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Abstract

The Kelvin–Planck statement of the second law of thermodynamics is a stricture
on the nature of heat receipt by any body suffering a cyclic process. It makes no
mention of temperature or of entropy. Beginning with a Kelvin–Planck statement
of the Second Law, we show that entropy and temperature—in particular, existence
of functions that relate the local specific entropy and thermodynamic temperature
to the local state in a material body—emerge immediately and simultaneously as
consequences of the Hahn–Banach theorem. The existence of such functions of
state requires no stipulation that their domains be restricted to equilibrium states.
Further properties, including uniqueness, are addressed in a companion paper.

1. Introduction

There are several widely-accepted formulations of the Second Law in classical
thermodynamics, some invoking notions of temperature and entropy, and at least
one invoking neither of these explicitly.

In particular, the so-called Kelvin–Planck Second Law is an elemental stricture
on the nature of heat receipt by a body during the course of any cyclic process the
body might experience. It says, in effect, that during the course of a cyclic process
the body cannot merely receive heat from its exterior without also emitting heat
to it (in a manner qualitatively distinguishable from that of the heat receipt1). The
First Law then implies that, over the course of a cyclic process, the heat received by
the body cannot be converted entirely into work; there must be some heat emission

1 We shall be more precise about this later on. Planck [23] requires that heat exchange
between the body and its exterior cannot, on the whole, simply amount to extraction of heat
from a single “heat reservoir."
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as well. In the Kelvin–Planck Second Law there is no explicit mention of entropy
or of temperature, much less of a thermodynamic temperature scale.

As we indicated, other invocations of the Second Law are explicit in their use of a
thermodynamic temperature scale and of an entropy. Indeed the opening paragraph
of Gibbs’s “On the Equilibrium of Heterogeneous Substances" [16] invokes an
inequality of the form

⎡
⎣

The total entropy
of the body at the
end of the process

⎤
⎦ −

⎡
⎣

The total entropy of the
body at the beginning

of the process

⎤
⎦ �

∫
dq

T

∣∣∣∣
process

(1.1)

“dq denoting the element of heat received from external sources and T denoting
the temperature of the part of the system receiving it.”. (This interpretation of the
right side of (1.1) is taken from that same Gibbs paragraph.)

Much of modern classical thermodynamics takes as its starting point a Second
Law of the form (1.1), usually called the Clausius–Duhem inequality, deemed to
obtain for any body suffering any process, even processes in which there is rapid
heating or cooling, in which there are sharp temperature gradients, and in which
there is rapid and severe deformation.2 Neither at the start of the process nor at its
end need the body be in equilibrium.

This raises some historical and, more importantly, conceptual questions. En-
tropy and a thermodynamic temperature scale are generally regarded to be derived
entities, deduced from more fundamental statements of the Second Law (such as
the Kelvin–Planck version) by means of brilliant arguments posited by the early
thermodynamics pioneers. Those arguments, however, often invoke idealized slow
reversible processes (for example, Carnot cycles) in which the body suffering the
process is always in (or arbitrarily close to) a condition of equilibrium.3 Because the
classically derived notions of entropy and thermodynamic temperature rest upon
arguments in which the only body-states visited are ones at or very close to equi-
librium, it is reasonable to question whether these notions actually have rigorous
logical extensions to non-equilibrium domains.

Gibbs seemed willing to embrace such extensions. A reading of Gibbs’s inter-
pretation of the right side of (1.1) indicates that he had no reluctance to invoke a
thermodynamic temperature scale in bodies having different local temperatures in
different parts, and in an earlier, less read article [15], Gibbs clearly felt free to
attribute an entropy to a body that is not in equilibrium:

When the body is not in a state of thermodynamic equilibrium, its state is
not one of those which are represented by our surface. The body, however,
as a whole has a certain volume, entropy, and energy, which are equal to
the sums of the volumes, etc., of its parts.

2 In the context of classical continuum physics, a paper by Coleman and Noll [5] greatly
influenced modern methodology for use of the Clausius–Duhem inequality to deduce con-
straints on material properties. For examples involving chemically reacting mixtures, see [1]
and Chapter 13 in [7].

3 Fermi and Feynman give renditions of the classical arguments in [12] and [13].
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Note, in particular, that Gibbs was not reluctant to assert the existence of a local
entropy within an un-equilibrated body, its total entropy coming from a summing
process.

Yet it is not easy to trace a clear path from the equilibrium arguments for
entropy and thermodynamic temperature posited by the early pioneers to the non-
equilibrium entropy and temperature invoked by Gibbs. Even less evident is a
precise line of argument that begins with the pioneers and terminates with the
free-wheeling modern use of local entropy and thermodynamic temperature in the
Clausius–Duhem inequality, in particular when it is applied to bodies experiencing
rapid, non-uniform heat transfer and deformation.

Our aim is to connect, in a precise way, an elemental Kelvin–Planck statement
of the Second Law to the existence and properties of a thermodynamic temperature
scale and an entropy scale, both viewed as functions of the local material state,
that together satisfy the requirements of the Clausius–Duhem inequality (as it is
invoked in modern classical physics4) for all processes that material bodies under
consideration are deemed to admit. The mathematical ideas we use, principally
from functional analysis, were not available to the earliest pioneers of classical
thermodynamics, nor were they available to Gibbs.5 Our primary working tool is
the Hahn–Banach Theorem, in particular a version that ensures that two non-empty
disjoint closed convex sets in a locally convex topological vector space, at least
one of them compact, can be strictly separated by a hyperplane [2,4,24,33]. Along
the way, the Hahn–Banach Theorem will have the additional benefit of imparting
to thermodynamics an intuitive geometric flavor, different in substance and setting
from the geometric one pioneered by Gibbs [14,15].

2. Some Background

This article and its companion [11] constitute a major amplification of two much
earlier ones by us, both drawing on the Hahn–Banach Theorem heavily. The first
[9], published in 1983, was an extensive discussion of how the Hahn–Banach The-
orem serves to connect a suitably formulated version of the Kelvin–Planck Second
Law to the existence and properties (including uniqueness) of a thermodynamic
temperature scale that conforms to the so-called Clausius inequality—that is, to
the Clausius–Duhem inequality restricted to cyclic processes. For cyclic processes,
the left side of (1.1) reduces to zero, so there was no involvement of entropy.

The second article [10] was published originally in 1984 as an appendix in [34]
and soon after in a collection [28] of short essays about the foundations of thermo-
dynamics. That article indicated how, beginning with a slightly stronger version of
a Kelvin–Planck Second Law, the Hahn–Banach Theorem delivers simultaneously

4 When we refer to classical or continuum physics, we mean that part of physics that
embraces subjects such as fluid mechanics, heat transfer, elasticity theory, amd the theory
of diffusive and reacting mixtures, in which bodies are regarded as continuous media.

5 Henri Lebesgue was born in the year that Equilibrium of Heterogeneous Substances [16]
was first published.
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both a thermodynamic temperature and an entropy satisfying the requirements of
the Clausius–Duhem inequality, not restricted to cyclic processes.

Although [10] contained a Hahn–Banach proof of the equivalence of the Kelvin–
Planck Second Law with the existence of thermodynamic-temperature and entropy
functions of state suited to the Clausius–Duhem inequality, several other theorems
(including two about uniqueness) were merely stated without proofs. Those proofs
we said would be forthcoming in a fuller article. Moreover, we promised a more
compelling presentation of the existence argument, in which certain presumptions
about the structure of the putative set of thermodynamical processes would be sub-
stantially weakened. This article and its companion are intended to fulfill those
promises. The weakened, and more natural, assumptions about the structure of the
process-set have required a deeper analysis, much of it deferred to the appendix of
this article.

Remark 2.1. The 1986 volume [28], in which [10] appears, contains a wealth of
chapters by different authors devoted to the study of the mathematical foundations of
non-equilibrium classical thermodynamics. The same is true of [34]. Even beyond
those, there are many schools of thought about how classical thermodynamics might
be extended to non-equilibrium settings. These are surveyed amply and critically
in the 2008 book by Lebon et al. [19] (although some work contained in [28,34]
and related articles escaped the book’s notice). Readers of this article might want
to see very different work by Lieb and Yngvason [20], which in 1999 began as an
exploration of the construction of classical entropy for bodies in equilibrium and
then turned in 2013 to questions about the extent to which the same could be done
for un-equilibrated bodies [21]. For a recent summary of some of their work see
[35]; see also an article by Kammerlander and Renner [17].

Remark 2.2. To a great extent, discussions with James Serrin in the late 1970s
and early 1980s, in particular his formulations of the Second Law in terms of a
heat accumulation function, provided inspiration for our work (although not our
reliance on the Hahn–Banach theorem). Serrin’s views at the time are captured in
[25–27,29].

Remark 2.3. As in our earlier articles, we want to call particular attention to work
[30,31] by Miroslav Šilhavý,6 who realized independently and at about the same
time that Hahn–Banach separation theorems, taken with the Kelvin–Planck Second
Law, might provide a basis for existence of a thermodynamic temperature scale
consistent with the cyclic-process Clausius inequality. In [31] Šilhavý viewed the
thermodynamic temperature scale to be a function having as its domain a pre-
supposed empirical temperature scale. The most apt comparison to our work is
with some preliminary notes [8] we wrote in 1978 for James Serrin. There, we
also viewed a Clausius-inequality temperature scale to be a function having as
its domain a pre-supposed empirical temperature scale, and we too used Hahn–
Banach separation theorem arguments to demonstrate how the existence of such a

6 See also Šilhavý’s book [32].



Arch. Rational Mech. Anal.          (2024) 248:45 Page 5 of 23    45 

Clausius-inequality temperature scale derives immediately from, and is equivalent
to, the Kelvin–Planck Second Law.

Our subsequent published article [9] on the Clausius inequality was much more
ambitious. There, we chose not to pre-suppose an empirical temperature scale, car-
rying a pre-ordained notion of “hotness" and “hotter than." Rather, we regarded
the desired Clausius-inequality temperature scale to be a “function of state,” the
state domain depending on the material under consideration.7 In this way, we could
not only establish, via the Hahn–Banach Theorem, the equivalence of the Kelvin–
Planck Second Law with the existence of a temperature scale satisfying the Clausius
inequality, we could also tie relative values of that temperature to a “hotter than"
relation on the set of states, a relation deriving solely from processes the material is
deemed to admit. This is the position taken in [10] and here, where the entropy den-
sity, like the thermodynamic temperature scale, is a Hahn–Banach-derived function
of the local material state.8

3. Thermodynamical Theories

To a great extent modern classical thermodynamics manifests itself as a col-
lection of thermodynamical theories tailored to particular materials, these various
theories sharing common premises and common methodologies. There are, for ex-
ample, thermodynamical theories of elastic materials, of gases, of viscous fluids, of
diffusive reacting mixtures, and so on. Each such theory presumably carries with
it versions of the First and Second Laws, rendered concrete and precise within the
context of the specific class of materials under study.

With this viewpoint in mind, we regard the theorems contained in this article
and its companion to provide something like a “meta-thermodynamics" that sheds
an overarching light on the structure of specific thermodynamical theories. In par-
ticular, almost all of the theorems contained here assert that a theory has Property
A (usually a statement about the nature of heat transfer between bodies and their
exteriors in processes the theory admits) if and only if it has Property B (usually
a statement about entropy and thermodynamic temperature). The deeper and more
difficult of those implications always derives from the Hahn–Banach Theorem.

We will regard a thermodynamical theory to be a mathematical object consisting
of two sets: (i) a state space � that characterizes the set of (local) states that might
be exhibited within a material body embraced by the theory and (ii) a set P of
processes that abstracts the essential features of physical processes that such bodies
are deemed to admit. Taken together, these two sets will, for us, serve to constitute
an instance (�,P) of a thermodynamical theory.

7 For example, the local state of a gas might be specified by the local pressure and the
local specific volume. For other examples see Section 3.1.

8 After establishing a thermodynamic temperature function (of the empirical temperature),
one suited to the cyclic-process Clausius inequality, Šilhavý [31], went on to construct an
entropy, but that entropy is an attribute of an entire body, not the entropy-density function
of the local state established here via the Hahn–Banach Theorem.
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In this section and the next we will use terms such as body, material, material
point, and physical process, but only in an informal way to guide thinking about
the two sets � and P that constitute a thermodynamical theory or to provide
justification for the structure these sets are presumed to possess. Again, though, a
thermodynamical theory (�,P) is a purely mathematical object suited to precisely
stated questions and theorems. In particular, we will be in a position to say what we
mean by a Kelvin–Planck theory—that is, a thermodynamical theory that complies
with a precisely stated version of the Kelvin–Planck Second Law. And we will be
a position to ask about circumstances under which a particular thermodynamical
theory (�,P) admits two functions of state—a specific-entropy η : � → R and
a thermodynamic temperature scale T : � → R+ that together comply with the
Clausius–Duhem inequality for all processes P the theory contains.

Remark 3.1. The mathematical objects and theorems contained here lend them-
selves to a variety of physical interpretations. At least at the outset, it will be helpful
for the reader to think of a thermodynamical theory (�,P) as a description of a
particular material (for example, carbon dioxide, water, rubber, a metal alloy, a
diffusive reacting mixture). In this context, a specific-entropy function η : � → R

will have an interpretation as an attribute of a particular material—in the parlance
of continuum physics, a “constitutive function” for that material. Nevertheless, we
intend the abstract idea of a thermodynamical theory to be broadly adaptable to a
variety of circumstances and instances.

3.1. State Spaces

Central to virtually all classical theories of material body behavior is the idea of
“functions of state" that serve to compute local values of certain material attributes.
Indeed, one of our aims is to establish, from the Kelvin–Planck Second Law, the
existence of specific-entropy and thermodynamic-temperature functions, suited to
the Clausius–Duhem inequality, that permit the calculation of the local specific
entropy (entropy per mass) and the local thermodynamic temperature once the
local material “state” is specified.

Just how the “state of a material point” is specified will vary from one thermo-
dynamical theory to another.9 For a theory of a gas of fixed composition it might
be supposed that the local state is captured completely by specification of the pair
(p, v), where p is the local pressure and v is the local specific volume (the recip-
rocal of the density). For an elastic material, it might be supposed that the local
state is captured by the pair (u, F), where u is the local specific internal energy
(internal energy per mass) and F is the local deformation gradient. For a reacting
and diffusive mixture having n chemical species, the local state might be described
by the vector [c1, c2, . . . , cn, θ ] ∈ R

n+1, where ci is the local molar concentration
of the i th species and θ is the local temperature in degrees Fahrenheit.

9 The idea of a material point is basic to classical physics, wherein reference is freely
made to the density, velocity, stress tensor, temperature, or species concentrations at a point
within a body. We will always regard a state as an attribute of a material point within a body,
not of the body as a whole. For the body as a whole we will refer to its condition.
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In any case, we shall take for granted that a thermodynamical theory has asso-
ciated with it a state space �, understood to be the set of local states that might be
exhibited within a material body during processes the theory purports to describe.
It will be presumed that � carries with it a Hausdorff topology.

In fact, we will go further by supposing hereafter that � is compact. This
supposition will simplify the mathematics greatly, and in most instances it will
be physically apt: A well-grounded theory would suffer no loss from exclusion of
processes that visit material states which are physically unreasonable. Excluded
from consideration, for example, might be processes involving mass-densities so
high as to be realized only in black holes or so low as to be inconsistent with the
tenets of continuum models.

Remark 3.2. When the state space is merely presumed to be locally compact, real-
ization of the objectives of this paper become more technically delicate, and certain
theorems here become false without modification. In Appendix E of [9] we showed
how this might proceed when attention is restricted solely to cyclic processes, with
the aim of producing a thermodynamic temperature scale consistent with the Clau-
sius inequality.

3.2. Processes

A process experienced by a particular body can be described in a variety of
ways, some highly picturesque, involving pulleys and pistons. For our purposes,
however, there will be only two aspects of the process that need be considered:
(i) the change of condition of the body from the beginning of the process to its
end and (ii) the heating measure for the process, which is an overall accounting of
the nature of heat receipt the body experiences during the course of the process.
We will describe each of these separately. For us, a process will be identified with
specifications of both its change of condition and its heating measure.

3.2.1. The Change of Condition for a Process Recall that members of � are
understood to be local state descriptions—that is, candidates for describing the state
of a material point within a body. If we consider a body at a fixed instant, its material
points will be exhibited in various states of �. Although there might be just one
state exhibited throughout the body (in which case the body is thermodynamically
uniform), the distribution of states over the body could be far more diffuse. In any
case, we shall need a device to describe that distribution for a particular body at a
fixed instant.

By the (instantaneous) condition of the body we mean a positive regular Borel
measure on �, denoted here bym, interpreted in the following way: For each Borel
set � ⊂ �, m(�) is the mass of that part of the body consisting of all material
points in states contained in �. More colloquially, we can think of m(�) to be
determined by excising from the body only material in states contained within �

and weighing that part of the body so removed. Note that m(�) is the mass of
the entire body. Note also that if a body of mass M is thermodynamically uniform,
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with all material in state σ , then the body’s condition is Mδσ , where δσ is the Dirac
measure concentrated at σ .10

Now consider a physical process suffered by a particular body, with both the
body and the process presumably embraced by the thermodynamical theory under
consideration. During the process, the body might experience rapid deformation
and heat treanser, so that each material point within the body might present itself
in a great variety of states as the process ensues. In particular, the body’s final
condition m f might be very different from the body’s initial condition mi . We
associate with the process a change of condition, �m defined by

�m := m f − mi . (3.1)

Here �m is understood to be a signed regular Borel measure on �, which is
to say that �m might take positive values on some Borel sets and negative values
on others.11 Note, however, that we always have

�m(�) = m f (�) − mi (�) = 0, (3.2)

since each term on the right is the (conserved) total mass of the body suffering the
process.

3.2.2. The Heating Measure for a Process During the course of the physical
process under consideration, the body suffering the process might experience de-
formation and nonuniform transfer of heat to and from its exterior. Indeed, at a
given instant there might be heat receipt in some parts of the body and heat removal
in other parts. It should be kept in mind that each material point can be expected to
visit a variety of states in � as time progresses.

With the process we associate a heating measure q, which is a signed regular
Borel measure on � with the following interpretation: for each Borel set � ⊂ �,
q(�) is the net amount of heat received over the course of the entire process (from
the exterior of the body suffering the process) by material in states contained within
� at the time of heat receipt. In colloquial terms, imagine viewing the evolving
process through glasses that filter out material not in states contained in �; some
material might disappear and then reappear. The net heat received, over the entire
process, by the visible material (from the exterior of the entire body) is q(�).

3.2.3. Example: Change of Condition and Heating Measure Derived from a
More Concrete Process Description Because the abstract idea of a process’s

10 The Dirac measure δσ is defined by the requirement that, for each Borel set � ⊂ �,
δσ (�) is either 1 or 0 according to whether σ is or is not a member of �.
11 When the compact Hausdorff topology of � is given by a metric, in particular in the

almost universal case in which the state space is taken to be a subset of RN , every finite
signed Borel measure is already regular. See Chapter 12 in [3].
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change of condition and heating measure will be important hereafter,12 we will
indicate how these can be calculated from a somewhat more tangible description
of a process. With the process (having a compact metric space as the state space
�) we associate:

(i) a body B that experiences the process. Here we regard B to be a set (of
material points), taken with a σ -algebra of subsets of B, called the parts of B.
We presume that B comes equipped with a positive mass measure μ defined
on its parts: for each part P ∈ B, μ(P) is the mass of part P .

(ii) a closed interval of the real line I := [ti , t f ], identified with the time interval
over which the process transpires.

(iii) a measurable13 function σ̂ : B×I → �, with σ̂ (X, t) interpreted as the state
of material point X at instant t .

(iv) a real-valued signed measure h on B × I , interpreted as follows: For each
part P ⊂ B and each Lebesgue-measurable set J ⊂ I , h(P, J ) is the net
amount of heat received by part P from the exterior of the body during instants
contained in J .

For a process described this way, construction of the heating measure q pro-
ceeds as follows: for each Borel set � ⊂ �,

q(�) := h(σ̂−1(�)). (3.3)

To construct the change of condition for the process we begin by defining the initial
and final state assignments to material points:

σ̂i (·) := σ̂ (·, ti ) and σ̂ f (·) := σ̂ (·, t f ). (3.4)

The initial condition and final condition of body B are then defined by the require-
ment that, for each Borel set � ⊂ �,

mi (�) = μ(σ̂−1
i (�)) and m f (�) = μ(σ̂−1

f (�)). (3.5)

The change of condition for the process is then given by

�m := m f − mi . (3.6)

12 The idea of expressing the condition of a body as a measure on a state space was inspired
by a paper by Noll [22]. As far as we can recall from private conversations in 1978, James
Serrin had invented what we call a heating measure, but on a one-dimensional “hotness
manifold." He later abandoned that in published works, as he came to favor what he called
a heat “accumulation function" on the hotness manifold [27,29]. We do not take hotness as
a primitive notion.
13 Here � is understood to carry the Borel σ -algebra.
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3.2.4. The Set of Processes and Some of Its Properties In a theory with state
space �, a process will be regarded to be a pair (�m,q), where �m is the change
of condition for the process and q is its heating measure. We can regard both of
these as members of M (�), the vector space of signed regular Borel measures on
�. In fact, from (3.2) it follows that �m is always a member of the linear subspace
M ◦(�) ⊂ M (�) defined by

M ◦(�) := {ν ∈ M (�) ν(�) = 0}. (3.7)

Thus we can regard a process p = (�m,q) to be a member of the vector space

V (�) := M ◦(�) ⊕ M (�). (3.8)

Hereafter it will be understood that M (�) carries the weak-star topology,14 that
M ◦(�) carries the topology it inherits as a subset of M (�), and that V (�) carries
the resulting product topology. For a set X ∈ V (�) we denote by cl (X) its closure.

For a thermodynamical theory with state space �, the set of processes, P ⊂
V (�), will be understood to consist of members of V (�) that correspond to physi-
cal processes deemed to be admitted by material bodies in circumstances the theory
purports to embrace. Physical considerations suggest that, for any reasonable the-
ory, the set P should carry a certain structure, in particular that it should share at
least some of the attributes of a convex cone in V (�). Recall that P would be a
convex cone were it to have both of the following properties:

(i) For each p in P and each non-negative number α, αp is a member of P .
(ii) For all p and p∗ in P , p + p∗ is a member of P .

With respect to (i), it is not difficult to argue on physical grounds that that the
inclusion will be satisfied so long as α is a non-negative integer: If p= (�m,q)

is a physical process suffered by a body B, then for any positive integer n, we can
simultaneously execute the same process on n copies of B, copies that are not in
thermal communication. The n bodies, viewed as a single body, will have suffered a
physical process for which the change of condition is n�m and the heating measure
is nq. Thus, np = (n�m, nq) is a member of P , corresponding to the physical
n-body process described.

Similarly, we can expect on physical grounds that the inclusion in (ii) will be
satisfied so long asp= (�m,q) andp∗ = (�m∗,q∗) correspond to two physical

14 The weak-star topology onM (�) is its coarsest topology such that, for every continuous
function ϕ : � → R, the map

v ∈ M (�) →
∫
�

ϕ dv

is continuous. Then v0 ∈ M (�) is in the weak-star closure of a subset S ⊂ M (�) if, for
every finite sequence ϕ1, ϕ2, . . . , ϕn in C(�,R) and every ε > 0, there is a v ∈ S such
that | ∫� ϕ j dv − ∫

� ϕ j dv0 | < ε, j = 1, . . . , n. Unlike the norm topology, the weak-star
topology on M (�) reflects the topology of �. For example, if σi → σ in � as i → ∞,
then δσi → δσ with respect to the weak-star topology in M (�), while ‖δσi − δσ ‖ = 2 for
each i .
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processes having the same temporal duration: If these physical processes are suf-
fered by bodies B and B∗, then the two processes can be executed simultaneously,
with B and B∗ thermally isolated from one another, perhaps by large physical
distance. This simultaneous execution can be viewed to be another physical pro-
cess, suffered by the body composed of B and B∗, having change of condition
�m + �m∗ and heating measure q + q∗. In this case, the new physical process
would have a representation in V (�) (and in P) given by p + p∗.

These considerations tell us that, in a reasonable theory, the process set P can
be expected to have some natural structure, including features that are suggestive
of a convex cone in V (�). In fact, in [10] we assumed that P is a convex cone.
Here we make no such assumption.

We defer to the Appendix a far more nuanced discussion of the structure that
we will suppose P possesses. By Cone (P) we mean the set in V (�) defined by

Cone (P) := {αp ∈ V (�) : p ∈ P, α � 0}. (3.9)

Based on a few plausible physical assumptions, we argue in the Appendix that, in
a reasonable theory, the set

P̂ := cl (Cone (P)) (3.10)

should not only be a closed cone in V (�), it should also be convex. This we will
take for granted hereafter.

3.3. Definition of a Thermodynamical Theory

For the record, we posit the following definition:

Definition 3.3. A thermodynamical theory consists of a (compact) Hausdorff set
�, called the state space of the theory, and a set P ⊂ V (�) such that

P̂ := cl (Cone (P)) (3.11)

is convex. Elements of P are the processes of the theory.

Remark 3.4. The definition is formulated in such a way as to remind the reader of
our presumption that � is compact. Recall Remark 3.2.

4. Kelvin–Planck Theories

In this section we will make precise what we mean by a Kelvin–Planck theory—
that is, a thermodynamical theory that respects a form of the Kelvin–Planck Second
Law. We want to capture the following idea: In every cyclic process in which the
body suffering the process experiences a heat absorption from the body’s exterior,
there must also be heat emission to the exterior, the emission being qualitatively
different from the absorption. If there were there no heat emission, the process would
be perfectly efficient, for by the First Law the heat absorbed would be converted
entirely into work.
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By a cyclic process in the thermodynamical theory (�,P) we will mean a
process in which the condition of the body at the end of the process is the same as
it was at its beginning. That is, a cyclic process p = (�m,q) is a process such
that the change of condition �m is 0.

Consider a cyclic process p∗ := (0,q∗) with q∗ 
= 0. Recall that if � ⊂ � is
a Borel set of states, thenq∗(�) is interpreted to be the net amount of heat absorbed
during the course of the entire process by material while in states contained in �.
If q∗ is a non-negative Borel measure—that is, one that takes non-negative values
on every Borel set, then there is no Borel set of states that, for the process, can
be associated with net heat emission. Moreover, by supposition q∗ is not the zero
measure, so there is at least one Borel set on which q∗ is positive, corresponding
to heat absorption.

For these reasons, when q∗ 
= 0 is a non-negative measure, we will regard the
cyclic process p∗ := (0,q∗) to be inconsistent with the spirit of the Kelvin–Planck
Second Law. For the thermodynamical theory (�,P) we denote by M+(�) the
set of non-negative regular Borel measures on �, and we also let

(0,M+(�)) := {(0,v) ∈ V (�) : v ∈ M+(�)}.
Thus, for a thermodynamical theory (�,P) we might regard the requirement

P ∩ (0,M+(�)) is at most (0, 0) (4.1)

to be a full embodiment of the Kelvin–Planck Second Law. Or, if we want to assert
that a nonzero element of (0,M+(�)) cannot even be approximated by the theory’s
processes, then we might strengthen (4.1) by requiring that

cl (P) ∩ (0,M+(�)) is at most (0, 0). (4.2)

However, two examples will reveal a sense in which even (4.2) falls a little short
of capturing the Kelvin–Planck stricture against an approach to perfect conversion
of heat into work in cyclic processes. The examples will indicate why we prefer to
express the Kelvin–Planck Second Law in terms of a requirement that is somewhat
stronger than (4.2).

Each example will be in the form of a toy thermodynamical theory in which
the state space � is identified with the real interval [0, 1]. Recall that, for x ∈ �,
δx denotes the Dirac measure at x . That is, if � ⊂ � is a Borel set then δx (�) = 1
if x is in � and is zero otherwise.

Example 4.1. (A sequence of cyclic processes with small fixed heat emission but
unbounded heat receipt) Consider a thermodynamical theory (�,P), in which
P contains the sequence of cyclic processes

{(0, nδ1 − δ0) : n = 1, 2, ...}. (4.3)

In each process of the sequence there is heat absorbed (by material in state 1) and
heat emitted (by material in state 0). Thus, no process of the sequence is a member
of the forbidden set (0,M+(�)), nor does the sequence converge to any nonzero
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member of the forbidden set. For this reason, a putative assertion of the Kelvin–
Planck Second Law in the form (4.2) would not preclude for the theory (�,P) the
presence of the sequence (4.3) in P .

Nevertheless, the sequence contains cyclic processes that come arbitrarily close
to having perfect efficiency as n increases: In each process, the heat absorbed (all
at state 1) is n, while the work done (equal, in a cyclic process, to the net amount
of heat received) is n − 1. The efficiency, then, is n−1

n , which approaches 1 as n
gets large. Although members of the sequence (4.3) do not converge to a member
of the forbidden set, they do come close to aligning in the vector space V (�) with
the forbidden element (0, δ1).

Such an arbitrarily close approach to perfect efficiency would seem to violate
the spirit of the Kelvin–Planck Second Law. The example reveals a sense in which
the condition expressed by (4.2) is not a fully suitable reflection of that spirit.

Example 4.2. (A sequence of almost-cyclic processes, each with heat receipt but no
heat emission) Consider a thermodynamical theory (�,P), in which P contains
the sequence of processes

{(δ1/n − δ0, nδ1/2) : n = 1, 2, ...}. (4.4)

In each process of the sequence, the heating measure indicates no heat emission,
only (unbounded) heat absorption, entirely at state 1

2 . Still, no process of the se-
quence constitutes a violation of a Kelvin–Planck-type Second Law, as no process
is cyclic. Nevertheless, as n increases the change of condition approaches 0 while
the heat absorption becomes unbounded. Although the sequence does not converge
to any member of the forbidden set (0,M+(�)), its processes nevertheless vio-
late the Kelvin–Planck spirit, for as n increases they increasingly resemble cyclic
processes with (large) heat absorption but no heat emission.

Here, as in Example 4.1, a codification of the Kelvin–Planck Second Law in
the form (4.2) does not suffice to preclude the presence in P of a troubling process
sequence, in this case (4.4).

Stated informally, the difficulty in both examples is that, while neither sequence
converges to an element of the forbidden set (0,M+(�)), members of each se-
quence come arbitrarily close to pointing along a “forbidden direction” in the vector
space V (�). For a thermodynamical theory (�,P), we will identify the direction
of a process p ∈ P with the half-line

{αp ∈ V (�) : α � 0}. (4.5)

Note that Cone (P), given as before by

Cone (P) := {αp ∈ V (�) : p ∈ P, α � 0}, (4.6)

is the set of all directions generated by members of P . The condition

cl (Cone (P)) ∩ (0,M+(�)) = (0, 0) (4.7)
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then says in effect that no nonzero element of the forbidden set (0,M+(�)) can be
approximated by vectors of V (�) having directions associated with members of
P .

Remark 4.3. (Examples 4.1 and 4.2 reconsidered) Although the problematic ther-
modynamical theories considered in Examples 4.1 and 4.2 were not precluded by
the putative Kelvin–Planck Second Law in the form (4.2), they are precluded by the
strengthened condition (4.7). In the case of Example 4.1 the sequence in Cone (P)

{(0, δ1 − 1

n
δ0) : n = 1, 2, ...}

converges to (0, δ1). In the case of Example 4.2 the sequence in Cone (P)

{(1

n
[δ1/n − δ0], δ1/2) : n = 1, 2, ...}

converges to (0, δ1/2).

For these reasons, our preferred codification of the Kelvin–Planck Second Law
will take the form (4.7) rather than (4.2). Note that if P is itself a cone then there
is no difference between (4.7) and (4.2). Recall that in Definition 3.3 (the definition
of a thermodynamical theory (�,P)) we let

P̂ := cl (Cone (P)). (4.8)

Definition 4.4. A Kelvin–Planck theory is a thermodynamical theory (�,P)

such that

P̂ ∩ (0,M+(�)) = (0, 0). (4.9)

5. Hahn–Banach Equivalence of the Kelvin–Planck Second Law and the
Existence of Entropy-Temperature Functions of State

The following theorem asserts that, for a thermodynamical theory, compliance
with the Kelvin–Planck Second Law is equivalent to the existence of two continuous
functions of state, a specific-entropy function and a thermodynamic temperature
scale that, taken together, satisfy the Clausius–Duhem inequality for all processes
the theory contains. Entropy and thermodynamic temperature emerge simultane-
ously and almost immediately as a direct consequence of the Hahn–Banach theo-
rem. There is no reliance at all on venerable thermodynamic conceptual machinery
in the form of reversible processes, Carnot cycles, heat baths, or even the idea of
equilibrium.

In the theorem statement C(�,R) denotes the set of real-valued continuous
functions on �, and C(�,R+) is the set of positive-valued continuous functions.
R+ denotes the set of strictly positive real numbers.
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Theorem 5.1. (Existence of Entropy and Thermodynamic Temperature) For
a thermodynamical theory (�,P) the following are equivalent:

(i) (�,P) is a Kelvin–Planck theory.
(ii) There exist functions η ∈ C(�,R) and T ∈ C(�,R+) such that

∫
�

η d(�m) �
∫

�

dq

T
, ∀ (�m,q) ∈ P. (5.1)

Proof of Theorem 5.1 will make use of some fairly straightforward adaptations
of ideas (see, for example, [4]) in functional analysis that were unavailable to the
thermodynamics pioneers: First, V (�) is a locally convex Hausdorff topological
vector space. Second, the compactness of � ensures that the convex set

(0,M 1+(�)) := {(0,v) ∈ V (�) : v ∈ M+(�),v(�) = 1} (5.2)

is (weak-star) compact. Finally, if f : V (�) → R is a continuous linear function,
then there exist functions α(·) and β(·) in C(�,R) such that, for every (v,w) ∈
V (�),

f (v,w) =
∫

�

α dv +
∫

�

β dw. (5.3)

What follows is the version of the Hahn–Banach theorem that underlies almost
all theorems in this article and its companion article, [11].

Theorem 5.2. (Hahn–Banach) Let V be a Hausdorff locally convex topological
vector space, and let A and B be non-empty disjoint closed convex subsets of V ,
with B compact. There is a continuous linear function f : V → R and a number
γ ∈ R such that

f (a) < γ, ∀ a ∈ A

and

f (b) > γ, ∀ b ∈ B.

In particular, if A is a cone, then

f (a) � 0, ∀ a ∈ A

and

f (b) > 0, ∀ b ∈ B.

Remark 5.3. For proofs of this version of the Hahn–Banach theorem see Theorem
21.12 in [4], Theorem 1.7 in [2], or Corollary 14.4 in [18]. The last sentence of
Theorem 5.2 is not usually stated explicitly, but it is an easy consequence of the
preceding one.

We are now in a position to prove Theorem 5.1, the central theorem of this
article.
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Proof of Theorem 5.1. To prove that (i) implies (ii) we first note for the Kelvin–
Planck theory (�,P) that, in the Hausdorff locally convex topological vector
space V (�), the closed convex cone P̂ is disjoint from the convex compact set
(0,M 1+(�)). From the Hahn–Banach theorem, then, there is a continuous linear
function f : V (�) → R such that

f (�m,q) � 0, ∀ (�m,q) ∈ P̂ (5.4)

and

f (0,w) > 0, ∀ (0,w) ∈ (0,M 1+(�)). (5.5)

Moreover, there are functions η (·) and β (·) in C(�,R) such that f (·, ·) has the
representation15

f (v,w) =
∫

�

(−η) dv +
∫

�

β dw, ∀(v,w) ∈ V (�). (5.6)

Note that for each σ ∈ � the Dirac measure δσ is a member of M 1+(�). From this,
(5.5), and (5.6) it follows that β(·) takes strictly positive values. Letting T (·) =
1/β(·), we get (5.1) as a consequence of (5.4) and (5.6). This completes proof that
(i) implies (ii).

To prove that (ii) implies (i) we first observe that if the inequality (5.1) is satisfied
for a particular (�m,q) ∈ P , then the inequality is also satisfied by α(�m,q)

for every non-negative number α. For this reason, (ii) implies that the inequality
∫

�

η d(v) �
∫

�

dw

T
(5.7)

is satisfied for all (v,w) in Cone (P) and therefore for all (v,w) in P̂ :=
cl (Cone (P)]. To show that (�,P) is a Kelvin–Planck theory we must show
that P̂ can contain no member of the form (0,w), where w is a nonzero mem-
ber of M+(�). Because T (·) is positive-valued, such an element could not satisfy
(5.7). This completes the proof of Theorem 5.1. 
�
Remark 5.4. (Interpretation of (ii)) In Theorem 5.1 (ii) we will, of course, regard
(5.1) to be an expression of the Clausius–Duhem inequality, with η(·) and T (·)
playing the roles of specific-entropy (entropy per mass) and thermodynamic tem-
perature functions of state that assign to each σ ∈ � a specific-entropy η(σ ) and a
value T (σ ) of the thermodynamic temperature.

If, for a physical process, mi and m f are the initial and final conditions of the
body suffering the process then, with �m = m f − mi , we have

∫
�

η d(�m) =
∫

�

η dm f −
∫

�

η dmi . (5.8)

15 See, for example, §3.14 in [24]. Although for every continuous linear functional g on
M (�) there is a unique continuous function ϕ ∈ C(�,R) such that g(μ) = ∫

� ϕ dμ, ∀μ ∈
M (�), the situation for M ◦(�), with the topology given earlier, is a little different. In that
case, the representing function ϕ is unique only up to an additive constant.
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In view of (5.8) we can interpret the integral on the left side of (5.1) to be the
difference in the entropy of the body suffering the process between the end of the
process and its beginning.

In this sense, Theorem 5.1 tells us that for any Kelvin–Planck theory, there is
a notion of the entropy of a body (along with a thermodynamic temperature scale)
that aligns with the Gibbs version (1.1) of the Clausius–Duhem inequality with
which we began. Note, however, that Theorem 5.1 does much more, for it provides,
in the spirit of modern classical physics, a local notion of specific entropy (entropy
per mass), as a function of the local state within a body.

If a particular process (�m,q) derives from the data specified in the example of
Sect. 3.2.3, the inequality in (ii) can be pulled back to a more traditional description
of the Clausius–Duhem inequality, in effect an elaboration of the Gibbs version
(1.1) suited to modern continuum physics:∫

B
η (σ̂ f (X)) dμ(X) −

∫
B

η (σ̂i (X)) dμ(X) �
∫
B×I

d h(X, t)

T (σ̂ (X, t))
. (5.9)

Connections of entropy (with existence derived via [10]) to the theory of partial
differential equations (in particular the canonical equations of continuum physics)
are discussed by Evans [6].

In preparation for our concluding remarks and for the companion article [11],
we record the following definition:

Definition 5.5. (Entropy, Thermodynamic Temperature) Let (�,P) be a Kelvin–
Planck theory. An element (η, T ) of C(�,R) × C(�,R+) that satisfies (5.1) is a
Clausius–Duhem pair for the theory. A function T ∈ C(�,R+) is a Clausius–
Duhem temperature scale for the theory if there exists η ∈ C(�,R) such that
(η, T ) is a Clausius–Duhem pair. In that case, η(·) is a specific-entropy function
for the theory (corresponding to the Clausius–Duhem temperature scale T (·)).
Remark 5.6. (Differentiability of the specific-entropy function and the thermody-
namic temperature scale) In applications of the Clausius–Duhem inequality, dif-
ferentiability of the entropy and temperature with respect to state descriptors often
plays a role. Here we focused solely on continuity of these functions. When, for a
thermodynamical theory (�,P), the state space � is such that differentiability of
real-valued functions on � has meaning, Theorem 5.1 remains true with C(�,R)

replaced by C k(�,R), so long as the same replacement is made in the definition of
the topology onM (�), given in footnote 14. That revised topology, which is coarser
than the weak-star topology, exerts itself in the definition of P̂ := cl (Cone (P)).
This is discussed more fully, but in a narrower context, in Remark 10.2 of [9].
Similar considerations apply to the theorems of the companion article [11].

6. Concluding Remarks

In any thermodynamical theory that complies with the Kelvin–Planck Second
Law, as expressed by (4.9), Theorem 5.1 asserts that there are invariably specific-
entropy and thermodynamic-temperature functions (of the local material state)
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that together satisfy the Clausius–Duhem condition (5.1). Moreover, the two con-
ditions are equivalent, so any theory for which there is a Clausius–Duhem entropy-
temperature pair must comply with the form of the Kelvin–Planck Second Law
given by (4.9).

Again, the proof that (i) implies (ii) is immediate. It relies only on the Hahn–
Banach Theorem and functional analysis infrastructure unavailable to the brilliant
founders of classical thermodynamics. It is worth emphasizing again that, with
respect to the existence of Clausius–Duhem entropy-temperature pairs, there is no
reliance on reversible processes or notions of thermodynamic equilibrium. There is
no requirement that the set of processes contain certain ones of a specified kind. To
some extent this will change in the companion article [11], where we consider prop-
erties (including uniqueness) of specific-entropy and thermodynamic-temperature
functions of state, in particular the relation of those properties to the supply of
processes.
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Appendix: The Convexity of P̂

In the main body of this article, the set P ⊂ V (�) carried information about the totality of
outcomes admitted by processes within a particular thermodynamical theory. In this appendix
we will argue that, in natural theories, P can be expected to have a special structure.
In particular, we will provide support for the presumption in the main text that P̂ :=
cl [Cone (P)] is convex.

Recall that an element of P , say p = (�m,q), provides information about the overall
result of a particular process, with �m := m(t f ) − m(t i ) giving the overall difference,
from the initial time to the final time, in the condition of the body suffering the process and
with q giving the process’s overall heating measure. Although the emphasis has been on the
overall outcome, a physical process nevertheless evolves over time in the instants between
its inception and completion.
With this in mind, we take for granted that each process p ∈ P can be associated with a
physical history experienced by a particular body.16 In particular, with p we can associate a

16 There might be several histories that different bodies can experience which nevertheless
result in the same overall record carried by p. These different histories might have different
durations. Our presumption here is that for each p there is at least one such history.
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closed time interval [t i
p, t f

p], where t i
p is the initial time at which the process begins and t f

p

is the final time at which it ends. The duration of the process history is the positive number

t f
p − t i

p.

Moreover, we assume that we can associate, at every instant in [t i
p, t f

p], a specification
of the difference between the body’s current condition and its condition at the process’s
inception, and that we can also associate a specification of the current (cumulative) heating
measure. That is, with process p = (�m,q) we assume that there is a continuous process
history,17

τ ∈ [t i
p, t f

p] → (�m̄(τ ), q̄(τ )) ∈ V (�), (A.1)

such that q̄(t i
p) = 0, q̄(t f

p) = q, �m̄(t i
p) = 0, and �m̄(t f

p) = �m.

Remark A.1. Given the process history described above, we take for granted that, for each

closed time interval contained within [t i
p, t f

p], there is another member of P , say p∗ =
(�m∗,q∗), corresponding to the restriction of the given process history to that smaller time

interval. That is, if [t i
p∗ , t f

p∗ ] is the smaller time interval, then

�m∗ = �m̄(t f
p∗) − �m̄(t i

p∗) and q∗ = q̄(t f
p∗) − q̄(t i

p∗). (A.2)

With this as background, what follows is a brief list of properties we assume to be possessed
by the set of process histories associated with P . Each property will be accompanied by a
rationale. Taken together, these properties will shed light on the geometric structure of P .

Property 1. If p1 and p2 are members of P associated with process histories of identical
duration, then p1 + p2 is also a member of P having associated with it a history of that
same duration.

Rationale. If the two processes p1 = (�m1,q1) and p2 = (�m2,q2) are experienced
by bodies B1 and B2 then those same processes can be run simultaneously with copies of
B1 and B2 at remote locations (or, more generally, thermally insulated from each other).
The union of the bodies is again a body. The process experienced by the union will have
�m1 +�m2 as the body’s change of condition and q1 +q2 as its heating measure. Thus,
p1 + p2 is a member of P .

Remark A.2. If p is a member of P there is, by supposition, a process history associated
with it. It is a consequence of Property 1 (and its rationale) that, for any integer n, np is also
a member of P .

Property 2. If p = (�m,q) ∈ P has associated with it a process history of duration d
then, for any integer N , p also has associated with it a history of duration d/N .

Rationale. The time interval for the given process history can be regarded to be the union of
N sequential (closed) time intervals, each of duration d/N . With each such smaller interval
we can associate, as in Remark A.1, a sub-process history. Using N copies of the original
body suffering the process, we can execute those N sub-process histories simultaneously,
as in the rationale for Property 1. The union of the N body-copies is again a body, this one
suffering a process of duration d/N . By virtue of Property 1 the overall change of condition
will again be �m and the overall heating measure will again be q.

17 Here is is understood that the functions �m̄(·) and q̄(·) are particular to the process
history under consideration and that �m̄(τ ) = m̄(τ ) − m̄(t i

p), where m̄(τ ) gives the
condition at time τ of the body suffering the process.
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Property 3. Suppose that two members of P , say p1 and p2, are associated with histories
of durations d1 and d2. If d1/d2 is rational, then p1 + p2 is also a member of P .

Rationale. This is just a consequence of Properties 1 and 2: Suppose that d1/d2 = N1/N2,
where N1 and N2 are integers. Then, from Property 2, p1 and p2 can be associated with two
histories of identical duration, d1/N1 = d2/N2. From Property 1 it follows that p1 +p2 is
a member of P .

We will not assume that we can always associate with p ∈ P a process history of rational
duration. Nevertheless, we will assume that there is invariably a nearby element ofP that can
be associated with a rational-duration process history. This is made precise in the following
way:

Property 4. If p is an element of P and O ⊂ V (�) is any open neighborhood of p, there
is in O an element of P that can be associated with a process history of rational duration.

Rationale. This is just a consequence of the natural assumption that p can be associated
with a process history that is continuous in time. In fact, for Property 4 to obtain it is sufficient
that p can be associated with a process history that is merely continuous at its final time.

In the next proposition we assume that, for the thermodynamical theory (�,P) under con-
sideration, the set P and the set of histories associated with its elements possess Properties
1-4.

Proposition A.3. P̂ := cl [Cone (P)] is a convex subset of V (�).

Proof. We need to show that if x1 and x2 are members of P̂ and α is a number between
0 and 1, then αx1 + (1 − α)x2 is also a member of P̂ . It is not difficult to show that, in a
topological vector space, the closure of a cone is again a cone, whereupon P̂ is a cone. In
particular αx1 and (1 − α)x2 are members of P̂ . Therefore, to establish that P̂ is convex,
it is enough to prove the following lemma:

Lemma A.4. If v1 and v2 are members of P̂ then so is v1 + v2.

Proof. Our aim is to show that if, in the topological vector space V (�), O is an open
neighborhood of v1 + v2, then O contains an element of Cone (P).
Because vector addition V (�)×V (�) → V (�) is continuous, there are open sets O 1 and
O 2 in V (�) containing v1 and v2 respectively such that the set

O 1 + O 2 := {w1 + w2 ∈ V (�) : w1 ∈ O 1, w2 ∈ O 2} (A.3)

is contained in O .
By supposition, v1 is a member of cl [ cone (P) ]. Because O 1 is an open neighborhood of

v1, there must be a member of Cone (P) in O 1. That is, O 1 must contain a member of the
form α1p1, with α1 a positive number and p1 a member of P . Because, in the topological
vector space V (�), scalar multiplication R × V (�) → V (�) is continuous, there is an
open interval I1 ⊂ R+ containing α1 and an open neighborhood Ô1 of p1 such that the set

I1 · Ô1 := {θ1w1 ∈ V (�) : θ1 ∈ I1, w1 ∈ Ô 1, } (A.4)

is contained in O1.
In particular, there is a rational number α∗

1 ∈ I1 and, from Property 4, an elementp∗
1 ∈ Ô1

associated with a process history of rational duration such that α∗
1p

∗
1 is a member of O1.

Similarly, O2 contains a member of the form α∗
2p

∗
2 , where α∗

2 is rational and p∗
2 ∈ P has
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associated with it a process history of rational duration. Because O 1 + O 2 is contained in
O , we have the inclusion

α∗
1p

∗
1 + α∗

2p
∗
2 ∈ O. (A.5)

It remains to be shown that α∗
1p

∗
1 + α∗

2p
∗
2 is a member of Cone (P).

Let n1, m1, n2, m2 be integers such that α∗
1 = n1/m1 and α∗

2 = n2/m2. Thus, we have
the inclusion

1

m1m2
(n1m2p

∗
1 + n2m1p

∗
2 ) ∈ O. (A.6)

From Remark A.2 it follows that n1m2p
∗
1 and n2m1p

∗
2 are members ofP having associated

with them individual process histories of rational durations (identical to those associated with
p∗

1 and p∗
2 , respectively). From Property 3, then, their sum p∗∗ := n1m2p

∗
1 + n2m1p

∗
2 is

a member of P , so we have the inclusion

1

m1m2
p∗∗ ∈ O. (A.7)

Thus, there is a member of Cone (P) that lies in O . This is what we wanted to prove. 
�
This completes the proof of Proposition A.3. 
�
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