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Abstract

In a companion article it was shown in a certain precise sense that, for any ther-
modynamical theory that respects the Kelvin–Planck second law, the Hahn–Banach
theorem immediately ensures the existence of a pair of continuous functions of
the local material state—a specific entropy (entropy per mass) and a thermody-
namic temperature—that together satisfy the Clausius–Duhem inequality for every
process. There was no requirement that the local states considered be states of
equilibrium. This article addresses questions about properties of the entropy and
thermodynamic temperature functions so obtained: To what extent do such tem-
perature functions provide a faithful reflection of “hotness”? In precisely which
Kelvin–Planck theories is such a temperature function essentially unique, and,
among those theories, for which is the entropy function also essentially unique?
What is a thermometer for a Kelvin–Planck theory, and, for the theory, what prop-
erties does the existence of a thermometer confer? In all of these questions, the
Hahn–Banach Theorem again plays a crucial role.
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1. Introduction

In a companion article [8] we showed in a certain precise sense that, for any
thermodynamical theory in which all processes comply with the Kelvin–Planck
Second Law of Thermodynamics, there must exist a pair of continuous functions
of the local material state—a specific entropy (entropy per mass) and a thermody-
namic temperature—that together satisfy the Clausius–Duhem inequality for every
process. That this is so is an immediate consequence of the Hahn–Banach Theorem.
For existence of these functions there is no reliance at all on the presence of special
processes, such as very slow reversible ones (for example, Carnot cycles).

In this article the situation will be different. Once again, the Hahn–Banach
Theorem will be the central tool,1 but this time in examining, for any given Kelvin–
Planck theory, properties of the Clausius–Duhem entropy-temperature pairs that
the theory admits. In almost every theorem contained here we show that, in sharp
contrast to the existence theorem, the presence of special processes within the
theory is not only sufficient to ensure that the temperature and entropy functions
have specific properties but also necessary.

The difference resides in the fact that there is an inverse relationship between the
supply of processes the theory contains and the supply of entropy-temperature pairs
that satisfy the Clausius–Duhem inequality for all such processes. The larger the
supply of processes, the smaller the set of Clausius–Duhem entropy-temperature
pairs, and vice-versa. Thus, if the set of entropy-temperature pairs for a given
Kelvin–Planck theory is to have a particular property (for example, essential unique-
ness), then the set of processes extant in the theory must be sufficiently large as to
ensure that the theory’s set of entropy-temperature pairs is suitably narrow. Stipulat-
ing the required breadth of the process supply will often amount to specifying that

1 The Hahn–Banach Theorem will usually exert itself in the guise of Lemma 3.9 or 3.10.
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it must contain an abundance of processes of a very particular kind (for example,
Carnot cycles).

The brilliant 19th century pioneers invoked an abundance of idealized reversible
Carnot cycles (traversing only equilibrium states) to deduce, almost simultaneously,
both the existence and the uniqueness of entropy and thermodynamic temperature
functions (defined on those states). It is understandable, then, that the classical
arguments might lead to a conflation of, on one hand, existence and uniqueness and,
on the other hand, necessary and sufficient conditions for each of these. Although
an abundance of Carnot cycles visiting equilibrium states might be sufficient, as
argued by the pioneers, for the existence of entropy and thermodynamic temperature
functions, the presence of those cycles is not necessary, as we showed in [8] (under
substantially weaker conditions than in [7]), nor is there a necessity to restrict the
domains of those functions to equilibrium states. Here, among other things, we will
develop far more fully ideas in [6] and [7] to the effect that particular properties of
the temperature and entropy functions (for example, uniqueness) actually require,
remarkably, the presence of something like those specific processes the pioneers
imagined.

1.1. How this Article is Structured

After providing a synopsis of [8] in Sect. 2, we examine in Sect. 3 the relation-
ship between temperature and hotness. In particular, for a Kelvin–Planck theory we
posit definitions, stated solely in terms of the processes extant within the theory, of
what it means for one local material state to be of the same hotness as another state
and for one to be hotter than another. We then show that these relations are precisely
reflected in the set of Clausius–Duhem temperature scales the theory admits. Not
only does each temperature scale reflect the hotness relation faithfully, but also if
one state has a higher temperature than another on each Clausius–Duhem tempera-
ture scale, then the set of processes in the theory must be sufficiently structured as
to establish that the first state is indeed hotter than the second. In this implication
the Hahn–Banach Theorem plays a crucial role.

Sections 4 and 5 are largely devoted to uniqueness questions. Uniqueness of
a Clausius–Duhem temperature scale for a Kelvin–Planck theory is taken up in
Sect. 4, where we show, among other things, that for such a scale to be essentially
unique, not only is it sufficient that the set of processes extant in the theory be
abundantly rich in Carnot cycles but also necessary. For a Kelvin–Planck theory
having an essentially unique Clausius–Duhem temperature scale, we ask in Sect. 5
about circumstances under which its companion Clausius–Duhem specific-entropy
function is also essentially unique. Among other things, we show that for essential
uniqueness of entropy on the entire state space domain, it is not only sufficient that
any two states be connected by a reversible process but also necessary. Here again,
the Hahn–Banach Theorem is crucial.

In Sect. 6 we take cognizance of the fact that two very different bodies—one
perhaps a metal rod and the other a liquid solution exhibiting chemical reactions
and diffusion, embraced within two very different Kelvin–Planck theories—can
exchange heat with each other. With this in mind, we study in Sect. 6 properties
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of a “conjoined” Kelvin–Planck theory that subsumes smaller distinct ones. Our
special focus is on conjunctions of separate Kelvin–Planck theories of two different
materials, wherein the first material can serve as a (suitably defined) thermometer
for the second. In that case, we study how the larger conjoined theory can impart to
the second Kelvin–Planck theory additional “hotter than” relations and uniqueness
properties that were not intrinsic to it.

Section 7 contains concluding remarks. With an eye toward clarifying and
softening distinctions that are sometimes drawn between “equilibrium” and “non-
equilibrium” thermodynamics, we review, among other things, what the theorems
in this article tell us about the (sometimes conflated) necessary and sufficient con-
ditions for the very separate questions of existence and uniqueness of Clausius–
Duhem entropy-temperature pairs.

2. Synopsis of Part I

A thermodynamical theory in [8] is an abstraction of just those features of a
material (or collection of materials) that bear upon statements of the Second Law
and, ultimately, upon statements of the Clausius–Duhem inequality. A particular
theory is indicated by a pair of sets, (�,P), with � denoting the theory’s state
space and P denoting the set of processes experienced by those material bodies
the theory is deemed to describe.

Elements of � are understood to represent the possible local states that might
be exhibited in bodies as they experience physical processes captured in P . The
state space will often take the form of a subset of R

n . In a theory of particular
gas, for example, the states might consist of pairs [ p, v] ∈ R

2, where p is the
local pressure and v is the local specific volume (the reciprocal of the density). In
a theory of a reacting mixture of n chemical species, the states might consist of
vectors [ c1, c2, . . . , cn, θ ] ∈ R

n+1, where ci is the local molar concentration of
the i th species and θ is the local temperature on some empirical temperature scale.
For reasons given in [8] we assume that � is a compact Hausdorff space.

A process in P is specified by a pair of objects, the change of condition
for the process, usually denoted �m, and the heating measure for the process,
usually denoted q. For the purposes of interpretation, imagine a body experiencing
a physical process that initiates at time ti and terminates at a final time t f . We begin
by indicating what we mean by the body’s condition at a given instant and then the
body’s change of condition over the course of the process.

At each instant t during the course of the process, the condition of the body,
mt , is a positive Borel measure on � with the following meaning: for each Borel
set � ⊂ �, mt (�) is the mass of that part of the body consisting of material in
local states residing in �. Note that mt (�) is the mass of the entire body at time
t . For the process, the change of condition is given by the signed Borel measure
�m := mt f − mti . From mass conservation it follows that �m(�) = 0.

During the course of the process the body experiencing it will exchange heat
with the body’s exterior. The heating measure q for the process is again a signed
Borel measure on � with the following interpretation: for each Borel set � ⊂ �,
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q(�) is the net amount of heat absorbed from the body’s exterior, over the course
of the entire process, by material which, at the time of absorption, is in states within
�. Note that q(�) is the net amount of heat absorbed by the body between the
inception of the process and its end.

A member of the process set P for the theory (�,P) is then identified with
an element of the form p:= (�m,q). We denote by M (�) the vector space of
regular signed measures on �, taken with its weak-star topology and by M ◦(�)

the linear subspace of M (�) consisting of all its members which, like �m, take
the value 0 on �; the topology ofM ◦(�) is the one it inherits as a subset ofM (�).

We hereafter regard P to be a subset of the vector space V (�) := M ◦(�) ⊕
M (�), taken with the product topology. By Cone (P) we mean the set of all non-
negative multiples of members of P . In the appendix of [8] we gave reasons to
presume that, in theories that describe natural physical processes, the closure of
Cone (P) should be convex. The discussion so far is summarized in the following
definition:

Definition 2.1. A thermodynamical theory consists of a (compact) Hausdorff set
�, called the state space of the theory, and a set P ⊂ V (�) such that

P̂ := cl (Cone (P)) (2.1)

is convex. Elements of P are the processes of the theory,

The Kelvin–Planck version of the Second Law asserts, in effect, that it is im-
possible in a cyclic process for the body experiencing the process to merely absorb
heat from its exterior; it must also emit heat to the exterior, in a manner that is
qualitatively different from the heat absorption.

We say that a thermodynamical theory (�,P) is a Kelvin–Planck theory if, in
a certain precise sense, it complies with the Kelvin–Planck requirement. We regard
a process p = (�m,q) in P to be cyclic if �m = 0 — that is, if the condition
of the body experiencing the process is the same at the process’s beginning and
end. By M+(�) we mean the the subset of M (�) consisting of measures that are
non-negative on every Borel set. By (0,M+(�)) we mean the set of all members
of V (�) of the form (0, ν), with ν ∈ M+(�). We take the Kelvin–Planck stricture
to require that P meet (0,M+(�)) at most in (0, 0); that is, if (0,q) ∈ P is a
cyclic process such that the heating measure q is positive on some Borel set in �,
then q should be negative on some other Borel set. In fact, for reasons explained
in [8], we also require a little more:

Definition 2.2. A Kelvin–Planck theory is a thermodynamical theory (�,P)

such that
P̂ ∩ (0, M+(�)) = (0, 0). (2.2)

Equation (2.2) amounts to a requirement that that no nonzero element of the
forbidden cone (0,M+(�)) is approximated by vectors of V (�) that point along
directions associated with members of P . The Hahn–Banach Theorem then leads
almost immediately to the existence, for a Kelvin–Planck theory, of continuous
specific-entropy and thermodynamic temperature functions of state that together
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comply with the Clausius–Duhem inequality for all processes the theory contains.
The version of the Hahn–Banach Theorem that we employ2 is given below.

Theorem 2.3. (Hahn–Banach) Let V be a Hausdorff locally convex topological
vector space, and let A and B be non-empty disjoint closed convex subsets of V ,
with B compact. There is a continuous linear function f : V → R and a number
γ ∈ R such that

f (a) < γ, ∀ a ∈ A

and
f (b) > γ, ∀ b ∈ B.

In particular, if A is a cone, then

f (a) ≤ 0, ∀ a ∈ A

and
f (b) > 0, ∀ b ∈ B.

Unlike classical arguments for the existence of continuous entropy and ther-
modynamic functions of state, the following theorem—the most important in this
two-part series—requires nothing in the way of special processes or the idea of equi-
librium states. The proof [7,8] follows from the Hahn–Banach Theorem directly.
In the theorem statement, R+ denotes the strictly positive real numbers.

Theorem 2.4. (Existence of Entropy and Thermodynamic Temperature) For a ther-
modynamical theory (�,P) the following are equivalent:

(i) (�,P) is a Kelvin–Planck theory.
(ii) There exist functions η ∈ C(�,R) and T ∈ C(�,R+) such that

∫
�

η d(�m) ≥
∫

�

dq

T
, ∀ (�m,q) ∈ P. (2.3)

Definition 2.5. (Entropy, Thermodynamic Temperature) Let (�,P) be a Kelvin–
Planck theory. An element (η, T ) of C(�,R) × C(�,R+) that satisfies (2.3) is a
Clausius–Duhem pair for the theory. A function T ∈ C(�,R+) is a Clausius–
Duhem temperature scale for the theory if there exists η ∈ C(�,R) such that
(η, T ) is a Clausius–Duhem pair. In that case, η(·) is a specific-entropy function for
the theory (corresponding to the Clausius–Duhem temperature scale T (·)). The set
of all Clausius–Duhem temperature scales for the Kelvin–Planck theory (�,P)

is denoted TC D(�,P) or merely TC D when the theory under consideration is
apparent.

Remark 2.6. It will be useful to record, for future use, an observation made in the
proof [8] of Theorem 2.4: if (η, T ) is a Clausius–Duhem pair for the Kelvin–Planck
theory (�,P)–that is, if it satisfies the inequality in (2.3) for all members of P
— then it also satisfies that inequality for all members of P̂ .

2 See Theorem 1.7 in [1], Theorem 21.12 in [2] or Corollary 14.4 in [9]



Arch. Rational Mech. Anal.          (2024) 248:43 Page 7 of 52    43 

Remark 2.7. (Reversible members of P̂) Note that if (�m,q) and −(�m,q)

are both members of P (or, more generally, of P̂) then for each Clausius–Duhem
pair (η, T ) we must actually have the equality∫

�

η d(�m) =
∫

�

dq

T
. (2.4)

Remark 2.8. (Essential uniqueness) It is not difficult to see that if, for a thermo-
dynamical theory, (η(·), T (·)) is a Clausius–Duhem pair then, for any choice of
α ∈ R+ and β ∈ R, (

1

α
η(·) + β, αT (·)

)

is also a Clausius–Duhem pair. In particular, if T (·) is a Clausius–Duhem tem-
perature scale for a thermodynamical theory, then so is any positive multiple of
T (·).

However, there might be still other Clausius–Duhem temperature scales that
are not of this kind. For this reason, we say that, for a thermodynamical the-
ory, a Clausius–Duhem temperature scale T (·) is essentially unique if every other
Clausius–Duhem temperature scale for the theory is a positive multiple of T (·).
Similarly, if η(·) is a Clausius–Duhem specific-entropy function corresponding to
a particular Clausius–Duhem temperature scale T (·), we say that η(·) is essentially
unique if any other Clausius–Duhem entropy scale corresponding to T (·) differs
from η(·) by at most a constant.

Among other things, we will take up uniqueness questions in the remainder of
this article.

3. Hotness and Its Reflection in Thermodynamic Temperature Scales

Theorem 2.4 asserts the equivalence of a version of the Kelvin–Planck Second
Law and the existence of functions-of-state pairs, consisting of a specific entropy
and a thermodynamic temperature, which together satisfy the Clausius–Duhem
inequality for all processes the theory contains. Note, however, that as yet there
has been no notion of “hotness” posited for a particular state (as distinct from its
temperature), nor has there been posited a meaning for the idea that one state is
“hotter than” another.

Yet, hotness and hotter than are notions generally regarded to be inextricable
from thermodynamics itself. Indeed, Clausius’s formulation of the Second Law,
unlike the Kelvin–Planck formulation, takes “hotter than” as a primitive idea: Heat
can never pass from a colder to a warmer body without some other change, con-
nected therewith, occurring at the same time [3,10].

Temperature is of course supposed to provide a faithful reflection of hotness
(the more fundamental notion), and so it should be with the Clausius–Duhem tem-
perature scales derived from the Kelvin–Planck Second Law. To determine whether
this is indeed the case, it will be necessary to first posit for a Kelvin–Planck theory
(�,P) means by which two states in � can be judged to be of the same hotness
or by which one can be judged hotter than the other. We take the view that, to the
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extent that a Kelvin–Planck theory (�,P) can be deemed self-contained, such
judgments should derive from examination of the processes described by P (or of
the elements in its extension P̂). This view will broaden somewhat in Sect. 6 when
we consider conjoined thermodynamical theories and the idea of a thermometer.

Remark 3.1. (Clausius–Duhem vs. Clausius temperature scales) In the next few
sections we will examine the relationship between hotness and its reflection in
Clausius–Duhem temperature scales. Similar questions were addressed in [6],
where our concern was with what we called Clausius temperature scales. A Clau-
sius temperature scale is one that satisfies the Clausius inequality, which is the
Clausius–Duhem inequality (2.3) restricted to cyclic processes. In that case, the
left side of (2.3) reduces to zero (�m = 0). Neither the entropy nor the change of
condition plays a role.

For this reason, the set of Clausius temperature scales can, for a Kelvin–Planck
theory, be different from its set of Clausius–Duhem temperature scales (Definition
2.5). The delicate relationship between the two sets is discussed in Appendix D.
Although theorems in the coming subsections resemble some in [6] about Clausius
scales, it should be kept in mind that here they are about sets of thermodynamic
temperature scales different from those in [6].

3.1. Hotness as Revealed by Processes

In deciding for a Kelvin–Planck theory (�,P) the relative hotnesses of two
states in � we will rely heavily on the cyclic processes contained in P or, more
generally, on elements of the form (0,q) in P̂ . This is because, after the cycle,
the condition of the body suffering the process is left unchanged and, as a result,
the relationship between heat and work is especially simple. This is explained in
the following remark.

Remark 3.2. Although the First Law of Thermodynamics plays no formal role here,
one aspect of it will help guide our consideration of hotness. If, in a thermodynam-
ical theory (�,P), (�m,q) is a process, then q(�) is the net amount of heat
absorbed by the body experiencing the process over the entire course of the process.
If the process is cyclic (that is, if �m = 0), then the First Law indicates that the
work done by that body during the process is identical to the net heat received,
q(�). Thus, if q(�) is positive then the body does work. If q(�) = 0 then the
body does no work, nor is any work done on it.

The picture usually invoked for a cyclic process is that of a device (for example,
an engine or a refrigerator) in which there are nontrivial temporal variations in the
condition of the body suffering the process, with its final condition restored to what
it was at the beginning. This will be the cyclic-process picture that we will often
have in mind.

However, there is another one, more closely connected with common physical
experience, that will help motivate the mathematical expression of heat transfer
from hot to cold. This other picture is that of a body in a steady condition, such
as the one envisioned in time-invariant solutions of the familiar heat conduction
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equation, with heat flux at the body’s boundary. Because there is no change of
condition over time, �m = 0 so that over any fixed time interval the process is, in
our sense, cyclic.

Example 3.3. (A Simple Steady Heat Transfer Process) Imagine a very slim cylin-
drical tube filled with a sample of the material under consideration, a material
having state space �. The tube is insulated along its extent but uninsulated at its
ends. The two ends are immersed in different environments that ensure the per-
manent and laterally uniform presence of state σ ′ at one end and state σ at the
other. In the picture envisioned, the sample exhibits no change over time (i.e, the
sample’s condition m ∈ M+(�) is time-invariant), with steady heat inflow at the
σ ′ end and steady heat outflow at the σ end, the rates of heat flow at both ends
being identical. Because the sample has a steady condition and there is no net heat
receipt, the sample experiences no work.

In the context of this picture we can associate, with a fixed time interval, a cyclic
process (�m,q) ∈ V (�), with �m = 0 and q = αδσ ′ − αδσ , where δσ ′ and
δσ are Dirac measures in M (�) concentrated at σ ′ and σ . The positive number α

is the amount of heat absorbed at the σ ′ end and emitted at the σ end during the
stipulated time interval. Note that q(�) = 0, which is consistent with the absence
of work.

Remark 3.4. The process considered in Example 3.3 is an idealized one, for it
requires, among other things, means to maintain material at the tube ends in per-
manent and transversely uniform states σ ′ and σ , and without any temporal change
in the condition of the material along the tube’s extent. Although, for a thermody-
namical theory (�,P), such a process might not actually be represented among
members of P (the true processes), the idealization might well be a member of
P̂ := cl (Cone (P)). That is, if (0, α(δσ ′ −δσ )) is not among the true processes, it
might be approximated arbitrarily closely by true processes (or multiples of them).
In such a case, the presence in Cone (P) of those approximations would give the
same sense of passage of heat from σ ′ to σ as would the idealized example.

To the extent that the direction of heat transfer in a workless cyclic process
should guide our conception of relative hotness in a theory (�,P), the presence
in P (or P̂) of the process in Example 3.3 would compel us to say that state σ is
not hotter than state σ ′. However, we refrain from asserting that σ ′ is hotter than σ :
In view of Remark 3.4, it might happen that P̂ also contains a (reverse) element
of the form (0, q̄), with q̄ = αδσ − αδσ ′ . (See Remark 3.6 below.) In fact, such
a possibility provides a basis for asserting that two different states are of the same
hotness.

Definition 3.5. For a thermodynamical theory (�,P), two states σ ∈ � and
σ ′ ∈ � are of the same hotness (denoted σ ∼ σ ′) if both (0, δσ − δσ ′) and
(0, δσ ′ − δσ ) are members of P̂ . The equivalence relation ∼ induces a partition of
� into equivalence classes called the hotness levels of the thermodynamical theory
(�,P). We denote by H the set of hotness levels induced in � by P , and we
give H the quotient topology it inherits from �.
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Remark 3.6. There is no requirement in Definition 3.5 that (0, δσ −δσ ′) and (0, δσ ′−
δσ ) be members of P , corresponding to the true processes, only that they be
well-approximated by positive multiples of P’s members. Such approximations
might arise if certain members of P correspond to mathematical encodings of
physical processes closely resembling the one described in Example 3.3, having
small departures from σ ′ and σ at the two cylinder ends, some giving rise to heat
flow in one direction and others inducing heat flow in the opposite direction.

Remark 3.7. (A Dynamical Variant of Example 3.3) The heat transfer process de-
scribed in Example 3.3 was a simple toy one in which the body suffering the process
was in a steady condition (although not in what is usually regarded as a thermody-
namic equilibrium). The example was intended to provide motivation for the idea,
given in Definition 3.5, that two states are of the same hotness. Lest it be thought
that an element of the form (0, α(δσ ′ − δσ )), in particular with �m = 0, can arise
in P̂ only from consideration of physical processes having a temporally unchang-
ing condition, we provide in Appendix A a different and more physically robust
example in which such steadiness is never present.

The following theorem indicates that, for a Kelvin–Planck theory (�,P), not
only is it true that two states of the same hotness have the same value on each
Clausius–Duhem temperature scale but also that if they are not distinguished by
any such scale, then P̂ must contain the elements stipulated in Definition 3.5. For
this, the Hahn–Banach Theorem will play a central role.

Theorem 3.8. Let σ ∈ � and σ ′ ∈ � be two states of the Kelvin–Planck theory
(�,P). The following are equivalent:

(i) σ and σ ′ are of the same hotness.
(ii) T (σ ) = T (σ ′) for every Clausius–Duhem temperature scale T ∈ TC D.

Two lemmas will facilitate the proof that (i i) implies (i). M 1+(�) denotes the
set of m ∈ M+(�) such that m(�) = 1.

Lemma 3.9. Let (�,P) be a Kelvin–Planck theory, let (v,w) be an element of
V (�), and let K (v,w) be the convex hull of (v,w) ∪ (0,M 1+(�)); that is, let

K (v,w) := {λ(v,w) + (1 − λ)(0,u) : λ ∈ [0, 1],u ∈ M 1+(�)}. (3.1)

If K (v,w) is disjoint from P̂ then there is for the theory a Clausius–Duhem pair
(η, T ) such that ∫

�

η dv −
∫

�

dw

T
< 0. (3.2)

Proof. Because the sets {(v,w)} and (0M 1+(�)) are both convex and compact,
the convex hull of their union, K (v,w), is also convex and compact ([2], §19.5).
Moreover, by hypothesisK (v,w) is disjoint from P̂ . To get the desired result, we
need only repeat the Hahn–Banach separation argument in the proof [8] of Theorem
2.4, (i) ⇒ (i i), with K (v,w) replacing (0,M 1+(�)). ��
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Lemma 3.10. Let (�,P) be a Kelvin–Planck theory for which (η ◦, T ◦) is a
Clausius–Duhem pair, and let (v,w) ∈ V (�) be such that

∫
�

η ◦ dv −
∫

�

dw

T ◦ = 0. (3.3)

If (v,w) is not a member of P̂ , then there is another Clausius–Duhem pair (η, T )

such that ∫
�

η dv −
∫

�

dw

T
< 0. (3.4)

Proof. We first show that K (v,w) intersects P̂ at most in (v,w). Note that each
element (v∗,w∗) in K (v,w) is of the form

(v∗,w∗) = λ(v,w) + (0, [1 − λ]u) (3.5)

with λ ∈ [0, 1] and u ∈ M 1+(�). For λ < 1, it follows from (3.3), (3.5), the
positivity of u, and the positivity of T ◦ that

∫
�

η ◦ dv∗ −
∫

�

dw∗

T ◦ < 0, ∀ (v∗,w∗) ∈ K (v,w). (3.6)

Because (η ◦, T ◦) is a Clausius–Duhem pair for (�,P), (3.6) indicates that no
member of K (v,w) can be a member of P̂ , except perhaps for (v,w) itself (that
is, corresponding to λ = 1). Thus if, as in the hypothesis, (v,w) is not a member
of P̂ , then K (v,w) and P̂ are disjoint. In this case, Lemma 3.9 ensures the
existence of a Clausius–Duhem pair (η, T ) such that the (strict) inequality (3.4) is
satisfied. ��
Proof of Theorem 3.8. First we will show that (i i) implies (i). Suppose, then, that
σ and σ ′ are not distinguished by any Clausius–Duhem temperature scale. We want
to show that both (0, δσ − δσ ′) and (0, δσ ′ − δσ ) are members of P̂ . Let (η ◦, T ◦)
be a Clausius–Duhem pair for (�,P), and let (v,w) = (0, δσ − δσ ′), Note that

∫
�

η ◦ dv −
∫

�

dw

T ◦ = 1

T ◦(σ ′)
− 1

T ◦(σ )
= 0. (3.7)

Now suppose that (v,w) = (0, δσ − δσ ′) is not a member of P̂ . From Lemma
3.10 it follows that there is another Clausius–Duhem pair (η, T ) such that

∫
�

η dv −
∫

�

dw

T
= 1

T (σ ′)
− 1

T (σ )
< 0. (3.8)

This, however, contradicts the supposition that no Clausius–Duhem temperature
scale distinguishes σ from σ ′. The proof that (0, δσ ′ − δσ ) is a member of P̂ is
similar.

To prove that (i) implies (i i) we suppose that both (0, δσ ′ −δσ ) and (0, δσ −δσ ′)
are members of P̂ . From Remark 2.7 it follows that, for every Clausius–Duhem
pair, the equality (2.4) obtains, with (�m,q) taken to be (0, δσ − δσ ′). From this
it follows that T (σ ) = T (σ ′) for all T ∈ TC D . ��
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Because, for a particular Clausius–Duhem temperature scale, all states in a
hotness level have the same temperature, it makes sense to speak of the “temperature
of a hotness level” relative to that scale. In this sense, Theorem 3.8 enables us to
think about temperature as a function of hotness rather than as a function of state.

Definition 3.11. Let T : � → R+ be a Clausius–Duhem temperature scale for a
Kelvin–Planck theory with hotness levels H . By T∗ : H → R+ we mean the
Clausius–Duhem temperature scale onH induced by T the following way: for
h ∈ H let σ ∈ � be any member of h, so then;

T∗(h) := T (σ ). (3.9)

The set of all Clausius–Duhem temperature scales induced on H by members of
TC D will be denoted by TC D∗.

Remark 3.12. Before closing this sub-section, we provide for a Kelvin–Planck the-
ory (�,P) a few facts, which, among others, were proved (in a slightly different
setting) as Lemma 6.3 in [6]:

(i) Every T∗ ∈ TC D∗ is continuous.
(ii) H is compact and Hausdorff.

(iii) Every hotness level, viewed as a subset of �, is compact.

3.2. A “Hotter Than” Relation and Its Reflection in Clausius–Duhem
Temperature Scales

In this section we will introduce for a Kelvin–Planck theory (�,P) a way of
making precise the idea that one hotness level is “hotter than” a different one.

We begin by defining a passive heat transfer from one hotness level to another.
In physical terms, this is a cyclic process, perhaps resembling the one in Example
3.3, in which there is no work and in which heat is absorbed only by material
in states of identical hotness and is emitted, in equal amount, only by material in
states having a different common hotness. By the support of a measure ν ∈ M+(�),
denoted supp ν, we mean the complement in � of the largest open set of ν-measure
zero.

Definition 3.13. In a thermodynamical theory (�,P), a passive heat transfer
from hotness level h to hotness level h′ is an element (�m,q) of P̂ such that
�m = 0 and

q = μ − μ′, (3.10)

where μ and μ′ are members of M+(�) such that

supp μ ⊂ h, supp μ′ ⊂ h′, μ(h) = μ′(h′) > 0. (3.11)

To motivate our definition3 of hotter than, we let (�,P) be a Kelvin–Planck
theory with distinct hotness levels h′ and h. Consider an inventor who believes that,

3 In [6] there were four subtly different notions of “hotter than,” each with different conse-
quences. To the extent they can be compared, Definition 3.14, while different in appearance,
is closest in spirit to “hotter than in the second sense” in [6].
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through ingenious design, the set of processes indicated in P can be expanded to
a larger set that includes a hitherto unknown passive heat transfer from h to h′. We
say that h′ is hotter than h if no such expansion is possible without violating the
Kelvin–Planck Second Law.

Definition 3.14. Let (�,P) be a Kelvin–Planck theory with hotness levels h′ and
h. Then h′ is hotter than h (denoted h′ � h) if h′ �= h and if a thermodynamical
theory (�,P†) violates the Kelvin–Planck Second Law—that is, (�,P †) is not a
Kelvin–Planck theory—whenever P̂ † contains P and also a passive heat transfer
from h to h′.

The preceding definition makes no mention of temperature. The following theo-
rem asserts, for a Kelvin–Planck theory with hotness levels h′ and h, that h′ is hotter
than h in the sense of Definition 3.14 precisely when h′ has a higher temperature
than h on every Clausius–Duhem temperature scale.

Theorem 3.15. Let (�,P) be a Kelvin–Planck theory, and let TC D∗ be its set of
Clausius–Duhem temperature scales (onH ). If h′ and h are distinct hotness levels,
the following are equivalent:

(i) h′ is hotter than h.
(ii) T∗(h′) > T∗(h), ∀T∗ ∈ TC D∗.

Proof. To show the equivalence of (i) and (ii) we will prove the equivalence of their
negations:

(i)′ h′ is not hotter than h.
(i i)′ For (�,P) there is a Clausius–Duhem temperature scale T̄∗(·) on H
such that T̄∗(h′) ≤ T̄∗(h).

To prove that (i)′ implies (i i)′ we first note that (i)′ requires the existence of a
Kelvin–Planck theory (�,P †) in which P̂ † contains P and also a passive heat
transfer from h to h′, sayp† = (0, μ−μ′), where μ and μ′ are measures inM+(�)

that satisfy (3.11). From Theorem 2.4 and Remark 2.6 there is a Clausius–Duhem
pair (η̄, T̄ ) for (�,P †) such that

∫
�

η̄ dv ≥
∫

�

dw

T̄
, ∀ (v,w) ∈ P̂†. (3.12)

In particular, the inequality in (3.12) obtains for all members of P̂ , so (η̄, T̄ ) is
also a Clausius–Duhem pair for the original Kelvin–Planck theory (�,P). Now
let T̄∗(·) be the (�,P)-Clausius–Duhem temperature scale onH induced by T̄ (·).
Because p† is a member of P̂†, (3.12) requires that

0 ≥
∫

�

d(μ − μ′)
T̄

= μ(h)

T̄∗(h)
− μ(h′)

T̄∗(h′)
= μ(h)

(
1

T̄∗(h)
− 1)

T̄∗(h′)

)
. (3.13)

This in turn requires that T̄∗(h′) ≤ T̄∗(h).
To show that (i i)′ implies (i)′, we will begin by supposing that (η̄(·), T̄ (·)) is,

for (�,P), a Clausius–Duhem pair on � that gives rise to the temperature scale
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T̄∗(·) on H posited in (ii)′. Moreover, we will let p† = (0, μ − μ′), where μ and
μ′ are members of M+(�) satisfying (3.11). Let

P† :=
{
(�m,q) ∈ V (�) :

∫
�

η̄ d �m ≥
∫

�

dq

T̄

}
. (3.14)

Then (�,P†) is a Kelvin–Planck theory, with P̂† containing both P and p†.
From this, (i)′ follows. ��

The following is a corollary of Theorem 3.15:

Corollary 3.16. For a Kelvin–Planck theory with hotness levelsH , the hotter than
relation � gives a strict partial order on H .

Proof. Antisymmetry and transitivity are consequences of (ii) in Theorem 3.15. ��

Of course, it might happen that, for a particular Kelvin–Planck theory, H is
totally ordered by �.

Remark 3.17. (Totally ordered hotness levels) It is not generally true that the el-
ements of a set endowed with a total order can be numbered (with real num-
bers) in such a way as to reflect that order faithfully. A contrived counter-example
with a thermodynamic flavor is given in [6]. However, an argument along the
lines of the proof of Theorem 8.3 in [6] gives the following information: If H is
the set of hotness levels for a Kelvin–Planck theory and if H is totally ordered
by �, then H is homeomorphic and order-similar to a subset of the real line.
In fact, every T∗ ∈ TC D∗ reflects the order precisely and provides a homeomor-
phism between H and T∗(H ). If � is connected, then H is homeomorphic and
order-similar to a closed and bounded interval of the real line.

For a Kelvin–Planck theory (�,P) the ordering of the hotness levels in � by
“�” can be adapted in an obvious way to make sense of the idea that one state in
� is hotter than another.

Definition 3.18. Let (�,P) be a Kelvin–Planck theory, and let σ ′ and σ be mem-
bers of �. Then state σ ′ is hotter than state σ , denoted σ ′ � σ , if the hotness
level containing σ ′ is hotter than the hotness level containing σ .

The following is an easy corollary of Theorem 3.15.

Corollary 3.19. Let (�,P) be a Kelvin–Planck theory, and let TC D be its set
of Clausius–Duhem temperature scales (on �). If σ ′ and σ are states in �, the
following are equivalent:

(i) σ ′ is hotter than σ .
(ii) T (σ ′) > T (σ ), ∀T ∈ TC D.
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3.3. Remarks on Variants of the “Hotter Than” Relation

To the extent that it is precisely reflected in all Clausius–Duhem tempera-
ture scales for a Kelvin–Planck theory (and because it resonates with the Clausius
statement of the Second Law), the definition of hotter than (�) in the preceding
subsection is an especially satisfying one.

There is, however, a weaker but more tangible notion of hotter than that can
sometimes give information when � does not, in particular when two hotness levels
are not �-comparable. Although the context is different, a very similar analog of this
weaker notion is discussed extensively in [6],4 so only a few remarks are provided
here.

Definition 3.20. Let (�,P) be a Kelvin–Planck theory with hotness levels h′ and
h. Then h′ is weakly hotter than h (denoted h′

w� h) if h′ �= h and P̂ contains a
member (0,q) with q of the form

q = μ′ − μ + ν, (3.15)

where μ′, μ, and ν are members of M+(�) such that

supp μ′ ⊂ h′, supp μ ⊂ h, μ′(h′) = μ(h′) > 0. (3.16)

(Here ν can be the zero measure.)

Viewed as a process, (0,q) is a cyclic one in which, over the course of the
process, all heat emitted from the body suffering the process emanates from material
of hotness h and in which there is at least as much heat absorbed by material of
hotness h′. The work done by the body suffering the process, q(�) = ν(�), is not
negative. (If ν = 0 and (0,q) is a member of P̂ then the process is a passive heat
transfer from h′ to h, and no work is done.)

Proof of the next theorem is essentially the one given in [6].

Theorem 3.21. Let (�,P) be a Kelvin–Planck theory, and let TC D∗ be its set of
Clausius–Duhem temperature scales (onH ). If h′ and h are distinct hotness levels,
the following are equivalent:

(i) h′ is weakly hotter than h.
(ii) T∗(h′) ≥ T∗(h), ∀T∗ ∈ TC D∗.

Remark 3.22. When h′ and h constitute a fixed pair of hotness levels with h′
w� h,

there must be at least one Clausius–Duhem temperature scale T̄∗(·) on H such
that T̄∗(h′) > T̄∗(h), for otherwise the two hotness levels would be identical (The-
orem 3.8). In fact, the set of all members of TC D∗ that distinguish between h′
and h is dense in TC D∗ (in the sup-norm topology): For if T∗(·) ∈ TC D∗ is such
that T∗(h′) = T∗(h) then, by choosing ε > 0 sufficiently small, a distinguishing

4 This weaker notion of hotter than corresponds to “hotter than in the first sense” (1�) in
[6].
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Clausius–Duhem temperature scale T∗(·) + εT̄∗(·) can be made to lie any given
neighborhood of T∗(·).

This, however, leaves open the question of whether there is a single Clausius–
Duhem temperature scale T ◦∗ (·) such that T ◦∗ (h′) > T ◦∗ (h) for every pair of hotness
levels with h′

w� h. Such a temperature scale will indeed exist so long as � has a
countable base of open sets, in particular if it is a metric space [6].

Remark 3.23. (An important consequence of Theorems 3.15 and 3.21 taken to-
gether) Consider a Kelvin–Planck theory (�,P) with Clausius–Duhem temper-
ature scales TC D∗. Moreover, suppose that h′ and h are hotness levels such that
T∗(h′) > T∗(h) for all T∗(·) in TC D∗. Then Theorem 3.15 prohibits the existence
of a passive heat transfer from h to h′, while Theorem 3.21 requires the existence in
P̂ either a passive heat transfer from h′ to h or, more generally, a member (0,q)

of the form given by equations (3.15) and (3.16) (roughly, a cyclic-process transfer
of heat from h′ to h in which the body experiencing the process has no net work
done on it).

Remark 3.24. If, in Definition 3.20, q can be chosen such that ν �= 0, then we
say that h′ is strongly hotter than h (denoted h′

s� h).5 In this case, h′
s� h

implies that T∗(h′) > T∗(h) for all T∗ ∈ TC D∗. The converse, however, is not
generally true: Even when h′ has a higher temperature than h on every Clausius–
Duhem temperature scale, h′ and h might not be s�-comparable. Nevertheless,
they will be �-comparable by virtue of Theorem 3.15. (See Appendix D, Example
D.1, in which there are only two states.) In any case, we have the implications
h′

s� h ⇒ h′ � h ⇒ h′
w� h.

4. Thermodynamic Temperature Scale Uniqueness in Kelvin–Planck
Theories

In this section our interest is in the precise connection between the supply
of processes a Kelvin–Planck theory contains and the essential uniqueness of a
Clausius–Duhem temperature scale for the theory, first on the entire state space and
then on sub-domains of it. Recall from Remark 2.8 that a Kelvin–Planck theory is
said to have an essentially unique Clausius–Duhem temperature scale if every such
scale for the theory is a positive multiple of some fixed one.

Classical arguments appearing in standard textbooks indicate that, if a ther-
modynamical theory is suitably well endowed with Carnot cycles, then essential
uniqueness of a thermodynamic temperature scale is ensured. In the context of
Kelvin–Planck theories, we will prove not only this but also the converse: Essential
uniqueness of a Clausius–Duhem temperature scale for a Kelvin–Planck theory
(�,P) requires that P̂ be suitably rich in what we shall call Carnot elements.
Here again the proof relies on the Hahn–Banach Theorem in the form of Lemma
3.10.

5 Relation s� is the analog of 3� in [6].
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The following definition, already implicit in much that has already been said,
will enable us to include in our discussion special “idealized processes” that, al-
though not among the actual processes represented in P , might nevertheless be
members of P̂ , in which case they are well-approximated by the actual processes
(or by positive multiples of them).

Definition 4.1. A reversible element of a thermodynamical theory (�,P) is a
member of P̂ such that its negative is also a member of P̂ . An irreversible
element is a member of P̂ that is not reversible.6 A cyclic element of (�,P) is
a member of P̂ of the form (0,q).

Remark 4.2. In classical thermodynamics a reversible process is generally regarded
to be one for which there is an associated “path” that can be reversed in every detail
along the path. In Definition 4.1 there is no such insistence on detailed path reversal;
there is only the requirement that both (�m,q) and its negative be members of
P̂ .

Definition 4.3. Let (�,P) be a thermodynamical theory. ACarnot element of the
theory is a reversible cyclic element (0,q) ∈ P̂ , with q having a representation
of the following kind: There are hotness levels h′ and h such that

q = μ′ − μ, (4.1)

where μ′ and μ are non-zero measures in M+(�) satisfying

supp μ′ ⊂ h′ and supp μ ⊂ h. (4.2)

In this case, the Carnot element operates between hotness levels h′ and h. In the
special case that q = c′δσ ′ − cδσ where c′ and c are positive constants and σ ′ and
σ are members of � we say that the Carnot element operates between states σ ′
and σ .

Remark 4.4. Regarded in terms of the usual textbook picture, a Carnot element op-
erating between states σ ′ and σ can be thought of as encoding the limit of extremely
narrow Carnot cycles having two minuscule isothermal segments centered on σ ′
and σ .

4.1. Essential Uniqueness of a Thermodynamic Temperature Scale: The
Inexorable Role of Carnot Elements

In standard textbook arguments, the (tacitly assumed) presence of a large supply
of Carnot cycles ensures not only the existence of a thermodynamic temperature
scale but also its essential uniqueness. With respect to uniqueness, Theorem 4.57

6 In particular, an irreversible process is a member of P that is not a reversible element
of the theory.

7 This theorem resembles Theorem 9.1 in [6], but, in the broader setting of this article,
a Clausius–Duhem temperature scale has a meaning somewhat different from a Clausius
temperature scale in [6]. See Appendix D.
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also asserts the converse: For a Kelvin–Planck theory (�,P) to have an essentially
unique Clausius–Duhem temperature scale on �, it is necessary that the theory be
so rich in Carnot elements that there is at least one operating between each pair
of hotness levels. For proof of this converse, the Hahn–Banach theorem plays a
critical role, again in the guise of Lemma 3.10.

Theorem 4.5. Let (�,P) be a Kelvin–Planck theory with hotness levels H , and
let T (·) be a Clausius–Duhem temperature scale on �. The following are equiva-
lent:

(i) Every Clausius–Duhem temperature scale on � is a positive multiple of T (·).
(ii) If q is a member of M (�) that satisfies∫

�

dq

T
= 0 (4.3)

then (0,q) is a member of P̂ .
(iii) For each pair of hotness levels h′ ∈ H and h ∈ H there is a Carnot element

of (�,P) operating between h′ and h.
(iv) For each pair of states σ ′ ∈ � and σ ∈ � there is a Carnot element of (�,P)

operating between them, having the form (0,q) with

q = c′ δσ ′ − c δσ and
c′

c
= T (σ ′)

T (σ )
. (4.4)

Remark 4.6. (Existence vs. Uniqueness, 1) In the companion article [8], it was
shown that for any Kelvin–Planck theory there invariably exists a pair of continuous
functions on the state space, a specific entropy and a thermodynamic temperature,
that complies with the Clausius–Duhem inequality for all processes the theory
contains. The existence of such a pair followed directly from the Hahn–Banach
Theorem and did not require the presence in the theory of special processes such
as Carnot cycles or, more generally, reversible processes.

However, for the essential uniqueness of the thermodynamic temperature func-
tion, the equivalence of (i) and (iv) in Theorem 4.5 indicates that every state should
be “visited” by a Carnot cycle, in particular by a reversible process. Some readers
might infer from this that, for the essential uniqueness of a thermodynamic tem-
perature scale for given Kelvin–Planck theory, every member of that theory’s state
space should, in some sense, be an “equilibrium” state. This is discussed further in
Sect. 7.

Proof of Theorem 4.5. We will first show that (i) − (i i i) are equivalent, and then
we will show that (iv) is equivalent to these.

Proof that (i) implies (i i) is a straightforward application of Lemma 3.10. To
prove that (i i) implies (i i i), let T∗(·) be the temperature scale on H induced by
T (·), and let h′ and h be hotness levels. Furthermore, let q be a measure8 in M (�)

of the form
q = μ′ − μ, (4.5)

8 An example is given by (4.4), where σ ′ and σ are states in h′ and h.
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where μ′ and μ are nonzero measures in M+(�) having support in h′ and h
respectively and satisfying the equation

μ(h′)
μ(h)

= T∗(h′)
T∗(h)

. (4.6)

Note that q, so chosen, satisfies (4.3), as does its negative, so (i i) ensures that
(0, q) and (0,−q) are both member of P̂ . In fact, from its form, (0, q) is a Carnot
element operating between h′ and h.

To prove that (i i i) implies (i) we suppose that T̄ (·) is another Clausius–Duhem
temperature scale on �, different from T (·), and that σ0 is some fixed state in �.
Our aim will be to show that

T̄ (·) = T̄ (σ0)

T (σ0)
T (·). (4.7)

For this purpose, let σ be an arbitrary state and let h and h0 be the hotness levels
containing σ and σ0. From (i i i) there is a Carnot element operating between h and
h0. This is to say that P̂ contains a reversible element (0, μ − μ0) where μ and
μ0 are non-zero measures in M+(�) satisfying

supp μ ⊂ h and supp μ0 ⊂ h0. (4.8)

If T̄∗(·) and T∗(·) are the temperature scales on H corresponding to T̄ (·) and T (·),
we can invoke the Clausius–Duhem inequality to write, for the reversible element
(0, μ − μ0) ∈ P̂ ,

μ(h)

T∗(h)
− μ0(h0)

T∗(h0)
= 0 and

μ(h)

T̄∗(h)
− μ0(h0)

T̄∗(h0)
= 0. (4.9)

From this it follows that

T̄∗(h) = T̄∗(h0)

T∗(h0)
T∗(h). (4.10)

Since σ ∈ � was arbitrary, we actually have

T̄ (σ ) = T̄ (σ0)

T (σ0)
T (σ ), ∀ σ ∈ �, (4.11)

which is what (i) asserts.
Having shown that (i) − (i i i) are equivalent, we will now show that these are

equivalent to (iv). It is easy to see that (iv) implies (i i i). Next we show that (i i)
implies (iv). Because q given by (4.4) satisfies (4.3), (i i) ensures that both (0,q)

and its negative are members of P̂ . In this case, (iv) is satisfied. ��
We conclude this subsection with statements of two corollaries of Theorem 4.5,

proofs of which (omitted here) are very much like the proofs of Corollaries 9.1 -
9.3 in [6], although the context there is different (Remark 3.1). Moreover, the proof
of Corollary 4.7 resembles the proof given in the next section of the substantially
broader Corollary 5.3.
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Corollary 4.7. Let (�,P) be a Kelvin–Planck theory for which all Clausius–
Duhem temperature scales on � are positive multiples of some fixed one, T (·). The
reversible cyclic elements of (�,P) are precisely those elements (0,q) ∈ V (�)

that satisfy ∫
�

dq

T
= 0. (4.12)

In particular, any (0,q) ∈ V (�) that satisfies (4.12) is a member of P̂ . Of those
(0,q) ∈ V (�) that satisfy ∫

�

dq

T
< 0, (4.13)

either all are contained in P̂ or none are.

A component of standard textbook arguments underlying the foundations of
classical thermodynamics, in particular the existence of an entropy as a function
of state, relies on an assertion to the effect that any cyclic reversible process can
be approximated by combinations of Carnot cycles. (See, for example, page 35
in [4].) The following ensures that, for any Kelvin–Planck theory in which there
is an essentially unique Clausius–Duhem temperature scale, the supply of Carnot
elements is sufficiently large as to make that assertion true.

Corollary 4.8. (Approximating reversible cyclic elements by combinations of Carnot
elements) Let (�,P) be a Kelvin–Planck theory for which all Clausius–Duhem
temperature scales on � are positive multiples of some fixed one. The set of all lin-
ear combinations of Carnot elements of (�,P) is dense in the set of all reversible
cyclic elements of (�,P).

4.2. Essential Uniqueness of a Thermodynamic Temperature on a State Space
Sub-domain

Although a thermodynamic temperature scale for a Kelvin–Planck theory need
not be essentially unique on the entire state space, there might be nontrivial sub-
domains on which essential uniqueness is to be found. The connection to Carnot
elements (and perhaps to notions of equilibrium states) is recorded in the following
proposition:

Proposition 4.9. Let (�,P) be a Kelvin–Planck theory having TC D as its set of
Clausius–Duhem temperature scales . Furthermore, let � 0 be a subset of �, and
let T 0

C D be the set of restrictions of members of TC D to � 0 . The following are
equivalent:

(i) All member of T 0
C D are positive multiples of some fixed one.

(ii) For each pair of distinct states in � 0 there is a Carnot element operating
between them.

Proof. That (ii) implies (i) is a direct consequence of the Clausius–Duhem inequal-
ity. Proof that (i) implies (ii) amounts to an application of Lemma 3.10. ��
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Remark 4.10. For a Kelvin–Planck theory (�,P) we will say that states σ and
σ ′ in � are Carnot-related, denoted σ ≈C σ ′, if σ = σ ′ or if P̂ contains a
Carnot element in operating between them. It is not difficult to see that ≈C is an
equivalence relation. Proposition 4.9 tells us that we have essential temperature-
scale uniqueness on each nontrivial ≈C equivalence class.

5. Uniqueness of Entropy-Temperature Functions of State

In this section we ask: For a Kelvin–Planck theory (�,P), what must be true
of P beyond a rich supply of Carnot elements to ensure not only that there is
an essentially unique Clausius–Duhem temperature scale but also that there be an
essentially unique Clausius–Duhem specific-entropy function?

5.1. Entropy-Temperature-Pair Uniqueness on the Entire State Space

The following theorem describes conditions under which, for a Kelvin–Planck
theory, there is an essentially unique Clausius–Duhem pair on the entire state space:

Theorem 5.1. (Clausius–Duhem Pair Uniqueness) Let (η 0, T 0) be a Clausius–
Duhem pair for a thermodynamical theory (�,P). The following are equivalent:

(i) If (η, T ) is any other Clausius–Duhem pair for (�,P), there are constants
α and β, with α > 0, such that

T (·) = αT 0(·) and η(·) = 1

α
η 0(·) + β. (5.1)

(ii) P̂ contains the hyperplane

{
(�m,q) ∈ V (�) :

∫
�

η 0 d (�m) =
∫

�

dq

T 0

}
. (5.2)

(iii) For each choice of σ ′ and σ in �, P̂ contains a reversible element with
change of condition δσ ′ − δσ and also a Carnot element operating between
the hotness levels of σ ′ and σ .

Remark 5.2. (Existence vs. Uniqueness, 2) The comments made in Remark 4.6 per-
tain here too. Although the existence of a Clausius–Duhem entropy-temperature pair
for a Kelvin–Planck theory is ensured immediately by the Hahn–Banach Theorem
without the requirement of special reversible processes [8], the equivalence of (i)
and (i i i) in Theorem 5.1 indicates that, for a Kelvin–Planck theory to have an
essentially unique Clausius–Duhem pair, not only must every state be visited by
Carnot cycles, each must also be visited by other reversible processes as well. As
in Remark 4.6, some readers might infer that all states in such a Kelvin–Planck
theory must be “equilibrium” states. Again, this is discussed on Sect. 7.
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Proof of Theorem 5.1. To prove that (i) implies (i i) we suppose that (i) holds and
that there exists (�m,q) ∈ V (�) that satisfies the equation in (5.2) but does not
belong to P̂ . Then Lemma 3.10 ensures the existence of another Clausius–Duhem
pair (η, T ) such that ∫

�

η d (�m) <

∫
�

dq

T
. (5.3)

Because (�m,q) satisfies the equation in (5.2), it is evident that η(·) and T (·)
could not be of the form given in (i). Thus, we have a contradiction.

To prove that (i i) implies (i i i), for an arbitrary choice of σ ′ and σ in � we first
let q be any member of M (�) that satisfies the equation

η 0(σ ′) − η 0(σ ) =
∫

�

d q

T 0 . (5.4)

Then (δσ ′ − δσ ,q) ∈ V (�) and its negative both satisfy the equation in (5.2), so
from (i i) both are members of P̂ . Finally, note that (0,q∗) ∈ V (�), where q∗ is
any member of M (�) of the form

q∗ = c′ δσ ′ − c δσ with
c′

c
= T 0(σ ′)

T 0(σ )
, (5.5)

satisfies the equation in (5.2), as does its negative. From (i i), then, both are members
of P̂ , so (0,q∗) is the desired Carnot element.

We turn next to a proof that (i i i) implies (i). When (i i i) holds it is evident that
for any pair of hotness levels there is a Carnot element operating between them.
From Theorem 4.5, if T (·) is a Clausius–Duhem temperature scale on � we already
have the existence of a positive α such that T (·) = αT 0(·).

If η is a specific-entropy function corresponding to T , it remains to be shown
that, when (i i i) holds, η is of the form given in (i). Let σ ∗ ∈ � be some fixed
state, and let σ be some other arbitrary state. Then from (i i i) there is in P̂ a
reversible element of the form (δσ − δσ ∗ ,q), which must be consistent with the
Clausius–Duhem inequality written in terms of both Clausius–Duhem pairs ((η, T )

and (η 0, T 0). Thus, we have, for all choices of σ ,

η(σ ) − η(σ ∗) =
∫

�

dq

T
= 1

α

∫
�

dq

T 0 (5.6)

and

η 0(σ ) − η 0(σ ∗) =
∫

�

dq

T 0 . (5.7)

Because σ was arbitrary, it follows from these equations that

η(·) = 1

α
η 0(·) +

[
η(σ ∗) − 1

α
η 0(σ ∗)

]
, (5.8)

which is in the form required by (i). ��
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Corollary 5.3. Consider a Kelvin–Planck theory (�,P) having, in the sense of
(i), an essentially unique Clausius–Duhem pair, (η 0, T 0). The set of reversible
elements in P̂ coincides with the set of all (�m,q) ∈ V (�) that satisfy

∫
�

η 0 d (�m) =
∫

�

dq

T 0 . (5.9)

If even one member of the set
{

(�m,q) ∈ V (�) :
∫

�

η 0 d (�m) >

∫
�

dq

T 0

}
(5.10)

is an element of P̂ then all are. In particular, if P contains even one irreversible
process, then P is so rich in processes that P̂ contains all members of V (�) that
are consistent with the (not necessarily strict) Clausius–Duhem inequality.

Remark 5.4. In the context of Corollary 5.3, if P̂ contains even one irreversible
element, P̂ actually coincides with the closed half-space in V (�) given by

{
(�m,q) ∈ V (�) :

∫
�

η 0 d (�m) ≥
∫

�

dq

T 0

}
. (5.11)

Proof of Corollary 5.3. If (�m,q) ∈ V (�) satisfies (5.9) then so does its neg-
ative, in which case Theorem 5.1 requires that both be members of P̂ . Hence,
(�m,q) is a reversible element of P̂ . On the other hand, if (�m,q) is a re-
versible element of P̂ then both it and its negative are members of P̂ . Because
each is a member of P̂ , both must satisfy the Clausius–Duhem inequality, so the
equality (5.9) must obtain.

To prove the remainder of the corollary, we let (�m,q) and (�m∗,q∗) be
members of V (�) that satisfy

∫
�

η 0 d (�m) >

∫
�

dq

T 0 and
∫

�

η 0 d (�m∗) >

∫
�

dq∗

T 0 , (5.12)

and we suppose that (�m∗,q∗) is a member of P̂ . Our aim is to show that
(�m,q) is also a member of P̂ .

Let γ denote the positive number defined by

γ :=
∫
�

η 0 d (�m) − ∫
�

dq
T 0∫

�
η 0 d (�m∗) − ∫

�
dq∗
T 0

. (5.13)

Note that

(�m,q) = γ (�m∗,q∗) + [(�m,q) − γ (�m∗,q∗)]. (5.14)

Because P̂ is a cone, the first term on the right is a member of P̂ . To see that the
second term is also a member of P̂ , note that the second term can be rewritten as

(�m − γ�m∗ , q − γq∗). (5.15)
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and that∫
�

η 0d(�m − γ�m∗) −
∫

�

d(q − γq∗)
T 0

=
(∫

�

η 0d(�m) −
∫

�

dq

T 0

)
− γ

(∫
�

η 0d(�m∗) −
∫

�

dq∗

T 0

)

= 0. (5.16)

From the equivalence of (i) and (i i) in Theorem 5.1, the element (5.15) —
and therefore the second term on the right of (5.14) — must be a member of P̂ .
Because both terms on the right of (5.14) are members of the convex cone P̂ , their
sum (�m,q) is a member of P̂ .

To prove the last sentence of the corollary, let (�m†,q†) ∈ P be an irre-
versible process. By the Clausius–Duhem inequality, we must have∫

�

η 0 d (�m†) ≥
∫

�

dq†

T 0 . (5.17)

Because (�m†,q†) is not reversible, strict inequality must hold in (5.17), so P̂

contains the entire open half-space (5.10). Theorem 5.1 ensures thatP̂ also contains
the hyperplane (5.2). ��
Remark 5.5. (Consequences of a change of condition that cannot be reversed) Sup-
pose that (�,P) is a Kelvin–Planck theory having an essentially unique Clausius–
Duhem temperature scale, T 0. If there is even one change of condition (as distinct
from a process) that is not reversible—that is, if there exists �m0 ∈ M ◦(�) such
that for no choice of q is (�m0,q) a reversible element of P̂—then T 0 cannot
have an essentially unique Clausius–Duhem entropy partner. For if η 0 were such a
partner then, for any q ∈ M (�) that satisfies∫

�

η0 d �m0 =
∫

�

dq

T 0 , (5.18)

Corollary 5.3 would require that (�m0,q) be a reversible element of P̂ .
Of course the presence of an abundance of irreversible processes in a Kelvin–

Planck theory (�,P) does not preclude for it an essentially unique Clausius–
Duhem entropy-temperature pair, as in Corollary 5.3 when P̂ is a half-space of
V (�).

Remark 5.6. Consider a Kelvin–Planck theory (�,P) for which the set of Clausius–
Duhem entropy-temperature pairs is not essentially unique. If (�m0,q0) is an ir-
reversible element of P̂ then there must exist at least one Clausius–Duhem pair for
which the Clausius–Duhem inequality applied to (�m0,q0) is strict, for otherwise
(�m0,q0) would, by Corollary 5.3, be reversible.

This prompts the following question: Is there a single Clausius–Duhem pair
with respect to which the Clausius–Duhem inequality is strict when applied to
every irreversible element of P̂ ? When � is a metric space the answer is yes. This
follows from an argument similar to the one given in the proof of Theorem 7.2 in
[6].
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5.2. Essential Uniqueness of Entropy on a State-Space Sub-domain

Even when, for a Kelvin Planck (�,P), there is an essentially unique Clausius–
Duhem temperature scale on a state-space sub-domain �0 ⊂ �, we cannot expect in
general that there will invariably be an essentially unique specific-entropy function
on �0. The following theorem describes precisely the circumstances under which
such entropy-uniqueness on that sub-domain will obtain. Although the implication
(ii) ⇒ (i) is straightforward, the less obvious reverse implication follows from
Hahn–Banach Theorem in the guise of Lemma 3.10. As might be expected, the
situation is very much like that in Theorem 5.1, but with some subtle differences.

Theorem 5.7. Let (�,P) be a Kelvin–Planck theory, and let �0 be a subset of �

consisting of at least two states. Suppose that T †
0 : �0 → R+ is the restriction to

�0 of a Clausius–Duhem temperature scale T † : � → R+ and that every other
restriction of a Clausius–Duhem temperature scale to �0 is a positive multiple of
T †

0 . The following are equivalent:

(i) If (η, T †) and (η̄, T †)) are Clausius–Duhem pairs for (�,P) then, restricted
to �0, η and η̄ differ by at most a constant.

(ii) For each pair of distinct states σ ′ ∈ �0 and σ ∈ �0, there exists in P̂ a
reversible element (δσ ′ − δσ ,q), with the support of q contained in �0.9

Proof. To prove that (i) implies (i i) suppose, on the contrary, that (i) holds but that
σ ′ and σ are states in �0 such that, for no choice of q ∈ M (�) with suppq ⊂ �0,
are both (δσ ′ − δσ ,q) and its negative members of P̂ . In particular, (δσ ′ − δσ ,q∗)
and its negative cannot both be members of P̂ , where q∗ is chosen to be a member
of M (�) that has support in �0 and that satisfies the equation

∫
�

η d(δσ ′ − δσ ) = η (σ ′) − η (σ ) =
∫

�

dq∗

T † . (5.19)

Here (η, T †) is the first Clausius–Duhem pair in (i).
If (δσ ′ − δσ ,q∗) is not a member of P̂ , then Lemma 3.10 ensures that there is

another Clausius–Duhem pair (η #, T #) such that

η # (σ ′) − η # (σ ) <

∫
�

dq∗

T # . (5.20)

Recall from Remark 2.8 that, for any α > 0, ( 1
α

η #, αT #) is again a Clausius–
Duhem pair. In particular, from the hypothesis of the theorem, there is an α ∗ > 0
such that α ∗T #(·) and T †(·) are identical on �0. Thus, with

η̄ (·) := 1

α∗ η #(·), (5.21)

9 The support of the signed measure q is the union of the supports of its (Hahn-Jordan)
positive and negative parts.
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(η̄, T †) is a Clausius–Duhem pair for (�,P). From (5.20) and the fact that q∗
has support in �0 it follows that

η̄(σ ′) − η̄(σ ) <

∫
�

dq∗

T † . (5.22)

Comparison with (5.19) tells us that the specific entropy functions η̄ and η, both
corresponding to the temperature scale T †, cannot differ on �0 by at most a con-
stant, in contradiction to (i). If − (δσ ′ − δσ ,q∗) is not a member of P̂ , proof of
contradiction to (i) is similar.

To prove that (i i) implies (i) suppose that η̄ and η are specific-entropy functions
on � corresponding to the same Clausius–Duhem temperature scale T †. Let σ0 be
a fixed state in �0, and let σ ∈ �0 be another state. From (ii) it follows that P̂
contains a reversible element (δσ − δσ0 ,q). Because the element is reversible, the
Clausius–Duhem inequality requires that

η̄(σ ) − η̄(σ0) = η (σ ) − η (σ0) =
∫

�

dq

T † . (5.23)

Thus, for any choice of σ ∈ �0 we have

η̄(σ ) − η(σ ) = η(σ0) − η(σ0), (5.24)

which is to say that η̄ and η, restricted to �0, differ by at most a constant. ��
Remark 5.8. In the proof that (i i) implies (i) there was no need to require that the
heating measure have support in �0; any heating measure with arbitrary support
would do. However, with (i) satisfied, the deeper implication (i) ⇒ (i i) indicates
that there must also exist in P̂ a reversible element (δσ − δσ0 ,q), with the support
of q contained in �0.

Remark 5.9. For a Kelvin–Planck theory (�,P) we will say that states σ and σ ′ in
� are reversibly-connected, denoted σ ≈R σ ′, if σ = σ ′ or if there is aq ∈ M (�)

such that P̂ contains both (δσ − δσ ′ ,q) and its negative. Like the Carnot relation
≈C , the relation ≈R is an equivalence relation in �. On any intersection of a
≈C -equivalence-class and an ≈R -equivalence-class there is essential uniqueness
of Clausius–Duhem entropy-temperature pairs. Because in such an intersection all
states are visited by both reversible connections and (reversible) Carnot elements,
some readers might infer that these could only be equilibrium states. See, however,
Sect. 7.

5.3. A Relationship Between the Supply of Entropy-Temperature Pairs and the
Supply of Processes

For a Kelvin–Planck theory (�,P) in which there is an essentially unique
Clausius–Duhem pair, Corollary 5.3 tells us that knowledge of a Clausius–Duhem
pair determines P̂ completely, so long as there is at least one irreversible process.
When for the theory there is not an essentially unique Clausius–Duhem pair, we can
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still ask about the relationship between the full set of Clausius–Duhem pairs and
P̂ . In particular, we can ask about circumstances under which P̂ coincides with
the set of all members of V (�) that comply with the Clausius–Duhem inequality
for every choice of Clausius–Duhem pair—that is, circumstances under which P̂
is identical to the set

Q :=
{

(v,w) ∈ V (�) :
∫

�

η d v ≥
∫

�

d w

T
,∀(η, T ) ∈ C D (�,P)

}
, (5.25)

where C D (�,P) is the set of all Clausius–Duhem entropy-temperature pairs for
(�,P).

From the positivity of Clausius–Duhem temperature scales it follows easily that
the set

(0,−M+(�)) := {(0, ν) ∈ V (�) : −ν ∈ M+(�)} (5.26)

is contained in Q. Thus, for P̂ to coincide with Q it is necessary that P̂ con-
tain (0,−M+(�)). Less obvious is the fact that for P̂ to coincide with Q it is
both necessary and sufficient that P̂ contain (0,−M+(�)). (This last assertion is
largely a consequence of Lemma 3.9.)

Thus, if P̂ contains the simplest elements of V (�) that comply with the
Clausius–Duhem inequality for every entropy-temperature pair—those elements
of the form (0,−ν), ν ∈ M+(�)—then P̂ must contain all elements of V (�)

that comply with the Clausius–Duhem inequality for every entropy-temperature
pair.

Viewed as a process, (�m,q) := (0,−ν), ν ∈ M+(�) represents one that
is cyclic and in which for every Borel set of states there is only heat emission. The
First Law then indicates that the work done on the body suffering the process, ν(�),
is converted entirely into heat emitted to the body’s exterior. It is not unreasonable
to suppose that physical processes of this kind, or approximations to them, are
naturally abundant.

Remark 5.10. When P̂ does not contain (0,−M+(�)), it is a consequence of
Lemma 3.9 that for any member (v,w) of Q that is not a member of P̂ there will
nevertheless exist ν ∈ M+(�) such that (v,w + ν) is a member of P̂ .

6. Conjoined Thermodynamical Theories and Thermometers

For the sake of simplicity and motivation, a thermodynamical theory (�,P)

has been mostly viewed as a description of processes that bodies composed of a
particular material might experience. From this viewpoint, derived functions of
state for a Kelvin–Planck theory, such as a specific-entropy function η : � → R,
were deemed to be attributes of the particular material under consideration. In
this interpretation of (�,P), hotness levels in � and their comparability relative
to the “hotter than” relation � in (�,P) were regarded to be intrinsic to the
theory, ascertained only by appeals to the set of processes the material itself can
or cannot experience. Indeed, we admitted the possibility that, for a particular
Kelvin–Planck theory, P might not be sufficiently adequate as to render every
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pair of hotness levels intrinsically �-comparable or to make all Clausius–Duhem
temperature scales essentially identical.

In this section we will expand that interpretation of a thermodynamical theory
to accommodate the idea that bodies composed of a particular material inhabit a
world containing bodies made of still other materials, and that these various bodies
can exchange heat. Indeed, two bodies in contact, composed of different materials,
can be viewed as a single compound body that exchanges heat with its exterior. In
such a case, heat might be absorbed from the exterior (of the compound body) by
the first body, passed to the second body, and emitted to that exterior by the second
body.10

With such processes in mind, we will introduce the idea of the conjunction
of two thermodynamical theories—that is, a broader thermodynamical theory that
embraces the two theories and that, in addition, allows for processes of the type just
described. We will be especially interested in situations in which one of theories
characterizes a material that has special thermometric properties relative to the
other.

We shall see that the presence of the thermometric theory in the conjunction
can, in a certain sense, impart to the other theory a total “hotter than” relation
or an essentially unique Clausius–Duhem temperature scale where neither existed
before.

6.1. Conjoined Thermodynamical Theories

Definition 6.1. Let (�1,P1) and (�2,P2) be thermodynamical theories having
disjoint state spaces. We say that a thermodynamical theory (�3,P3) is a con-
junction of (�1,P1) and (�2,P2) if �3 = �1 ∪ �2, if both P1 and P2 are
essentially contained in P3, and if, for each (�m,q) ∈ P3, �m(�1) = 0 and
�m(�2) = 0.11

Remark 6.2. This requires an explanation of what it means to say, for example, that
P1 is essentially contained in P3. Note that if (�m1,q1) is an element of P1,
then �m1 and q1 are both signed regular Borel measures on �1. On the other
hand, if (�m3,q3) is an element of P3, then �m3 and q3 are both signed Borel
measures on �3 = �1 ∪ �2. In formal terms, then, a process in P1 cannot be
a member of P3. Nevertheless, we say that (�m1,q1) is essentially contained
in P3 if there is in P3 a process (�m3,q3) such that �m3 and q3 take the value
zero on every Borel set in �2 and agree in value with �m1 and q1 on every Borel
set of �1.

10 Recall that, in a thermodynamical theory, a heating measure for a process suffered by
a body (including such a compound one) takes account only of heat exchange of the body
with its exterior, not heat flows internal to the (compound) body.
11 It is understood that �3 has the disjoint union topology inherited from �1 and �2.
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6.2. Thermometers for a Kelvin–Planck Theory

Throughout remainder of Sect. 6, (�,P) is a generic Kelvin–Planck theory
with hotness levels H . In particular, we do not presume that the hotness levels
of H are totally ordered by �, the “hotter than” relation in (�,P). However,
(��,P�) will hereafter designate a different Kelvin–Planck theory with hotness
levels H�, this time totally ordered, according to Definition 3.14, by the hotter
than relation �� in (��,P�). It will be understood that � and �� are disjoint.

Definition 6.3. The Kelvin–Planck theory (��,P�) is a thermometer for (�,P)

if there is a Kelvin–Planck conjunction of (��,P�) and (�,P), say (�C ,PC ),
having the following property: For each σ ∈ � there is a σθ ∈ �� such that both
(0, δσ − δσ�) and its negative are members of P̂C := cl [Cone (PC )]. In this case
(�C ,PC ) is a thermometric conjunction of (��,P�) and (�,P).

Remark 6.4. The defining property amounts to a requirement that for each σ ∈ �

there is a σθ ∈ �� such that, in the conjunction, σ and σθ are of the same hotness.
See Appendix A, in particular Remark A.1, for a description of how the required
passive heat transfers might come about in a natural way.

Remark 6.5. Here it will be helpful to regard (��,P�) as a mathematical encod-
ing of the thermodynamic properties of a thermometric material—that is, a material
which, for the purposes of measuring hotness, can finely probe, by means of heat
transfer processes, a different target material, characterized by (�,P); the ther-
mometric material assigns to each state of the target material a hotness level in
H�. In turn, each such hotness level is, relative to some chosen Clausius–Duhem
temperature scale for (��,P�), associated with a numerical value of temperature.

Remark 6.6. (Conditions sufficient to ensure that (��,P�) is a thermometer
for (�,P)) Suppose that (�C ,PC ) is a Kelvin–Planck conjunction of (��,P�)

and (�,P). In Proposition 6.7 below we assert that (��,P�) is a thermometer
for (�,P) if the conjunction satisfies some very weak and natural requirements:
that �� is connected and that in the conjunction there is a kind of universal com-
parability of the states in � and those in �� with respect to the weakly-hotter-than
relation w�C in the conjunction.12

Proposition 6.7. Let (�C ,PC ) be a Kelvin–Planck conjunction of the Kelvin–
Planck theories (��,P�) and (�,P). Then (��,P�) is a thermometer for
(�,P) if the following three conditions are satisfied:

(i) �� is connected.
(ii) Any two states, one in � and the other in ��, that are not of the same hotness

in (�C ,PC ) are w�C -comparable.

12 In the spirit of Definition 3.20, we say that state σ ′
C is weakly hotter than state σC if

the two states are of different hotnesses and P̂C contains an element of the form (0, δσ ′
C

−
δσC + ν), with ν ∈ M+(�C ). In particular, ν can be the zero measure, in which case there
is a passive heat transfer from σ ′

C to σC .
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(iii) For each σ ∈ � there is a state σθ ∈ �� such that σθ w�C σ and also
a state σ ′

θ ∈ �� such that σ w�C σ ′
θ .

Remark 6.8. (Pervasiveness of w�C -comparability) It is important to note that in
order for two states of different hotness to be w�C -comparable it is enough that
there be a passive heat transfer from one to the other. Appendix A suggests that
such a transfer will take place whenever material samples in the two different states
are brought into contact, however briefly.

Proof of Proposition 6.7. It must be shown that for each σ ∈ � there is a σθ ∈ ��

such that ±(0, δσ − δσθ ) are members of P̂C . With TC denoting the set of all
Clausius–Duhem temperature scales for (�C ,PC ), this is equivalent by Theorem
3.8 to showing that for each σ ∈ � there is a σθ ∈ �� such that T (σ ) = T (σθ )

for all T ∈ TC .
Suppose on the contrary that there is a σ ∗ ∈ � such that for each σθ ∈ ��

there is a T̄ ∈ TC such that T̄ (σ ∗) �= T̄ (σθ ). Let

U≥ := {σθ ∈ �� : T (σθ ) ≥ T (σ ∗),∀T ∈ TC } (6.1)

and
U≤ := {σθ ∈ �� : T (σθ ) ≤ T (σ ∗),∀T ∈ TC }. (6.2)

By supposition these sets are disjoint. From Theorem 3.21 and (iii) both sets are
non-empty. From the same theorem and (ii), the union of the two sets is ��. Because
U≥ and U≤ are both closed and each is the (open) complement of the other, �� is
the union of two disjoint open sets, in violation of (i). ��

In preparation for the next section we posit the following definition:

Definition 6.9. A thermometer (��,P�) for a given Kelvin–Planck theory is an
ideal thermometer for it if all Clausius–Duhem temperature scales for (��,P�)

are positive multiples of some fixed one.

Remark 6.10. (Approximate realization of ideal thermometers) If (��,P�) is an
ideal thermometer for a Kelvin–Planck theory (�,P) then, in addition to its ther-
mometric properties, (��,P�) must satisfy all of the equivalent conditions stip-
ulated in Theorem 4.5. In particular, P̂� must contain a rich supply of Carnot
elements. This might be the case, for example, when (��,P�) describes the ther-
modynamics of a gas such as nitrogen or helium, with � consisting of pairs of
the form (p, v), with p denoting the local pressure and v denoting the local spe-
cific volume. In this case, Carnot elements in P̂� might derive from Carnot cycles
specified by paths in ��, as depicted in standard text books.13

Of course, the gas described by (��,P�) must also satisfy the requirements
of a thermometer for (�,P). The latter might, for example, describe bodies con-
sisting of liquid mixtures in which chemical reactions occur among a collection of

13 For an ideal gas with processes as indicated in textbooks, the empirical ideal gas tempera-
ture scale, given by T (p, v) := M

R pv, has the properties of a Clausius–Duhem temperature
scale. Here M is the molecular weight of the gas and R is the ideal gas constant. Under
wide-ranging conditions, helium approximates an ideal gas very well.
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several specified molecular species. In that case, most elements of � would cor-
respond to local mixture states in which chemical reaction equilibrium does not
prevail. Nevertheless, Proposition 6.7, Appendix A, and Remark 6.8 indicate how,
for (��,P�), the thermometric requirements of Definition 6.3 might be satis-
fied by means of brief contacts between the gas and samples of the reacting liquid
mixture.

6.3. Properties Imparted to a Kelvin–Planck Theory by the Existence of a
Thermometer

The following theorem describes a sense in which the existence of thermometer
for a Kelvin–Planck system (�,P) can impart to it properties that were not there
intrinsically.

Theorem 6.11. Let (�,P) be a Kelvin–Planck theory in which the hotness levels
in � are not necessarily totally ordered by �, the hotter than relation in (�,P).
Moreover, suppose that (��,P�) is a thermometer for (�,P). If (�C ,PC ) is
a thermometric conjunction of (�,P) and (��,P�), then

(i) the hotness levels in �C are totally ordered by �C , the hotter than relation in
(�C ,PC ). As a result, any two states of � not in the same C-hotness level
are, in the sense of Definition 3.18, �C -comparable.

(ii) If the thermometer is ideal, then all Clausius–Duhem temperature scales for
the conjunction are positive multiples of some fixed one. In particular, the
restrictions to � of all Clausius–Duhem temperature scales for the conjunction
differ by at most a positive multiple.

The theorem tells us that, for any two states σ, σ ′ ∈ � that are not of the
same hotness in (�C ,PC ), we either have σ ′ �C σ or σ �C σ ′, this despite the
fact that the same two states might not be intrinsically �-comparable in (�,P).
The enhanced comparability results from the presence of the thermometer in the
larger conjoined theory (�C ,PC ), a presence that provides for more processes
with which hotness comparisons can be made.

Similarly, even when the Clausius–Duhem temperature scales for (�,P) are
not all positive multiples of some fixed one (reflecting the absence of a sufficiently
rich supply of Carnot elements in P̂), it will nevertheless be the case that, restricted
to �, all Clausius–Duhem scales for the larger conjunction will be a positive mul-
tiple of some fixed one, so long as the thermometer is ideal—that is, so long as the
thermometer itself has an essentially unique Clausius–Duhem temperature scale.
The essential uniqueness of Clausius–Duhem temperature scales for the conjunc-
tion derives from the richer supply of Carnot elements in P̂C . In Appendix B we
describe a hypothetical physical scenario in which P̂C contains a Carnot element
operating between two states of � while P̂ contains no such Carnot element.

Proof of Theorem 6.11. We begin with some preliminary remarks: Because (�C ,PC )

is a Kelvin–Planck theory, there exists for it an entropy-temperature pair, both
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functions having domain �C , that satisfies the Clausius–Duhem inequality for all
processes in PC . Let (ηC , TC ) be any such pair. Because P� is essentially con-
tained in PC , it is apparent that the restrictions of ηC and TC to �� constitute a
Clausius–Duhem pair for (��,P�). In particular, the restriction of TC to �� is
a Clausius–Duhem temperature scale for (��,P�). Therefore, whenever h′

� and
h� are hotness levels in �� such that h′

� �θ h� we must have TC (σ ′
θ ) > TC (σθ )

for all σ ′
θ ∈ h′

� and σθ ∈ h�. Moreover, if σ ′
θ and σθ are of the same hotness in

(��,P�), we must have TC (σ ′
θ ) = TC (σθ ).

Proof of (i). We need to show that, if h′
C and hC are distinct hotness levels for

(�C ,PC ), then h′
C and hC are�C -comparable in the sense of Definition 3.14. From

properties of the thermometer, every state in � is of the same �C -hotness as some
state in ��. From this it follows that every hotness level for (�C ,PC ) contains
a representative from ��. Suppose, then, that σ ′

θ and σθ are such representatives
taken from h′

C and hC , respectively. Again from properties of (��,P�), it must
be the case that, relative to (��,P�), the hotness levels h′

� ⊂ �� and h� ⊂ ��,
containing σ ′

θ and σθ , are either ��-comparable or else they coincide.
If σ ′

θ and σθ are of the same ��-hotness, then from the preliminary remarks
above we have TC (σ ′

θ ) = TC (σθ ) for every TC (·) in the set of Clausius–Duhem
temperature scale for (�C ,PC ). From Theorem 3.8 it follows that σ ′

θ and σθ are
of the same hotness in (�C ,PC ). This, however, contradicts the supposition that
h′

C and hC are distinct.
Suppose, then, that h′

� and h� are ��-comparable, with h′
� �� h�. From

Theorem 3.15 and the preliminary remarks above, we have TC (σ ′
θ ) > TC (σθ )

for each choice TC (·) of Clausius–Duhem temperature scale for (�C ,PC ). From
Definition 3.18 and Corollary 3.19 if follows that h′

C is �C -comparable to hC , with
h′

C �C hC .
Proof of (ii). Suppose that all Clausius–Duhem temperature scales for (��,P�)

are positive multiples of some fixed one. We want to show that the same is true of
all Clausius–Duhem temperature scales for (�C ,PC ). Let T̄C : �C → R+ and
TC : �C → R+ be Clausius–Duhem temperature scales for (�C ,PC ). Moreover,
let σ ∗

θ be a fixed state in ��. It will be enough to show that

T̄C (σ )

TC (σ )
= T̄C (σ ∗

θ )

TC (σ ∗
θ )

, ∀σ ∈ �C . (6.3)

From properties of the thermometer (��,P�), each σ ∈ �C is of the same
(�C ,PC )-hotness as a state in ��, denoted here as σθ . Because Clausius–Duhem
temperature scales for (�C ,PC ) assign the same value to all states in �C of the
same (�C ,PC ) - hotness, (6.3) is equivalent to

T̄C (σθ )

TC (σθ )
= T̄C (σ ∗

θ )

TC (σ ∗
θ )

, ∀σθ ∈ ��. (6.4)

From the preliminary remarks at the very beginning of the proof, the restriction
to �� of any Clausius–Duhem temperature scale for (�C ,PC ) is a Clausius–
Duhem temperature scale for (��,P�). That (6.4) holds follows from the fact
that all Clausius–Duhem temperature scales for (��,P�) are identical up to a
positive multiple. ��
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6.4. Ensured Consistency of All Thermometers for a Kelvin–Planck Theory

For the Kelvin–Planck theory (�,P), we will suppose throughout this sub-
section that (��1,P�1) and (��2,P�2) are two different thermometers (with
��1 ∩ ��2 = ∅) and that (�C1,PC1) and (�C2,PC2) are, respectively, thermo-
metric conjunctions of the two thermometers with (�,P).

We want to show that, if the co-existence of the two (Kelvin–Planck) ther-
mometric conjunctions does not, by virtue of that coexistence, conflict with the
Kelvin–Planck Second Law, then the two thermometric conjunctions, each derived
from a different thermometer, will impart to � precisely the same hotter-than rela-
tions. Moreover, if both thermometers are ideal, then both conjunctions will impart
the same (essentially unique) Clausius–Duhem temperature scale on �.

Definition 6.12. The thermometric conjunctions (�C1,PC1) and (�C2,PC2) are
Kelvin–Planckcompatible if there is at least one Kelvin–Planck theory (�C3,PC3)

in which �C3 = � ∪ ��1 ∪ ��2 and PC3 essentially contains PC1 and PC2 (in
the sense of Remark 6.2).

Theorem 6.13. (Consistency of Thermometers) Suppose that thermometric con-
junctions (�C1,PC1) and (�C2,PC2) for (�,P), corresponding to two different
thermometers (��1,P�1) and (��2,P�2), are Kelvin–Planck compatible.

(i) On �, the hotter-than relations derived from (�C1,PC1) and (�C2,PC2)

are identical. That is, if σ ′ and σ are states in �, then

σ ′ �C1 σ ⇔ σ ′ �C2 σ. (6.5)

(ii) Suppose that for j = 1, 2 all Clausius–Duhem temperature scales for (�C j ,

PC j ) are positive multiples of some fixed one, T ∗
C j : �C j → R+. Then,

restricted to �, all Clausius–Duhem temperature scales for the two thermo-
metric conjunctions are essentially identical. In particular, if T̄ ∗

C j : � → R+
is the restriction of T ∗

C j to �, then there is a positive number α such that

T̄ ∗
C2(·) = αT̄ ∗

C1(·).
Proof. Throughout the proof, (�C3,PC3) is a fixed Kelvin–Planck theory satis-
fying the requirements of Definition 6.12.

To prove (i) we let σ ′ and σ be states in � such that σ ′ �C1 σ . Corollary
3.19 then ensures that TC1(σ

′) > TC1(σ ) for every TC1 that is a Clausius–Duhem
temperature scale for (�C1,PC1). Contrary to what is to be proved, suppose that
either σ ′ ≺C2 σ or σ ′ ∼C2 σ . In these two cases, we have, respectively, TC2(σ

′) <

TC2(σ ) and TC2(σ
′) = TC2(σ ) for every TC2 that is a Clausius–Duhem temperature

scale for (�C2,PC2).
The Kelvin–Planck theory (�C3,PC3) has at least one Clausius–Duhem tem-

perature scale, say TC3. Because PC1 is essentially contained in PC3, it follows
that the restriction of TC3 to �C1 = � ∪ ��1 is a Clausius–Duhem temper-
ature scale for (�C1,PC1), in which case TC3(σ

′) > TC3(σ ). Because PC2
is essentially contained in PC3, it also follows that the restriction of TC3 to
�C2 = �∪��2 is a Clausius–Duhem temperature scale for (�C2,PC2), in which
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case TC3(σ
′) < TC3(σ ) or TC3(σ

′) = TC3(σ ). Thus, we have a contradiction. Proof
that σ ′ �C2 σ implies σ ′ �C1 σ is similar.

To prove (i i) we again note, as in the proof of (i), that for j = 1, 2 the restriction
of TC3 to �C j = �∪�� j is a Clausius–Duhem temperature scale for (�C j ,PC j ).
Given the hypothesis of (ii), then, T ∗

C j : �C j → R+ must, for j = 1, 2, be a positive

multiple of the restriction of TC3 to �C j . For this reason, T̄ ∗
C2(·) must be a positive

multiple of T̄ ∗
C1(·). ��

7. Concluding Remarks: Equilibrium vs. Non-equilibrium Thermodynamics

In an attempt to clarify and soften distinctions that are usually drawn between
“equilibrium” and “nonequilibrium” thermodynamics, we review here what the
theorems in this article and its precursor tell us about (the sometimes conflated)
necessary and sufficient conditions for the very separate (also sometimes conflated)
questions of existence and uniqueness of Clausius–Duhem entropy-temperature
pairs.14

The most important theorem of this two-part series is Theorem 2.4. It asserts
that, for any thermodynamical theory consistent with the Kelvin–Planck Second
Law, there exists a pair of continuous functions of state—a specific entropy function
and a thermodynamic temperature scale—that, taken together, satisfy the Clausius–
Duhem inequality for all processes the theory contains. This follows immediately
from the Hahn–Banach Theorem. There is no requirement, either tacit or explicit,
that the theory contain special processes, in particular reversible ones such as Carnot
cycles or reversible processes that transform one state into another. Although bril-
liant classical textbook arguments do indeed show that a (presumed) abundance of
reversible processes is sufficient to arrive at the existence of a Clausius–Duhem pair,
Theorem 2.4 tells us that reversible processes are not necessary for that purpose.

However, existence of these functions for a given Kelvin–Planck theory and
their uniqueness are very different matters. The larger the supply of processes, the
smaller will be the set of Clausius–Duhem entropy-temperature pairs that comply
with the Clausius–Duhem inequality for every process the theory contains. Thus,
if the set of entropy-temperature pairs for a given Kelvin–Planck theory is to be
unique, either with respect to the temperature scale alone or with respect to both
functions, then the set of processes extant in the theory must be sufficiently large
as to ensure that the theory’s set of entropy-temperature pairs is suitably narrow.

Theorem 4.5 indicates that, if a Kelvin–Planck theory is to have an essentially
unique temperature scale on its entire state space domain, it is necessary that the
theory contain an abundance of (reversible) Carnot elements; in fact, there must be
a Carnot element operating between each pair of distinct states. If, in addition, the
theory is to have a specific entropy function that is essentially unique on the entire
state space, Theorem 5.1 requires that each pair of states also be connected by a
reversible process. In each case, for uniqueness on the entire state-space domain it
is necessary that every state be “visited” by a reversible process.

14 Similar but less extensive observations were made in [6] and [7].
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In the classical textbook picture, a reversible process has associated with it a path
through a state space that can be traversed in both directions and in every detail. Such
processes are usually regarded as ones that proceed so slowly that at each instant the
body suffering the process can be regarded to be in a condition of equilibrium (or
arbitrarily close to one). From this very classical perspective, an essentially unique
Clausius–Duhem pair (or merely an essentially unique temperature scale) on the
entire state space of a Kelvin–Planck theory would seem to require that all states
in the theory be “equilibrium” states.

In this article, however, there is no notion of equilibrium.15 A reversible el-
ement of a Kelvin–Planck theory (�,P) is a mathematical object specified by
Definition 4.1. It carries no requirement of a path through � that is traversable
in both directions, slowly or otherwise; in particular, there is no requirement of a
two-way path through M+(�) traversed by a body’s condition measure. Although
the abundance of reversible elements required by the uniqueness Theorems 4.5 or
5.1 might indeed derive in one application or another from consideration of the ide-
alized slow near-equilibrium processes depicted in textbooks, that same abundance
might derive from other sources and in other ways.

This is discussed in two appendices, tentatively described in the following
remarks.

Remark 7.1. (Temperature scale uniqueness imparted to a Kelvin–Planck theory by
the existence of an ideal thermometer) Appendix B is meant as a companion to the
more general §s 6.2 and 6.3. In consideration of a Kelvin–Planck theory (�,P)

that describes a hypothetical chemically reacting solution, we argue in Appendix
B that, even when two (nonequilbrium) states σ and σ ′ in � are unconnected by
a (reversible) Carnot element (0, c′δσ ′ − cδσ ) in P̂ , the existence16 of an ideal
thermometer for (�,P) invariably gives rise to such a Carnot element in the
conjunction of (�,P) with the thermometer. In that case, Theorem 6.11 ensures
essential Clausius–Duhem temperature-scale uniqueness for the conjunction, in
particular on all of �.

Note that it is in the conjunction that temperature-scale uniqueness on � takes
on its meaning and it is there that the presence of the Carnot element (0, c′δσ ′ −
cδσ ) is to be found. It is in this broadened sense, involving the presumed avail-
ability of an ideal thermometer, that Clausius–Duhem temperature-scale unique-
ness becomes more universal in character than Clausius–Duhem entropy-function
uniqueness, discussed in Sect. 5.

Indeed, if members of a collection of distinct Kelvin–Planck theories, corre-
sponding perhaps to a great variety of different materials, each had the same ideal
thermometer, then for each of the pairwise thermometric conjunctions there would
be an essentially unique temperature scale, universally imposed across the collec-
tion by a single thermometer, regardless of whether state spaces of the individual
Kelvin–Planck theories were restricted solely to states of equilibrium.

15 Although the word equilibrium is used often in thermodynamics textbooks, it is usually
invoked intuitively and left without a precise definition, at least in a dynamical system sense.
16 Recall Remark 6.10.
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Remark 7.2. (A reversible element realized in the limit by hypothetical physical
processes that are very fast) Theorems 5.1 and 5.7 indicate that, for a given Kelvin–
Planck theory (�,P) with an essentially unique Clausius–Duhem temperature
scale, essential uniqueness of a corresponding Clausius–Duhem specific-entropy
function requires that every pair of states in � be connected by a reversible element
of P̂ . However, this does not, by itself, require that all members of � are, in some
sense, equilibrium states.

Appendix C is intended to indicate that reversible elements in P̂ are not in-
extricably linked to slow transitions along paths in M+(�) consisting entirely of
equilibrium conditions. There we suggest how a reversible element of the form
(δσ ′ − δσ ,q) ∈ P̂ might arise in consideration of an idealized chemical reactor,
where neither σ , σ ′, nor the support of q, need be restricted to states of chemical
equilibrium. Indeed, we indicate how such a reversible element might be the limit of
a sequence of processes in P corresponding to hypothetical physical realizations
that occur at increasingly rapid rates.

What follows will serve as a summary.

(i) If for a Kelvin–Planck theory existence of Clausius–Duhem entropy and
temperature functions of state are at issue, Theorem 3.8 would seem to provide little
support for those who might argue, perhaps based on standard textbook derivations,
that the domains of those functions should be limited to equilibrium states.

(i i) If, however, essential uniqueness of those same functions assumes critical
importance in particular applications, then Theorems 4.5 and 5.1 might, in some
contexts, lend support to the claim that the domain of those functions should indeed
be restricted to states of equilibrium. However, Appendices B and C should be kept
in mind: reversible processes in the sense of those theorems might have a variety
of physical origins, some involving nonequilibrium states.

In any case we suspect that, in most applications, uniqueness of Clausius–
Duhem entropy-temperature pairs will be considerably less consequential than their
existence.
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Appendices

A. An Example of Passive Unsteady Heat Transfer

For the purpose of motivation, we provided in Example 3.3 a hypothetical
physical situation that, in a thermodynamical theory (�,P), gave rise to a cyclic
process inP̂ of the form (0, α(δσ ′−δσ )), withα > 0, whereσ ′ andσ are states in�.
That the change of condition was the zero measure on � (that is, �m = 0) resulted
from the fact that, in the example, the body suffering the process was in a temporally
steady condition (as distinct from traditional thermodynamic equilibrium), so there
was no change in the condition of the body between the process’s inception and its
termination.

Again for the purpose of motivation, it is our intent in this appendix to show,
by means of a different hypothetical physical situation, that the same element in P̂
can derive from consideration of dynamic processes in which a steady condition is
never present. The example is a simple toy model (for example, one-dimensional,
no motion), but it can be generalized to contain more complex and more natural
features, suggesting that such processes will appear in P̂ whenever bodies come
into momentary thermal contact.

Consider, then, two samples of material, both samples described by the ther-
modynamical theory (�,P), filling two slender tubes, each of length L and small
cross sectional area A, insulated along their extent, but not at their ends. The two
samples are aligned along the x-axis, from x = −L to x = L . The samples abut at
x = 0, separated by a perfectly heat-conducting barrier of negligible thickness. A
continuous function r : [−L , L] × [−t∗, t∗] → R describes the heat flux through
tube cross-sections; that is, r(x, t) is the rate of heat flow per unit cross-sectional
area, in the positive x-direction, through the cross-section at position x and at time
t . We will assume that r(0, 0) is positive.

We will also assume that there are two continuous functions, σ̂ ′ : [−L , 0] ×
[−t∗, t∗] → � and σ̂ : [0, L] × [−t∗, t∗] → � that give the point-wise state of
the material on the two sides of the barrier at each instant. We denote by σ ′ and σ

material states, assumed to be different, contiguous to the two sides of the barrier
at t = 0. That is,

σ ′ = σ̂ ′(0, 0) and σ = σ̂ (0, 0). (A.1)

Remark A.1. This picture is especially apt in our consideration of thermometric
conjunctions in Sect. 6, in which case (�,P), the Kelvin–Planck theory considered
here, would be replaced by the thermometric conjunction (�C ,PC ). In such a
context, σ might represent a state of the thermometric material, while σ ′ might
represent a state of the material sample being probed.

We will argue that, given the physical situation described, consideration of
physical processes suffered by a sequence of sub-bodies along the tubes will give
rise to a corresponding sequence of elements in P̂ that, for any α > 0 having
units of energy, converges in V (�) to (0, α(δσ ′ − δσ )). (It is assumed that physical
processes suffered by all such sub-bodies are accounted for separately in P .) For
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simplicity,17 we suppose that there is no motion and that the local material density
on each side of the barrier is independent of spatial position and time, with ρ′ the
density in the region x ∈ [−L , 0) and ρ the density for x ∈ [0, L].

For any ξ and τ , with L > ξ > 0 and t∗ > τ > 0, we can calculate the process
descriptor p(ξ, τ ) = (�m(ξ, τ ),q(ξ, τ )) ∈ P that derives from consideration
of the physical process suffered by the sub-body contained in the spatial interval
−ξ ≤ x ≤ ξ over the course of the time interval [−τ, τ ].

To specify a measure μ ∈ M (�) it is enough to specify how μ integrates
all continuous functions on �; that is, it is enough to specify the bounded linear
functional �μ : C(�,R) → R given by

�μ( f ) =
∫

�

f dμ, ∀ f ∈ C(�,R). (A.2)

The heating measure, q(ξ, τ ), for the process under consideration is given by

�q(ξ,τ )( f ) =
∫

�

f dq(ξ, τ ) :=

A
∫ τ

−τ

[ f (σ̂ ′(−ξ, t)) r(−ξ, t) − f (σ̂ (ξ, t)) r(ξ, t)] dt, ∀ f ∈ C(�,R). (A.3)

The change of condition measure, �m(ξ, τ ), is specified by the stipulation that,
for all g ∈ C(�,R),

��m(ξ,τ )(g) =
∫

�

g d�m(ξ, τ ) :=

ρ′ A
∫ 0

−ξ

[g(σ̂ ′(x, τ )) − g(σ̂ ′(x,−τ))] dx + ρ A
∫ ξ

0
[g(σ̂ (x, τ )) − g(σ̂ (x,−τ))] dx .

(A.4)

Thus, if P ⊂ V (�) contains descriptors of all physical processes our toy
model admits, then, from consideration of the physical process corresponding to
ξ > 0 and τ > 0, we can conclude that P contains the process descriptor

p(ξ, τ ) := (�m(ξ, τ )),q(ξ, τ )), (A.5)

with �m(ξ, τ ) and q(ξ, τ ) given by (A.4) and (A.3). Therefore, if α is a positive
constant (carrying units of energy)

α[2A r(0, 0) τ ]−1p(ξ, τ ) := α[2A r(0, 0) τ ]−1(�m(ξ, τ ),q(ξ, τ )), (A.6)

is a member of Cone (P). Our aim is to show that by judiciously taking a sequence
of values of ξ and τ , shrinking to zero, (A.6) will converge in V (�) to (0, α(δσ ′ −
δσ )), which is to say that (0, α(δσ ′ − δσ )) is a member of P̂ := cl [Cone (P)].

17 When these assumptions are dropped the outcome is essentially the same, but the analysis
becomes more cumbersome.
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To show convergence inV (�) of (A.6) to (0, α(δσ ′ −δσ )) as ξn and τn approach
0 in at least certain selected ways, we will argue that, for every choice of f and g
in C(�,R),

lim
n→∞ α[2A r(0, 0) τn]−1

(∫
�

g d�m(ξn, τn) +
∫

�

f dq(ξn, τn)

)
=

∫
�

f d [α(δσ ′ − δσ )] = α( f (σ ′) − f (σ )), (A.7)

provided that we take τn = 1
n and ξn = ( 1

n )2. We first note from (A.4) that

α [2A r(0, 0) τn]−1|
∫

�

g d�m(ξn, τn)| (A.8)

≤ α [2A r(0, 0) τn]−1[2A ξn ( ρ′ + ρ ) | g |max ] (A.9)

= α [ r(0, 0) ]−1 [ ( ρ′ + ρ ) | g |max | ] ξn

τn
, (A.10)

where

| g |max := max{ | g(σ ) | : σ ∈ � }. (A.11)

It is evident that, so long as we take τn = 1
n and ξn = ( 1

n )2, the quantity shown
in (A.10) will approach zero as n → ∞.

It remains to be argued that, with this same choice for τn and ξn ,

lim
n→∞ α [2A r(0, 0) τn]−1

(∫
�

f dq(ξn, τn)

)
= α( f (σ ′) − f (σ )). (A.12)

From (A.3) it follows that

α [2A r(0, 0) τn]−1
(∫

�

f dq(ξn, τn)

)
=

α [ r(0, 0) ]−1
{∫ τn

−τn

f (σ̂ ′(−ξn, t)) r(−ξn, t)
dt

2τn
−

∫ τn

−τn

f (σ̂ (ξn, t)) r(ξn, t)
dt

2τn

}
.

(A.13)

Therefore, to show that (A.12) holds, with τn = 1
n and ξn = ( 1

n )2, it is enough
to show that

lim
n→∞

∣∣∣∣
∫ τn

−τn

f (σ̂ ′(−ξn, t))
r(−ξn, t)

r(0, 0)

dt

2τn
− f (σ ′)

∣∣∣∣ = 0 (A.14)

and

lim
n→∞

∣∣∣∣
∫ τn

−τn

f (σ̂ (ξn, t))
r(ξn, t)

r(0, 0)

dt

2τn
− f (σ )

∣∣∣∣ = 0. (A.15)

However, these follow from continuity of the functions r , f ◦ σ̂ ′ and f ◦ σ̂ .
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B. New Carnot Elements Arising in a Thermometric Conjunction

As a companion to § 6.3, we provide here a discussion, supplemented by a toy
physical picture, to suggest how, for a Kelvin–Planck theory (�,P) endowed with
an ideal thermometer (��,P�), their thermometric conjunction (�C ,PC ) can
contain a Carnot element operating between two specified (perhaps non-equilibrium)
states of � even when (�,P) itself contains no such Carnot element.

For this purpose we suppose that (�,P) is a Kelvin–Planck theory of liquid
solutions composed of certain molecular species among which chemical reactions
occur. We suppose also that (��,P�) is an ideal thermometer for (�,P), encod-
ing the behavior of a thermometric material, which we will presume to be a perfect
gas.

As a preamble to the discussion, consider a single physical process involving
heat transfer between two bodies—one composed of the reacting liquid solution
described by (�,P) and the other composed of the thermometric gas described
by (��,P�). In the theory (�,P), the process will have associated with it a
heating measure q, defined on the Borel subsets of �. That same physical process,
viewed from the perspective of the thermometric conjunction (�C ,PC ) will also
have a heating measure qC defined on the Borel subsets of �C = � ∪ ��. It
should be clearly understood that the restriction of qC to the Borel sets of �

can be very different from q. This is because the heating measure in (�,P)

captures details of heat exchange between the reacting solution and its exterior,
an exterior that includes the gas thermometer. For that same physical process, the
corresponding heating measure in (�C ,PC ) captures the details of heat transfer
between a composite body (the solution sample taken with the thermometer) and the
exterior of that composite body. That is, in (�C ,PC ) the heating measure takes no
account of heat transfer between the reacting liquid solution and the thermometric
gas.

Now let σ ∈ � and σ ′ ∈ � be states of the reacting solution, not necessarily
states of chemical equilibrium. By properties of the thermometer, there are gas
states σθ and σ ′

θ in �� (and therefore in �C ) such that, in the conjoined theory

(�C ,PC ), σ and σθ are of the same hotness, as are σ ′ and σ ′
θ . Therefore, P̂C

contains the passive heat transfers required by Definition 6.3 between these liquid
solution states and their corresponding gas states.

Because the ideal thermometer (��,P�) has a unique Clausius–Duhem tem-
perature scale, Theorem 4.5 requires that P̂� contain a (reversible) Carnot element,
say (0, c δσθ − c′ δσ ′

θ
) ∈ V (��), operating between σθ and σ ′

θ . In physical terms,

this Carnot element can be regarded as the limit of representations in P̂� of a se-
quence of classical ideal gas Carnot cycles (as usually depicted in pressure-volume
space) traversing two (decreasingly small) isothermal segments, one centered at σθ

and the other at σ ′
θ .18

Because P� is, in the sense of Remark 6.2, essentially contained in PC ,
(0, c δσθ − c′ δσ ′

θ
), viewed as a member of V (�C ), is a (reversible) Carnot element

18 In the sequence, the amount of gas experiencing each cycle needn’t be the same.



Arch. Rational Mech. Anal.          (2024) 248:43 Page 41 of 52    43 

of P̂C . As we indicated above, P̂C also contains (reversible) passive-heat-transfer
elements of the form (0, c′ δσ ′

θ
− c′ δσ ′) and (0, c δσ − c δσθ ). Because P̂C is a

convex cone the sum, (0, c δσ − c′ δσ ′), of these three members of P̂C having
support entirely in �, is also a member of P̂C .

This is to say that in the thermometric conjunction (�C ,PC ) there is invariably
a Carnot element operating between two (arbitrary) states of the reacting liquid
solution, σ ∈ � and σ ′ ∈ �, whether or not these be states of chemical equilibrium
and even when the theory (�,P) of the reacting solution alone contains no such
Carnot element.

This is a consequence of the mathematics, deriving from the suppositions with
which we began. To understand in more physical terms how such a Carnot element
in (�C ,PC ) can emerge, even when absent in (�,P), it will be useful to consider a
toy physical picture meant to reflect the mathematics. The cartoon, like all cartoons,
is imperfect, but it is only meant to be suggestive. At the end of this appendix we
will make two remarks about how, in a much more extended exposition, certain of
those imperfections might be mitigated. These remarks will draw on Appendix A
and the appendix of this article’s companion [8].

In the cartoon, we imagine the Carnot element (0, c δσ − c′ δσ ′) in P̂C to derive
from a (limit) process of the following kind: a solution sample in state σ , contiguous
to the thermometric gas, rapidly absorbs a very small amount of heat, say c calories,
from an external bath while simultaneously passing that same small amount of heat
to the thermometric gas in state σθ , all without appreciable changes to the solution
sample. That heat is used to drive a small isothermal segment of a Carnot cycle in
the gas, that segment containing state σθ . A small amount of heat, in the amount
of c′ calories, is removed from the gas during the cycle’s second small isothermal
segment, that segment containing gas state σ ′

θ . The removed heat is rapidly passed
to a different sample of the reacting solution, this one in state σ ′, while an equal
amount of heat is simultaneously passed from there to a second external bath.

Note that in this overall hypothetical physical process, viewed as one expe-
rienced by a physical conjunction of liquid solution and thermometric gas taken
together, the only heat exchange between the conjunction and the conjunction’s
exterior is in the form of heat passage from the first external bath to the first solu-
tion sample (while in state σ ) and then from the second solution sample (while in
state σ ′) to the second external bath. This is reflected in the process’s codification
as (0, c δσ − c′ δσ ′) in P̂C .

However, viewed from the perspective of the reacting solution alone, described
by the Kelvin–Planck theory (�,P) (as distinct from (�C ,PC ), the overall phys-
ical process indicated does not manifest itself as a Carnot element. If it is kept in
mind that the thermometer is part of the solution’s exterior, as are the baths, it be-
comes apparent that there is no net absorption of heat from the solution’s exterior by
solution in either states σ or σ ′. This is to say that, in (�,P), the heating measure
for the overall physical process indicated is the zero measure in M (�).

Remark B.1. (Transient passive heat transfers between the baths and the solution
samples) In the cartoon, there is a transfer of a small amount of heat from the
reacting-solution sample, while the sample is in a perhaps nonequilibrium state σ ,
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to the thermometric material, while the thermometric material is in state σθ . Because
the reacting sample might be in a rapidly changing composition state, there arises
the question of how the passive heat transfer (0, c( δσ − δσθ )) ∈ P̂C could be
realized. This was the general subject of Appendix A, with special reference to the
thermometric setting in Remark A.1. In rough terms, that element in P̂C is derived
(in Appendix A) from consideration of very narrow material region straddling the
sample-thermometer interface during a time interval of vanishingly small duration.

Within the toy picture offered in this appendix, the initial reacting-liquid sample
considered might be identified, in the sense of Appendix A (in particular Remark
A.1), with a very thin sliver of liquid in the region [−ε, 0] abutting the liquid-gas
boundary, while the heat bath transmitting heat to that sample might be identified
with the remaining liquid, residing in the region [−L ,−ε) exterior to the sliver.19

Remark B.2. (About the addition of processes) Prior to the introduction of the
physical cartoon, the Carnot element (0, c δσ − c′ δσ ′) in P̂C derived mathemati-
cally as the sum of three other elements in P̂C , namely the passive heat transfers
(0, c′ δσ ′

θ
− c′ δσ ′), (0, c δσ − c δσθ ), and the Carnot element in the thermometric

gas, (0, c δσθ − c′ δσ ′
θ
), viewed as a member of P̂C .

That, for a natural thermodynamical theory, the closure of the cone of the
process set should be closed under addition is a consequence of reasoning given
in the appendix of [8]. For the most part—but not entirely—this results from the
supposition that two processes occurring in nature, suffered by different bodies, can
be run in remote locations simultaneously to give a new natural process, suffered
by the union of the two bodies, provided that the durations of the two separate
processes are identical. However, this was just one supposition in the appendix
of [8]. In light of still other natural suppositions, analysis in the appendix of [8]
indicates that, for the purpose of the additivity result, the simultaneity requirement
is, in effect, inconsequential.

This is mentioned here because, in the invocation of the physical cartoon, we
have been casual about timing related to the two passive heat transfers between
liquid and gas and also about timing related to the Carnot cycle in the gas. To
be more precise, we have been casual about the timing of the physical processes
(corresponding to members of PC ) that approximate those three limiting elements
of P̂C .

Discussion of such considerations would have made invocation of the cartoon
significantly more complex than its didactic purpose warrants, but readers might
want to keep in mind the appendix of [8].

19 In Remark A.1, σ ′ would be identified with σ here, while σ there would be identified
with σθ here.
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C. A Reversible Element in P̂ Involving Nonequilibrium States

It is the purpose of this appendix to indicate how, in a theory (�,P) of reacting
mixtures, there might arise in P̂ := cl [Cone (P)] a reversible element of the form
(δσ ′ − δσ ,q), where neither σ ′ ∈ � nor σ ∈ � is a state of chemical equilibrium.

We suppose that (�,P) describes gaseous mixtures of n molecular species
A1, A2, . . . , An that participate in a perhaps complex network of chemical reac-
tions. The local states will be regarded to be elements of the form (c, θ) ∈ R

n+1,
where c := [c1, c2, . . . , cn] ∈ R

n is the vector of local molar concentrations of the
n species (moles per unit volume) and θ is the local temperature (perhaps on an
empirical temperature scale).

To describe �, the full set of states for the theory, we first denote by M :=
[M1, M2, . . . , Mn] the vector of molecular weights (mass per mole) of the species.
For a fixed chosen positive value of ρ∗ (having units of mass per volume), the
compact set

� := {c ∈ R
n : M · c ≤ ρ∗, ci ≥ 0, i = 1, 2, . . . , n} (C.1)

is the set of all local molar concentration vectors consistent with a local mass
density less than or equal to ρ∗. Hereafter we take � = � × I , where I is a closed
(temperature) interval of positive real numbers, perhaps very large. We suppose
that, in the theory, ρ∗ and I are chosen to preclude from � density and temperature
extremes that are inappropriate to the model gaseous material under consideration.

For the mixture we presume that there are two smooth functions of state, ũ :
� → R and f̃ : � → R

n with the following interpretations: When (c, θ) is a
local state in the mixture, ũ(c, θ) is the local internal energy per unit volume, and
f̃ (c, θ) = [ f̃1(c, θ), . . . , f̃n(c, θ)] is the vector of the local net molar production
rates per unit volume of the n species due to the occurrence of all chemical reactions.

Consider a mixture sample that fills a rigid closed vessel of constant volume,
V , and suppose that the mixture remains spatially homogeneous at all times. That
is, at each instant the local state is the same everywhere. We presume that the local
state is governed by the system of ordinary differential equations (C.2):

ċ1 = f̃1(c, θ)

ċ2 = f̃2(c, θ)

...

ċn = f̃n(c, θ)

∂ ũ

∂θ
(c, θ) θ̇ = −∇c ũ(c, θ) · f̃ (c, θ) + Q(t). (C.2)

The overdot indicates differentiation with respect to time, and Q(t) is the rate
per unit volume at time t of heat addition to the mixture within the reactor vessel.
The first n equations are molar balances of the species. The last equation reflects
the First Law of Thermodynamics applied to the reactor under consideration: The
rate of change of internal energy of mixture filling the rigid reactor vessel is equal
to the rate at which heat is supplied to it.
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Remark C.1. Because the mass of the mixture filling the closed vessel is conserved
and because the volume of the vessel is fixed, the density of the mixture remains
constant in time, even as reactions cause the concentrations of the various species
to change. If ρ is the fixed density of mixture in the vessel, presumed less than ρ∗,
then the evolving vector of molar concentrations, governed by (C.2), will forever
remain in the set

� := {c ∈ R
n : M · c = ρ, ci ≥ 0, i = 1, 2, . . . , n}, (C.3)

which is clearly contained in �.
As a consequence, f̃ must be such that M · f̃ (c, θ) = 0 for all c and θ . Under

very weak assumptions about the kinetics of the various reactions, the function f̃
also has the property that f̃i (c, θ) ≥ 0 whenever ci = 0, which is to say that the
production rate of an absent species is not negative [5]. Hereafter, we assume that
f̃ has the property that any solution of (C.2) that begins with c initially in � will be
such that c(t) remains in �, and therefore in �, for all later times along the solution.

By a solution of (C.2) we will mean a set of n + 2 functions of time, c1(·),
c2(·),. . . , cn(·), θ(·), Q(·), that satisfy (C.2) in some time interval (particular to
that solution). So that we can focus specifically on the toy reactor described, we
will confine our attention to solutions such that, at the initial time, [c(·), θ(·)] takes
values in � × I .

Each such solution gives rise to a process (�m,q) ∈ V (�) in the following
way: Let [ti , t f ] be the time interval of the solution, and let α := Vρ be the mass
of the mixture in the vessel. Then the change of condition induced by the solution
is

�m := α(δ[c(t f ), θ(t f )] − δ[c(ti ), θ(ti )]). (C.4)

The heating measureq induced by the solution is defined by its action on continuous
functions: for each continuous ϕ : � → R,

∫
�

ϕ dq =
∫ t f

ti
ϕ (c(t), θ(t))V Q(t) dt. (C.5)

Hereafter, we suppose that P contains as a subset all processes corresponding to
those solutions of (C.2) that are consistent with the fixed mass α of the mixture
under consideration and initial conditions within � × I .

Let c 0 be a mixture composition in � and let θ 0 and θ
∗

be temperatures such
that [c 0, θ 0] and [c 0, θ

∗ ] are both in the interior of �. Moreover, for small ε > 0,
let θε(·) be the temperature history defined by

θ ε(t) := θ 0 + (θ∗ − θ 0)
t

ε
, ∀t ∈ [0, ε]. (C.6)

Consider the first n equations of (C.2), with the temperature given by (C.6) on
the time interval [0, ε]. From Remark C.1 and the smoothness of f̃ , the resulting n
equations admit a solution c ε(·) on [0, ε] satisfying the initial condition c ε(0) = c 0.
The full system (C.2) of n + 1 differential equations then admits the solution
c ε(·), θ ε(·), Q ε(·), with Q ε(·) calculated from c ε(·), θ ε(·), and the last equation
of (C.2).
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This solution gives rise to the process pε = (�mε,qε), where

�mε := α(δ[cε(ε), θ∗] − δ[c 0, θ 0]), (C.7)

and qε is given by the requirement that, for every continuous ϕ : � → R,
∫

�

ϕ dqε =
∫ ε

0
ϕ (c ε(t), θ ε(t))V Q ε(t) dt =

∫ 1

0
ϕ (c ε(εs), θ ε(εs))V Q ε(εs) εds.

(C.8)
Because � is compact, there is a number A such that, for all (c, θ) ∈ �,

‖ f̃ (c, θ) ‖ ≤ A. From the first n equations in (C.2) it follows that ‖ cε(t) − c0 ‖ ≤
A ε for all t ∈ [0, ε]. As a result �mε converges to

�m0 := α( δ [ c0, θ∗] − δ [ c0, θ 0 ] ) (C.9)

as ε approaches 0. Moreover, compactness of � ensures that there is number B
such that, on �, |∇c ũ · f̃ | ≤ B. From the last equation in (C.2) and (C.6) it follows
that, for all s ∈ [0, 1],∣∣∣∣ ε Q ε(εs) − (θ∗ − θ 0)

∂ ũ

∂θ
(c ε(ε s) , θ 0 + (θ∗ − θ 0) s)

∣∣∣∣ ≤ εB. (C.10)

Note that as ε approaches 0 the second term on the left of (C.10) approaches

(θ∗ − θ 0)
∂ ũ

∂θ
(c 0 , θ 0 + (θ∗ − θ 0) s). (C.11)

From this it follows that, as ε approaches 0, the heating measure qε given by (C.8)
converges to q0 defined by the requirement that, for each continuous ϕ : � → R,

∫
�

ϕ dq0 =
∫ θ∗

θ0

ϕ (c0, θ ′) ∂ ũ

∂θ
(c 0 , θ ′)V dθ ′. (C.12)

As ε approaches 0, then, the family of processes pε = (�mε,qε) in P

converges to p0 = (�m0,q0) in P̂ , with �m0 and q0 given by (C.9) and
(C.12). To see that −p0 is also a member of P̂ it suffices to reverse the roles of
θ0 and θ∗.

Thus, we have in P̂ a reversible element of the form

(δ[c0, θ∗] − δ[c0, θ0] , q0 ). (C.13)

Note that c 0, θ ∗, and θ 0 were chosen arbitrarily. Neither [c 0, θ ∗] nor [c 0, θ 0] need
be a state of chemical equilibrium — that is, a stationary solution of (C.2) with Q =
0.

Remark C.2. If (�,P) in our example is a Kelvin–Planck theory, and if η̄ (·) and
η (·) are Clausius–Duhem specific-entropy functions corresponding to the same
Clausius–Duhem temperature scale, then the Clausius–Duhem inequality and the
presence of (�m0,q0) in P̂ require that

η̄ (c0, θ∗) − η̄ (c0, θ0) = η (c0, θ∗) − η (c0, θ0). (C.14)
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Because c 0, θ 0 and θ∗ (and ρ) were chosen arbitrarily, (C.14) indicates that for
each c ∈ �, the functions η̄ (c, ·) and η (c, ·) differ by at most a constant. In
fact, if T : � → R+ is the Clausius–Duhem temperature scale to which the
specific-entropy function η(·) corresponds, then for each c ∈ � the Clausius–
Duhem inequality, (C.9), and (C.12) require that η(c, ·) be a function of the form

η (c, θ) = 1

M · c

∫ θ

θ0

1

T (c, θ ′)
∂ ũ

∂θ
(c, θ ′) dθ ′ + γ (c), (C.15)

where θ 0 is some fixed value in I .

Remark C.3. Reversible processes in the canonical picture are fictitious ones that
proceed so slowly, and with such small changes, that they could never be completed.
Nevertheless, they are regarded as processes that, in principle, can be approximated
by real ones sufficiently well that a complete theory should embrace them in the
limit.

In the context of the reacting-mixture theory considered in this appendix, the
limiting reversible process (corresponding to ε = 0) is approximated by processes
of a very different kind: As ε approaches zero, they complete increasingly quickly,
with increasingly rapid changes in temperature, and with increasingly higher rates
of heat transfer (all sustained over vanishingly small time intervals).

Remark C.4. In the hypothetical ε-parameterized processes described, temperature
is presumed to be spatially uniform despite very rapid rates of heat transfer. In the
case of conductive heat transfer to the mixture at the reactor wall, large values of
heat flux are associated with large values of spatial temperature gradients in the
mixture at the mixture boundary. However, even in the case of conductive heat
transfer from the exterior at the mixture boundary, a large value of Qε(t) (rate of
heat receipt per unit reactor volume) does not necessitate a large heat flux (rate of
heat receipt per unit area) at the reactor walls. For each ε > 0 we can imagine the
reactor vessel to be a tall narrow circular cylinder of fixed radius Rε, in which case
the heat flux at the cylinder wall would be Qε(t)Rε/2. By choosing Rε sufficiently
small, the instantaneous heat fluxes at the wall (and presumably the temperature
gradients there) can be kept as small as we wish.

D. Clausius Versus Clausius–Duhem Temperature Scales

In a 1983 article [6] we examined the existence and properties of Clausius
temperature scales (as distinct from Clausius–Duhem temperature scales) for ther-
modynamic theories that respect the Kelvin–Planck Second Law. In that context,
for a theory with state space �, a Clausius temperature scale T : � → R+ was a
continuous function that satisfies, for all cyclic processes, the Clausius inequality.
The Clausius inequality is just the form that the Clausius–Duhem inequality takes
for cyclic processes. Thus, T (·) is a Clausius temperature scale if it is continuous
and satisfies the Clausius inequality condition

0 ≥
∫

�

dq

T
, ∀q ∈ C , (D.1)
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whereC ⊂ M (�) is the set of heating measures associated with the theory’s cyclic
processes. In [6],C was called the set of cyclic heating measures. Because the focus
of [6] was entirely on cyclic processes, there was nothing in [6] corresponding toP ,
the full set of processes central to this article (apart from an anticipatory description
of P in the concluding remarks of [6]). Instead, C was taken in [6] as a primitive
notion, part of the description of a cyclic heating system, (�,C ).20

In light of the interpretation given to C in [6], we hereafter define C in this
appendix as follows: for a Kelvin–Planck theory (�,P),

C := {q ∈ M (�) : (0,q) ∈ P}. (D.2)

By a Clausius temperature scale for a Kelvin–Planck theory (�,P), we mean a
continuous function T : � → R+ that satisfies the condition (D.1), with C as in
(D.2). For (�,P) we denote by TClausius the set of all its Clausius temperature
scales.

Our interest is in the relationship between the set of Clausius temperature
scales for a Kelvin–Planck theory (�,P) and its set TC D of Clausius–Duhem
temperature scales, described in Definition 2.5. Recall that a continuous function
T : � → R+ is a Clausius–Duhem temperature scale for (�,P) if there is a
continuous (specific entropy) function η : � → R such that∫

�

η d(�m) ≥
∫

�

dq

T
, ∀ (�m,q) ∈ P. (D.3)

Because (D.3) is a more demanding requirement than is (D.1) we always have

TC D ⊂ TClausius . (D.4)

The following example demonstrates that TClausius can in fact be larger than TC D

even when P (as distinct from P̂) is a closed convex cone:

Example D.1. Here we consider a Kelvin–Planck theory (�,P) with state space
� consisting of just two states, labeled 1 and 2; � is given the discrete topology.
The process set P is the closed convex cone consisting of all (�m,q) ∈ V (�)

such that, with α taking all real values,

�m = λ ξ (δ2 − δ1), q = λ [(α − 1) δ1 + (α + 1) δ2], ξ ≥ α2, λ ≥ 0.

(D.5)
We will consider first the nature of Clausius–Duhem entropy-temperature pairs

for the Kelvin–Planck theory (�,P). In this case, a Clausius–Duhem entropy
function η : {1, 2} → R amounts to a specification of two numbers η 1 and η 2. A
Clausius–Duhem temperature scale T : {1, 2} → R+ amounts to a specification of
two positive numbers T1 and T2. For (η, T ) to constitute a Clausius–Duhem pair,
it must satisfy the Clausius–Duhem inequality for all (�m,q) ∈ P . If we let
β1 = 1/T1 and β2 = 1/T2, this amounts to the requirement that

ξ (η 2 − η 1) ≥ (α − 1)β1 + (α + 1)β2, ∀α, ∀ ξ ≥ α2. (D.6)

20 There the Kelvin–Planck Second Law took the form cl (Cone (C )) ∩ M+(�) = {0}.
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From this it is apparent that we must have η 2 − η 1 > 0 and

α2 (η 2 − η 1) − (β1 + β2)α + (β1 − β2) ≥ 0, ∀α. (D.7)

It is not difficult to see that (D.7) can be satisfied only if

β1 > β2 or, equivalently, T2 > T1. (D.8)

In fact, so long as (D.8) is satisfied, the Clausius–Duhem inequality will be satisfied
for all members of P with η chosen such as to have

η 2 − η 1 ≥ (β1 + β2)
2

4 (β1 − β2)
. (D.9)

Thus, for the Kelvin–Planck theory under consideration the set of Clausius–Duhem
temperature scales (Definition 2.5) is given by

TC D := {T : {1, 2} → R+ : T2 > T1}. (D.10)

We turn next to consideration of the set of Clausius temperature scales for the
same Kelvin–Planck theory (�,P). In this case, the set of cyclic heating measures
(corresponding to ξ = 0, α = 0) is given by 21

C := {q ∈ M (�) : q := λ (δ2 − δ1), λ ≥ 0}. (D.11)

Thus, a temperature function satisfies the Clausius requirement (D.1) precisely
when

0 ≥ 1

T2
− 1

T1
. (D.12)

This is to say that the set of Clausius temperature scales is given by

TClausius := {T : {1, 2} → R+ : T2 ≥ T1}. (D.13)

Note that TC D is contained in TClausius but is not identical to it.

In Example D.1, P was a closed convex cone. In the following example, which
is highly similar to the preceding one, P is not closed, and the distinction between
TC D and TClausius becomes substantially more pronounced.

Example D.2. In this example we consider a Kelvin–Planck theory (�,P) that is
identical to the one in Example D.1 apart from one difference: Whereas in Example
D.1 the parameter α was permitted to take on all real values, here we restrict α to
the nonzero real values. Despite the difference, the set of Clausius–Duhem pairs
here remains what it was in Example D.1. In particular, we again have

TC D := {T : {1, 2} → R+ : T2 > T1}. (D.14)

In this case, however, α �= 0, so P contains no cyclic processes at all, apart
from the trivial one in which (�m,q) = (0, 0). Thus, we have C = {0} and, as a
result,

TClausius := {T : {1, 2} → R+ : T1 > 0, T2 > 0}. (D.15)

21 Note that in this case C := cl (Cone (C )).
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Note that in the definition of C , given in this appendix by (D.2), the cyclic
heating measures derive from the cyclic processes contained only within the true
process set P , as distinct from the sometimes larger set P̂ := cl (Cone (C )). This
definition of C was motivated entirely by the physical interpretation given to C in
[6], where C was merely described as the set of heating measures associated with
cyclic processes. There was no mention or even a description of the fuller set of all
processes (except in the concluding remarks).

In the main body of this article a cyclic element of a thermodynamic theory
(�,P) is a member (�m,q) of P̂ such that �m = 0. The set of cyclic elements
of (�,P) contains not only all the cyclic processes inP but also members ofV (�)

that are approximated arbitrarily closely by “almost cyclic” processes (or positive
multiples of them). Leaving the interpretation of C in [6] aside, we could just as
well have defined a Clausius temperature scale for a Kelvin–Planck theory to be a
continuous function T : � → R+ such that

0 ≥
∫

�

dq

T
, ∀q ∈ C ∗, (D.16)

where C ∗ ∈ M (�) is the set of heating measures associated with the theory’s
cyclic elements. More precisely, 22

C ∗ := {q ∈ M (�) : (0,q) ∈ P̂}. (D.17)

For (�,P) we denote the set of Clausius temperature scales defined in this way
by T ∗

Clausius . Because the condition (D.16) is more demanding than (D.1) we call
members of T ∗

Clausius the strong Clausius temperature scales for (�,P).
We will now reconsider Examples D.1 and D.2 in light of these ideas.
Because in Example D.1 P̂ is identical to P , we have C ∗ = C , so there is no

distinction between T ∗
Clausius and TClausius . Thus, for Example D.1 we have

T ∗
Clausius = TClausius := {T : {1, 2} → R+ : T2 ≥ T1}. (D.18)

Every Clausius temperature scale is also a strong Clausius temperature scale.
In the case of Example D.2 we noted that there are no cyclic processes in P

apart from the trivial one, so C = {0}, and

TClausius := {T : {1, 2} → R+ : T1 > 0, T2 > 0}. (D.19)

However, for the process set P described in Example D.2, P̂ := cl (Cone (P))

is identical to the process set P of Example D.1, given by (D.5) with α taking all
real values. Thus, for Example D.2, C ∗ is identical to C in Example D.1, and

T ∗
Clausius := {T : {1, 2} → R+ : T2 ≥ T1}. (D.20)

Example D.2 indicates that for a Kelvin–Planck theory the set of strong Clausius
temperature scales can be very different from the set of Clausius temperature scales.

22 Were C in [6] identified with C ∗ as defined here, all mathematics would remain the
same; only the interpretation would be different.
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In both examples the sets of Clausius scales and strong Clausius scales are dif-
ferent from the set of Clausius–Duhem temperature scales, which in both examples
is given by

TC D := {T : {1, 2} → R+ : T2 > T1}. (D.21)

Note that in Example D.2 the set of Clausius–Duhem scales is very different from the
set of Clausius temperature scales, but in both examples the set of strong Clausius
temperature scales resembles very closely the set of Clausius–Duhem temperature
scales.

In some ways this last observation is surprising, for the Clausius–Duhem tem-
perature scale requirement (Definition 2.5) must take cognizance of the entire pro-
cess set P , not just the cyclic ones, while the strong Clausius temperature scale
requirement (D.16) takes cognizance only of the heating measures for Kelvin–
Planck theory’s cyclic elements. In fact, though, Theorem D.323 below indicates
that the phenomenon exhibited by the examples is general.

Theorem D.3. For any Kelvin–Planck theory the set of Clausius–Duhem temper-
ature scales is dense in the set of strong Clausius temperature scales.

In the proof of Theorem D.3, a Hahn–Banach separation theorem (but a different
version [11]) will again play a central role: Let V be a real locally convex topological
vector space. If A and B are disjoint nonempty convex subsets of V and A is open,
then there is a continuous linear function f : V → R and a constant α such that
f (x) < α for all x ∈ A and f (x) ≥ α for all x ∈ B.

Note that if B is closed under positive multiplication—that is, if λb is a member
of B for every b ∈ B and every λ > 0—then α can be taken to be zero. In the proof
below the set labeled C D, which will play the role of B, is closed under positive
multiplication.

Proof of Theorem D.3. We consider a Kelvin–Planck theory (�,P). Let K be the
linear subspace of C(�,R) consisting of all constant functions. The equivalence
relation ∼ in C(�,R) defined by f ∼ g if and only if f − g ∈ K gives rise
to the quotient vector space C0(�) := C(�,R)/K , with vectors consisting of
the equivalence classes and vector space operations inherited from C(�,R) in the
usual way. We give C0(�) the usual quotient topology, in which case C0(�) and
M ◦(�) are mutually dual spaces.

The equivalence class in C0(�) containing f ∈ C(�,R) is denoted [ f ]. Note
that for every measure μ ∈ M ◦(�) and every g ∈ [ f ] we have

∫
�

g dμ =
∫

�

f dμ, (D.22)

so there is no ambiguity in the definition
∫

�

[ f ] dμ :=
∫

�

f dμ. (D.23)

23 In the theorem statement it is understood that C(�,R) is given the sup norm topology.
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Notwithstanding a slight abuse of language and identification of β with 1/T ,
we will say that [η] ∈ C0(�) and β ∈ C(�,R+) constitute a Clausius–Duhem
pair ([η], β) for (�,P) if

∫
�

[η] d(�m) ≥
∫

�

β dq, ∀ (�m,q) ∈ P̂. (D.24)

In this way we can identify the set of Clausius–Duhem pairs for (�,P) with a
subset C D of the locally convex topological vector space

V ∗(�) := C0(�) ⊕ C(�,R). (D.25)

What we have called V (�) and V ∗(�) are mutually dual.
Let β0 be the reciprocal of a strong Clausius temperature scale for the Kelvin–

Planck theory (�,P), and let N be an open convex neighborhood ofβ0 in C(�,R+).
We will show that N contains a β such that, for some [η] ∈ C0(�), the pair ([η], β)

is a member of C D. Suppose on the contrary that the open convex set C0(�)⊕ N is
disjoint from the convex set C D, which is invariant under positive multiplication.
Then, from the Hahn–Banach separation theorem stated just above, there is a vector
(�m∗,q∗) ∈ V (�) such that

(i)
∫
�

[η] d�m∗ − ∫
�

β dq∗ ≥ 0, ∀ ([η], β) ∈ C D.
(i i)

∫
�

[ f ] d�m∗ − ∫
�

g dq∗ < 0, ∀ [ f ] ∈ C0(�), g ∈ N .

Note that (i i) cannot be satisfied unless �m∗ = 0. Therefore, since β0 is a member
of N , we have ∫

�

β0 dq∗ > 0. (D.26)

From (i) and Remark 5.10 it follows that there exists ν ∈ M+(�) such that
(�m∗,q∗+ν) = (0,q∗+ν) is a member of P̂ , whereuponq∗+ν is a member of
C ∗. Because β0 is the reciprocal of a strong Clausius temperature scale for (�,P),
we must have

∫
�

β0 d (q∗ + ν) =
∫

�

β0 dq∗ +
∫

�

β0 dν ≤ 0. (D.27)

Since β0 takes positive values and ν is a member of M+(�), we have

∫
�

β0 dq∗ ≤ 0, (D.28)

which contradicts (D.26). Therefore N contains the reciprocal of a Clausius–Duhem
temperature scale. ��
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