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Abstract

The Beris–Edwards model of nematic liquid crystals couples an equation for the
molecular orientation described by the Q-tensor with a Navier–Stokes type equation
with an additional non-Newtonian stress caused by the molecular orientation. Both
equations contain a parameter ξ ∈ Rmeasuring the ratio of tumbling and alignment
effects. Previous well-posedness results largely vary on the space dimension n and
the constraints of the parameter ξ ∈ R. This work addresses strong well-posedness
of this model, first locally and then globally for small initial data, both in the L p-
L2-setting for p > 4

4−n , in the general cases, i.e., for n = 2, 3 and without any
restriction on ξ . The approach is based on methods from quasilinear equations and
the fact that the associated linearized operator admits maximal L p-L2-regularity.
The proof of the latter property relies on techniques from sectorial operators, Schur
complements and J -symmetry.

Mathematics Subject Classification 35Q35 76A15 76D03

1. Introduction

In physics there are various ways of describing order parameters in liquid crys-
tals: the Doi–Onsager, the Landau–De Gennes and the Ericksen–Leslie theory.
These lead to mathematical theories at various levels. The Ericksen-Leslie-model
is a so-called vector model. Vector theories have the drawback that they do not
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respect head-to-tail symmetry (see [2]) which leads to difficulties when describing
defect structures. Another type of model describing liquid crystal flow is the Q-
tensor model, including the Landau-De Gennes theory. In contrast to vector models,
it uses a symmetric, traceless 3×3-matrix Q to describe the alignment of molecules;
they allow the description of the biaxiality of the alignment.

There exist several models which describe the dynamics of liquid crystals mak-
ing use of the Q-tensor. We concentrate here on the Beris–Edwards system describ-
ing biaxial liquid crystals by the set of equations (1.1)–(1.6) given in [7] and below
in (1.1). The evolution of Q is driven by the free energy of the molecules as well
as by transport, distortion, tumbling and alignment effects caused by the flow. The
flow field is forced by an additional non-Newtonian stress caused by the molecules
orientation and expressed in terms of Q and ξ , where the parameter ξ measures
the ratio of tumbling and alignment effects. For more information on various liquid
crystal systems we refer to the monographs by Sonnet and Virga [29], and Virga
[33] as well to the survey articles [16,31] and [35].

Previous analytical results on the Beris-Edwards model concentrated mainly
on the case where the parameter ξ is zero or n = 2, see e.g. [8].

In what follows we analyze the Beris-Edwards model [7] in a bounded domain
� ⊂ R

n with smooth boundary in dimensions n = 2, 3 and for arbitrary ξ ∈ R.
This Q-tensor model, going back to the work of de Gennes [12] describes, as
written above, in contrast to the Ericksen–Leslie system, biaxial liquid crystals.
The Beris–Edwards model is given by the following set of equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u + (u · ∇)u − ν�u + ∇ p = div(τ (Q, H) + σ(Q, H)), in �, t ∈ (0, T ),

div u = 0, in �, t ∈ (0, T ),

∂t Q + (u · ∇)Q − S(∇u, Q) = 	H, in �, t ∈ (0, T ),

(u, ∂νQ) = (0, 0), on ∂�, t ∈ (0, T ),

(u, Q)|t=0 = (v0, Q0), in �.

(1.1)

Here

S(∇u, Q) :=(ξD(u) + W (u))(Q + I/n) + (Q + I/n)(ξD(u) − W (u))

− 2ξ(Q + I/n) tr(Q∇u),

H(Q) :=λ�Q − aQ + b(Q2 − tr(Q2)I/n) − c tr(Q2)Q,

τ (Q, H) := − λ∇Q � ∇Q − ξ(Q + I/n)H − ξH(Q + I/n)

+ 2ξ(Q + I/n) tr(QH),

σ (Q, H) :=QH − HQ = λ(Q�Q − �QQ) = λσ(Q,�Q),

where u, p and Q describe the velocity, pressure and the molecular orientation of
the liquid crystal, respectively. Moreover, 	, λ, ν and a are positive constants and
b and c are constants. For simplicity, we set ν = 	 = λ = a = b = c = 1,
which does not change our analysis concerning the existence and uniqueness of
local solutions for arbitrary large data and global solutions for small data described
in Theorems 3.1 and 3.2. This is, of course, different when we are considering as
in Remark 3.3 the set of equilibria for equation (1.1).
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More specifically, Q takes values in S
n
0, the space of symmetric n× n-matrices

having trace zero. In three space dimensions, Q having one, two, or three dif-
ferent eigenvalues corresponds then to the case of isotropic, uniaxial and biaxial
liquid crystals, respectively. The term S describes how the gradient of the veloc-
ity, ∇u, stretches and rotates the order parameter Q. The expression H relates to
the variational derivative of the free energy functional which uses the one con-
stant approximation for the Oseen-Frank energy of liquid crystals together with
a Landau-de Gennes expression for the bulk energy, (cf. e.g. [3,7]). The terms τ

and σ correspond to the symmetric and antisymmetric part of the stress tensor,
respectively, and the parameter ξ describes the ratio of tumbling and alignment
effects.

Moreover, D(u) = 1
2 (∇u + (∇u)T ) and W (u) = 1

2 (∇u − (∇u)T ) denote the
symmetric and antisymmetric part of the gradient of u, respectively. Regarding
matrix-related notation, in the above I stands for the n × n-valued identity matrix
(although we shall use it later also for other identities), tr describes the trace of a
matrix, and the (i, j)-component of ∇Q � ∇Q equals tr(∂i Q∂ j Q).

Analytically, the Beris–Edwards model has been studied by many authors. The
existing results on weak and strong solutions as well as their uniqueness properties
depend, however, largely on the space dimension n and the constraints on the
parameter ξ .

Concerning weak solutions, the first results were established by Paicu and
Zarnescu in [22]. They considered the case � = R

n and ξ = 0 and were able
to prove global existence of weak solutions to Eq. (1.1) in dimension n = 2 and
n = 3, as well as weak-strong uniqueness for n = 2. In [23] they expanded their
result to the case where ξ �= 0 is sufficiently small. The existence of weak so-
lutions for the general case ξ ∈ R and n = 2, 3 was proven by Wilkinson [32].
He also established higher regularity results in two dimensions when ξ = 0 for
a singular potential as bulk energy. Furthermore, Feireisl, Rocca, Schimperna and
Zarnescu [11] proved existence of weak solutions for an isothermal variant with
the above mentioned singular potential as bulk energy for periodic boundary con-
ditions. Moreover, existence of global weak solutions with a more general energy
functional was shown by Huang and Ding [17]. Abels, Dolzmann and Liu [3]
showed local well-posedness and global existence for weak solutions.

Concerning strong solutions, Abels, Dolzmann, and Liu [4] established local,
strong well-posedness of equations (1.1) with different boundary conditions for the
case ξ = 0. Cavaterra, Rocca, Wu and Xu [8] showed global well-posedness of
Eq. (1.1) in dimension n = 2 for general ξ ∈ R. Furthermore, Xiao [34] showed
local well-posedness and global existence for small data for the case ξ = 0 and with
the additional assumption of S = 0. Global well-posedness and decay estimates for
a modified stress tensor of equations (1.1) were shown by Schonbek and Shibata
[28] in the case � = R

n . The above Q-tensor model for general values of ξ ∈ R

but subject to inhomogeneous Dirichlet boundary conditions was investigated by
Liu and Wang in [19] even in the setting of anisotropic elasticity. They proved the
existence of a unique, local strong solution in the case of strong anchoring boundary
conditions for Q for a non-empty subset of certain admissible initial data (u0, Q0)
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belonging to H1
0,σ × H2. Note that the size of this subset remains unclear while

our approach does not require any such admissibility conditions.

It is the aim of this paper to give a rather complete understanding of the well-
posedness of the Beris-Edwards model in dimension n = 2, 3 in the case of an
arbitrary ratio of tumbling and aligning effects. Let us note that by well-posedness
we mean well-posedness in the strong sense. We prove in Sect. 3 first that the Beris–
Edwards model is locally, strongly well-posed for arbirtray ξ ∈ R and n = 2, 3
and secondly, that the trivial equilibrium v∗ = 0 is stable in the sense that for initial
data close to this equilibrium, the solution exists globally and converges to some
equilibrium point as t → ∞.

Analytically, the main difficulty in the investigation of the Q-tensor model is
given by the fact that the latter equations formulate a quasilinear, mixed order
system where the diagonal parts are of second order operators, whereas the off-
diagonal parts are of third and first order. Let us note that, in contrast to systems,
whose principal parts give rise to well-posedness results, see e.g. [6,10], there is no
general theory for mixed order systems. Introducing an anisotropic ground space,
we obtain a system where every entry is of highest order. The analysis of this latter
system is one of the main difficulties of our approach.

It is interesting to comment on previous approaches. Xiao [34] assumed that
ξ as well as the coupling term S is zero. In this case, the system is of upper
triangular form and solvability properties can be shown rather easily. Schonbek
and Shibata [28] studied a modified stress tensor, which results in a system which
is of perturbed lower triangular form. The perturbation is then controlled by an
additional smallness assumption. Murata and Shibata [21] considered only the full
space case with data close to zero. The linearisation then simplifies considerably to
the case where the relevant and difficult terms vanish. Thus, it reduces to the case of
constant coefficients. Let us emphasize that our approach includes the general case
of arbitrary Q-tensors Q0. Moreover, our strategy allows for dealing not only with
R
n but with the physically relevant case of bounded domains. Abels, Dolzmann and

Liu [4] assumed ξ = 0 and different boundary conditions. This results in additional
symmetry properties of the system. They then show local strong well-posedness of
a regularized system for which the different boundary conditions are necessary, and,
secondly, they transfer this property to the limiting system by higher-order energy
estimates. When performing these higher order energy estimates they exploit the
above mentioned additional symmetry that arises only when ξ = 0. It is unclear
whether their method can be generalized to the case of ξ �= 0.

The rest of this article is structured as follows: in Sect. 2 we describe the Beris-
Edwards model and its derivation in some detail. Section 3 is devoted to the presen-
tation of our main results. Thereafter, we state well-posedness results for quasilinear
evolution equations. Section 5 deals with the linearization of the quasilinear formu-
lation of (1.1) and its maximal regularity properties. Here we make use of methods
from Schur complements and J -symmetry. We estimate the nonlinear terms in
Sect. 6, before we prove the main theorems in Sect. 7.
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2. Description of the Model

In this section we give a short explanation of the Q-tensor model described
in (1.1). For a very thorough study of liquid crystal models we refer to the two
monographs by Virga [33] and Sonnet and Virga [29].

Given a point x ∈ � ⊂ R
n , n = 2 or n = 3, let �x be the probability density

function of the molecular orientation. These molecular orientations are elements of
Sn−1, the unit sphere in R

n . The Q-tensor is then defined as the traceless second-
order moment of this probablity density function, i.e.,

Q(x) :=
∫

Sn−1

(
ω ⊗ ω − 1

n
I

)
�x (ω)dσ n−1(ω), x ∈ �, (2.1)

where σ n−1 denotes the surface measure on Sn−1. Since tr(ω⊗ω) = |ω|2 = 1, we
see that tr Q = 0. Thus Q(x) belongs to S

n
0,R

, the space of symmetric, traceless
n × n-matrices; that is,

Q(x) ∈ S
n
0,R := {Q ∈ R

n×n : Q = QT , tr Q = 0}.
In dimension n = 3, Q(x) has one, two or three different eigenvalues corresponding
to the isotropic, uniaxial or biaxial liquid crystals, respectively. These models were
investigated by Ball, Majumdar [1] and Ball and Zarnescu [2]. In the following, we
summarize some of their ideas.

Since Q(x) is symmetric, it has three (not necessarily different) eigenvalues
λ1, λ2, λ3 ∈ R. The representation (2.1) yields that λ1, λ2, λ3 ∈ [− 1

3 , 2
3 ]. Denoting

by ei the eigenvectors of λi , i = 1, 2, 3, of unit length, we see that Q(x) can be
represented as

Q(x) = (2λ1 + λ2)(e1 ⊗ e1) + (λ1 + 2λ2)(e2 ⊗ e2) − (λ1 + λ2)I. (2.2)

Now, if Q(x) has only one distinct eigenvalue, this eigenvalue is zero and thus
Q(x) = 0, which correponds to the isotropic case, i.e., the molecules are randomly
distributed.

If Q(x) has two different eigenvalues (without loss of generality λ2 = λ3,
λ2 = − 1

2λ1), then (2.2) implies that Q(x) can be represented as

Q(x) = s
(
(e1 ⊗ e1) − 1

3
I

)
,

where s := 3
2λ1 ∈ [− 1

2 , 1]. The unit vector e1 corresponds then to the director field
in the Ericksen-Leslie model. For analytical results concerning this model we refer
to [14–16]. This case corresponds to the uniaxial nematic state.

If Q(x) has three different eigenvalues, then (2.2) yields that it can be respre-
sented as

Q(x) = s1

(
e1 ⊗ e1 − 1

3
I

)
+ s2

(
e2 ⊗ e2 − 1

3
I

)
, (2.3)

where s1 = 2λ1 +λ2 and s2 = λ1 +2λ2 for s1, s2 ∈ [− 1
2 , 1] and s1 �= s2. This case

corresponds to the biaxial nematic state, i.e., there are two axes of symmetry within
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the arrangement of the molecules. Here the direction of these two axes are e1 and
e2, while s1 and s2 measure the respective degrees of the orientational ordering.

We now turn our attention to the free energy functional. For given constants
a, λ > 0, b, c ∈ R and Q : � → S

n
0,R

its free energy functional is given by

F(Q) =
∫

�

(λ

2
|∇Q(x)|2 + a

2
tr(Q(x)2) − b

3
tr (Q(x)3)

)
+ c

4

(
tr (Q(x)2)

)2
dx .

The first summand above amounts for the elastic energy, whereas the other terms
stem from the Landau–de Gennes thermotropic energy (see [12]). For Q ∈ {Q ∈
H2(�,Sn0.R

) : ∂νQ = 0 on ∂�}, the term

H := H(Q) := λ�Q − aQ + b
(
Q2 − tr(Q2)

I

n

)
− c tr (Q2)Q (2.4)

relates to the above free energy by

lim
ε→0

F(Q + εφ) − F(Q)

ε
=

∫

�

tr(−H(x)φ(x))dx =< −H, φ >L2

for any φ ∈ H1(�,Sn0.R
).

The dynamic equation for the Q-tensor is then given by

∂t Q + (u · ∇)Q − S = 	H on (0, T ) × �, (2.5)

with a positive constant 	 > 0. It states that the change in time of Q is given
by a convection term, a term S, which describes how the gradient of the velocity
stretches and rotates the order parameter and a term H , which is derived from the
above energy functional. The term S is given by

S(∇u, Q) := (ξD + W )(Q + I/n) + (Q + I/n)(ξD − W )

− 2ξ(Q + I/n)tr (Q∇u),

where D = D(u) = 1
2 (∇u+(∇u)T ) and W = W (u) = 1

2 (∇u−(∇u)T ) denote the
symmetric and anti-symmetric part of the velocity gradient, respectively. Moreover,
the parameter ξ ∈ R describes the ratio of tumbling and alignment effects.

The flow field is forced by an additional non-Newtonian stress caused by the
molecules’ orientation and expressed in terms of Q and ξ . It reads as

∂t u + (u · ∇)u − ν�u + ∇ p = div (τ + σ) on (0, T ) × �, (2.6)

where ν > 0 is a constant and τ is the symmetric and σ the anti-symmetric part of
the stress tensor given by

τ(Q, H) := − λ∇Q � ∇Q − ξ(Q + I/n)H − ξH(Q + I/n)

+ 2ξ(Q + I/n) tr(QH),

σ (Q) :=QH − HQ = λ(Q�Q − �QQ) = λσ(Q,�Q),

where the (i, j)-th component of ∇Q � ∇Q equals tr(∂i Q∂ j Q).
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Lastly, there is the incompressibility condition

div u = 0 on (0, T ) × �. (2.7)

Summing up, the Q-tensor model of Beris-Edwards is given by the momentum
equation (2.6), the incompressibility condition (2.7), the dynamic equation for the
order parameter (2.5) and Neumann boundary condutions for Q, Dirichlet boundary
conditions for u as well as initial conditions u0 and Q0 for u and Q.

3. Main Results

Let n ∈ {2, 3} and let � ⊂ R
n be a domain with smooth boundary ∂�. For

p ∈ (1,∞), k ∈ N, we denote by L p(�) and Wk
p(�) the Lebesgue space and

Sobolev space of order k on the domain � equipped with the norms ‖ · ‖p and
‖ · ‖Wk

p
, respectively. We also denote Wk

2 (�) by Hk(�). The space of of solenoidal

functions L2
σ (�) is given by L2

σ (�) := {u ∈ C∞(�)n : div u = 0}‖·‖2
.

We consider the Edwards–Beris system as a quasilinear evolution equation in
the groundspace

X0 := Xu
0 × XQ

0 := L2
σ (�) × H1(�,Sn0),

where

S
n
0 = {A ∈ C

n×n : A = AT , tr(A) = 0}
denotes the space of symmetric, traceless n× n-matrices, which is closed in C

n×n .
The domain X1 of the quasilinear Q-tensor operator is defined by

X1 := Xu
1 × XQ

1 := D(A2) × D(�1
N )

where A2 := P� denotes the Stokes operator in L2
σ (�) with domain

D(A2) := Xu
1 := {u ∈ H2(�)n ∩ L2

σ (�) : u = 0 on ∂�},
and �1

N := −� + I the shifted Neumann-Laplacian on H1(�,Sn0) with domain

D(�1
n) := XQ

1 := {Q ∈ H3(�,Sn0) : ∂νQ = 0 on ∂�}.
Let us note that the norm on S

n
0 is given by ‖Q‖Sn0 = tr(QQ∗), where Q∗ denotes

the congugate transpose of Q. For p ∈ (1,∞) the trace space Xγ is given as the
real interpolation space

Xγ = (X0, X1)1−1/p,p = (Xu
0 , Xu

1 )1−1/p,p × (XQ
0 , XQ

1 )1−1/p,p.

We recall from [14] the following characterizations of the interpolation spaces
involved:

(Xu
0 , Xu

1 )1−1/p,p := {u ∈ B2−2/p
2,p (�) ∩ L2

σ (�), u = 0 on ∂�},
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(XQ
0 , XQ

1 )1−1/p,p := {Q ∈ B3−2/p
2,p (�), ∂νQ = 0 on ∂�}.

Note that

Xγ ↪→ B2−2/p
2,p (�) × B3−2/p

2,p (�) ↪→ C(�) × C1(�,Sn0),

provided that 1/p + n/4 < 1. We are considering solutions in the space E of
maximal L p-regularity given by

E := L p(0, T ; X1) ∩ H1,p(0, T ; X0)

using vector valued Lebesgue and Sobolev spaces, cf. e.g. [25, Chapter 3]. The
spaces Eu and E

Q are defined analogously. They denote function spaces related to
the regularity of u and Q.

Given p ∈ (1,∞) and (u0, Q0) ∈ Xγ , we say that (u, Q) is a local, strong
solution to equation (1.1), if (1.1) is satisfied almost everywhere on (0, T ) for some
T > 0 and if (u, Q) ∈ E. If the same assertion holds true for T = ∞, we call
(u, Q) a global, strong solution to equation (1.1).

We are now in the position to state our main results, namely local well-posedness
and global existence of (1.1) for arbitrary values of ξ ∈ R and n ∈ {2, 3}.
Theorem 3.1. (Local, strong well-posedness for arbitrary ξ ∈ R). Let n ∈ {2, 3}
and p > 4

4−n . Let ξ ∈ R be arbitrary and assume that v0 = (u0, Q0) ∈
{u ∈ B2−2/p

2,p (�) ∩ L2
σ (�), u = 0 on ∂�} × {Q ∈ B3−2/p

2,p (�), ∂νQ = 0 on ∂�}.
Then there exists T = T (v0) > 0 such that there exists a unique, strong solution

v = (u, Q) to equation (1.1) on (0, T ) lying in the regularity class

v ∈ H1,p
(

0, T ; L2
σ (�) × H1(�;Sn0)

)
∩ L p

(
0, T ; H2(�) × H3(�;Sn0)

)
.

Our second main result concerns global existence of strong solutions for initial
data close to the trivial equlilibria v∗ = 0 and reads as follows:

Theorem 3.2. (Global existence for small initial data). Let p > 4
4−n and ξ ∈ R.

Then the equilibrium v∗ = 0 of (1.1) is stable in Xγ , i.e., there exists δ > 0 such
that the strong solution v(t) of (1.1) with initial value v0 ∈ Xγ and ‖v0‖Xγ ≤ δ

exists globally and converges exponentially to 0 in Xγ as t → ∞.

Remark 3.3. One might wonder how the set of equilibria for equation (1.1) looks
like. Let us note that in dimension n = 2 or n = 3, v = (0, 0) ∈ R

n × S
n
0,R

is the
only spatially constant equilibrium for (1.1). This assertion depends, of course, on
the chosen set of parameters a = b = c = 1. Here the set of spatially constant
equilibria is given by

{(u, Q) ∈ R
n × S

n
0,R : 0 = H(Q) = −Q + Q2 − tr (Q2)I/n − tr (Q2)Q}.

In fact, for the case n = 2, Q ∈ S
2
0,R

can be represented as

(
α β

β −α

)

, for some

α, β ∈ R. The equality Q2 − tr (Q2)I/2 = 0 yields H(Q) = −Q − tr (Q2)Q =
−(1 + 2(α2 + β2))Q. Hence, Q = 0 is necessary for H(Q) = 0. This assertion
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remains true in the case of general coefficients a > 0 and b, c ∈ R provided
a + 2c(α2 + β2) > 0.

If n = 3, then by (2.3) Q can be represented as

Q(x) = s
(
e1 ⊗ e1) − 1

3
I

)
+ r

(
e2 ⊗ e2) − 1

3
I

)
,

where s = 2λ1 + λ and r = λ1 + 2λ2. Assuming H(Q) = 0 and substituting the
above representation of Q into H(Q) we obtain three equations for the coefficients
s and r . One can show that these three equations do not have a real solution besides
the trivial one given by s = r = 0. This implies Q = 0.

4. Background on Quasilinear Evolution Equations

In this section we briefly recall some results on quasilinear parabolic equations
of the form

v̇ + A(v)v = F(v), t > 0, v(0) = v0, (4.1)

which are employed in the proofs of our main theorems.
We start by fixing some notation. For a Banach space X0 let A0 : D(A0) =

X1 → X0 be a densely defined linear operator. For p ∈ (1,∞) and 0 < T ≤ ∞
we define the data space F(0, T ) and the maximal regularity space E(0, T ) by

F(0, T ) := L p(0, T ; X0) and E(0, T ) := W 1,p(0, T ; X0) ∩ L p(0, T ; X1).

Furthermore, for p ∈ (1,∞) we denote by Xγ = (X0, X1)1−1/p the time trace
space. Let V be an open subset of Xγ .

The following assumptions are essential for showing existence and uniqueness
of strong solutions to problem (4.1). (We denote the closed ball centered around 0
in E with radius R > 0 by BE(0, R).

(A1) The operators A : Xγ → L(X1, X0) are a family of closed linear operators,
and for every R > 0 there exists L(R) > 0 such that, for all v, v,w ∈
BE(0, R), it holds that

‖A(v(·))w(·) − A(v(·))w(·)||E ≤ L(R)‖v − v‖E‖w‖E.

(A2) The map F : [0, T ] × Xγ → X0 satisfies F(·, v(·)) ∈ F for all v ∈ E, and
for some k ∈ N0 there exists C > 0 such that for all v, v ∈ E one has

‖F(·, v(·)) − F(·, v(·))‖E ≤ C(‖v‖L∞(0,T ;Xγ ) + ‖v̄‖L∞(0,T ;Xγ ) + 1)k

(‖v‖E + ‖v̄‖E)‖v − v̄‖E,

(A3) The operator −A0 := −A(0) admits maximal L p-regularity on X0.
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Proposition 4.1. Let p ∈ (1,∞), v0 ∈ V be given and suppose that A and F
satisfy the assumptions (A1),(A2),(A3).

Then there is a = a(v0) > 0 and r = r(v0) > 0 with BXγ (vo, r) ⊂ V such
that (4.1) admits a unique, strong solution

v = v(·, v1) ∈ E(0, a) ∩ C([0, a]; V )

on [0, a] for any initial value v1 ∈ BXγ (vo, r).

The next result provides information about the continuation of local solutions.
Let

E := {v ∈ X1 : A(v)v = F(v)}
denote the set of equilibria to (4.1). For v∗ ∈ E we set u = v − v∗. The equation
for u then reads as

u̇(t) + A0u(t) = G(u(t)), t > 0, u(0) = u0, (4.2)

where u0 = v0 − v∗ and A0 = A(v∗) + B1 − B2 with Bj ∈ L(Xγ , X0) and
G(u) = G1(u) + G2(u), where G1(u) = [F(v∗ + u) − F(u) − B2u] − [(A(v∗ +
u) − A(v∗))v∗ − B1u for u ∈ Xγ and G2(u, w) = (A(v∗) − A(v∗ + u))w for
u ∈ Xγ and w ∈ X1. The operators B1 and B2 resemble the derivatives of A and
F at v∗. It is hence natural to assume that there exist constants L , r0, δ > 0 such
that for ε > 0 small enough it follows that

(S1) ‖A(v∗ + v)v∗ − A(v∗)v∗ − B1v‖X0 ≤ ε‖v‖Xγ , ‖v‖Xγ ≤ r0,
(S2) ‖hδ[F(v∗ + v) − F(v∗) − B2v]‖F(T ) ≤ ε‖hδv‖E(T ), for T > 0 and all

v ∈ E(T ) with ‖v‖L∞(0,T ;Xγ ) ≤ r0, where hδ(t) = eδt ,
(S3) ‖A(v∗ + v) − A(v∗)‖L(X1,X0) ≤ L‖v‖Xγ , ‖v‖Xγ < r0.

If A(v) and F(v) are Fréchet differentiable at v∗ ∈ Xγ , then (S1),(S2),(S3) hold
with B1 = A′(v∗)v∗ and B2 = F ′(v∗) and ε → 0 as r → 0.

Proposition 4.2. Suppose p ∈ (1,∞), v∗ ∈ E and let B1, B2 be such that assump-
tions (S1)-(S3) are satisfied. Suppose that A(v∗) has maximal L p-regularity and
that the spectrum σ(A0) of A0 = A(v∗) + B1 − B2 is contained in the open right
half plane.

Then there exists ρ ∈ (0, r0] such that for each v0 ∈ Bρ(v∗) ⊂ Xγ there exists

a unique, global solution v ∈ H1,p
loc (R+; X0) ∩ L p

loc(R+; X1) satisfying

eδt (v − v∗) ∈ H1,p(R+; X0) ∩ L p(R+; X1) ∩ C0(R+; Xγ ).

In particular, the equilibrium v∗ of the quasilinear problem (4.1) is exponentially
stable in the space Xγ .

The above results are only minor modifications of results due to Clément and
Li [9], Prüss [24], Prüss, Simonett and Zacher [27] and Prüss, Simonett and Wilke
[26]. A convenient reference for these type of results are the monographs by Amann
[5,6] and Prüss and Simonett [25, Chapter 5].
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5. Reformulation as Quasilinear Evolution Equation

In this section we rewrite the system (1.1) as a quasilinear evolution equation
of the form

v̇ + A(v)v = F(v), t > 0, v(0) = v0,

in the space X0 = L2
σ (�)×H1(�,Sn

0), whereSn
0 is defined as in Sect. 3 as the space

of all symmetric, traceless n × n-matrices over C. We then show that the mapping
Aξ (Q̂) : X1 → X0 (defined precisely below in (5.4)) is sectorial with spectral
angle φAξ (Q̂)

< π
2 . In particular, Aξ (Q̂) has maximal L p-L2-regularity. Our idea

to show sectoriality of the underlying linear operator Aξ (v̂) is to exploit a classical
result for unbounded operators in Hilbert spaces (cf. Kato [18], Section V.3.2).
It implies that for operators with non-empty resolvent set, firstly, the spectrum is
contained in the numerical range and, secondly, that the resolvent scales inversely
to the distance of the numerical range. Consequently, such operators are sectorial
(cf. e.g. [10]) if their numerical range is contained in a sector. We hence aim to show
that Aξ (Q̂) is invertible as well as that its numerical range lies a a certain sector.
In order to verify these two properties we take adavantage of certain symmetry
properties, in particular J -symmetry, and show that its first Schur complement is
closed and invertible.

In what follows, we will use the notation [A, B] = AB − BA as well as
the notation {A, B} = AB + BA for the commutator and the anticommutator,
respectively, of two matrices A, B ∈ C

n×n . Moreover, we split the terms τ = τh+τl
and H = Hh + Hl into higher and lower order terms and obtain then

S(∇u, Q) = − [Q,W ] + ξ
(
2/nD + {Q, D} − 2(Q + I/n) tr(Q∇u)

)
,

Hh(Q) = �Q − Q,

Hl(Q) = (Q2 − tr(Q2)I/n) − tr(Q2)Q,

τh(Q) = ξ
(
2/nHh + {Q, Hh} − 2(Q + I/n) tr(QHh)

)
,

τl(Q) = 2ξ(Q + I/n)(tr(Q3) − tr(Q2)2) − ∇Q � ∇Q − 2ξ(Q + I/n)Hl ,

σ (Q) = − [Q, (−� + I)Q].
We now define two linear mappings on M

n
0 := {Q ∈ C

n×n : tr Q = 0} and recall
that Sn0,C := {A ∈ C

n×n : A = AT , tr A = 0} in order to rewrite the terms σ + τh
and S in a way which indicates better derivatives. More precisely, for ξ ∈ R and
Q ∈ S

n
0 we define the mappings Sξ (Q) ∈ L(Sn0,Mn

0) and S̃ξ (Q) ∈ L(Mn
0,Sn0) as

Sξ (Q)A := [Q, A] − 2ξ
n A − ξ{Q, A} + 2ξ(Q + I/n) tr(QA),

S̃ξ (Q)B := [Q, BW ] − 2ξ
n BD − ξ{Q, BD} + 2ξ(Q + I/n) tr(QBD),

where BD and BW are defined as BD := 1
2 (B + BT ) and BW := B − BD and

where Q denotes the complex conjugate of Q. In particular, for real-valued u and
Q this gives

τh(Q) + σ(Q) = Sξ (Q)(−� + I)Q, and − S(∇u, Q) = S̃ξ (Q)∇u.
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Applying the Helmholtz projection P in L2(�) to the equation (1.1)1 yields along
with equation (1.1)3 the following system:

∂t u − P�u − P div(σ + τh) =P (div τl − (u · ∇)u) , (5.1)

∂t Q − S − Hh = Hl − (u · ∇)Q. (5.2)

Setting v = (u, Q), the system (1.1) can be now rewritten equivalently as a quasi-
linear evolution equation on X0 of the form

v′(t) + Aξ (v(t))v(t) = F(v(t)), t ∈ (0, T ), v(0) = v0, (5.3)

with v0 = (u0, Q0) and where Aξ is given by

Aξ (v̂) := Aξ (Q̂)

:=
( A P div Sξ (Q̂)(−� + I)

S̃ξ (Q̂)∇ �1
N

)

, v̂ = (û, Q̂) ∈ Xγ . (5.4)

Here A denotes the Stokes operator in L2
σ (�) given by

A := −P�,

D(A) := {u ∈ H2(�) : div u = 0 in �, u = 0 on ∂�},
and �1

N denotes the Neumann Laplacian on H1(�,Sn
0) shifted by the identity, i.e.,

�1
N := −� + I,

D(�1
N ) := {Q ∈ H3(�,Sn

0) : ∂νQ = 0 on ∂�}.
Moreover, the nonlinear term F(v) = (P f1(v), f2(v)) is given by
⎧
⎨

⎩

f1(v) := −(u · ∇)u − div(∇Q � ∇Q) + 2ξ div
(
(Q + I/n)(tr(Q3) − tr(Q2)2)

)

−2ξ div
(
(Q + I/n)(Q2 − tr(Q2)I/n − tr(Q2)Q)

)
,

f2(v) := (Q2 − tr(Q2)I/n) − tr(Q2)Q − (u · ∇)Q.

(5.5)

Our aim is now to show that the operator Aξ (Q̂) has the property of maximal L p-

L2-regularity provided p > 4
4−n , Q̂ ∈ XQ

γ and ξ ∈ R. Let us start by showing that

the numerical range of Aξ (Q̂) lies in a certain sector in the right half plane.

5.1. Numerical Range

We start by showing that Sξ and S̃ξ are adjoint to each other on the spaces of
tracelesss and spaces of symmetric, traceless matrices.

Lemma 5.1. Let ξ ∈ R and Q ∈ S
n
0 . Then (Sξ (Q))∗ = S̃ξ (Q), i.e., if A ∈ S

n
0 and

B ∈ M
n
0 , then

〈Sξ (Q)A, B〉Cn×n = 〈A, S̃ξ (Q)B〉Cn×n .
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Proof. Let us note that tr(ab) = 0 for symmetric a ∈ C
n×n and skewsymmetric

b ∈ C
n×n and let us recall the notation BD = 1

2 B + 1
2 B

T and BW = B − BD . We
verify the assertion for the four terms of Sξ seperately.
Term 1: Commutator. Note that [a, ã] is skewsymmetric and [a, b] is symmetric
for symmetric a, ã ∈ C

n×n and skewsymmetric b ∈ C
n×n . It follows that

tr
(
[Q, A]BT

)
= tr

(
[Q, A](−BW )

)
= tr

(
QA(−BW )

)
− tr

(
AQ(−BW )

)

= tr
(
A(−BW )Q

)
− tr

(
AQ(−BW )

)
= tr

(
A
[
Q, BW

])

= tr

(

A
[
Q, BW

]T
)

.

Term 2: Anticommutator. Note that {a, ã} is symmetric for symmetric a, ã ∈ C
n×n .

Hence,

tr
(
{Q, A}BT

)
= tr

(
{Q, A}BD

)
= tr

(
QABD

)
+ tr

(
AQBD

)

= tr
(
ABDQ

)
+ tr

(
AQBD

)
= tr

(
A
{
Q, BD

})

= tr

(

A
{
Q, BD

}T
)

.

Term 3: The constant term. We have

tr(ABT ) = tr(ABD) = tr(A(BD)T ).

Term 4: The trace term. Since A and B are traceless we get

tr
(
(Q + I/n) tr(QA)BT

)
= tr(AQ) tr(QBD) = tr

(
A(Q + I/n) tr(QBD)

)

= tr
(
A(Q + I/n)T tr(QBD)

)
.

Hence, in total, we get

〈Sξ (Q)A, B〉Cn×n = tr
(
([Q, A] − 2ξ

n A − ξ{Q, A} + 2ξ(Q + I/n) tr(QA))BT
)

= tr
(
A([Q, BW ] − 2ξ

n BD − ξ{Q, BD} + 2ξ(Q + I/n) tr(QBD))T
)

=〈A, S̃ξ (Q)B〉Cn×n .

The above lemma allows us to compute 〈Aξ (Q̂)v, v〉X0 precisely, as follows:

Lemma 5.2. Let p > 4
6−n , Q̂ ∈ XQ

γ , ξ ∈ R and v = (u, Q) ∈ X1. Then

〈Aξ (Q̂)v, v〉X0 = ‖∇u‖2
L2 + ‖Q‖2

H2 + ‖∇Q‖2
L2 + i Im(2〈∇u, Sξ (Q̂)(−� + I)Q〉L2 ).
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Proof. By the boundary conditions for u and Q, Pu = u and Lemma 5.1 we obtain

〈Aξ (Q̂)v, v〉X0 = 〈Au, u〉L2 + 〈�1
N Q, Q〉H1 + 〈P div Sξ (Q̂)(−�+I)Q, u〉L2

+ 〈S̃ξ (Q̂)∇u, Q〉H1

= ‖∇u‖2
L2 + ‖Q‖2

H2 + ‖∇Q‖2
L2 −〈Sξ (Q̂)(−� + I)Q,∇u〉L2

+ 〈∇u, Sξ (Q̂)(−� + I)Q〉L2

= ‖∇u‖2
L2 + ‖Q‖2

H2 + ‖∇Q‖2
L2

+ i Im(2〈∇u, Sξ (Q̂)(−� + I)Q〉L2).

The regularity of the map Sξ (Q̂) can be described as follows:

Lemma 5.3. a) Let p > 4
6−n , Q̂ ∈ XQ

γ and ξ ∈ R. Then

Sξ (Q̂) ∈ C(�,L(Sn0,C,Cn×n)) and S̃ξ (Q̂) ∈ C(�,L(Mn
0,C,Cn×n)).

b) If in addition p > 4
4−n , then

Sξ (Q̂) ∈ C1(�,L(Sn0,C,Cn×n)) and S̃ξ (Q̂) ∈ C1(�,L(Mn
0,C,Cn×n)).

Proof. The first assertion follows by the embedding XQ
γ ↪→ C(�,Sn0,C

), the fact
that the Frobenius norm is submultiplicative and the estimate ‖Sξ (Q)A‖L∞ ≤
C(‖Q̂‖

XQ
γ

+ 1)2‖A‖. The second assertion follows in the same way by noticing

that the assumption implies XQ
γ ↪→ C1(�,Sn0,C

).

We proceed by showing that the numerical range of Aξ (Q̂) lies in a certain
sector of the right half plane. Here, given ϕ ∈ [0, π), �ϕ denotes an open sector in
the complex plane of angle ϕ.

Proposition 5.4. (Numerical range of Aξ (Q̂)) Let p > 4
6−n , q = 2, Q̂ ∈ XQ

γ , and

ξ ∈ R. Then the numerical rangeW(Aξ (Q̂)) of Aξ (Q̂) lies in a sector of the right
half plane, i.e., there exists an angle ϕ ∈ [0, π/2) such that

W(Aξ (Q̂)) ⊂ �ϕ,

where ϕ depends on ξ, p, n, ‖Q̂‖XQ
γ
, and �. In particular,

W(−Aξ (Q̂)) ⊂ (�π−ϕ)c.

Proof. Let v = (u, Q) ∈ X1 such that ‖v‖X0 = 1. By Lemma 5.3, Cauchy-
Schwarz and Young’s inequality we obtain

|2〈∇u, Sξ (Q̂)(−� + I)Q〉L2 | ≤ ‖Sξ (Q̂)‖L∞(�,L(Sn0 ,Cn×n))(‖∇u‖2
L2 + ‖Q‖2

H2).
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Thus, z := 〈Aξ (Q̂)v, v〉X0 satisfies by Lemma 5.2 the properties

Re(z) > 0, and | Im(z)| ≤ ‖Sξ (Q̂)‖L∞(�,L(Sn0 ,Cn×n))| Re(z)|.
Hence,

| arg(z)|=| arctan(Im(z)/ Re(z))|≤arctan
(
‖Sξ (Q̂)‖L∞(�,L(Sn0 ,Cn×n))

)
=: ϕ.

Our next aim is to show that Aξ (Q̂) is invertible.

5.2. Invertibility

Our next aim is to show that the mapping Aξ (Q̂) defined on X0 and having

domain X1 is invertible for all Q̂ ∈ XQ
γ and all ξ ∈ R. It is well known that the

invertibility of this map is closely related to the one of its Schur complement at
λ = 0. For λ ∈ �(�1

N ), the first Schur complement is given by

S1(λ) := A − PdivSξ (Q̂)(−� + I)(�1
N − λ)−1 S̃ξ (Q̂)∇,

D(S1(λ)) := H2(�) ∩ H1
0 (�) ∩ L2

σ (�).

At λ = 0, the first Schur complement S1(0) is given by a Stokes operator with
variable coefficients of the form

S1(0) = −P� − P div Sξ (Q̂)(S̃ξ (Q̂)∗∇
with domain D(S1(0)) = H2(�) ∩ H1

0 (�) ∩ L2
σ (�). We show first that the Schur

complement S1(0) is invertible.

Lemma 5.5. (Invertibility of the Schur complement) Let p > 4
4−n , Q̂ ∈ XQ

γ , and
ξ ∈ R. Then

S1(λ) := A − PdivSξ (Q̂)(−� + I)(�1
N − λ)−1 S̃ξ (Q̂)∇,

D(S1(λ)) := H2(�) ∩ H1
0 (�) ∩ L2

σ (�).

is invertible on L2
σ (�).

Proof. Setting W := H1
0 (�)∩ L2

σ (�), we note that the mapping a : W ×W → R

given by

a(u, v) = 〈(I + Sξ (Q̂)(Sξ (Q̂))∗)∇u,∇v〉L2

defines a positive, closed, symmetric sesquilinear form on L2
σ (�) satisfying

a(u, u) ≥ C�‖u‖2
2 for some C� > 0. There exists thus a unique operator Aa

on L2
σ (�) with domain D(Aa) and with σ(Aa) ⊂ [C�,∞) such that for every

u ∈ D(Aa) and v ∈ V we have a(u, v) = 〈Aau, v〉. In particular, Aa is invertible.
Let now u ∈ D(S1(0)). Then S1(0)u ∈ L2

σ (�) and thus by integration by parts
we get for all v ∈ H1

0 (�) ∩ L2
σ (�) that

〈S1(0)u, v〉L2 = 〈(I + Sξ (Q̂)(Sξ (Q̂))∗)∇u,∇v〉L2 = 〈Aau, v〉L2 .
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Therefore, u ∈ D(Aa) and Aau = S1(0)u.
Conversely, let u ∈ D(Aa). Then Aau ∈ L2

σ (�) and

〈(I + Sξ (Q̂)(Sξ (Q̂))∗)∇u,∇v〉L2 = 〈Aau, v〉L2

holds for all v ∈ H1
0 (�) ∩ L2

σ (�). Thus, a classical result due to Giaquinta and
Modica [13, Theorem 1.3] implies that u ∈ H2(�) and hence u ∈ D(S1(0)).

Using the theory of Schur complements we next show that the operator Aξ (Q̂)

is invertible.

Proposition 5.6. Suppose that p > 4
4−n , Q̂ ∈ XQ

γ , and ξ ∈ R. Then the operator

Aξ (Q̂) is invertible.

Proof. Recall from (5.4) that the operator Aξ (Q̂) is given by

Aξ (Q̂) =
(
a b
c d

)

,

where

a := A, b := P div Sξ (Q̂)(−� + I), c := S̃ξ (Q̂)∇, d := �1
N . (5.6)

Since S1(0) = a − bd−1c is invertible by Lemma 5.5, we find that
(

(S1(0))−1 −(S1(0))−1bd−1

−d−1c(S1(0))−1 d−1 + d−1c(S1(0))−1bd−1

)

∈ L(X0, X1).

One can easily check that the above is the inverse of Aξ (Q̂) ∈ L(X1, X0).

We are now in the position to prove that Aξ (Q̂) is sectorial with spectral angle
φAξ (Q̂)

< π
2 .

Proposition 5.7. Let p > 4
4−n , Q̂ ∈ XQ

γ and ξ ∈ R. Then the operator Aξ (Q̂) :
X1 → X0 is sectorial with spectral angle φAξ (Q̂)

< π
2 . In particular, Aξ (Q̂) has

maximal L p-L2-regularity.

Proof. Proposition 5.6 yields that Aξ (Q̂) is invertible. Therefore (cf. e.g. [18, The-
orem V.3.2]), we find that σ(−Aξ (Q)) ⊂ W(−Aξ (Q)) and

‖(λ + Aξ (Q))−1‖L(X0) ≤ 1

dist(λ,W(−Aξ (Q)))
, λ ∈ W(−Aξ (Q))c.

By Proposition 5.4, there exists an angle ϕ ∈ [0, π/2), such that W(−Aξ (Q)) ⊂
(�π−ϕ)c. Let ϕ2 ∈ (ϕ, π/2]. This yields

‖(λ + Aξ (Q))−1‖L(X0) ≤ 1

dist(λ, (�π−ϕ)c)
≤ 1

sin(ϕ − ϕ2)|λ| .

Hence Aξ (Q̂) is sectorial with spectral angle φAξ (Q̂)
≤ ϕ ∈ [0, π/2). Since Aξ (Q̂)

is a sectorial on the Hilbert space X0 with spectral angle less than π/2, it is also
R-sectorial and admits hence maximal L p-L2-regularity; see e.g. [10] for details.
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6. Nonlinear Estimates

We start this section by showing that the mapping Aξ : Xγ → L(X1, X0) is
locally Lipschitz continuous.

Lemma 6.1. Let p > 4
4−n . Then there exists a constant C > 0 such that for all

Q̂, Q̂1, Q̂2 ∈ XQ
γ and M ∈ H1(�,Cn×n) one has

‖[Q̂, M]‖H1 + ‖{Q̂, M}‖H1 ≤ C‖Q̂‖XQ
γ
‖M‖H1 ,

‖(Q̂1 + I/n)tr (Q̂2M)‖H1 ≤ C(‖Q̂1‖XQ
γ

+ 1)‖Q̂2‖XQ
γ
‖M‖H1 .

The above assumption on p allows, due to Sobolev embeddings, to prove the
assertion of Lemma 6.1 easily by means of Hölder’s inequality.

Lemma 6.2. Let p > 4
4−n , Q̂ ∈ XQ

γ , and ξ ∈ R. Then Aξ (Q̂) ∈ L(X1, X0).

Proof. Applying Lemma 6.1 yields that there exists a constant C > 0 such that for
all u ∈ Xu

1 and all Q ∈ XQ
1 we have

‖c(Q̂)u‖
XQ

0
≤ C(‖Q̂‖

XQ
γ

+ 1)2‖u‖H2 as well as

‖bQ‖Xu
0

≤ C(‖Q̂‖
XQ

γ
+ 1)2‖dQ‖H1 ,

where dQ is defined as above by dQ = (−� + I)Q. Hence,

‖cQ̂u‖
XQ

0
≤ C‖u‖Xu

1
and ‖bQ̂Q‖xu0 ≤ C‖dQ‖H1 ≤ C‖Q‖

XQ
1
,

where C depends on ξ, p, n, Q̂ and �. It hence follows that Aξ (Q̂) ∈ L(X1,

X0).

We are now in the position to show that the mapping Aξ : Xγ → L(X1, X0) is
locally Lipschitz continuous.

Lemma 6.3. (Local Lipschitz continuity of Aξ ) Let p > 4
4−n and ξ ∈ R. Then

Aξ : Xγ → L(X1, X0) is locally Lipschitz continuous, i.e. for all R > 0 there
exists a constant K (R) > 0 such that

‖Aξ (Q̂1) − Aξ (Q̂2)‖L(X1,X0) ≤ K (R)‖Q̂1 − Q̂2‖XQ
γ

for all Q̂1, Q̂2 ∈ XQ
γ satisfying ‖Q̂1‖XQ

γ
,‖Q̂1‖XQ

γ
≤ R.

Proof. Lemma 6.1 yields

‖b(Q̂1)Q − b(Q̂2)Q‖Xu
0

≤ ‖[Q̂1 − Q̂2, dQ]‖H1 + |ξ |‖{Q̂1 − Q̂2, dQ}‖H1

+ 2|ξ |‖(Q̂1 + I/n)tr(Q̂1 − Q̂2)dQ‖H1

+ 2|ξ |‖Q̂1 − Q̂2)tr(Q̂2)dQ)‖H1



   40 Page 18 of 22 Arch. Rational Mech. Anal.          (2024) 248:40 

≤ C(‖Q̂1‖XQ
γ

+ ‖Q̂2‖XQ
γ

+ 1)‖Q̂1 − Q̂2‖XQ
γ
‖Q‖

XQ
1
.

Similarly, for u ∈ Xu
1 we show that

‖c(Q̂1)u − c(Q̂2)u‖XQ
0

≤ C(‖Q̂1‖XQ
γ

+ ‖Q̂2‖XQ
γ

+ 1)‖Q̂1 − Q̂2‖XQ
γ
‖u‖Xu

1
.

Combining these estimates we obtain, for v = (u, Q) ∈ X1, that

‖Aξ (Q̂1)v − Aξ (Q̂2)v‖X0 ≤ C(‖Q̂1‖XQ
γ

+ ‖Q̂2‖XQ
γ

+ 1)‖Q̂1 − Q̂2‖XQ
γ
‖v‖X1 .

This finishes the proof with K (R) = C(2R + 1).

We now turn our attention to the nonlinear terms F(v). Before starting, we
state an auxiliary lemma, which allows us to keep track of the time dependence in
embedding theorems.

Lemma 6.4. Let s ≥ s′ ≥ 0 and p ∈ [1,∞). Then

Hs,p(0, T )
s−s′
↪→ Hs′,p(0, T ),

where
η

↪→ stands for an embedding with embedding constant CT η, C > 0 inde-
pendent of T .

Proof. Set m := �p(s − s′)� and 1/r := m + 1/p + s′ − s ∈ [1/p, 1). Sobolev
embeddings and Hölder’s inequality yield

Hs,p ↪→ Hm+s′,r 1− 1
r

↪→ Hm+s′,1 ↪→ Hm−1+s′,∞ 1
↪→ Hm−1+s′,1

↪→ . . . ↪→ Hs′,∞
1
p

↪→ Hs′,p.

The following lemma allows us to keep track of the time dependence for typical
product terms of the form v1∂v2 where v1, v2 belong to the maximal regularity
space:

Lemma 6.5. Let p, q ∈ (1,∞) be such that 2/3p + n/3q ≤ 1. Then for all
v1, v2 ∈ Y1 := L p(0, T ; H2,q) ∩ H1,p(0, T ; Lq), ∂ ∈ {∂x , ∂y, ∂z} and η ∈
[0, 3

2

(
1 − 2

3p − n
3q

)
] it follows that
‖v1∂v2‖L p(Lq ) ≤ CT η‖v1‖Y1‖v2‖Y1 .

Proof. Let θ1 = 2η
3 + 2

3p and θ2 = 1
2θ1. Then, by an application of the Mixed

Derivative Theorem [25], Lemma 6.4 and Sobolev embeddings, we get

Y1 ↪→ H θ1,p(0, T ; H2−2θ1,q )
2η/3
↪→ H2/3p,p(0, T ; H2−2θ1,q ) ↪→ L3p(0, T ; L3q ),

Y1 ↪→ H θ2,p(0, T ; H2−2θ2,q )
η/3
↪→ H1/3p,p(0, T ; H2−2θ2,q ) ↪→ L3p/2(0, T ; H1,3q/2),

where
η

↪→ stands for an embedding with embedding constant CT η and C > 0
independent of T . Thus, Hölder’s inequality implies that

‖v1∂v2‖L p(0,T ;Lq ) ≤ ‖v1‖L3p(0,T ;L3q )‖v2‖L3p/2(0,T ;H1,3q/2) ≤ CT η‖v1‖Y1‖v2‖Y1 .
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After these preparations we are now able to estimate the nonlinear term F(v).

Proposition 6.6. (Nonlinear Estimates). Let ξ ∈ R and p ≥ 2. Then there exists
k ∈ N0 such that for all v, v̄ ∈ E

‖F(v) − F(v̄)‖F
≤ C(‖v‖L∞(0,T ;Xγ ) + ‖v̄‖L∞(0,T ;Xγ ) + 1)k(‖v‖E + ‖v̄‖E)‖v − v̄‖E.

Moreover, there exists δ0 > 0 such that for all v ∈ E, ‖v‖E ≤ r , δ ∈ [0, δ0], and
for hδ(t) = eδt it follows that

‖hδ[F(v) − F(0)]‖F ≤ ε‖hδv‖E.

Proof. Let us note that the conditions of Lemma 6.5 are satisfied if p ≥ 2 and
q = 2. In this case we have

Xγ ↪→ Lq
σ (�) × C(�;Sn0).

We estimate the four terms of f1(v) by means of Lemma 6.5 as follows: For the
first term we obtain

‖(u · ∇)u − (ū · ∇)ū‖L p(L2) ≤ CT η‖u − ū‖Eu (‖u‖Eu + ‖ū‖Eu ),

and for the second one

‖ div(∇Q � ∇Q) − div(∇ Q̄ � ∇ Q̄)‖L p(L2) ≤ CT η(‖Q‖EQ + ‖Q̄‖EQ )‖Q − Q̄‖EQ ,

where we used the short hand notation L p(L2) = L p(0, T ; L2(�)). Lemma 6.5
implies furthermore

‖ div((Q + I/n)(tr(Q3) − tr(Q2)2)) − div((Q̄ + I/n)(tr(Q̄3 − Q̄2)2))‖L p(L2)

≤ CT η
(‖Q‖L∞(Xγ ) + ‖Q̄‖L∞(Xγ ) + 1

)3
(‖Q‖EQ + ‖Q̄‖EQ )‖Q − Q̄‖EQ ,

as well as

‖ div((Q + I/n)(Q2 − tr(Q2)I/n − tr(Q2)Q))

− div((Q̄ + I/n)(Q̄2 − tr(Q̄2)I/n − tr(Q̄2)Q̄))‖L p(L2)

≤ CT η
(‖Q‖L∞(Xγ ) + ‖Q̄‖L∞(Xγ ) + 1

)2
(‖Q‖EQ + ‖Q̄‖EQ )‖Q − Q̄‖EQ .

Concerning the terms of f2(v) we estimate

‖(u · ∇)Q − (ū · ∇)Q̄‖L p(H1) ≤ CT η
(‖u‖Eu‖(Q − Q̄,∇(Q − Q̄)‖EQ

+‖u − ū‖Eu‖(Q̄,∇ Q̄)‖EQ

)

and

‖(Q2 − tr(Q2)I/n) − (Q̄2 − tr(Q̄2)I/n) − tr(Q2)Q + tr(Q̄2)Q̄‖L p(H1)

≤ CT η
(‖Q‖L∞(Xγ ) + ‖Q̄‖L∞(Xγ ) + 1

)
(‖Q‖EQ + ‖Q̄‖EQ )‖Q − Q̄‖EQ .

Finally, the second assertion can be proven similarly. We therefore omit the
details.
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7. Proof of the Main Theorems

The previous sections are organized in such a way that we may conclude the
proof of the two main results, Theorem 3.1 and Theorem 3.2, by the results given
in Sect. 4. Indeed, concerning local existence of a unique, strong solution to system
(1.1) we verify the assumptions of Proposition 4.1 as follows.

Proof. By Lemma 6.3, the operator-valued function Aξ : Xγ → L(X1, X0) is
locally Lipschitz continuous. Proposition 5.7 implies that Aξ (v0) has maximal L p-
regularity. By Proposition 6.6 the nonlinear term F fulfils the assumption (A2) of
Proposition 4.1. Hence, the assertion of Theorem 3.1 follows from Proposition 4.1.

Concerning global existence, we note first that v∗ = 0 is a trivial equilibrium
and that we may verify conditions (S1)-(S3) for B1 = B2 = 0. The Lipschitz
condition (S1) for Aξ holds true by Lemma 6.3. Moreover, by Proposition 6.6, also
condition (S2) holds true. Since in our case B1 = B2 = 0, we see that A0 = A(0)

has maximal regularity and that by Propostion 5.6 its spectrum is contained in the
open right half plane. Thus the assertion of Theorem 3.2 follows from Proposition
4.2.
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