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Abstract

We study concentration operators associated with either the discrete or the con-
tinuous Fourier transform, that is, operators that incorporate a spatial cut-off and a
subsequent frequency cut-off to the Fourier inversion formula. The spectral profiles
of these operators describe the number of prominent degrees of freedom in problems
where functions are assumed to be supported on a certain domain and their Fourier
transforms are known or measured on a second domain. We derive eigenvalue es-
timates that quantify the extent to which Fourier concentration operators deviate
from orthogonal projectors, by bounding the number of eigenvalues that are away
from 0 and 1 in terms of the geometry of the spatial and frequency domains, and a
factor that grows at most poly-logarithmically on the inverse of the spectral margin.
The estimates are non-asymptotic in the sense that they are applicable to concrete
domains and spectral thresholds, and almost match asymptotic benchmarks. Our
work covers, for the first time, non-convex and non-symmetric spatial and fre-
quency concentration domains, as demanded by numerous applications that exploit
the expected approximate low dimensionality of the modeled phenomena. The
proofs build on Israel’s work on one dimensional intervals arXiv:1502.04404v1.
The new ingredients are the use of redundant wave-packet expansions and a dyadic
decomposition argument to obtain Schatten norm estimates for Hankel operators.

1. Introduction and Results

Fourier concentration operators act by incorporating a spatial cut-off and a
subsequent frequency cut-off to the Fourier inversion formula. The chief example
concerns the Fourier transform on the Euclidean space F : L2(Rd) → L2(Rd),
the cut-offs are then given by the indicator functions of two compact domains
E, F ⊆ R

d , and the concentration operator is

S f = χFF−1χEFχF f, f ∈ L2(Rd). (1.1)
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These operators and their analogues, defined with respect to the discrete Fourier
transform L2([−1/2, 1/2]d) → �2(Zd), play a crucial role in many analysis prob-
lems and fields of application where the shapes of E, F are dictated by various
physical constraints or measurement characteristics [16,24,25,37].

The basic intuition, stemming from the Fourier uncertainty principle [11,16],
is that the concentration operator (1.1) is approximately a projection with rank
tr(S) = |E | · |F |. The error of such heuristic is encoded by the so-called plunge
region

Mε(S) = {λ ∈ σ(S) : ε < λ < 1 − ε}, ε ∈ (0, 1/2), (1.2)

consisting of intermediate eigenvalues. Asymptotics for the cardinality of Mε(S)

go back to Landau and Widom [23,26] for the case of one dimensional intervals
E = [−a, a], F = [−b, b] and read as

#Mε(S) = c · log(ab) · log( 1−ε
ε

) + o(log(ab)), as ab → ∞, (1.3)

for an explicit constant c that depends on the normalization of the Fourier transform.
The modern spectral theory of Wiener-Hopf operators gives similar asymptotics for
concentration operators associated to rather general multi-dimensional domains
subject to increasing isotropic dilations.

While (1.3) precisely describes the cardinality of the set Mε(S) in the limit
ab → ∞, the asymptotic is often insufficient for many purposes because of the
quality of the error terms. Indeed, the error term in (1.3) depends in an unspecified
way on the spectral threshold ε, which precludes applications where ε is let to
vary with the domains E, F . Such limitations have motivated a great amount of
work aimed at deriving upper bounds for #Mε(S) that are threshold robust, that is,
bounds that are effective for concrete concentration domains and explicit in their
dependence on the spectral threshold [6,17,19,20,31,39], significantly improving
on more classical results in this spirit [38].

With the exception of [17], the mentioned articles on threshold-robust spectral
bounds for Fourier concentration operators concern only the one dimensional case,
because they exploit a connection with a Sturm–Liouville equation which is specific
to that setting. Such methods can be applied to some extent to higher dimensional
domains enjoying special symmetries [13,35]. On the other hand, while [17] stud-
ies Fourier concentration operators associated with one dimensional intervals, the
technique introduced by Israel is very general, as it relies on an explicit almost di-
agonalization of the concentration operator. In fact, as we were finishing this work,
the preprint version of [18] provided an extension of [17] to higher dimensions (see
Sects. 1.1 and 1.6).

In this article we derive upper bounds for the number of intermediate eigenvalues
(1.2) associated with either the continuous or discrete Fourier transforms. In contrast
to other results in the literature, we obtain estimates that apply to two suitably
regular multi-dimensional spatial and frequency domains, which do not need to
exhibit special symmetries. In this way, our results cover for the first time many
setups of practical relevance, see Sect. 1.5.

Our proofs build on Israel’s technique [17] and incorporate novel arguments to
treat non-convex domains and their discrete counterparts. Instead of the orthonormal
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wave-packet basis from [17], we use more versatile redundant expansions (frames).
Second, we introduce a dyadic decomposition method implemented by means of
Schatten norm estimates for Hankel operators; see Sect. 1.6.

1.1. The Euclidean Space

Given two compact sets E, F ⊆ R
d , the Fourier concentration operator S :

L2(Rd) → L2(Rd) is defined by (1.1) where F denotes the Fourier transform

F f (ξ) =
∫

Rd
f (x)e−2π i xξ dx . (1.4)

A set E ⊆ R
d is said to have a maximally Ahlfors regular boundary if there exists

a constant κ∂E > 0 such that

Hd−1(∂E ∩ Br (x)
) ≥ κ∂E · rd−1, 0 < r ≤ Hd−1(∂E)1/(d−1), x ∈ ∂E .

Here,Hd−1 denotes the (d−1)-dimensional Hausdorff measure. The term maximal
in the definition refers to the range of r for which the estimate is required to hold.
See Sect. 2 for more context on Ahlfors regularity. In what follows, we denote for
short |∂E | = Hd−1

(
∂E).

In this article we prove the following:

Theorem 1.1. Let E, F ⊆ R
d , d ≥ 2, be compact domains with maximally Ahlfors

regular boundaries with constants κ∂E , κ∂F respectively, and assume that that
|∂E ||∂F | ≥ 1. Consider the concentration operator (1.1) and its eigenvalues
{λn : n ∈ N}.

Then for every α ∈ (0, 1/2), there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):

#
{
n ∈ N : λn ∈ (ε, 1 − ε)

} ≤ Aα,d · |∂E |
κ∂E

· |∂F |
κ∂F

· log

( |∂E ||∂F |
κ∂E ε

)2d(1+α)+1

.

(1.5)

The strength of Theorem 1.1 lies in the fact that the right-hand side of (1.5) grows
only mildly on ε, in agreement with the Landau-Widom asymptotic formula for
one dimensional intervals (1.3). In contrast, cruder estimates based on computing
first and second moments of concentration operators, as done often in sampling
theory [22], lead to error bounds of the order O(1/ε).

A result closely related to Theorem 1.1 is presented in the recent article [18].
For F = [0, 1]d and E = r K , where r ≥ 1 is a dilation parameter and K ⊂
B1(0) ⊂ R

d is a convex, coordinate symmetric domain [18, Theorem 1.1] gives the
following bound for ε ∈ (0, 1/2):

#
{
n ∈ N : λn ∈ (ε, 1 − ε)

} ≤ Cd · max{rd−1 log(r/ε)5/2, log(r/ε)5d/2}. (1.6)

For large r , the right-hand side of (1.6) becomes Od
(
rd−1 log(r/ε)5/2) while The-

orem 1.1 gives the weaker bound Oα,d
(
rd−1 log(r/ε)2d(α+1)+1

)
, or, at best, the
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slightly better Oα,d
(
rd−1 log(r/ε)2d(α+1)

)
by applying other technical results pre-

sented below.1 On the other hand, Theorem 1.1 applies to possibly non-convex,
non-coordinate-symmetric and non-dilated domains E , and other regular domains
F besides cubes.

When E and F are both cubes, even slightly stronger estimates hold, as follows
by tensoring sharp bounds for one dimensional intervals (that match the Landau-
Widom asymptotic (1.3)); see, e.g. [18, Theorem 1.4]. This can be used to argue
that in (1.5) the factors |∂E | and |∂F | cannot be replaced by smaller powers.
Similarly, while the power of the logarithm in (1.5) can conceivably be reduced,
the logarithmic factor cannot be completely removed.

Our work is in great part motivated by applications where concentration domains
may be non-convex, such as the complement of a disk within a two dimensional
square; see Sect. 1.5. Such a domain E is allowed by Theorem 1.1 (and Theorems
1.2 and 1.3 below) and has moreover a favorable regularity constant κ∂E .

1.2. Discretization of Continuous Domains

Theorem 1.1 is obtained by taking a limit on a more precise result concerning
a discrete setting, which is our main focus.

We consider a resolution parameter L > 0 and define the discrete Fourier
transform FL : L2((−L/2, L/2)d) → �2(L−1

Z
d) by

FL f (k/L) =
∫

(−L/2,L/2)d
f (x)e−2π i xk/Ldx, k ∈ Z

d . (1.7)

We think of L as a discretization parameter for an underlying continuous problem.
Let us define the discretization at resolution L > 0 of a domain E ⊆ R

d by

EL = L−1
Z
d ∩ E . (1.8)

Given two compact domains E ⊆ R
d and F ⊆ (−L/2, L/2)d , consider the dis-

cretized concentration operator T : L2(F) → L2(F) given by

T = χFF−1
L χELFL . (1.9)

Our second result is as follows:

Theorem 1.2. Let E, F ⊆ R
d , d ≥ 2, be compact domains with maximally Ahlfors

regular boundaries with constants κ∂E , κ∂F respectively, and assume that that
|∂E ||∂F | ≥ 1.

Fix a discretization resolution L ≥ |∂E |−1/(d−1) such that F ⊆ (−L/2, L/2)d

and consider the discretized concentration operator (1.9) and its eigenvalues {λn :
n ∈ N}.

1 Indeed, the bound Oα,d
(
rd−1 log(r/ε)2d(α+1)

)
follows from Theorem 4.1, presented

below, which is applicable to the domains in question, together with the discretization argu-
ment in the proof of Theorem 1.1.
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Then for every α ∈ (0, 1/2) there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):

#
{
n ∈ N : λn ∈ (ε, 1 − ε)

} ≤ Aα,d · |∂E |
κ∂E

· |∂F |
κ∂F

· log

( |∂E ||∂F |
κ∂E ε

)2d(1+α)+1

.

(1.10)

The eigenvalue sequence on the left-hand side of (1.10) is finitely supported
(with a bound that depends on the resolution parameter L). In contrast, the right-
hand side of (1.10) is independent of L . In applications, this helps capture the
transition between analog models and their finite computational counterparts, rig-
orously showing that the latter remain faithful to the former.

1.3. The Discrete Fourier Transform

Finally, we consider a discrete concentration problem associated with the usual
discrete Fourier transform, denoted as

F1 : L2((−1/2, 1/2)d) → �2(Zd),

for consistency with (1.7).
Given a finite set � ⊆ Z

d and F ⊆ (−1/2, 1/2)d , the discrete Fourier concen-
tration operator T : L2(F) → L2(F) is defined as

T = χFF−1
1 χ�F1. (1.11)

The discrete boundary of a set � ⊆ Z
d is given by

∂� = {k ∈ � : min{| j − k| : j ∈ Z
d

� �} = 1}. (1.12)

We say that � ⊆ Z
d has a maximally Ahlfors regular boundary if there exists

a constant κ∂� such that

inf
k∈∂�

#
(
∂� ∩ k + [−n/2, n/2)d

) ≥ κ∂� · nd−1, 1 ≤ n ≤ (#∂�)1/(d−1), k ∈ ∂�.

(Note the slight notational abuse: though � ⊆ Z
d ⊆ R

d , the notions of boundary
and boundary regularity are to be understood in the discrete sense.)

Our last result is.

Theorem 1.3. Let d ≥ 2, � ⊆ Z
d a finite set with maximally Ahlfors regular

boundary and constant κ∂�. Let F ⊆ (−1/2, 1/2)d be compact with maximally
Ahlfors regular boundary and constant κ∂F . Assume that #∂� · |∂F | ≥ 1, and
consider the concentration operator (1.11) and its eigenvalues {λn : n ∈ N}.

Then, for every α ∈ (0, 1/2), there exists Aα,d ≥ 1 such that, for ε ∈ (0, 1/2)

#
{
n ∈ N : λn ∈ (ε, 1 − ε)

} ≤ Aα,d · #∂�

κ∂�

· |∂F |
κ∂F

· log

(
#∂� · |∂F |

κ∂� ε

)2d(1+α)+1

.
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1.4. One Sided Estimates

We remark that bounds on the number of intermediate eigenvalues, as in The-
orems 1.1, 1.2 and 1.3, can be equivalently formulated in terms of the distribution
function

Nε := {n ∈ N : λn > ε}, ε ∈ (0, 1).

Remark 1.4. For example, for ε ∈ (0, 1) under the assumptions of Theorem 1.1
we have

∣∣#Nε(S) − |E | · |F |∣∣ ≤ Cα,d · |∂E |
κ∂E

· |∂F |
κ∂F

· log

( |∂E ||∂F |
κ∂E min{ε, 1 − ε}

)2d(1+α)+1

;
(1.13)

see Sect. 8 for details.

1.5. Significance

Fourier concentration operators arise in problems where functions are assumed
to be supported on a certain domain F and their Fourier transforms are known or
measured on a second domain E . The insight that the class of such functions is
approximately a vector space of dimension |E | · |F | is at the core of many classical
and modern physical and signal models, and measurement and estimation methods
[16] [12, “A Historical View”].

While in classical applications, such as telecommunications, the concentration
domains are rectangles or unions thereof, the increasingly complex geometric na-
ture of data and physical models has sparked great interest in spatial and frequency
concentration domains with possibly intricate shapes. To name a few: (a) In geo-
physics and astronomy the power sprectrum of various quantities of interest is often
assumed to be bandlimited to a disk or annulus and needs to be estimated from mea-
surements taken on a domain as irregular as a geological continent [14,32–34]; (b)
The Fourier extension algorithm approximates a function on an arbitrary domain by
a Fourier series on an enclosing box and crucially exploits the expected moderate
size of the plunge region (1.2) [2,29]; (c) Noise statistics are often estimated from
those pixels of a square image located outside a central disk, which is assumed to
contain the signal of interest — thus, the need to sample pure noise leads one to
consider the complement of a disk within a two dimensional square as concentration
domain (or, more realistically, a set of grid points within that domain) [3–5,21].

The expected low dimensionality of physical and signal models based on spatio-
temporal constraints is often exploited without direct computation of eigendecom-
positions of Fourier concentration operators (which may in fact be ill-posed in the
absence of symmetries). Rather, the expected asymptotic spectral profile of such
operators informs strategies based on randomized linear algebra and information
theory. The quest to analyze such models and methods has motivated a great amount
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of recent research [6,17–20,31,39] which led to deep and far reaching improve-
ments over more classical non-asymptotic results [38]. However, the mentioned
literature covers only rectangular or other convex and symmetric domains, which
precludes applications involving complex geometries. Due to this limitation, sig-
nal and measurement models with a complex geometric nature are often analyzed
based on estimates much cruder than (1.5), which have error factors of the order 1/ε

instead of log(1/ε)α [3,29,33], and thus poorly reflect the remarkable practical ef-
fectiveness of low dimensional models. Estimates on measurement/reconstruction
complexity, estimation confidence, or approximation/stability trade-offs are as a
consequence orders of magnitude too conservative. Our work bridges this theory
to practice gap by providing the first spectral deviation estimates for Fourier con-
centration operators valid without simplifying symmetry or convexity assumptions
that also match the precision of what is rigorously known for intervals [6,17–
20,31,36,37,39]. In addition, while Euclidean Fourier concentration operators help
analyze computational schemes in their asymptotic continuous limit, our results for
the discrete Fourier transform apply, more quantitatively, to finite settings, as they
occur in many applications.

1.6. Methods and Related Literature

We work for the most part with the discrete Fourier transform and then obtain
consequences for the continuous one by a limiting argument. Theorem 1.2 is thus a
more precise and quantitative version of Theorem 1.1, and is proved in two steps. We
first revisit Israel’s argument [17] and adapt it to prove eigenvalue estimates when
one of the domains is a rectangle and the other one is a general multi-dimensional
discrete domain (Theorem 4.1 below). These estimates are slightly stronger than
those in Theorem 1.2, and the extra precision is exploited in the subsequent step. We
follow the method of almost diagonalization with wave-packets, which we achieve,
unlike [17], through a redundant system (frame) instead of an orthonormal basis.
The versatility of redundant expansions helps us avoid requiring symmetries from
the concentration domain.

The second step is a decomposition, rescaling, and dyadic approximation ar-
gument, implemented by means of p-Schatten norm estimates for certain Hankel
operators, and especially by quantifying those estimates as a function of p, as
p → 0+. In this way we reduce the problem to the case where one of the domains
is a rectangle, while relying on the refined estimates derived in the first step.

Our intermediate result, Theorem 4.1, is close in spirit to Theorem 1.1 in [18]
(which appeared as we were finishing this article). The estimates in [18], formulated
in the context of the continuous Fourier transform and concerning dilated convex
domains, are stronger than what follows from Theorem 4.1 in that regime, as [18,
Theorem 1.1] involves smaller powers of a certain logarithmic factor (see also
Sect. 1.1 and (1.6)). On the other hand, Theorem 4.1 concerns a sufficiently regular
possibly non-convex and non-symmetric domain, and covers the discrete Fourier
transform (while Theorem 1.2 concerns two such domains).

We also mention our recent work on concentration operators for the short-time
Fourier transform [27], that also makes use of Ahlfors regularity and Schatten norm
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estimates. Though the goals and results are philosophically similar to those in the
present article, the settings are rather different from the technical point of view.
Indeed, the arguments used in [27] rely on the rapid off-diagonal decay of the
reproducing kernel of the range of the short-time Fourier transform, and do not
seem to be applicable to Fourier concentration operators.

Finally, we comment on the notion of maximal Ahlfors regularity introduced in
this article, which is a variant of more common notions (see Sect. 2.2). While this
condition is sufficient to treat all the applications that we are aware of, it is probably
non-optimal. Indeed, the eigenvalue estimate (1.5) is robust under certain geometric
operations on the concentration domains that may not preserve Ahlfors regularity
(see for example the dyadic decomposition and approximation in Sect. 5.2). How-
ever, we do not presently know how to formulate a simple and elegant regularity
assumption that leads to a significant refinement of our results.

The remainder of the article is organized as follows. Section 2 sets up the nota-
tion and provides background on boundary regularity. Section 3 revisits and aptly
adapts the technique from [17]. This is used in Sect. 4 to prove Theorem 4.1. The-
orem 1.2 is proved in Sect. 5, Theorem 1.1 is proved in Sect. 6, and Theorem 1.3 is
proved in Sect. 7. Remark 1.4 is proved in Sect. 8.

2. Preliminaries

2.1. Notation

We shall focus on Theorem 1.2 and set up the notation accordingly. Theorems
1.1 and 1.3 will be obtained afterwards as an application of Theorem 1.2.

We denote cubes by Qa = [−a/2, a/2)d . The Euclidean norm on R
d is de-

noted | · |. For two non-negative functions f, g we write f � g if there exist a
constant C such that f (x) ≤ Cg(x), and write f 
 g if f � g and g � f . The
implied constant is allowed to depend on the dimension d and the parameter α from
Theorems 1.1, 1.2 and 1.3, but not on other parameters.

We enumerate the eigenvalues of a compact self adjoint operator S : H → H
acting on a Hilbert space H as follows:

λk = inf{‖S − S0‖ : S0 ∈ L(L2(Rd)), dim(Range(S0)) < k}, k ≥ 1. (2.1)

Then {λk : k ≥ 1} � {0} = σ(S) � {0} as sets with multiplicities — see, e.g., [8,
Lemma 4.3].

Recall that the discretization at resolution L > 0 of a set E ⊆ R
d is defined by

(1.8). We also write

Ec
L = L−1

Z
d

� EL

and ∂EL for the points in EL which are at distance L−1 of Ec
L :

∂EL = {
k/L ∈ EL : min{|k/L − j/L| : j/L ∈ Ec

L} = L−1}.
For L = 1 this is consistent with (1.12).
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We will work with the discrete Fourier transform FL : L2((−L/2, L/2)d) →
�2(L−1

Z
d) given by (1.7) and reserve the notation F f or f̂ for the continuous

Fourier transform (1.4). Note that if supp( f ) ⊆ (−L/2, L/2)d , then FL f (k/L) =
F f (k/L) for every k ∈ Z

d .
We also write PE,L = F−1

L χELFL . For F ⊆ (−L/2, L/2)d we define the
operator T = TE,F,L : L2(F) → L2(F) by

T = TE,F,L = χF PE,L

and let λn = λn(T ) denote its eigenvalues as in (2.1). An easy computation shows
that

Tt−1E,t F,t L = Mt−1TE,F,LMt , t > 0,

where Mt denotes the dilation operator

Mt f (x) = f (t x).

In particular,

λn(Tt−1E,t F,t L) = λn(TE,F,L), n ∈ N. (2.2)

2.2. Boundary Regularity

Let us introduce regularity of sets in more generality and discuss a few proper-
ties.

An Hd−1-measurable set X ⊆ R
d is said to be lower Ahlfors (d − 1)-regular

(regular for short) at scale ηX > 0 if there exists a constant κX > 0 such that

Hd−1(X ∩ Br (x)
) ≥ κX · rd−1, 0 < r ≤ ηX , x ∈ X.

(See for example [28, Definitions 2.1 and 2.2]). In the literature, Ahlfors regularity
is usually stated for ηX ∼ diam(X). In contrast, we work with various scales and
introduce the term maximally Ahlfors regular whenever the regularity condition
holds at scale ηX = Hd−1(X)1/(d−1). The use of this scale instead of the usual
diam(X) allows us to include disconnected sets with distant connected components
in our analysis.

Note that if X ⊆ R
d is regular at scale ηX > 0 with constant κX > 0 and

t > 0, then t X ⊆ R
d is regular at scale ηt X = tηX with constant κt X = κX . By

differentiation around a point of positive Hd−1-density,

κX ≤ cd , (2.3)

for any regular X of finite Hd−1-measure. We also mention that if X is regular with
parameters ηX and κX , then choosing an arbitrary x ∈ X gives

Hd−1(X) ≥ Hd−1(X ∩ BηX (x)
) ≥ κX · ηd−1

X . (2.4)

We shall use the following basic result, derived from [7]:
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Lemma 2.1. There exists a universal constant Cd > 0 such that for every compact
set X ⊆ R

d that is regular at scale ηX > 0 with constant κX and every s > 0,

|X + Bs(0)| ≤ Cd

κX
· Hd−1(X) · s ·

(
1 + sd−1

ηd−1
X

)
.

Proof. From [7, Theorems 5 and 6] it follows that

Hd−1({x ∈ R
d : d(x, X) = r}) ≤ Cd

κX
· Hd−1(X) ·

(
1 + rd−1

ηd−1
X

)
,

for almost every r > 0, and in addition, |∇d(x, X)| = 1, for almost every x ∈ R
d .

From this and the coarea formula — see, e.g., [10, Theorem 3.11] — it follows that

|X + Bs(0)| =
∫

Rd
χ[0,s)(d(x, X))dx =

∫
Rd

χ[0,s)(d(x, X))|∇d(x, X)|dx

=
∫ s

0
Hd−1({x : d(x, X) = r})dr ≤ Cd

κX
Hd−1(X)

∫ s

0

(
1 + rd−1

ηd−1
X

)
dr

≤ Cd

κX
Hd−1(X)s

(
1 + sd−1

ηd−1
X

)
.

��
Corollary 2.2. For E ⊆ R

d a compact domain with regular boundary at scale
η∂E ≥ 1 with constant κ∂E and a discretization resolution L ≥ 1, we have

L−d#EL � |E | + |∂E |
κ∂E L

.

In particular, for d ≥ 2,

L−d#EL � max{|∂E |d/(d−1), 1}
κ∂E

.

Proof. Recall that QL−1 = L−1[−1/2, 1/2)d and define E ′
L = {m ∈ EL : m +

QL−1 ⊆ E}. From Lemma 2.1, we get

L−d#EL =
∣∣∣ ⋃
m∈E ′

L

m + QL−1

∣∣∣+
∣∣∣ ⋃
m∈EL�E ′

L

m + QL−1

∣∣∣ ≤ |E | + |∂E + BL−1
√
d (0)|

� |E | + |∂E |
κ∂E L

.

Finally, the second inequality follows from the isoperimetric inequality |E | �
|∂E |d/(d−1) and (2.3). ��

3. Israel’s Argument Revisited

We now revisit the core argument of [17] and aptly adapt it so as to treat multi-
dimensional and discrete domains.
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3.1. Israel’s Lemma

We need a slight generalization of Lemma 1 in [17], phrasing it in terms of
frames rather than orthonormal bases. We include a proof for the sake of complete-
ness.

Recall that a frame for a Hilbert spaceH is a subset of vectors {φi }i∈I for which
the exist constants 0 < A, B < ∞ — called lower and upper frame bounds —
such that

A‖ f ‖2 ≤
∑
i∈I

|〈 f, φi 〉|2 ≤ B‖ f ‖2, f ∈ H.

If, moreover, A = B, the say that the frame is tight.

Lemma 3.1. Let T : H → H be a positive, compact, self-adjoint operator on a
Hilbert space H with ‖T ‖ ≤ 1 and eigendecomposition T = ∑

n≥1 λn〈·, fn〉 fn.
Let {φi }i∈I be a frame of unit norm vectors for H with lower frame bound A.

If I = I1 ∪ I2 ∪ I3, and

∑
i∈I1

‖Tφi‖2 +
∑
i∈I3

‖(I − T )φi‖2 ≤ A

2
ε2, (3.1)

then #Mε(T ) ≤ 2
A#I2, where Mε(T ) is defined as in (1.2).

Proof. Let Sε = span{ fn : λn ∈ (ε, 1 − ε)} and let Pε : H → Sε denote the
orthogonal projection onto Sε. Observe that

ε‖ f ‖ ≤ ‖T f ‖, and ε‖ f ‖ ≤ ‖(I − T ) f ‖, f ∈ Sε,

where the second inequality follows from the fact that for f ∈ Sε one has ‖ f ‖ −
‖(I − T ) f ‖ ≤ ‖T f ‖ ≤ (1 − ε)‖ f ‖. Also note that T and Pε commute since Sε is
spanned by a collection of eigenvectors of T . Therefore, by (3.1) we obtain

∑
i∈I1∪I3

ε2‖Pεφi‖2 ≤
∑
i∈I1

‖T Pεφi‖2 +
∑
i∈I3

‖(I − T )Pεφi‖2 ≤ A

2
ε2,

which implies
∑

i∈I1∪I3

‖Pεφi‖2 ≤ A

2
. (3.2)

Using the frame property, we get, for f ∈ Sε

A‖ f ‖2 ≤
∑
i∈I

|〈 f, φi 〉|2 =
∑
i∈I

|〈 f, Pεφi 〉|2.

Now assume that dim(Sε) ≥ 1 (otherwise the result is trivial), take an orthonormal
basis {ψk}dim(Sε)

k=1 of Sε, and sum the inequality above over all basis elements to
derive

A · #Mε(T ) = A · dim(Sε) = A
dim(Sε)∑
k=1

‖ψk‖2 ≤
dim(Sε)∑
k=1

∑
i∈I

|〈ψk, φi 〉|2
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=
∑
i∈I

‖Pεφi‖2 ≤
∑
i∈I2

‖φi‖2 + A

2
= #I2 + A

2
≤ #I2 + A

2
#Mε(T ),

where, in the second line, we used (3.2). This shows that #Mε(T ) ≤ 2
A#I2. ��

3.2. Local Trigonometric Frames

In this section, we construct a tight frame that allows us to apply Lemma 3.1.
Let α > 0, and θ ∈ C∞(R) be such that

(i) θ(x) = 1, for x ≥ 1, and θ(x) = 0, for x ≤ −1,
(ii) θ(−x)2 + θ(x)2 = 1, for every x ∈ R,

(iii) |Dkθ(x)| ≤ Ck
αk

(1+α)k , for all k ∈ N0, all x ∈ R, and a constant Cα > 0.

See, for example, [17, Proposition 1] or [15, Chapter 1] for the existence of such a
function.

Let W > 0. We decompose the interval
(− W

2 , W
2

)
into disjoint intervals

I j = x j + W

3 · 2| j |+1 [−1, 1), j ∈ Z,

where

x j = sign( j)W

2

(
1 − 1

2| j |
)
.

Note that |I j | = |I| j || = 2|I| j |+1| for every j ∈ Z. We will also denote Dj =
I j ∪ I j+1. Now define

θ j (x) = θ

(
2(x − x j )

|I j |
)

θ

(
−2(x − x j+1)

|I j+1|
)

.

We have that θ j (x) = 0 for x /∈ Dj , and furthermore by properties (i) and (ii)

‖θ j‖2
2 =

∫
I j

θ

(
2(x − x j )

|I j |
)2

dx +
∫
I j+1

θ

(
−2(x − x j+1)

|I j+1|
)2

dx

= |I j |
2

∫ 1

−1
θ(x)2dx + |I j+1|

2

∫ 1

−1
θ(x)2dx = |Dj |

2
.

We define the set of vectors

φ j,k(x) =
√

2

|Dj | · θ j (x) · exp

(
2π i

xk

|Dj |
)

, j, k ∈ Z, (3.3)

and note that ‖φ j,k‖2 = 1.

Lemma 3.2. The family {φ j,k} j,k∈Z defined in (3.3) forms a tight frame for L2

(−W/2,W/2) with frame constants A = B = 2.
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Proof. Let f ∈ L2(−W/2,W/2) and set f j := f χI j so that f = ∑
j∈Z

f j . Since
supp(θ j ) ⊆ Dj = I j ∪ I j+1, we observe

∑
j,k∈Z

|〈 f, φ j,k〉|2 =
∑
j,k∈Z

∣∣〈 f j + f j+1, φ j,k〉
∣∣2 .

As
{|Dj |−1/2 exp

(
2π ikx/|Dj |

)}
k∈Z

is an orthonormal basis for L2(Dj ), we find
that∑

k∈Z

|〈 f j + f j+1, φ j,k〉|2 = 2‖( f j + f j+1)θ j‖2
2 = 2‖ f jθ j‖2

2 + 2‖ f j+1θ j‖2
2.

Combining both identities and using property (ii), we conclude
∑
j,k∈Z

|〈 f, φ j,k〉|2 = 2
∑
j∈Z

(
‖ f jθ j‖2

2 + ‖ f j+1θ j‖2
2

)
= 2

∑
j∈Z

(
‖ f jθ j‖2

2 + ‖ f jθ j−1‖2
2

)

= 2
∑
j∈Z

∫
I j

| f (x)|2
(

θ

(
2(x − x j )

|I j |
)2

+ θ

(
−2(x − x j )

|I j |
)2
)
dx

= 2
∑
j∈Z

‖ f j‖2
2 = 2‖ f ‖2

2.

��
Let 0 < Wi ≤ L , i = 1, ..., d, and consider the rectangle

∏d
i=1(−Wi/2,Wi/2).

Also, set that

Wmax := max
i=1,...,d

Wi .

We define a frame for L2
(∏d

i=1(−Wi/2,Wi/2)
)

via the tensor product

� j,k(x) = � j1,..., jd ,k1,...kd (x1, ..., xd) = φ j1,k1(x1) · . . . · φ jd ,kd (xd),

where each family {φ ji ,ki (xi )} ji ,kk∈Z is the frame for L2(−Wi/2,Wi/2) given by
(3.3). This construction also yields a tight frame with frame bounds equal to 2d .

3.3. Energy Estimates

Consider

ψ j (x) = θ j

(
|Dj |x + x j − W

3 · 2| j |+1

)
, x ∈ R, j ∈ Z.

A straightforward computation shows that ψ j is supported on [0, 1] and satisfies

|Dkψ j (x)| ≤ C̃α
k
k(1+α)k by property (iii). As shown in [9] or [17, Lemma 4] it

thus follows that |ψ̂ j (ξ)| ≤ Aα ·exp
(
−aα|ξ |(1+α)−1

)
. Since 1−α ≤ (1+α)−1, we

derive that t (1+α)−1 ≥ t1−α − 1 for t ≥ 0. Adjusting the constant Aα , we therefore
get

|θ̂ j (ξ)| ≤ Aα · |Dj | · exp
(
−aα(|Dj | · |ξ |)1−α

)
, ξ ∈ R. (3.4)
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With this at hand, we estimate the decay of

F(� j,k)(ξ) = 2d/2
d∏

i=1

|Dji |−1/2 · θ̂ ji

(
ξi − ki

|Dji |
)

, ξ ∈ R
d .

Define

Mj = diag(|Dj1 |, ..., |Djd |) ∈ R
d×d .

By (3.4) (possibly enlarging Aα) and |ξ |1−α ≤ ∑d
i=1 |ξi |1−α , it follows

|F(� j,k)(ξ)| ≤ Ad
α

d∏
i=1

|Dji |1/2 · exp
(
−aα

∣∣|Dji |ξi − ki
∣∣1−α

)

≤ Ad
α · det(Mj )

1/2 · exp
(
−aα

∣∣Mj (ξ − ξ j,k)
∣∣1−α

)
, (3.5)

where (ξ j,k)i = ki |Dji |−1.
Consider now a compact domain E ⊆ R

d . Let s ≥ 1 be a parameter that will
be determined later. For j ∈ Z

d fixed, we cover the index set Z
d with three subsets

as follows:

Llow
j := {

k ∈ Z
d : dist(k, Mj E

c
L) ≥ s

};
Lmed

j := {
k ∈ Z

d : dist(k, Mj EL) < s, and dist(k, Mj E
c
L) < s};

Lhigh
j := {

k ∈ Z
d : dist(k, Mj EL) ≥ s

}
.

(3.6)

(Here, dist is associated with the usual Euclidean distance.) We claim that

Lmed
j ⊆ {

k ∈ Z
d : dist(k, Mj∂EL) < s

}; (3.7)

let us briefly sketch an argument. Fix k ∈ Lmed
j and let k0 ∈ Mj L−1

Z
d minimize

the distance to k. For any point x ∈ Mj L−1
Z
d with |k − x | < s we can construct a

path of adjacent points in Mj L−1
Z
d from x to k0 whose distance to k is decreasing.

In particular, choosing x1 ∈ Mj EL and x2 ∈ Mj Ec
L at distance less than s from

k, we can connect x1 and x2 through a path of adjacent points in Mj L−1
Z
d that

stays at distance less than s from k. Necessarily, one of the points in the path must
belong to Mj∂EL , which proves (3.7).

The indices ( j, k) with k ∈ Lmed
j , and j satisfying a certain condition specified

below (see (3.11)) will play the role of I2 in Lemma 3.1, so we need to estimate
#(Lmed

j ).

Lemma 3.3. Let E ⊆ R
d be a compact domain with regular boundary at scale

η∂E ≥ 1 and constant κ∂E . Let L ≥ Wmax and s ≥ 1. Then, for all j ∈ Z
d , we

have

#
{
k ∈ Z

d : dist(k, Mj∂EL) < s
}

� max{Wmax, 1/η∂E }d−1 · |∂E |
κ∂E

· sd .
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Proof. Since for every x ∈ R
d the cube x + Q1 contains one point in Z

d ,

#
{
k ∈ Z

d : dist(k, Mj∂EL) < s} � sd · #
{
k ∈ Z

d : k ∈ Mj∂EL + Q1}. (3.8)

Second, we claim that for 0 < a ≤ 1 and a set X ⊂ R,

#
{
k ∈ Z : k ∈ aX + [−1/2, 1/2)} ≤ 2 #

{
k ∈ Z : k ∈ X + [−1/2, 1/2)}. (3.9)

To see this, consider a map that sends k = ax + t , with x ∈ X and t ∈ [−1/2, 1/2)

to the unique integer in x + [−1/2, 1/2), denoted k∗ (the choice of x and t may be
non-unique). Whenever k∗ = k′∗, it follows that |k − k′| ≤ 1. Hence, at most two
k′s are mapped into the same k∗.

From (3.8), if we apply (3.9) componentwise (noting that (Mj )i,i ≤ Wmax), we
obtain for s ≥ 1

#
{
k ∈ Z

d : dist(k, Mj∂EL) < s} � sd · #
{
k ∈ Z

d : k ∈ Wmax∂EL + Q1}.
Since for every x ∈ ∂EL there exists x ′ ∈ ∂E such that |x − x ′| ≤ L−1, and

Wmax/L ≤ 1, it follows that

#
{
k ∈ Z

d : dist(k, Mj∂EL) < s} � sd · #
{
k ∈ Z

d : k ∈ Wmax∂E + Q3}
=: sd · #(KWmax). (3.10)

Now let k ∈ KWmax . There exists at least one point xk ∈ ∂E such that k ∈ Wmaxxk+
Q3. In particular, we have that xk ∈ W−1

maxk + Q4/Wmax . Therefore, for every k ∈
KWmax we get by regularity of ∂E

κ∂E · min{W−1
max, η∂E }d−1 ≤ Hd−1(∂E ∩ B1/Wmax(xk)

)
≤ Hd−1(∂E ∩ xk + Q2/Wmax

)
≤ Hd−1(∂E ∩ W−1

maxk + Q6/Wmax

)
.

So,

κ∂E · min
{
W−1

max, η∂E

}d−1 · #(KWmax) ≤
∑

k∈KWmax

Hd−1(∂E ∩ W−1
maxk + Q6/Wmax

)

�
∑
k∈Zd

Hd−1(∂E ∩ W−1
maxk + Q1/Wmax

)

= Hd−1(∂E).

Plugging this estimate into (3.10) completes the proof. ��
Next, for a compact domain E ⊆ R

d and a parameter s ≥ 1 we recall the sets
(3.6), introduce a second auxiliary parameter 0 < δ < 1, and define the following
covering of Z

2d :

�low := {
( j, k) : min

i
|Dji | ≥ δ, k ∈ Llow

j

};
�med := {

( j, k) : min
i

|Dji | ≥ δ, k ∈ Lmed
j

};
�high := {

( j, k) : min
i

|Dji | ≥ δ, k ∈ Lhigh
j

} ∪ {
( j, k) : min

i
|Dji | < δ, k ∈ Z

d}.
(3.11)
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Lemma 3.4. Under the conditions of Lemma 3.3, let 0 < δ < 1 and consider the
set �med from (3.11). Then

#(�med) � max{Wmax, 1/η∂E }d−1 · |∂E |
κ∂E

· max{log(Wmax/δ), 1}d · sd .

Proof. By (3.7) and Lemma 3.3 it follows

#(�med) =
∑
j∈Z

d

min |Dji |≥δ

#(Lmed
j ) �

∑
j∈Z

d

min |Dji |≥δ

max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

sd .

In each coordinate, we have that the number of intervals Dji for which |Dji | ≥ δ

is bounded by C max{log(Wmax/δ), 1}. Hence, we arrive at

#(�med) � max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

max{log(Wmax/δ), 1}dsd .

��
Lemma 3.5. Let d ≥ 2, L ≥ max{Wmax, 1}, and E ⊆ R

d be a compact domain
with regular boundary at scale η∂E ≥ 1 with constant κ∂E and such that |∂E | ≥ 1.
Let s ≥ 1 and δ ∈ (0, 1) be parameters and consider the sets from (3.11). Then
there exists a constant c = cα > 0 such that

∑
( j,k)∈�low

L−d
∑
m∈Ec

L

|F(� j,k)(m)|2

� max{Wmax, 1/η∂E }d−1 · |∂E |
κ∂E

· exp
(− cs1−α

)
max{log(Wmax/δ), 1}d ,

(3.12)

and

∑
( j,k)∈�high

L−d
∑
m∈EL

|F(� j,k)(m)|2 �max{Wmax, 1/η∂E }d−1

κ∂E
·
(
|∂E | d

d−1 · δ

+ |∂E | · exp
(− cs1−α

) · max{log(Wmax/δ), 1}d
)
.

(3.13)

Proof. For j ∈ Z
d and l ∈ N0 we set

Llow
j,l = {

k ∈ Z
d : dist(k, Mj E

c
L) ∈ [s2l , s2l+1)

}
,

and

Lhigh
j,l = {

k ∈ Z
d : dist(k, Mj EL) ∈ [s2l , s2l+1)

}
.

Notice that

Llow
j,l ∪ Lhigh

j,l ⊆ {
k ∈ Z

d : dist(k, Mj EL) < s2l+1, and dist(k, Mj E
c
L) < s2l+1}

⊆ {
k ∈ Z

d : dist(k, Mj∂EL) < s2l+1},
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where the last step follows as in (3.7). From Lemma 3.3 we get

#(Llow
j,l ), #(Lhigh

j,l ) � max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

sd2dl . (3.14)

From (3.5) it follows that if k ∈ Llow
j,l

L−d
∑
m∈Ec

L

|F(� j,k)(m)|2 ≤ L−d
∑
m∈Ec

L

A2d
α det(Mj ) exp

(− 2aα |Mj (m − ξ j,k)|1−α
)

≤ A2d
α L−d det(Mj )

∑
m′∈Mj Ec

L

exp
(− 2aα |m′ − k|1−α

)

�
∫

{|x |≥s2l }
exp

(− 2aα |x |1−α
)
dx

� exp
(− c(s2l )1−α

)
, (3.15)

where c can for example be chosen as aα . A similar argument also shows that for
k ∈ Lhigh

j,l ,

L−d
∑
m∈EL

|F(� j,k)(m)|2 � exp
(− c(s2l)1−α

)
.

As Llow
j = ⋃

l∈N0
Llow

j,l , it follows from (3.14) and (3.15) that
∑

( j,k)∈�low

L−d
∑
m∈Ec

L

|F(� j,k)(m)|2 =
∑
j∈Z

d

min |Dji |≥δ

∑
l∈N0

∑
k∈Llow

j,l

L−d
∑
m∈Ec

L

|F(� j,k)(m)|2

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

∑
j∈Z

d

min |Dji |≥δ

∑
l∈N0

(s2l )d exp
(− c(s2l )1−α

)

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

∑
j∈Z

d

min |Dji |≥δ

exp
(− c′s1−α

)

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

exp
(− c′s1−α

)
max{log(Wmax/δ), 1}d ,

which completes the proof of (3.12). Again, we can use an analogous reasoning to
show that ∑

j∈Z
d

min |Dji |≥δ

∑
k∈Lhigh

j

L−d
∑
m∈EL

|F(� j,k)(m)|2

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

exp
(− c′s1−α

)
max{log(Wmax/δ), 1}d .

Now suppose that j ∈ Z
d is such that min1≤i≤d |Dji | < δ. For every m ∈ Z

d we
can uniformly bound the following series
∑
k∈Zd

exp
(− 2aα|Mj (m − ξ j,k)|1−α

) =
∑
k∈Zd

exp
(− 2aα|Mjm − k|1−α

) ≤ C.
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Since det(Mj ) = |Dj |, where Dj = Dj1 × ... × Djd , we thus get by (3.5)

∑
j∈Z

d

min |Dji |<δ

∑
k∈Zd

L−d
∑
m∈EL

∣∣F(� j,k)(m)
∣∣2 ≤ C

∑
j∈Z

d

min |Dji |<δ

L−d
∑
m∈EL

det(Mj )

≤ CL−d#EL

∑
j∈Z

d

min |Dji |<δ

|Dj |

� |∂E |d/(d−1)

κ∂E

∑
j∈Z

d

min |Dji |<δ

|Dj |,

where in the last inequality we used Corollary 2.2. Finally,

∑
j∈Z

d

min |Dji |<δ

|Dj | ≤
d∑

i=1

∑
j∈Z

d

|Dji |<δ

|Dj | ≤
d∑

i=1

Wd−1
max 4δ

� max{Wmax, 1/η∂E }d−1δ,

where we used that each interval Dji is at most at |Dji | < δ distance from the
boundary of (−Wi/2,Wi/2) and consequently the union of all such intervals lie in
the complement of a rectangle of side-lengths Wi − 4δ. This concludes the proof
of (3.13). ��

4. General Domain Versus Rectangle

In this section, we prove the following variant of Theorem 1.2 for F a rectangle.

Theorem 4.1. Let L ≥ 1 be a discretization resolution, d ≥ 2, and E ⊆ R
d be a

compact domain with regular boundary at scale η∂E ≥ 1 with constant κ∂E and
such that |∂E | ≥ 1. For 0 < Wi ≤ L, i = 1, ..., d, take F = ∏d

i=1(−Wi/2,Wi/2)

and denote Wmax = maxi Wi .
Then for every α ∈ (0, 1/2) there exists Aα,d ≥ 1 such that for ε ∈ (0, 1/2):

#
{
n ∈ N : λn ∈ (ε, 1 − ε)

}

≤ Aα,d · max{Wmax, 1/η∂E }d−1 · |∂E |
κ∂E

· log

(
max{Wmax, 1/η∂E }d−1|∂E |

κ∂E ε

)2d(1+α)

.

Proof. We adopt all the notation of Sect. 3. Fix parameters s ≥ 1, δ ∈ (0, 1) and
consider the sets from (3.11).

Observe that for f ∈ L2(F) one has

‖T f ‖2
2 = ‖χF PE,L f ‖2

2 ≤ ‖PE,L f ‖2
2 = L−d

∑
m∈EL

∣∣ f̂ (m)
∣∣2,
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and

‖ f − T f ‖2
2 = ‖χF f − χF PE,L f ‖2

2 ≤ ‖(I − PE,L) f ‖2
2 = L−d

∑
m∈Ec

L

∣∣ f̂ (m)
∣∣2.

By Lemma 3.5 it thus follows that
∑

( j,k)∈�low

‖(I − T )� j,k‖2
2 +

∑
( j,k)∈�high

‖T� j,k‖2
2

≤ C
max{Wmax, 1/η∂E }d−1

κ∂E

(
|∂E | exp

(− cs1−α
)

max{log(Wmax/δ), 1}d

+ |∂E |d/(d−1)δ
)
, (4.1)

where the constants depend only on α and d, and C can be taken ≥ 2.
At last, we can now specify the parameters δ and s in order for the sets�low, �med

and �high to play the role of I1, I2 and I3 in Lemma 3.1. We take

δ = κ∂E ε2

C max{Wmax, 1/η∂E }d−1|∂E |d/(d−1)
.

This ensures that

C max{Wmax, 1/η∂E }d−1|∂E |d/(d−1)

κ∂E
δ ≤ ε2. (4.2)

while (2.4) shows that δ ∈ (0, 1).
In addition, we shall select s such that

C max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

exp
(− cs1−α

)
max{log(Wmax/δ), 1}d ≤ ε2.

(4.3)

This condition on s is equivalent to

s ≥
(

1

c
log

(
C max{Wmax, 1/η∂E }d−1|∂E | max{log(Wmax/δ), 1}d

κ∂E ε2

))1/(1−α)

.

(4.4)

Denote

u = max{Wmax, 1/η∂E }d−1|∂E |/κ∂E ,

which satisfies u ≥ 1 by (2.4), and note that

log(Wmax/δ) ≤ log
(Cκ

1/(d−1)
∂E ud/(d−1)

ε2

)
� log(u/ε), (4.5)

where in the last step we used (2.3). Thus, we can bound the right-hand side of
(4.4) by

(1

c
log

(C ′u log(u/ε)d

ε2

))1/(1−α)

� log(u/ε)1/(1−α).
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In particular, (4.4) is satisfied if

s = Aα,d log

(
max{Wmax, 1/η∂E }d−1|∂E |

κ∂E ε

)1/(1−α)

(4.6)

for an adequate constant Aα,d . Moreover, we can guarantee that s ≥ 1, since, by
(2.4), the term inside the logarithm in (4.6) is ≥ 2. From (4.1), (4.2), (4.3), Lemma
3.1 and Lemma 3.4,

#Mε(T ) ≤ 21−d#(�med)

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

max{log(Wmax/δ), 1}dsd

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

log

(
max{Wmax, 1/η∂E }d−1|∂E |

κ∂E ε

)d/(1−α)+d

� max{Wmax, 1/η∂E }d−1 |∂E |
κ∂E

log

(
max{Wmax, 1/η∂E }d−1|∂E |

κ∂E ε

)2d(1+α)

,

where in the third step we used (4.5) and the definition of s. ��

5. Eigenvalue Estimates for Two Domains

5.1. Schatten Quasi-Norm Estimates

For 0 < p ≤ 1, and ε > 0, define the auxiliary function g = gp,ε : [0, 1] → R

given by

g(t) =
( t − t2

ε − ε2

)p
.

Note that since χ(ε,1−ε) ≤ g, for a positive operator 0 ≤ S ≤ 1,

#Mε(S) = tr(χ(ε,1−ε)(S)) ≤ tr(g(S)) = ‖S − S2‖p
p

(ε − ε2)p
, (5.1)

where ‖ · ‖p, 0 < p ≤ 1, denotes the Schatten quasi-norm. The next lemma shows
that upper bounds for the left-hand side of the last inequality can be transferred to
the right-hand side without much loss.

Lemma 5.1. Suppose that for a positive operator 0 ≤ S ≤ 1 there are constants
C, D, a > 0 such that for every ε ∈ (0, 1/2),

#Mε(S) ≤ C
(
D + log(ε−1)

)a
.

Then, for every 0 < p ≤ 1 there is a constant Ca > 0 such that

‖S − S2‖p
p ≤ CaC

(
D + p−1)a .
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Proof. By the symmetry of the function h(x) = x − x2 around 1/2, for 0 ≤ x ≤ 1,

h(x)p =
∫ min{x,1−x}

0
(h p)′(t)dt =

∫ 1/2

0
χ(t,1−t)(x)ph

p−1(t)h′(t)dt

≤
∫ 1/2

0
χ(t,1−t)(x)pt

p−1dt.

By a monotone convergence argument we get that

‖S − S2‖p
p ≤

∫ 1/2

0
Mt (S)pt p−1dt ≤ C

∫ 1

0
(D + log(t−1))a pt p−1dt

= C
∫ ∞

0
(D + u/p)ae−udu

≤ C(D + 1/p)a + C
∫ ∞

1
(D + u/p)ae−udu

≤ C(D + 1/p)a + C(D + 1/p)a
∫ ∞

1
uae−udu

≤ (1 + �(a + 1))C(D + 1/p)a .

��

5.2. Decomposition of the Domain and Hankel Operators

In what follows, we let F ⊆ (−L/2, L/2)d be a compact domain with regular
boundary at scale η∂F = |∂F |1/(d−1) ≥ 1 with constant κ∂F . We also assume that
Hd(∂F) = 0 (as otherwise the bounds that we shall derive are trivial). We construct
two auxiliary sets F− ⊆ F ⊆ F+ which will be dyadic approximations of F from
the inside and outside by cubes of side-length at least 1. More precisely, let

F =
⋃
k∈Z

⋃
j∈Jk

Qk, j , (up to a null measure set)

be a dyadic decomposition of F in pairwise disjoint cubes of the form Qk, j =
Q2k + 2k j with k ∈ Z and j ∈ Jk ⊆ Z

d , that are maximal (i.e., they are not
contained in a larger dyadic cube included in F). We define

F− =
⋃
k≥0

⋃
j∈Jk

Qk, j .

For F+ we add cubes of length 1 to fully cover F and intersect them with (−L/2, L/2)d .
The result is a covering of F that combines the cubes from F− with rectangles of
maximal side-length ≤ 1. More precisely, define

V = {v ∈ Z
d : (F � F−) ∩ (Q1 + v) �= ∅},

and

F+ = F− ∪
⋃
v∈V

(
(Q1 + v) ∩ (−L/2, L/2)d

)
=: F− ∪

⋃
v∈V

Rv.
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We write T± for TE,F±,L .
We shall invoke Theorem 4.1 and apply it to each rectangle in the decomposition

of F− and F+. This is allowed because translating the rectangles, or removing their
null Hd -measure boundaries, does not affect the eigenvalue estimates in question.

For a set K ⊆ (−L/2, L/2)d define theHankel operator on L2((−L/2, L/2)d)

by

HK = (I − PE,L)χK PE,L

and write H± = HF± . The Hankel operator HK is related to the Toeplitz operator
PE,LχK PE,L in a similar way as the correspondingly named operators on Hardy
spaces [30]. In particular, we note that

(HK )∗HK = PE,LχK PE,L − PE,LχK PE,LχK PE,L

= PE,LχK PE,L − (PE,LχK PE,L)2.

Since PE,LχK PE,L and TK share the same non-zero eigenvalues, for p > 0,

‖TK − (TK )2‖p
p = ‖HK ‖2p

2p.

Recall that for two operators S1, S2 in the p-Schatten class, 0 < p ≤ 1, one has

‖S1 + S2‖p
p ≤ ‖S1‖p

p + ‖S2‖p
p.

Lemma 5.2. Let L ≥ 1, d ≥ 2, and E, F ⊆ R
d be compact domains with regular

boundaries at scales η∂E ≥ 1, η∂F = |∂F |1/(d−1) ≥ 1, with constants κ∂E , κ∂F

respectively. Assume also that |∂E | ≥ 1 and F ⊆ (−L/2, L/2)d .
Then for ε ∈ (0, 1/2), we have

#Mε(T
±) � |∂E |

κ∂E
· |∂F |

κ∂F
· log

( |∂E ||∂F |
κ∂E ε

)2d(1+α)+1

.

Proof. If k ∈ Z is such that Jk �= ∅, then there is a cube of length 2k included in F .
In particular, the projection of ∂F onto the hyperplane {x1 = 0} contains a (d −1)-
dimensional cube of length 2k and therefore 2k(d−1) ≤ |∂F |. The maximality of
the dyadic decomposition of F implies that Q j,k ⊆ ∂F + B√

d2k+1(0) for j ∈ Jk .

From Lemma 2.1 and the fact that η∂F = |∂F |1/(d−1), we thus derive

2dk#Jk ≤ |∂F + B√
d2k+1(0)| � 2k

|∂F |
κ∂F

(
1 + 2k(d−1)

|∂F |

)
� 2k

|∂F |
κ∂F

. (5.2)

Similarly,

#V ≤ |∂F + B√
d(0)| � |∂F |

κ∂F
. (5.3)
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For 0 < 2p ≤ 1, and ε ∈ (0, 1/2), by (5.1), we get

#Mε(T
+) ≤ ‖T+ − (T+)2‖p

p

(ε − ε2)p
= ‖H+‖2p

2p

(ε − ε2)p

≤ (2/ε)p
∑
k≥0

∑
j∈Jk

‖HQk, j ‖2p
2p + (2/ε)p

∑
v∈V

‖HRv‖2p
2p

� ε−p
∑
k≥0

∑
j∈Jk

‖TQk, j − T 2
Qk, j

‖p
p + ε−p

∑
v∈V

‖TRv − T 2
Rv

‖p
p.

We invoke Theorem 4.1 to obtain spectral deviation estimates for each operator
TQk, j . These imply that we can apply Lemma 5.1 to TQk, j with

C � 2k(d−1) |∂E |
κ∂E

, and D = log

(
2k(d−1) |∂E |

κ∂E

)
.

Similarly, the same holds for TRv with k = 1. Choosing p = log(2)
(
2 log(ε−1)

)−1

(which ensures that 2p ≤ 1 for every ε ∈ (0, 1/2)) thus yields

#Mε(T
+)� |∂E |

κ∂E

⎛
⎝∑

k≥0

∑
j∈Jk

2k(d−1) log

(
|∂E |2k(d−1)

κ∂E ε

)2d(1+α)

+#V·log

( |∂E |
κ∂E ε

)2d(1+α)
⎞
⎠

� |∂E |
κ∂E

|∂F |
κ∂F

∑
k≥0

2k(d−1)≤|∂F |

log

(
|∂E |2k(d−1)

κ∂E ε

)2d(1+α)

= |∂E |
κ∂E

|∂F |
κ∂F

∑
0≤k≤

⌊
log(|∂F |)

log(2)(d−1)

⌋

(
log

( |∂E |
κ∂E ε

)
+ (d − 1) log(2)k

)2d(1+α)

,

where in the second-to-last step we used (5.2), (5.3), and the fact that 2k(d−1) ≤ |∂F |
whenever Jk �= ∅. Finally, noting that for C, D, a > 0,

N∑
k=0

(C + Dk)a ≤
∫ N+1

0
(C + Dx)adx ≤ (C + D(N + 1))a+1

D(a + 1)
,

we get,

#Mε(T
+) � |∂E |

κ∂E

|∂F |
κ∂F

log

( |∂E ||∂F |
κ∂E ε

)2d(1+α)+1

.

The same argument applies to #Mε(T−), and yields the desired conclusion. ��
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5.3. The Transition Index

The following estimate is part of the proof of [1, Theorem 1.5] (see also [27,
Lemma 4.3]) and allows us to find the index where eigenvalues cross the 1/2
threshold. We include a proof for the sake of completeness.

Lemma 5.3. For any trace class operator 0 ≤ S ≤ 1,

(i) λn ≤ 1
2 , for every n ≥ �tr(S)� + max{2 tr(S − S2), 1};

(ii) λn ≥ 1
2 , for every 1 ≤ n ≤ �tr(S)� − max{2 tr(S − S2), 1}.

Proof. First notice that if S is an orthogonal projection, then the result holds trivially,
so we can assume otherwise. In particular, we have that tr(S − S2) > 0.

Set K = �tr(S)� and write

tr(S) − tr(S2) =
∞∑
n=1

λn(1 − λn)

=
K∑

n=1

λn(1 − λn) +
∞∑

n=K+1

λn(1 − λn)

≥ λK

K∑
n=1

(1 − λn) + (1 − λK )

∞∑
n=K+1

λn

= λK K − λK

K∑
n=1

λn + (1 − λK )
(

tr(S) −
K∑

n=1

λn

)

= λK K + (1 − λK ) tr(S) −
K∑

n=1

λn

= tr(S) −
K∑

n=1

λn + λK (K − tr(S)).

Hence

∞∑
n=K+1

λn = tr(S) −
K∑

n=1

λn ≤ tr(S) − tr(S2), (5.4)

and

K−1∑
n=1

(1 − λn) = tr(S) −
K∑

n=1

λn + λK (K − tr(S)) − (1 − λK )(1 + tr(S) − K )

≤ tr(S) −
K∑

n=1

λn + λK (K − tr(S)) ≤ tr(S) − tr(S2). (5.5)
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Now let j ∈ N such that j ≥ 2(tr(S) − tr(S2)) and consider k = K + j . It follows
from (5.4) that

2(tr(S) − tr(S2)) · λk ≤ j · λK+ j ≤
∞∑

n=K+1

λn ≤ tr(S) − tr(S2),

which shows λk ≤ 1/2 as 0 < tr(S) − tr(S2) < ∞; this proves part (i).
For part (ii), if 1 ≤ k = K − j ≤ K − 2(tr(S) − tr(S2)) for j ∈ N, then (5.5)

implies

2(tr(S) − tr(S2)) · (1 − λk) ≤ j · (1 − λK− j ) ≤
K−1∑
n=1

(1 − λn) ≤ tr(S) − tr(S2),

yielding λk ≥ 1/2. This completes the proof. ��

5.4. Proof of the Main Result

With all the preparatory work at hand, we are ready to prove the main result.

Proof of Theorem 1.2. Recall from (2.2) that the eigenvalues of the concentration
operator remain the same if we replace E, F and L with t−1E, t F and t L respec-
tively. We choose t = |∂E |1/(d−1) and notice that t−1E satisfies |∂t−1E | = 1,

η∂t−1E = t−1η∂E = 1, and κ∂t−1E = κ∂E . Furthermore, we also have that t F has
regular boundary at scale η∂t F = tη∂F = (|∂E ||∂F |)1/(d−1) ≥ 1 with constant
κ∂t F = κ∂F , and t L ≥ 1 by assumption on L .

Note that for F ′ ⊆ (−t L/2, t L/2)d , the operator T has integral kernel

K (x, y) = χF ′(x)χF ′(y)
1

(t L)d

∑
k∈(t−1E)t L

e−2π ik(x−y).

Thus,

tr(T ) =
∫

K (x, x)dx =
∫
F ′

1

(t L)d

∑
k∈(t−1E)t L

1dx = #(t−1E)t L

(t L)d
|F ′|.

On the other hand, from Lemmas 5.1 and 5.2 we have that

tr
(
T± − (T±)2) ≤ Cα,d

|∂t−1E |
κ∂t−1E

|∂t F |
κ∂t F

log

(
e|∂t−1E ||∂t F |

κ∂t−1E

)2d(1+α)+1

= Cα,d
|∂E |
κ∂E

|∂F |
κ∂F

log

(
e|∂E ||∂F |

κ∂E

)2d(1+α)+1

=: CE,F .

So from Lemma 5.3,

λn(T
+) ≤ 1

2
, n ≥

⌈#(t−1E)t L

(t L)d
|(t F)+|

⌉
+ 2CE,F ;
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λn(T
−) ≥ 1

2
, n ≤

⌈#(t−1E)t L

(t L)d
|(t F)−|

⌉
− 2CE,F .

By Corollary 2.2 and |∂t−1E | = 1,

#{n ∈ N : λn(T
−) < 1/2, λn(T

+) > 1/2} � 1

κ∂E
|(t F)+ � (t F)−| + CE,F

≤ 1

κ∂E
|∂t F + B√

d(0)| + CE,F

� 1

κ∂E

td−1|∂F |
κ∂F

+ CE,F � CE,F ,

where in the second to last step we used Lemma 2.1. Since λn(T−) ≤ λn(T ) ≤
λn(T+) for every n ∈ N, again by Lemma 5.2,

#Mε(T ) ≤#{n ∈ N : 1/2 ≤ λn(T
−) < 1 − ε} + #{n ∈ N : ε < λn(T

+) ≤ 1/2}
+ #{n ∈ N : λn(T

−) < 1/2, λn(T
+) > 1/2}

�#Mε(T
−) + #Mε(T

+) + #{n ∈ N : λn(T
−) < 1/2, λn(T

+) > 1/2}

� |∂E |
κ∂E

|∂F |
κ∂F

log

( |∂E ||∂F |
κ∂E ε

)2d(1+α)+1

.

6. The Continuous Fourier Transform

In this section we deduce Theorem 1.1 from Theorem 1.2 by letting L → ∞.

Proof of Theorem 1.1. Fix E and F as in the statement of Theorem 1.1. We consider
a sufficiently large resolution such that L ≥ |∂E |−1/(d−1) and F ⊆ (−L/2, L/2)d .

Let SL : L2(Rd) → L2(Rd) be the operator given by

SL f = TE,F,L(χF f ) = χFF−1
L χELFLχF f, f ∈ L2(Rd).

Note that SL and TE,F,L share the same non-zero eigenvalues, and recall the operator
S from (1.1).
Step 1. We show that

lim
L→∞ ‖SL − S‖ = 0. (6.1)

Recall that QL−1 = L−1[−1/2, 1/2)d and define the auxiliary set

�L =
⋃

m∈EL

m + QL−1 .

Note that the symmetric difference E��L is included in ∂E + BL−1
√
d(0). From

Lemma 2.1,

|E��L | ≤ |∂E + BL−1
√
d(0)| � |∂E |

κL

(
1 + (Lη∂E )−(d−1)

) L→∞−−−→ 0.

Using this and setting RL = χFF−1χ�LFχF , for f ∈ L2(Rd) we have
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‖(RL − S) f ‖2
2 ≤ ‖(χ�L − χE )F(χF f )‖2

2 ≤ |E��L |‖F(χF f )‖2∞
≤ |E��L |‖χF f ‖2

1 ≤ |E��L ||F |‖ f ‖2
2

L→∞−−−→ 0.

To prove (6.1), it only remains to show that

‖RL − SL‖ L→∞−−−→ 0. (6.2)

To this end, let f ∈ L2(Rd) and estimate

‖RL f − SL f ‖2
2 =

∫
F

∣∣∣
∫

�L

F(χF f )(w)e2π iwxdw − L−d
∑
m∈EL

F(χF f )(m)e2π imx
∣∣∣2dx

=
∫
F

∣∣∣ ∑
m∈EL

∫
m+QL−1

F(χF f )(w)e2π iwx − F(χF f )(m)e2π imxdw

∣∣∣2dx

=
∫
F

∣∣∣ ∑
m∈EL

∫
m+QL−1

∫
F
f (t)

(
e2π iw(x−t) − e2π im(x−t))dtdw

∣∣∣2dx

�
∫
F

( ∑
m∈EL

∫
m+QL−1

∫
F

| f (t)||w − m||x − t |dtdw
)2
dx

�
∫
F

( ∑
m∈EL

L−(d+1)

∫
F

| f (t)||x − t |dt
)2
dx

� (#EL )2L−2(d+1)

∫
F

‖ f ‖2
2

∫
F

|x − t |2dtdx

� L−2 max{|∂E |2d/(d−1), 1}
κ2
∂E

|F |2 diam(F)2‖ f ‖2
2,

where in the last estimate we used Corollary 2.2. Hence (6.2) holds.
Step 2. Since SL and TE,F,L share the same non-zero eigenvalues, the estimates in
Theorem 1.2 apply also to SL for all sufficiently large L . By the Fischer-Courant
formula, operator convergence of positive compact operators implies convergence
of their eigenvalues. Hence, by (6.1), the estimate satisfied by the spectrum of SL
extends to the spectrum of S. ��

7. The Discrete Fourier Transform

Proof of Theorem 1.3. Let us define E := � + Q1. Then � = EL for L = 1. Let
us apply Theorem 1.2 with L = 1 to E , F . We check the relevant hypotheses.

We first note that ∂E is an almost disjoint union of faces of cubes (by almost
disjoint we mean that the intersection of any two faces has zero Hd−1-measure).
Moreover, each one is contained in k + Q1 for exactly one k ∈ � that must belong
to ∂�. In particular,

∂E ⊂
⋃
k∈∂�

k + ∂Q1.

Conversely, for each point k ∈ ∂� at least one face of the cube k + Q1 lies in ∂E .
Thus,

#∂� ≤ ∣∣∂E∣∣ ≤ 2d · #∂�, (7.1)

and consequently,
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|∂E ||∂F | ≥ #∂� · |∂F | ≥ 1.

Moreover, (7.1) shows that the choice L = 1 satisfies L ≥ |∂E∣∣−1/(d−1) as ∂�

contains at least one point.
Now fix 0 < r ≤ √

d · (#∂�)1/(d−1) and let us show that ∂E is regular at
maximal scale. If r ≤ 2

√
d, and x ∈ ∂E we clearly haveHd−1

(
∂E∩Br (x)

)
� rd−1

as E is a union of cubes of length 1. If r > 2
√
d , set n = �r/√d� and let x ∈ ∂E .

There exists kx ∈ ∂� such that |kx − x | ≤ √
d/2. Note that for y ∈ kx + Qn+1,

|y − x | ≤
√
d(n + 1)

2
+

√
d

2
≤ r

2
+ √

d < r.

Hence, kx + Qn+1 ⊆ Br (x). This together with the fact that for k ∈ ∂� at least
one face of the cube k + Q1 lies in ∂E gives

Hd−1(∂E ∩ Br (x)
) ≥ Hd−1(∂E ∩ kx + Qn+1

) ≥ Hd−1
(
∂E ∩

⋃
k∈∂�∩kx+Qn

k + ∂Q1

)

≥ #
(
∂� ∩ kx + Qn

) ≥ κ∂�n
d−1 � κ∂�r

d−1.

This shows that ∂E is regular at scale
√
d · (#∂�)1/(d−1) with constant Cd · κ∂�.

Note that if a set X is regular at scale ηX and constant κX , then it is also regular at
scale αηX and constant min{1, α1−d}κX , for every α > 0. By (7.1) we therefore

see that ∂E is regular at scale η∂E = ∣∣∂E∣∣1/(d−1) and constant κ∂E 
 κ∂�.
The desired estimates now follow by applying Theorem 1.2 to E and F with

L = 1, together with (7.1). ��

8. Proof of Remark 1.4

First we combine Lemma 5.3, Lemma 5.1 (for p = 1) and Theorem 1.1 to
conclude that there exist a constant C = Cα,d > 0 such that if

n ≥ �|E | · |F |� + C
|∂E |
κ∂E

|∂F |
κ∂F

· log

(
e|∂E ||∂F |

κ∂E

)2d(1+α)+1

=: C1,

then λn ≤ 1/2, and if

n ≤ �|E | · |F |� − C
|∂E |
κ∂E

|∂F |
κ∂F

· log

(
e|∂E ||∂F |

κ∂E

)2d(1+α)+1

=: C2,

then λn ≥ 1/2.
For ε ∈ (0, 1), define ε0 := min{ε, 1 − ε} ≤ 1/2 and let 0 < τ < ε0. Observe

that

{1, ..., �C2�} � Mτ (S) ⊆ N1−ε0(S) ⊆ Nε(S) ⊆ Nε0(S) ⊆ {1, ..., �C1�} ∪ Mτ (S),

where we understand {1, ..., �C2�} to be ∅ if C2 < 1. Consequently,

C2 − 1 − #Mτ (S) ≤ #Nε(S) ≤ C1 + 1 + #Mτ (S).
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Rearranging the last expression and using Theorem 1.1 for τ gives

∣∣Nε(S) − |E | · |F |∣∣ � |∂E |
κ∂E

· |∂F |
κ∂F

· log

( |∂E ||∂F |
κ∂E τ

)2d(1+α)+1

.

Letting τ ↗ ε0 yields (1.13).
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