
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-024-01968-y

Arch. Rational Mech. Anal. (2024) 248:27

Invariant Manifolds for the Thin Film Equation
CHRISTIAN SEIS & DOMINIK WINKLER

Communicated by N. MASMOUDI

Abstract

The large-time behavior of solutions to the thin film equation with linear mobil-

ity in the complete wetting regime on ℝ𝑁
is examined. We investigate the higher

order asymptotics of solutions converging towards self-similar Smyth–Hill solu-

tions under certain symmetry assumptions on the initial data. The analysis is based

on a construction of finite-dimensional invariant manifolds that solutions approxi-

mate to an arbitrarily prescribed order.

1. Introduction

In this work, we investigate the thin film equation with linear mobility in arbi-

trary space dimensions, that is, the partial differential equation

𝜕
𝜏
𝑢 + ∇ ⋅ (𝑢∇Δ𝑢) = 0 (1)

in the whole space ℝ𝑁
. This equation models the flow of an 𝑁 + 1 dimensional

viscous fluid with high surface tension over a flat substrate, and thus, the real phys-

ical three-dimensional setting corresponds to the case 𝑁 = 2. The evolving scalar

variable 𝑢 = 𝑢(𝜏, 𝑦) in (1) represents the height of the liquid film, and is assumed

to be nonnegative [58,59]. In the 1 + 1 dimensional case, equation (1) can also be

seen as the lubrication approximation in a two-dimensional Hele–Shaw cell [34].

The thin film equation is degenerate parabolic in the sense that the diffusion

flux decreases to zero where 𝑢 vanishes. It follows that the speed of propagation

is finite and thus droplet configurations stay compactly supported for all times. On

a mathematical level, we are thus concerned with a free boundary problem. We

will be focusing on a setting in which droplet solutions are slowly spreading over

the full space, a regime that is commonly referred to as complete wetting. This is

obtained mathematically by prescribing the contact angle at the droplet boundary

𝜕{𝑢 > 0} to be zero, that is, ∇𝑢 = 0.
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A reference spreading droplet configuration is given by Smyth and Hill’s self-

similar solution [6,25,66]

𝑢∗(𝜏, 𝑦) =
1

𝜏

𝑁

𝑁+4

𝛼
𝑁
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− |𝑦|2
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where 𝛼
𝑁

= 1
8(𝑁+4)(𝑁+2) and 𝜎

𝑀
is a positive constant only depending on the mass

constraint

∫
ℝ𝑁

𝑢∗d𝑦 = 𝑀.

Moreover, we write (𝑠)+ for the positive part max{0, 𝑠} of a quantity 𝑠. These

source-type solutions (2) play a distinguished role in the theory since they are, sim-

ilar to related parabolic problems, believed to describe the large time asymptotic

behavior of any solution of mass 𝑀 to the thin film equation, that is,

𝑢(𝜏, 𝑦) ≈ 𝑢∗(𝜏, 𝑦) for any 𝜏 ≫ 1. (3)

This convergence has been proved for strong solutions in the one-dimensional set-

ting (𝑁 = 1) via entropy methods by Carrillo and Toscani [13] and for minimiz-

ing movement solutions in arbitrary dimensions via gradient flow techniques by

Matthes, McCann and Savaré [53]. Both contributions provide sharp rates of con-

vergence and exploit the intimate relation between the thin film equation (1) and

the porous medium equation

𝜕
𝜏
𝑢 − Δ𝑢𝑚 = 0 (4)

in the case 𝑚 = 3∕2. In fact, up to a suitable rescaling, the Smyth–Hill solutions (2)

coincide with the self-similar Barenblatt solutions [2,61,71] of the porous medium

equation (4), and the surface energy, which is dissipated by the thin film equation

(1), coincides with the rate of dissipation of the Tsallis entropy under the porous

medium flow (4). See [53,54] for a clean formulation of this entropy-information

relation from a gradient flow perspective.

The link between the two equations can be further exploited in order to get

deeper insights into the large time behavior of solutions to (1): When linearizing

both equations about the self-similar solutions, it turns out that the linear porous

medium operator  translates into the linear thin film operator in a simple alge-

braic way, namely 2 +𝑁 [54]. It immediately follows that the eigenfunctions of

both operators agree, while the transformation of the eigenvalues from the porous

medium setting to the thin film setting obeys the same algebraic formula. The op-

erator  was diagonalized in [63,70], and thus, the full spectral information is also

available for the thin film equation [54], see Theorem 2.2 below. The spectrum of

the one-dimensional operator was computed earlier in [7].

The knowledge of the complete spectrum does not only give information on

the sharp rate of convergence (for which information about the spectral gap would

be sufficient), but also on the geometry of all modes through the knowledge of all
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eigenfunctions. One may thus analyze in detail the role played by affine symmetries

such as dilations, rotations or shears, and we will in this paper obtain improved

rates of convergence for the thin film equation (1) by quoting out such symmetries.

Further details on the large time asymptotics can be formulated after a suitable

change of variables.

Higher order large time asymptotics for the porous medium equation (4) with

𝑚 > 1 were obtained in one dimension by Angenent [1], building up on the spectral

information in [70] and, more recently, in any dimension by the first author [64],

building up on [63]. While Angenent derived fine series expansions around the

limiting solution, the later multidimensional contribution takes a geometric point

of view by constructing finite-dimensional invariant manifolds that the solutions

approximate to any given order. In the present work, we will derive a parallel the-

ory for the thin film equation. Invariant manifold studies can be found in numer-

ous applications in the field of nonlinear partial differential equations, for instance,

[12,17–19,23,26–28,38,68,69]. What is particularly challenging in [64] and the

present paper is the moving free boundary at which solutions cease to be smooth.

What is needed for linking the spectrum of the linear operators to the nonlinear

dynamics (1) or (4) is a regularity framework in which solutions depend differen-

tiably on the initial configuration. This is necessary since the precise rate of conver-

gence in the limit (3) is dictated by the particular choice of the initial datum. Iden-

tifying such a framework is far from being trivial. A crucial first step is a nonlinear

change of variables that transforms the free boundary problem into an evolution

equation on a fixed domain, which can be chosen as the unit ball. The linear lead-

ing order part of the equation can then be seen as a degenerate parabolic equation,

whose degeneracy can be cured by interpreting the the dynamics as a fourth-order

heat flow on a weighted Riemannian manifold. For the porous medium equation,

this setting was proposed by Koch in his habilitation thesis [47], further refined in

the work of Kienzler [42] and then adapted in [64]. An analogous theory for the

thin film equation was derived by John in [40] and later adapted by the first author

in [65]. After some necessary refinements, the latter will be the starting point for

the present study.

We also like to mention the related studies by Denzler, Koch and McCann

[21,22] and Choi, McCann and the first author [15,16], who derived some im-

proved large time asymptotics for the fast diffusion equation, that is, (4) with𝑚 < 1,

in the full space and a bounded domain, respectively. The full space setting is par-

ticularly challenging due to the occurrence of continuous spectrum, which arises

from the fact that the associated Barenblatt profile possesses a finite number of

moments, while in a bounded domain, in which solutions extinct in finite time,

negative (unstable) eigenvalues challenge the leading order asymptotics [9].

On a technical level, the passage from the second order problem [64] to the

present fourth order problem is far from being trivial. Indeed, for the construction

of invariant manifolds a truncation has to be introduced that reflects the maximal

regularity properties of the linear part of the equation. In order to remove the trun-

cation eventually, improved regularity and new smoothing estimates are crucial.

We elaborate on this issue later in Section 6.
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A major improvement with respect to the analogous second order paper [64] is

a group theoretical point of view that we introduce here and with the help of which

we are able to classify and mod out symmetries in order to obtain convergence rates

of higher order.

Before giving in the next section a specific description of our setting and of

our main results, we want to finish this introductory section with a brief discussion

about the state of the art in the mathematical theory for thin film equation. Exis-

tence of nonnegative weak solutions was established with the help of compactness

arguments and estimates on the free surface energy by Bernis and Friedman [5].

This approach is not adequate to prove a general uniqueness result even though

the regularity of these solutions could be improved, see [4,8,20]. In a neighbor-

hood of stationary solutions (of infinite mass), well-posedness and regularity of

one-dimensional solutions could be established in a weighted Sobolev setting [32]

and in Hölder spaces [31]. Moreover, the aforementioned work [40] deals with the

multidimensional case and lowers the regularity requirements to Lipschitz norms

and Carleson-type measures. The latter approach was adapted to neighborhoods

of the Smyth–Hill self-similar solution in [65]. The one-dimensional setting was

also considered in [35] using weighted Hilbert spaces. We finally remark that for

nonlinear mobilities, solutions are in general not smooth, see [3,29,30,36,43–45]

for results in the complete wetting and partial wetting regime (positive contact an-

gle). Moreover, even though convergence to the self-similar or stationary solutions

[6,25] is expected, no results in this direction are available so far. (Equilibration

towards stationary profiles in the 1 + 1 dimensional linear-mobility partial wetting

regime can be found in [24,52].)

Organization of the Paper In the next section, we state and discuss our results

on the large time asymptotics in self-similar variables. In Section 3, we rewrite the

thin film equation as a perturbation equation around the self-similar Smyth–Hill

solution and present our main theorems of this paper, including the Invariant Man-

ifold Theorem. We will describe in Section 4 how these results for the perturbation

equation translate into the large-time asymptotics for the thin film equation. Sec-

tion 5 collects information on the well-posedness of the perturbation equation and

improves on known regularity estimates. The subsequent Section 6 deals with a

truncated version of the perturbation equation. Well-posedness and regularity esti-

mates are provided. Moreover, we introduce and discuss the time-one mapping that

will be our main object of consideration in our construction of invariant manifolds

in Section 7. The final Section 8 exploits the invariant manifold theory to prove

the large-time asymptotic expansions for the perturbation equation. We conclude

with two appendices, one with a derivation of the perturbation equation, one with

inequalities for weighted Sobolev spaces.

2. Higher Order Asymptotics for the Thin Film Equation

In order to study the convergence towards self-similar solutions, it is customary

to perform a self-similar change of variables. In view of the particular form of the
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Smyth–Hill solution (2), we choose

𝑥 = 1√
𝜎
𝑀

1

𝜏

1
𝑁+4

𝑦, 𝑡 = 𝛾
−1 log

(
𝜏

1
𝑁+4

)
and 𝑣 = (𝑁 + 4)𝛾

𝜎
2
𝑀

𝜏

𝑁

𝑁+4 𝑢, (5)

where 𝛾 = 2(𝑁 + 2), which transforms equation (1) into the confined thin film

equation

𝜕
𝑡
𝑣 + ∇ ⋅ (𝑣∇Δ𝑣) − 𝛾∇ ⋅ (𝑥𝑣) = 0, (6)

and turns the self-similar solution (2) into a stationary one,

𝑣∗(𝑥) =
1
4
(
1 − |𝑥|2)2+ . (7)

We remark that under this change of variables, the initial time will be transferred

from 𝑡 = 0 to 𝜏 = 1. As we are interested into the solutions’ large time behav-

ior only, we will hereafter treat 0 as the initial time for the transformed equation.

Moreover, the rescaling incorporates the total mass 𝑀 through 𝜎
𝑀

in such a way

that the stationary 𝑣∗ is the limiting solution only if 𝑣 and 𝑣∗ have the same total

mass. In what follows, we will assume that this is always the case be requiring that

∫
ℝ𝑁

𝑣0 d𝑥 = ∫
ℝ𝑁

𝑣∗ d𝑥, (8)

if 𝑣0 is the initial configuration for the evolution in (6).

The theory in [65] guarantees that the confined thin film equation (6) has a

unique regular solution provided that 𝑣0 and 𝑣∗ are sufficiently close in the sense

that ‖√𝑣0 − 𝑉∗‖𝑊 1,∞(supp 𝑣0) ≪ 1, (9)

where 𝑉∗(𝑥) =
1
2 (1−|𝑥|2) is the (unsigned) extension of

√
𝑣∗ toℝ𝑁

. This condition

actually yields strong estimates between 𝑣0 and and the exact stationary solution

𝑣∗ as will be explained in the following remark:

Remark 2.1. Choosing the globally decaying 𝑉∗ over
√
𝑣∗ in (9) has the advantage

that we can infer from it simultaneously an information on the support of 𝑣0, a

global estimate on the difference of 𝑣0 and 𝑣∗, and a bound on the slope of 𝑣0.

Indeed, regarding the first, restricting to the boundary of the support, where 𝑣0
vanishes, and noticing that 𝑉∗(𝑥) ∼ dist(𝑥, 𝜕𝐵1(0)), we directly deduce

sup
𝑥∈𝜕 supp 𝑣0

dist(𝑥, 𝜕𝐵1(0)) ≪ 1.

Next, we observe that 𝑉∗ =
√
𝑣∗ inside the ball𝐵1(0). Outside of𝐵1(0) it holds

that 0 ≤ √
𝑣0 −

√
𝑣∗ =

√
𝑣0 ≤ √

𝑣0 − 𝑉∗, and thus, we find

‖√𝑣0 −
√
𝑣∗‖𝐿∞(𝐴) ≪ 1 (10)
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on the set 𝐴 = supp 𝑣0 as a consequence of (9). Moreover, since 𝑉∗ −
√
𝑣0 =

𝑉∗ =
√
𝑣∗ on 𝐵1(0) ∩ 𝜕 supp 𝑣0 and since 𝑣∗ is decaying towards the boundary,

the estimate (10) holds true also on 𝐴 = 𝐵1(0)⧵ supp 𝑣0. It remains to notice that

𝑣0 = 𝑣∗ = 0 on the remaining set 𝐴 = 𝐵1(0)𝑐 ∩ (supp 𝑣0)𝑐 , and thus (10) is proved

to be true with 𝐴 = ℝ𝑁
. We immediately deduce that

‖‖𝑣0 − 𝑣∗‖‖𝐿∞(ℝ𝑁 ) ≪ 1,

because |𝑣0 − 𝑣∗| = |√𝑣0 −
√
𝑣∗|(√𝑣0 +

√
𝑣∗) ≲ |√𝑣0 −

√
𝑣∗| where the last

identity is true because 𝑣0 and 𝑣∗ are bounded.

Finally, we can also extract a condition on the slope of 𝑣0, namely,

‖‖‖∇𝑣0 + 2𝑥
√
𝑣0

‖‖‖𝐿∞(ℝ𝑁 )
≪ 1. (11)

To establish (11), we first note that the left-hand side vanishes provided that 𝑥 does

not lie in the support of 𝑣0. Inside supp 𝑣0, we have |∇𝑣0+2𝑥√𝑣0| = 2
√
𝑣0|∇√

𝑣0−
∇𝑉∗| ≲ |∇√

𝑣0−∇𝑉∗|, because 𝑣0 is bounded. Condition (9) then yields the claim.

Notice that the left-hand side in (11) vanishes precisely for 𝑣0 = 𝑣∗ (under the mass

constraint (8)).

The main results of the referred work [65] are repeated in more details later in

Section 5. This section also contains the main results of the present work. At this

stage, we present some consequences of that general theory for the confined thin

film equation (6), which provide exemplary improved convergence rates towards

equilibrium by quoting out symmetries.

The rates of relaxation being intimately related to the spectrum of the linear

operator 2 +𝑁 associated to the confined equation (6), see Section 3 below, for

a better understanding of our results presented in the sequel, we recall the findings

of the spectral analysis from the literature.

Theorem 2.2. ([7,54]) The operator 2 +𝑁 has a purely discrete spectrum con-
sisting of the eigenvalues

𝜇
𝑙,𝑘

= 𝜆
2
𝑙,𝑘

+𝑁𝜆
𝑙,𝑘
,

where the 𝜆
𝑙,𝑘

are the eigenvalues of . They are given by

𝜆
𝑙,𝑘

= 2 (𝑙 + 2𝑘) + 2𝑘
(
𝑘 + 𝑙 + 𝑁

2
− 1

)
,

for (𝑙, 𝑘) ∈ ℕ0 ×ℕ0 if 𝑁 ≥ 2 and (𝑙, 𝑘) ∈ {0, 1}×ℕ0 if 𝑁 = 1. The corresponding
eigenfunctions are polynomials of degree 𝑙 + 2𝑘, namely

𝜓
𝑙,𝑛,𝑘

(𝑥) = 2𝐹1

(
−𝑘, 1 + 𝑙 + 𝑁

2
+ 𝑘; 𝑙 + 𝑁

2
; |𝑥|2) 𝑌

𝑙,𝑛

(
𝑥|𝑥|

) |𝑥|𝑙,
where 𝑛 ∈ {1,… , 𝑁

𝑙
} with 𝑁0 = 1 or 𝑁1 = 𝑁 and 𝑁

𝑙
= (𝑁+𝑙−3)!(𝑁+2𝑙−2)

𝑙!(𝑁−2)! if
𝑙 ≥ 2. Besides, 2𝐹1(𝑎, 𝑏; 𝑐; 𝑑) is a hypergeometric function and 𝑌

𝑙,𝑛
is a spherical

harmonic (of degree 𝑙) if 𝑁 ≥ 2, corresponding to the eigenvalue 𝑙(𝑙 +𝑁 − 2) of
−Δ𝕊𝑁−1 with multiplicity 𝑁

𝑙
. If 𝑁 = 1 it is 𝑌

𝑙,𝑛 (±1) = (±1)𝑙 .
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The computation of the linear operator in [54] was rather formal and was de-

rived from the gradient flow interpretation of (6) with respect to the Wasserstein

metric tensor [33,53,60]. It occurs naturally after suitable rescaling in the pertur-

bation equation (19)

In the statement of the theorem, the linear operator is analyzed with respect to

the Hilbert space introduced in (21) below, and the eigenfunctions 𝜓
𝑙,𝑛,𝑘

give rise

to an orthogonal basis of that Hilbert space.

We recall that hypergeometric functions can be written as power series of the

form

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞∑
𝑗=0

(𝑎)
𝑗
(𝑏)

𝑗

(𝑐)
𝑗
𝑗!

𝑧
𝑗
,

where 𝑎, 𝑏, 𝑐, 𝑧 ∈ ℝ and 𝑐 is not an non-positive integer, see, for example [62]. The

definition uses extended factorials, also known as Pochhammer symbols,

(𝑠)
𝑗
= 𝑠(𝑠 + 1)⋯ (𝑠 + 𝑗 − 1), for 𝑗 ≥ 1 and (𝑠)0 = 1.

The hypergeometric functions with 𝑧 = |𝑥|2 reduce to a polynomial of degree 2𝑘
if we plug in −𝑘 for 𝑎. In this case, they can be expressed as Jacobi polynomials.

In the one-dimensional setting, all eigenvalues have multiplicity one. In higher

dimensions, all eigenvalues with 𝑙 ≥ 2 have a dimension dependent multiplicity

that stems from the multiplicity of the eigenvalue 𝑙(𝑙 +𝑁 − 2) associated with the

spherical harmonics, that is, the eigenfunctions of the Laplace–Beltrami operator

Δ𝕊𝑁−1 . In addition, there are certain intersections between the eigenvalues 𝜇⋅,𝑘 and

𝜇⋅,𝑘+𝑛. For instance, in two dimensions, it holds that 𝜇
𝑙,𝑘

= 𝜇
𝑙(𝑘+1)+𝑘(𝑘+2),0 for any

𝑘, 𝑙, see Figure 1.

2.1. Leading Order Asymptotics

Apparently, 𝜇0,0 = 0 is the smallest eigenvalue. It corresponds to a situation

in which the convergence in (3) fails, which is precisely the case if the equal mass

condition (8) is not satisfied. Conversely, by requiring that (8) holds, this eigenvalue

is automatically eliminated. The exact leading order asymptotics are then governed

by the second smallest eigenvalue 𝜇1,0 = 4 + 2𝑁 , which is our first result for

solutions to the confined thin film equation. We will derive it from a more general

statement in Theorem 3.1 in Section 3 and present it thus as a corollary here.

Corollary 2.3. (Exact leading order asymptotics) Let 𝑣 be the solution to (6) with
initial data 𝑣0 satisfying the mass constraint (8) and being sufficiently close to 𝑣∗
in the sense of (9). Then it holds that

‖‖‖√𝑣(𝑡) − 𝑉∗
‖‖‖𝑊 1,∞(supp 𝑣(𝑡))

≲ 𝑒
−(4+2𝑁)𝑡 for all 𝑡 ≥ 0.

The result entails the convergence of 𝑣(𝑡) towards 𝑣∗ as outlined in Remark 2.1.

The same rate of convergence was established earlier in terms of the rela-

tive Tsallis entropy and the 𝐿
1

norm by Carrillo and Toscani [13] in the one-

dimensional setting and by Matthes, McCann and Savaré in any dimension (if
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one takes into account the difference in the time scaling that we introduced in (6)

through the 𝛾
−1

factor). It corresponds to an 𝑂(𝜏−(𝑁+1)∕(𝑁+4)) convergence in the

limit (3) for the original thin-film equation (1).

The convergence rate in this theorem is sharp and is saturated by spatial trans-

lations of the stationary solution 𝑣∗. Indeed, for every vector 𝑏 ∈ ℝ𝑁
, the function

𝑣(𝑡, 𝑥) = 𝑣∗(𝑥−𝑒−𝛾𝑡𝑏) solves the confined thin film equation exactly and approaches

𝑣∗(𝑥) with exponential rate 𝛾 = 4 + 2𝑁 , as can be readily checked via Taylor

expansion. However, because the original equation (1) is invariant under spatial

translations, the convergence in (3) with rate 𝑂(𝜏−(𝑁+1)∕(𝑁+4)) remains true for

any shifted version of the Smyth–Hill solution, that is, 𝑢(𝜏, 𝑦) ≈ 𝑢∗(𝜏, 𝑦 − 𝑏), and

the significance of this rate is thus an artifact of this symmetry. Indeed, the above

arguing shows that the convergence in Corollary 2.3 is sharp only if we are not

willing to pick the “correctly” centered Smyth–Hill solution. We may equivalently

adjust the initial datum by a suitable translation inℝ𝑁
. As we will see, the “correct”

choice for 𝑏 is the center of mass, which is preserved under the original evolution

(1) and pushed towards the origin by the confined equation,

∫ 𝑥𝑣(𝑡, 𝑥)d𝑥 = 𝑒
−𝛾𝑡

𝑏0, 𝑏0 = ∫ 𝑥𝑣0(𝑥)d𝑥 (12)

for all 𝑡 ≥ 0, because our rescaling (5) has eliminated the translation invariance.

Supposing that 𝑣0 is centered at the origin, 𝑏0 = 0, the eigenvalue 𝜇1,0 drops out

of the spectrum and we obtain a better rate of convergence, namely by the next

smallest eigenvalue, which is 𝜇0,1 = 30 if 𝑁 = 1, and 𝜇2,0 = 16 + 4𝑁 if 𝑁 ≥ 2.

Corollary 2.4. Let 𝑣 be as in Corollary 2.3 and assume in addition that 𝑣0 is cen-
tered at the origin, that is, 𝑏0 = 0 in (12). Then, it holds that‖‖‖√𝑣(𝑡) − 𝑉∗

‖‖‖𝑊 1,∞(supp 𝑣(𝑡))
≲ 𝑒

−30𝑡 for all 𝑡 ≥ 0

if 𝑁 = 1, and‖‖‖√𝑣(𝑡) − 𝑉∗
‖‖‖𝑊 1,∞(supp 𝑣(𝑡))

≲ 𝑒
−(16+4𝑁)𝑡 for all 𝑡 ≥ 0

if 𝑁 ≥ 2.

This rate of convergence is again sharp for solutions that start, if 𝑁 ≥ 2, from

affine transformations of the stationary solution, and if 𝑁 = 1, from dilated sta-

tionary solutions. Because we will discuss dilated stationary solutions later also in

the multi-dimensional case, we will restrict ourselves here to the setting 𝑁 ≥ 2.

Solutions starting from affine transformations of 𝑣∗ are then to leading order (mod-

ulo rescaling to fit the mass constraint) described by 𝑣(𝑡, 𝑥) ≈ 𝑣∗(𝑥− 𝑒
−𝜇2,0𝑡𝐴𝑥) for

a symmetric and trace-free matrix 𝐴. The validity of this asymptotics is best under-

stood in terms of the perturbation equation, that we will introduce in the subsequent

section.

The occurrence of such affine transformations can be explained on the level of

the eigenfunctions computed in Theorem 2.2: The finite displacements 𝑣
𝑠

generated

by an eigenfunction 𝜓 are described by

𝑣
𝑠
(𝑥 + 𝑠∇𝜓(𝑥)) det(𝐼 + 𝑠∇2

𝜓(𝑥)) = 𝑣∗(𝑥), (13)
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provided that |𝑠| ≪ 1. For 𝑘 = 0, the eigenfunctions are homogeneous harmonic

polynomials of degree 𝑙, namely𝜓
𝑙,𝑛,0(𝑥) = 𝑌

𝑙,𝑛
(𝑥∕|𝑥|)|𝑥|𝑙. If 𝑙 = 2, the generating

polynomials are quadratic, and thus of the form 𝜓(𝑥) = 𝑥 ⋅𝐴𝑥 for a symmetric and

trace-free matrix 𝐴. In this case, (13) defines affine transformations.

For further improvements on the rate of convergence, we have to quote out

affine transformations.

2.2. Higher Order Corrections and the Role of Symmetries

In order to improve on the convergence rates even further, we exploit symmetry

invariances of the thin film equation in conjunction with symmetry properties of

spherical harmonics, which determine the angular modulations of our eigenfunc-

tions, see Theorem 2.2. More precisely, we will obtain higher order convergence

rates by assuming that the initial datum 𝑣0 is invariant under certain orthogonal

transformations. Because such transformations leave the thin film equation invari-

ant and thanks to the uniqueness of solutions near self-similarity [65], the invari-

ance under those orthogonal transformations is inherited by the solution for all

times. We will show that the orthogonality condition leads to a selection among

the eigenfunctions forcing a large class of eigenmodes to remain inactive during the

evolution. The slowest active mode will then govern the large-time asymptotics.

To motivate our approach for modding out certain modes, it is enlightening to

study briefly the situation in two space dimensions, 𝑁 = 2. In Figure 2, we have

plotted some finite displacements, cf. (13), generated by eigenfunctions 𝜓
𝑙,𝑛,0 with

𝑙 ∈ {1,… , 𝑁
𝑙
}. Apparently, displacements generated by 𝜓

𝑙,𝑛,0 (and then also by

any polynomial of the form 𝑝(|𝑥|)𝑌
𝑙,𝑛
(𝑥∕|𝑥|) including 𝜓

𝑙,𝑛,𝑘
) share precisely the

symmetry properties of a regular 𝑙-polygon. Under the assumption that the solution

has the symmetry properties such a regular 𝑙-polygon, all eigenmodes generated by

𝜓
𝑚,𝑛,𝑘

with 𝑚 < 𝑙 are necessarily inactive. In Remark 4.2 below, we will discuss

the short elementary argument that rigorously supports this observation.

In higher space dimensions, the situation gets more involved and the structure

of the spherical harmonics is more complex. In order to mod out eigenmodes, tak-

ing a more abstract approach is strongly advised. We choose a group theoretical

approach, noticing that the symmetry group of a regular 𝑙-polygon is a finite sub-

group of the group of orthogonal transformations 𝑂(𝑁). Our goal is to determine

geometric conditions on an arbitrary function, more precisely, invariances under the

action of a given finite subgroup of 𝑂(𝑁), which guarantee that the 𝐿
2
-projections

of that function onto all spherical harmonics of a given degree 𝑙 vanish. To achieve

this goal, we will eventually apply tools originating from the field of representation

theory of groups, see, for example, [10,57] for elementary considerations.

The space of square integrable functions on the unit sphere 𝐿
2 (𝕊𝑁−1)

can be

decomposed into a direct Hilbert sum over the eigenspaces of Δ𝕊𝑁−1 ,

𝐿
2 (𝕊𝑛−1) =

⨁
𝑙∈ℕ0

𝐻
𝑙
,

where the eigenspace 𝐻
𝑙

is spanned by the spherical harmonics of degree 𝑙 and its

dimension is given by 𝑁
𝑙
, see Theorem 2.2. We remark that every eigenspace 𝐻

𝑙
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is invariant under the action of orthogonal transformations. More precisely, given

an orthogonal matrix 𝑔 ∈ 𝑂(𝑁), for every 𝑓 ∈ 𝐻
𝑙

we have that 𝑓◦𝑔−1 ∈ 𝐻
𝑙
.

If 𝐸 is a finite subgroup of 𝑂(𝑁), we denote by 𝐻
𝐸

𝑙
the subspace of 𝐻

𝑙
con-

sisting of all functions that are invariant under the action of all elements of 𝐸, that

is, 𝑓◦𝑔−1 = 𝑓 for any 𝑓 ∈ 𝐻
𝐸

𝑙
and 𝑔 ∈ 𝐸. The eigenmodes corresponding to an

eigenvalue 𝜇
𝑙,𝑘

are all modded out by the action of elements in 𝐸 if that subspace

is trivial, dim(𝐻𝐸

𝑙
) = 0. We present and discuss our final convergence result un-

der such an abstract condition and will discuss thereafter some specific choices of

𝐸, for which we will need some deeper insights from the representation theory of

finite groups.

Corollary 2.5. Let 𝑁 ≥ 2 and 𝑣 be given as in Corollary 2.4 satisfying

‖‖‖√𝑣(𝑡) − 𝑉∗
‖‖‖𝐿∞(supp 𝑣(𝑡))

≲ 𝑒
−𝜇𝑙,𝑘𝑡 for all 𝑡 ≥ 0 (14)

for some 𝑙 ∈ ℕ and 𝑘 ∈ ℕ0, such that the multiplicity of 𝜇
𝑙,𝑘

is given by 𝑁
𝑙
. Assume

in addition that 𝑣0 is invariant under the action of a finite subgroup𝐸 of𝑂(𝑁) such
that

dim
(
𝐻

𝐸

𝑙

)
= 0. (15)

Then it holds that
‖‖‖√𝑣(𝑡) − 𝑉∗

‖‖‖𝑊 1,∞(supp 𝑣(𝑡))
≲ 𝑒

−𝜇+𝑡 for all 𝑡 ≥ 0,

where 𝜇+ is the next largest eigenvalue following 𝜇
𝑙,𝑘

.

We shall briefly comment on the assumptions on 𝑣(𝑡) in the latter corollary.

Remark 2.6. It may be surprising that it suffices to demand the decay of 𝑣(𝑡)−
√
𝑉∗

in 𝐿
∞

instead of 𝑊
1,∞

, what would be the expected setting due to the previous

results. Due to the regularizing properties of the equation and the Lipschitz bound

(9) for the initial time, we will eventually see, that both assumptions are in fact

equivalent in the given situation. We will discuss this phenomenon shortly in the

proof of Corollary 2.5.

Not every eigenfunction corresponds to an orthogonal transformation and thus,

a symmetry condition like (15) is in general not sufficient to jump from one eigen-

value to another. Indeed, all eigenfunctions𝜓0,1,𝑘 are radially symmetric polynomi-

als, and the slowest of the corresponding modes is generated by delayed Smyth–Hill

solutions 𝑢∗(𝜏 + 𝜏0, 𝑦) of (1), which turn into the dilations 𝜆(𝑡)−𝑁𝑣∗(𝜆(𝑡)−1𝑥) with

𝜆(𝑡) ≈ 1+ 1
𝑁+4𝜏0𝑒

−𝜇0,1𝑡 solving the confined equation (6), and converging towards

the stationary 𝑣∗ with exponential rate 𝜇0,1. We do not know if these modes can

be eliminated by a reasonable assumption on the initial configuration nor do we

see how they can be suitably controlled during the evolution. Therefore, in order

to raise the convergence rates beyond eigenvalues 𝜇0,𝑘, the decay hypothesis (14)

seems necessary to ensure that the respective radial modes are inactive. We have
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to demand that the multiplicity of the eigenvalue 𝜇
𝑙,𝑘

in (14) is precisely 𝑁
𝑙
, in or-

der to exclude possible resonances with any spherical harmonics of different order

(such that 𝜇
𝑙,𝑘

= 𝜇
𝑙,𝑘̃

).

To conclude the discussion about higher order asymptotics on the level of the

confined thin film equation, we remark that the number of eigenvalues we are able

to remove from the spectrum before reaching 𝜇0,1 (provided we find a suitable

subgroup of 𝑂(𝑁)) depends on the space dimension: If the dimension is odd, 𝑁 =
2𝑚 − 1, then 𝜇0,1 is the (𝑚 + 2)th eigenvalue and has multiplicity one. In even

dimensions, 𝑁 = 2𝑚, it coincides with 𝜇
𝑚+2,0.

We finally recall from the introduction that further and, in fact, much stronger

statements on the large time asymptotics can be derived after a customary change

of variables. These will be presented and discussed in the next section.

It remains to identify finite subgroups 𝐸 of 𝑂(𝑁), which mod out spherical

harmonics of a given order 𝑙 in the sense of (15). We will do that by applying

a surprisingly helpful tool, the Molien series, which originates from the field of

representation theory of groups. It was suggested to us by our colleague Linus

Kramer.

The subspace 𝐻
𝑙
⊆ 𝐿

2 (𝕊𝑁−1)
of spherical harmonics of degree 𝑙 can be

identified with the space of symmetric, trace-free tensors of rank 𝑙 that we will

further denote by 𝐻
𝑙

as well. The generating function ℎ
𝐸
(𝑡) for the dimensions

dim
(
𝐻

𝐸

𝑙

)
of the subspace of 𝐿

2(𝕊𝑁−1) that is invariant under the action of 𝐸 can

be formally expressed as the power series

ℎ
𝐸
(𝑠) =

∞∑
𝑙=0

dim
(
𝐻

𝐸

𝑙

)
𝑠
𝑙
, (16)

which is called Molien series or Hilbert series in the literature, cf. [57, p. 11] or

[67, p. 479]. A beautiful and functional way that is often used to compute this series

explicitly is given by Molien’s formula

ℎ
𝐸
(𝑠) = 1|𝐸|

∑
𝑔∈𝐸

1 − 𝑠
2

det (𝐼 − 𝑠𝑔)
,

see [55,56]. In the physical case 𝑁 = 2, the Molien series is known for all finite

subgroups of 𝑂(2), as will be discussed in the following:

∙ Cyclic groups. The first class of subgroups, 𝔖
𝑛

for 𝑛 ∈ ℕ, is generated by

rotations by an angle of 2𝜋∕𝑛. The corresponding Molien series is given by

ℎ𝔖𝑛
(𝑠) = 1 + 𝑠

𝑛

1 − 𝑠𝑛
= (1 + 𝑠

𝑛)
∞∑
𝑙=0

𝑠
𝑙𝑛 = 1 + 2𝑠𝑛 + 2𝑠2𝑛 + 2𝑠3𝑛 +… ,

see [56, p. 143]. In view of the Hilbert series representation (16) of ℎ𝔖𝑛
(𝑠),

this formula proves that the corresponding invariant subspaces must be trivial

(15) precisely if 𝑙 is not divisible by 𝑛. In other words, the projection of a func-

tion that is invariant under rotations of an angle of 2𝜋∕𝑛 onto the subspaces

spanned by spherical harmonics of degree 𝑙 has to vanish if 𝑙 is not divisible by
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𝑛. Moreover, if non-trivial, 𝐻
𝔖𝑛

𝑙
has dimension 2, and thus, recalling that for

𝑁 = 2 each of the tensor spaces 𝐻
𝑙

with 𝑙 ≥ 1 is two-dimensional 𝑁
𝑙
= 2, it

is 𝐻
𝔖𝑛

𝑙
= 𝐻

𝑙
.

∙ Dihedral groups. The second class of finite subgroups, 𝔇
𝑛

for 𝑛 ∈ ℕ, is gen-

erated by two elements. Again a rotation of the angle 2𝜋∕𝑛 and additionally a

reflection. In this case the Molien series reads as

𝐻𝔇𝑛
(𝑠) = 1

1 − 𝑠𝑛
=

∞∑
𝑙=0

𝑠
𝑙𝑛 = 1 + 𝑠

𝑛 + 𝑠
2𝑛 + 𝑠

3𝑛 +… ,

see [39, p. 59]. If a function is invariant under the action of 𝔇
𝑛

instead of 𝔖
𝑛
,

the projection onto 𝐻
𝑙

vanishes for the same 𝑙 as before. This time, however,

the nontrivial subspace are one-dimensional.

We remark that the zeroth order term 𝑠
0 = 1 in the Molien series does not affect

the convergence rates since the mass of the initial datum 𝑣0 is already fixed.

In higher dimensions, classifying the finite subgroups of 𝑂(𝑁) becomes more

complicated. For 𝑁 = 3, we discuss the subgroups of 𝑂(3) that only consist of

rotations in more detail. The following results, together with more far-reaching

ones, can be found in [56, p. 143].

∙ Cyclic groups. The class 𝔖
𝑛

for 𝑛 ∈ ℕ is generated by rotations by an angle of

2𝜋∕𝑛 around a fixed axis. The corresponding Molien series is given by

ℎ𝔖𝑛
(𝑠) = 1

1 − 𝑠

1 + 𝑠
𝑛

1 − 𝑠𝑛
=

(
1 + 𝑠 + 𝑠

2 + 𝑠
3 +…

)(
1 + 2𝑠𝑛 + 2𝑠2𝑛 + 2𝑠3𝑛 +…

)
.

This formula shows that no invariant subspace is ensured to be trivial in this

case.

∙ Dihedral groups. In three dimensions, the dihedral group 𝔇
𝑛

is generated by

two rotations: A rotation by an angle of 2𝜋∕𝑛 around a fixed axis and a rotation

by an angle of 𝜋 around an axis perpendicular to the first one. The correspond-

ing Molien series is given by

ℎ𝔇𝑛
(𝑠) = 1

1 − 𝑠2
1 + 𝑠

𝑛+1

1 − 𝑠𝑛
=

(
1 + 𝑠

𝑛+1
)(

1 + 𝑠
2 + 𝑠

4 +…
)(

1 + 𝑠
𝑛 + 𝑠

2𝑛 +…
)
.

In this case, the invariant subspace 𝐻
𝐸

𝑙
becomes trivial if and only if 𝑙 ≠

(𝑛 + 1)𝑘 + 𝑛𝑚1 + 2𝑚2 for all 𝑘 ∈ {0, 1} and 𝑚1, 𝑚2 ∈ ℕ0.

∙ Platonic solids. The last group is given by the three rotation groups of the pla-

tonic solids. The tetrahedral group 𝔗 (the rotation group of the tetrahedron) has

the Molien series

ℎ𝔗(𝑠) =
1

1 − 𝑠4
1 + 𝑠

6

1 − 𝑠3
=

(
1 + 𝑠

6) (1 + 𝑠
4 + 𝑠

8 +…
) (

1 + 𝑠
3 + 𝑠

6 +…
)
.

In this case, the invariant subspace 𝐻
𝐸

𝑙
becomes trivial if and only if 𝑙 ≠ 4𝑚1+

3𝑚2 for all 𝑚1, 𝑚2 ∈ ℕ0.
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The octahedral group 𝔒 (the rotation group of the cube or the octahedron) has the

Molien series

ℎ𝔒(𝑠) =
1

1 − 𝑠4
1 + 𝑠

9

1 − 𝑠6
=

(
1 + 𝑠

9) (1 + 𝑠
4 + 𝑠

8 +…
) (

1 + 𝑠
6 + 𝑠

12 +…
)
.

In this case, the invariant subspace 𝐻
𝐸

𝑙
becomes trivial if and only if 𝑙 ≠ 9𝑘 +

4𝑚1 + 6𝑚2 for all 𝑘 ∈ {0, 1} and 𝑚1, 𝑚2 ∈ ℕ0.

The isocahedral group ℑ (the rotation group of the cube or the dodecahedron or

the isocahedron) has the Molien series

ℎℑ(𝑠) =
1

1 − 𝑠10
1 + 𝑠

15

1 − 𝑠6
=

(
1 + 𝑡

15) (1 + 𝑠
10 + 𝑠

20 +…
) (

1 + 𝑠
6 + 𝑠

12 +…
)
.

In this case, the invariant subspace 𝐻
𝐸

𝑙
becomes trivial if and only if 𝑙 ≠ 15𝑘 +

10𝑚1 + 6𝑚2 for all 𝑘 ∈ {0, 1} and 𝑚1, 𝑚2 ∈ ℕ0.

Regarding the four dimensional case 𝑂(4), extensive results can be found in

[55]. In addition, various results regarding the Molien series in general dimensions

are available; see, for example, [39].

Remark 2.7. We remark that some of the references given above do not work in

exactly the same setting that we consider here. In fact, it is not necessary to de-

compose the space 𝐿
2 (𝕊𝑁−1)

into eigenspaces of Δ𝕊𝑁−1 . Instead, one could also

decompose it into spaces of homogeneous polynomials of fixed degree,

𝐿
2 (𝕊𝑁−1) =

⨁
𝑙∈ℕ0

𝑃
𝑙
,

where 𝑃
𝑙

is the space of homogeneous polynomials of degree 𝑙. Given a finite sub-

group 𝐸 of 𝑂(𝑁), we similarly denote by 𝑃
𝐸

𝑙
the subspace of 𝑃

𝑙
consisting of all

functions that are invariant under the action of all elements of 𝐸. Let

𝑝
𝐸
(𝑠) =

∞∑
𝑙=0

dim
(
𝑃
𝐸

𝑙

)
𝑠
𝑙

be the corresponding generating function. In this situation Molien’s formula has to

be adapted, namely

𝑝
𝐸
(𝑠) = 1|𝐸|

∑
𝑔∈𝐸

1
det (𝐼 − 𝑠𝑔)

,

see for example [57, p. 13]. We obtain ℎ
𝐸
(𝑠) = (1 − 𝑠

2)𝑝
𝐸
(𝑠), what enables us to

transfer results to the given setting.
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Fig. 3. The change of variables from (𝑥, 𝑣(𝑥)) to (𝑧,𝑤(𝑧))

3. New Variables and Main Results

As announced earlier, one of the main analytical challenges in deriving fine

large time asymptotics for the (confined) thin film equation is the free moving

boundary. Following Koch [47], we perform a von Mises-type change of depen-

dent and independent variables, which brings the equation into a setting in which

solutions depend differentiably on the initial datum [65]. The transformation ap-

plies when the solution is Lipschitz close to the stationary solution in the sense of

(9), cf. [64,65]. The underlying geometric procedure is the following, which is also

illustrated in Figure 3.

The stationary (4𝑣∗)1∕4 describes a hemisphere over the 𝑁-dimensional unit

ball 𝐵 = 𝐵1(0). We orthogonally project each point (𝑥, (4𝑣(𝑥))1∕4) of the graph

of (4𝑣)1∕4 onto the closest point (𝑧, (4𝑣∗(𝑧))1∕4) on the hemisphere and denote by

𝑤(𝑧) the (minimal) distance. Analytically this amounts to the choice

𝑧 = 𝑥√
2(𝑣(𝑡, 𝑥))1∕2 + |𝑥|2 (17)

for the new independent variable, and we see that 𝑥 = 𝑧 precisely if 𝑣 is the sta-

tionary solution (7). The formula for the dependent variables reads as

1 +𝑤(𝑡, 𝑧) =
√
2(𝑣(𝑡, 𝑥))1∕2 + |𝑥|2, (18)

and thus 𝑤 vanishes if 𝑣 is 𝑣∗. We will accordingly refer to 𝑤 as the perturbation.

The transformation is applicable also in situations in which 𝑣 and 𝑣∗ have not

the same mass. This observation is reflected by the fact that 𝜇0,0 = 0 occurs in the

spectrum of the linear operator, see Theorem 2.2. We will not eliminate this eigen-

value on the level of the perturbation, but only for the original variables through

the mass constraint (8). For the general theory that we perform in terms of the

perturbation, any constant solution 𝑤 ≡ 𝑐𝑜𝑛𝑠𝑡 is admissible and corresponds to a

Smyth–Hill solution (2) of arbitrary mass 𝑀 .
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The derivation of an evolution equation for the new variable 𝑤 is lengthy and

tedious. It has been described in detail already in [65], using the sloppy ⋆ notation,

see (20) below. For our purposes it is necessary to rederive the transformed equa-

tion in a way that carries more structure than the formulation chosen in [65]. We

postpone these computations to the appendix and state here our findings only. The

perturbation equation for the 𝑤 variables is

𝜕
𝑡
𝑤 + 2

𝑤 +𝑁𝑤 = 1
𝜌
∇ ⋅

(
𝜌
2
𝐹 [𝑤]

)
+ 𝜌𝐹 [𝑤] on (0,∞) × 𝐵1(0), (19)

where 𝜌(𝑧) = 1
2 (1 − |𝑧|2) is a weight function degenerating at the boundary, 𝑤 =

−𝜌−1∇ ⋅
(
𝜌
2∇𝑤

)
= −𝜌Δ𝑤 + 2𝑧 ⋅ ∇𝑤 is the building block of the thin film linear

operator and

𝐹 [𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆
(
𝜌∇3

𝑤 ⋆ ∇𝑤 + 𝜌(∇2
𝑤)2⋆ + ∇2

𝑤 ⋆ ∇𝑤 + (∇𝑤)2⋆
)

(20)

is the nonlinearity. The star product 𝑎 ⋆ 𝑏 denotes an arbitrary linear combination

of entries of the tensors 𝑎 and 𝑏, and thus, in particular, the above 𝐹 [𝑤] defines a

class of nonlinearities and both representatives in (20) may be different from each

other. We write 𝑎
𝑘⋆ = 𝑎 ⋆⋯ ⋆ 𝑎, where the ⋆-product has 𝑘 factors. Moreover,

𝑝 is a polynomial tensor in 𝑧, which might have zero entries. The rational factors

𝑅[𝑤] are tensors of the form

𝑅[𝑤] = (∇𝑤)𝑘⋆

(1 +𝑤 + 𝑧 ⋅ ∇𝑤)𝑙
,

for some 𝑘 ∈ ℕ0 and 𝑙 ∈ ℕ. Finally, the distributive property respects only the

tensor class, for example 𝑝 ⋆ (𝑎 + 𝑏) = 𝑝 ⋆ 𝑎 + 𝑝̃ ⋆ 𝑏 with two possibly different

polynomial tensors 𝑝 and 𝑝̃. This shortened ⋆ notation is suitable in the present

work because the exact form of the nonlinearity is not important for our analysis.

We finally recall from our introduction that the linear operator  also occurs in

the context of the porous medium equation (4) with 𝑚 = 3
2 , and was analyzed, for

instance, in [63,64]. It is readily checked that  is symmetric (and, in fact, self-

adjoint [63]) with respect to the inner product

⟨𝑤, 𝑤̃⟩ = ∫
𝐵1(0)

𝑤𝑤̃ 𝜌d𝑧, (21)

which induces a Hilbert space with norm ‖ ⋅ ‖ in the obvious way.

The perturbation equation (19) is well-posed for small Lipschitz initial data𝑤0,

‖𝑤0‖𝑊 1,∞ ≪ 1, (22)

as was proved in [65]. We will recall the precise statement in Theorem 5.1 below.

The above smallness condition is equivalent to (9) under the change of variables.

It follows from the statement of Theorem 2.2 that the order of the eigenvalues

𝜇
𝑙,𝑘

depends on the space dimension𝑁 . For us, it only plays a role when we want to

determine conditions on the initial datum 𝑣0 that lead to improvements in the con-

vergence rates for the confined thin film equation, see Corollaries 2.3, 2.4, and 2.5
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presented above. On the level of the perturbation equation, it is more convenient to

rename the eigenvalues
{
𝜇
𝑘

}
𝑘∈ℕ0

and order them in a strictly increasing way, that

is 𝜇
𝑘
< 𝜇

𝑘+1. Correspondingly, we denote by 𝜓
𝑘,𝑛

all eigenfunctions correspond-

ing to 𝜇
𝑘

for 𝑛 ∈
{
1,… , 𝑁̃

𝑘

}
. We note that the multiplicity of 𝜇

𝑘
may change

due to intersections between the eigenvalues, see Figure 1. We mostly stick to this

notation for the remaining work.

All announced asymptotic results for solutions 𝑣 to the confined thin film equa-

tion will be derived from the following theorem that fully describes the higher order

asymptotics of the perturbation equation. It is one of the two main results of the

present work its proof can be found in Section 8.

Theorem 3.1. For any fixed 𝐾 ∈ ℕ0, there exists an 𝜀0 > 0 with the following
properties: Let𝑤 be a solution to (19) with initial datum𝑤0 satisfying ‖𝑤0‖𝑊 1,∞ ≤
𝜀0. Then, under the assumption

lim
𝑡→∞

𝑒
𝜇𝑘𝑡⟨𝜓

𝑘,𝑛
, 𝑤(𝑡)⟩ = 0 for all 𝑘 ∈ {0,… , 𝐾} and 𝑛 ∈

{
1,… , 𝑁̃

𝑘

}
, (23)

it holds that

‖𝑤(𝑡)‖
𝑊 1,∞ ≲ 𝑒

−𝜇𝐾+1𝑡 for all 𝑡 ≥ 0.

To clarify the meaning of this Theorem, we first consider the case 𝐾 = 0. The

smallest eigenvalue 𝜇
𝐾

= 𝜇0 = 0, corresponds to the constant eigenfunction 1,

and thus, condition (23) turns into the requirement

lim
𝑡→∞∫

𝐵1(0)
𝑤(𝑡, 𝑧)𝜌(𝑧)d𝑧 = 0. (24)

As we will see in the proof of Corollary 2.3, the latter is equivalent to the mass

constraint (8) for the 𝑣 variable. By imposing a condition of the solution’s mass,

we rule out 𝜇0 = 0 as a relevant eigenvalue for the evolution, or, in other words,

the corresponding mode is inactive. It follows that the leading order asymptotics

are dominated by the next eigenvalue in order, 𝜇1, in the sense that it determines

the rate of convergence and governs the evolution towards the stationary 𝑣∗.

The theorem states that this procedure can be iterated. Because the mappings⟨𝜓
𝑘,𝑛
, ⋅⟩ act as projections onto the respective eigenspaces, condition (23) ensures

that the first 𝐾 modes (with their multiplicities) are inactive during the evolution,

that is, the modes do not affect the long-time behavior anymore. We can thus im-

prove the rate of convergence and the theorem shows that the leading order asymp-

totics is then governed by the smallest active mode. In the proofs of Corollaries 2.4

and 2.5 we identify symmetry conditions for solutions to the thin film equation

which ensure the decay (23) for the perturbation equation.

The proof for the higher-order asymptotics of the perturbation variable 𝑤 in

Theorem 3.1 is based on the construction of invariant manifolds, which are local-

ized around the stationary solution 𝑤 ≡ 0. This is our second main result, which

is of independent interest. To state it properly, we have to introduce some further

notation.
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First, we denote by 𝑆
𝑡(𝑔) the flow generated by the perturbation equation, that

is 𝑆
𝑡(𝑔) = 𝑤(𝑡, ⋅) where 𝑤(𝑡, 𝑧) solves the perturbation equation with initial datum

𝑔. We consider the Hilbert space 𝐻 that is induced by the inner product

⟨𝑣,𝑤⟩
𝐻

= ⟨𝑣,𝑤⟩ + ⟨𝑣,𝑤⟩ = ⟨𝑣,𝑤⟩ + ⟨𝑣,𝑤⟩ = ⟨𝑣,𝑤⟩ + ⟨√𝜌∇𝑣,
√
𝜌∇𝑤⟩

and the norm

‖𝑤‖2
𝐻

= ‖𝑤‖2 + ‖1∕2
𝑤‖2 = ‖𝑤‖2 + ‖√𝜌∇𝑤‖2,

where ‖ ⋅ ‖ was defined via (21). It is equivalent to a scale invariant Hilbert space

norm, ‖𝑤‖2
𝐻

∼ ‖𝑤‖2
𝐿2 + ‖𝜌∇𝑤‖2

𝐿2 , (25)

as can be seen with the help of Hardy’s inequality, cf. Lemma B.2 in the appendix.

Furthermore, 𝐸
𝑐

is the eigenspace spanned by the eigenfunctions 𝜓
𝑘,𝑛

for 𝑘 ≤ 𝐾

and 𝑛 ∈
{
1,… , 𝑁̃

𝑘

}
with𝐾 ∈ ℕ0 fixed and𝐸

𝑠
denotes its orthogonal complement

in 𝐻 , such that 𝐻 = 𝐸
𝑐
⊕ 𝐸

𝑠
. In the following theorem, 𝐸

𝑐
and 𝐸

𝑠
are the center

and stable eigenspaces, respectively. We finally have to refine the analysis from

[65] by considering

‖𝑤‖
𝑊

= ‖𝑤‖
𝐿∞ + ‖∇𝑤‖

𝐿∞ + ‖𝜌∇2
𝑤‖

𝐿∞ + ‖𝜌2∇3
𝑤‖

𝐿∞ , (26)

instead of the Lipschitz norm only. The necessity of considering (scale-invariant)

higher-order norms is a crucial observation in our definition and analysis of the

truncated equation (45). We will comment on this further in Section 6.

Theorem 3.2. For any fixed 𝐾 ∈ ℕ0 and 𝜇 ∈
(
𝜇
𝐾
, 𝜇

𝐾+1
)
, there exist two con-

stants 𝜀 > 𝜀0 > 0 (with 𝜀0 possibly smaller than in Theorem 3.1), and a Lipschitz
continuous mapping 𝜃

𝜀
∶ 𝐸

𝑐
→ 𝐸

𝑠
that is differentiable at zero with 𝜃

𝜀
(0) = 0 and

𝐷𝜃
𝜀
(0) = 0 such that 𝑊 𝑐

𝑙𝑜𝑐
given by

𝑊
𝑐

𝑙𝑜𝑐
=

{
𝑔 ∈ 𝐻 ∶ 𝑔 = 𝑔

𝑐
+ 𝜃

𝜀

(
𝑔
𝑐

)
, 𝑔

𝑐
∈ 𝐸

𝑐
, ‖𝑔‖

𝐻
≤ 𝜀

}
has the following properties:

1. For every 𝑔 ∈ 𝑊
𝑐

𝑙𝑜𝑐
with ‖𝑔‖

𝐻
≤ 𝜀0 it holds that 𝑆𝑡(𝑔) ∈ 𝑊

𝑐

𝑙𝑜𝑐
for all 𝑡 ≥ 0.

2. For every 𝑔 ∈ 𝐻 with ‖𝑔‖
𝑊

≤ 𝜀0 there exists a unique 𝑔̃ ∈ 𝑊
𝑐

𝑙𝑜𝑐
such that

‖‖𝑆𝑡 (𝑔) − 𝑆
𝑡 (𝑔̃)‖‖𝑊 ≲ 𝑒

−𝜇𝑡

for every 𝑡 ≥ 1.

The first property simply states that the local center manifold 𝑊
𝑐

𝑙𝑜𝑐
is locally

invariant under the nonlinear evolution (19). From the properties of 𝜃
𝜀

we infer

that this manifold touches the center eigenspace 𝐸
𝑐

tangentially at the origin. The

second property provides a finite-dimensional approximation at a given rate by

solutions in 𝑊
𝑐

𝑙𝑜𝑐
for any given solution with sufficiently small initial datum. It is

this feature that we exploit in order to derive fine large time asymptotics for the thin

film equation.
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The invariant manifold theorem is interesting on its own as it provides a non-

linear finite-dimensional object which solutions approximate at a given rate in the

large time limit. In other words, once a rate of convergence is determined, any suf-

ficiently small solution belonging to an infinite-dimensional function space can be

approximated with the prescribed rate by a solution on a finite-dimensional mani-

fold. As outlined in the introduction, similar results have been derived earlier. What

is particularly challenging here is the delicate degenerate parabolicity of the fourth-

order equation (19) modeling a free boundary problem whose mathematical under-

standing is still poor.

The construction of the invariant manifolds will be done in Section 7, and will

be carried out for a truncated version of the perturbation equation first. In fact, our

analysis provides even more information, that we omit here because they are not

relevant for the large time asymptotics. For instance, we will show that the finite-

dimensional approximation emerges from foliation of the Hilbert space 𝐻 over a

global invariant manifold.

4. From Invariant Manifolds to Higher Order Asymptotics

The goal in this section is the derivation of the main results for the thin film

equation stated in Corollaries 2.3, 2.4 and 2.5 from Theorem 3.1 on the mode-by-

mode asymptotics for the perturbation equation.

We start by noting that the transformations (17) and (18) yield that

𝑣(𝑥) = 𝜌(Φ(𝑥))2 (1 +𝑤(Φ(𝑥))4 , (27)

where Φ(𝑥) = 𝑧 is the diffeomorphism introduced in (17).

In our proof of the leading order asymptotics, we apply Theorems 3.1 and 3.2

with 𝐾 = 0.

Proof of Corollary 2.3. In a first step, we have to ensure that the mass constraint

(8) implies the vanishing mean condition (24), which is the 𝐾 = 0 version of (23).

We start by rewriting (8) with the help of the change of variables formula (27) and

the expression for the Jacobian determinant (68) in the appendix,

∫ℝ𝑁

𝑣∗(𝑥) d𝑥 = ∫ℝ𝑁

𝑣(𝑡, 𝑥) d𝑥

= ∫
𝐵1(0)

𝜌(𝑧)2(1 +𝑤(𝑡, 𝑧))𝑁+3 (1 +𝑤(𝑡, 𝑧) + 𝑧 ⋅ ∇𝑤(𝑡, 𝑧)) d𝑧.

(28)

The term on the right-hand side can be simplified via an integration by parts,

∫
𝐵1(0)

𝜌
2(1 +𝑤)𝑁+3 (1 +𝑤 + 𝑧 ⋅ ∇𝑤) d𝑧

= ∫
𝐵1(0)

𝜌
2(1 +𝑤)𝑁+4

d𝑧 + 1
𝑁 + 4 ∫

𝐵1(0)

𝜌
2
𝑧 ⋅ ∇ (1 +𝑤)𝑁+4

d𝑧
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= 1
𝑁 + 4 ∫

𝐵1(0)

𝜌 (1 +𝑤)𝑁+4 ((𝑁 + 4) 𝜌 −𝑁𝜌 + 2|𝑧|2) d𝑧

= 2
𝑁 + 4 ∫

𝐵1(0)

(1 +𝑤)𝑁+4
𝜌 d𝑧,

where we have used that 4𝜌(𝑧)+2|𝑧|2 = 2 in the last identity. In particular, as 𝑣∗ is

mapped onto 𝑤∗ = 0 under the change of variables, the latter identity entails that

∫ℝ𝑁

𝑣∗ d𝑥 = 2
𝑁 + 4 ∫

𝐵1(0)

𝜌 d𝑧

(
=

2|𝐵1(0)|
(𝑁 + 2)(𝑁 + 4)

)
,

which can also be verified via an elementary computation. Hence, we may cancel

this term on both sides of (28) to obtain

2
𝑁 + 4 ∫

𝐵1(0)

(
(1 +𝑤(𝑡, 𝑧))𝑁+4 − 1

)
𝜌(𝑧)d𝑧 = 0 for all 𝑡 ≥ 0.

Now we notice that any solution to the perturbation equation 𝑤(𝑡) converges

to leading order to a constant 𝑎 ∈ ℝ. Indeed, if 𝐾 = 0, the local center manifold

constructed in Theorem 3.2 is simply a ball𝐵
𝜀
(0) inℝ. (We comment on this simple

fact briefly in the proof of Theorem 8.1.) Hence passing to the large time limit, the

previous identity translates into (1 + 𝑎)𝑁+4 − 1 = 0, where |𝑎| ≤ 𝜀 and thus 𝑎 = 0.

This proves (24).

Applying now Theorem 3.1 gives the decay estimate

‖𝑤(𝑡)‖
𝑊 1,∞ ≲ 𝑒

−𝜇1,0𝑡.

Using the transformation formulas (17) and (18), we see that

𝑤(𝑡,Φ(𝑥)) + 1
2
𝑤(𝑡,Φ(𝑥))2 =

√
𝑣(𝑡, 𝑥) − 𝑉∗(𝑥)

for any 𝑥 ∈ supp 𝑣(𝑡), and that the quadratic term on the left-hand side is of higher

order because 𝑤(𝑡) is small. Therefore, the decay estimate for 𝑤(𝑡) implies the first

part of the statement

‖√𝑣(𝑡) − 𝑉∗‖𝐿∞(supp 𝑣(𝑡)) ≲ 𝑒
−𝜇1,0𝑡.

Lastly, we turn to the decay of the first derivatives. With help of (4) we derive

𝜕
𝑖

(√
𝑣(𝑥) − 𝑉∗

)
= (1 +𝑤) ∇𝑤 ⋅ 𝜕

𝑖
Φ. Recalling the transformation formulas (17)

and (18), we compute

𝜕
𝑖
Φ(𝑥) =

𝑒
𝑖

1 +𝑤
+ Φ(𝑥)

𝜕
𝑖

(√
𝑣(𝑡) − 𝑉∗

)
(1 +𝑤)2
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and thus obtain

∇
(√

𝑣(𝑡, 𝑥) − 𝑉∗(𝑥)
)
= 1 +𝑤(𝑡,Φ(𝑥))

1 +𝑤(𝑡,Φ(𝑥)) + Φ(𝑥) ⋅𝑤(𝑡,Φ(𝑥))
∇𝑤(𝑡,Φ(𝑥))

for all 𝑥 ∈ supp 𝑣(𝑡). Having this identity at hand, the decay estimate for 𝑤(𝑡) in

𝑊
1,∞

directly yields the second part of the statement,

‖‖‖‖∇
(√

𝑣(𝑡) − 𝑉∗

)‖‖‖‖𝐿∞(supp 𝑣(𝑡))
≲ 𝑒

−𝜇1,0𝑡.

⊓⊔

The proofs of Corollaries 2.4 and 2.5 will build up on the fact that the 𝐿
2
-

projections of solutions 𝑣(𝑡) of the confined thin film equation onto eigenspaces

generated by certain eigenfunctions 𝜓
𝑙,𝑛,𝑘

vanish for all times if they vanish ini-

tially. The next lemma illustrates how exactly this condition can be translated to

the perturbation equation.

Lemma 4.1. Let 𝜓
𝑙,𝑛,𝑘

be an eigenfunction of the linear operator 2+𝑁 as given
in Theorem 2.2. Then it holds that

∫ℝ𝑁

(
𝑣(𝑥) − 𝑣∗(𝑥)

)
𝜓
𝑙,𝑛,𝑘

(𝑥) d𝑥 = 2∫
𝐵1(0)

𝑤(𝑧)𝜓
𝑙,𝑛,𝑘

(𝑧)𝜌(𝑧) d𝑧 +  (‖𝑤‖2
𝐿∞

)
,

provided that 𝑤 small in the sense of (22).

This lemma, in particular, entails that

||⟨𝑤,𝜓𝑙,𝑛,𝑘
⟩|| ≲ ‖𝑤‖2

𝐿∞ ,

provided that ∫ℝ𝑁 𝑣𝜓
𝑙,𝑛,𝑘

d𝑥 = ∫ℝ𝑁 𝑣∗𝜓𝑙,𝑛,𝑘
d𝑥. We will exploit this observation in

the sequel.

Proof. Theorem 2.2 shows that every eigenfunction 𝜓
𝑙,𝑛,𝑘

(𝑥) is given as a product

of a polynomial in |𝑥|2 and a homogeneous harmonic polynomial of degree 𝑙, that

is,

𝜓
𝑙,𝑛,𝑘

=
𝑘∑

𝑗=1
𝑐(𝑙, 𝑘, 𝑗)|𝑥|2𝑗𝜓

𝑙
(𝑥),

where 𝜓
𝑙

denotes an arbitrary homogeneous harmonic polynomial of degree 𝑙 and

𝑐(𝑙, 𝑘, 𝑗) a real-valued coefficient. Due to this structure of the eigenfunctions, the

problem boils down to proving that

∫ℝ𝑁

(
𝑣(𝑥) − 𝑣∗(𝑥)

)
𝜓
𝑙
(𝑥)|𝑥|2𝑗d𝑥 = 2∫

𝐵1(0)
𝑤(𝑧)𝜓

𝑙
(𝑧)|𝑧|2𝑗𝜌(𝑧)d𝑧 +  (‖𝑤‖2

𝐿∞
)

(29)

for any integer 𝑗 ≤ 𝑘.
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To address (29), we first notice that by our choice of the perturbation variables

(17) and (18), it holds that 𝜓
𝑙
(𝑥) = (1 + 𝑤(𝑧))𝑙𝜓

𝑙
(𝑧) and |𝑥| = (1 + 𝑤(𝑧))|𝑧|.

Therefore, we find with the help of the transformation identities (27) and (68) that

∫ℝ𝑁

𝑣𝜓
𝑙
|𝑥|2𝑗d𝑥 = ∫

𝐵1(0)
𝜌
2(1 +𝑤)3+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗 (1 +𝑤 + 𝑧 ⋅ ∇𝑤) d𝑧

= ∫
𝐵1(0)

𝜌
2(1 +𝑤)4+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗d𝑧

+ ∫
𝐵1(0)

𝜌
2(1 +𝑤)3+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗𝑧 ⋅ ∇𝑤 d𝑧.

In the last term on the right-hand side, we integrate by parts and find after a short

computation that

∫
𝐵1(0)

𝜌
2(1 +𝑤)3+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗𝑧 ⋅ ∇𝑤 d𝑧

= −∫
𝐵1(0)

𝜌
2(1 +𝑤)4+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗 d𝑧

+ 2
4 + 𝑙 + 2𝑗 +𝑁 ∫

𝐵1(0)
𝜌(1 +𝑤)4+𝑙+2𝑗+𝑁𝜓

𝑙
(𝑧)|𝑧|2𝑗 d𝑧,

where we have used the identities 𝑧 ⋅ ∇𝜓
𝑙
= 𝑙𝜓

𝑙
, which holds true because 𝜓

𝑙
is a

homogeneous polynomial of degree 𝑙, and 2𝜌 + |𝑧|2 = 1. It follows that

∫ℝ𝑁

𝑣𝜓
𝑙
|𝑥|2𝑗 d𝑥 = 2

4 + 𝑙 + 2𝑗 +𝑁 ∫
𝐵1(0)

𝜌(1 +𝑤)4+𝑙+2𝑗+𝑁𝜓
𝑙
(𝑧)|𝑧|2𝑗 d𝑧.

Next, we take into account the identity (1 +𝑤)𝑚 = 1 + 𝑚𝑤 +  (‖𝑤‖2
𝐿∞

)
, which

holds for 𝑚 ∈ ℕ and ‖𝑤‖
𝐿∞ small by Taylor expansion, and derive

∫ℝ𝑁

𝑣𝜓
𝑙
|𝑥|2𝑗d𝑥 = 2∫

𝐵1(0)
𝜌𝑤𝜓

𝑙
|𝑧|2𝑗d𝑧

+ 2
4 + 𝑙 + 2𝑗 +𝑁 ∫

𝐵1(0)
𝜌𝜓

𝑙
|𝑧|2𝑗d𝑧 +  (‖𝑤‖2

𝐿∞
)
.

It remains to show that

2
4+𝑙+2𝑗+𝑁 ∫

𝐵1(0)
𝜌𝜓

𝑙
|𝑧|2𝑗d𝑧

= ∫ℝ𝑁 𝑣∗𝜓𝑙
|𝑥|2𝑗d𝑥 = 1

4 ∫𝐵1(0)
𝜓
𝑙

(
1 − |𝑥|2)2 |𝑥|2𝑗𝜌d𝑥.

In the case 𝑙 ≥ 1 both terms vanish thanks to the orthogonality of the eigenfunc-

tions with respect to the inner product introduced in (21). Indeed, the harmonic

polynomial 𝜓
𝑙

can be written as a linear combination of the eigenfunctions 𝜓
𝑙,𝑛,0

with 𝑛 ∈ {1,… , 𝑁
𝑙
}, while the radial weights |𝑧|2𝑗 and

(
1 − |𝑥|2)2 |𝑥|2𝑗 lie in

the spaces span
{
𝜓0,0,𝑖 ∶ 𝑖 ≤ 𝑗

}
and span

{
𝜓0,0,𝑖 ∶ 𝑖 ≤ 𝑗 + 2

}
, respectively. For

𝑙 = 0, it holds that 𝜓0 = 1 and the claim follows via an elementary computation.

This establishes (29) and thus the proof is finished. ⊓⊔
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With help of the previous lemma, the proof of Corollary 2.4 reduces to an easy

combination of the already established results.

Proof of Corollary 2.4. As the solution of the confined thin film equation remains

centered at the origin provided its initial data is, cf. (12), we can make use of

Lemma 4.1 with 𝜓
𝑙,𝑛,𝑘

= 𝜓1,𝑛,0 to obtain

0 = ∫ℝ𝑁

𝑥
𝑖
𝑣(𝑡, 𝑥)d𝑥 = 2∫

𝐵1(0)
𝑧
𝑖
𝑤(𝑡, 𝑧)𝜌d𝑧 +  (‖𝑤‖2

𝐿∞
)

for every 𝑖 ∈ {1,… , 𝑁}. In the proof of Corollary 2.3 we already established

convergence rates for 𝑤, namely ‖𝑤‖
𝐿∞ ≲ 𝑒

−𝜇1,0𝑡. This directly yields

lim
𝑡→∞

𝑒
𝜇1,0𝑡 ∫

𝐵1(0)
𝑧𝑤(𝑡, 𝑧)𝜌d𝑧 = 0,

which makes Theorem 3.1 applicable. We therefore obtain

‖𝑤(𝑡)‖
𝑊 1,∞ ≲ 𝑒

−𝜇𝑡
,

where 𝜇 is the next eigenvalue in line, which is 𝜇 = 𝜇0,1 = 30 if 𝑁 = 1 and

𝜇 = 𝜇2,0 = 16 + 4𝑁 if 𝑁 ≥ 2.

It remains to translate the convergence result for the perturbation equation into

a convergence result for the confined thin film equation. The argument proceeds in

exactly the same way as the proof of Corollary 2.3. We drop the details. ⊓⊔

The last proof of this section is based on similar ideas and exploits Lemma 4.1

in more generality.

Proof of Corollary 2.5. In a first step we establish the uniform decay estimate‖𝑤(𝑡)‖
𝐿∞ ≲ 𝑒

−𝜇𝑙,𝑘𝑡, which directly implies lim
𝑡→∞

𝑒
𝜇𝑡⟨𝜓,𝑤(𝑡)⟩ = 0 for all 𝜇 < 𝜇

𝑙,𝑘

and their corresponding eigenfunctions 𝜓 . Towards this uniform estimate, we no-

tice that on the one hand it holds |𝑤(𝑡, 𝑧)| ≲ |||𝑤(𝑡, 𝑧) + 1
2𝑤(𝑡, 𝑧)2|||, because 𝑤(𝑡)

is small as a consequence of the leading order asymptotics in Corollary 2.3. On

the other hand, we deduce from the transformation formulas (17) and (18) that|||𝑤(𝑡, 𝑧) + 1
2𝑤(𝑡, 𝑧)2||| = |||√𝑣(𝑡, 𝑥) − 𝑉∗(𝑥)

|||. A combination of both and (14) gives

the estimate on 𝑤(𝑡).
Before we continue with the proof, we insert a short discussion about the as-

sumptions on the decay of 𝑣(𝑡) −
√
𝑉∗, c. f. Remark 2.6. Since all eigenmodes cor-

responding to eigenvalues 𝜇 smaller than 𝜇
𝑙,𝑘

decay fast enough, Theorem 3.1 pro-

vides a decay estimate for 𝑤(𝑡) in 𝑊
1,∞

, namely ‖𝑤(𝑡)‖
𝑊 1,∞ ≲ 𝑒

−𝜇𝑙,𝑘𝑡.
Proceeding in the same way as in the proof of Corollary 2.3, we obtain‖‖‖𝑣(𝑡) −√

𝑉∗
‖‖‖𝑊 1,∞(supp 𝑣(𝑡))

≲ 𝑒
−𝜇𝑙,𝑘𝑡. This shows that extending norm in the decay

assumption in Corollary 2.5 from 𝐿
∞

to 𝑊
1,∞

eventually provides an equivalent

condition.
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Let us now turn back to the actual proof. To deduce a better convergence rate for

𝑤(𝑡) from Theorem 3.1, we also have to show that the eigenmodes corresponding

to 𝜇
𝑙,𝑘

are inactive, that is

lim
𝑡→∞

𝑒
𝜇𝑙,𝑘𝑡⟨𝜓

𝑙,𝑛,𝑘
, 𝑤(𝑡)⟩ = 0 for all 𝑛 ∈

{
1,… , 𝑁

𝑙

}
. (30)

Once this is proved, we obtain with help of Theorem 3.1 that ‖𝑤‖
𝑊

≲ 𝑒
−𝜇+𝑡,

where 𝜇+ is the next largest eigenvalue following 𝜇
𝑙,𝑘

. From this point on, the proof

proceeds in the same way as before.

Let us now turn to the proof of (30). Recalling that ‖𝑤‖
𝐿∞ ≲ 𝑒

−𝜇𝑙,𝑘𝑡 and

Lemma 4.1, it suffices to prove that

∫ℝ𝑁

(
𝑣(𝑡, 𝑥) − 𝑣∗(𝑥)

)
𝜓
𝑙,𝑛,𝑘

(𝑥) d𝑥 = 0 for all 𝑛 ∈
{
1,… , 𝑁

𝑙

}
(31)

for all 𝑡 ≥ 0. The argument for this identity is based on the invariance of 𝑣(𝑡) under

orthogonal transformations contained in 𝐸. Since the confined thin film equation

is invariant under orthogonal transformations, uniqueness of solutions to this equa-

tion guarantees that the solution 𝑣(𝑡) inherits this property from its initial datum 𝑣0
for every time 𝑡.

By the right choice of 𝐸, this geometric invariance ensures that the projection

of 𝑣(𝑡) onto every homogeneous, harmonic polynomial of degree 𝑙 vanishes. The

same trivially holds true for 𝑣∗. In order to exploit this fact, we have a closer look

at the structure of the eigenfunctions 𝜓
𝑙,𝑛,𝑘

appearing in (31). Due to the condition

that 𝜇
𝑙,𝑘

has multiplicity 𝑁
𝑙
, we know from Theorem 2.2 that every 𝜓

𝑙,𝑛,𝑘
has the

form

𝜓
𝑙,𝑛,𝑘

=
𝑘∑

𝑗=1
𝑐(𝑙, 𝑘, 𝑗)|𝑥|2𝑗𝜓

𝑙
(𝑥),

where 𝜓
𝑙

denotes an homogeneous harmonic polynomial of degree 𝑙.

Note that the product 𝑣(𝑡)
∑

𝑐(𝑙, 𝑘, 𝑗)|𝑥|2𝑗 satisfies the same geometrical prop-

erties as 𝑣(𝑡) and thus its projection onto every homogeneous harmonic polynomial

vanishes as well, that is

0 = ∫ℝ𝑁

𝑣(𝑡, 𝑥)
𝑘∑

𝑗=1
𝑐(𝑙, 𝑘, 𝑗)|𝑥|2𝑗𝜓

𝑙
(𝑥) d𝑥 = ∫ℝ𝑁

𝑣(𝑡, 𝑥)𝜓
𝑙,𝑛,𝑘

d𝑥.

Again, the same holds true for 𝑣∗ and thus the proof of (31) is completed. ⊓⊔

Remark 4.2. In the two-dimensional case 𝑁 = 2, Corollary 2.5 can also be easily

proved in a more direct way thanks to the fact that both, the spherical harmonics

and the orthogonal transformations have a handy, explicit form in two dimensions.

The spherical harmonics of degree 𝑙 are given by (in polar coordinates) 𝑐𝑜𝑠(𝑙𝜑)
and 𝑠𝑖𝑛(𝑙𝜑). Recalling the form of a rotation or reflection matrix, a straightforward

computation yields the same results as Corollary 2.5.

However, this strategy becomes impracticable in higher dimensions, particu-

larly because there is no longer such a convenient representation for general or-

thogonal projections.
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5. Theory for the Perturbation Equation

In this section, we will recall main aspects of the theory for the perturbation

equation (19) derived earlier in [65], and we will provide higher order regularity

estimates. Such estimates will be an important tool in our invariant manifold theory,

which we will develop in the subsequent sections.

We start by recalling that the operator  is symmetric in 𝐿
2(𝜌) and satisfies the

maximal regularity estimate

‖∇𝑤‖ + ‖𝜌∇2
𝑤‖ ≲ ‖𝑤‖. (32)

Indeed, such an estimate holds true for the more general class of degenerate elliptic

operators


𝜎
∶= − 𝜌

−𝜎∇ ⋅
(
𝜌
𝜎+1∇𝑤

)
, (33)

that naturally occur in the context of the porous medium equation, see [42,47,63,

64]. In this case, the underlying Hilbert space is𝐿
2 (𝜌𝜎). We state the corresponding

maximal regularity estimate for the fourth order linear problem associated to the

perturbation equation (19), that is,

{
𝜕
𝑡
𝑤 + 2

𝑤 +𝑁𝑤 = 𝑓 in (0,∞) × 𝐵1(0)
𝑤(0, ⋅) = 𝑤0 in 𝐵1(0).

(34)

This problem is well-posed for 𝐿
2(𝜌) initial data and 𝐿

2((0, 𝑇 );𝐿2(𝜌)) inhomo-

geneities; see Lemma 7 in [65]. In the case with zero initial data, 𝑤0 = 0, there is

the maximal regularity estimate

‖𝜕
𝑡
𝑤‖

𝐿𝑝((0,𝑇 );𝐿𝑝(𝜌𝜎 ))

+ ‖∇2
𝑤‖

𝐿𝑝((0,𝑇 );𝐿𝑝(𝜌𝜎 )) + ‖𝜌∇3
𝑤‖

𝐿𝑝((0,𝑇 );𝐿𝑝(𝜌𝜎 )) + ‖𝜌2∇4
𝑤‖

𝐿𝑝((0,𝑇 );𝐿𝑝(𝜌𝜎 ))

≲ ‖𝑓‖
𝐿𝑝((0,𝑇 );𝐿𝑝(𝜌𝜎 )),

(35)

which holds true for any 𝑝 ∈ (1,∞), 𝜎 > 0 and 𝑇 > 0, see Lemma 8 and Proposi-

tion 19 (and its proof) in [65].

In order to motivate the results that are collected and derived in the following,

we have a closer look at the nonlinearity occurring in (20). The natural framework

to prove well-posedness of the nonlinear problem (19) is the class 𝐶
0,1(𝐵1(0)), in

which the singular terms 𝑅
𝑙
[𝑤] can be suitably controlled, at least, if 𝑤 is small in

that class. Moreover, in such a situation, the nonlinearity is of the same regularity

order as the linear elliptic operator 2
, and the inhomogeneity can thus be treated

as a quadratic perturbation term. We will carry this out in a simple Hilbert space

setting later in Section 6 (after a necessary truncation). A complete theory for the

nonlinear equation (19) forces us to construct higher order norms that match the

scaling of the (homogeneous) Lipschitz norm. This naturally leads to considering
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Carleson or Whitney measures; more precisely that

‖𝑤‖
𝑋(𝑝) =

∑
(𝑙,𝑘,|𝛽|)∈ sup

𝑧∈𝐵1(0)
0<𝑟≤1

𝑟
4𝑘+|𝛽|−1

𝜃(𝑟, 𝑧)2𝑙−|𝛽|+1
|||𝑄𝑑

𝑟
(𝑧)|||−

1
𝑝 ‖𝜌𝑙𝜕𝑘

𝑡
𝜕
𝛽

𝑧
𝑤‖

𝐿𝑝
(
𝑄
𝑑
𝑟 (𝑧)

)

+
∑

(𝑙,𝑘,|𝛽|)∈ sup𝑇≥1
‖𝜌𝑙𝜕𝑘

𝑡
𝜕
𝛽

𝑧
𝑤‖

𝐿𝑝(𝑄(𝑇 )),

‖𝑓‖
𝑌 (𝑝) = sup

𝑧∈𝐵1(0)
0<𝑟≤1

𝑟
3

𝜃(𝑟, 𝑧)
|||𝑄𝑑

𝑟
(𝑧)|||−

1
𝑝 ‖𝑓‖

𝐿𝑝
(
𝑄
𝑑
𝑟 (𝑧)

) + sup
𝑇≥1

‖𝑓‖
𝐿𝑝(𝑄(𝑇 )),

where  = {(0, 1, 0), (0, 0, 2), (1, 0, 3), (2, 0, 4)} and 𝜃(𝑟, 𝑧) = max{𝑟,
√
𝜌(𝑧)}.

Moreover, 𝑄
𝑑

𝑟
(𝑧) is the Whitney cube (𝑟4∕2, 𝑟4) × 𝐵

𝑑

𝑟
(𝑧) and 𝑄(𝑇 ) = (𝑇 , 𝑇 +

1) ×𝐵1(0). We remark that the balls 𝐵
𝑑

𝑟
(𝑧) =

{
𝑧
′ ∈ 𝐵1(0) ∶ 𝑑(𝑧, 𝑧′) < 𝑟

}
are not

defined with respect to the Euclidean metric on 𝐵1(0) but the semi-distance

𝑑(𝑧, 𝑧′)∶= |𝑧 − 𝑧
′|√

𝜌(𝑧) +
√
𝜌(𝑧′) +

√|𝑧 − 𝑧′| . (36)

The occurrence of this semi-distance can be motivated by interpreting the parabolic

problem (34) as a (fourth order) heat flow on a weighted Riemannian manifold

(, g, 𝜔vol), cf. [37]. Indeed, considering g = 𝜌
−1(d𝑥)2 as the Riemannian metric

on the disc 𝐵 and choosing a suitable weight 𝜔 on the volume form, the elliptic

operator  turns out to be the Laplace–Beltrami operator on (, g, 𝜔vol). On this

manifold, the induced geodesic distance is equivalent to 𝑑(𝑧, 𝑧′) in (36).

Considering this intrinsic metric is helpful as the theories for heat flows are

often also available on weighted manifolds [37]. For the subsequent computations,

we recall some properties of the intrinsic distance from [64]: The intrinsic balls

are equivalent to Euclidean balls, more precisely there exists a positive constant 𝐶

such that

𝐵
𝐶−1𝑟𝜃(𝑟,𝑧)(𝑧) ⊆ 𝐵

𝑑

𝑟
(𝑧) ⊆ 𝐵

𝐶𝑟𝜃(𝑟,𝑧)(𝑧) (37)

for every 𝑧 in 𝐵1(0) and any 𝑟. Furthermore, it holds for any 𝑟 that√
𝜌(𝑧′) ≲ 𝑟 ⇒

√
𝜌(𝑧) ≲ 𝑟 for all 𝑧 ∈ 𝐵

𝑑

𝑟
(𝑧′)

and √
𝜌(𝑧′) ≫ 𝑟 ⇒ 𝜌(𝑧) ∼ 𝜌(𝑧′) for all 𝑧 ∈ 𝐵

𝑑

𝑟
(𝑧′)

which, in particular, implies that

𝜃(𝑟, ⋅) ∼ 𝜃(𝑟, 𝑧′) in 𝐵
𝑑

𝑟
(𝑧′). (38)

Variants of these norms were considered earlier in the treatment of the Navier–

Stokes equations, a class of geometric flows, the porous medium equation and the
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thin film equation [40,42,48,50,64], see also the review in [49]. The choice of the

large time contributions is rather arbitrary, see also Remark 5.2.

Still on the level of the linear equation (34), it is proved in [65] that for any

𝑝 > 𝑁 + 4, the solution to (34) satisfies the estimate

‖𝑤‖
𝑊 1,∞ + ‖𝑤‖

𝑋(𝑝) ≲ ‖𝑓‖
𝑌 (𝑝) + ‖𝑤0‖𝑊 1∞ , (39)

provided that the right-hand side is finite. The well-posedness theory for the per-

turbation equation (19) and our higher-order regularity estimate below do heavily

rely on that bound.

For further reference, we recall the main results for (19) from the literature.

Theorem 5.1. ([65]) Let 𝑝 > 𝑁 + 4 be given. There exists 𝜀0 > 0 such that for
every 𝑤0 ∈ 𝑊

1,∞ with ‖𝑤0‖𝑊 1,∞ ≤ 𝜀0 there exists a solution 𝑤 to the nonlin-
ear equation (19) with initial datum 𝑤0 and 𝑤 is unique among all solutions with‖𝑤‖

𝐿∞(𝑊 1,∞) + ‖𝑤‖
𝑋(𝑝) ≲ 𝜀0. Moreover, this solution 𝑤 satisfies the estimate

‖𝑤‖
𝐿∞(𝑊 1,∞) + ‖𝑤‖

𝑋(𝑝) ≲ ‖𝑤0‖𝑊 1,∞

and is smooth, and analytic in time and angular direction.

Strictly speaking, the result described here slightly differ from [65].

Remark 5.2. For accuracy, we remark that in [65], the linear bound (39) and the

nonlinear theory in Theorem 5.1 were derived for slightly different 𝑋(𝑝) and 𝑌 (𝑝)
norms. Indeed, in this earlier work the large time contributions ‖𝜌𝑙𝜕𝑘

𝑡
𝜕
𝛽

𝑧𝑤‖
𝐿𝑝(𝑄(𝑇 ))

and ‖𝑓‖
𝐿𝑝(𝑄(𝑇 )) came both with a factor 𝑇 . With regard to the theory developed in

the present paper, dropping this factor is more convenient.

In the present paper, we have to extend the theory from 𝐶
0,1

data to a higher

regularity setting. Indeed, it turns out that the truncation that we introduce on the

level of the nonlinearity in Section 6 needs to cut-off derivatives up to third or-

der. In order to subsequently relate the truncated equation to the original one (19),

these derivatives need to be controlled by the initial data. We will chose the uni-

form higher-order norms whose homogeneous parts have the same scaling as the

homogeneous Lipschitz norm at the boundary, ‖⋅‖
𝑊

, which we introduced in (26).

Our main contribution in the present section is the following higher order reg-

ularity result:

Theorem 5.3. There exists 𝜀0 > 0, possibly smaller than in Theorem 5.1, such
that for every 𝑤0 ∈ 𝑊

1,∞ with ‖𝑤0‖𝑊 ≤ 𝜀0, the unique solution 𝑤 from from
Theorem 5.1 satisfies

‖𝑤‖
𝑊

≲ ‖𝑤0‖𝑊 .

Proof. Step 1. Second order derivatives. We will prove the slightly stronger bound

‖𝜌∇2
𝑤‖

𝐿∞ + ‖𝜌∇𝑤‖
𝑋(𝑝) ≲ ‖𝑤0‖𝑊 1,∞ + ‖𝜌∇2

𝑤0‖𝐿∞ . (40)
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For this purpose, for every 𝑖 = 1,… , 𝑁 , we consider the dynamics of 𝜌𝜕
𝑖
𝑤 under

the nonlinear equation (19), that is,

𝜕
𝑡
(𝜌𝜕

𝑖
𝑤) + 2(𝜌𝜕

𝑖
𝑤) +𝑁(𝜌𝜕

𝑖
𝑤) = 𝜌𝜕

𝑖
𝑓 [𝑤] +𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤],

where 𝐸[𝑣] = −𝜌𝑧
𝑖
Δ𝑣−2𝜌𝜕

𝑖
𝑣+(𝑁𝜌−2|𝑧|)𝜕

𝑖
𝑣+2𝜌𝑧 ⋅∇𝜕

𝑖
𝑣 is the commutator of

the operators 𝜌𝜕
𝑖
and , and this equation is equipped with the initial datum 𝜌𝜕

𝑖
𝑤0.

From the a priori bound in (39), we know that

‖𝜌𝜕
𝑖
𝑤‖

𝑊 1,∞ + ‖𝜌𝜕
𝑖
𝑤‖

𝑋(𝑝) ≲ ‖𝜌𝜕
𝑖
𝑓 [𝑤]‖

𝑌 (𝑝)
+‖𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]‖

𝑌 (𝑝) + ‖𝜌𝜕
𝑖
𝑤0‖𝑊 1,∞ .

In view of the bound from Theorem 5.1, in order to prove (40) it suffices thus to

prove that

‖𝜌𝜕
𝑖
𝑓 [𝑤]‖

𝑌 (𝑝) + ‖𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]‖
𝑌 (𝑝)

≲ ‖𝑤‖
𝑊 1,∞ + ‖𝑤‖

𝑋(𝑝) + 𝜀0
(‖𝜌∇𝑤‖

𝑊 1,∞ + ‖𝜌∇𝑤‖
𝑋(𝑝)

)
,

(41)

and to choose 𝜀0 sufficiently small.

From [65] we are aware of another form of the nonlinearity 𝑓 [𝑤] of the pertur-

bation equation (19), namely 𝑓 [𝑤] = 𝑓
1[𝑤] + 𝑓

2[𝑤] + 𝑓
3[𝑤], where

𝑓
1[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆

(
(∇𝑤)2⋆ + ∇𝑤 ⋆ ∇2

𝑤
)
,

𝑓
2[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆ 𝜌

((
∇2

𝑤
)2⋆ + ∇3

𝑤 ⋆ ∇𝑤
)
,

𝑓
3[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆ 𝜌

2
((

∇2
𝑤
)3⋆ + ∇2

𝑤 ⋆ ∇3
𝑤 + ∇𝑤 ⋆ ∇4

𝑤

)
,

and

𝑅[𝑤] = (∇𝑤)𝑘⋆

(1 +𝑤 + 𝑧 ⋅ ∇𝑤)𝑙

for some 𝑘 ∈ ℕ0, 𝑙 ∈ ℕ, whose values may be different in any occurrence of 𝑅[𝑤].
(Of course, the reader may derive this presentation also directly from (19) and (20).)

The computation of derivatives of these expressions is tedious but straightforward.

As an auxiliary result we notice that ∇𝑅[𝑤] = 𝑝 ⋆𝑅+ 𝑝 ⋆𝑅⋆∇2
𝑤. Here are the

final formulas:

𝜕
𝑖
𝑓
1[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆

(
(∇𝑤)2⋆ + ∇𝑤 ⋆ ∇2

𝑤 + (∇2
𝑤)2⋆ + ∇𝑤 ⋆ ∇3

𝑤
)
,

𝜕
𝑖
𝑓
2[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆

(
(∇2

𝑤)2⋆

+∇𝑤 ⋆ ∇3
𝑤 + 𝜌(∇2

𝑤)3⋆ + 𝜌∇2
𝑤 ⋆ ∇3

𝑤 + 𝜌∇𝑤 ⋆ ∇4
𝑤
)
,

𝜕
𝑖
𝑓
3[𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆

(
𝜌(∇2

𝑤)3⋆ + 𝜌∇2
𝑤 ⋆ ∇3

𝑤 + 𝜌∇𝑤 ⋆ 𝜌
4
𝑤 + 𝜌

2(∇2
𝑤)4⋆

+ 𝜌
2∇𝑤 ⋆ ∇5

𝑤 + 𝜌
2(∇2

𝑤)2⋆ ⋆ ∇3
𝑤 + 𝜌

2(∇3
𝑤)2⋆ + 𝜌

2∇2
𝑤 ⋆ ∇4

𝑤
)
.

Combining them, and multiplying by 𝜌, we thus find that

𝜌𝜕
𝑖
𝑓 [𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆ (𝐼 + 𝐽 ) ,
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where

𝐼 = (∇𝑤)2⋆ + 𝜌∇𝑤 ⋆ ∇2
𝑤 + 𝜌(∇2

𝑤)2⋆ + 𝜌∇𝑤 ⋆ ∇3
𝑤 + 𝜌

2∇2
𝑤 ⋆ ∇3

𝑤

+ 𝜌
2∇𝑤 ⋆ ∇4

𝑤 + 𝜌
2∇2

𝑤 ⋆ ∇3
𝑤 + 𝜌

3∇2
𝑤 ⋆ ∇4

𝑤 + 𝜌
3∇𝑤 ⋆ ∇5

𝑤,

𝐽 = 𝜌
3(∇3

𝑤)2⋆ + 𝜌
2(∇2

𝑤)3⋆ + 𝜌
3(∇2

𝑤)2⋆ ⋆ ∇3
𝑤 + 𝜌

3(∇2
𝑤)4⋆.

Because |𝑝 ⋆ 𝑅[𝑤]| ≲ 1 thanks to the control of 𝑤 and ∇𝑤 during the evolution,

in our estimate of 𝜌𝜕
𝑖
𝑓 [𝑤] it is enough to control 𝐼 and 𝐽 . Here, the first term

is much easier to handle. Indeed, using the fact that ‖∇𝑤‖
𝑌 (𝑝) ≲ ‖∇𝑤‖

𝐿∞ and‖∇2
𝑤‖

𝑌 (𝑝) +‖𝜌∇3
𝑤‖

𝑌 (𝑝) +‖𝜌2∇4
𝑤‖

𝑌 (𝑝) ≲ ‖𝑤‖
𝑋(𝑝), which comes directly out of

the definition of the 𝑌 (𝑝) norm, and invoking the a priori estimate in Theorem 5.1,

we readily find that

‖𝐼‖
𝑌 (𝑝) ≲

(‖∇𝑤‖
𝐿∞ + ‖𝑤‖

𝑋(𝑝)
) (‖∇𝑤‖

𝐿∞ + ‖𝜌∇2
𝑤‖

𝐿∞ + ‖𝜌3∇5
𝑤‖

𝑌 (𝑝)
)

≲ ‖𝑤0‖𝑊 1,∞ + 𝜀0
(‖𝜌∇2

𝑤‖
𝐿∞ + ‖𝜌3∇5

𝑤‖
𝑌 (𝑝)

)
.

The estimates of the terms appearing in 𝐽 are more involved, as we have to

make use of suitable interpolations; some were already discussed in [65], but we

present the ideas here for the convenience of the reader. Let 𝜂 be a smooth cut-off

function satisfying 𝜂 = 1 in 𝐵
𝑑

𝑟
(𝑧0) and 𝜂 = 0 outside 𝐵

𝑑

2𝑟(𝑧0) for 𝑟 ≤ 1. Inside of

the ball 𝐵
𝑑

𝑟
(𝑧0), we then have that

𝜌
3|∇3

𝑤|2 ≲ 𝜌|∇𝜁 |2 + 𝜌|∇2
𝑤|2,

if 𝜉 = 𝜂𝜌∇2
𝑤. It follows that

‖𝜌3|∇3
𝑤|2‖

𝐿𝑝
(
𝐵
𝑑
𝑟 (𝑧0)

) ≲ ‖𝜌|∇𝜁 |2‖
𝐿𝑝 + ‖𝜌|∇2

𝑤|2‖
𝐿𝑝

(
𝐵
𝑑
𝑟 (𝑧0)

).
To estimate the first term on the right hand side, we make use of the interpolation

inequality (71) with 𝑚 = 2 and 𝑖 = 1 in Lemma B.3 of the appendix and find

‖𝜌|∇𝜁 |2‖
𝐿𝑝 = ‖∇𝜁‖2

𝐿2𝑝(𝜌𝑝) ≲ ‖𝜁‖
𝐿∞‖∇2

𝜁‖
𝐿𝑝(𝜌𝑝).

We then deduce from the definition of 𝜁 , by using Leibniz’ rule and the fact that|∇𝑘
𝜂| ≲ 𝑟

−𝑘
𝜃(𝑟, 𝑧0)−𝑘, which follows from the behavior of the intrinsic balls in

(37), that

‖𝜌|∇𝜁 |2‖
𝐿𝑝 ≲ ‖𝜌∇2

𝑤‖
𝐿∞

(‖𝜌2∇4
𝑤‖

𝐿𝑝

(
𝐵
𝑑

2𝑟(𝑧0)
) + ‖𝜌∇3

𝑤‖
𝐿𝑝(𝐵𝑑

2𝑟(𝑧0))

+ 1
𝑟𝜃(𝑟, 𝑧0)

‖𝜌∇2
𝑤‖

𝐿𝑝

(
𝐵
𝑑

2𝑟(𝑧0)
) + 1

𝑟𝜃(𝑟, 𝑧0)
‖𝜌2∇3

𝑤‖
𝐿𝑝

(
𝐵
𝑑

2𝑟(𝑧0)
)

+ 1
𝑟2𝜃(𝑟, 𝑧0)2

‖𝜌2∇2
𝑤‖

𝐿𝑝

(
𝐵
𝑑

2𝑟(𝑧0)
)) .

The 𝜌’s can we always pulled out of the norms by estimating against 𝜃(𝑟, 𝑧0)2,

because 𝜃(𝑟, 𝑧0) ∼ 𝜃(𝑟, 𝑧) = max
{
𝑟,

√
𝜌(𝑧)

}
by (38). In view of the definitions of

the 𝑌 (𝑝) and 𝑋(𝑝) norms, we then deduce that

‖𝜌3|∇3
𝑤|2‖

𝑌 (𝑝) ≲ ‖𝑤‖
𝑋(𝑝)‖𝜌∇2

𝑤‖
𝐿∞ + ‖𝜌|∇2

𝑤|2‖
𝑌 (𝑝),
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and the second term can be estimated as in our bound for 𝐼 , so that we find that

‖𝜌3|∇3
𝑤|2‖

𝑌 (𝑝) ≲ 𝜀0‖𝜌∇2
𝑤‖

𝐿∞ , (42)

thanks to the estimates from Theorem 5.1

The second term in 𝐽 can be estimated very similarly. This time we choose

𝜁 = 𝜂∇𝑤 and eventually arrive at

‖𝜌2|∇2
𝑤|3‖

𝑌 (𝑝) ≲ ‖∇𝑤‖2
𝐿∞

(‖∇𝑤‖
𝐿∞ + ‖𝑤‖

𝑋(𝑝)
)
≲ ‖𝑤0‖𝑊 1,∞ ,

thanks to the a priori estimates in Theorem 5.1. (Notice that details for this estimate

can be found in [65].) The latter bound also entails an estimate for the fourth term

in 𝐽 . Indeed, we have

‖𝜌3|∇2
𝑤|4‖

𝑌 (𝑝) ≤ ‖𝜌∇2
𝑤‖

𝐿∞‖𝜌2|∇2
𝑤|3‖

𝑌 (𝑝)

≲ ‖𝑔‖
𝑊 1,∞‖𝜌∇2

𝑤‖
𝐿∞ ≤ 𝜀0‖𝜌∇2

𝑤‖
𝐿∞ . (43)

Finally, in order to bound the third term in 𝐽 , we interpolate between (42) and (43).

Altogether, we find the estimate

‖𝐽‖
𝑌 (𝑝) ≲ ‖𝑤0‖𝑊 1,∞ + 𝜀0‖𝜌∇2

𝑤‖
𝐿∞ .

Our estimates on 𝐼 and 𝐽 yield the desired control on 𝜌𝜕
𝑖
𝑓 [𝑤]. To prove the

full statement in (41), it remains only to choose 𝜀0 small enough and to notice that

|𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]| ≲ |𝜌2∇4
𝑤| + |𝜌∇3

𝑤| + |∇2
𝑤| + |∇𝑤|,

which provides

‖𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]‖
𝑌 (𝑝) ≲ ‖𝑤‖

𝑊 1,∞ + ‖𝑤‖
𝑋(𝑝) ≲ ‖𝑤0‖𝑊 1,∞

in a similar manner as before. This finishes the proof.

Step 2. Third order derivatives. The prove of the estimates proceeds analo-

gously to the first step, only this time, much more terms have to be considered.

For every 𝑖, 𝑗 = 1,… , 𝑁 we consider the dynamics of 𝜌𝜕
𝑗
(𝜌𝜕

𝑖
𝑤), that is,

𝜕
𝑡

(
𝜌𝜕

𝑗
(𝜌𝜕

𝑖
𝑤)

)
+ 2 (

𝜌𝜕
𝑗
(𝜌𝜕

𝑖
𝑤)

)
+𝑁 (

𝜌𝜕
𝑗
(𝜌𝜕

𝑖
𝑤)

)
= 𝜌𝜕

𝑗

(
𝜌𝜕

𝑖
𝑓 [𝑤]

)
+ 𝜌𝜕

𝑗 (𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤])
+𝑁𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[(𝜌𝜕

𝑖
𝑤)],

which is equipped with the initial datum 𝜌𝜕
𝑗
(𝜌𝜕

𝑖
𝑤0). Again, thanks to the a priori

bound (39), we know that

‖𝜌𝜕
𝑗

(
𝜌𝜕

𝑖
𝑤
) ‖

𝑊 1,∞ + ‖𝜌𝜕
𝑗

(
𝜌𝜕

𝑖
𝑤
) ‖

𝑋(𝑝)

≲ ‖𝜌𝜕
𝑗

(
𝜌𝜕

𝑖
𝑓 [𝑤]

) ‖
𝑌 (𝑝) + ‖𝜌𝜕

𝑗 (𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]) ‖𝑌 (𝑝)
+ ‖𝑁𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[(𝜌𝜕

𝑖
𝑤)]‖

𝑌 (𝑝) + ‖𝜌𝜕
𝑗

(
𝜌𝜕

𝑖
𝑤0

) ‖
𝑊 1,∞ ,
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which can be rewritten as

‖𝜌2𝜕2
𝑖𝑗
𝑤‖

𝑊 1,∞ + ‖𝜌2𝜕2
𝑖𝑗
𝑤‖

𝑋(𝑝)

≲ ‖𝜌2𝜕2
𝑖𝑗
𝑓 [𝑤]‖

𝑌 (𝑝) + ‖𝜌𝜕
𝑗 (𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]) ‖𝑌 (𝑝)

+ ‖𝑁𝐸[𝜌𝜕
𝑖
𝑤] + 𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[(𝜌𝜕

𝑖
𝑤)]‖

𝑌 (𝑝) + ‖𝑤0‖𝑊 ,

by the virtue of the second order derivative (40). The linear terms are, again, rela-

tively easy to bound, as we have

|𝑁𝐸[𝜌𝜕
𝑖
𝑤] + 𝐸[𝜌𝜕

𝑖
𝑤] + 𝐸[(𝜌𝜕

𝑖
𝑤)]| + |𝜌𝜕

𝑗 (𝑁𝐸[𝑤] + 𝐸[𝑤] + 𝐸[𝑤]) |
≲ 𝜌

3|∇5
𝑤| + 𝜌

2|∇4
𝑤| + 𝜌|∇3

𝑤| + |∇2
𝑤| + |∇𝑤|,

and thus, the 𝑌 (𝑝) norm of the linear terms is controlled by the 𝑋(𝑝) and 𝐿
∞

norms

of 𝑤 and 𝜌∇𝑤, which are in turn bounded by ‖𝑤0‖𝑊 by the virtue of Theorem 5.1

and the second order estimates in (40).

Let us thus focus on the nonlinear terms. There take the form

𝜌
2
𝜕
2
𝑖𝑗
𝑓 [𝑤] = 𝑝 ⋆ 𝑅[𝑤] ⋆ 𝐾,

where

𝐾 = 𝜌(∇𝑤)2⋆ + 𝜌∇𝑤 ⋆ ∇2
𝑤 + 𝜌(∇2

𝑤)2⋆ + 𝜌∇𝑤 ⋆ ∇3
𝑤 + 𝜌

2(∇2
𝑤)3⋆ + 𝜌

2∇2
𝑤 ⋆ ∇3

𝑤

+ 𝜌
2∇𝑤 ⋆ ∇4

𝑤 + 𝜌
3(∇2

𝑤)2⋆ ⋆ ∇3
𝑤 + 𝜌

3(∇2
𝑤)4⋆ + 𝜌

3∇2
𝑤 ⋆ ∇4

𝑤 + 𝜌
3∇𝑤 ⋆ ∇5

𝑤

+ 𝜌
4∇𝑤 ⋆ ∇6

𝑤 + 𝜌
4∇2

𝑤 ⋆ ∇5
𝑤 + 𝜌

4(∇2
𝑤)2⋆ ⋆ ∇4

𝑤 + 𝜌
4(∇2

𝑤)3⋆ ⋆ ∇3
𝑤

+ 𝜌
4(∇2

𝑤)3⋆ ⋆ ∇3
𝑤 + 𝜌

4(∇2
𝑤)5⋆ + 𝜌

3(∇3
𝑤)2⋆ + 𝜌

4∇2
𝑤 ⋆ (∇3

𝑤)2⋆ + 𝜌
4∇3

𝑤 ⋆ ∇4
𝑤,

as the reader may check in a lengthy but straightforward exercise. The bound of𝐾 is

surprisingly simple as, thanks to the second order estimates (40), no interpolations

have to be performed. We simply have

‖𝐾‖
𝑌 (𝑝) ≲

(
‖∇𝑤‖

𝐿∞ +
4∑

𝑘=1
‖𝜌∇2

𝑤‖𝑘
𝐿∞

)(‖∇𝑤‖
𝐿∞ + ‖𝑤‖

𝑋(𝑝) + ‖𝜌∇𝑤‖
𝑋(𝑝)

)
+ ‖∇𝑤‖

𝐿∞‖𝜌4∇6
𝑤‖

𝑌 (𝑝)

+ ‖𝑤‖
𝑋(𝑝)‖𝜌2∇3

𝑤‖
𝐿∞ + ‖𝜌∇2

𝑤‖
𝐿∞‖𝑤‖

𝑋(𝑝)‖𝜌2∇3
𝑤‖

𝐿∞

≲ ‖𝑤0‖𝑊 1,∞ + ‖𝜌∇2
𝑤0‖𝐿∞ + 𝜀0

(‖𝜌2∇2
𝑤‖

𝐿∞ + ‖𝜌2∇2
𝑤‖

𝑋(𝑝)
)
,

where we invoked the second order estimates (40) and the a priori estimates from

Theorem 5.1 in the second inequality. We derive the statement of the theorem by

choosing 𝜀0 sufficiently small. ⊓⊔
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6. The Truncated Problem

The particular form of the nonlinearity limitates the well-posedness theory for

the Cauchy problem for (19) to a small neighborhood of the trivial solution 𝑤 ≡ 0.

It follows that the resulting semi-flow is necessarily local. In order to construct a

global semi-flow, whose existence simplifies the construction of invariant mani-

folds significantly, it is customary to consider a truncated version of the perturba-

tion equation. We thus introduce a cut-off function that eliminates the nonlinear

terms (locally) near points where the solution 𝑤, or one of its (suitably weighted)

derivatives, is too large. This way, the equation becomes linear at these points. The

cut-off remains inactive as long as the solution is globally small with respect to‖ ⋅ ‖
𝑊

, which is the case for solutions of the perturbation equation for sufficiently

small initial datum due to Theorem 5.3.

To make this truncation more precise we recall that the perturbation equation

reads as

𝜕
𝑡
𝑤 + 2

𝑤 +𝑁𝑤 = 𝜌
−1∇ ⋅

(
𝜌
2
𝐹 [𝑤]

)
+ 𝜌𝐹 [𝑤], (44)

where the nonlinear terms are schematically given by

𝐹 [𝑤] = 𝑝 ⋆ 𝑅
𝑙
[𝑤] ⋆

(
𝜌∇3

𝑤 ⋆ ∇𝑤 + 𝜌(∇2
𝑤)2⋆ + ∇2

𝑤 ⋆ ∇𝑤 + (∇𝑤)2⋆
)
,

cf. (19) and (20). Let 𝜂̂ ∶ [0,∞) → [0, 1] be a smooth cut-off function that is

supported on [0, 2) with 𝜂̂(𝑥) = 1 if 0 ≤ 𝑥 ≤ 1. For 𝜀 ∈ (0, 1), we define

𝜂
𝜀
= 𝜂

𝜀

[
𝑤,∇𝑤, 𝜌∇2

𝑤, 𝜌
2∇3

𝑤
]

∶=𝜂̂
(
𝑤

2

𝜀2

)
𝜂̂

(|∇𝑤|2
𝜀2

)
𝜂̂

⎛⎜⎜⎜⎝
|||𝜌∇2

𝑤
|||2

𝜀2

⎞⎟⎟⎟⎠
𝜂̂

⎛⎜⎜⎜⎝
|||𝜌2∇3

𝑤
|||2

𝜀2

⎞⎟⎟⎟⎠
.

The truncated problem we consider now is the following:

𝜕
𝑡
𝑤 + 2

𝑤 +𝑁𝑤 = 𝜌
−1∇ ⋅

(
𝜌
2
𝐹
𝜀
[𝑤]

)
+ 𝜌𝐹

𝜀
[𝑤], 𝐹

𝜀
= 𝜂

𝜀
𝐹 . (45)

It is clear that this equation coincides with (19) as long as all terms |𝑤|, |∇𝑤|,|||𝜌∇2
𝑤
||| and

|||𝜌2∇3
𝑤
||| are globally bounded from above by 𝜀. As we already know

for solutions 𝑤(𝑡) of the full perturbation equation (19) that ‖𝑤(𝑡)‖
𝑊

is controlled

by ‖‖𝑤0‖‖𝑊 , provided that the initial datum 𝑤0 is sufficiently small, the solutions

of both equations coincide if ‖‖𝑤0‖‖𝑊 ≪ 𝜀. Thus, in this situation the truncation

does not change the dynamics, even though it has the advantage that we end up

with a globally well-posed equation, see Theorem 6.3. We remark that the choice

of a pointwise truncation is necessary in order to ensure the differentiability of the

nonlinearity in 𝑤. It has, however, the drawback that the regularity estimates from

[65] seem not to carry over to the truncated problem. The technical difficulties

arise from the fact that derivatives are falling onto the cut-off functions and the

resulting terms fail to be controlled in a way analogously to the nonlinear terms in

the original problem.
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Moreover, it is crucial that derivatives up to third order are suitable truncated.

This looks at first glance surprising because the original theory [65] for the pertur-

bation equation (44) requires only the control of Lipschitz norms. However, it turns

out that the well-posedness theory for a truncated equation becomes unexpectedly

subtle if the truncation is performed only up to first order.

We will prove well-posedness of (45) in the Hilbert space 𝐻 , which, as we will

see, appears very naturally in the treatment of the truncated equation. Even though

it is in general not necessary to work in a Hilbert space setting to construct invariant

manifolds, see, for example, [14], this choice will be extremely convenient. More-

over, we can take advantage of the spectral analysis developed in [54] in a nearly

identical setting.

In order to prove well-posedness of the truncated problem in 𝐻 , we need to

extend the maximal regularity result (32) for the operator  to the Hilbert space

𝐻 .

Lemma 6.1. The operator  satisfies the maximal regularity estimate

‖∇𝑤‖
𝐻
+ ‖𝜌∇2

𝑤‖
𝐻
≲ ‖𝑤‖

𝐻
.

For the proof we refer to the theory for the operator
𝜎

in (33) and its derivatives

developed in [65], more precisely Lemmas 1,2 and 4 and their proofs. The proof

of Lemma 6.1 can be done analogously. It mainly relies on the observation that

the operator 
𝜎

commutates with tangential derivatives and its radial derivative

𝜕
𝑟

𝜎
𝑤 can be rewritten in terms of 

𝜎+1𝜕𝑟𝑤 and lower order terms. This makes

the maximal regularity estimate for 
𝜎
, equation (32), applicable.

The proof of well-posedness of the truncated problem exploits a fixed point

argument. For this it is necessary to control the Lipschitz constants of the nonlinear

terms 𝐹
𝜀

in a suitable way.

Lemma 6.2. It holds that‖‖‖√𝜌𝐹
𝜀

[
𝑤1

]
−

√
𝜌𝐹

𝜀

[
𝑤2

]‖‖‖
≲ 𝜀

(‖‖‖𝜌∇2
𝑤1 − 𝜌∇2

𝑤2
‖‖‖𝐻 + ‖‖∇𝑤1 − ∇𝑤2‖‖𝐻 + ‖‖𝑤1 −𝑤2‖‖𝐻)

.

Proof. This is a straightforward computation embarking from the pointwise esti-

mate

||𝜌𝐹𝜀[𝑤1] − 𝜌𝐹𝜀[𝑤2]||
≲ 𝜀

(|||𝜌2∇3
𝑤1 − 𝜌

2∇3
𝑤2

||| + |||𝜌∇2
𝑤1 − 𝜌∇2

𝑤2
||| + ||∇𝑤1 − ∇𝑤2|| + ||𝑤1 −𝑤2||) ,

which in turn can be readily checked. Indeed, the latter implies that

‖‖‖√𝜌𝐹
𝜀
[𝑤1] −

√
𝜌𝐹

𝜀
[𝑤2]

‖‖‖
= ‖‖𝜌𝐹𝜀[𝑤1] − 𝜌𝐹

𝜀
[𝑤2]‖‖𝐿2

≲ 𝜀

(‖‖‖𝜌2∇3
𝑤1 − 𝜌

2∇3
𝑤2

‖‖‖𝐿2 +
‖‖‖𝜌∇2

𝑤1 − 𝜌∇2
𝑤2

‖‖‖𝐿2 + ‖‖∇𝑤1 − ∇𝑤2‖‖𝐿2 + ‖‖𝑤1 −𝑤2‖‖𝐿2

)
≲ 𝜀

(‖‖‖∇2
𝑤1 − ∇2

𝑤2
‖‖‖𝐻 + ‖‖∇𝑤1 − ∇𝑤2‖‖𝐻 + ‖‖𝑤1 −𝑤2‖‖𝐻)

,
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where we have used (25) in the last inequality. ⊓⊔

With this preparation, we are in the position to derive well-posedness.

Theorem 6.3. (Global well-posedness in 𝐻) There exists 𝜀
∗
> 0 such that for

every 𝜀 ≤ 𝜀
∗ and every initial datum 𝑤0 ∈ 𝐻 the truncated problem (45) has a

unique global solution 𝑤. Moreover, the solution 𝑤 satisfies

‖𝑤‖
𝐿∞((0,∞);𝐻) + ‖∇𝑤‖

𝐿2((0,∞);𝐻) + ‖𝜌∇2
𝑤‖

𝐿2((0,∞);𝐻) ≲
‖‖𝑤0‖‖𝐻 .

Proof. We commence by considering the linear initial value problem{
𝜕
𝑡
𝑤̃ + 2

𝑤̃ +𝑁𝑤̃ = 𝜌
−1∇ ⋅

(
𝜌
2
𝐹
)
+ 𝜌

2
𝐹

𝑤̃(0, ⋅) = 𝑤0
(46)

for fixed 𝐹 ∈ 𝐿
2((0,∞);𝐿2(𝜌2)). The problem (46) has a unique weak solution 𝑤̃

on the time interval (0, 𝑇 ); see Lemma 7 in [65]. This satisfies the estimate

‖𝑤̃‖
𝐿∞((0,𝑇 );𝐻) + ‖∇𝑤̃‖

𝐿2((0,𝑇 );𝐻) +
‖‖‖𝜌∇2

𝑤̃
‖‖‖𝐿2((0,𝑇 );𝐻)

≤ 𝐶
𝑇

(‖‖𝜌𝐹‖‖𝐿2((0,𝑇 );𝐿2) + ‖‖𝑤0‖‖𝐻)
.

(47)

To derive (47), we test the equation with 𝑤 in the inner product ⟨⋅, ⋅⟩
𝐻

, and obtain,

after multiple integration by parts,

1
2
𝑑

d𝑡
‖𝑤̃‖2

𝐻
+ ‖𝑤̃‖2

𝐻
+𝑁

‖‖‖1∕2
𝑤̃
‖‖‖2𝐻 = −⟨𝜌𝐹 ,∇𝑤̃⟩

𝐻
+ ⟨𝜌𝐹 , 𝑤̃⟩

𝐻
. (48)

Using the Cauchy-Schwarz inequality in the energy space 𝐿
2(𝜌), we furthermore

notice that

||⟨𝜌𝐹 ,∇𝑤̃⟩𝐻 || ≤ ||⟨𝜌𝐹 ,∇𝑤̃⟩|| + ||⟨𝜌𝐹 ,∇𝑤̃⟩||
≤ ‖√𝜌𝐹‖ (‖√𝜌∇𝑤̃‖ + ‖√𝜌∇𝑤̃‖) ≤ ‖√𝜌𝐹‖ (‖𝑤̃‖𝐻 + ‖𝑤̃‖𝐻)

and

||⟨𝜌𝐹 , 𝑤̃⟩
𝐻
|| ≤ ||⟨𝜌𝐹 , 𝑤̃⟩|| + ||⟨𝜌𝐹 ,𝑤̃⟩||
≤ ‖‖𝜌𝐹‖‖ (‖𝑤̃‖ + ‖𝑤̃‖) ≤ ‖‖𝜌𝐹‖‖ (‖𝑤̃‖

𝐻
+ ‖‖‖1∕2

𝑤̃
‖‖‖𝐻

)
.

We now invoke Young’s inequality and the fact that 𝜌 ≤ 1 and we drop the non-

negative lower-order term on the left-hand side to derive the differential inequality

𝑑

d𝑡
‖𝑤̃‖2

𝐻
+ ‖𝑤̃‖2

𝐻
≲

‖‖‖√𝜌𝐹
‖‖‖2 + ‖𝑤̃‖2

𝐻
.

We deduce (47) with help of the maximal regularity result of Lemma 6.1 and a

Grönwall type argument.

To show well-posedness for the nonlinear problem, we apply a fixpoint argu-

ment. The estimate in Lemma 6.2 shows that the nonlinearity 𝐹
𝜀
[𝑤] belongs to
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𝐿
2((0, 𝑇 );𝐿2(𝜌2)) whenever 𝑤 ∈ 𝐿

∞((0, 𝑇 );𝐻) is given such that ∇𝑤, 𝜌∇2
𝑤 ∈

𝐿
2((0, 𝑇 );𝐻). By the linear theory, there exists thus a solution 𝑤̃ = 𝑤̃(𝑤,𝑤0) to

the Cauchy problem (46) with 𝐹 = 𝐹
𝜀
[𝑤], and the estimate (47) and Lemma 6.2

(applied to 𝑤1 = 𝑤̃ and 𝑤2 = 0) yield that

‖𝑤̃‖
𝐿∞((0,𝑇 );𝐻) + ‖∇𝑤̃‖

𝐿2((0,𝑇 );𝐻) +
‖‖‖𝜌∇2

𝑤̃
‖‖‖𝐿2((0,𝑇 );𝐻)

≤ 𝐶
𝑇
𝜀

(‖‖‖𝜌∇2
𝑤
‖‖‖𝐿2((0,𝑇 );𝐻)

+ ‖∇𝑤‖
𝐿2((0,𝑇 );𝐻) + ‖𝑤‖

𝐿∞((0,𝑇 );𝐻)

)
+ 𝐶

𝑇
‖𝑔‖

𝐻
.

Similarly, given 𝑤1 and 𝑤2 in the same class of functions, the difference of

the corresponding solutions 𝑤̃1
(
𝑤1, 𝑔

)
and 𝑤̃2

(
𝑤2, 𝑔

)
to the associated linear

problems is bounded by

‖‖‖𝜌∇2
𝑤̃1 − 𝜌∇2

𝑤̃2
‖‖‖𝐿2(𝐻)

+ ‖‖∇𝑤̃1 − ∇𝑤̃2‖‖𝐿2(𝐻) + ‖‖𝑤̃1 − 𝑤̃2‖‖𝐿∞(𝐻)

≤ 𝐶
𝑇
𝜀

(‖‖‖𝜌∇2
𝑤1 − 𝜌∇2

𝑤2
‖‖‖𝐿2(𝐻)

+ ‖‖∇𝑤1 − ∇𝑤2‖‖𝐿2(𝐻)+‖‖𝑤1 −𝑤2‖‖𝐿∞(𝐻)

)
.

We conclude that, for 𝜀 sufficiently small, the mapping𝑤 ↦ 𝑤̃(𝑤,𝑤0) is a contrac-

tion on the space
{
𝑤 ∈ 𝐿

∞ ((0, 𝑇 );𝐻) with ∇𝑤 ∈ 𝐿
2 ((0, 𝑇 );𝐻) and 𝜌∇2

𝑤 ∈
𝐿
2 ((0, 𝑇 );𝐻)

}
. An application of Banach’s fixed point theorem shows that there

exists a unique solution𝑤 to the truncated problem (19) with initial datum𝑤0 ∈ 𝐻 .

We stress that the constructed solution is defined locally in time and that the size

of the admissible 𝜀 is dependent on 𝑇 . In what follows, we choose 𝜀 for 𝑇 = 1 and

show that the constructed solution can be extended globally in time.

Our starting point is the estimate for the linear problem (48), in which we choose

𝑤̃ = 𝑤 and 𝐹 = 𝐹
𝜀
[𝑤]. In order to avoid a time-dependency in the estimate for 𝑤,

we should estimate the nonlinearities slightly differently as above. We notice that

the nonlinearity obeys the pointwise estimate

|𝐹
𝜀
[𝑤]| ≲ 𝜌|∇𝑤||∇3

𝑤| + 𝜌|∇2
𝑤|2 + |∇𝑤||∇2

𝑤| + |∇𝑤|2, (49)

which implies that

‖𝜌𝐹𝜀[𝑤]‖
𝐿1 ≲ ‖∇𝑤‖

𝐿2‖𝜌2∇3
𝑤‖

𝐿2 + ‖𝜌∇2
𝑤‖2

𝐿2 + ‖∇𝑤‖
𝐿2‖𝜌∇2

𝑤‖
𝐿2 + ‖∇𝑤‖2

𝐿2

via the Cauchy–Schwarz inequality. In view of the norm characterization in (25),

the latter can be rewritten as

‖𝜌𝐹
𝜀
[𝑤]‖

𝐿1 ≲ ‖∇𝑤‖
𝐻

(‖∇𝑤‖
𝐻
+ ‖𝜌∇2

𝑤‖
𝐻

)
.

We also notice that

|𝑤| + |∇𝑤| + |𝑤| + 𝜌|∇𝑤| ≲ |𝑤| + |∇𝑤| + 𝜌|∇2
𝑤| + 𝜌

2|∇3
𝑤| ≲ 𝜀

in the support of the nonlinearity 𝐹
𝜀

by our choice of the cut-off. Thanks to the pre-

vious two bounds, the nonlinear terms on the right-hand side of (48) are estimated
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as follows:

||⟨𝜌𝐹𝜀[𝑤],∇𝑤⟩
𝐻
|| + ||⟨𝜌𝐹𝜀[𝑤], 𝑤⟩

𝐻
||

= ||⟨𝜌𝐹𝜀[𝑤], 𝑤⟩|| + ||⟨𝜌𝐹𝜀[𝑤],∇𝑤⟩|| + ||⟨𝜌𝐹𝜀[𝑤],𝑤⟩|| + ||⟨𝜌𝐹𝜀[𝑤],∇𝑤⟩||
≲ 𝜀‖𝜌𝐹

𝜀
[𝑤]‖

𝐿1

≲ 𝜀‖∇𝑤‖
𝐻

(‖∇𝑤‖
𝐻
+ ‖𝜌∇2

𝑤‖
𝐻

)
.

Substitution into (48) thus yields

𝑑

d𝑡
‖𝑤‖2

𝐻
+ ‖𝑤‖2

𝐻
≲ 𝜀‖∇𝑤‖

𝐻

(‖∇𝑤‖
𝐻
+ ‖𝜌∇2

𝑤‖
𝐻

)
,

where we have again dropped the lower order term on the left-hand side. In view

of the maximal regularity estimate from Lemma 6.1, the right-hand side can be

absorbed into the left-hand side provided that 𝜀 is chosen sufficiently small. This

gives

𝑑

d𝑡
‖𝑤‖2

𝐻
+ 1
𝐶
‖𝑤‖2

𝐻
≤ 0

for some 𝐶 > 1, and the local solution can thus be extended globally for all times.

The estimate in the assertion of the theorem follows. ⊓⊔

It will be crucial for our analysis to have some smoothing properties established

for the truncated equation (45). This will be achieved in the following two lemmas:

Lemma 6.4. There exists 𝜀∗ possibly smaller than in Theorem 6.3, such that for
any 0 < 𝜀 ≤ 𝜀

∗ the following holds: If 𝑤 is the solution to the truncated equation
(45) with initial datum 𝑤0 ∈ 𝐻 then it holds that

‖‖𝜕𝑡𝑤‖‖𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌)) + ‖𝑤‖
𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌)) + ‖∇𝑤‖

𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌))

+ ‖‖‖∇2
𝑤
‖‖‖𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌))

+ ‖‖‖𝜌∇3
𝑤
‖‖‖𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌))

+ ‖‖‖𝜌2∇4
𝑤
‖‖‖𝐿𝑞 ((1∕4,2);𝐿𝑞 (𝜌))

≲ ‖‖𝑤0‖‖𝐻
for any 𝑞 ∈ (1,∞).

Proof. We will perform an iterative argument for which it is convenient to localize

time on an arbitrary scale. For this purpose, we fix 𝑇 ∈ (0, 2) and introduce a

smooth cut-off function 𝜙1 ∶ ℝ+
0 → [0, 1], satisfying 𝜙1(𝑡) = 0 if 𝑡 ≤ 𝑇 and

𝜙1(𝑡) = 1 if 𝑡 ≥ 2𝑇 . Of course, its growth rate is inversely proportional to the cut-

off scale 𝑇 , but having this quantity uniformly finite throughout the proof, we will

simply write |𝜙′
1| ≲ 1 for convenience. Smuggling 𝜙1 into the truncated equation

(45) gives

𝜕
𝑡
(𝑤𝜙1) + 2(𝑤𝜙1) +𝑁(𝑤𝜙1) = 𝜌

−1∇ ⋅
(
𝜌
2
𝐹
𝜀
[𝑤]

)
𝜙1 + 𝜌𝐹

𝜀
[𝑤]𝜙1 +𝑤𝜙

′
1.
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We note that 𝑤𝜙1 has zero initial datum, which makes the maximal regularity the-

ory for 2 +𝑁 applicable: From (35) and elementary computations we infer the

maximal regularity estimate

‖‖𝜕𝑡(𝑤𝜙1)‖‖𝐿2(𝐿2(𝜌)) +
‖‖‖∇2

𝑤𝜙1
‖‖‖𝐿2(𝐿2(𝜌)) +

‖‖‖𝜌∇3
𝑤𝜙1

‖‖‖𝐿2(𝐿2(𝜌)) +
‖‖‖𝜌2∇4

𝑤𝜙1
‖‖‖𝐿2(𝐿2(𝜌))

≲ ‖𝜂
𝜀
𝐹 𝜙1‖𝐿2(𝐿2(𝜌)) + ‖𝜌∇𝜂

𝜀
𝐹𝜙1‖𝐿2(𝐿2(𝜌)) + ‖𝜌𝜂

𝜀
∇𝐹 𝜙1‖𝐿2(𝐿2(𝜌)) +

‖‖‖𝑤𝜙′
1
‖‖‖𝐿2(𝐿2(𝜌)) ,

(50)

where we have set 𝐹 = 𝐹
𝜀
[𝑤] for brevity. For brevity, we have dropped the time

interval (0, 2) in the norms. The final term on the right-hand side is easily controlled

via the a priori estimates from Theorem 6.3 and the defining properties of the

temporal cut-off 𝜙1; it holds that

‖‖‖𝑤𝜙′
1
‖‖‖𝐿2(𝐿2(𝜌)) ≲ ‖𝑤‖

𝐿∞(𝐿2(𝜌)) ≤ ‖𝑤‖
𝐿∞(𝐻) ≲ ‖‖𝑤0‖‖𝐻 .

For the first and the second term, we use the pointwise bound on the nonlinearity

on the support of 𝜂
𝜀
,

|𝐹 [𝑤]| ≲ 𝜀
(|∇𝑤| + |∇2

𝑤| + 𝜌|∇3
𝑤|) ≲ 𝜌

−1
𝜀
2
, (51)

cf. (49). More precisely, plugging the first of the two estimates into the first term

on the right-hand side of (50), we find that

‖𝜂𝜀𝐹 𝜙1‖𝐿2(𝐿2(𝜌)) ≲ 𝜀

(‖∇𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖∇2
𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖𝜌∇3

𝑤𝜙1‖𝐿2(𝐿2(𝜌))

)
.

We interpolate the first term with the help of Lemma B.3 in the appendix, so that

‖𝜂𝜀𝐹 𝜙1‖𝐿2(𝐿2(𝜌)) ≲ 𝜀

(‖𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖∇2
𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖𝜌∇3

𝑤𝜙1‖𝐿2(𝐿2(𝜌))

)
.

The two last terms on the right-hand side can be absorbed into the left-hand side of

(50) if 𝜀 is chosen sufficiently small, while the first term is controlled by the initial

datum through the energy estimate of Theorem 6.3.

To estimate the second term on the right-hand side of (50), we notice that

|∇𝜂
𝜀
| ≲ 1 + 1

𝜀

(|∇2
𝑤| + 𝜌|∇3

𝑤| + 𝜌
2|∇4

𝑤|) ,
and thus, using that 𝜌 ≤ 1 and the second estimate in (51), we find that

‖𝜌∇𝜂
𝜀
𝐹𝜙1‖𝐿2(𝐿2(𝜌))

≲ ‖𝜒supp 𝜂𝜀 𝐹𝜙1‖𝐿2(𝐿2(𝜌))

+ 𝜀
(‖∇𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖∇2

𝑤𝜙1‖𝐿2(𝐿2(𝜌)) + ‖𝜌∇3
𝑤𝜙1‖𝐿2(𝐿2(𝜌))

)
.

The first term can be estimated as before and the second one can be absorbed

into the left-hand side of (50) if 𝜀 is sufficiently small.
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It remains to study the third term on the right-hand side of (50). Here, we find,

after a small computation, that

𝜌|∇𝐹 | ≲ |𝐹 | + 𝜀
(|∇𝑤| + |∇2

𝑤| + 𝜌|∇3
𝑤| + 𝜌

2|∇4
𝑤|) .

Hence, in view of the bound in (51), the only new term we have to deal with

is the fourth-order term. This one, however, can be controlled as the second- and

third-order term before by absorption into the left-hand side of (50).

Combining all the estimates that we discussed, adding the lower order term

from the energy inequality in Theorem 6.3 to the left-hand side, making use of the

interpolation inequality in Lemma B.3 in the appendix to include the first order

spatial gradient and finally dropping all higher order terms, we arrive at

‖‖𝑤𝜙1‖‖𝐿2(𝐿2(𝜌)) + ‖‖𝜕𝑡(𝑤𝜙1)‖‖𝐿2(𝐿2(𝜌)) + ‖‖∇(𝑤𝜙1)‖‖𝐿2(𝐿2(𝜌)) ≲ ‖𝑤0‖𝐻. (52)

We are now in the position to invoke the Sobolev inequality Lemma B.1 in the

appendix, namely

‖𝑤‖
𝐿𝑞(𝐿𝑞(𝜌)) ≲ ‖‖𝜕𝑡𝑤‖‖𝐿𝑝(𝐿𝑝(𝜌)) + ‖𝑤‖

𝐿𝑝(𝐿𝑝(𝜌)) + ‖∇𝑤‖
𝐿𝑝(𝐿𝑝(𝜌)) ,

where the integrability exponents 1 ≤ 𝑝 ≤ 𝑞 < ∞ are such that

1 − 𝑁 + 2
𝑝

= −𝑁 + 2
𝑞

.

In our situation, that is 𝑝 = 𝑝1 = 2, we deduce from (52) the inequality

‖‖𝑤𝜙1‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) ≲
‖‖𝑤0‖‖𝐻 , (53)

where we now have that 𝑞 = 𝑞1 =
2(𝑁+2)

𝑁
.

In order to further increase the order of integrability, we have to use the maximal

regularity estimate in 𝐿
𝑞
, see (35). We introduce a new smooth cut-off function

𝜙2 ∶ ℝ+
0 → [0, 1], such that 𝜙2(𝑡) = 0 if 𝑡 ≤ 2𝑇 and 𝜙2(𝑡) = 1 if 𝑡 ≥ 3𝑇 . Using

the maximal regularity estimate for 𝑤𝜙2 and 𝑞1, we get

‖‖𝜕𝑡(𝑤𝜙2)‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖‖∇2(𝑤𝜙2)
‖‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖‖𝜌∇3(𝑤𝜙2)

‖‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖‖𝜌2∇4(𝑤𝜙2)
‖‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌))

≲ ‖𝜂𝜀𝐹 𝜙2‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖𝜌∇𝜂𝜀 𝐹𝜙2‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖𝜌𝜂𝜀∇𝐹 𝜙2‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖‖𝑤𝜙′2‖‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) .
The treatment of the right-hand side is almost identical to the 𝑝 = 2 case, only

that now equation (53) is invoked where before the energy equation was used. We

eventually arrive at

‖‖𝑤𝜙2‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖𝜕𝑡(𝑤𝜙2)‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) + ‖‖∇(𝑤𝜙2)‖‖𝐿𝑞1 (𝐿𝑞1 (𝜌)) ≲ ‖𝑤0‖𝐻,

and we may use the Sobolev inequality once more with 𝑝2 ≤ min{𝑞1, 𝑁 + 2}. By

iterating this procedure, the order of integrability can be further increased. After

finitely many steps, depending only on the space dimension, and by choosing 𝑇

carefully, the statement follows. ⊓⊔
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Theorem 6.3 shows that the truncated equation generates a global semiflow in

the Hilbert space setting. We define 𝑆
𝑡

𝜀
∶ 𝐻 → 𝐻 as the corresponding flow map,

𝑆
𝑡

𝜀
(𝑤0) = 𝑤(𝑡, ⋅)

where 𝑤 is the unique solution to the truncated nonlinear problem (45) with initial

datum 𝑤0. Our invariant manifold construction is based on that flow. More accu-

rately, we choose to consider a discrete time setting by working with the time-one

map rather than with the continuous flow. Compared to constructing the manifolds

for the semiflow directly, this has the advantage, that the differentiability of the

time-one map is a weaker property than its counterpart for flows, the variation of

constants formula. We write 𝑆
𝜀
∶=𝑆1

𝜀
.

The main regularity results for the perturbation variable 𝑤 are stated uniformly

in time and space, while our invariant manifold theory will rely on Hilbert spaces.

The connection of both necessitates to establish suitable smoothing estimates. We

will do so in the next lemma, which we improve after one time step. As we are

interested in the long-time behavior, such a delayed smoothing statement does not

cause any problems.

Lemma 6.5. Let 𝜀∗ be as in Lemma 6.4 and 𝜀 ≤ 𝜀
∗. For any 𝑤0 ∈ 𝐻 the following

holds: If 𝑤(𝑡) = 𝑆
𝑡

𝜀
(𝑤0) is the solution to the truncated equation, then

‖𝑤(𝑡)‖
𝐿∞ + ‖∇𝑤(𝑡)‖

𝐿∞ + ‖‖‖𝜌∇2
𝑤
‖‖‖𝐿∞ + ‖‖‖𝜌2∇3

𝑤
‖‖‖𝐿∞ ≲ ‖‖𝑤0‖‖𝐻

for all 𝑡 ≥ 1∕2. In particular, this yields ‖𝑆
𝜀
(𝑤0)‖𝑊 ≲ ‖‖𝑤0‖‖𝐻 . Moreover, there

exists 𝜀0 ≤ min
{
𝜀, 𝜀0

}
such that 𝑆𝑡

𝜀

(
𝑆
𝜀
(𝑤0)

)
= 𝑆

𝑡
(
𝑆
𝜀
(𝑤0)

)
for 𝑡 > 0, provided

that ‖‖𝑤0‖‖𝐻 ≤ 𝜀
0.

Proof. Due to the Morrey-type embedding inequality B.4 in the appendix, we have

that ‖𝑤‖
𝐿∞ ≲ ‖𝑤‖

𝐿𝑞(𝜌) + ‖∇𝑤‖
𝐿𝑞(𝜌), provided that 𝑞 is sufficiently large. We can

extend this estimate to higher order derivatives and find

‖𝑤‖
𝑊

≲ ‖𝑤‖
𝐿𝑞(𝜌) + ‖∇𝑤‖

𝐿𝑞(𝜌) + ‖∇2
𝑤‖

𝐿𝑞(𝜌) + ‖𝜌∇3
𝑤‖

𝐿𝑞(𝜌) + ‖𝜌2∇4
𝑤‖

𝐿𝑞(𝜌).
(54)

Thus, in order to establish the asserted estimate, we have to improve the estimate

in Lemma 6.4 to a pointwise-in-time statement. For this, we invoke a simple con-

struction.

For an arbitrarily given function 𝑓 ∈ 𝐿
𝑞(1∕4, 1∕2), we consider the set

𝐽
𝑓
=

{
𝑡 ∈ (1∕4, 1∕2) ∶ |𝑓 (𝑡)| > 8 ‖𝑓‖

𝐿𝑞(1∕4,1∕2)
}
.

By Chebyshev’s inequality, it holds that

‖𝑓‖
𝐿𝑞(1∕4,1∕2) ≥ ‖𝑓‖

𝐿𝑞(𝐽𝑓 ) ≥ 8 ‖𝑓‖
𝐿𝑞(1∕4,1∕2) |𝐽𝑓 |1∕𝑞,

where |⋅| denotes the Lebesgue measure, and thus, |𝐽
𝑓
| ≤ (1∕8)𝑞 . Moreover,

since 𝑞 ≥ 1, we have also an estimate on the complementary set in (1∕4, 1∕2),
namely |𝐽𝑐

𝑓
| ≥ 1∕4 − (1∕8)𝑞 ≥ 1∕8. Applying this estimate to the function 𝑓 (𝑡) =
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‖𝑤(𝑡)‖
𝐿𝑞(𝜌) + ‖∇𝑤(𝑡)‖

𝐿𝑞(𝜌) +
‖‖‖∇2

𝑤(𝑡)‖‖‖𝐿𝑞(𝜌)
+ ‖‖‖𝜌∇3

𝑤(𝑡)‖‖‖𝐿𝑞(𝜌)
+ ‖‖‖𝜌2∇4

𝑤(𝑡)‖‖‖𝐿𝑞(𝜌)
and using the above estimate (54), we find that

‖𝑤‖
𝐿∞(𝐽𝑐

𝑓
;𝑊 ) ≲ ‖𝑓‖

𝐿∞(𝐽𝑐
𝑓
) ≲ ‖𝑓‖

𝐿𝑞(1∕4,1∕2)

≲ ‖𝑤‖
𝐿𝑞((1∕4,1∕2);𝐿𝑞(𝜌)) + ‖∇𝑤‖

𝐿𝑞((1∕4,1∕2);𝐿𝑞(𝜌)) +
‖‖‖∇2

𝑤
‖‖‖𝐿𝑞((1∕4,1∕2);𝐿𝑞(𝜌))

+ ‖‖‖𝜌∇3
𝑤
‖‖‖𝐿𝑞((1∕4,1∕2);𝐿𝑞(𝜌))

+ ‖‖‖𝜌2∇4
𝑤
‖‖‖𝐿𝑞((1∕4,1∕2);𝐿𝑞(𝜌))

.

By the virtue of Lemma 6.4, the right-hand side is bounded by ‖𝑤0‖𝐻 . This shows

that there exists a time 𝑡 ∈ (1∕4, 1∕2) such that

‖𝑤(𝑡)‖
𝑊

= ‖𝑆𝑡

𝜀
(𝑤0)‖𝑊 ≤ 𝐶‖𝑤0‖𝐻.

Now suppose that ‖‖𝑤0‖‖𝐻 ≤ 𝜀
0

From Theorems 5.1 and 5.3 we know, that

the nonlinear flow 𝑆
𝑡(𝑤0) can be controlled in 𝑊 by its initial data 𝑔 in the 𝑊 -

norm, that is, ‖𝑆𝑡(𝑤0)‖𝑊 ≤ 𝐶̃‖𝑤0‖𝑊 for every 𝑡 ≥ 0, provided that ‖𝑤0‖𝑊 is

sufficiently small. If we now choose 𝜀
0

in a way such that 𝐶̃𝐶𝜀
0 ≤ 𝜀, we obtain

that 𝑆
𝑡

𝜀

(
𝑆
𝑡

𝜀
(𝑤0)

)
= 𝑆

𝑡

(
𝑆
𝑡

𝜀
(𝑤0)

)
for every 𝑡 ≥ 0, and thus

‖𝑆𝑡+𝑡
𝜀

(𝑤0)‖𝑊 = ‖𝑆𝑡

(
𝑆
𝑡

𝜀
(𝑤0)

)‖
𝑊

≤ 𝐶̃‖𝑆𝑡

𝜀
(𝑤0)‖𝑊 ≤ 𝐶̃𝐶‖𝑤0‖𝐻

for every 𝑡 ≥ 0. Since 𝑡 ∈ (1∕4, 1∕2), this gives the result. ⊓⊔

By construction of the solution in Theorem 6.3, we know that 𝑆
𝜀

is Lipschitz-

continuous. We decompose the global flow 𝑆
𝜀

into a linear and nonlinear part

𝑆
𝜀
= 𝐿 +𝑅

𝜀
, where 𝐿∶=𝑒−

(2+𝑁)
.

As a difference of Lipschitz continuous functions, 𝑅
𝜀

is Lipschitz continuous as

well. Actually, its Lipschitz constant can be estimated in terms of 𝜀 and becomes

thus a contraction if 𝜀 is sufficiently small.

Lemma 6.6. Let 𝜀∗ > 0 as in Lemma 6.4 and 0 < 𝜀 ≤ 𝜀
∗. Then, for any 𝑔, 𝑔̃ ∈ 𝐻

it holds that

‖‖𝑅𝜀
(𝑔) −𝑅

𝜀
(𝑔̃)‖‖𝐻 ≲ 𝜀 ‖𝑔 − 𝑔̃‖

𝐻
.

Proof. Let 𝑔, 𝑔̃ ∈ 𝐻 be given. Then 𝑤(𝑡, 𝑥) = 𝑆
𝑡

𝜀
(𝑔) and 𝑤̃(𝑡, 𝑥) = 𝑆

𝜀
(𝑔̃) solve

the truncated problem (45) with initial data 𝑔 or 𝑔̃, respectively. We set 𝑣(𝑡) =
𝑤(𝑡) −𝐿

𝑡
𝑔, where 𝐿

𝑡
𝑔 is the solution to the linear problem with initial datum 𝑔, so

that, in particular 𝑣(1, 𝑥) = 𝑅
𝜀
(𝑔). Analogously we define 𝑣̃. Then 𝑣− 𝑣̃ solves the

equation

𝜕
𝑡
(𝑣 − 𝑣̃) + 2(𝑣 − 𝑣̃) +𝑁(𝑣 − 𝑣̃)

= 1
𝜌
∇ ⋅

(
𝜌
2 (
𝐹
𝜀
[𝑤] − 𝐹

𝜀
[𝑤̃]

))
+ 𝜌

(
𝐹
𝜀
[𝑤] − 𝐹

𝜀
[𝑤̃]

)
,
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with zero initial datum. With the help of estimate (47) from the proof of Theo-

rem 6.3 we deduce that

‖𝑣(1) − 𝑣̃(1)‖𝐻 + ‖∇𝑣 − ∇𝑣̃‖
𝐿2((0,1);𝐻) +

‖‖‖𝜌∇2
𝑣 − 𝜌∇2

𝑣̃
‖‖‖𝐿2((0,1);𝐻)

≲ ‖‖𝜌𝐹𝜀[𝑤] − 𝜌𝐹𝜀[𝑤̃]‖‖𝐿2((0,1);𝐿2)

≲ 𝜀

(‖𝑤 − 𝑤̃‖𝐿∞((0,1);𝐻) + ‖∇𝑤 − ∇𝑤̃‖
𝐿2((0,1);𝐻) +

‖‖‖𝜌∇2
𝑤 − 𝜌∇2

𝑤̃
‖‖‖𝐿2((0,1);𝐻)

)
,

where we used Lemma 6.2 in the last step. Since 𝑆
𝜀

is Lipschitz continuous, the

right-hand side is controlled by 𝜀‖𝑔 − 𝑔̃‖
𝐻

. This finishes the proof. ⊓⊔

Additionally we would like to know that 𝑅
𝜀

is quadratic near the origin. The

superlinear behavior entails the differentiability of 𝑅
𝜀

in the origin, with derivative

zero. Neither this information nor the regularity will be necessary for our construc-

tion of the invariant manifolds. However, as we will see, it provides the additional

geometric insight that the center manifold 𝑊
𝑐

𝜀
touches the stable Eigenspace 𝐸

𝑐

tangentially, see Theorem 7.1. The proof of the quadratic estimate is rather techni-

cal and exploits smoothing properties of the nonlinear flow. We are able to show the

quadratic behavior after a regularizing time step, in a similar way as in Lemma 6.5,

what still is sufficient for our purpose.

Lemma 6.7. Let 𝜀∗ be as in Lemma 6.4. For all 0 ≤ 𝜀 ≤ 𝜀∗ and every 𝑔 ∈ 𝐻 it
holds that

‖‖‖𝑅𝜀

(
𝑆
𝜀
(𝑔)

)‖‖‖𝐻 ≲ ‖𝑔‖2
𝐻
.

Proof. Let 𝑤(𝑡, 𝑥) = 𝑆
𝑡

𝜀
(𝑔) and set 𝑊 (𝑡, 𝑥) = 𝑤(𝑡 + 1, 𝑥), which yields 𝑊 (0, ⋅) =

𝑆
𝜀
(𝑔). Let 𝑣 solve the initial value problem{

𝜕
𝑡
𝑣 + 2

𝑣 +𝑁𝑣 = 1
𝜌
∇ ⋅

(
𝜌
2
𝐹
𝜀
[𝑊 ]

)
+ 𝜌𝐹

𝜀
[𝑊 ] in (0,∞) × 𝐵1(0)

𝑣(0, ⋅) = 0 in 𝐵1(0),

so that 𝑣(1, ⋅) = 𝑅
𝜀 (𝑊 (0, ⋅)) = 𝑅

𝜀

(
𝑆
𝜀
(𝑔)

)
. Thanks to the proof of Theorem 6.3,

more precisely estimate (47), we know that

‖𝑣(1)‖2
𝐻
≲

1

∫
0

‖‖‖√𝜌𝐹
𝜀
[𝑊 ]‖‖‖2 d𝑡 =

2

∫
1

‖‖‖√𝜌𝐹
𝜀
[𝑤]‖‖‖2 d𝑡,

and by the virtue of the pointwise estimate (49) and Young’s inequality, we deduce

‖𝑣(1)‖
𝐻
≲

‖‖‖𝜌∇3
𝑤
‖‖‖2𝐿4((1,2);𝐿4(𝜌2))

+ ‖‖‖∇2
𝑤
‖‖‖2𝐿4((1,2);𝐿4(𝜌2))

+ ‖∇𝑤‖2
𝐿4((1,2);𝐿4(𝜌2)) .

It thus remains to invoke the smoothing property from Lemma 6.4 with 𝑞 = 4 and

the bound 𝜌 ≤ 1 in order to prove the lemma. ⊓⊔
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Lemma 6.8. Let 𝜀∗ be as in Lemma 6.4 and 𝜀 ≤ 𝜀
∗. Let 𝜀0 ≤ min {𝜀, 𝜀∗} be as in

Lemma 6.5. Then, for any 𝑔, 𝑔̃ ∈ 𝐻
1
1,2 with ‖𝑔‖

𝐻
, ‖𝑔̃‖

𝐻
≤ 𝜀

0 it holds that

‖‖‖𝑆𝑡

𝜀
(𝑔) − 𝑆

𝑡

𝜀
(𝑔̃)‖‖‖𝑊 ≲ ‖𝑔 − 𝑔̃‖

𝐻

for some 𝑡 ∈ (45 , 1).

Proof. Similar to the previous proof, we will make use of a maximal regularity

estimate for the linear equation. However, this proof will be less technical, because

the previous lemma, combined with a result of [65], will allow us to consider the

flow without the cut-off function 𝜂
𝜀
.

Let 𝑤(𝑡) denote 𝑆
𝑡

𝜀
(𝑔) and 𝑤̃(𝑡) = 𝑆

𝑡

𝜀
(𝑔̃) respectively. Then, by Lemma 6.5 we

know that ‖𝑤(𝑡)‖
𝑊

≲ ‖𝑔‖
𝐻

for every 𝑡 ≥ 1∕2. At this point we invoke Theorem 2

of [65] to also achieve even better control (in terms of 𝜌) on the higher derivatives:

It guarantees that the unique solution 𝑤 of the full nonlinear perturbation equation

(19) with (of course small) initial data 𝑔 satisfies
|||∇2

𝑤(𝑥, 𝑡)||| + |||𝜌∇3
𝑤(𝑥, 𝑡)||| +|||𝜌2∇4

𝑤(𝑡, 𝑥)||| ≲ 𝑡
−𝜅 ‖𝑔‖

𝑊 1,∞ for some positive 𝜅 > 0. If we apply this result with

𝑤(1∕2) as the initial data, we obtain the estimate

‖𝑤(𝑡)‖
𝐿∞ + ‖∇𝑤(𝑡)‖

𝐿∞ + ‖‖‖∇2
𝑤(𝑡)‖‖‖𝐿∞ + ‖‖‖𝜌∇3

𝑤(𝑡)‖‖‖𝐿∞ + ‖‖‖𝜌2∇4
𝑤(𝑡)‖‖‖𝐿∞

≲ ‖𝑔‖
𝐻

≤ 𝜀
0

(55)

uniformly in time for every 𝑡 ≥ 3∕4. The same holds true for 𝑤̃(𝑡) and 𝑔̃. That is,

for 𝑡 ≥ 3∕4 both 𝑤(𝑡) and 𝑤̃(𝑡) solve the full nonlinear equation.

We now introduce 𝑣 = 𝑤 − 𝑤̃, which solves the initial value problem

{
𝜕
𝑡
𝑣 + 2

𝑣 +𝑁𝑣 = 𝜌
−1∇ ⋅

(
𝜌
2 (
𝐹1[𝑤] − 𝐹1[𝑤̃]

))
+ 𝜌

(
𝐹2[𝑤] − 𝐹2[𝑤̃]

)
,

𝑣(0, ⋅) = 0.

Arguing very similarly as in the proof of Lemma 6.4, but using (55) instead of the

truncation, we arrive at

‖‖𝜕𝑡𝑣‖‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌)) + ‖𝑣‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌)) + ‖∇𝑣‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌))

+ ‖‖‖∇2
𝑣
‖‖‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌))

+ ‖‖‖𝜌∇3
𝑣
‖‖‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌))

+ ‖‖‖𝜌2∇4
𝑣
‖‖‖𝐿𝑞((4∕5,1);𝐿𝑞(𝜌))

≲ ‖𝑔 − 𝑔̃‖𝐻
for any 𝑞 ∈ (1,∞). Lastly, we proceed as in the proof of Lemma 6.5 to prove the

existence of a 𝑡 ∈ (4∕5, 1), such that

‖𝑤(𝑡) − 𝑤̃(𝑡)‖
𝑊

= ‖𝑣(𝑡)‖
𝑊

≲ ‖𝑔 − 𝑔̃‖
𝐻
.

⊓⊔
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7. Dynamical System Arguments

In this part we will construct invariant manifolds and prove Theorem 3.2. We

want to draw a heuristic picture of the concept, see als Figure 4 for a geometric illus-

tration. The center manifold, see Theorem 7.1, can be represented as the graph of a

Lipschitz continuous function over the finite-dimensional center eigenspace, and it

touches the center eigenspace tangentially at the origin. Here, the center eigenspace

is the subspace of 𝐻 spanned by the eigenfunctions of the first 𝐾 + 1 eigenvalues

of 2 +𝑁, where 𝐾 is an arbitrarily fixed nonnegative integer. Solutions to the

truncated flow that lie on the center manifold remain on it for all subsequent times.

The stable manifolds, see Theorem 7.3, intersect with the center manifold in ex-

actly one point, and they form thus a foliation of the underlying Hilbert space 𝐻

over the center manifold. This foliation is invariant under the flow. The stable man-

ifolds can be described as (displaced) graphs over the stable eigenspace, that is,

the orthogonal complement of the center eigenspace. Given an arbitrary solution

to the truncated perturbation equation, our construction provides a solution that

approximates the given one with an exponential rate of at least 𝜇
𝐾

.

Throughout this section, we fix 𝜀
∗

as in Lemma 6.4 and choose some 𝜀
0 ≤

min
{
𝜀, 𝜀0

}
as in Lemma 6.5. With these choices, all results from the previous two

sections are admissible.

The linear operator2+𝑁 and the associated semi-flow operator𝐿 = 𝑒
−2−𝑁

share the same eigenfunctions and an eigenvalue 𝜇 of 2+𝑁 turns into the eigen-

value 𝑒
−𝜇

of𝐿. We recall that all spectrum information is contained in Theorem 2.2.

The fact that the spectrum is discrete will facilitate our analysis substantially.

In our construction of the invariant manifolds, we follow an approach by Koch,

see [46], and mainly stick to his notation. From now on we keep 𝐾 ∈ ℕ0 fixed,

and we denote by 𝐸
𝑐

the finite-dimensional subspace of 𝐻 spanned by the eigen-

functions corresponding to the eigenvalues {𝜇0,… , 𝜇
𝐾
}, that we call the center

eigenspace. The projection of 𝐻 onto the space 𝐸
𝑐

is given by 𝑃
𝑐
. The stable

eigenspace 𝐸
𝑠

is defined as the orthogonal complement of the center eigenspace,

that is𝐸
𝑠
∶=𝐸⟂

𝑐
, such that𝐻 = 𝐸

𝑐
⊕𝐸

𝑠
, and 𝑃

𝑠
= 1−𝑃

𝑐
. We denote the restriction

of 𝐿 to 𝐸
𝑠

by 𝐿
𝑠
; it can be estimated via ‖‖𝐿𝑠

‖‖𝐻 ≤ 𝑒
−𝜇𝐾+1 . Indeed, for 𝑤 ∈ 𝐻 , it

holds that

‖‖𝐿𝑠
𝑤‖‖2𝐻 =

∑
𝑘>𝐾

∑
𝑙

⟨𝐿𝑤,𝜓
𝑘,𝑙
⟩2
𝐻

=
∑
𝑘>𝐾

∑
𝑙

𝑒
−2𝜇𝑘⟨𝑤,𝜓

𝑘,𝑙
⟩2
𝐻

≤ 𝑒
−2𝜇𝐾+1 ‖𝑤‖2

𝐻
,

if the 𝜓
𝑘,𝑙

’s are the eigenfunctions corresponding to 𝜇
𝑘
. For 𝐿

𝑐
, the restriction of

𝐿 onto 𝐸
𝑐
, we similarly obtain

‖‖‖𝐿−1
𝑐

‖‖‖ ≤ 𝑒
𝜇𝐾 . Indeed, we have

‖‖‖𝐿−1
𝑐
𝑤
‖‖‖2𝐻 =

∑
𝑘≤𝐾

∑
𝑙

⟨𝐿−1
𝑤,𝜓

𝑘
⟩2
𝐻

=
∑
𝑘≤𝐾

∑
𝑙

𝑒
2𝜇𝑘⟨𝑤,𝜓

𝑘
⟩2
𝐻

≤ 𝑒
2𝜇𝑘 ‖𝑤‖2

𝐻
.

We define

Λ
𝑐
= 𝑒

−𝜇𝐾 , Λ
𝑠
= 𝑒

−𝜇𝐾+1 and Λ
𝑚𝑎𝑥

= 1
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and conclude‖‖‖𝐿−1
𝑐

‖‖‖ ≤ Λ−1
𝑐

or Λ
𝑐
‖𝑤‖

𝐻
≤ ‖𝐿𝑤‖

𝐻
for all 𝑤 ∈ 𝐸

𝑐
,

‖‖𝐿𝑠
‖‖ ≤ Λ

𝑠
or ‖𝐿𝑤‖

𝐻
≤ Λ

𝑠
‖𝑤‖

𝐻
for all 𝑤 ∈ 𝐸

𝑠
,

and ‖𝐿‖ ≤ Λ
𝑚𝑎𝑥

or ‖𝐿𝑤‖
𝐻

≤ ‖𝑤‖
𝐻

for all 𝑤 ∈ 𝐻.

(56)

We arbitrarily choose Λ
𝑠
< Λ− = 𝑒

−𝜇− < Λ
𝑐

with 𝜇− < 𝜇
𝐾+1 < 2𝜇− and Λ

𝑚𝑎𝑥
<

Λ+ and introduce the following norms, that will be used for the construction of the

manifolds:

∙ For 𝑤 ∈ 𝐻 we define |||𝑤|||∶=max
{‖‖𝑃𝑐𝑤‖‖𝐻 , ‖‖𝑃𝑠𝑤‖‖𝐻}

.

∙ For
{
𝑤
𝑘

}
𝑘∈ℤ

⊆ 𝐻 we set
‖‖‖{𝑤𝑘

}
𝑘∈ℤ

‖‖‖Λ−,Λ+
∶= sup

𝑘∈ℕ0

max
{
Λ−𝑘
+

||||||𝑤𝑘
||||||,Λ𝑘

−
||||||𝑤−𝑘||||||} .

∙ For
{
𝑤
𝑘

}
𝑘∈ℕ0

⊆ 𝐻 we set
‖‖‖{𝑤𝑘

}
𝑘∈ℕ0

‖‖‖Λ−,+
∶= sup

𝑘∈ℕ0

Λ−𝑘
−

||||||𝑤𝑘
||||||.

The corresponding Banach spaces of sequences are denoted by 𝓁Λ−,Λ+
and 𝓁Λ−,+,

respectively.

Our first result it the construction of the center manifold.

Proposition 7.1. (Center manifold) Fix Λ− = 𝑒
−𝜇− in

(
Λ
𝑠
,Λ

𝑐

)
. Let 𝜀

𝑔𝑎𝑝
> 0 such

that

Λ
𝑠
+ 𝜀

𝑔𝑎𝑝
< Λ− < Λ

𝑐
− 𝜀

𝑔𝑎𝑝
and Λ

𝑚𝑎𝑥
+ 𝜀

𝑔𝑎𝑝
< Λ+. (57)

Choose 𝜀 ≤ 𝜀
∗ sufficiently small, such that

Lip
(
𝑅
𝜀

) ≤ 𝜀
𝑔𝑎𝑝

. (58)

(If necessary, choose 𝜀
0 ≤ min

{
𝜀, 𝜀0

}
even smaller according to Lemma 6.5.)

Then there exists a function 𝜃
𝜀
∶ 𝐸

𝑐
→ 𝐸

𝑠
with 𝜃

𝜀
(0) = 0, that is differentiable at

zero with 𝐷𝜃
𝜀
(0) = 0, and the submanifold

𝑊
𝑐

𝜀
∶=

{
𝑤
𝑐
+ 𝜃

𝜀

(
𝑤
𝑐

)
∶ 𝑤

𝑐
∈ 𝐸

𝑐

}
satisfies the following conditions:

1. The function 𝜃
𝜀

is a contraction withLip
(
𝜃
𝜀

)
≲ 𝜀

𝑔𝑎𝑝
and ‖‖‖𝜃𝜀 (𝑔𝑐)‖‖‖𝐻 ≲ ‖‖𝑔𝑐‖‖𝛼𝐻

for all 𝑔
𝑐
∈ 𝐸

𝑐
for some 1 < 𝛼 <

𝜇𝐾+1
𝜇−

. Moreover, it holds that ‖‖𝜃𝜀(𝑔𝑐)‖‖𝑊 ≲||||||𝑔𝑐||||||.
2. If the semiflow

{
𝑆
𝑡

𝜀

}
𝑡≥0 gets restricted to 𝑊

𝑐

𝜀
, it can be extended to an eternal

Lipschitz flow on𝑊 𝑐

𝜀
. More precisely, it holds that𝑆𝑡

𝜀

(
𝑊

𝑐

𝜀

)
= 𝑊

𝑐

𝜀
for all 𝑡 ≥ 0

and for any 𝑔 ∈ 𝑊
𝑐

𝜀
there exists a semiflow {𝑤(𝑡)}𝑡≤0 in 𝑊

𝑐

𝜀
with 𝑤(0) = 𝑔.

3. The manifold 𝑊 𝑐

𝜀
is characterized as follows: The point 𝑔 belongs to 𝑊 𝑐

𝜀
if and

only if there exists a flow {𝑤(𝑡)}𝑡∈ℝ with 𝑤(0) = 𝑔 and

‖𝑤(𝑡)‖
𝐻

≤
{

Λ𝑡

+|||𝑔||| for all 𝑡 ≥ 0
Λ𝑡

−|||𝑔||| for all 𝑡 ≤ 0.
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The Lipschitz constants here and in the following are to be understood for a

mappings from 𝐻 to 𝐻 , if both are equipped with the |||⋅||| norm.

Proof. Our proof relies on the construction in [46] in many parts. However, with

regard to the subtle regularity issues we have to modify the argument and need

to establish additional properties. For this reason, we give here a self-contained

presentation.

First, we note that thanks to Lemma 6.6 by choosing 𝜀 sufficiently small, the

Lipschitz condition (58) on 𝑅
𝜀

is realizable. We define 𝐽 ∶ 𝐸
𝑐
×𝓁Λ−,Λ+

→ 𝓁Λ−,Λ+
by

𝐽
𝑘

(
𝑔
𝑐
,
{
𝑤
𝑙

}
𝑙∈ℤ

)
=

⎧⎪⎨⎪⎩
𝑆
𝜀

(
𝑤
𝑘−1

)
if 𝑘 ≥ 1

𝑃
𝑠
𝑆
𝜀

(
𝑤−1

)
+ 𝑔

𝑐
if 𝑘 = 0

𝑃
𝑠
𝑆
𝜀

(
𝑤
𝑘−1

)
+ 𝐿

−1
𝑐
𝑃
𝑐

(
𝑤
𝑘+1 −𝑅

𝜀

(
𝑤
𝑘

))
if 𝑘 ≤ −1.

This mapping is well defined, as we will show that

‖‖‖𝐽 (
𝑔
𝑐
,
{
𝑤
𝑙

}
𝑙∈ℤ

)‖‖‖Λ−,Λ+
≤ max

{||||||𝑔𝑐||||||, 𝜅 ‖‖‖{𝑤𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+

}
, (59)

with 𝜅∶=max
{Λ−+𝜀𝑔𝑎𝑝

Λ𝑐

,
Λ𝑚𝑎𝑥+𝜀𝑔𝑎𝑝

Λ+
,
Λ𝑠+𝜀𝑔𝑎𝑝

Λ−

}
. This quantity 𝜅 is strictly smaller

than one due to (57). To prove (59) for positive times steps, 𝑘 ≥ 1, we compute

with help of the triangle inequality and properties (56) and (58) of 𝐿 and 𝑅
𝜀

Λ−𝑘
+

|||||||||𝑃𝑠𝑆𝜀

(
𝑤
𝑘−1

)||||||||| ≤ (
Λ−𝑘
+

||||||𝐿𝑠
𝑃
𝑠
𝑤
𝑘−1|||||| + ||||||𝑃𝑠𝑅𝜀

(𝑤
𝑘−1)||||||)

≤ Λ−𝑘
+

(
Λ
𝑠
||||||𝑤𝑘−1|||||| + 𝜀

𝑔𝑎𝑝
||||||𝑤𝑘−1||||||) ≤ Λ

𝑠
+ 𝜀

𝑔𝑎𝑝

Λ+

‖‖‖{𝑤𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+
.

We have a similar bound on the projection onto the center manifold:

Λ−𝑘
+

||||||𝑃𝑐𝑆𝜀
(𝑤

𝑘−1)|||||| ≤ Λ
𝑚𝑎𝑥

+ 𝜀
𝑔𝑎𝑝

Λ+

‖‖‖{𝑤𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+
.

The bound for negative time steps, 𝑘 ≤ −1, is verified in the same manner, namely

Λ𝑘

−
|||||||||𝑃𝑠𝑆𝜀

(
𝑤
𝑘−1

)
+ 𝐿

−1
𝑐
𝑃
𝑐

(
𝑤
𝑘+1 −𝑅

𝜀

(
𝑤
𝑘

))|||||||||
≤ max

{Λ
𝑠
+ 𝜀

𝑔𝑎𝑝

Λ−
,

Λ −+ 𝜀
𝑔𝑎𝑝

Λ
𝑐

}‖‖‖{𝑤𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+
.

Finally, for 𝑘 = 0, the same strategy yields

||||||𝑃𝑠𝑆𝜀
(𝑤−1) + 𝑔

𝑐
|||||| ≤ max

{Λ
𝑠
+ 𝜀

𝑔𝑎𝑝

Λ−

‖‖‖{𝑤𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+
, ||||||𝑔𝑐||||||

}
,

which completes the proof of (59).



27 Page 48 of 64 Arch. Rational Mech. Anal. (2024) 248:27

Making use of the inequalities (56) and (58) again, we derive similarly that

𝐽 (𝑔
𝑐
, ⋅), for fixed 𝑔

𝑐
∈ 𝐸

𝑐
, is a contraction on 𝓁Λ−,Λ+

, that is

‖‖‖𝐽𝑘 (𝑔𝑐,{𝑤𝑙

}
𝑙∈ℤ

)
− 𝐽

𝑘

(
𝑔
𝑐
,
{
𝑤̃
𝑙

}
𝑙∈ℤ

)‖‖‖Λ−,Λ+
≤ 𝜅

‖‖‖{𝑤𝑙

}
𝑙∈ℤ −

{
𝑤̃
𝑙

}
𝑙∈ℤ

‖‖‖Λ−,Λ+
,

for every
{
𝑤
𝑙

}
𝑙∈ℤ,

{
𝑤̃
𝑙

}
𝑙∈ℤ in 𝓁Λ−,Λ+

. Hence, by Banach’s fixed point theorem,

for every element 𝑔
𝑐
∈ 𝐸

𝑐
there exists a unique sequence

{
𝑤
𝑘

}
𝑘∈ℤ ∈ 𝓁Λ−,Λ+

with 𝐽
(
𝑔
𝑐
,
{
𝑤
𝑘

}
𝑘∈ℤ

)
=

{
𝑤
𝑘

}
𝑘∈ℤ. By construction this fixed point sequence is a

solution to the discrete semiflow with 𝑃
𝑐
𝑤0 = 𝑔

𝑐
. By the virtue of (59), we also

know that
‖‖‖{𝑤𝑘

}
𝑘∈ℤ

‖‖‖Λ−,Λ+
≤ ||||||𝑔𝑐||||||.

Now, we define the solution mapping 𝜃̂
𝜀
∶ 𝐸

𝑐
→ 𝓁Λ−,Λ+

by 𝜃̂
𝜀

(
𝑔
𝑐

)
=

{
𝑤
𝑘

}
𝑘∈ℤ

and consider 𝜃
𝜀
∶ 𝐸

𝑐
→ 𝐸

𝑠
given by 𝜃

𝜀

(
𝑔
𝑐

)
= 𝑃

𝑠
𝑤0. In other words, the initial da-

tum of the solution sequence decomposes into𝑤0 = 𝑔
𝑐
+𝜃

𝜀

(
𝑔
𝑐

)
. Since 𝐽 (0, 0) = 0,

we obtain, by the uniqueness of the fixed point, that 𝜃̂
𝜀
(0) = 0 and thus 𝜃

𝜀
(0) = 0.

The contraction property, in particular, entails that the solution mapping 𝜃̂
𝜀

is

Lipschitz continuous with bound Lip
(
𝜃̂
𝜀

) ≤ 1
1−𝜅 . Thus, also its “coordinate” 𝜃

𝜀
is

Lipschitz continuous with the same bound. We will need to a stronger bound, in

fact, a contraction estimate. For any 𝑔
𝑐

and 𝑔̃
𝑐
∈ 𝐸

𝑐
we have

|||||||||𝜃𝜀 (𝑔𝑐) − 𝜃
𝜀

(
𝑔̃
𝑐

)||||||||| = |||||||||𝑃𝑠 (𝑆𝜀

(
𝑤−1

)
− 𝑆

𝜀

(
𝑤̃−1

))|||||||||,
where

{
𝑤
𝑘

}
𝑘∈ℤ = 𝜃̂

𝜀

(
𝑔
𝑐

)
and

{
𝑤̃
𝑘

}
𝑘∈ℤ = 𝜃̂

𝜀

(
𝑔̃
𝑐

)
. Using the triangle inequality

and the properties of 𝐿 and 𝑅
𝜀
, we get for any 𝑘 ≥ 0 that

Λ𝑘

−
|||||||||𝑃𝑠 (𝑤−𝑘 − 𝑤̃−𝑘

)|||||||||
≤ Λ

𝑠

Λ−
Λ𝑘+1
−

|||||||||𝑃𝑠 (𝑤−(𝑘+1) − 𝑤̃−(𝑘+1)
)||||||||| + 𝜀

𝑔𝑎𝑝

Λ−
Λ𝑘+1
−

|||||||||𝑤−(𝑘+1) − 𝑤̃−(𝑘+1)
|||||||||.

Applying this inequality iteratively, we obtain

|||||||||𝜃𝜀 (𝑔𝑐) − 𝜃
𝜀

(
𝑔̃
𝑐

)||||||||| = ||||||𝑃𝑠(𝑤0 − 𝑤̃0)||||||
≤

( Λ
𝑠

Λ−

)𝑚 ‖‖‖{𝑤𝑘

}
𝑘∈ℤ −

{
𝑤̃
𝑘

}
𝑘∈ℤ

‖‖‖Λ−,Λ+

+
𝜀
𝑔𝑎𝑝

Λ−

𝑚−1∑
𝑙=0

( Λ
𝑠

Λ−

)𝑙 ‖‖‖{𝑤𝑘

}
𝑘∈ℤ −

{
𝑤̃
𝑘

}
𝑘∈ℤ

‖‖‖Λ−,Λ+

for every 𝑚 ∈ ℕ. Sending 𝑚 to infinity and using the Lipschitz bound for 𝜃̂
𝜀

yields

|||||||||𝜃𝜀 (𝑔𝑐) − 𝜃𝜀

(
𝑔̃𝑐

)||||||||| ≤ 𝜀𝑔𝑎𝑝

Λ− − Λ𝑠

‖‖‖𝜃̂𝜀(𝑔𝑐) − 𝜃̂𝜀(𝑔̃𝑐)
‖‖‖Λ−,Λ+

≤ 𝜀𝑔𝑎𝑝

Λ− − Λ𝑠

1
𝜅 − 1

||||||𝑔𝑐 − 𝑔̃𝑐
||||||.

This proves that 𝜃
𝜀

is Lipschitz with constant Lip(𝜃
𝜀
) ≲ 𝜀

𝑔𝑎𝑝
.
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We continue by deriving the superlinear behavior of 𝜃
𝜀

near zero, which even-

tually implies the differentiability properties stated in the proposition. We compute,

using the quadratic bound on 𝑅
𝜀

in Lemma 6.7

|||||||||𝜃𝜀 (𝑔𝑐)||||||||| = ||||||𝑃𝑠𝑤0|||||| ≤ |||||||||𝑃𝑠𝑅𝜀

(
𝑆
𝜀

(
𝑤−2

))||||||||| + ||||||𝑃𝑠𝐿𝑤−1|||||| ≤ 𝐶||||||𝑤−2||||||2 + Λ
𝑠
||||||𝑃𝑠𝑤−1||||||.

Similarly, we get ||||||𝑃𝑠𝑤−𝑘|||||| ≤ 𝐶
|||||||||𝑤−(𝑘+2)

|||||||||2 + Λ
𝑠

|||||||||𝑃𝑠𝑤−(𝑘+1)
||||||||| for any 𝑘 ∈ ℕ0

and thus, for any 𝑚 ∈ ℕ,

|||||||||𝜃𝜀 (𝑔𝑐)||||||||| ≤ Λ𝑚

𝑠
||||||𝑤−𝑚|||||| + 𝐶

𝑚∑
𝑙=1

Λ𝑙−1
𝑠

|||||||||𝑤−(𝑙+1)
|||||||||2.

Recalling the definition of ‖⋅‖Λ−,Λ+
and the fact that the solution sequence is bounded

via (59),
‖‖‖{𝑤𝑘

}
𝑘∈ℤ

‖‖‖Λ−,Λ+
≤ ||||||𝑔𝑐||||||, we obtain

Λ𝑚

𝑠
||||||𝑤−𝑚|||||| +

𝑚∑
𝑙=1

Λ𝑙−1
𝑠

|||||||||𝑤−(𝑙+1)
|||||||||2

≤
( Λ

𝑠

Λ−

)𝑚 ||||||𝑔𝑐|||||| + 𝐶

Λ
𝑠
Λ2
−

𝑚∑
𝑙=1

Λ𝑙

𝑠

Λ2𝑙
−

||||||𝑔𝑐||||||2

=
( Λ

𝑠

Λ−

)𝑚 ||||||𝑔𝑐|||||| + 𝐶

Λ
𝑠
Λ2
−

𝑚∑
𝑙=1

(
Λ−
Λ
𝑠

)𝑙𝑘
(
Λ𝑘+1
𝑠

Λ𝑘+2
−

)𝑙 ||||||𝑔𝑐||||||2
for any 𝑘 ∈ ℕ. We recall that Λ− > Λ

𝑠
. Hence, if there exists a 𝑘 ∈ ℕ, such that

Λ𝑘+2
− > Λ𝑘+1

𝑠
, it holds that

|||||||||𝜃𝜀 (𝑔𝑐)||||||||| ≤
( Λ

𝑠

Λ−

)𝑚 ||||||𝑔𝑐|||||| + 𝐶

Λ
𝑠
Λ2
−

(
Λ−
Λ
𝑠

)𝑘𝑚 Λ𝑘+1
𝑠

Λ𝑘+2
− − Λ𝑘+1

𝑠

||||||𝑔𝑐||||||2,
and after optimizing in 𝑚, this becomes

|||||||||𝜃𝜀 (𝑔𝑐)||||||||| ≲ ||||||𝑔𝑐||||||1+ 1
𝑘+1 ,

provided that the right-hand side is sufficiently small. (For larger 𝑔
𝑐
, this bound

follows trivially from the linear estimate.) It remains to verify the existence of a

suitable 𝑘. This, however, follows easily from our choice of Λ−, more precisely,

from the assumption 𝜇− < 𝜇
𝐾+1 < 2𝜇−. Indeed, the latter enables us to pick 𝑘 >

2𝜇−−𝜇𝐾+1
𝜇𝐾+1−𝜇−

, which implies Λ𝑘+2
− > Λ𝑘+1

𝑠
as desired. This proves the first statement

with 𝛼 = 1 + 1
𝑘+1 <

𝜇𝐾+1
𝜇−

.

We turn to the last inequality of the first statement. By the definition of 𝜃
𝜀
, the

construction of the fixed point and the smoothing estimate from Lemma 6.5, we

have that ‖‖‖𝜃𝜀 (𝑔𝑐)‖‖‖𝑊 ≤ ‖‖‖𝑆𝜀

(
𝑤−1

)‖‖‖𝑊 ≲ ‖‖𝑤−1‖‖𝐻 .
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It remains to notice that ‖‖𝑤−1‖‖𝐻 ≲ ||||||𝑤−1|||||| ≤ Λ−1
−

||||||𝑔𝑐|||||| ≲ ||||||𝑔𝑐|||||| by the equiva-

lence of the norms and the bound (59) applied to the solution sequence.

The second part of the proof covers the properties of the center manifold 𝑊
𝑐

𝜀

which is defined as the graph of 𝜃
𝜀
. We commence with the invariance of 𝑊

𝑐

𝜀
.

For this we consider an arbitrary point on that manifold 𝑔 = 𝑔
𝑐
+ 𝜃

𝜀

(
𝑔
𝑐

)
and

consider the evolution
{
𝑤
𝑘

}
𝑘∈ℤ = 𝑆

𝑘

𝜀
(𝑔) = 𝜃̂

𝜀
(𝑔) starting at that point. We have

to show that for every time step 𝑘 ∈ ℤ, the solution 𝑤
𝑘

lies in 𝑊
𝑐

𝜀
, or, equivalently,

that 𝑃
𝑠
𝑤
𝑘
= 𝜃

𝜀

(
𝑃
𝑐
𝑤
𝑘

)
. By iteration, it suffices to show this only for 𝑘 = 1 and

𝑘 = −1. We set 𝑔̃
𝑐
= 𝑃

𝑐
𝑤1. Then 𝑆

𝑘

𝜀

(
𝑤̃0

)
= 𝜃̂

𝜀

(
𝑔̃
𝑐

)
is the unique flow in 𝓁Λ−,Λ+

that satisfies 𝑃
𝑐
𝑤̃0 = 𝑔̃

𝑐
. Since 𝑃

𝑐
𝑤1 = 𝑔̃

𝑐
, we have by uniqueness that 𝑤

𝑘+1 = 𝑤̃
𝑘

for every 𝑘 ∈ ℤ. This yields 𝑃
𝑠
𝑤1 = 𝑃

𝑠
𝑤̃0 = 𝜃

𝜀

(
𝑔̃
𝑐

)
= 𝜃

𝜀

(
𝑃
𝑐
𝑤1

)
. The same

procedure backwards in time yields the statement for 𝑘 = −1.

It remains to prove the characterization of the center manifold. First, for a point

𝑤0 on that manifold, that is, 𝑤0 = 𝑔
𝑐
+𝜃

𝜀

(
𝑔
𝑐

)
for some 𝑔

𝑐
∈ 𝐸

𝑐
, we already know

that
‖‖‖{𝑆𝑘

𝜀

(
𝑤0

)}‖‖‖Λ−,Λ+
= ‖‖‖𝜃̂𝜀 (𝑔𝑐)‖‖‖Λ−,Λ+

≤ ||||||𝑔𝑐|||||| ≤ |||𝑔||| by the virtue of (59).

Otherwise, if a flow
{
𝑤
𝑘

}
𝑘∈ℤ =

{
𝑆
𝑘

𝜀

(
𝑤0

)}
𝑘∈ℤ satisfies this bound, it must be a

fixed point of 𝐽
(
𝑃
𝑐
𝑤0, ⋅

)
. Since this fixed point is unique, we have 𝜃̂

𝜀

(
𝑃
𝑐
𝑤0

)
={

𝑤
𝑘

}
𝑘∈ℤ and thus 𝜃

𝜀

(
𝑃
𝑐
𝑤0

)
= 𝑃

𝑠
𝑤0. This yields 𝑤0 ∈ 𝑊

𝑐

𝜀
. ⊓⊔

The regularity of 𝜃
𝜀

allows us to deduce the equivalence of the Hilbert space

norm |||⋅||| and the higher-order norm ‖ ⋅ ‖
𝑊

on the finite-dimensional manifold

𝑊
𝑐

𝜀
.

Corollary 7.2. The norms |||𝑔||| and ‖𝑔‖
𝑊

are equivalent for any 𝑔 ∈ 𝑊
𝑐

𝜀
.

Proof. Trivially, the embedding 𝑊 ↪ 𝐻 is continuous on a bounded domain,

that is, |||𝑔||| ≲ ‖𝑔‖
𝑊

for every 𝑔 ∈ 𝑊 . To show the reverse inequality, we take

an element 𝑔 = 𝑔
𝑐
+ 𝜃

𝜀
(𝑔

𝑐
) in 𝑊

𝑐

𝜀
. Now, we notice that on the one hand, thanks to

the regularity of 𝜃
𝜀

established in Proposition 7.1, we have
‖‖‖𝜃𝜀 (𝑔𝑐)‖‖‖𝑊 ≲ ||||||𝑔𝑐||||||.

On the other hand, because 𝐸
𝑐

is a finite-dimensional space, all norms on 𝐸
𝑐

are

equivalent, so that ‖𝑔
𝑐
‖
𝑊

≲ ||||||𝑔𝑐||||||. We combine both insights and find

‖𝑔‖
𝑊

≤ ‖𝑔
𝑐
‖
𝑊

+ ‖𝜃
𝜀
(𝑔

𝑐
)‖

𝑊
≲ ||||||𝑔𝑐|||||| ≤ |||𝑔|||,

as desired. ⊓⊔

We will now construct the stable manifolds.

Proposition 7.3. (Stable manifold) Let 𝜀
𝑔𝑎𝑝

> 0 and 𝜀 be as in Proposition 7.1 such
that (57) and (58) hold. Then for every 𝑔 ∈ 𝐻 , there exists a map 𝜈

𝜀

𝑔
∶ 𝐸

𝑠
→ 𝐸

𝑐

such that the submanifold

𝑀
𝜀

𝑔
∶=𝑔 +

{
𝜈
𝜀

𝑔

(
𝑔
𝑠

)
+ 𝑔

𝑠
∶ 𝑔

𝑠
∈ 𝐸

𝑠

}
satisfies the following conditions:
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1. For every 𝑔 ∈ 𝐻 , the map 𝜈
𝜀

𝑔
∶ 𝐸

𝑠
→ 𝐸

𝑐
is Lipschitz continuous with

Lip
(
𝜈
𝜀

𝑔

)
≲ 𝜀

𝑔𝑎𝑝
.

2. For every 𝑡 ≥ 0 it holds that 𝑆𝑡

𝜀

(
𝑀

𝜀

𝑔

)
⊆ 𝑀

𝜀

𝑆
𝑡
𝜀(𝑔)

and 𝑀𝜀

𝑔
can be characterized

as follows

𝑀
𝜀

𝑔
=

{
𝑔̃ ∈ 𝐻 ∶ sup

𝑘∈ℕ0

Λ−𝑘
−

|||||||||𝑆𝑘

𝜀
(𝑔) − 𝑆

𝑘

𝜀
(𝑔̃)||||||||| ≤ ||||||𝑃𝑠 (𝑔 − 𝑔̃)||||||

}

3. If 𝜀
𝑔𝑎𝑝

is sufficiently small (and 𝜀
0 chosen accordingly), the following holds

true: For every 𝑔 ∈ 𝐻 the intersection 𝑀
𝜀

𝑔
∩𝑊

𝑐

𝜀
consists of a single point 𝑔̃.

This particularly yields that
{
𝑀

𝜀

𝑔

}
𝑔∈𝐻

is a foliation of𝐻 over𝑊 𝑐

𝜀
. Moreover,

it holds that

‖𝑔̃‖
𝑊

≲ |||𝑔|||.
Proof. The existence follows again by a fixed point argument, which is similar to

the one of Proposition 7.1. We will thus only sketch it.

We fix a function 𝑔 ∈ 𝐻 and a positive constant 𝑟 and define

𝓁𝑔,𝑟Λ−,+
∶=

{{
𝑤
𝑙

}
𝑙∈ℕ0

∈
(
𝐿
2(𝜌)

)ℕ0 ∶ ‖‖‖{𝑤𝑙

}
𝑙∈ℕ0

−
{
𝑆
𝑙

𝜀
(𝑔)

}
𝑙∈ℕ0

‖‖‖Λ−,+
≤ 𝑟

}
.

Note that 𝓁𝑔,𝑟Λ−,+
equipped with the metric

𝑑
𝑔

({
𝑤
𝑙

}
𝑙∈ℕ0

,
{
𝑤̃
𝑙

}
𝑙∈ℕ0

)
= ‖‖‖{𝑤𝑙

}
𝑙∈ℕ0

−
{
𝑤̃
𝑙

}
𝑙∈ℕ0

‖‖‖Λ−,+

is a closed subset of
(
𝐿
2(𝜌)

)ℕ0
. We consider the map 𝐼

𝑔 ∶ 𝐸
𝑠
× 𝓁𝑔,𝑟Λ−,+

→ 𝓁𝑔,𝑟Λ−,+
defined by

𝐼
𝑔

𝑘

(
𝑔
𝑠
,
{
𝑤
𝑙

}
𝑙∈ℕ0

)
=

{
𝑔
𝑠
+ 𝑃

𝑠
𝑔 + 𝐿

−1
𝑐
𝑃
𝑐

(
𝑤1 −𝑅

𝜀

(
𝑤0

))
if 𝑘 = 0

𝑃
𝑠

(
𝑆
𝜀

(
𝑤
𝑘−1

)
+ 𝐿

−1
𝑐
𝑃
𝑐

(
𝑤
𝑘+1 −𝑅

𝜀

(
𝑤
𝑘

)))
if 𝑘 ≥ 1,

which has the useful property

𝐼
𝑔

𝑘

(
𝑔
𝑠
,
{
𝑆
𝑙

𝜀
(𝑔)

}
𝑙∈ℕ0

)
− 𝑆

𝑘

𝜀
(𝑔) = 𝑔

𝑠
𝛿0𝑘. (60)

Moreover, by similar arguments as for the operator 𝐽 in the proof of Proposition 7.1,

relying on (56) and (58) we compute for a fixed element 𝑔
𝑠
∈ 𝐸

𝑠
that‖‖‖‖𝐼𝑔

(
𝑔
𝑠
,
{
𝑤
𝑙

}
𝑙∈ℕ0

)
− 𝐼

𝑔

(
𝑔
𝑠
,
{
𝑤̃
𝑙

}
𝑙∈ℕ0

)‖‖‖‖Λ−,+
≤ 𝜅

‖‖‖{𝑤𝑙

}
𝑙∈ℕ0

−
{
𝑤̃
𝑙

}
𝑙∈ℕ0

‖‖‖Λ−,+

and ‖‖‖‖𝐼𝑔
(
𝑔
𝑠
,
{
𝑤
𝑙

}
𝑙∈ℕ0

)
−

{
𝑆
𝑙

𝜀
(𝑔)

}‖‖‖‖Λ−,+

≤ max
{||||||𝑔𝑠||||||, 𝜅 ‖‖‖{𝑤𝑙

}
𝑙∈ℕ0

−
{
𝑆
𝑙

𝜀
(𝑔)

}‖‖‖Λ−,+

}
,
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where 𝜅 = max
{Λ−+𝜀𝑔𝑎𝑝

Λ𝑐

,
Λ𝑠+𝜀𝑔𝑎𝑝

Λ−

}
< 1. Notice that in the latter estimate, we

made use of the formula (60). Both estimates imply 𝐼
𝑔(𝑔

𝑠
, ⋅) is a contraction and a

self-mapping on the set 𝓁𝑔,𝑟Λ−,+
, if we choose 𝑟 = ||||||𝑔𝑠||||||.

Hence, by Banach’s fixed point theorem there exists a unique sequence
{
𝑤
𝑘

}
𝑘∈ℕ0

satisfying

𝐼
𝑔

(
𝑔𝑠,

{
𝑤𝑘

}
𝑘∈ℕ0

)
=

{
𝑤𝑘

}
𝑘∈ℕ0

and
‖‖‖‖
{
𝑤𝑘

}
𝑘∈ℕ0

−
{
𝑆
𝑘

𝜀
(𝑔)

}
𝑘∈ℕ0

‖‖‖‖Λ−,+
≤ 𝑟.

By construction, this sequence
{
𝑤
𝑘

}
𝑘∈ℕ0

is a semiflow to the truncated equation

with 𝑃
𝑠
𝑤0 = 𝑔

𝑠
+ 𝑃

𝑠
𝑔. We may now introduce a solution mapping 𝜈̂

𝜀

𝑔
∶ 𝐸

𝑠
→

𝓁𝑔Λ−,+
by 𝜈̂

𝜀

𝑔

(
𝑔
𝑠

)
∶=

{
𝑤
𝑘

}
𝑘∈ℕ0

, and we define 𝜈
𝜀

𝑔

(
𝑔
𝑠

)
= 𝑃

𝑐

(
𝑤0 − 𝑔

)
. Due to the

construction via a fixpoint argument, we deduce that 𝜈̂
𝜀

𝑔
is Lipschitz continuous

with Lip
(
𝜈̂
𝜀

𝑔

) ≤ 1
1−𝜅 .

We will improve the Lipschitz constant in a similar way as in the previous proof.

For this, let 𝜈̂
𝜀

𝑔

(
𝑔
𝑠

)
=

{
𝑤
𝑘

}
𝑘∈ℕ0

and 𝜈̂
𝜀

𝑔

(
𝑔
𝑠

)
=

{
𝑤̃
𝑘

}
𝑘∈ℕ0

be two fixed point so-

lution sequences. It holds that 𝜈
𝜀

𝑔

(
𝑔
𝑠

)
−𝜈

𝜀

𝑔

(
𝑔
𝑠

)
= 𝑃

𝑐

(
𝑤0 − 𝑤̃0

)
, and we compute

|||||||||𝑃𝑐 (𝑤𝑘
− 𝑤̃

𝑘

)||||||||| ≤ 1
Λ
𝑐

|||||||||𝑃𝑐 (𝑤𝑘+1 − 𝑤̃
𝑘+1

)||||||||| + 𝜀
𝑔𝑎𝑝

Λ
𝑐

||||||𝑤𝑘
− 𝑤̃

𝑘
||||||

with the help of the definition of the map 𝐼 . Therefore, for every 𝑚 ∈ ℕ it holds

|||||||||𝜈𝜀𝑔 (𝑔𝑠) − 𝜈
𝜀

𝑔

(
𝑔
𝑠

)||||||||| ≤
(
Λ−
Λ
𝑐

)𝑚 ‖‖‖{𝑤𝑘

}
𝑘∈ℕ0

−
{
𝑤̃
𝑘

}
𝑘∈ℕ0

‖‖‖Λ−,+

+
𝜀
𝑔𝑎𝑝

Λ
𝑐

𝑚−1∑
𝑙=0

(
Λ−
Λ
𝑐

)𝑙 ‖‖‖{𝑤𝑘

}
𝑘∈ℕ0

−
{
𝑤̃
𝑘

}
𝑘∈ℕ0

‖‖‖Λ−,+
.

Since
Λ−
Λ𝑐

< 1, for 𝑘 → ∞, this yields

|||||||||𝜈𝜀𝑔 (𝑔𝑠) − 𝜈
𝜀

𝑔

(
𝑔
𝑠

)||||||||| ≤ 𝜀
𝑔𝑎𝑝(

Λ
𝑐
− Λ−

)
(1 − 𝜅)

||||||𝑔𝑠 − 𝑔
𝑠
||||||.

The stable manifold 𝑀
𝜀

𝑔
is defined as the graph of 𝜈

𝜀

𝑔
shifted by 𝑔. We first

prove its characterization as stated in the second part of the proposition. Let 𝑔̃ be in

𝑀
𝜀

𝑔
, that is, 𝑔̃ = 𝑔 + 𝜈

𝜀

𝑔

(
𝑔
𝑠

)
+ 𝑔

𝑠
for some 𝑔

𝑠
∈ 𝐸

𝑠
. We define

{
𝑤
𝑘

}
𝑘∈ℕ0

= 𝜈̂
𝜀

𝑔
(𝑔̃)

as the unique semi flow with Λ−𝑘
−

||||||𝑤𝑘
− 𝑆

𝑘

𝜀
(𝑔)|||||| ≤ ||||||𝑔𝑠|||||| = ||||||𝑃𝑠 (𝑔 − 𝑔̃)|||||| and

𝑃
𝑠
𝑤0 = 𝑔

𝑠
+ 𝑃

𝑠
𝑔. By definition of 𝜈

𝜀

𝑔
, we have

𝑔̃ = 𝑔 + 𝜈
𝜀

𝑔

(
𝑔
𝑠

)
+ 𝑔

𝑠
= 𝑔 + 𝑃

𝑐

(
𝑤0 − 𝑔

)
+ 𝑃

𝑠
𝑤0 − 𝑃

𝑠
𝑔 = 𝑤0,

and thus, 𝑤
𝑘
= 𝑆

𝑘

𝜀
(𝑔̃) satisfies the desired bound. Let us now assume that 𝑆

𝑘

𝜀
(𝑔̃)

satisfies this bound. We define 𝑔
𝑠
= 𝑃

𝑠 (𝑔̃ − 𝑔). Then𝑆
𝑘

𝜀
(𝑔̃) is the unique fixpoint of
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𝐼
𝑔
(
𝑔
𝑠
, ⋅
)

with ‖‖𝑆𝑘

𝜀
(𝑔̃) − 𝑆

𝑘

𝜀
(𝑔)‖‖Λ−,+

≤ ||||||𝑔𝑠||||||. By definition, this yields 𝑆
𝑘

𝜀
(𝑔̃) =

𝜈̂
𝜀

𝑔

(
𝑔
𝑠

)
and 𝜈

𝜀

𝑔

(
𝑔
𝑠

)
= 𝑃

𝑐 (𝑔̃ − 𝑔) and thus

𝑔 + 𝜈
𝜀

𝑔

(
𝑔
𝑠

)
+ 𝑔

𝑠
= 𝑔 + 𝑃

𝑐 (𝑔̃ − 𝑔) + 𝑃
𝑠 (𝑔̃ − 𝑔) = 𝑔̃.

Next, we have to verify that 𝑀
𝜀

𝑔
is positive invariant. For this, we take an arbi-

trary point 𝑤0 in 𝑀
𝜀

𝑔
and define 𝑤̃0 = 𝑆

𝜀
(𝑤0). We straightforwardly compute that

𝑆
𝑘

𝜀

(
𝑤̃0

)
is a fixpoint of 𝐼

𝑆𝜀(𝑤0) (0, ⋅), which implies the desired property.

To prove that there exists a single intersection point with the center manifold

𝑊
𝑐

𝜀
, we consider the mapping 𝜒(𝑔

𝑠
) = 𝜃

𝜀
(𝜈𝜀
𝑔
(𝑔

𝑠
− 𝑃

𝑠
𝑔) + 𝑃

𝑐
𝑔) on 𝐸

𝑠
. Since 𝜃

𝜀

and 𝜈
𝜀

𝑔
are both Lipschitz continuous with constant of order 𝜀

𝑔𝑎𝑝
, the mapping 𝜒

itself is Lipschitz with a constant of the order 𝜀
2
𝑔𝑎𝑝

, and thus, it is a contraction

if 𝜀
𝑔𝑎𝑝

is sufficiently small. We denote by 𝑔̃
𝑠

the unique fixed point and set 𝑔̃
𝑐
=

𝜈
𝜀

𝑔
(𝑔̃

𝑠
−𝑃

𝑠
𝑔)+𝑃

𝑐
𝑔. By definition, 𝑔̃ = 𝑔̃

𝑐
+𝑔̃

𝑠
lies in the intersection of𝑊

𝑐

𝜀
and𝑀

𝜀

𝑔
.

As every point in this intersection is itself a fixed point, the uniqueness follows.

To estimate the intersection point 𝑔̃ against 𝑔, we argue similarly. Indeed, by

construction, the Lipschitz property for 𝜈
𝜀

𝑔
, and the fact that both 𝜃

𝜀
(0) = 0 and

𝜈
𝜀

𝑔
(0) = 0, it holds that

|||𝑔̃||| = |||||||||𝜈𝜀𝑔(𝑔̃𝑠 − 𝑃
𝑠
𝑔) + 𝑃

𝑐
𝑔 + 𝑖

𝑠
𝜃
𝜀
(𝜈𝜀
𝑔
(𝑔̃

𝑠
− 𝑟

𝑠
𝑔) + 𝑃

𝑐
𝑔)|||||||||

≲ (1 + 𝜀
𝑔𝑎𝑝

)|||||||||𝜈𝜀𝑔(𝑔̃𝑠 − 𝑟
𝑠
𝑔) + 𝑃

𝑐
𝑔
|||||||||

≲ 𝜀
𝑔𝑎𝑝

||||||𝑔̃𝑠 − 𝑃
𝑠
𝑔|||||| + |||𝑔|||

≲ 𝜀
𝑔𝑎𝑝

|||𝑔̃||| + |||𝑔|||,
where we have used that 𝜀

𝑔𝑎𝑝
≤ 1 in the third inequality. We arrive at

|||𝑔̃||| ≲ |||𝑔|||,
provided that 𝜀

𝑔𝑎𝑝
is sufficiently small.

Because 𝑔̃ lies on the manifold 𝑊
𝑐

𝜀
, we can make use of Corollary 7.2 to obtain‖𝑔̃‖

𝑊
≲ |||𝑔|||. ⊓⊔

Finally we are able to show the existence of a localized invariant manifold as

claimed in Theorem 3.2 by combining the two preceding constructions with earlier

proved regularity properties of the flow map 𝑆.

Proof of Theorem 3.2. We choose 0 < 𝜀
𝑔𝑎𝑝

< min {𝑒−𝜇𝐾+1 − 𝑒
−𝜇
, 𝑒

−𝜇 − 𝑒
−𝜇𝐾 },

such that the third statement in Proposition 7.3 applies, and we define Λ− = 𝑒
−𝜇

.

We furthermore pick 𝜀 ≤ 𝜀
∗

and 𝜀
0 ≤ min

{
𝜀, 𝜀0

}
as in the hypotheses of Propo-

sitions 7.1 and 7.3. The construction of 𝑊
𝑐

𝑙𝑜𝑐
then follows directly from Proposi-

tion 7.1.

To prove the first property in the theorem, we consider 𝑔 ∈ 𝑊
𝑐

𝑙𝑜𝑐
with ‖𝑔‖

𝐻
≤

𝜀0 and we notice that by the semi-flow property from Theorem 6.3, it holds‖‖𝑆𝑡

𝜀
(𝑔)‖‖𝐿∞((0,∞);𝐻) ≤ 𝐶̃𝜀0 for some 𝐶̃ ≥ 1. Moreover, 𝑆

𝑡

𝜀
(𝑔) ∈ 𝑊

𝑐

𝜀
by con-

struction, and thus, by the equivalence of norms in Corollary 7.2, it holds that
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‖𝑆𝑡

𝜀
(𝑔)‖

𝑊
≤ 𝐶‖𝑆𝑡

𝜀
(𝑔)‖

𝐻
≤ 𝐶𝐶̃𝜀0 for some 𝐶 ≥ 1. Thus, for 𝜀0 ≤ 1

𝐶𝐶̃
𝜀, we find

𝑆
𝑡(𝑔) = 𝑆

𝑡

𝜀
(𝑔) by the definition of the truncation and, in particular, ‖𝑆𝑡(𝑔)‖

𝐻
≤ 𝜀,

for any 𝑡 ≥ 0.

We turn to the proof of the second property. We know that there exists a unique

point 𝑔̃ in 𝑊
𝑐

𝜀
∩ 𝑀

𝜀

𝑔
that satisfies ‖𝑔̃‖

𝐻
≲ ‖𝑔̃‖

𝑊
≲ ‖𝑔‖

𝐻
≲ ‖𝑔‖

𝑊
≤ 𝜀0, see

Proposition 7.3. In particular, choosing 𝜀0 ≤ 𝜀 even smaller, if necessary, it holds

that 𝑆
𝑘

𝜀
(𝑔) = 𝑆

𝑘(𝑔) and 𝑆
𝑘

𝜀
(𝑔̃) = 𝑆

𝑘(𝑔̃). Moreover, the estimate shows that 𝑔̃

actually lies in 𝑊
𝑙𝑜𝑐

𝑐
. Now, the characterization of the stable manifold yields

‖‖‖𝑆𝑘(𝑔) − 𝑆
𝑘 (𝑔̃)‖‖‖𝐻 ≲ Λ𝑘

−.

Since we are allowed to drop the 𝜀 at 𝑆
𝑡

𝜀
(𝑔) and 𝑆

𝑡

𝜀
(𝑔̃), and since the solution to

the (truncated) equation depends continuously on the initial datum with respect to

the Hilbert space topology, ‖‖𝑆𝑡

𝜀
(𝑔) − 𝑆

𝑡

𝜀
(𝑔̃)‖‖𝐻 ≲ ‖𝑔 − 𝑔̃‖

𝐻
holds for all 𝑡 ∈ [0, 1]

(see the fixed point construction of solutions in Theorem 6.3), we obtain

‖‖𝑆𝑡(𝑔) − 𝑆
𝑡 (𝑔̃)‖‖𝐻 ≲ 𝑒

−𝜇𝑡

for any 𝑡 ≥ 0. Next, we make use of Lemma 6.8 and obtain

‖‖𝑆𝑡 (𝑔) − 𝑆
𝑡 (𝑔̃)‖‖𝑊 ≲ 𝑒

−𝜇𝑡
,

for any 𝑡 ≥ 𝑡 and some 𝑡 ∈ (4∕5, 1). The statement follows. ⊓⊔

8. Mode-by-Mode Asymptotics for the Perturbation Equation

In this final section, we exploit our invariant manifold theorem, Theorem 3.2 to

prove the mode-by-mode asymptotics in Theorem 3.1. We start with a brief com-

ment on the projection of a function 𝑤 ∈ 𝐻 onto the subspaces spanned by the

eigenfunctions of 2 + 𝑁. Let 𝜓 be such an eigenfunction for the eigenvalue

𝜆
2 +𝑁𝜆, or, equivalently, 𝜓 = 𝜆𝜓 . We consider the 𝐻-projection of 𝑤, and find

via an integration by parts

⟨𝜓,𝑤⟩
𝐻

= ∫ 𝜓𝑤𝜌d𝑧 + ∫ ∇𝜓 ⋅ ∇𝑤𝜌2d𝑧

= ∫ 𝜓𝑤𝜌d𝑧 + ∫ 𝑤𝜓𝜌d𝑧 = (1 + 𝜆)∫ 𝜓𝑤𝜌d𝑧 = (1 + 𝜆)⟨𝜓,𝑤⟩.
This shows that the 𝐻-projection coincides, up to a constant, with the

𝐿
2(𝜌)-projection, due to the right choice of the weights. Thus, it is enough to con-

sider the projection with respect to ⟨⋅, ⋅⟩ in the following.

We notice that the projection of𝑤 onto the space spanned by the constant eigen-

function corresponding to the eigenvalue 𝜇0 = 0 is given by

𝑃0𝑤 = 𝑐0,𝑁 ∫
𝐵1(0)

𝑤𝜌d𝑧
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and the projection 𝑤 onto the eigenspaces spanned by the eigenfunctions corre-

sponding to the next eigenvalue 𝜇1 is given by

𝑃1𝑤 = 𝑐1,𝑁 ∫
𝐵1(0)

𝑧𝑤𝜌d𝑧,

where 𝑐0,𝑁 and 𝑐1,𝑁 are two positive constants.

Eventually we will prove Theorem 3.1 by induction and thus commence by

proving the case𝐾 = 0 in the following theorem. We remark that thanks to smooth-

ing effects, see Equation (54) in [65], it holds that

‖𝑤(𝑡)‖
𝑊

≤ ‖𝑤0‖𝑊 1,∞ ,

for some 𝑡 ≳ 1, and thus, instead of considering Lipschitz initial data, we may

impose slightly stronger assumptions.

Theorem 8.1. There exists 𝜀0 > 0 such that the following holds. Let𝑤 be a solution
to (19) with initial datum 𝑤0. We further assume that ‖𝑤0‖𝑊 ≤ 𝜀0 and

lim
𝑡→∞∫ 𝑤(𝑧)𝜌(𝑧)d𝑧 = 0. (61)

Then we have

‖𝑤(𝑡)‖
𝑊

≲ 𝑒
−𝜇1𝑡 for all 𝑡 ≥ 0.

Proof. We will make use of the invariant manifolds we just constructed in the case

𝐾 = 0. In this case, 𝐸
𝑐

is one-dimensional and spanned by the constant eigenfunc-

tion 𝜓1,0 corresponding to the eigenvalue 𝜇0 = 0. Thus, we obtain 𝐸
𝑐
≅ ℝ. We fix

𝜇 ∈ (0, 𝜇1) and accordingly 𝜀 and 𝜀0 as in Theorem 3.2 and claim the equality

𝑊
𝑐

𝜀
= 𝐸

𝑐
. (62)

To see this, we first pick a function 𝑔 ∈ 𝐸
𝑐
, that is, 𝑔(𝑥) = 𝛼 ∈ ℝ. The constant

function 𝑤(𝑡, 𝑥) ≡ 𝛼 solves equation (45) with initial datum 𝑔 and satisfies the

bounds

‖𝑤(𝑡)‖ ∼ |𝛼| ≲
{

Λ𝑡

+|𝛼|, for 𝑡 ≥ 0,
Λ𝑡

−|𝛼|, for 𝑡 ≤ 0.

By the characterization of the center manifold, we deduce 𝑔 ∈ 𝑊
𝑐

𝜀
. Now let 𝑔 =

𝑔
𝑐
+𝜃

𝜀
(𝑔

𝑐
) be a function in𝑊

𝑐

𝜀
. From above we know𝐸

𝑐
⊂ 𝑊

𝑐

𝜀
, and thus 𝑔

𝑐
∈ 𝑊

𝑐

𝜀
.

This forces 𝜃
𝜀
(𝑔

𝑐
) = 0, which proves the claim (62).

Let us know consider an initial datum 𝑤0 with ‖𝑤0‖𝑊 ≤ 𝜀2 and let 𝑤(𝑡) =
𝑆
𝑡(𝑤0) be the corresponding solution to the perturbation equation. The Invariant

Manifold Theorem 3.2 combined with the characterization (62) yields the existence

of constant 𝑎 with

‖𝑤(𝑡) − 𝑎‖
𝐻
≲ ‖𝑤(𝑡) − 𝑎‖

𝑊
≲ 𝑒

−𝜇𝑡
, for 𝑡 ≥ 1. (63)
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In particular, if 𝑎(𝑡) denotes the average of 𝑤(𝑡) or, in other words, the projection

onto 𝐸
𝑐
, 𝑎(𝑡) = 𝑃

𝑐
𝑤(𝑡) = ⨏ 𝑤(𝑡)𝜌d𝑥, it holds that |𝑎(𝑡) − 𝑎| ≲ 𝑒

−𝜇𝑡
. Invoking the

hypothesis (61), this estimate entails that 𝑎 = 0.

We want to improve on the decay rate of 𝑎(𝑡). We note that 𝑎(𝑡) solves the

equation

𝑑

d𝑡
𝑎(𝑡) = ⨏ ∇ ⋅

(
𝜌
2
𝐹 [𝑤]

)
+ 𝜌

2
𝐹 [𝑤]d𝑧 = ⨏ 𝜌

2
𝐹 [𝑤]d𝑧.

The nonlinear term 𝜌𝐹 [𝑤] consists of a linear combination of respective two factors

of ∇𝑤, 𝜌∇2
𝑤 or 𝜌

2∇3
𝑤, cf. (49). Thus, we obtain the estimate |𝜌𝐹 [𝑤]| ≲ ‖𝑤‖2

𝑊̇
,

where we consider only the homogeneous part of the norm. From (63) we already

know that ‖𝑤(𝑡)‖
𝑊̇

≲ 𝑒
−𝜇𝑡

for 𝑡 ≥ 1. We conclude

|||| 𝑑d𝑡𝑎(𝑡)
|||| ≲ 𝑒

−2𝜇𝑡

for 𝑡 ≥ 1. We integrate over the time interval (𝑡,∞) and recall the assumption (61)

to obtain

|𝑎(𝑡)| ≲ 𝑒
−2𝜇𝑡

for 𝑡 ≥ 1.

As we may choose 𝜇 larger than
1
2𝜇1, it remains to gain suitable control over

the projection of 𝑤(𝑡) onto 𝐸
𝑠
≅ 𝐻∕ℝ, namely 𝑃

𝑠
𝑤(𝑡) = 𝑤(𝑡) − 𝑎(𝑡). We note that

𝑃
𝑠
𝑤 solves the equation

𝜕
𝑡
𝑃
𝑠
𝑤 +

(2 +𝑁)
𝑃
𝑠
𝑤 = 𝑃

𝑠

(
1
𝜌
∇ ⋅

(
𝜌
2
𝐹 [𝑤]

)
+ 𝜌𝐹 [𝑤]

)
.

Since the eigenfunctions
{
𝜓
𝑖

}
𝑖∈ℕ0

form an orthogonal basis of 𝐻 , it holds that

⟨𝑃
𝑠
𝑤,

(2 +𝑁)
𝑃
𝑠
𝑤⟩

𝐻
≥ 𝜇1‖𝑃𝑠𝑤‖2

𝐻
and thus, arguing similarly as in the proof

of Theorem 6.3, we find that

1
2
𝑑

d𝑡

‖‖𝑃𝑠𝑤‖‖2𝐻 + 𝜇1 ‖‖𝑃𝑠𝑤‖‖2𝐻
≤ −⟨∇𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ − ⟨∇𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ + ⟨𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ + ⟨𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩

≤ ‖𝑃
𝑠
𝑤‖

𝑊

(‖𝜌𝐹 [𝑤]‖
𝐿∞ + ‖𝜌𝐹 [𝑤]‖

𝐿∞
)

≤ (‖𝑤‖
𝑊

+ |𝑎(𝑡)|) (‖𝜌𝐹 [𝑤]‖
𝐿∞ + ‖𝜌𝐹 [𝑤]‖

𝐿∞
)
.

Thanks to the uniform estimates on the nonlinearities that we quoted above and

the bound in (63), we observe that the right-hand side decays with at least 𝑒
−3𝜇𝑡

.

Therefore, the latter estimate translates into

𝑑

d𝑡

(
𝑒
2𝜇1𝑡 ‖‖𝑃𝑠𝑤‖‖2𝐻)

≲ 𝑒
(2𝜇1−3𝜇)𝑡,

for any 𝑡 ≥ 1. The right hand side is integrable, provided that we choose 𝜇 suffi-

ciently close to 𝜇1, so that 3𝜇 > 2𝜇1. Integration in time yields

‖‖𝑃𝑠𝑤(𝑡)‖‖2𝐻 ≲ 𝑒
−2𝜇1𝑡 for 𝑡 ≥ 1.
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In combination with our estimate on the average, (44), this bound gives

‖𝑤(𝑡)‖
𝐻

≤ ‖‖𝑃𝑠𝑤(𝑡)‖‖𝐻 + |𝑎(𝑡)| ≲ 𝑒
−𝜇1𝑡 for 𝑡 ≥ 1.

We take into account Lemma 6.5 to finally obtain the statement of the theorem,

noting that the result is trivial for 𝑡 ≲ 1. ⊓⊔

Remark 8.2. Using the final result of Theorem 8.1 we are able to improve the con-

vergence rate of 𝑎(𝑡) to |𝑎(𝑡)| ≲ 𝑒
−2𝜇1𝑡 for all 𝑡 ≥ 0.

Having already proved the part of Theorem 3.1 concerning the smallest eigen-

value, we are now able to deduce the full statement with an analogue approach.

Proof of Theorem 3.1. We prove this theorem by induction. The base case 𝐾 = 0
is proved in the latter theorem.

Now, may assume that (23) holds true and additionally

‖𝑤(𝑡)‖
𝑊

≲ 𝑒
−𝜇𝐾𝑡 for all 𝑡 ≥ 0. (64)

This directly implies |𝜌𝐹 [𝑤]| ≲ 𝑒
−2𝜇𝐾𝑡. We will again exploit the invariant man-

ifolds in a similar way as in the base case. The center eigenspace takes the form

𝐸
𝑐
= span

{
𝜓
𝑘,𝑛

| 𝑘 ∈ {0,… , 𝐾} and 𝑛 ∈
{
1,… , 𝑁

𝑘

}}
. We fix 𝜇 ∈

(
𝜇1, 𝜇2

)
and accordingly 𝜀 and 𝜀0 as in Theorem 3.2. We deduce the existence of 𝑤̃0 ∈ 𝑊

𝑐

𝑙𝑜𝑐

such that 𝑤̃(𝑡) = 𝑆
𝑡(𝑤̃0) ∈ 𝑊

𝑐

𝑙𝑜𝑐
satisfies

‖𝑤(𝑡) − 𝑤̃(𝑡)‖
𝑊

≲ 𝑒
−𝜇𝑡

for all 𝑡 ≥ 1, (65)

where 𝑤̃(𝑡) = 𝑃
𝑐
𝑤̃(𝑡) + 𝜃

𝜀

(
𝑃
𝑐
𝑤̃(𝑡)

)
with 𝑃

𝑐
𝑤̃(𝑡) =

∑
𝑛,𝑘

⟨𝑤̃(𝑡), 𝜓
𝑘,𝑛

⟩𝜓
𝑘,𝑛

.

Now, we fix an arbitrary 𝑘 ∈ {0,… , 𝐾} and consider the projection of 𝑤 onto

one of the eigenfunctions 𝜓
𝑘,𝑛

. We obtain the ordinary differential equation

𝑑

d𝑡
⟨𝜓

𝑘,𝑛
, 𝑤(𝑡)⟩ + 𝜇

𝑘
⟨𝜓

𝑘,𝑛
, 𝑤(𝑡)⟩ = −⟨∇𝜓

𝑘,𝑛
, 𝜌𝐹 [𝑤(𝑡)]⟩ + ⟨𝜓

𝑘,𝑛
, 𝐹 [𝑤(𝑡)]⟩

for all 𝑡 ≥ 0,

which implies
||| 𝑑d𝑡 𝑒𝜇𝑘𝑡⟨𝜓𝑘,𝑛

, 𝑤(𝑡)⟩||| ≲ 𝑒
−(2𝜇𝐾−𝜇𝑘)𝑡 due to the bound on |𝜌𝐹 [𝑤]|. We

notice that lim
𝑡→∞

𝑒
𝜇𝑘⟨𝜓

𝑘,𝑛
, 𝑤(𝑡)⟩ exists and vanishes by the virtue of assumption (23).

We conclude that

|⟨𝜓
𝑘,𝑛
, 𝑤⟩| ≲ 𝑒

−2𝜇𝐾𝑡 for all 𝑡 ≥ 0.

This yields ‖𝑃
𝑐
𝑤(𝑡)‖

𝑊
≲ 𝑒

−2𝜇𝐾𝑡 and enables us to estimate the center part of 𝑤̃(𝑡)
with help of (65) and the triangle inequality, namely

‖‖𝑃𝑐𝑤̃(𝑡)‖‖𝑊 ≤ ‖‖𝑃𝑐 (𝑤(𝑡) − 𝑤̃(𝑡))‖‖𝑊 + ‖‖𝑃𝑐𝑤(𝑡)‖‖𝑊 ≲ 𝑒
−min{2𝜇𝐾 ,𝜇}𝑡

for all 𝑡 ≥ 1. Thanks to the regularity property of 𝜃
𝜀

derived in the first part of

Proposition 7.1 we deduce

‖‖‖𝜃𝜀 (𝑃𝑐𝑤̃(𝑡)
)‖‖‖𝑊 ≲ 𝑒

−min{2𝜇𝐾 ,𝜇}𝑡 for all 𝑡 ≥ 1.
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Combining the previous estimates, we have

‖𝑤(𝑡)‖
𝑊

≤ ‖𝑤(𝑡) − 𝑤̃(𝑡)‖
𝑊

+ ‖‖𝑃𝑐𝑤̃(𝑡)‖‖𝑊 + ‖‖‖𝜃𝜀 (𝑃𝑐𝑤̃(𝑡)
)‖‖‖𝑊

≲ 𝑒
−min{2𝜇𝐾 ,𝜇}𝑡 for all 𝑡 ≥ 1. (66)

We note that (66) gives a better rate than (64). Due to the structure of the eigen-

values it may happen, depending on 𝐾 and the space dimension 𝑁 , that 2𝜇
𝐾
< 𝜇.

In this case, inequality (66) downgrades to ‖𝑤(𝑡)‖
𝑊

≲ 𝑒
−2𝜇𝐾𝑡. Similarly, in this

case the estimate for center part of 𝑤(𝑡), that is 𝑃
𝑐
𝑤(𝑡), is also not good enough, as

we want to prove |⟨𝜓
𝑘,𝑛
, 𝑤(𝑡)⟩| ≲ 𝑒

−𝜇𝐾+1𝑡. We overcome this problem by repeating

the first step of this proof, now from the starting point (66) instead of (23), which

directly yields |𝜌𝐹 [𝑤]| ≲ 𝑒
−4𝜇𝐾𝑡. If 2𝜇

𝐾
≤ 𝜇

𝐾+1, we deduce via iteration that

‖‖𝑃𝑐𝑤(𝑡)‖‖𝑊 ≲ 𝑒
−2𝑚𝜇𝐾 for all 𝑡 ≥ 1

and

‖𝑤(𝑡)‖
𝑊

≲ 𝑒
−𝜇𝑡

for all 𝑡 ≥ 1, (67)

where 𝑚 is smallest natural number that satisfies 𝜇
𝐾

≤ 2𝑚−1𝜇
𝐾
< 𝜇 < 𝜇

𝐾+1 ≤
2𝑚𝜇

𝐾
. We remark that we are allowed to choose 𝜇 sufficiently close to 𝜇

𝐾+1. In the

case 2𝜇
𝐾
≥ 𝜇

𝐾+1, we may directly continue from estimate (66), which corresponds

to 𝑚 = 1.

To achieve the rate 𝜇
𝐾+1, we investigate the projection of 𝑤(𝑡) onto 𝐸

𝑠
. Similar

to the previous proof, testing the equation solved by 𝑃
𝑠
𝑤 with 𝜌𝑃

𝑠
𝑤 yields

1
2
𝑑

d𝑡

‖‖𝑃𝑠𝑤(𝑡)‖‖2𝐻 + 𝜇
𝐾+1 ‖‖𝑃𝑠𝑤(𝑡)‖‖2𝐻

≤ −⟨∇𝑃
𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ − ⟨∇𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ + ⟨𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩ + ⟨𝑃

𝑠
𝑤, 𝜌𝐹 [𝑤]⟩

≤ ‖𝑃
𝑠
𝑤‖

𝑊

(‖𝜌𝐹 [𝑤]‖
𝐿∞ + ‖𝜌𝐹 [𝑤]‖

𝐿∞
)
≲ 𝑒

−3𝜇𝑡
for all 𝑡 ≥ 1,

where we used (67) and the quadratic behavior of 𝜌𝐹 [𝑤]. Just like in the previous

proofs, choosing 𝜇 large enough such that 3𝜇 > 2𝜇
𝐾+1 we obtain

‖‖𝑃𝑠𝑤(𝑡)‖‖2𝐻 ≲ 𝑒
−2𝜇𝐾+1 for all 𝑡 ≥ 1

and in total

‖𝑤(𝑡)‖
𝐻

≤ ‖‖𝑃𝑐𝑤(𝑡)‖‖𝐻 + ‖‖𝑃𝑠𝑤(𝑡)‖‖𝐻 ≲ 𝑒
−2𝜇𝐾𝑡 + 𝑒

−𝜇𝐾+1𝑡 ≲ 𝑒
−𝜇𝐾+1𝑡 for all 𝑡 ≥ 1.

To carry this result over to the 𝑊 -norm it remains to make use of the smoothing

estimate in Lemma 6.5, noting again that the result is trivial for 𝑡 ≲ 1. ⊓⊔
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Appendices

A. Derivation of the Perturbation Equation

As announced, we will re-derive the perturbation equation (19) from the confined thin film

equation (6) with the intention to improve on the representation of the nonlinearity (20)

compared to the former derivation in [65].

We start by recalling from [65] that the transformation mapping Φ𝑡(𝑥) = 𝑧 is a diffeomor-

phism as long as the solution 𝑣 to the thin film equation (6) is close to the stationary solution

in the sense of (9), or equivalently, as long as the perturbation 𝑤 is small in the sense of

(22). This can be seen by inspecting the Jacobian determinant

det ∇𝑥Φ = 1
(1 +𝑤 + 𝑧 ⋅ ∇𝑤)(1 +𝑤)𝑁−1 . (68)

Moreover, it was proved the following relation between 𝑥- and 𝑧-derivatives: For an arbitrary

function 𝑓 = 𝑓 (𝑡, 𝑧), it holds that

𝜕𝑥𝑖

(
𝑓 (𝑡,Φ𝑡)

)
=

𝜕𝑖𝑓

𝑤̃
−
𝜕𝑖𝑤

𝑤̃ℎ
𝑧 ⋅ ∇𝑓, 𝜕𝑡

(
𝑓 (𝑡,Φ𝑡)

)
= 𝜕𝑡𝑓 −

𝜕𝑡𝑤̃

ℎ
𝑧 ⋅ ∇𝑓, (69)

where 𝑤̃ = 1+𝑤 and ℎ = 𝑤̃+𝑧⋅∇𝑤̃. The spatial derivatives appearing on the right-hand side

of the two equations are taken with respect to the 𝑧 variable. From the two transformations

(17) and (18), it follows that

𝜌
2
𝑤̃
4 = 𝑣. (70)

By differentiating this identity and using the formulas from (69), it is straightforward to

derive the perturbation equation (19) from the confined thin film equation (6). We will only

give intermediate results to help the reader verifying the underlying computations.

First, differentiating (70) with respect to 𝑥𝑖 gives

𝜕𝑖𝑣 = −2𝜌𝑤̃3
𝑧𝑖 + 2

𝜌𝑤̃
3
𝜕𝑖𝑤̃

ℎ
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Differentiating once more and summing over 𝑖 yields

1
2
Δ𝑣 ℎ

𝑤̃2 = ((1 − (𝑁 + 2)𝜌)ℎ − 𝑤 + 𝑝 ⋆ 𝑅[𝑤] ⋆
(
(∇𝑤)2⋆ + 𝜌∇𝑤 ⋆ ∇2

𝑤

)
.

By use of (69), we compute for an arbitrary 𝑓 (𝑧) that

𝜕𝑥𝑖

(( 𝑤̃2

ℎ
𝑓
)
(Φ)

)
= 𝑤̃

ℎ

(
𝜕𝑖𝑓 − 𝑧 ⋅ ∇

(𝜕𝑖𝑤̃𝑓
ℎ

))
= 𝑤̃

ℎ

(
𝜕𝑖𝑓 −

𝑧 ⋅ ∇𝜕𝑖𝑤
ℎ

𝑓 +
𝜕𝑖𝑤

ℎ2

(
2𝑧 ⋅ ∇𝑤 + 𝑧 ⊗ 𝑧 ∶ ∇2

𝑤

)
𝑓 −

𝜕𝑖𝑤

ℎ
𝑧 ⋅ ∇𝑓

)
.

Hence, differentiating the above identity for Δ𝑣 again yields

1
2
𝜕𝑖Δ𝑣

ℎ

𝑤̃
= (𝑁 + 2)𝑧𝑖ℎ − 𝜕𝑖𝑤 −𝑁𝜕𝑖𝑤 + 𝐹 [𝑤].

After substracting
𝛾

2𝑥𝑖
ℎ

𝑤̃
= (𝑁 + 2)𝑧𝑖ℎ, we make use of (70) to obtain

1
2
𝑣(𝜕𝑖Δ𝑣 − 𝛾𝑥𝑖)

ℎ

𝑤̃5 = −𝜌2𝜕𝑖𝑤 −𝑁𝜌
2
𝜕𝑖𝑤 + 𝜌

2
𝐹 [𝑤].

We have to take one more spatial derivative, for which we derive the transformation formula

𝜕𝑥𝑖

[ 𝑤̃5

ℎ
𝑓 (Φ)

]
= 𝑤̃

4

ℎ

[
𝜕𝑖𝑓 + (𝑁 + 3)

𝜕𝑖𝑤̃𝑓

ℎ
− ∇ ⋅

(
𝑧
𝜕𝑖𝑤̃𝑓

ℎ

)]
for an arbitrary function 𝑓 (𝑧). Applying it to the third order derivatives above gives

1
2
𝜕𝑖(𝑣𝜕𝑖Δ𝑣 − 𝛾𝑣𝑥𝑖)

ℎ

𝑤̃4 = −𝜕𝑖(𝜌2𝜕𝑖𝑤) −𝑁𝜕𝑖(𝜌2𝜕𝑖𝑤) + 𝜕𝑖(𝜌2𝐹 [𝑤]) + 𝜌
2
𝐹 [𝑤].

Dividing by 𝜌 and summing over 𝑖 finally yields

1
2
∇ ⋅ (𝑣∇Δ𝑣 − 𝛾𝑥𝑣) ℎ

𝜌𝑤̃4 = 2
𝑤 +𝑁𝑤 + 𝜌

−1∇ ⋅ (𝜌2𝐹 [𝑤]) + 𝜌𝐹 [𝑤].

It remains to consider the time derivative. With help of (69) we compute

𝜕𝑡𝑣 = 2𝜌𝑤̃
4

ℎ
𝜕𝑡𝑤̃.

With regard to the previous two identities, it is now straightforward to identify the confined

thin film equation (6) with the perturbation equation (19).

B. Inequalities

In this second appendix we collect some useful inequalities for weighted Sovolev spaces

from various references like [11,41,47,51]. For further details on the proofs, see also [64].

The first estimate is a Sobolev embedding result with weight. We notice that the weight

becomes visible in the Sobolev numbers, where the dimension is artificially increased from

𝑁 + 1 to 𝑁 + 2.
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Lemma B.1. (Sobolev inequality) Let 1 ≤ 𝑝 ≤ 𝑞 < ∞ be such that

1 − 𝑁 + 2
𝑝

= −𝑁 + 2
𝑞

.

Then it holds that

‖𝑤‖𝐿𝑞(𝐿𝑞(𝜌)) ≲ ‖𝑤‖𝐿𝑝(𝐿𝑝(𝜌)) + ‖𝜕𝑡𝑤‖𝐿𝑝(𝐿𝑝(𝜌)) + ‖∇𝑤‖𝐿𝑝(𝐿𝑝(𝜌)).

Our second estimate is a Hardy inequality. We will use it with different exponents on the

weight function.

Lemma B.2. (Hardy inequality) For any 𝑝 ∈ (1,∞) and 𝜎 > −1∕𝑝 it holds that

‖𝑤‖𝐿𝑝(𝜌𝜎 ) ≲ ‖𝜌𝑤‖𝐿𝑝(𝜌𝜎 ) + ‖𝜌∇𝑤‖𝐿𝑝(𝜌𝜎 ).

In particular, for 𝜎 = 0 and 𝑝 = 2 we obtain

‖𝑤‖
𝐿2 ≲ ‖𝜌𝑤‖

𝐿2 + ‖𝜌∇𝑤‖
𝐿2 ≤ ‖𝑤‖𝐻.

Next, we quote an interpolation inequality. Notice that, typical for interpolation inequalities,

the dimension will not enter into the dimensional relation of the integrability exponents.

As the weight “increases” the dimension of the underlying space — as already noticed in

our remark on the above Sobolev embedding — the weight exponent 𝜎 does not enter this

dimensional relation.

Lemma B.3. (Interpolation inequality) For any 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ such that

2
𝑝
= 1

𝑞
+ 1

𝑟

and 𝜎 > −1∕𝑝 it holds that

‖∇𝑤‖𝐿𝑝(𝜌𝜎 ) ≲ ‖𝑤‖ 1
2
𝐿𝑞(𝜌𝜎 )‖∇2

𝑤‖ 1
2
𝐿𝑟(𝜌𝜎 ).

In particular, for some integers 𝑖 < 𝑚 we obtain

‖∇𝑖
𝜉‖𝑚

𝐿𝑝(𝜌𝜎 ) ≲ ‖𝜉‖𝑚−𝑖
𝐿∞ ‖∇𝑚

𝜉‖𝑖
𝐿𝑟(𝜌𝜎 ), (71)

provided that 𝑚𝑟 = 𝑝𝑖.

We complete this collection with an embedding into 𝐿
∞

.

Lemma B.4. (Morrey inequality) For any 𝑞 large enough it holds that

‖𝑤‖𝐿∞ ≲ ‖𝑤‖𝐿𝑞(𝜌𝜎 ) + ‖∇𝑤‖𝐿𝑞(𝜌𝜎 ).
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