t) satisfies the differential inequality

y′(t) � −2 K (p)

CSob
mνγ,p (t)

− 2p
d(p−1) y(t)1+ 2

dp−d ,

where we used that y(t) � Mp(t). This inequality can be solved (for t ∈ [0, T ])
as

y(t) �
[

4 K (p)

d(p − 1) CSob

(
sup

τ∈[0,T ]
mνγ,p (τ )

)− 2p
d(p−1)

t

]− d(p−1)
2

.

This proves the result. ��
Remark 3.5. The aforementioned criterion (3.2) is always met in the case of mod-
erately soft potentials γ ∈ [−2, 0), see Section 5.1.

3.2. Proof of the ε-Poincaré Inequality

For the Prodi–Serrin criteria with r > 1, by virtue of the proof of the above
Proposition, the crucial point for the appearance of L p-moments lies in a suitable
estimate for ∫

Rd
cγ [ f (t)](v) f p(t, v)dv.

To deal with such a term, one resorts to the ε-Poincaré inequality stated in
Proposition 1.7. We first give the proof of this fundamental result

Proof of Proposition 1.7. We start with the case−d < γ < 0. For a given g, φ � 0,
we define

I [φ] :=
∫
Rd

φ2cγ [g]dv = (d − 1) (γ + d)

∫
Rd×Rd

|v − v∗|γ φ2(v)g(v∗)dvdv∗.

For any v, v∗ ∈ R
d , if |v − v∗| < 1

2 〈v〉, then 〈v〉 � 2〈v∗〉. We deduce from this
(see) [2, Eq. (2.5)], that

|v − v∗|γ � 2−γ 〈v〉γ
(
1{|v−v∗|� 〈v〉

2

} + 〈v∗〉−γ |v − v∗|γ 1{|v−v∗|< 〈v〉
2

}
)

.

Therefore,
I [φ] � 2−γ (d − 1) (γ + d) (I1 + I2) , (3.14)

with

I1 :=
∫
Rd

〈v〉γ φ2(v)dv

∫
|v−v∗|� 〈v〉

2

g(v∗)dv∗,

and I2 :=
∫
Rd

〈v∗〉−γ g(v∗)dv∗
∫

|v−v∗|< 1
2 〈v〉

|v − v∗|γ 〈v〉γ φ2(v)dv.
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Introducing

F = 〈·〉−γ g, ψ = 〈·〉 γ
2 φ,

one checks that

I1 � ‖g‖1‖ψ2‖1,

while

I2 �
∫
Rd×Rd

|v − v∗|γ F(v∗)ψ2(v)dvdv∗.

We estimate then I2 thanks to Hardy-Littlewood-Sobolev inequality (3.1) to get

I2 � C ‖F‖q ‖ψ2‖r = C ‖F‖q ‖ψ‖2
2r ,

1

r
= 2 − 1

q
+ γ

d
(1 < q, r < ∞),

where C depends only on γ, d, q.
We recall that we apply this with d

d+2+γ
< q < d

d+γ
. We write, for some

s ∈ (0, 1),

q = d

d + γ + 2s
, r = d

d − 2s
. (3.15)

Notice that 2r = 2d
d−2s . According for example to Theorem 1.38 of Bahouri et al.

[10], Ḣs is continuously embedded in L2r , that is (for C > 0 depending on d, s),

I2 � C‖F‖q‖ψ‖2
Ḣs .

Moreover, since

‖ψ‖
Ḣs � ‖ψ‖s

Ḣ1 ‖ψ‖1−s
2 ,

(see for example) [10, Proposition 1.32], one has that

I2 � C‖F‖q‖ψ‖2s
Ḣ1 ‖ψ‖2−2s

2 .

Thanks to Young’s inequality, there is C̃ > 0 depending only on d, γ, s such that,
for any δ > 0,

2−γ (d − 1) (γ + d)I2 � δ ‖ψ‖2
Ḣ1 + C̃‖F‖

1
1−s
q δ− s

1−s ‖ψ‖2
2 .

Plugging this inequality into the estimate for I1, we see that

I [φ] � δ ‖ψ‖2
Ḣ1 + C

(
‖g‖1 + δ− s

1−s ‖F‖
1

1−s
q

)
‖ψ‖2

2,

which is exactly the desired estimate, since F = 〈·〉|γ |g.
We now turn to the case of when γ = −d. One notices that∫

Rd
φ2c−d [g]dv = cd

∫
Rd

φ2(v)g(v)dv = cd

∫
Rd

Fψ2dv.

Thus, a simple use of Hölder’s inequality yields∫
Rd

φ2c−d [g]dv � cd‖F‖q‖ψ‖2
2r ,

1

r
+ 1

q
= 1.

Writing for s ∈ (0, 1) that q = d
2s , we see that r = d

d−2s , and we proceed identically
as to the case −d < γ < 0. ��
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3.3. Appearance of L p-Norms–General Lr
t (Lq) Case

We now turn to the general Prodi–Serrin criterion in the Lr
t (Lq

v ) case, with r > 1.
In such a situation, L p-norms appear for any choice of p > 1. This contrasts with
the previous case in which appearance of L p norms occurred only for p < d

d+γ
.

The following is the analogue of Proposition 2.5 for −d < γ < 0 :
Proposition 3.6. Let fin and f = f (t, v) define a solution to Eq. (1.5) in the sense
of Definition 1.15 with −d < γ < 0. Assume that

〈·〉|γ | f ∈ Lr ([0, T ] ; Lq(Rd)) with
2

r
+ d

q
= 2 + d + γ (3.16)

for some T > 0, where r ∈ (1,∞), q ∈
(

max
(

1, d
2+d+γ

)
, d

d+γ

)
. Given p ∈

(1,∞), assume that

fin ∈ L1
νγ,p

(Rd), νγ,p := |γ |d
2

(
1 − 1

p

)
.

Then, the solution f = f (t, v) satisfies, for any t ∈ (0, T ],

‖ f (t)‖p � K p,γ,q t−
d
2 (1− 1

p ) sup
τ∈[0,T ]

mνγ,p (τ ) , (3.17)

where

K p,γ,q :=
[

2K0

dp CSob

]− d
2 (1− 1

p )

exp

(
p − 1

p

[
γ 2

p
K0 + C0‖ fin‖1

]
T

)

exp

(
p − 1

p
C0

(
K0

p

)r−1 ∫ T

0

∥∥∥〈·〉|γ | f (τ )

∥∥∥r

q
dτ

)
,

and where K0 is the constant (depending on 
in, Ein and H( fin)) appearing in Re-
mark 1.13, CSob is the constant appearing in the Sobolev embedding Ḣ

1(Rd) ↪→
L

2d
d−2 (Rd) (see (2.5)), and C0 is the positive constant (depending on d, γ, q) ap-

pearing in the ε-Poincaré inequality (1.10).

Proof. The Prodi–Serrin condition (3.16) amounts to

∫ T

0
‖ f (t)‖r

Lq
q|γ |

dt < ∞,
d

q
+ 2

r
= d + 2 + γ, 1 < r < ∞.

Notice that the assumption on q implies that d
d+2+γ

< q < d
d+γ

, and therefore,
for some s ∈ (0, 1),

q = d

d + 2s + γ
,

and the relation between r and s is r = 1
1−s .
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We recall the evolution of L p-norms given by (3.9):

d

dt
Mp(t) + 2K (p)Dγ,p(t) � K (p)γ 2Mp(t) + (p − 1)

∫
Rd

cγ [ f (t)](v) f p(t, v)dv.

We also estimate the last integral thanks to an application of the ε-Poincaré inequal-
ity (1.10) with g = f (t, ·), φ = f (t, ·) p

2 . This yields
∫
Rd

cγ [ f (t)](v) f p(t, v)dv � εDγ,p(t)

+C0

(
‖ f (t)‖1 + ε− s

1−s ‖〈·〉|γ | f (t)‖
1

1−s
q

)∫
Rd

f (t, v)p〈v〉γ dv.

Choosing ε in such a way that (p − 1) ε = K (p), we see that

d

dt
Mp(t) + K (p)Dγ,p(t) � K (p)γ 2Mp(t) + (p − 1) (C0‖ fin‖1 + �(t))

∫
Rd

f (t, v)p〈v〉γ dv,

with

�(t) := C0ε
− s

s−1 ‖〈·〉|γ | f (t)‖
1

1−s
q = C0

(
K0

p

)r−1

‖〈·〉|γ | f (t)‖r
q ∈ L1([0, T ])

(the last point is precisely the Prodi–Serrin assumption (3.16)). Dropping the weight
〈v〉γ in the last integral, we end up with

d

dt
Mp(t)+ K (p)Dγ,p(t) �

[
K (p)γ 2 + (p − 1)C0‖ fin‖1 + (p − 1)�(t)

]
Mp(t). (3.18)

At this point, using again, (3.11) as in the proof of Proposition 3.3, we deduce that

d

dt
Mp(t) + K (p)

CSob
mνγ,p (t)

− 2p
d(p−1)Mp(t)

1+ 2
d(p−1)

�
[

K (p)γ 2 + (p − 1)C0‖ fin‖1 + (p − 1)�(t)
]
Mp(t).

The conclusion follows exactly as in the proof of Proposition 3.4 (which corre-
sponds to the case s = 0). ��

As far as propagation of L p-norms is concerned, we can also deduce the fol-
lowing:

Corollary 3.7. Let fin and f = f (t, v) define a solution to Eq. (1.5) in the sense of
Definition 1.15 with −d < γ < 0. Assume that (3.16) holds true for some T > 0,

where r ∈ (1,∞), q ∈
(

max
(

1, d
2+d+γ

)
, d

d+γ

)
. Given p ∈ (1,∞), assume that

fin ∈ L p(Rd). Then, the solution f = f (t, v) belongs to L∞([0, T ], L p(Rd)).
More precisely,

‖ f ‖L∞([0,T ];L p(Rd )) � ‖ fin‖p exp

(
p − 1

p

[
γ 2

p
K0 + C0‖ fin‖1

]
T

)
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exp

(
p − 1

p
C0

(
K0

p

)r−1 ∫ T

0

∥∥∥〈·〉|γ | f (τ )

∥∥∥r

q
dτ

)
, (3.19)

where K0 is the constant (depending on 
in, Ein and H( fin)) appearing in Remark
1.13, and C0 is the positive constant (depending on d, γ, q) appearing in the ε-
Poincaré inequality (1.10).

Proof. Coming back to (3.18) (notice that no assumption on the finiteness of L1-
moment is needed to get this inequality), dropping the nonnegative term K (p)Dp(t)
on the right-hand-side, we deduce from Grönwall’s Lemma that

Mp(t) � exp

{(
K (p)γ 2 + (p − 1)C0‖ fin‖1

)
t + (p − 1)

∫ t

0
�(τ )dτ

}
Mp(0),

from which the result follows. ��
Proof of Theorem 1.4. It is a direct consequence of Proposition 3.2 and Proposition
3.4 when the L1

t (L∞
v ) condition is considered, and of Proposition 3.6 and Corollary

3.7 when the Lr
t (Lq

v ) condition is considered. ��

4. Stability and Uniqueness of Solution

We adapt here the strategy proposed in Chern and Gualdani [13] to deduce
uniqueness of solutions. Notice that our proof covers all cases γ ∈ [−d, 0) and d �
3 whereas the uniqueness result in Chern and Gualdani [13] is given in dimension
d = 3 for the Coulomb case γ = −3.

Our strategy is inspired by the work Chern and Gualdani [13] in the sense that we
deduce the stability from suitable L∞([0, T ]; L p

k (Rd)) estimates on the solution
to (1.5). We show first that such uniform in time estimates, which are variants of the
estimates obtained in Sections 2 and 3, hold true under our Prodi–Serrin conditions.
The result is a consequence of the study of the evolution of weighted L p-norms
provided in Appendix B. More precisely, we show

Proposition 4.1. Let fin and f = f (t, v) define a solution to Eq. (1.5) in the sense
of Definition 1.15 on [0, T ] (for some T > 0) with d ∈ N, d � 3, −d � γ < 0. Let
k � 0. We consider the following two alternative assumptions (with the convention

d
d+γ

= ∞ if γ = −d):

Hyp. 1. fin ∈ L p
k (Rd) for some 1 < p < d

d+γ
and

f ∈ L1
(
[0, T ]; L

d
d+γ (Rd)

)
.

Hyp. 2. fin ∈ L p
k (Rd) for some p > 1 and

〈·〉|γ | f ∈ Lr ([0, T ]; Lq(Rd)) with
2

r
+ d

q
= 2 + d + γ,

where r ∈ (1,∞) , q ∈
(

max
(

1, d
2+d+γ

)
, d

d+γ

)
. Moreover, in the Coulomb

case in dimension d = 3 = −γ , we assume fin ∈ L1
s (R

d) for some s > 2.
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Then, under Hyp. 1 or Hyp. 2, and for any t ∈ [0, T ], one has
∫
Rd

f p(t, v)〈v〉kdv + K0

(
1 − 1

p

)∫ t

0
dτ

∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 f
p
2 (τ, v)

)∣∣∣2 dv � C(T, fin) , (4.1)

where C(T, fin) is an explicit positive constant depending on d, γ, p, k, T, K0,

‖ fin‖L1
2
, H( fin), ‖ fin‖L p

k
and the Prodi–Serrin norms ‖ f ‖

L1
t (L

d
d+γ )

or∥∥〈·〉|γ | f
∥∥

Lr
t (Lq )

(and q), according to the considered case (and on ‖ fin‖L1
s

s > 2
in the Coulomb case in dimension d = 3).

If one moreover assumes in Assumptions Hyp. 1 or Hyp. 2 that p > d
d+γ+2

and

fin ∈ L1
ν(R

d), ν > ν

with

ν := d(p − 1)|γ | − k(γ + 2)−

d(p − 1) − p(γ + 2)−
1k�p|γ | + (d(p − 1) − k)|γ |

d(p − 1) + pγ
1k>p|γ |,

where a− = −a1a<0, then, for any smooth φ, the following version of the ε-
Poincaré inequality is valid for any t ∈ [0, T ] and any ε > 0:

∫
Rd

φ2(v)cγ [ f (t)]dv � ε

∫
Rd

∣∣∣∇
(
〈v〉 γ

2 φ(v)
)∣∣∣2 dv + Ck(T, fin, ε)

∫
Rd

φ2(v)〈v〉γ dv.

(4.2)

Here Ck(T, fin, ε) is an explicit positive constant depending on‖ fin‖L p
k
,‖ fin‖L1

max(2,ν)
,

ε, d, γ, p, k, T, K0, and the Prodi–Serrin norms ‖ f ‖
L1

t (L
d

d+γ )
or
∥∥〈·〉|γ | f

∥∥
Lr

t (Lq )

(and q), according to the considered case.

Proof. The proof follows the line of the corresponding results in Proposition 3.4 and
Theorem 3.6, whose proofs are modified in order to handle weights. Given k � 0,
we use the notations of Appendix B and deduce the evolution of the weighted
L p-norms from (B.1), which holds for any p > 1:

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t) � K (p)(k + γ )2Mk+γ,p(t)

+Ck,γ,p

2∑
i=0

∫
Rd

〈v〉k−i cγ+i [ f (t)](v) f p(t, v)dv. (4.3)

Here Ck,γ,p depends on d, k, γ, p (the explicit value of the constant is given in
Appendix B).

We divide the proof according to the two cases γ = −d or −d < γ < 0.

1) The Coulomb case. Let us begin with the Coulomb case γ = −d. Thanks to
(B.5), we deduce now from (4.3) that

d

dt
Mk,p(t) + 2K (p)Dk−d,p(t) � ck,pMk,p(t) + Ck,p
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∫
Rd

〈v〉k−1c1−d [ f (t)](v) f p(t, v)dv

+Ck,p

∫
Rd

〈v〉k f p+1(t, v)dv, (4.4)

where Ck,p, ck,p, Ck,p are explicit positive constants depending only on p, d, k,

K0, ‖ fin‖L1 and where, for all α ∈ (−d, 0)

cα[ f (t)](v) := (d − 1)(d + α)

∫
|v−v∗|�1

|v − v∗|α f (t, v∗)dv∗.

We estimate the last two integrals in (4.4) in different ways according to the Prodi–
Serrin conditions that we consider.

• Hyp. 1. First, one has
∫
Rd

〈v〉k f p+1(t, v)dv � ‖ f (t)‖∞Mk,p(t). Second,

c1−d [ f (t)](v) = (d−1)

∫
|v−v∗|�1

|v−v∗|1−d f (t, v∗)dv∗ � (d−1)‖ f (t)‖∞|Sd−1|
(4.5)

so that
∫
Rd

〈v〉k−1c1−d [ f (t)](v) f p(t, v)dv � (d − 1)|Sd−1|‖ f (t)‖∞Mk−1,p(t).

Therefore, (4.4) becomes

d

dt
Mk,p(t) + 2K (p)Dk−d,p(t) � C(k, p, d)‖ f (t)‖∞Mk,p(t)

and, since ‖ f (·)‖∞ ∈ L1([0, T ]) by assumption, we deduce from Grönwall’s
Lemma the bound

Mk,p(t) + 2K (p)

∫ t

0
Dk−d,p(s) exp

(
C(k, p, d)

∫ t

s
‖ f (τ )‖∞dτ

)
ds

� Mk,p(0) exp

(
C(k, p, d)

∫ t

0
‖ f (τ )‖∞dτ

)

which gives the result.
• Hyp. 2. In this second case, we observe that the term

∫
Rd 〈v〉k f p+1(t, v)dv is

identical (up to a constant) to
∫
Rd 〈v〉k c−d [ f (t)](v) f p(t, v)dv and is estimated

using the Coulomb version of the ε-Poincaré inequality (1.10), with φ = 〈·〉 k
2 f

p
2

and g = f , leading to

Ck,p

∫
Rd

〈v〉k f p+1(t, v)dv � εDk−d,p(t) + Cε‖〈·〉d f (t)‖
2q

2q−d
q Mk−d,p(t), (4.6)

where q > d
2 is given by 2

r + d
q = 2 (recall we consider here γ = −d) and

r = 2q
2q−d .
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To estimate the term
∫
Rd

〈v〉k−1c1−d [ f (t)](v) f p(t, v)dv,

we have to additionally distinguish the two cases d = 3, d � 4. We give here only
the proof in the case d = 3 and refer to [6, Proof of Prop. 1.8, d � 4] for the other
case. We point out already that the use that we will make of Proposition 4.1 in the
subsequent stability result is actually restricted to the case d = 3.

For d = 3, one has c1−d [ f (t)] = c−2[ f (t)] � c−2[ f (t)] and, resorting to the
critical ε-Poincaré inequality in Alonso et al. [5] (see Proposition A.10 in Appendix
A), one has the following: for any α > 2 and any ε > 0,

∫
R3

〈v〉k−1c−2[ f (t)](v) f p(t, v)dv

� ε Dk−3,p(t) + C0 exp
(
ε− α

α−2 mα( f (t))
α

α−2

) ∫
R3

f (t, v)p〈v〉k−3dv

for some C0 > 0 depending only on 
in, Ein and H( fin). In particular, assuming
fin ∈ L1

α(R3) and α > 2, one deduces that there exists CT > 0 depending only on
‖ fin‖L1

α
, H( fin) such that

Ck,p

∫
Rd

〈v〉k−1c1−d [ f (t)](v) f p(t, v)dv � ε Dk−d,p(t)

+ exp
(

CT

(
1 + ε− α

α−2

))
Mk−d,p(t) (d = 3). (4.7)

Plugging (4.7), (4.6) into (4.4) and choosing ε = ε0 > 0 small enough, we obtain

d

dt
Mk,p(t) + K (p)Dk−d,p(t) � �(t)Mk,p(t), (d = 3)

where we introduced, for the specific choice of ε = ε0,

�(t) = exp

(
CT (1 + ε

− α
α−2

0 )

)
+ Cε0‖〈·〉d f (t)‖

2q
2q−d
q + ck,p.

By assumption, � ∈ L1([0, T ]) and one concludes as before by a Grönwall argu-
ment.

2) The case −d < γ < 0. Combining Eq. (4.3) with Lemma B.2 (and modifying
the name of the constant appearing in this lemma), we deduce then that

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t) � ck,pMk,p(t) + Ck,p

∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv ,

(4.8)
where Ck,p, ck,p are explicit positive constants depending only on k, p, d, γ, K0.
As before, we estimate the last integral in different ways according to the Prodi–
Serrin conditions that we consider.
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Hyp. 1. According to Peetre’s inequality, for all v, v∗ ∈ R
d and s ∈ R, 〈v〉s �

2
|s|
2 〈v − v∗〉|s|〈v∗〉s , so that (for some Cs > 0 depending on s)

∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv

� Cs

∫
|v−v∗|�1

|v − v∗|γ 〈v∗〉s f (t, v∗)〈v〉k−s f p(t, v)dvdv∗

for any 0 � s � k. Using the Hardy-Littlewood-Sobolev inequality (3.1) with
g = 〈·〉s f (t, ·), h(·) = 〈·〉k−s f p(t, ·), so that

1

r
= 2 + γ

d
− 1

p
< 1,

and we conclude that (for some Cd,γ,p,s > 0 depending on d, γ, p, s)

∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv � Cd,γ,p,s‖〈·〉s f (t)‖p‖〈·〉k−s f p(t)‖r

= Cd,γ,p,s‖〈·〉s f (t)‖p‖〈·〉
k−s

p f (t)‖p
pr .

Writing q0 = d
d+γ

and recalling that p < d
d+γ

, we use an interpolation based on
Hölder’s inequality, namely

‖〈·〉 k−s
p f (t)‖p

pr � ‖〈·〉a f (t)‖pθ
p ‖〈·〉b f (t)‖p(1−θ)

q0 ,

with

1

pr
= θ

p
+ 1 − θ

q0
, θ = q0 − pr

r(q0 − p)
,

k − s

p
= aθ + b(1 − θ).

Observing that 1
r = 1

q0
+ 1 − 1

p , one actually has θ = 1 − 1
p , so that p (1 − θ) = 1

and∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv � Cd,γ,p,s ‖〈·〉s f (t)‖p‖〈·〉a f (t)‖p−1
p ‖〈·〉b f (t)‖q0 .

Choosing s = a = k
p and observing that b = 0 and ‖〈·〉s f (t)‖p

p = Mk,p(t), we
see that ∫

Rd
〈v〉k cγ [ f (t)](v) f p(t, v)dv � �0(t)Mk,p(t), (4.9)

with

�0(t) = Cd,γ,p,s ‖ f (t)‖q0 ∈ L1([0, T ]).
Coming back to (4.8), we end up with the differential inequality

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t) �

(
ck,p + Ck,p�0(t)

)
Mk,p(t),
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so that assuming that fin ∈ L p
k (Rd) and remembering that cp + C p�0(t) ∈

L1([0, T ]), we deduce from Grönwall’s Lemma the bound

Mk,p(t) + 2K (p)

∫ t

0
Dk+γ,p(s) exp

(∫ t

s

(
ck,p + Ck,p�0(τ )

)
dτ

)
ds

� Mk,p(0) exp

(∫ t

0

(
ck,p + Ck,p�0(τ )

)
dτ

)
,

which gives the result.
Hyp. 2. In this second case, observing that cγ [ f (t)] � cγ [ f (t)], we apply the

ε-Poincaré inequality (1.10) with g = f (t, ·), φ = 〈·〉 k
2 f

p
2 (t, ·), and we deduce

that, when ε > 0,∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv � εDk+γ,p(t)

+C

(
‖ f (t)‖1 + ε− s

1−s ‖ f (t)‖
1

1−s

Lq
q|γ |

)∫
Rd

f (t, v)p〈v〉γ+kdv,

for some positive constant C > 0, and where s = d−q(d+γ )
2q ∈ (0, 1). Proceeding

now as in the proof of Theorem 3.6, choosing ε in such a way that Ck,pε = K (p),
we deduce from (4.8) that

d

dt
Mk,p(t) + K (p)Dk+γ,p(t) �

(
ck,p + Ck,p�(t)

)
Mk,p(t) , (4.10)

with (using Cε > 0 for emphasizing the dependence w.r.t ε)

�(t) := C‖ fin‖1 + Cε‖〈·〉|γ | f (t)‖
1

1−s
q = C‖ fin‖1 + Cε‖〈·〉|γ | f (t)‖r

q ∈ L1([0, T ]),
(the last point is precisely the assumption of the Proposition). As before, we con-
clude thanks to Grönwall’s Lemma and integration of (4.10). This proves (4.1) in
the case −d < γ < 0 under the two possible assumptions Hyp. 1 or Hyp. 2.

Let us now show how the L∞([0, T ], L p
k (Rd)) estimate (4.1) is enough to

deduce (4.2). Let p > d
d+γ+2 be fixed – with the restriction p < d

d+γ
when we

work under Hyp. 1.
Applying the ε-Poincaré inequality (1.10) with g = f (t, ·), we deduce as above

that (for any suitable φ)
∫
Rd

cγ [ f (t)](v) φ2(v)dv � ε

∫
Rd

∣∣∣∇
(
〈v〉 γ

2 φ(v)
)∣∣∣2 dv

+C

(
‖ f (t)‖1 + ε− s

1−s ‖〈·〉|γ | f (t)‖
1

1−s
q̄

)∫
Rd

φ2(v)〈v〉γ dv,

is valid for any max
(

1, d
d+γ+2

)
< q̄ < d

d+γ
with s = d−q̄(d+γ )

2q̄ . Using simple

interpolation with max
(

1, d
d+γ+2

)
< q̄ < p one has

‖〈·〉|γ | f (t)‖q̄ � ‖〈·〉m f (t)‖1−θ0
1 ‖〈·〉 k

p f (t)‖θ0
p ,
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with

θ0 = p

q̄

q̄ − 1

p − 1
and m = m(q̄) = p|γ | − θ0k

p(1 − θ0)
.

Since m = m(q̄) = q̄(p−1)|γ |−k(q̄−1)
p−q̄ , the mapping q̄ �→ m(q̄) is nondecreasing if

p|γ | � k and nonincreasing if k � p|γ |. Thus, recalling that max
(

1, d
d+γ+2

)
<

q̄ < d
d+γ

, one has

ν = inf
q̄

m(q̄) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(p − 1)|γ | − k(γ + 2)−

d(p − 1) − p(γ + 2)−
if k � p|γ |,

(d(p − 1) − k)|γ |
d(p − 1) + pγ

if k � p|γ |,
(4.11)

where a− := −a 1a<0.

Thus, assuming fin ∈ L1
ν(R

d) with ν > ν, one can choose max
(

1, d
d+γ+2

)
<

q̄ < d
d+γ

with m = m(q̄) � ν so that

sup
t∈[0,T ]

‖〈·〉m f (t)‖1 < ∞.

Then, thanks to (4.1),

sup
t∈[0,T ]

‖〈·〉|γ | f (t)‖
1

1−s
q̄ � CT ( fin),

where CT ( fin) depends on CT ( fin) appearing in (4.1) and ‖ fin‖L1
ν
. This proves

the result. ��
With this, we can deduce the following stability result for solutions to Lan-

dau equation note that the assumptions on the two considered initial data are not
identical:

Proposition 4.2. Let d be an integer, d � 3, and γ be such that −d � γ < −2
and d

d+γ+2 < 2. Let fin, gin and f = f (t, v), g = g(t, v) define two solutions
to Eq. (1.5) in the sense of Definition 1.15 with f (0, ·) = fin, g(0, ·) = gin. We
consider one of the following two assumptions (with the convention d

d+γ
= ∞

when γ = −d):

Hyp. 1: there exists T > 0 such that f, g ∈ L1([0, T ] ; L
d

d+γ (Rd)) and
d

d+γ
> 2;

Hyp. 2: there exists T > 0 such that

〈·〉|γ | f ; 〈·〉|γ | g ∈ Lr ([0, T ]; Lq(Rd)), with
2

r
+ d

q
= 2 + d + γ,

where r ∈ (1,∞), q ∈
(

d
2+d+γ

, d
d+γ

)
.
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Given k > d, assume moreover that

fin ∈ L2
k(R

d) ∩ L1
N (Rd), gin ∈ L2

k+2|γ |(Rd)

with N > max
(

d
2 , 2,

(d−k)|γ |
d+2γ

,
(d−k)|γ |+2k

d+2(γ+2)

)
. Then, there exists CT ( fin, gin) > 0

depending on d, γ, T, k, K0,‖ fin‖L1
N
, ‖gin‖L1

2
, H( fin), H(gin),‖ fin‖L2

k
, ‖gin‖L2

k+2|γ |
,

and the Prodi–Serrin norms ‖ f, g‖
L1

t (L
d

d+γ )
or
∥∥〈·〉|γ | f, 〈·〉|γ |g

∥∥
Lr

t (Lq )
(and q), such

that
‖ f (t) − g(t)‖2

L2
k

� CT ‖ fin − gin‖2
L2

k
∀t ∈ [0, T ]. (4.12)

Remark 4.3. Notice that the result still applies if f and g do not satisfy the same
hypothesis: it applies if f satisfies Hyp. 1 and g satisfies Hyp. 2 or the opposite.
We stated the result in the above way for simplicity.

Remark 4.4. We point out that, in the Coulomb case γ = −d, the restriction
d

d+γ+2 < 2 enforces d = 3.

Proof. We consider two solutions f, g with initial data f (0) = fin and g(0) = gin,
and write h = f − g. We notice first that, since fin, gin ∈ L2

k(R
d), estimate (4.1)

holds true for both f, g with p = 2, where we recall that, under Assumption Hyp.
1, we assume 2 < d

d+γ
. It ensures that

f, g ∈ L∞([0, T ]; L2
k(R

d)).

This means that for all t ∈ [0, T ], h(t, ·) ∈ L∞([0, T ] ; L2
k(R

d)). Furthermore,
since gin ∈ L2

k+2|γ |(Rd), we deduce from Proposition 4.1 that

sup
t∈[0,T ]

∫
Rd

g2(t, v)〈v〉k+2|γ |dv + K0

2

∫ T

0
dτ

∫
Rd

∣∣∣∇
(
〈v〉 k+|γ |

2 g(τ, v)
)∣∣∣2 dv < ∞ .

(4.13)
We then investigate the evolution of

J (t) :=
∫
Rd

〈v〉kh2(t, v)dv.

One that has

d

dt
J (t) = 2

∫
Rd

〈v〉kh(t, v) ∂t h(t, v)dv

= −2
∫
Rd

A[ f ]∇h · ∇
(

h〈v〉k
)

dv − 2
∫
Rd

A[h]∇g · ∇
(

h〈v〉k
)

dv

+ 2
∫
Rd

h b[ f ] · ∇
(

h〈v〉k
)

dv + 2
∫
Rd

gb[h] · ∇
(

h〈v〉k
)

dv

= I1 + I2 + I3 + I4.

As in the proof of Lemma B.1, one has I1 = I1,1 + I1,2, with

I1,1 = −2
∫
Rd

〈v〉kA[ f ]∇h · ∇hdv, I1,2 = −2k
∫
Rd

〈v〉k−2hA[ f ]∇h · vdv.
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From the diffusive properties of A[ f ],
∫
Rd

〈v〉kA[ f ]∇h · ∇hdv � K0

∫
Rd

〈v〉k+γ |∇h|2dv.

Now,

I1,2 = k
∫
Rd

h2(t, v)∇ ·
[
A[ f ]〈v〉k−2v

]
dv.

Therefore, using the reasoning and notations of Lemma B.1

I1,2 = k
∫
Rd

h2〈v〉k−2 (b[ f ] · v) dv + k
∫
Rd

〈v〉k−4h2Trace (A[ f ] · A(v)) dv.

Using several integration by parts and using that ∇ · b[ f ] = −cγ [ f ], one also
shows that

I3 =
∫
Rd

〈v〉k h2cγ [ f ]dv + k
∫
Rd

〈v〉k−2h2 (b[ f ] · v) dv

therefore

I1,2 + I3 = k
∫
Rd

〈v〉k−4h2Trace (A[ f ] · A(v)) dv +
∫
Rd

〈v〉kh2cγ [ f ]dv

+2k
∫
Rd

〈v〉k−2h2 (b[ f ] · v) dv.

Using the estimate of Trace (A[ f ] · A(v)) in Lemma B.1 and estimate (B.4) for
estimating the integral involving b[ f ], we deduce that

I1,2 + I3 � Cd,k,γ

(∫
Rd

〈v〉k−2h2cγ+2[ f ]dv +
∫
Rd

〈v〉k−1h2cγ+1[ f ]dv

)

+
∫
Rd

〈v〉kh2cγ [ f ]dv.

Using Lemma B.2, we deduce in the case −d < γ < −2 that there exist C =
C(d, k, γ ), c = c(d, k, γ ) > 0 (depending on ‖ fin‖L1

2(R
d )) such that

I1,2 + I3 � C
∫
Rd

〈v〉kh2cγ [ f ]dv + c
∫
Rd

〈v〉k h2dv.

Thus, observing that cγ [ f ] � cγ [ f ], we get

I1+I3 � −2K0

∫
Rd

〈v〉k+γ |∇h|2dv+C
∫
Rd

〈v〉kh2cγ [ f ](v)dv+c
∫
Rd

〈v〉kh2dv.

(4.14)
In the case γ = −d, Lemma B.2 implies that there exist C = C(d, k), C̃ =
C̃(d, k), c = c(d, k) > 0 such that

I1,2 + I3 � C
∫
Rd

〈v〉kh2c−d [ f ]dv + C̃
∫
Rd

〈v〉k−1h2c1−d [ f ]dv + c
∫
Rd

〈v〉k−1 h2dv.
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Note that (4.5) holds when Assumption Hyp. 1 is in force and implies that
∫
Rd

〈v〉k−1h2c1−d [ f ]dv � (d − 1)|Sd−1|‖ f (t)‖∞
∫
Rd

〈v〉kh2dv.

Now, under AssumptionHyp. 2, since d = 3 (see Remark 4.4), we have c1−d [ f (t)] �
c−2[ f (t)] and we deduce from Proposition A.10 that there exist C0 > 0 such that,
for any ε > 0 (N > 2 being defined in the statement of the theorem),

∫
Rd

〈v〉k−1c1−d [ f (t)](v) h2(t, v)dv � ε

∫
Rd

∣∣∣∇
(
〈v〉 k−d

2 h(t, v)
)∣∣∣2 dv

+C0 exp
(
ε− N

N−2 mN ( f (t))
N

N−2

) ∫
Rd

h(t, v)2〈v〉k−ddv,

Thus, in the case γ = −d, for any ε > 0,

I1 + I3 � −2K0

∫
Rd

〈v〉k+γ |∇h|2dv + εC̃
∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h(t, v)
)∣∣∣2 dv

+C
∫
Rd

〈v〉kh2cγ [ f ](v)dv + �ε(t)
∫
Rd

〈v〉kh2dv, (4.15)

where �ε ∈ L1([0, T ]).
Finally, gathering (4.14) and (4.15), we obtain for −d � γ < −2 and for any

ε > 0,

I1 + I3 � −2K0

∫
Rd

〈v〉k+γ |∇h|2dv + εC̃
∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h(t, v)
)∣∣∣2 dv

+C
∫
Rd

〈v〉kh2cγ [ f ](v)dv + �ε(t)
∫
Rd

〈v〉kh2dv, (4.16)

with �ε ∈ L1([0, T ]).
One now looks atI2, which is more delicate. One has again I2 = I2,1 +I2,2,

with

I2,1 = −2
∫
Rd

〈v〉kA[h]∇g · ∇h dv, I2,2 = −2k
∫
Rd

〈v〉k−2 h A[h]∇g · vdv.

Writing 〈v〉k−2hA[h]∇g · v =
(
〈v〉 k−2

2 h v
)

·
(
〈v〉 k−2

2 A[h]∇g
)

and using Young’s

inequality, we deduce that

|I2,2| � k
∫
Rd

〈v〉kh2(t, v)dv + k
∫
Rd

〈v〉k |A[h]|2 |∇g|2dv.

Similarly, with 〈v〉kA[h]∇g · ∇h =
(
〈v〉 k+γ

2 ∇h
)

·
(
〈v〉 k−γ

2 A[h]∇g
)

, we deduce

from Young’s inequality that, for any δ > 0,

|I2,1| � δ

∫
Rd

〈v〉k+γ |∇h|2dv + 1

δ

∫
Rd

〈v〉k−γ |A[h]|2 |∇g|2dv.
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We deduce that there exists Ck > 0 such that, for any δ ∈]0, 1],
|I2| � δ

∫
Rd

〈v〉k+γ |∇h|2dv + Ck

δ

(∫
Rd

〈v〉k h2(t, v)dv + ‖A[h]‖2∞
∫
Rd

〈v〉k−γ |∇g|2dv

)
.

Now, from Lemma A.9, Eq. (A.7), there is C > 0 such that, when q > d
d+2+γ

and

m > d
(

1 − 1
q

)
,

‖A[h]‖∞ � C‖〈·〉mh‖q .

Applying this with q = 2, m = k
2 , and this shows that, if k > d,

‖A[h]‖2∞ � C2
∫
Rd

〈v〉kh2(t, v)dv,

and we deduce therefore that, for any δ ∈]0, 1],

|I2| � δ

∫
Rd

〈v〉k+γ |∇h|2dv + �δ(t)
∫
Rd

〈v〉kh2dv, (4.17)

where

�δ(t) = δ−1Ck

[
1 + C2

∫
Rd

〈v〉k−γ |∇g(t, v)|2dv

]
.

Notice that (4.13) implies that for any δ ∈]0, 1],
�δ ∈ L1([0, T ]).

One proceeds in that exactly same way for I4 = I4,1 + I4,2, with

I4,1 = 2
∫
Rd

〈v〉k g(t, v)b[h] · ∇hdv, I4,2 = 2k
∫
Rd

〈v〉k−2h(t, v)g(t, v)b[h] · vdv.

To estimate |b[h]|, we need to distinguish between the case 2 > d
d+γ+1 for which

can apply (A.8) to estimate ‖b[h]‖∞ in terms of ‖〈·〉mh‖2 (m > d
2 ), and the case

2 � d
d+γ+1 for which we resort to (A.9) or (A.10). We focus here on this second

case, the case b[h] ∈ L∞(Rd) being simpler (one can follow the line of the previous
estimate for ‖A[h]‖∞, we leave it to the reader). We treat in details first the case
2 < d

d+γ+1 . Clearly,

∣∣I4,1
∣∣ � 2

∫
Rd

(
〈v〉 k+γ

2 |∇h|
) (

g〈v〉 k−γ
2

)
|b[h]|dv.

Let p∗
γ be defined as in (A.9) with the choice of q = 2, that is p∗

γ = 2d
d−2(1+γ+d)

> 2.

Let p be such that 1
p∗
γ

+ 1
2 + 1

p = 1, that is p = d
1+γ+d . One deduces from Hölder’s

inequality that

∣∣I4,1
∣∣ � 2‖b[h]‖p∗

γ

∥∥∥〈·〉 k+γ
2 |∇h|

∥∥∥
2

∥∥∥〈·〉 k−γ
2 g

∥∥∥
p
.
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Now, a simple use of Young’s inequality yields, for any δ > 0,

∣∣I4,1
∣∣ � δ

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv + 1

δ
‖b[h]‖2

p∗
γ

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

p
.

We now use (A.9) to deduce that ‖b[h]‖2
p∗
γ

� C( fin, gin)‖h‖2
2, where C( fin, gin)

depends on d, γ and ‖ fin‖1, ‖gin‖1. It remains only to estimate

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

p
, p = d

1 + γ + d
.

One checks easily that p < 2d
d−2 under the assumption 2 > d

d+γ+2 , while p > 2
clearly holds by assumption. Then, by interpolation and Sobolev embedding, there
exist C > 0 and α ∈ (0, 1) such that

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥
p

� C
∥∥∥〈·〉 k−γ

2 g(t)
∥∥∥1−α

2

∥∥∥∇
(
〈·〉 k−γ

2 g(t)
)∥∥∥α

2
.

Thanks to Young’s inequality, we deduce that

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

p
� C0

(∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

2
+
∫
Rd

∣∣∣∇
(
〈v〉 k−γ

2 g(t, v)
)∣∣∣2 dv

)
.

We showed that, for any δ > 0,

∣∣I4,1
∣∣ � δ

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv + �δ(t)
∫
Rd

〈v〉k+γ h2(t, v)dv,

where

�δ(t) = δ−1Cd,γ,k

(∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

2
+
∫
Rd

∣∣∣∇
(
〈v〉 k−γ

2 g(t, v)
)∣∣∣2 dv

)
,

for some positive constant Cd,γ,k depending on d, γ, k and ‖ fin‖1, ‖gin‖1. Notice
that, according to (4.13), one has �δ ∈ L1([0, T ]). In the same way,

∣∣I4,2
∣∣ � 2k‖b[h]‖p∗

γ

∥∥∥〈·〉 k−1
2 h

∥∥∥
2

∥∥∥〈·〉 k−1
2 g

∥∥∥
p

� k
∫
Rd

〈v〉k−1h2(t, v) dv + k‖b[h]‖2
p∗
γ

∥∥∥〈·〉 k−1
2 g

∥∥∥2

p
.

As before, this yields then the estimate

∣∣I4,2
∣∣ � �(t)

∫
Rd

〈v〉kh2(t, v) dv

where

�(t) = Cd,γ,k

(
1 +

∥∥∥〈·〉 k−1
2 g(t)

∥∥∥2

2
+
∫
Rd

∣∣∣∇
(
〈v〉 k−1

2 g(t, v)
)∣∣∣2 dv

)
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for some positive constant Cd,γ,k > 0 depending on d, γ, k and ‖ fin‖L1
2
. In par-

ticular, � ∈ L1([0, T ]). Combining these two estimates, for any δ > 0, there is
�δ ∈ L1([0, T ]) such that

|I4| � δ

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv + �δ(t)
∫
Rd

〈v〉kh2dv . (4.18)

Choosing δ = δ0 = min(1, K0
2 ) in (4.17)-(4.18) and combining this with (4.16),

one sees that

d

dt

∫
Rd

〈v〉kh2(t, v)dv + K0

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv

� εC̃
∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h(t, v)
)∣∣∣2 dv

+�ε(t)
∫
Rd

〈v〉kh2(t, v)dv + C
∫
Rd

〈v〉kh2(t, v)cγ [ f (t)](v)dv

with

�ε(t) = �δ0(t) + �δ0(t) + �ε(t), �ε ∈ L1([0, T ]).
Since fin ∈ L1

N (Rd), we may now use the ε-Poincaré inequality (4.2) with φ2 =
〈·〉kh2. Notice that the definition of ν in (4.11) with p = 2 yields ν̄ = d|γ |+kγ+2k

d+2(γ+2)

if k � 2|γ | while ν̄ = (d−k)|γ |
d+2γ

if k � 2|γ |. We deduce that, for any ε > 0,

d

dt

∫
Rd

〈v〉kh2(t, v)dv + K0

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv

� Cε

∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h(t, v)
)∣∣∣2 dv + CT ( fin, ε)

∫
Rd

〈v〉k+γ h2(t, v)dv

+�ε(t)
∫
Rd

〈v〉kh2(t, v)dv,

where CT ( fin, ε) > 0 is a positive constant depending only on ε, T, ‖ fin‖L2
k
, γ .

Recalling that there are c0, c1 > 0 such that
∫
Rd

〈v〉k+γ |∇h|2dv � c0

∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h
)∣∣∣2 dv − c1

∫
Rd

〈v〉k+γ−2h2dv,

one chooses then ε = ε0 > 0 such that Cε0 = 1
2 K0c0 to deduce that

d

dt

∫
Rd

〈v〉kh2(t, v)dv + 1

2
K0c0

∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 h(t, v)
)∣∣∣2 dv

� �(t)
∫
Rd

〈v〉kh2(t, v)dv,

with

�(t) = �ε0(t) + 1

2
K0 c1 + CT ( fin, ε0), � ∈ L1([0, T ]).
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We conclude by a Gronwall argument that, for any t ∈ [0, T ],
∫
Rd

〈v〉kh2(t, v)dv � CT

∫
Rd

〈v〉kh2(0, v)dv, CT := exp

(∫ T

0
�(t)dt

)
,

which gives the result.
The case d

d+γ+1 = 2 is treated in the same way using now the weighted estimate

(A.10) for q = 2. Given 2d
d+2 < � < 2 one defines p̄∗

γ = 2�
2−�

and for p such that
1
p̄∗
γ

+ 1
2 + 1

p = 1, that is p = �′ = �
�−1 , we get, as before, for any δ > 0,

∣∣I4,1
∣∣ � δ

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv + 1

δ
‖b[h]‖2

p∗
γ

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

p

� δ

∫
Rd

〈v〉k+γ |∇h(t, v)|2 dv + C

δ
‖〈·〉mh‖2

2

∥∥∥〈·〉 k−γ
2 g(t)

∥∥∥2

p

for m > |1 + γ | = d
2 , where we used (A.10) in the case q = 2. The estimate

for
∥∥∥〈·〉 k−γ

2 g(t)
∥∥∥2

p
with p = �

�−1 is made as before since 2 < p < 2d
d−2 (because

2d
d+2 < � < 2). Details are left to the reader. ��

As a consequence, we immediately deduce our main uniqueness result as stated
in the Introduction.

Proof of Theorem 1.9. The proof is a simple consequence of the above stability
inequality and the fact that gin = fin. ��

5. Further Comments

In this last section we give an informal discussion of some additional features
of our contribution. Specifically, we explain how the results of the previous sections
allow to recover well-known results in the case of moderately soft potentials −2 �
γ < 0, and then we discuss the endpoint case of Prodi–Serrin criterion for which
r = ∞.

5.1. About the Moderate Soft Potential Case

We illustrate here how Prodi–Serrin’s criterion is satisfied by any weak solution
constructed with an approximation procedure, as in Desvillettes [18] to the Landau
equation, in the moderate soft potential case

−2 � γ < 0.

It is already a well-known fact that Landau equation is globally well-posed in
this case (weak solutions are global and unique under suitable assumptions) and
that apperance/propagation of L p-norm occurs in this case. Moreover, as shown in
the recent contribution Alonso et al. [5], such appearance of L p-bounds implies the
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appearance of pointwise bounds for solutions to (1.5). The key point which makes
the Prodi–Serrin criterion satisfied is the a priori estimate related to the weighted
Fisher information obtained by the third author in Alonso et al. [18], see Corollary
A.6 which, for −2 � γ < 0 is strong enough to ensure one of the Prodi–Serrin
criterion to hold.

Proposition 5.1. Let fin and f = f (t, v) a weak solution to equation (1.1) in the
sense of Definition 1.15. Then the following holds:

(1) Assume that −2 < γ < 0 and fin ∈ L1
s (R

d) with s = γ 2

2(γ+2)
, then

f ∈ L1([0, T ], L
d

d+γ (Rd)), ∀T > 0.

(2) For −2 � γ < 0, assume that there is some δ > 0 such that fin ∈ L1|γ |+δ(R
d).

Then, there is a pair (r, q) with r > 1, 1 < q < d
d+γ

and 2
r + d

q = d + γ + 2
such that

〈·〉|γ | f ∈ Lr ([0, T ], Lq(Rd)), ∀T > 0.

Proof. Recall that Corollary A.6 ensures that the weak solution f satisfies

∫ T

0
dt
∫
Rd

∣∣∣∇
(
〈v〉 γ

2
√

f (t, v)
)∣∣∣2 dv < ∞ . (5.1)

We begin with Assumption 1 (and −2 < γ < 0). Thanks to Sobolev inequality

‖h‖2
2d

d−2
� CSob‖∇h‖2

2, ∀h ∈ Ḣ
1(Rd)

(and since γ > −2), we can use the interpolation (Hölder’s) inequality

‖ f (t)‖ d
d+γ

= ‖√ f (t)‖2
2d

d+γ

�
∥∥∥〈·〉a

√
f (t)

∥∥∥2(1−α)

2

∥∥∥〈·〉 γ
2
√

f (t)
∥∥∥2α

2d
d−2

with d+γ
2d = 1−α

2 + d−2
2d α, a(1 − α) + γ

2 α = 0, which means α = |γ |
2 and

a = γ 2

2(2+γ )
. This, combined with the above Sobolev inequality, implies that

‖ f (t)‖ d
d+γ

� C
|γ |
2

Sob

[
sup

t∈[0,T ]
m |γ |2

2+γ

( f (t))

]2−|γ | ∥∥∥∇
(
〈·〉 |γ |

2
√

f (t)
)∥∥∥|γ |

2
.

Since |γ | < 2, we see from (5.1) that ‖ f (·)‖ d
d+γ

∈ L1([0, T ]) and this proves the

first point.
Now, for the second Prodi–Serrin criterion, we still resort to (5.1) but now with

the weighted interpolation inequality

‖〈·〉|γ | f (t)‖q � ‖〈·〉β f (t)‖1−θ
1

∥∥〈·〉γ f (t)
∥∥θ

d
d−2

� ‖〈·〉β f (t)‖1−θ
1

∥∥∥〈·〉 γ
2
√

f (t)
∥∥∥2θ

2d
d−2
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with

1

q
= 1 − θ + d − 2

d
θ = 1 − 2

d
θ, |γ | = β(1 − θ) + γ θ.

We assume that 1 < q < d
d+γ

so that 0 < θ <
|γ |
2 � 1. We then choose

1

r
= 1 + γ

2
+ θ < 1,

so that

‖〈·〉|γ | f (t)‖r
q � Crθ

Sob mβ( f (t))r(1−θ)
∥∥∥∇

(
〈·〉 |γ |

2
√

f (t)
)∥∥∥2rθ

2
,

while

d

q
+ 2

r
= d

q
+ 2 + γ + 2θ = d + γ + 2,

which makes (r, q) an admissible Prodi–Serrin pair. Now, since 2rθ � 2, one sees
that

sup
t∈[0,T ]

mβ( f (t)) < ∞ �⇒ ‖〈·〉|γ | f (t)‖q ∈ Lr ([0, T ]).

One notices now that β = |γ | 1+ d
2 (1−q−1)

1+ d
2 (1−q−1)

. We see that if γ > −2, we can get

β = 2 by choosing q > 1 sufficiently close to 1. If γ = −2, we get (for some
given δ > 0) β = 2 + δ by also choosing q > 1 sufficiently close to 1. This proves
the result. ��
Remark 5.2. For −2 < γ < 0, the second point here above means that Prodi–
Serrin’s criterion Lr

t (Lq) with r > 1 is satisfied for some pair (r, q) for any admis-
sible initial datum fin ∈ L1

2(R
d) whereas, for γ = −2, some additional moment

assumption fin ∈ L1
2+δ(R

d) is needed. Notice that, arguing as in Alonso et al. [5]
and resorting to the de la Vallée-Poussin criterion, this additional assumption can
be removed. Even if the first point of the Proposition seems to yield a non optimal
moment assumption on fin, we still believe it provides interesting information on
the link between the Prodi–Serrin criterion in the endpoint case r = 1, q = d

d+γ
,

and the Fisher information estimate of Corollary A.6.

5.2. About the Critical Endpoint r = ∞, q = d
d+γ+2

We consider d ∈ N, d � 3, and γ ∈ [−d,−2). In the endpoint case for which
r = ∞ and q = d

d+γ+2 , it is actually possible to obtain a result similar to that of
Theorem 1.1. Indeed, under some smallness assumption on

‖〈·〉|γ | f ‖
L∞([0,T ], L

d
d+γ+2 (Rd ))

,

the appearance and propagation of L p-norms which is the cornerstone of our anal-
ysis still holds true.
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Proposition 5.3. We consider d ∈ N, d � 3 and γ ∈ [−d,−2). Let fin and
f = f (t, v) be a weak solution to equation (1.1) in the sense of Definition 1.15
with fin ∈ L1

s (R
d) (s > 2). Additionally, assume that there exists T > 0 such that

〈·〉|γ | f ∈ L∞([0, T ]; L
d

d+γ+2 (Rd)).

Then, given k � 0, p > 1, there exists some explicit δ > 0 (depending on d, γ, k
and p) such that, if

sup
t∈(0,T )

∥∥∥〈·〉|γ | f (t, ·)
∥∥∥

d
d+γ+2

� δK0 , (5.2)

and

fin ∈ L p
k (Rd),

one has, for any t ∈ [0, T ],
∫
Rd

f p(t, v)〈v〉kdv + Cδ,p,k K0

∫ t

0
dτ

∫
Rd

∣∣∣∇
(
〈v〉 k+γ

2 f (τ, v)
p
2

)∣∣∣2 dv � C(T, fin, δ) , (5.3)

where C(T, fin, δ) is an explicit positive constant depending on d, γ, T, p,

k, K0, δ, ‖ fin‖L p
k
, ‖ fin‖L1

s
and the Prodi–Serrin norms‖ f ‖

L∞
t (L

d
d+γ+2
v )

, while Cδ,p,k

is an explicit constant depending only on p, δ and k.

Proof. We set q0 = d
d+2+γ

and recall the evolution of L p norms given in (4.8):

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t)

� ck,pMk,p(t) + Ck,p

∫
Rd

〈v〉k cγ [ f (t)](v) f p(t, v)dv. (5.4)

As in the proof of Proposition 3.6, the key point is to evaluate the singular term∫
Rd

〈·〉k cγ [ f (t)] f p(t, v)dv

in terms of ‖〈·〉|γ | f (t, ·)‖q0 . We argue as in the proof of the ε-Poincaré inequality
to estimate ∫

Rd
cγ [F]ψ2dv

with

F = 〈·〉−γ f (t, v), ψ = 〈·〉 γ+k
2 f

p
2 .

Indeed, since α1,γ � 〈v∗〉γ � α2,γ 〈v〉γ when |v − v∗| � 1 (for some con-
stants α1,γ , α2,γ > 0), the estimate on

∫
Rd cγ [F]ψ2dv yields an estimate on∫

Rd 〈·〉k cγ [ f (t, ·)] f p(t, v)dv.
We can use Hardy-Littlewood-Sobolev inequality (3.1) to get∫

Rd
cγ [F]ψ2dv � CHLS‖F‖q0‖ψ2‖r ,

1

r
= 2 − 1

q0
+ γ

d
= d − 2

d
.
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This yields

∫
Rd

cγ [F]ψ2dv � CHLS‖F‖q0‖ψ‖2
2r � Cd,γ ‖F‖q0‖∇ψ‖2

2,

since 2d
d−2 is the critical exponent for the Sobolev embedding and Cd,γ = CHLSCSob.

Moreover, since ψ = 〈·〉 γ+k
2 f

p
2 , we deduce from (5.4) that

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t) � Ck,p,d,γ ‖F(t)‖q0Dk+γ,p(t) + ck,p Mk,p(t),

for some positive constant Ck,p,d,γ depending on k, p, d, γ , related to Ck,pCd,γ

and the constants α1,γ , α2,γ . Therefore, assuming that

sup
t∈[0,T ]

‖F(t)‖q0 � δ K0 with δ <
2(p − 1)

pCk,p,d,γ

, (5.5)

one obtains, recalling that K (p) = K0
p−1

p ,

d

dt
Mk,p(t) +

(
2

p − 1

p
− δ Ck,p,d,γ

)
K0 Dk+γ,p(t) � ck,p Mk,p(t),

which allows the to conclude exactly as in the proof of Proposition 4.1.
We now briefly explain how to modify the above proof in the case γ = −d,

when d = 3. We first observe that Mk,p now satisfies the differential inequality

d

dt
Mk,p(t) + 2K (p)Dk−3,p(t) � ck,p Mk,p(t) + Ck,p∫

R3
〈v〉k−1 c−2[ f (t)](v) f p(t, v)dv

+Ck,p

∫
R3

〈v〉k f p+1(t, v)dv .

Then, we recall (see Proposition A.10) the estimate

∫
R3

〈v〉k−1 c−2[ f (t)](v) f p(t, v)dv � εDk−3,p(t) + C(ε,mη(t))Mk,p(t),

which holds for any ε > 0 and any η > 2. Finally, we notice that

∫
R3

〈v〉k f p+1(t, v)dv =
∫
R3

〈v〉3 f (t, v)
[
〈v〉 k−3

2 f
p
2 (t, v)

]2
dv

� ‖〈·〉3 f (t)‖ 3
2
‖〈·〉 k−3

2 f
p
2 (t)‖2

6 � CSob δ K0 Dk−3,p(t).

This proves the result. ��
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Remark 5.4. Notice that the above assumption (5.2) is not optimal. Indeed, with
the notations of the proof, and decomposing further,

F = F1F>R + F1F�R .

After reproducing the aforementioned computations, it is possible to replace (5.2)
with an estimate of the type

lim sup
R→∞

sup
t∈[0,T )

‖F(t)1F(t)>R‖ d
d+2+γ

� δ K0 , F(t, v) = 〈v〉|γ | f (t, v) , (5.6)

which is more general than some mere uniform integrability of the family (Fq0

(t))t∈[0,T ] since we do not assume the above lim sup to vanish. In particular, the
conclusion of Proposition 5.3 holds true for instance if

〈·〉|γ | f (t, ·) ∈ L∞((0, T ); L
d

d+γ+2 (log L)α(Rd)).

We do not elaborate more in this direction.

Finally, for the Navier–Stokes equation, a sharper endpoint estimate than The-
orem 1.1 has been derived in Iskauriaza et al. [35] by a compactness argument.
This result has been made quantitative very recently in Tao [56]; Palasek [49] and
appears interesting to inquire about the Landau equation counterpart.
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Appendix A: Facts About Solutions to the Landau Equation

We collect several mathematical results about the solutions to the Landau equation in the
range of parameters we are dealing with here: −d � γ < 0. These results are meant to serve
as a mathematical tool-box for the core of the paper.

Definition A.1. Let fin ∈ L1
2(Rd ) ∩ L log L(Rd ) be given and nonnegative with


in :=
∫
Rd

fin(v)dv > 0, Ein :=
∫
Rd

fin(v)|v|2dv,

and

H( fin) :=
∫
Rd

fin(v) log fin(v)dv.

We say that f ∈ Y0( fin) if f ∈ L1
2(Rd ) and

∫
Rd

f (v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv =

∫
Rd

fin(v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv,

and H( f ) � H( fin).

We observe that at the formal level, a solution f = f (t, v) of the Landau equation with
initial datum fin ∈ L1

2(Rd ) ∩ L log L(Rd ) satisfies

f (t) ∈ Y0( fin) ∀t � 0.

For general estimates regarding the class of functions Y0( fin) and the following lemma, we
refer to Alexandre et al. [1]:

Lemma A.2. Let 0 � fin ∈ L1
2(Rd ) ∩ L log L(Rd ) be fixed as in Definition A.1. Then, the

following hold:

(1) For any f ∈ Y0( fin), it holds that
∫
|v|�R

f dv � 
in

(
1 − Ein


in R2

)
∀R > 0. (A.1)

(2) For any δ > 0 there exists η(δ) > 0 depending only on ‖ fin‖L1
2

and H( fin) such that

for any f ∈ Y0( fin) and measurable set A ⊂ R
d

|A| � η(δ) �⇒
∫

A
f dv � δ . (A.2)

The aforementioned estimates are the key for the proof of the coercivity estimate for the
matrix A[ f ] given in Remark 1.13. Namely, one has

Lemma A.3. Let 0 � fin ∈ L1
2(Rd ) ∩ L log L(Rd ) be fixed. Then, there exists a constant

K0 > 0, depending on d, γ , ρin, Ein, H( fin) such that
∑
i, j

Ai, j [ f ](v) ξi ξ j � K0〈v〉γ |ξ |2, ∀ v, ξ ∈ R
d ,

holds for any f ∈ Y0( fin).
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Proof. We show here how the conclusion of Lemma A.2 allows to deduce the result. We
follow the proof of [1, Proposition 2.3] given in dimension d = 3 and explain where some
changes have to be made to treat general dimension d � 3. First, one observes that it is
enough to show the result for ξ ∈ R

d with |ξ | = 1. We fix such ξ and, for θ ∈ (0, π
2 ), we

introduce

Dθ,ξ (v) =
{
v∗ ∈ R

d , |ξ · (v − v∗)| � |v − v∗| cos θ
}

.

Given v, v∗ ∈ R
d , v �= v∗ we set for simplicity u = v − v∗, û = u

|u| and notice that

∑
i, j

ai, j (v − v∗)ξi ξ j = |u|γ+2
∑
i, j

(
δi, j − ûi û j

)
ξi ξ j = |u|γ+2

(
1 − (̂u · ξ)2

)
.

Therefore, if v ∈ R
d it holds that

∑
i, j

ai, j (v − v∗)ξi ξ j � |u|γ+2 sin2 θ, ∀v∗ /∈ Dθ,ξ (v).

For any f ∈ Y0( fin) and any v ∈ R
d , we have then, for any θ ∈ (

0, π
2

)
and any R > 0

∑
i, j

Ai, j [ f ](v) ξi ξ j �
∑
i, j

∫
BR\Dθ,ξ (v)

f (v∗)ai, j (v − v∗) ξi ξ j dv∗

where BR = {v∗ ∈ R
d , |v∗| � R}. Thus

∑
i, j

Ai, j [ f ](v) ξi ξ j � sin2 θ

∫
BR\Dθ,ξ

f (v∗)|u|γ+2dv∗. (A.3)

We now fix R >

√
2Ein

in

so that (A.1) reads
∫

BR
f (v∗)dv∗ � 
in

2 and

∫
BR\Dθ,ξ (v)

f (v∗)dv∗ � 1

2

in −

∫
BR∩Dθ,ξ (v)

f (v∗)dv∗. (A.4)

One argues as in Desvillettes, Villani [22] to estimate
∣∣BR ∩ Dθ,ξ (v)

∣∣ . This is the only
place in the proof in which dimension d plays a role, the proof in Desvillettes, Villani [22]
being given in d = 3. Notice that BR ∩ Dθ,ξ (v) is the intersection of a cone with a ball.
It can be estimated from above by the intersection of the cylinder with the ball BR where
the cylinder is obtained choosing u = v − v∗ parallel to ξ . The radius of the basis of the
cylinder is then r := (R +|v|) tan θ and its maximal length is the diameter of the ball. Thus,
|BR ∩ Dθ,ξ (v)| � cd R rd−1, with cd depending only on |Sd−2|, that is,

∣∣BR ∩ Dθ,ξ (v)
∣∣ � cd R (R + |v|)d−1 tand−1 θ. (A.5)

We distinguish between two cases.
• First case: |v| > 2R. In such a case, for v∗ ∈ BR , one has 1

2 |v| � |v − v∗| � 3
2 |v| and

there exists Cγ > 0 such that |v − v∗|γ+2 � Cγ |v|γ+2. According to (A.3)–(A.4), it holds

∑
i, j

Ai, j [ f ](v) ξi ξ j � Cγ |v|γ+2 sin2 θ

(
1

2

in −

∫
BR∩Dθ,ξ (v)

f (v∗)dv∗
)

(A.6)
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where, according to (A.5), |BR ∩ Dθ,ξ (v)| � cd R
(

3
2 |v|

)d−1
tand−1 θ. With the notations

of (A.2), given δ = 1
4
in, we choose θ (depending on v) small enough so that

cd R

(
3

2
|v|
)d−1

tand−1 θ = η(δ), which entails
∫

BR∩Dθ,ξ (v)

f (v∗)dv∗ � 1

4

in,

according to (A.2) (notice that such a choice of θ is always possible up to increasing R).
Then, (A.6) yields

∑
i, j

Ai, j [ f ](v) ξi ξ j �
Cγ

4

in|v|γ+2 sin2 θ.

Notice that tan θ = 2
3|v|

(
η(δ)
cd R

) 1
d−1 , so that sin2 θ = CR,d |v|−2 cos2 θ for some explicit

CR,d depending only on d, R and ρin, Ein, H( fin). Therefore

∑
i, j

Ai, j [ f ](v) ξi ξ j �
Cγ

4
ρinCR,d |v|γ cos2 θ, |v| > 2R,

with cos2 θ > 1
2 since we choose θ small enough (up to having picked R larger). Thus,

there is K > 0 (depending on d, γ , ρin, Ein, H( fin)) such that

∑
i, j

Ai, j [ f ](v) ξi ξ j � K 〈v〉γ , ∀|v| > 2R.

• Second case: |v| < 2R. In such a case, arguing exactly as in [1, Prop. 1.3], we conclude
that

inf|v|<2R

∑
i, j

Ai, j [ f ](v) ξi ξ j = K̃ > 0

which of course implies the result with K0 = min(K , K̃ ). The details of this second case
are left to the reader and are readily adapted from the corresponding result in Alexandre et
al. [1]; Desvillettes, Villani [22]. ��
Remark A.4. From the above construction, the constant K0 depends on R (and therefore on

in, Ein) and on the construction of the mapping η in (A.2) so that K0 depends also on
H( fin).

The following property of the dissipation of entropy for Landau operator was observed in
Desvillettes [18,19]:

Proposition A.5. Let 0 � fin ∈ L1
2(Rd ) ∩ L log L(Rd ) be fixed as in Definition A.1. Then,

there is a positive constant C0(γ ) depending only on d, γ , ρin, Ein, H( fin) such that, for
all f ∈ Y0( fin),

∫
Rd

∣∣∣∇√ f (v)

∣∣∣2 〈v〉γ dv � C0(γ )
(
1 + D( f )

)
.

where D( f ) denotes the dissipation of entropy functional defined as

D( f ) = 1

2

∫
Rd ×Rd

|v − v∗|γ+2 f f∗ |�(v − v∗) (∇ log f − ∇ log f∗)|2 dvdv∗ � 0.
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In particular, since formally the entropy of solutions to the Landau equation is decreasing
according to

d

dt
H( f (t)) = −D( f (t)), t � 0,

one can prove that, for H-solutions f = f (t, v) to the Landau equation, it holds that

∫ T

0
D( f (t))dt � H( fin) T > 0,

and one deduces the following result from Desvillettes [18,19]:

Corollary A.6. If fin and f = f (t, v) define a solution to Eq. (1.1) in the sense of Definition
1.15 then

∫ T

0
dt
∫
Rd

∣∣∣∇
(
〈v〉 γ

2
√

f (t, v)
)∣∣∣2 dv � CT ( fin),

where CT ( fin) is an explicit positive constant depending only on T, d, γ , 
in, Ein and
H( fin).

Remark A.7. Notice that, since f ∈ L∞([0, T ]; L1(Rd )), the above can be reformulated in
the equivalent way as

∫ T

0
dt
∫
Rd

∣∣∣∇√ f (t, v)

∣∣∣2 〈v〉γ dv � CT ( fin)

for some CT ( fin) different from the previous one. It is in this form that the result is stated
in Desvillettes [18].

Finally, recall the a priori growth of moments of solutions to the Landau equation, referring
to Carrapatoso [15]; Carrapatoso et al. [16] for a proof in dimension d = 3. The general
case is following the same lines (see for instance Alonso et al. [7] for a proof in the case of
the Landau-Fermi-Dirac equation which is easily adapted to the Landau setting).

Proposition A.8. We consider d ∈ N, d � 3 and γ ∈ [−d, 0), and assume that fin and
f = f (t, v) define a solution to Eq. (1.1) in the sense of Definition 1.15. Assume that

fin ∈ L1
s (Rd ), s > 2,

then

ms( f (t)) � Cs (1 + t) t � 0

for some positive constant Cs depending on d, γ , s, ρin, Ein, H( fin). In particular,

sup
t∈[0,T ]

‖ f (t)‖L1
s

� Cs(1 + T ) T > 0.

We complement also the above with the following properties of the matrix A[h] and vector
b[h]. Notice that the result applies without any sign assumption on the mapping h : Rd → R.

Lemma A.9. Let d ∈ N, d � 3, −d � γ < −2. For any

q ∈
(

d

d + γ + 2
, ∞

)
, m > d

(
1 − 1

q

)
,
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there is Cm,d,γ,q > 0 depending only on m, d, γ, q such that

‖A[h]‖∞ � Cm,d,γ,q
∥∥〈·〉mh

∥∥
q . (A.7)

In the same way, if q ∈
(

d
d+γ+1 , ∞

)
,

‖b[h]‖∞ � C̃m,d,γ,q
∥∥〈·〉mh

∥∥
q , m > d

(
1 − 1

q

)
, (A.8)

for C̃m,d,γ,q > 0 depending only on m, d, γ, q.
Then, for

d

d + γ + 2
< q <

d

d + γ + 1
,

there exists Cd,γ,q > 0 depending only on d, γ , q such that

‖b[h]‖p∗
γ

� Cd,γ,q‖h‖q p∗
γ = qd

d − q(1 + γ + d)
. (A.9)

Finally, if q = d
d+γ+1 , for any p ∈ ( d

d+γ+2 , q) and any m > |γ + 1|, there exists
Cm,d,γ,p > 0 such that

‖b[h]‖ p̄∗
γ

� Cm,d,γ,p‖〈·〉mh‖q , p̄∗
γ = pd

d − p(1 + γ + d)
= pq

q − p
. (A.10)

In the case when q = d
d+γ+1 = 2, the estimate becomes, for any p ∈ ( 2d

d+2 , 2),

‖b[h]‖ 2p
2−p

� Cm,d,γ,p‖〈·〉mh‖2 (A.11)

Proof. Let us write, for a smooth h,

Is [h](v) =
∫
Rd

|v − w|s |h(w)|dw, s ∈ R,

and notice that |A[h]| � 2Iγ+2[h] and |b[h]| � (d − 1)Iγ+1[h]. We prove the result for
Iγ+2[h]. One has, for any R > 0

Iγ+2[h](v) �
∫
|v−w|�R

|v − w|γ+2|h(w)|dw +
∫
|v−w|>R

|v − w|γ+2|h(w)|dw

�
(∫

|v−w|�R
|v − w|q ′(γ+2)dw

) 1
q′

‖h‖q + Rγ+2‖h‖1,

where 1
q + 1

q ′ = 1 and q > d
2+d+γ

. One has then easily that there is C > 0 (depending on
γ, d and q) such that

Iγ+2[h](v) � C

(
R

γ+2+ d
q′ ‖h‖q + Rγ+2‖h‖1

)
,

which, after optimizing R (recall that γ +2 < 0 while γ +2+ d
q ′ > 0 since 1

q < 1+ γ+2
d ),

reads simply

|Iγ+2[h](v)| � C ‖h‖− γ+2
d q ′

q ‖h‖
(γ+2)q′+d

d
1 .
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Since (for some C depends on d, m, q) ‖h‖1 � C ‖h〈·〉m‖q for any m > d
q ′ , this yields

(A.7).
Now, the same exact estimate holds for |b[h]| � (d − 1)Iγ+1[h] under the assumption

q > d
d+γ+1 and this proves (A.8).

Let us now prove (A.9), recalling that d
d+γ+2 < q < d

d+γ+1 . According to Hardy-

Littlewood-Sobolev inequality (Proposition 3.1), for any q < d
d+γ+1 , a simple duality

argument shows that

‖ Iγ+1[h]‖r ′ � CHLS‖h‖q ,
1

r ′ = 1 − 1

r
= 1

q
− 1 + γ

d
− 1 = d − q(1 + γ + d)

qd
.

(A.12)
Notice that r ′ > 1 ⇐⇒ q > d

1+γ+2d which is satisfied since d
d+γ+2 > d

1+γ+2d . This
proves (A.9).
Strangely, the case q = d

1+γ+d is not covered by the above statements and deserves a

separate treatment. Indeed, Hardy-Littlewood-Sobolev inequality (A.12) for q = d
d+γ+1

would give r ′ = ∞, which is excluded by (3.1). We rather apply this with p < q = d
d+γ+1

and, as above, deduce that

‖ Iγ+1[h]‖r ′ � CHLS‖h‖p,
1

r ′ = d − p(1 + γ + d)

pd
= 1

p
− 1

q
.

Since 1 < p < q , we use a further interpolation ‖h‖p � ‖h‖θ
1 ‖h‖1−θ

q with θ = q−p
p(q−1)

and, with Young’s inequality

‖h‖p � ‖h‖1 + ‖h‖q � C‖〈·〉mh‖q , m > d

(
1 − 1

q

)
.

This concludes the proof of the Lemma. ��

We finally recall a result regarding the ε-Poincaré inequality in the (critical) case γ = −2
in any dimension established in Alonso et al. [5].

Proposition A.10. Let d ∈ N, d � 3. Assume fin be as in Definition A.1. Then there exists
C0 > 0 depending only on ‖ fin‖L1

2
and H( fin) such that, for any ε > 0,

∫
Rd

φ2c−2[g]dv � ε

∫
Rd

∣∣∣∇
(
〈v〉−1φ(v)

)∣∣∣2 dv

+C0 exp
(
ε
− s

s−2 ms(g)
s

s−2

) ∫
Rd

φ2〈v〉−2dv

holds true for any suitable nonnegative functions g ∈ Y0( fin) ∩ L1
s (Rd ) (s > 2) and φ.

Proof. We refer to Alonso et al. [5] for a full proof of the result in general dimension d � 3
which uses Lorentz spaces. We just explain the main steps of it, referring to Alonso et al. [5]
for details and to Bahouri et al. [10] for definition and properties of Lorentz spaces. As in
the proof of Proposition 1.7, eq. (3.14), we decompose, according to |v − v∗| � 〈v〉

2 or not,

∫
Rd×Rd

|v − v∗|−2g(v∗)φ2(v)dv = I1 + I2,
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with I1 � ‖g‖1‖ψ2‖1 , and I2 � Cd,γ

∫
Rd×Rd |v − v∗|−2ψ(v)2 F(v∗)dv∗dv , still using

the notations F(v) = 〈v〉2g(v), ψ(v) = 〈v〉−1φ(v). Then I2 � J1 + J2, with

J1 :=
∫
|v−v∗|>1

|v − v∗|−2 F(v∗)ψ2(v)dvdv∗ � ‖F‖L1‖ψ‖2
2,

and

J2 :=
∫
|v−v∗|�1

|v − v∗|−2 F(v∗)ψ2(v)dvdv∗ .

The term J2 is then further split, for R > 0, according to

F = F+
R + F−

R , F+
R = F1F>R, F−

R = F1F�R,

and

J±
2,R :=

∫
|v−v∗|�1

|v − v∗|−2 F±
R (v∗) ψ2(v)dvdv∗.

Then, J−
2,R � Cd R ‖ψ‖2

2, while, thanks to the use of Lorentz spaces,

J+
2,R � Cd‖F+

R ‖1 ‖ψ‖2

L
2d

d−2 ,2
� Cd‖F+

R ‖1 ‖∇ψ‖2
2.

Then, we end up with
∫
Rd

φ2c−2[g]dv � Cd,γ

(
‖F‖1‖ψ‖2

2 + R‖ψ‖2
2 + ‖F+

R ‖1 ‖∇ψ‖2
2

)
, ∀R > 0 .

In order to conclude the proposition, one needs to prove that ‖F+
R ‖1 is small as R is suf-

ficiently large. This comes from the observation that for, s > 2 and θs = 1 − 2
s and any

suitable function g ∈ L1
s ∩ L log L(Rd ),

‖〈·〉2g1 f >R‖1 � ‖〈·〉s g1g>R‖1−θs
1 ‖g1g>R‖θs

1 � ‖〈·〉s g‖1−θs
1

(‖g log g‖1

log(R)

)θs

.

We refer the reader to Alonso et al. [5] for more details. ��

Appendix B: Evolution of Weighted L p-Norms

We briefly explain here how the analysis of Sections 2 and 3 can be modified to allow the
appearance of weighted L p-norms. We recall the notations

Mk,p(t) :=
∫
Rd

f (t, v)p〈v〉kdv, Dk,p(t) :=
∫
Rd

∣∣∣∇
(
〈v〉 k

2 f
p
2 (t, v)

)∣∣∣2 dv

for k ∈ R and p ∈ (1, ∞). Let us dig directly into the technical lemma as follows:

Lemma B.1. Consider d ∈ N, d � 3 and γ ∈ [−d, 0), and assume that fin and f = f (t, v)
define a solution to Eq. (1.1) in the sense of Definition 1.15. Then, for all k ∈ R+ and
p ∈ (1, ∞),

d

dt
Mk,p(t) + 2K (p)Dk+γ,p(t) � K (p)(k + γ )2Mk+γ,p(t)
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+Ck,γ,p

2∑
i=0

∫
Rd

〈v〉k−i cγ+i [ f (t)](v) f p(t, v)dv, (B.1)

with (K0 being the constant appearing in Remark 1.13)

K (p) := p − 1

p
K0, Ck,γ,p := max

(
p − 1,

2k

γ + 1 + d
,

d2k2

(d − 1)(d + γ + 2)

)
.

Proof. We easily check that, for any k � 0,

1

p

d

dt

∫
Rd

f p(t, v)〈v〉kdv =
∫
Rd

〈v〉k f p−1(t, v)∇ · (A[ f ]∇ f − b[ f ] f ) dv

= −(p − 1)

∫
Rd

〈v〉k f p−2A[ f ]∇ f · ∇ f dv + (p − 1)

∫
Rd

〈v〉k f p−1b[ f ] · ∇ f dv

−k
∫
Rd

〈v〉k−2 f p−1 (A[ f ]∇ f ) · vdv + k
∫
Rd

〈v〉k−2 f pb[ f ] · v dv.

Arguing as in the proof of Proposition 3.3, we obtain that

(p − 1)

∫
Rd

〈v〉k f p−2A[ f ]∇ f · ∇ f dv � 4K0(p − 1)

p2

∫
Rd

〈v〉k+γ
∣∣∣∇( f

p
2 )

∣∣∣2 dv.

Moreover, writing

∇
(

〈v〉 k+γ
2 f

p
2

)
= 〈v〉 k+γ

2 ∇( f
p
2 ) + k + γ

2
v 〈v〉 k+γ

2 −2 f
p
2 ,

from which

〈v〉k+γ
∣∣∣∇( f

p
2 )

∣∣∣2 � 1

2

∣∣∣∣∇
(

〈v〉 k+γ
2 f

p
2

)∣∣∣∣
2

− 1

4
(k + γ )2〈v〉k+γ−2 f p, (B.2)

we observe that

(p − 1)

∫
Rd

〈v〉k f p−2A[ f ]∇ f · ∇ f dv � 2K0(p − 1)

p2

∫
Rd

∣∣∣∣∇
(

〈v〉 k+γ
2 f

p
2

)∣∣∣∣
2

dv

− K0(p − 1)(k + γ )2

p2

∫
Rd

〈v〉k+γ−2 f pdv.

Also, note that
∫
Rd

〈v〉k f p−1b[ f ] · ∇ f dv = − 1

p

∫
Rd

f p∇ ·
(
b[ f ]〈v〉k

)
dv

= − k

p

∫
Rd

〈v〉k−2 f pb[ f ] · v dv + 1

p

∫
Rd

〈v〉k f pcγ [ f ] dv.

Therefore,

d

dt
Mk,p(t) + 2K0(p − 1)

p
Dk+γ,p(t)

� (p − 1)

∫
Rd

〈v〉k f p cγ [ f ]dv + k
∫
Rd

〈v〉k−2 f p (b[ f ] · v) dv

+ K0(p − 1)(k + γ )2

p

∫
Rd

〈v〉k+γ−2 f pdv − kp
∫
Rd

〈v〉k−2 f p−1 (A[ f ]∇ f · v) dv.
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Let us investigate in more detail the latter term. Integration by parts shows that

−kp
∫
Rd

〈v〉k−2 f p−1 (A[ f ]∇ f ) · vdv = −k
∫
Rd

∇( f p) ·
(
A[ f ] 〈v〉k−2v

)
dv

= k
∫
Rd

f p ∇ ·
(
A[ f ] 〈v〉k−2v

)
dv .

Using the product rule

∇ ·
(
A[ f ] 〈v〉k−2v

)
= 〈v〉k−2 b[ f ] · v + Trace

(
A[ f ] · Dv

(
〈v〉k−2v

))
,

where Dv

(〈v〉k−2v
)

is the matrix with entries ∂vi

(〈v〉k−2v j
)
, i, j = 1, . . . , d , or more

compactly,

Dv

(〈v〉k−2v
) = 〈v〉k−4A(v),

where A(v) = 〈v〉2Id + (k − 2) v ⊗ v, v ∈ R
d , we obtain

d

dt
Mk,p(t) + 2K0(p − 1)

p
Dk+γ,p(t) � (p − 1)

∫
Rd

〈v〉k cγ [ f ](v) f pdv

+2k
∫
Rd

〈v〉k−2 f p (b[ f ] · v) dv + K0(p − 1)(k + γ )2

p

∫
Rd

〈v〉k+γ−2 f pdv

+k
∫
Rd

〈v〉k−4 f p Trace (A[ f ] · A(v)) dv. (B.3)

We denote by I1, I2, I3, I4 the various terms on the right-hand-side of (B.3) and control
each of them separately. We get

|I2| � 2k
∫
Rd

〈v〉k−1 f p(t, v) |b[ f (t)](v)|dv

� 2k(d − 1)

∫
R2d

〈v〉k−1 f p(t, v)|v − v∗|γ+1 f (t, v∗)dv∗dv , (B.4)

that is,

|I2| � 2k

γ + 1 + d

∫
Rd

〈v〉k−1 f p(t, v)cγ+1[ f (t)](v)dv.

Clearly, we also get

|I3| � K0(p − 1)(k + γ )2

p
Mk+γ,p(t).

For the term I4, one checks easily that, for any i, j ∈ {1, . . . , d},
∣∣Ai, j [ f ]∣∣ � | · |γ+2 ∗ f,

∣∣Ai, j (v)
∣∣ � k〈v〉2,

and

|I4| � d2k2
∫
R2d

〈v〉k−2 f p(t, v)|v − v∗|γ+2 f (t, v∗)dvdv∗.

Therefore,

|I4| � d2k2

(d − 1)(d + γ + 2)

∫
Rd

〈v〉k−2 f p(t, v)cγ+2[ f ](v)dv,

which proves the result thanks to (B.3). ��
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We now estimate the various terms∫
Rd

〈v〉k−i cγ+i [ f (t)](v) f p(t, v)dv, i = 0, 1, 2,

and observe that the less favourable estimate corresponds to the most singular case i = 0.

Lemma B.2. Consider d ∈ N. For any −d < γ < 0, p ∈ (1,∞), k ∈ R+, and suitable
functions f � 0 and h, the following estimate holds:

2∑
i=0

∫
Rd

〈v〉k−i cγ+i [ f ](v) |h(v)|pdv

� Cd,γ

∫
Rd

〈v〉k cγ [ f ](v)|h(v)|pdv + cd,γ

∫
Rd

〈v〉k |h(v)|pdv.

Here Cd,γ := 3 γ+d+2
γ+d , cd,γ := 3(d − 1) (γ + d + 2) ‖ f ‖L1

2
, and where

cγ [ f ] := (d − 1)(d + γ )

∫
|v−v∗|�1

|v − v∗|γ f (v∗)dv∗.

In the Coulomb case γ = −d, the estimate becomes

2∑
i=0

∫
Rd

〈v〉k−i cγ+i [ f ](v) |h(v)|pdv � cd

∫
Rd

〈v〉k f (v) |h(v)|pdv

+C̃d

∫
Rd

〈v〉k−1c1−d [ f ](v) |h(v)|pdv + c̃d

∫
Rd

〈v〉k−1|h(v)|pdv, (B.5)

for C̃d := 3(d − 1), c̃d := 3(d − 1) ‖ fin‖1.

Proof. For i = 0, 1, 2, one simply writes

cγ+i [ f ](v) = (d − 1) (γ + d + i)
∫
Rd

f (v∗)|v − v∗|γ+i dv∗,

and splits the above integral according to |v − v∗| > 1 and |v − v∗| � 1. Clearly,
∫
|v−v∗|�1

f (v∗)|v − v∗|γ+i dv∗ �
∫
|v−v∗|�1

f (v∗)|v − v∗|γ dv∗

� 1

(d − 1)(γ + d)
cγ [ f ],

whereas, given that γ < 0,
∫
|v−v∗|>1

f (v∗)|v − v∗|γ+i dv∗ �
∫
|v−v∗|>1

f (v∗)|v − v∗|i dv∗

� 〈v〉i
∫
Rd

f (v∗)〈v∗〉i dv∗,

since |v − v∗| � 〈v〉〈v∗〉. Recalling that i = 0, 1, 2,
∫
Rd

f (v∗)〈v∗〉i dv∗ �
∫
Rd

f (v∗)〈v∗〉2dv∗ = ‖ f ‖L1
2
.
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Thus,

cγ+i [ f ] � γ + d + i

γ + d
cγ [ f ] + (d − 1) (γ + d + i) 〈v〉i ‖ f ‖L1

2
,

and the result follows by defining Cd,γ and cd,γ as in the statement.
In the case γ = −d , the proof is almost identical and one simply needs to estimate the sum

2∑
i=1

∫
Rd

〈v〉k−i ci−d [ f ](v) |h(v)|pdv.

Then we observe that for i = 1, 2,
∫
|v−v∗|�1

f (v∗)|v − v∗|i−d dv∗ � c1−d [ f ], while

∫
|v−v∗|�1

f (v∗)|v − v∗|i−d dv∗ � ‖ f ‖1.

Therefore, ci−d [ f ] � (d − 1) i

(
c1−d [ f ] + ‖ f ‖1

)
, which gives (B.5). ��
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