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Abstract

We consider a family of vectorial models for cohesive fracture, which may
incorporate SO(n)-invariance. The deformation belongs to the space of generalized
functions of bounded variation and the energy contains an (elastic) volume energy,
an opening-dependent jump energy concentrated on the fractured surface, and a
Cantor part representing diffuse damage. We show that this type of functional can
be naturally obtained as �-limit of an appropriate phase-field model. The energy
densities entering the limiting functional can be expressed, in a partially implicit
way, in terms of those appearing in the phase-field approximation.
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1. Introduction

In variational models of nonlinear elasticity a hyper-elastic body with reference
configuration � ⊂ R

n (n = 2, 3) undergoes a deformation u : � → R
m , whose

stored energy reads as ∫
�

�(∇u)dx . (1.1)

External loads can be included, adding linear perturbations to this energy, and
Dirichlet boundary conditions, restricting the set of admissible deformations u.
The energy density � : Rm×n → [0,∞), acting on the deformation gradient ∇u,
is typically assumed to be minimized by matrices in the set of proper rotations
SO(n) (with m = n) and to have p-growth at infinity, p > 1. Correspondingly, the
natural space for the deformation u is a (subset of) the Sobolev spaceW 1,p(�;Rm).
There is an extensive literature on the theory of existence of minimizers of this type
of functionals, and in particular the key property of weak lower semicontinuity of
(1.1) is closely related to the quasiconvexity of the energy density �.

Fracture phenomena, both brittle and cohesive, require a richer modelling
framework. Physically, cohesive fracture is often understood as a gradual sepa-
ration phenomenon: load–displacement curves usually exhibit an initial increase
of the load up to a critical value, and a subsequent decrease to zero, which is the
value indicating the complete separation [12,21,49,51]. See [47,48] for discussions
on different load–displacement behaviours. Evolutionary models (prescribing the
crack path) have been studied in [2,8,21,30,38,39,46,66,68,69,73], see also ref-
erences therein. See [31,42] for further results on the topic.

Variational models of fracture are typically formulated using the space (G)BV
of (generalised) functions of bounded variation [21,58] and energy functionals of
the form ∫

�

W (∇u)dx +
∫

�

l(dDcu) +
∫
Ju
g([u], νu)dHn−1. (1.2)

The deformation u ∈ (G)BV (�;Rm) may exhibit discontinuities along a (n − 1)-
dimensional set Ju . We denote by [u] and νu the opening of the crack and the
normal vector to the crack set Ju , respectively, while Dcu represents the Cantor
derivative of u (see [7] for the definition and the relevant properties of functions
of bounded variation). Working within deformation theory, the functional (1.2)
contains both energetic and dissipative terms, which are physically distinct but
need not be separated for this variational modeling.

The densities W , l, and g entering (1.2) need to satisfy suitable growth condi-
tions. The lower semicontinuity of the functional imposes several restrictions, such
as, for example, that l is positively one-homogeneous and quasiconvex, W quasi-
convex, and g subadditive. Furthermore, l needs to match, after appropriate scaling,
both the behavior ofW at infinity and the behavior of g near zero. These properties
will be discussed in more detail below (see, for example, Proposition 3.11).

The qualitative properties of W , l and g are selected according to the specific
model of interest. For instance, the brittle regime is modelled by a constant surface
density g and a superlinear bulk energy density W . These choices in turn imply
that l(ξ) = ∞ for ξ �= 0, so that Dcu necessarily vanishes. The functional setting
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of the problem is then provided by the space of (generalised) special functions
with bounded variation (G)SBV (�). In contrast, in cohesive models g is usually
assumed to be approximately linear for small amplitudes and bounded.

The direct numerical simulation of functionals of the type (1.2) is highly prob-
lematic, due to the difficulty of finding good discretizations for (G)BV functions
and of differentiating the functional with respect to the coefficients entering the
finite-dimensional approximation. Therefore a number of regularizations have been
proposed, of which one of the most successful is given by phase-field functionals.
These are energies depending on a pair of variables (u, v), having a Sobolev regu-
larity, where u represents a regularization of a discontinuous displacement, while
v ∈ [0, 1] can be interpreted as a damage parameter, indicating the amount of
damage at each point of the body (where v = 1 corresponds to the undamaged
material and v = 0 to the completely damaged material). The basic structure of a
phase-field functional is

Fε(u, v) :=
∫

�

(
f 2ε (v)�(∇u) + (1 − v)2

4ε
+ ε|∇v|2

)
dx, (1.3)

where ε > 0 is a small parameter, fε is a damage coefficient acting on the damage
variable v, increasing from 0 to 1, and� is an elastic energy density, as in (1.1). The
first term in (1.3) represents the stored elastic energy, the other two terms represent
the stored energy and dissipation due to the damage.

Despite the phase-field functional in (1.3) is introduced here as a regulariza-
tion of the sharp-interface functional in (1.2), one may alternatively consider the
functional in (1.3) as a physical model of its own, with v an internal variable rep-
resenting local damage, and view the �-convergence result as a derivation of the
sharp-interface functional in (1.2). This is frequently done in an evolutionary set-
ting, where irreversibility of damage may be modeled by imposing monotonicity
in time of v. Our mathematical result proves that the two models are, under suitable
assumptions, closely related to each other, and so there is no requirement to choose
one of these interpretations, we stick for simplicity to the first one.We stress that the
relation between the three densities entering (1.2) and the functions entering (1.3)
is implicit (see the discussion in what follows), and the problem of determining
good choices of fε and � for specific materials is not easy. Some progress has
recently been obtained for related formulations [52] as discussed below.

Finding a variational approximation of the fracture model (1.2) by phase-field
models means to construct fε and � such that the functionals (1.3) converge, in
the sense of �-convergence, to (1.2) as ε → 0. This is not an easy task in general.
The brittle case (g constant) in an antiplane shear, linear, framework (m = 1, �

quadratic) was the first outcome of this type [10,11]. It has been extended in several
directions for different aims, giving rise to a very vast literature of both theoretical
results [6,9,18,35–37,43,53,61–63,71] and numerical simulations [13,14,21,25–
27,29] (for other regularizations, see also [7,17,22,28,60] and references therein).
In particular, the extension of the results in [11] to the vector-valued (nonlinear)
brittle case has been provided in [59]. The variational approximation of cohesive
models is considerably more involved. The antiplane shear linear case was obtained
through a double �-limit of energies with 1-growth in [1], then generalized to the
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vector-valued case in [5]. A drawback of these results is the 1-growthwith respect to
∇u, which makes the approximants mechanically less meaningful and numerically
less helpful.

To overcome these problems, in [33] we proposed a different approximation of
(1.2) in the antiplane shear case, with quadratic models of the form (1.3), based on
a damage coefficient fε of the type

fε(s) := 1 ∧ ε
1/2 �s

1 − s
s ∈ [0, 1], � > 0 , (1.4)

and obtained �-convergence to a model of the type (1.2) in the scalar (m = 1)
case. We remark that fε is equal to 1 when v ∼ 1 (elastic response) and to 0 when
v ∼ 0 (brittle fracture response). Moreover, the first addend in the energy in (1.3)
competes against the second term if v is less than but close to 1, and with all the
terms of (1.3) otherwise (pre-fracture response). This phase-field approximation of
this scalar cohesive fracture was investigated numerically in [54]. A 1D cohesive
quasistatic evolution (not prescribing the crack path) is presented in [16] and related
to the phase-field models of [33]. A different approximation of (1.2), still in the
scalar-valued framework, is obtained in [44] using elasto-plastic models.

The class of phase-field functionals introduced in [33], summarized in (1.3) and
(1.4), has recently received strong attention in the mechanics literature, specifically
from a computational perspective. Many variants have been proposed, including
for example extension to vectorial linear elasticity, finite elasticity, directional de-
pendence, irreversibility as well as the application to specific materials, and many
numerical simulations have been carried out, but up to now a rigorous mathemati-
cal analysis of convergence has remained restricted to the scalar case [33]. A first
numerical study in a simplified setting appeared in [54], it uses a convex variant of
(1.4) that renders the model more amenable to numerical simulation, (for a mathe-
matical analysis of this variant, we refer to [65, Sect. 4.1 and App. B]). In addition,
Wu [77] proposed to use a functional of the type (1.3) with the damage function fε
in (1.4) replaced by a regular function of the form

f ∗
ε (s) :=

(
1 + 1 − s

ε1/2�s p
P(1 − s)

)−1

, (1.5)

where p > 0 and P is a low-degree polynomial with P(0) = 1 whose coefficients
can be fitted in order to reproduce specific material properties, and possibly the
quadratic term (1 − v)2/4ε in (1.3) is replaced by a linear one (to compare equa-
tions one should note that in [77] d := 1 − v is used as phase field). The choice
in (1.5), besides regularizing the minimum appearing in (1.4), permits to obtain
simple solutions for one-dimensional crack profiles. Correspondingly the fracture
energy, at least in one spatial dimension, has only a very minor dependence on the
regularization parameter ε. This proposal, which was further developed in [75], has
rapidly become very influential in the mechanics literature. We refer to the review
[76] for a discussion of mechanical applications.

Recently Feng et al. [52] have shown how the expression in (1.5) can be
modified in order to reproduce (almost) arbitrary cohesive laws, and gave an an-
alytical expression for the required form of fε. Further, their approach permits to
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distinguish between mode-I, mode-II and mixed-mode fracture. In [56], the phase
field approach is studied from an energetic perspective, obtaining a variationally
consistent formulation which can account for the crack direction in mixed-mode
cohesive fracture. A comparison of the phase-field model from [77] with simpler
standard models of the Ambrosio-Tortorelli type is discussed in [32]. An extension
of themodel in (1.3)–(1.4) to finite elasticity, including a separation between tensile
and compressive stresses that treats the microcrack-closure-reopening effect, was
presented in [65].

In this paper we study the approximation of vector-valued cohesive models of
the type (1.2) via phase-field models of the type (1.3) with the damage coefficient
(1.4), as proposed in [33]. In particular, we extend the results of [33] to a geomet-
rically nonlinear framework (even restricting to a scalar-valued setting we extend
[33] to the case of non-isotropic potentials). We refer to (2.2)–(2.5) for the specific
hypotheses on�. The main result is given in Theorem 2.1, the precise assumptions
are discussed in Sect. 2.1. In addition, we stress that this work, on the one side rep-
resents an intermediate step to the analysis of the analogous model in the linearized
elasticity setting, where symmetrized gradients replace full gradients, which is of-
ten used in numericals simulations of cohesive fracture; and on the other side, it is
a necessary preliminary analysis to the general study of the convergence of critical
points, in the spirit of the one-dimensional result [23].

In order to illustrate our result, let us consider the simplest model for the energy
density � in finite kinematics and m = n,

�2(ξ) := dist2(ξ,SO(n)) = min
R∈SO(n)

|ξ − R|2. (1.6)

With this choice, our main result Theorem 2.1 states that the phase-field energies
(1.3) �-converge in the L1-topology as ε → 0 to the energy (1.2), with

W (ξ) := (dist2(·,SO(n)) ∧ � dist(·,SO(n)))qc(ξ) , (1.7)

and

l(ξ) := �|ξ |, g(z, ν) := gscal(|z|),
for every ξ ∈ R

m×n , z ∈ R
m , ν ∈ Sn−1, where gscal is the surface energy density

appearing in the scalar model (cf. formula (4.4) for the definition of gscal, item (iii)
in Proposition 3.12 with W = hqc and l = hqc,∞ to justify the second equality,
and Corollary 3.5 for the third equality). As remarked above, g coincides with l
asymptotically for infinitesimal amplitudes. Even in this simple case, the expression
for W is somewhat implicit, as it involves a quasiconvex envelope, which in most
cases can only be approximately computed numerically. We remark that even �2
itself as defined in (1.6) is not quasiconvex, we refer to [74, Example 4.2] for an
explicit formula for its quasiconvex envelope �

qc
2 in the two-dimensional case.

From the mathematical point of view, the main interest of the paper is pre-
cisely to provide a comprehensive analysis of such an energy growth degeneracy
(quadratic-to-linear) in a vector-valued setting. While it is in general easy to guess
the order of the degeneracy by a compactness argument, it is usually very difficult
to keep track of the exact contribution of each term of the energy and to understand
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their mutual interactions. In the vector-valued case, this consists in solving a system
of nonlinear PDE’s. Not being able to solve directly such system, the guess of the
limit densities and the proof of their relevant properties is a much more delicate
issue, which we discuss below in details. Indeed, one of the main difficulties in
proving Theorem 2.1 is to identify the correct limit densities W , g, and l, given
the density � and the damage coefficient fε of the phase-field (1.3). We first show
that one cannot expect that the cohesive energies that arise in the limit of our ap-
proximation exhaust all possible energies of the form (1.2), with densities W , g,
and l satisfying the growth conditions and matching properties specified above.
Indeed, we prove that, even in the simplest case �(ξ) := |ξ |2, W is not convex
(see Lemma 2.5 below). Thus, at least in this case, the limit energy is not given by
the relaxation of a functional defined on SBV (�) (cf. [15, Remark 2.2]). Convex
functions may be obtained as densities of the bulk term of the energy under more
specific choices of the damage variable (see for example [24], where the damage
variable is a characteristic function).

The effective surface energy density g of the �-limit of the family (Fε) is de-
fined in an abstract fashion by an asymptotic minimization formula as the �-limit
of a simpler family of functionals computed on functions jumping on a hyperplane
(cf. (2.12)). Alternative characterizations of g useful along the proofs are provided
both in Propositions 3.1 and 3.2, in which we show that the test sequences in the
very definition of g can be assumed to be periodic in (n − 1) mutually orthogonal
directions and with L2 integrability, and in Proposition 3.3, where g is represented
in terms of an asymptotic homogenization formula. Finally, the energy density l of
the Cantor part turns out to coincide with the recession functionW∞ ofW . Further-
more, an explicit characterization of l in terms of � is given in Proposition 3.10.

The proof of the lower bound in BV is based on the blow-up technique.Roughly,
to get the local estimate for the diffuse part given (uε, vε) → (u, v) in L1, we
analyze the asymptotic behaviour of the phase-field energies Fε restricted on the
δ-superlevel sets of vε, δ ∈ (0, 1), and then let δ ↑ 1. More precisely, in Lemma 4.4
we bound from below Fε(uε, vε) in (1.3) pointwise with a functional defined on
(G)SBV , that is independent of vε and that is computed on a truncation of uε with
the characteristic function of a suitable superlevel set of vε (depending on δ). This
is actually true up to an error related to the measure of the corresponding sublevel
set of vε, and up to prefactors depending on δ which are converging to 1 as δ ↑ 1
for the volume term and vanishing for the surface term. The lower semicontinuity
in L1 of the diffuse part of such a functional then implies the lower bound. In
addition, a slight variation of this argument shows directly that (GBV (�))m is the
domain of the �-limit. For the relevant functional space we refer to [45] (see also
the comments in Sect. 4.1).

Instead, to prove the local estimate for the surface part we show that under a
surface scaling assumption we may replace vε by its truncation at the threshold γε,
being γε the smallest z ∈ [0, 1] satisfying fε(z) = 1. The mentioned asymptotic
minimization formula defining g then provides a natural lower bound. The liminf
inequality in GBV is finally obtained by a further truncation argument.

The upper bound in BV is proven through an integral representation argument.
In particular, a direct computation provides a rough linear estimate from above, in
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fact optimal for the diffuse part. This allows to apply the representation result for
linear functionals given in [20]. The sharp estimate for the surface density is ob-
tained using the aforementioned characterization of g involving periodic boundary
conditions. The full upper bound in GBV follows by a truncation argument.

Finally, we recall that in the scalar case several different choices for fε are pos-
sible without changing the overall effect of the approximation (cf. [33, Section 4]).
A negative power-law divergence at 1 however leads to a corresponding power-
law behaviour of g close to 0 (cf. [33, Theorem 7.4]). We expect these findings to
have a natural generalization to the current vectorial setting, this requires additional
technical ingredients that will be the object of future work [34].

The paper is structured as follows. In Sect. 2.1 we present the model, introduc-
ing the main definitions and stating the �-convergence result in Theorem 2.1. In
Sect. 2.2 we focus on a simplified model and we prove that in this case the limiting
volume energy density W , obtained by quasiconvexification as in (1.7), is not con-
vex (Lemma 2.5). In Sect. 3 several properties of the surface and Cantor densities
are discussed. In particular, Propositions 3.1 and 3.2 deal with the change of bound-
ary conditions within the minimum problem defining g. Proposition 3.3 provides
an equivalent expression of g. Sect. 4 is devoted to the proof of the lower bound:
Proposition 4.1 proves the surface estimate in BV . The lower bound in BV for
the diffuse part is addressed in Proposition 4.2. Finally, in Theorem 4.9, the lower
bound is extended to the full space GBV via a continuity argument (cf. Proposi-
tion 4.8). The proof of the upper bound is the object of Sect. 5, which concludes
the proof of Theorem 2.1. Finally, Sect. 6 addresses the problems of compactness
and convergence of minimizers.

2. Model

2.1. General Definitions

In the entire paper � ⊂ R
n is a bounded, open set with Lipschitz boundary,

A(�) denotes the family of open subsets of � and | · | denotes the Euclidean norm,
|ξ |2 := ∑

i j ξ
2
i j = Tr

(
ξ T ξ

)
for ξ ∈ R

m×n .

For all ε > 0 we consider the functionalFε : L1(�;Rm+1)×A(�) → [0,∞]
given by

Fε(u, v; A) :=
∫
A

(
f 2ε (v)�(∇u) + (1 − v)2

4ε
+ ε|∇v|2

)
dx (2.1)

if (u, v) ∈ W 1,2(�;Rm) × W 1,2(�; [0, 1]) and ∞ otherwise, where for every
s ∈ [0, 1) we set

f (s) := �s

1 − s
, fε(s) := 1 ∧ ε

1/2 f (s), fε(1) := 1 ; (2.2)

and � > 0 is a parameter representing the critical yield stress. We write briefly
Fε(u, v) := Fε(u, v;�), and analogously for all the functionals that shall be
introduced in what follows.
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We assume that � : Rm×n → [0,∞) is continuous and such that
(1
c
|ξ |2 − c

)
∨ 0 ≤ �(ξ) ≤ c(|ξ |2 + 1) for all ξ ∈ R

m×n . (2.3)

We assume the ensuing limit to exist, that is,

�∞(ξ) := lim
t→∞

�(tξ)

t2
, (2.4)

and that it is uniform on the set of ξ with |ξ | = 1. This means that for every δ > 0
there is tδ > 0 such that |�(tξ)/t2 − �∞(ξ)| ≤ δ for all t ≥ tδ and all ξ with
|ξ | = 1, which is the same as

|�(ξ) − �∞(ξ)| ≤ δ|ξ |2 for all |ξ | ≥ tδ. (2.5)

By scaling, �∞(tξ) = t2�∞(ξ) and in particular �∞(0) = 0. Uniform conver-
gence also implies �∞ ∈ C0(Rm×n).

We define h : Rm×n → [0,∞) by

h(ξ) := �(ξ) ∧ ��
1/2(ξ) (2.6)

and denote by hqc its quasiconvex envelope,

hqc(ξ) := inf
{ ∫

(0,1)n
h(ξ + ∇ϕ)dx : ϕ ∈ C∞

c ((0, 1)n;Rm)
}
. (2.7)

From (2.3) we infer that for every ξ ∈ R
m×n

(1
c
|ξ | − c

)
∨ 0 ≤ hqc(ξ) ≤ h(ξ) ≤ c(|ξ | + 1). (2.8)

Let hqc,∞ be its recession function,

hqc,∞(ξ) := lim sup
t→∞

hqc(tξ)

t
. (2.9)

We remark that the definitions of hqc,∞ and �∞ differ, to reflect the different
growth of the two functions, quadratic for � and linear for h. Recall that hqc,∞ is
itself a quasiconvex function [57, Rem. 2.2 (ii)]. Therefore, it is locally Lipschitz
continuous (cf. for instance [40, Theorem 5.3 (ii)]). Moreover, in Proposition 3.10
below we shall prove that

hqc,∞(ξ) = �(�
1/2)qc,∞(ξ) , (2.10)

where the latter quantity is defined as in (2.7)–(2.9). We remark that, at variance
with the convex case, one cannot in general replace the lim sup in (2.9) by a limit
[67, Theorem 2].

For all open subsets A ⊆ R
n , u ∈ W 1,2(A;Rm) and v ∈ W 1,2(A; [0, 1]) it is

convenient to introduce the functional

F∞
ε (u, v; A) :=

∫
A

(
ε f 2(v)�∞(∇u) + (1 − v)2

4ε
+ ε|∇v|2

)
dx . (2.11)
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The first term is interpreted to be zero whenever ∇u = 0, even if v = 1. For any
ν ∈ Sn−1 we fix a cube Qν with side length 1, centered in the origin, and with one
side parallel to ν. We write Qν

r := r Qν . We define g : Rm × Sn−1 → [0,∞) by

g(z, ν) := inf{lim inf
j→∞ F∞

ε j
(u j , v j , Q

ν) : ‖u j − zχ{x ·ν>0}‖L1(Qν ) → 0, ε j → 0}.
(2.12)

Here u j ∈ W 1,2(Qν;Rm) and v j ∈ W 1,2(Qν; [0, 1]); obviously one can restrict
to sequences v j → 1 in L1(Qν). We refer to Sect. 3 for the discussion of several
properties of g.

We will prove the following result:

Theorem 2.1. Let Fε be the functional defined in (2.1). Then for all (u, v) ∈
L1(�;Rm+1) it holds

�(L1)- lim
ε→0

Fε(u, v) = F0(u, v),

where

F0(u, v) :=
∫

�

hqc(∇u)dx +
∫

�

hqc,∞(dDcu) +
∫
Ju
g([u], νu)dHn−1, (2.13)

if u ∈ (GBV ∩ L1(�))m and v = 1 Ln-a.e., and F0(u, v) := ∞ otherwise.

Remark 2.2. One can imagine several natural generalizations of Theorem 2.1. For
example, one could allow � to take negative values, replacing (2.3) by

1

c
|ξ |2 − c ≤ �(ξ) ≤ c(|ξ |2 + 1).

Whereas in purely elastic models like (1.1) one can add a constant to the energy
density without any change in the analysis, the presence of the prefactor f 2ε (v) ren-
ders this modification nontrivial, and influences several steps in the proof. Indeed,
the construction in Step 1 of the proof of Theorem 5.2 shows that the definition of
h in (2.6) needs to be replaced by

h(ξ) := �(ξ) ∧ ��
1/2
+ (ξ).

Alternatively, one could replace the quadratic growth of � in (2.3) by p-growth,
p > 1. The requirement that the effective energy scales linearly for large strains
leads to corresponding adaptations in the other parts of the functional.

For simplicity we only address here the growth condition in (2.3).

Notation. For A open we denote by M+(A) the set of positive Radon measures
on the set A, and byM+

b (A) the subset of bounded measures. For A ∈ A(�),

�(L1)- lim inf Fε(u, v; A) := inf
{
lim inf

ε→0
Fε(uε, vε; A) :

(uε, vε) → (u, v) in L1(�;Rm+1)
}

and correspondingly for the �- lim sup. We drop the dependence on the reference
set A if A = �. We refer to Sect. 4.1 (see also [5, Lemma 2.10] or [45, Theorem
2.7]) for the definition of the vector measure Dcu, under the hypotheses that u ∈
(GBV (�))m .
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2.2. Simplified Model

In this Section we consider the simplified case �simp(ξ) := |ξ |2, the corre-
sponding unrelaxed energy density hsimp : Rm×n → [0,∞),

hsimp(ξ) := |ξ |2 ∧ �|ξ |, (2.14)

its quasiconvex envelope hqcsimp as in (2.7), and its recession function hqc,∞simp as in
(2.9). These functions only depend on the space dimension and the single parameter
� > 0, which could be eliminated by scaling.

In this case it is possible to obtain simple closed-form expressions for several
of the quantities defined above. However, an explicit characterization of the qua-
siconvex envelope in (2.7) remains difficult. Indeed, we show in Lemma 2.5(iii)
below that even in this simplified setting the result is not convex. Since it has linear
growth, lower bounds with polyconvexity cannot be used, and an explicit determi-
nation of hqcsimp seems difficult. We believe this to be a strong indication that in most
cases of interest the function hqc can only be approximated numerically, and not
computed explicitly. Lemma 2.5 and this observation are not used in the proof of
Theorem 2.1.

Lemma 2.3. For n,m ≥ 1 let hsimp : Rm×n → [0,∞) be defined as in (2.14).
Then:

(i) its convex envelope is

hconvsimp(ξ) =
{

|ξ |2, if |ξ | ≤ �
2 ,

�|ξ | − �2

4 , if |ξ | > �
2 ;

(2.15)

(ii) �|ξ | − �2

4 ≤ hqcsimp(ξ) ≤ �|ξ | for all ξ ∈ R
m×n;

(iii) hqc,∞simp (ξ) = �|ξ | and the lim sup in (2.9) is a limit.

Proof. (i): To prove (2.15) we consider hscal : [0,∞) → [0,∞) defined by

hscal(t) := t2 ∧ �t (2.16)

and compute its convex envelope

hconvscal (t) =
{
t2, if 0 ≤ t ≤ �

2 ,

�t − �2

4 , if t > �
2 .

(2.17)

Let η ∈ R
m×n with |η| = 1. Then hsimp(tη) = hscal(t), hence hconvsimp(tη) ≤ hconvscal (t).

This proves one inequality in (2.15). At the same time, hconvscal (|ξ |) ≤ hscal(|ξ |) =
hsimp(ξ), and the function ξ �→ hconvscal (|ξ |) is convex, since hconvscal is convex and
nondecreasing in [0,∞) and ξ �→ |ξ | is convex. This proves the second inequality
in (2.15).

(ii): This follows immediately from the fact that �|ξ | − �2

4 ≤ hconvsimp(ξ) ≤
hqcsimp(ξ) ≤ hsimp(ξ) ≤ �|ξ | for any ξ ∈ R

m×n .
(iii): This follows immediately from the definition and (ii).
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We next prove that the quasiconvex envelope hqcsimp is not convex. For this we
need a linear algebra statement that we present first.

Lemma 2.4. Let
R
m×n×n
sym := {� ∈ R

m×n×n : �i jk = �ik j } (2.18)

and consider for ξ ∈ R
m×n the linear map T : Rm×n×n

sym → R
m×n×n of the form

(T�)i jk := �i jk − ξi j
∑
a,b

ξab�abk . (2.19)

If rank ξ ≥ 2, then T is injective. In particular, it has an inverse S : T (Rm×n×n
sym ) →

R
m×n×n
sym .

Proof. It suffices to show that there is no � ∈ R
m×n×n
sym with T� = 0 and � �= 0.

We assume it exists and define v ∈ R
n componentwise by

vk :=
∑
a,b

ξab�abk . (2.20)

Then T� = 0 is equivalent to

�i jk − ξi jvk = 0,

hence �i jk = ξi jvk , for all i , j , and k. Moreover, � �= 0 in turn implies that v �= 0.
From � ∈ R

m×n×n
sym we obtain

ξi jvk = ξikv j .

As rank ξ ≥ 2 there is a vector w ∈ R
n with v · w = 0 and ξw �= 0. We take the

scalar product of the previous equation with w and obtain
∑
k

ξi jvkwk =
∑
k

ξikv jwk

which gives 0 = v j (ξw)i for all i and j . As v �= 0 and ξw �= 0, this is a
contradiction.

Lemma 2.5. Let ξ ∈ R
m×n.

(i) If |ξ | ≤ �
2 , then hsimp(ξ) = hqcsimp(ξ) = hconvsimp(ξ).

(ii) If rank ξ ≤ 1, then hqcsimp(ξ) = hconvsimp(ξ).

(iii) If rank ξ ≥ 2 and |ξ | > �
2 , then hconvsimp(ξ) < hqcsimp(ξ).

Proof. We work for � = 1 (the general case can be reduced to this one by a
rescaling), to shorten notation we write h for hsimp.

(i): It is clear that hconv ≤ hqc ≤ h. If |ξ | ≤ 1
2 then h

conv(ξ) = h(ξ) (cf. (2.15)),
and the assertion then follows.

(ii): If rank ξ = 1 with |ξ | > 1
2 , then for any t > |ξ | one has

ξ = t − |ξ |
t − 1

2

ξ

2|ξ | + |ξ | − 1
2

t − 1
2

tξ

|ξ |
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and by rank-one convexity of hqc we obtain

hqc(ξ) ≤ t − |ξ |
t − 1

2

h
( ξ

2|ξ |
)

+ |ξ | − 1
2

t − 1
2

h
(
t

ξ

|ξ |
)

≤ t − |ξ |
t − 1

2

1

4
+ |ξ | − 1

2

t − 1
2

t.

Taking t → ∞ shows that hqc(ξ) ≤ |ξ | − 1
4 = hconv(ξ). Recalling hconv ≤ hqc

concludes the proof.
(iii): We assume that rank ξ ≥ 2 and |ξ | > 1

2 , and show that hconv(ξ) < hqc(ξ).
From the explicit formulas given in Lemma 2.3(i) we know that hconv(ξ) < h(ξ),
from general theory hconv ≤ hqc.

Assume by contradiction that hconv(ξ) = hqc(ξ). Then there is a sequence
ϕ j ∈ C∞((0, 1)n;Rm) such that ϕ j (x) = ξ x on ∂(0, 1)n and

hconv(ξ) = lim
j→∞

∫
(0,1)n

h(∇ϕ j )dx . (2.21)

We consider the affine function L : Rm×n → R,

L(η) := η · ξ

|ξ | − 1

4
.

One easily checks that hconv(tξ) = L(tξ) = t |ξ | − 1
4 for t ≥ 1

2|ξ | (cf. (2.15)), and
since |ξ | > 1

2 this in particular holds for t = 1. Linearity and the boundary values
of ϕ j imply ∫

(0,1)n
L(∇ϕ j )dx = L

(∫
(0,1)n

∇ϕ j dx

)
= L(ξ).

Subtracting from (2.21), and letting g := h − L , leads to

lim
j→∞

∫
(0,1)n

g(∇ϕ j )dx = 0. (2.22)

We next show that g(η) controls the distance of the matrix η from the set Rξ . To
do this, for η ∈ R

m×n we define the orthogonal projections

η‖ := η · ξ

|ξ | ∈ R and η⊥ := η − ξ

|ξ |η
‖ ∈ R

m×n,

so that |η|2 = |η‖|2 + |η⊥|2 and L(η) = η‖ − 1
4 .

We first consider the case |η| ≥ 1, so that h(η) = |η|. Assume for a moment
that both η‖ and η⊥ do not vanish. Letting γ := |η⊥|/|η‖|,

g(η) = |η| − L(η) ≥ |η‖|
√
1 + γ 2 − |η‖| =

√
1 + γ 2 − 1

γ
|η⊥|.

Let now ε ∈ (0, 1]. If γ ≤ ε, then |η⊥| ≤ ε|η‖|. Otherwise, by monotonicity of
t �→ (

√
1 + t2 − 1)/t we have g(η) ≥ (

√
1 + ε2 − 1)|η⊥|/ε. Therefore

|η⊥| ≤ ε|η‖| + ε√
1 + ε2 − 1

g(η) (2.23)
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for all η ∈ R
m×n with |η| ≥ 1 (the two cases η‖ = 0 and η⊥ = 0 follow by

continuity). If instead |η| ≤ 1,

g(η) = |η|2 − L(η) = |η‖|2 + |η⊥|2 − η‖ + 1

4
≥ |η⊥|2.

Therefore for any ε ∈ (0, 1] we have for all η ∈ R
m×n with |η| ≤ 1

|η⊥| ≤ ε + 1

ε
|η⊥|2 ≤ ε + 1

ε
g(η) . (2.24)

Combining (2.23) and (2.24) we see that for any ε ∈ (0, 1] there is Cε > 0 such
that for all η ∈ R

m×n

|η⊥| ≤ ε(|η‖| + 1) + Cεg(η) .

In particular, for any j we have

|∇ϕ⊥
j | ≤ ε(|∇ϕ

‖
j | + 1) + Cεg(∇ϕ j ).

We integrate over (0, 1)n , take the limit j → ∞ and recall that g(∇ϕ j ) → 0 in L1

by (2.22). We obtain

lim sup
j→∞

∫
(0,1)n

|∇ϕ⊥
j |dx ≤ ε lim sup

j→∞

∫
(0,1)n

(|∇ϕ
‖
j | + 1)dx

for any ε ∈ (0, 1]. By (2.21) and Lemma 2.3(ii) the sequence ∇ϕ j is bounded in
L1, and since ε was arbitrary we conclude that

lim sup
j→∞

∫
(0,1)n

|∇ϕ⊥
j |dx = 0. (2.25)

We next prove that (2.25) implies that∇ϕ j converges to the constant ξ strongly
in weak-L1. To do this we show that standard singular integral estimates imply
rigidity. To simplify notation, we write u j (x) := ϕ j (x) − ξ x and R j := ∇ϕ⊥

j =
∇u⊥

j , both extended by zero to the rest of Rn , in the next steps. We observe that

R j = ∇u j − ξ
ξ · ∇u j

|ξ |2 = ∇u j − ξ̃ (ξ̃ · ∇u j )

where ξ̃ := ξ
|ξ | . Taking a derivative, and writing the components, we obtain

(∇R j )cdk = (∇2u j )cdk − ξ̃cd
∑
a,b

ξ̃ab(∇2u j )abk = (T (∇2u j ))cdk,

with T obtained from ξ̃ as in Lemma 2.4. Let S be the inverse operator. Then

∇2u j = S(∇R j ),

so that in particular �u j is given by a linear combination of the components of
∇R j , with coefficients which depend only on ξ . As u j (x) = 0 outside (0, 1)n , we
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obtain, denoting by N the fundamental solution of Laplace’s equation inRn (which
solves −�N = δ0),

−∂r u j= ∂r (N ∗ �u j ) =∂r (N ∗ Tr S(∇R j )) = Tr S(�r (R j )),

for every r = 1, . . . , n, where we have set (�r (R j ))cdk := ∂r∂k N ∗ (R j )cd (recall
that R j = 0 outside of (0, 1)n), and (Tr �)l := ∑n

i=1 �li i , for every l = 1, . . . ,m
and � ∈ R

m×n×n . By [72, Theorem 4(b), page 42] we see that the operator R �→
�r (R) is of weak type (1, 1), so that

‖∇u j‖w−L1((0,1)n) ≤ c‖R j‖L1((0,1)n),

with c depending only on ξ . Recalling the definition of u j and R j as well as (2.25),

lim
j→∞ ‖∇ϕ j − ξ‖w−L1((0,1)n) ≤ c lim

j→∞ ‖∇ϕ⊥
j ‖L1((0,1)n) = 0.

To conclude the proof we choose z ∈ (hconv(ξ), h(ξ)) (here we use again that
|ξ | > 1

2 ). By continuity of h, there is δ > 0 such that h(η) ≥ z for all η ∈ R
m×n

with |η − ξ | < δ. By definition of the weak-L1 norm,

lim sup
j→∞

Ln({x ∈ (0, 1)n : |∇ϕ j − ξ | ≥ δ}) ≤ lim sup
j→∞

‖∇ϕ j − ξ‖w−L1

δ
= 0 .

Therefore, recalling that h ≥ 0 pointwise,

lim inf
j→∞

∫
(0,1)n

h(∇ϕ j )dx ≥ lim inf
j→∞ zLn({x ∈ (0, 1)n : |∇ϕ j − ξ |<δ})

=z > hconv(ξ).

This contradicts (2.21) and concludes the proof.

3. Energy Densities of the Surface and Cantor Part

In this section we discuss several properties of the energy densities g and hqc,∞.
We warn the reader that while the results dealing with g contained in Sect. 3.1
and 3.2 will be crucial in the proof of Theorem 2.1, those in Sect. 3.3 will not be
employed in that proof. Actually, Proposition 3.9 andCorollary 3.11 take advantage
of Theorem 2.1 itself (in particular of the lower semicontinuity of �-limits).

3.1. Equivalent Characterizations of g(z, ν)

Weshowbelow thatwemay reduce the test sequences in the definition of g(z, ν)

in (2.12) to those converging in L2 and satisfying periodic boundary conditions in
(n − 1) directions orthogonal to ν and mutually orthogonal to each other. This is
the content of the next two propositions, which will be crucial in the proof of the
upper bound for the surface part (Theorem 5.2 Step 2). The proof draws inspiration
from that of [19, Lemma 4.2]. We fix a mollifier ϕ1 ∈ C∞

c (B1), with
∫
B1

ϕ1dx = 1,
and set ϕε(x) := ε−nϕ1(x/ε) in Bε.
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Proposition 3.1. Assumeanoptimal sequence in (2.12) converges in L2(Qν;Rm+1).
Then there are ε j → 0, (u∗

j , v
∗
j ) → (zχ{x ·ν>0}, 1) in L2(Qν;Rm+1), with v∗

j ∈
[0, 1] Ln-a.e. in Qν , such that

lim
j→∞F∞

ε j
(u∗

j , v
∗
j ; Qν) ≤ g(z, ν)

and

u∗
j = (zχ{x ·ν>0}) ∗ ϕε j , v∗

j = χ{|x ·ν|≥2ε j } ∗ ϕε j on ∂Qν. (3.1)

Proof. Step 1. Construction of u∗
j and v∗

j . Pick ε j → 0, v j and u j → zχ{x ·ν>0}
in L2(Qν;Rm) such that

g(z, ν) = lim
j→∞F∞

ε j
(u j , v j ; Qν).

To simplify the notation we write

Uj := (zχ{x ·ν>0}) ∗ ϕε j , Vj := χ{|x ·ν|≥2ε j } ∗ ϕε j . (3.2)

Obviously ‖Uj − zχ{x ·ν>0}‖L2(Qν ) → 0, so that ‖u j −Uj‖L2(Qν ) → 0. Moreover,
by construction Uj = zχ{x ·ν>0} if |x · ν| ≥ ε j , Vj = 0 if |x · ν| ≤ ε j , and Vj = 1
if |x · ν| ≥ 3ε j . Therefore, by �∞(0) = 0 and f (0) = 0, we have

F∞
ε j

(Uj , Vj ; Qν) = F∞
ε j

(0, Vj ; Qν) ≤ c + ε j

∫
{x∈Qν :ε j<|x ·ν|<3ε j }

|∇Vj |2dx ≤ c,

as ‖∇Vj‖L∞(Rm ) ≤ c
ε j
, where c is a constant independent of j ∈ N.

Next, we choose a sequence η j → 0 such that

ε j + ‖u j −Uj‖2/3L2(Qν )

η j
→ 0 (3.3)

and set K j := �η j/ε j�, we can assume K j ≥ 4.We let R̂ j
k := Qν

1−kε j
\Qν

1−(k+1)ε j
,

where we write for brevity Qν
r := r Qν for the scaled cube. We select k j ∈

{K j + 1, . . . , 2K j } such that, writing R j := R̂ j
k j
,

‖u j −Uj‖2L2(R j )
≤ c

K j
‖u j −Uj‖2L2(Qν )

(3.4)

and

F∞
ε j

(u j , v j ; R j ) + F∞
ε j

(Uj , Vj ; R j ) ≤ c

K j
. (3.5)

We fix θ j ∈ C1
c (Q

ν
1−k j ε j

) with θ j = 1 on Qν
1−(k j+1)ε j

and |∇θ j | ≤ 3/ε j , and
define

u∗
j := θ j u j + (1 − θ j )Uj .
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The construction of v∗
j is more complex. In the interior part, it should match v j . In

the exterior, Vj . In the interpolation region, it should be not larger than v j and Vj ,
but also not larger than 1 − η j . Therefore we first define

v̂ j (x) := min{1, 1 − η j + 1

ε j
dist(x, R j )}, (3.6)

which coincides with 1 − η j in the interpolation region R j , and with 1 at distance
larger than η jε j from it, then

V̂ j (x) := min{1, Vj (x) + 1

ε j
dist(x, Qν \ Qν

1−(k j+1)ε j
)} (3.7)

which coincides with Vj outside Qν
1−(k j+1)ε j

, and with 1 inside Qν
1−(k j+3)ε j

as
well as for |x · ν| ≥ 3ε j (cf. the definition of Vj ), and finally

ṽ j := min{1, v j + 2

k jε j
dist(x, Qν

1−k j ε j
)} . (3.8)

We then combine these three ingredients to obtain

v∗
j := min{ṽ j , V̂ j , v̂ j }.

On ∂Qν the first and the last term are equal to 1, hence v∗
j = V̂ j = Vj .

Step 2. Estimate of the elastic energy. By the definition of u∗
j ,

|∇u∗
j | ≤ |∇u j | + |∇Uj | + 3

ε j
|u j −Uj |

therefore in R j

�∞(∇u∗
j ) ≤ c�∞(∇u j ) + c�∞(∇Uj ) + c

ε2j
|u j −Uj |2.

We recall that v∗
j ≤ min{v j , Vj , 1 − η j } in R j and that [0, 1) �t �→ t/(1 − t)

is increasing. Since by construction v∗
j = Vj = 0 on {∇Uj �= 0}∩R j the term

�∞(∇Uj ) can be ignored. Therefore

ε j (v
∗
j )
2

(1 − v∗
j )
2�∞(∇u∗

j ) ≤ c
ε jv

2
j

(1 − v j )2
�∞(∇u j ) + c

ε j

η2j

|u j −Uj |2
ε2j

.

Integrating over R j and using (3.5) in the first term, (3.4) in the second one,

∫
R j

ε j (v
∗
j )
2

(1 − v∗
j )
2�∞(∇u∗

j )dx ≤ c

K j
+ c

‖u j −Uj‖2L2(Qν )

K jε jη
2
j

.

Using first that the definition of K j implies lim j→∞ K jε j/η j = 1 and then (3.3),

lim sup
j→∞

‖u j −Uj‖2L2(Qν )

K jε jη
2
j

= lim sup
j→∞

‖u j −Uj‖2L2(Qν )

η3j
= 0.
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Therefore

lim sup
j→∞

∫
R j

ε j (v
∗
j )
2

(1 − v∗
j )
2�∞(∇u∗

j )dx = 0.

Using again that the supports of ∇Uj and Vj are disjoint, we have

∫
Qν\Qν

1−k j ε j

ε j V 2
j

(1 − Vj )2
�∞(∇Uj )dx = 0.

Therefore

lim sup
j→∞

∫
Qν

ε j (v
∗
j )
2

(1 − v∗
j )
2�∞(∇u∗

j )dx ≤ lim sup
j→∞

∫
Qν

ε jv
2
j

(1 − v j )2
�∞(∇u j )dx .

(3.9)
Step 3. Estimate of the energy of the phase field. By the definition of v∗

j ,

F∞
ε j

(0, v∗
j ; Qν) ≤ F∞

ε j
(0, ṽ j ; Qν) + F∞

ε j
(0, V̂ j ; Qν) + F∞

ε j
(0, v̂ j ; Qν).

(3.10)

From (3.6) we have |1 − v̂ j | ≤ η j with |{v̂ j �= 1}| ≤ cε j and |∇v̂ j | ≤ 1/ε j with
|{∇v̂ j �= 0}| ≤ cε jη j , so that

F∞
ε j

(0, v̂ j ; Qν) =
∫
Qν

( (1 − v̂ j )
2

4ε j
+ ε j |∇v̂ j |2

)
dx ≤ cη j .

From the definition of Vj and V̂ j , we see that |{V̂ j �= 1}| ≤ cη jε j and ε j |∇ V̂ j | ≤ c,
so that

F∞
ε j

(0, V̂ j ; Qν) ≤ cη j .

Similarly, ṽ j = v j in Qν
1−k j ε j

, |ṽ j − 1| ≤ |v j − 1|, and |∇ṽ j | ≤ |∇v j | + 2/(k jε j )

in Qν\Qν
1−k j ε j

lead to

F∞
ε j

(0, ṽ j ; Qν) ≤ F∞
ε j

(0, v j ; Qν) +
4ε jLn(Qν \ Qν

1−k j ε j
)

k2j ε
2
j

+ 4

k jε
1/2
j

F∞
ε j

(0, v j ; Qν)1/2Ln(Qν \ Qν
1−k j ε j

)1/2

≤ F∞
ε j

(0, v j ; Qν) + c

k1/2j

.

Recalling k j ≥ K j + 1 → ∞ and η j → 0, (3.10) leads to

lim sup
j→∞

F∞
ε j

(0, v∗
j ; Qν) ≤ lim sup

j→∞
F∞

ε j
(0, v j ; Qν).

Combining this with (3.9) concludes the proof.
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We are now ready to perform the claimed reduction on the test sequences in
the definition of g(·, ν) in (2.12). To this aim we fix a sequence (ak)k ⊂ (0,∞)

such that ak < ak+1, ak ↑ ∞, and such that there are functions Tk ∈ C1
c (R

m;Rm)

satisfying

Tk(z) :=
{
z, if |z| ≤ ak,

0, if |z| ≥ ak+1
(3.11)

and ‖∇Tk‖L∞(Rm) ≤ 1. Following De Giorgi’s averaging/slicing procedure on the
codomain, the family Tk will be used in several instances along the paper to obtain
from a sequence converging in L1 to a limit belonging to L∞, a sequence with the
same L1 limit which is in addition equi-bounded in L∞. Moreover, this substitution
can be done up to paying an error in energy which can be made arbitrarily small.

Proposition 3.2. For any (z, ν) ∈ R
m × Sn−1 and any ε∗

j ↓ 0 there is (u∗
j , v

∗
j ) →

(zχ{x ·ν>0}, 1) in L2(Qν;Rm+1), with v∗
j ∈ [0, 1] Ln-a.e. in Qν , such that

lim
j→∞F∞

ε∗
j
(u∗

j , v
∗
j ; Qν)=g(z, ν) (3.12)

and

u∗
j = (zχ{x ·ν>0}) ∗ ϕε∗

j
, v∗

j = χ{|x ·ν|≥2ε∗
j } ∗ ϕε∗

j
on ∂Qν .

Proof. Step 1. Reduction to an optimal sequence in (2.12) converging in
L2(Qν;Rm+1). Let ε j → 0, (u j , v j ) → (zχ{x ·ν>0}, 1) in L1(Qν;Rm+1) be such
that

g(z, ν) = lim
j→∞F∞

ε j
(u j , v j ; Qν).

Recall that v j ∈ [0, 1] Ln-a.e. in Qν , therefore v j → 1 in L2(Qν). We claim that
for all j, M ∈ N there is kM, j ∈ {M + 1, . . . , 2M} such that

F∞
ε j

(TkM, j (u j ), v j ; Qν) ≤
(
1 + c

M

)
F∞

ε j
(u j , v j ; Qν) , (3.13)

where c > 0 is a constant independent of M and j . If aM > 1 + |z| = 1 +
‖zχ{x ·ν>0}‖L∞(Qν ) then TkM , j (u j ) → zχ{x ·ν>0} in L2(Qν;Rm), and (3.13) yields

lim sup
j→∞

F∞
ε j

(TkM , j (u j ), v j ; Qν) ≤
(
1 + c

M

)
g(z, ν),

which in turn implies by the arbitrariness of M ∈ N,

g(z, ν) = inf{lim inf
j→∞ F∞

ε j
(u j , v j ; Qν) : ‖u j − zχ{x ·ν>0}‖L2(Qν ) → 0, ε j → 0}.

We are left with establishing (3.13). To this aim consider Tk(u j ) and note that

F∞
ε j

(Tk(u j ), v j ; Qν) = F∞
ε j

(u j , v j ; {|u j | ≤ ak})
+ F∞

ε j
(Tk(u j ), v j ; {ak < |u j | < ak+1}) + F∞

ε j
(0, v j ; {|u j | ≥ ak+1}) .

(3.14)
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We estimate the second term in (3.14). The growth conditions on � (cf. (2.3)) and
‖∇Tk‖L∞(Rm ) ≤ 1 yield for a constant c > 0

F∞
ε j

(Tk(u j ), v j ; {ak < |u j | < ak+1})
≤ c

∫
{ak<|u j |<ak+1}

ε j f
2(v j )�∞(∇u j )dx + F∞

ε j
(0, v j ; {ak < |u j | < ak+1}) .

(3.15)

Collecting (3.14) and (3.15) and using F∞
ε j

(u j , v j ; A) + F∞
ε j

(0, v j ; B) ≤
F∞

ε j
(u j , v j ; A ∪ B) for A and B disjoint we conclude that

F∞
ε j

(Tk(u j ), v j ; Qν) ≤ F∞
ε j

(u j , v j ; Qν)+c
∫

{ak<|u j |<ak+1}
ε j f

2(v j )�∞(∇u j )dx .

Let now M ∈ N, by averaging there exists kM, j ∈ {M + 1, . . . , 2M} such that

F∞
ε j

(TkM, j (u j ), v j ; Qν) ≤ 1

M

2M∑
k=M+1

F∞
ε j

(Tk(u j ), v j ; Qν)

≤
(
1 + c

M

)
F∞

ε j
(u j , v j ; Qν) ,

i.e. (3.13).
Step 2. Conclusion. In view of Step 1 there is an optimal sequence for g(z, ν) in

(2.12) converging in L2(Qν;Rm+1). Let (εk, uk, vk) be the sequence from Proposi-
tion 3.1. Since limk→∞ lim j→0 ε∗

j/εk = 0,we can select a nondecreasing sequence

k( j) → ∞ such that λ j := ε∗
j/εk( j) → 0. We let Q̃ν := (Id − ν ⊗ ν)Qν ⊂ ν⊥ ⊂

R
n and select x1, . . . , xI j ∈ Q̃ν , with I j := �1/λ j�n−1, such that xi + Q̃ν

λ j
are

pairwise disjoint subsets of Q̃ν . We set

u∗
j (x) :=

{
uk( j)(

x−xi
λ j

), if x − xi ∈ Qν
λ j

for some i,

U∗
j (x), otherwise in Qν,

and

v∗
j (x) :=

{
vk( j)(

x−xi
λ j

), if x − xi ∈ Qν
λ j

for some i,

V ∗
j (x), otherwise in Qν,

whereU∗
j and V

∗
j are defined as in (3.2) using ε∗

j . One easily verifies thatU
∗
j (x) =

Uk( j)(
x−y
λ j

) for all y ∈ ν⊥, and the same for V . By the boundary conditions (3.1),

these functions are continuous and therefore in W 1,2(Qν;Rm+1). We further esti-
mate

F∞
ε∗
j
(u∗

j , v
∗
j ; Qν) ≤ I jλ

n−1
j F∞

εk( j)
(uk( j), vk( j); Qν) + cHn−1(Q̃ν \ ∪i (xi + Q̃ν

λ j
)).

Taking j → ∞, and recalling that lim sup j F∞
εk( j)

(uk( j), vk( j); Qν) ≤ g(z, ν),
concludes the proof.
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Inwhat followswe provide an equivalent characterization for the surface energy
g in the spirit of [33, Proposition 4.3].

Proposition 3.3. For any (z, ν) ∈ R
m × Sn−1 one has

g(z, ν) = lim
T→∞ inf

(u,v)∈UT
z,ν

1

T n−1F
∞
1 (u, v; Qν

T ) , (3.16)

where

UT
z,ν :=

{
(u, v) ∈ W 1,2(Qν

T ;Rm+1) : 0 ≤ v ≤ 1, v = χ{|x ·ν|≥2} ∗ ϕ1 and

u = (zχ{x ·ν>0}) ∗ ϕ1 on ∂Qν
T

}
.

Proof. For every (z, ν) ∈ R
m × Sn−1 and T > 0 set

gT (z, ν) := inf
(u,v)∈UT

z,ν

1

T n−1F
∞
1 (u, v; Qν

T ).

We first prove that
lim sup
T→∞

gT (z, ν) ≤ g(z, ν) . (3.17)

Indeed, if Tj ↑ ∞ is a sequence achieving the superior limit on the left-hand side
above, thanks to Proposition 3.2 we may consider (u j , v j ) ∈ W 1,2(Qν;Rm+1)

with 0 ≤ v j ≤ 1, (u j , v j ) → (zχ{x ·ν>0}, 1) in L2(Qν;Rm+1),

u j = (zχ{x ·ν>0}) ∗ ϕ 1
T j

, v j = χ{|x ·ν|≥ 2
T j

} ∗ ϕ 1
T j

on ∂Qν, (3.18)

and
lim
j→∞F∞

1
T j

(u j , v j ; Qν) = g(z, ν). (3.19)

Then, define (ũ j (y), ṽ j (y)) := (
u j (

y
Tj

), v j (
y
Tj

)
)
for y ∈ Qν

Tj
, and note that by a

change of variable it is true that

1

T n−1
j

F∞
1 (ũ j , ṽ j ; Qν

Tj
) = F∞

1
T j

(u j , v j ; Qν) ,

and that (ũ j , ṽ j ) ∈ UTj
z,ν in view of (3.18). Then, by (3.19), the choice of Tj and

the definition of gT (z, ν) we conclude straightforwardly (3.17).
In order to prove the converse inequality

lim inf
T→∞ gT (z, ν) ≥ g(z, ν) , (3.20)

we assume for the sake of notational simplicity ν = en . We then fix ρ > 0 and take
T > 6, depending on ρ, and (uT , vT ) ∈ UT

z,en such that

1

T n−1F
∞
1 (uT , vT ; Qen

T ) ≤ lim inf
T→∞ gT (z, en) + ρ . (3.21)



Arch. Rational Mech. Anal. (2024) 248:21 Page 21 of 60 21

Let ε j → 0 and set

u j (y) :=
⎧⎨
⎩
uT

(
y

ε j
− d

)
, if y ∈ ε j (Q

en
T + d) ⊂⊂ Qen ,

(zχ{x ·en>0} ∗ ϕ1)(
y
ε j

), otherwise in Qen ,

v j (y) :=
⎧⎨
⎩

vT

(
y

ε j
− d

)
, if y ∈ ε j (Q

en
T + d) ⊂⊂ Qen ,

(χ{|x ·en |>2} ∗ ϕ1)(
y
ε j

), otherwise in Qen ,

with d ∈ Z
n−1 × {0}. Then, (u j , v j ) → (zχ{x ·en>0}, 1) in L1(Qen ;Rm+1), and

letting Iε j := {d ∈ Z
n−1 × {0} : ε j (Q

en
T + d) ⊂⊂ Qen }, a change of variable

yields (cf. also the discussion after (3.2))

g(z, en) ≤ lim sup
j→∞

F∞
ε j

(u j , v j ; Qen )

≤ lim sup
j→∞

( ∑
d∈Iε j

F∞
ε j

(u j , v j ; ε j (Q
en
T + d))

+ c

ε j
Ln

(
Qen∩{ε j ≤|xn| ≤ 3ε j } \

⋃
d∈Iε j

ε j (Q
en
T + d)

))

= lim sup
j→∞

εn−1
j #Iε j F∞

1 (uT , vT ; Qen
T )

≤ 1

T n−1F
∞
1 (uT , vT ; Qen

T ) ≤ lim inf
T→∞ gT (z, en) + ρ ,

by the choice of (uT , vT ) and T (cf. (3.21)). As ρ → 0 we get (3.20).
Estimates (3.17) and (3.20) yield the existence of the limit of gT (z, ν) as T ↑ ∞

and equality (3.16), as well.

With this representation of g at hand we can obtain a version of Proposition 3.2
which also accounts for a regularization term of the form ηε

∫
�(∇u)dx .

Proposition 3.4. For any ε j ↓ 0 and η j ↓ 0 with η j/ε j → 0, and any (z, ν) ∈
R
m × Sn−1 there is (u j , v j ) → (zχ{x ·ν>0}, 1) in L2(Qν;Rm+1), with v j ∈ [0, 1]

Ln-a.e. in Qν , such that

lim
j→∞F∞

ε j
(u j , v j ; Qν) = g(z, ν),

lim
j→∞ η j

∫
Qν

|∇u j |2dx = 0,

and

u j = (zχ{x ·ν>0}) ∗ ϕε j , v j = χ{|x ·ν|≥2ε j } ∗ ϕε j on ∂Qν.
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Proof. Weuse the same construction as above (without loss of generality, explicitly
written only for ν = en), and compute similarly

‖∇u j‖2L2(Qen )
≤

∑
d∈Iε j

‖∇u j‖2L2(ε j (Q
en
T +d))

+ c

ε2j
Ln (Qen ∩ {|xn| ≤ ε j }

)

= εn−1
j #Iε j ‖∇uT ‖2L2(QT )

+ c

ε j
≤ CT

ε j
.

To conclude the proof it suffices to choose Tj → ∞ so slow that η jCTj /ε j

→ 0.

Corollary 3.5. If �∞(ξ) = |ξ |2, then g(z, ν) = gscal(|z|) for all (z, ν) ∈ R
m ×

Sn−1, where gscal is defined as the right-hand side of equation (3.16)with n = m =
1.

For an equivalent definition of gscal see equation (4.4) below and [33, Proposi-
tion 4.3].

Proof. By [33, Proposition 4.3] or by Proposition 3.3, the following characteriza-
tion holds for gscal:

gscal(s) = lim
T↑∞ inf

(α,β)∈UT
s

F∞
1 (α, β; (−T/2, T/2)),

with

F∞
1 (α, β; (−T/2, T/2)) :=

∫ T
2

− T
2

( f 2(β)|α′|2 + (1 − β)2

4
+ |β ′|2)dx

and

UT
s := {α, β ∈ W 1,2((−T/2, T/2)) : 0 ≤ β ≤ 1, β(±T/2) = 1

α(−T/2) = 0, α(T/2) = s}.
Let (z, ν) ∈ R

m × Sn−1, z �= 0. We first prove that

g(z, ν) ≥ gscal(|z|). (3.22)

If T > 0 and (u, v) ∈ UT
z,ν (see Proposition 3.3 for the definition of UT

z,ν), then for

Hn−1-a.e. y ∈ Q̃ν
T := (Id − ν ⊗ ν)Qν

T ⊂ ν⊥ the slices

uν
y(t) := z

|z| · u(y + tν), vν
y(t) := v(y + tν)

belong to UT|z| and satisfy by Fubini’s theorem

1

T n−1F
∞
1 (u, v; Qν

T ) ≥ 1

T n−1

∫
Q̃ν

T

F∞
1 (uν

y, v
ν
y ; (−T/2, T/2)) dHn−1(y)

≥ inf
(α,β)∈UT|z|

F∞
1 (α, β; (−T/2, T/2)).
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Taking the infimum over (u, v) ∈ UT
z,ν and passing to the limit T → ∞ we get

(3.22).
Let us show now that

g(z, ν) ≤ gscal(|z|). (3.23)

Let T > 0 and (α, β) ∈ UT|z|. Fixed ε j → 0, we will construct a competitor (u j , v j )

for the problem (2.12) defining g. We set

u j (x) :=
⎧⎨
⎩

α
( T

ε j
x · ν

) z

|z| , if |x · ν| ≤ ε j
2 , x ∈ Qν,

zχ{x ·ν>0}, otherwise in Qν,

v j (x) :=
⎧⎨
⎩

β
( T

ε j
x · ν

)
, if |x · ν| ≤ ε j

2 , x ∈ Qν,

1, otherwise in Qν.

Hence by a change of variables we have ‖u j − zχ{x ·ν>0}‖L1(Qν ) → 0 and

F∞
ε j/T (u j , v j ; Qν) = F∞

1 (α, β; (−T/2, T/2)).

Therefore, we conclude that

g(z, ν) ≤ F∞
1 (α, β; (−T/2, T/2)).

As (α, β) ∈ UT|z| varies, we obtain (3.23).

Remark 3.6. The same argument shows that if � satisfies �∞(ξ) ≥ �∞(ξν ⊗ ν)

for every ξ ∈ R
m×n and ν ∈ Sn−1, then for all (z, ν) ∈ R

m × Sn−1

g(z, ν) = lim
T↑∞ inf

ŨT
z

∫ T/2

−T/2

(
f 2(β(t))�∞

(
α′(t) ⊗ ν

) + (1 − β(t))2

4
+ |β ′(t)|2

)
dt

where

ŨT
z := {(α, β) ∈ W 1,2((−T/2, T/2);Rm+1) : 0 ≤ β ≤ 1, β(±T/2) = 1

α(−T/2) = 0, α(T/2) = z}.

3.2. Structural Properties of g(z, ν)

We next deduce the coercivity properties of g.

Lemma 3.7. There is c > 0 such that, for all z, ν ∈ R
m × Sn−1,

1

c
(|z| ∧ 1) ≤ g(z, ν) ≤ c(|z| ∧ 1).

We provide here a direct proof of the lemma. Alternatively, these bounds may
be derived estimatingFε by its 1D counterpart (as in (4.2) below) and recalling the
bounds holding for gscal, see [33, Prop. 4.1].
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Proof. We start with the lower bound. Let z ∈ R
m , ν ∈ Sn−1, and fix sequences

ε j → 0, v j and u j → zχ{x ·ν>0} in L1(Qν;Rm) such that F∞
ε j

(u j , v j ; Qν) →
g(z, ν). For every j and y j ∈ ν⊥ ∩ Qν we define v∗

j ∈ W 1,2((− 1
2 ,

1
2 ); [0, 1]) and

u∗
j ∈ W 1,2((− 1

2 ,
1
2 );Rm) by v∗

j (t) := v j (y j + tν) and u∗
j (t) := u j (y j + tν). The

set of y j ∈ ν⊥ ∩ Qν such that

‖u∗
j − zχ{t≥0}‖L1((− 1

2 , 12 )) ≤ 3‖u j − zχ{x ·ν≥0}‖L1(Qν )

has measure at least 2
3 and, using (2.3) to estimate 1

c |(u∗
j )

′|2(t) ≤ �∞(∇u j )(y j +
tν), the set of y j ∈ ν⊥ ∩ Qν such that

∫
(− 1

2 , 12 )

(ε j�
2(v∗

j )
2

(1 − v∗
j )
2

|(u∗
j )

′|2
c

+ (1 − v∗
j )
2

4ε j
+ ε j |(v∗

j )
′|2

)
dt ≤ 3F∞

ε j
(u j , v j ; Qν)

also has measure at least 23 . Therefore we can fix y j such that both inequalities hold.
If g(z, ν) < ∞, then necessarily v∗

j → 1 in L2((− 1
2 ,

1
2 )), and it has a continuous

representative. We can therefore assume that sup v∗
j ≥ 3

4 for large j . If inf v∗
j ≤ 1

2
then

1

2
(1 − v)2

∣∣∣∣
3/4

1/2
≤
∫

(− 1
2 , 12 )

|(1 − v∗
j )(v

∗
j )

′|dt

≤
∫

(− 1
2 , 12 )

(1 − v∗
j )
2

4ε j
+ ε j |(v∗

j )
′|2dt ≤ 3F∞

ε j
(u j , v j ; Qν).

Otherwise, v∗
j ≥ 1

2 pointwise and

∫
(− 1

2 , 12 )

(ε j�
2(v∗

j )
2

(1 − v∗
j )
2

|(u∗
j )

′|2
c

+ (1 − v∗
j )
2

4ε j

)
dt ≥ 1

2c1/2
�

∫
(− 1

2 , 12 )

|(u∗
j )

′|dt.

Since ‖u∗
j −zχt≥0‖L1((− 1

2 , 12 )) → 0, there are t j , t ′j such that u∗
j (t j ) → 0, u∗

j (t
′
j ) →

z, and therefore lim inf j→∞
∫
(− 1

2 , 12 )
|(u∗

j )
′|dt ≥ lim inf j→∞ |u∗

j (t j ) − u∗
j (t

′
j )| =

|z|. We conclude that lim inf j→∞ F∞
ε j

(u j , v j ; Qν) ≥ c(1 ∧ �|z|).
We turn to the upper bound. We define u j (x) := u∗

j (x · ν), v j (x) := v∗
j (x · ν),

where, denoting by AI the affine interpolation between the boundary data in the
relevant segments,

u∗
j (t) :=

⎧⎪⎨
⎪⎩
0, if t ≤ −ε j ,

z, if t ≥ ε j ,

AI, if − ε j < t < ε j ,

v∗
j (t) :=

⎧⎪⎨
⎪⎩

(1 − (�|z|)1/2)+, if |t | ≤ ε j ,

1, if |t | ≥ 2ε j ,

AI, if |t | ∈ (ε j , 2ε j ).

If �|z| < 1, then the upper bound in (2.3) leads to

F∞
ε j

(u j , v j ; Qν) ≤ 2ε j
ε j�

2c(|z|/2ε j )
2

�|z| +4ε j
�|z|
4ε j

+2ε jε j
�|z|
ε2j

= (
1

2
c+1+2)�|z|.
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If instead �|z| ≥ 1 the first term vanishes, and

F∞
ε j

(u j , v j ; Qν) ≤ 0 + 4ε j
1

4ε j
+ 2ε jε j

1

ε2j
= 3.

We prove next the subadditivity and continuity of g.

Lemma 3.8. (i) For any ν ∈ Sn−1 and z1, z2 ∈ R
m one has

g(z1 + z2, ν) ≤ g(z1, ν) + g(z2, ν).

(ii) g ∈ C0(Rm × Sn−1).

Proof. (i): Fix z1, z2 ∈ R
m , ν ∈ Sn−1. Let (uij , v

i
j ) be the sequences from Proposi-

tion 3.2 corresponding to ε j := 1/j and the pair (ν, zi ), for i = 1, 2. We implicitly
extend both periodically in the directions of ν⊥ ∩ Qν , and constant in the direction
ν. In particular, for {x · ν ≥ 1

2 } we have uij = zi and vij = 1; for {x · ν ≤ − 1
2 } we

have uij = 0 and vij = 1 for i ∈ {1, 2} and all j .
We use a rescaling similar to the one of Proposition 3.2. We fix a sequence

Mj ∈ N, Mj → ∞, and define (u j , v j ) ∈ W 1,2(Rn;Rm × [0, 1]) by

u j (x) :=
{
u1j (Mj x + 1

2ν), if x · ν < 0,

z1 + u2j (Mj x − 1
2ν), if x · ν ≥ 0,

and, correspondingly,

v j (x) :=
{

v1j (Mj x + 1
2ν), if x · ν < 0,

v2j (Mj x − 1
2ν), if x · ν ≥ 0.

By the periodicity of (uij , v
i
j ) in the directions of ν⊥ ∩ Qν , these maps belong to

W 1,2(Qν;Rm). Furthermore, u j = 0 and v j = 1 if x · ν ≤ − 1
Mj

, u j = z1 + z2

and v j = 1 if x · ν ≥ 1
Mj

, and (u j , v j ) is 1
Mj

-periodic in the directions of ν⊥ ∩ Qν .
Therefore, by changing variables we find

‖u j − (z1 + z2)χ{x ·ν≥0}‖L1(Qν ) = ‖u j − (z1 + z2)χ{x ·ν≥0}‖L1(Qν∩{|x ·ν|≤ 1
M j

})

= 1

Mn
j
‖u1j‖L1(Mj Qν∩{|x ·ν|≤ 1

2 }) + 1

Mn
j
‖u2j − z2‖L1(Mj Qν∩{|x ·ν|≤ 1

2 })

= 1

Mj
‖u1j‖L1(Qν ) + 1

Mj
‖u2j − z2‖L1(Qν )

≤ 1

Mj
‖u1j − z1χ{x ·ν≥0}‖L1(Qν ) + |z1|

2Mj
+ 1

Mj
‖u2j − z2χ{x ·ν≥0}‖L1(Qν ) + |z2|

2Mj
,

so that u j → (z1 + z2)χ{x ·ν≥0} in L1(Qν;Rm). Arguing similarly, we infer

F∞
ε j /Mj

(u j , v j ; Qν) = F∞
ε j

(u1j , v
1
j ; Qν) + F∞

ε j
(u2j , v

2
j ; Qν).
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The conclusion follows taking the limit j → ∞.
(ii): By (i) andLemma 3.7we have g(z, ν) ≤ g(z′, ν)+c�|z−z′|, which implies

that for any ν ∈ Sn−1 the function g(·, ν) is c�-Lipschitz continuous. Therefore it
suffices to prove continuity in ν at any fixed z.

Since �∞ is continuous and positive on the compact set Snm−1 ⊆ R
m×n , there

is a monotone modulus of continuity ω : [0,∞) → [0,∞), with ωρ → 0 as
ρ → 0, such that

�∞(ξ) ≤ (1 + ω|ξ−ξ ′|)�∞(ξ ′) for |ξ | = |ξ ′| = 1.

This implies that

�∞(η) ≤ (1 + ω|R−Id|)�∞(ηR) for any η ∈ R
m×n, R ∈ O(n) (3.24)

(it suffices to insert η/|η| and ηR/|η| in the above expression).
Fix ν ∈ Sn−1, a sequence ε j → 0, and let (u j , v j ) be as in Proposition 3.2,

extended periodically in the directions of ν⊥ ∩ Qν and constant along ν, as in the
proof of (i). Let ν̃ ∈ Sn−1, ν̃ �= ν, and choose R ∈ O(n) such that ν = Rν̃ and
|R − Id| ≤ c|ν − ν̃| (for example, R can be the identity on vectors orthogonal to
both ν and ν̃, and map (ν̃, ν̃⊥) to (ν, ν⊥) in this two-dimensional subspace). We
fix a sequence Mj → ∞ (for example, Mj := j) and define

ũ j (x) := u j (Mj Rx) , ṽ j (x) := v j (Mj Rx) .

From u j → zχ{x ·ν≥0} in L1
loc(R

n;Rm) we obtain ũ j → zχ{x ·ν̃≥0}. Further,
∇ũ j (x) = Mj∇u j (Mj Rx)R, which implies, recalling (3.24),

�∞(∇ũ j )(x) = M2
j�∞(∇u j R)(Mj Rx) ≤ M2

j (1 + ω|R−Id|)�∞(∇u j )(Mj Rx).

Inserting in the definition of F∞
ε j

(ũ j , ṽ j ; Q ν̃ ) and using a change of variables
leads to

F∞
ε j/Mj

(ũ j , ṽ j ; Q ν̃ ) ≤ (1 + ω|R−Id|)M1−n
j F∞

ε j
(u j , v j ; Mj RQ

ν̃ ).

We observe that, although Rν̃ = ν, we cannot in general expect RQ ν̃ = Qν .
However, as (u j , v j ) are periodic in the directions orthogonal to ν, the (n − 1)-
dimensional square ν⊥∩Mj RQ ν̃ can be covered by atmostMn−1

j +cMn−2
j disjoint

translated copies of the (n − 1)-dimensional unit square ν⊥ ∩ Qν . Therefore

g(z, ν̃) ≤ lim sup
j→∞

F∞
ε j/Mj

(ũ j , ṽ j ; Q ν̃ )

≤(1 + ω|R−Id|) lim sup
j→∞

(1 + c

M j
)F∞

ε j
(u j , v j ; Qν)

=(1 + ω|R−Id|)g(z, ν) ≤ (1 + ωc|ν−ν̃|)g(z, ν).
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3.3. Density of the Cantor Part

We study now the behaviour of the surface energy density g at small jump
amplitudes. The next result is probably well known to experts. Despite this, we
give a self-contained proof since we have not found a precise reference in the
literature. Similar constructions are performed in [7, Proposition 5.1] for isotropic
functionals defined on vector-valued measures. The L1 lower semicontinuity ofF0
is assumed to hold in Proposition 3.9 below, as already mentioned at the beginning
of Sect. 3. Such a property follows, for instance, from the validity of Theorem 2.1.
We stress again that Proposition 3.9 is not used in the proof of Theorem 2.1, rather
it provides a further piece of information on g showing its linear behavior at small
amplitudes.

Proposition 3.9. Assume that the functional F0 defined in (2.13) is L1(�;Rm)

lower semicontinuous. Then, for all ν ∈ Sn−1 we have

lim
z→0

g(z, ν)

hqc,∞(z ⊗ ν)
= 1.

Proof. With fixed ν ∈ Sn−1, let x0 ∈ � and ρ > 0 be such that Qν
ρ(x0) ⊂ �.

Upon translating and scaling, it is not restrictive to assume x0 = 0 and ρ = 1. For
every z ∈ R

m consider the sequence

w j (x) := ϕ( j x · ν)z , x ∈ Qν, (3.25)

where ϕ(t) := (t ∧ 1) ∨ 0 for every t ∈ R. Clearly, w j → uz(x) := zχ{x ·ν≥0} in
L1(Qν;Rm), and thus by the L1(Qν;Rm) lower semicontinuity ofF0 we conclude
that

g(z, ν) = F0(uz, 1; Qν) ≤ lim inf
j→∞ F0(w j , 1; Qν) = lim inf

j→∞

∫
Qν

hqc(∇w j )dx

= lim inf
j→∞

∫
{x∈Qν : 0≤x ·ν≤1/j}

hqc( j z ⊗ ν)dx = lim inf
j→∞

hqc( j z ⊗ ν)

j

≤ hqc,∞(z ⊗ ν) . (3.26)

On the other hand, given z ∈ R
m and any couple of sequences z j → z and

t j → 0+, denote by Mj the integer part of t
−1
j and define for every k ∈ N, k ≥ 3,

u j,k(x) :=
Mj−1∑
i=0

i t j z jχ[ i
kM j

, i+1
kM j

)
(x · ν) + zχ[ 1k , 12 ](x · ν).

We show that u j,k converges, as j → ∞, towk as defined in (3.25) for every k ≥ 3.
Indeed, for s := x · ν ∈ [ i

kM j
, i+1
kM j

) ⊆ [0, 1
k ) we have

|i t j z j − zks| ≤ |z − z j | + |z j | |i t j − ks|
≤ |z − z j | + |z j |

(
i

M j

∣∣Mj t j − 1
∣∣ + 1

Mj

)

≤ |z − z j | + |z j |
(∣∣Mj t j − 1

∣∣ + 1

Mj

)
→ 0
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uniformly in i , hence ‖wk − u j,k‖L∞(Qν ;Rm ) → 0 as j → ∞. Further,

Du j,k = D ju j,k = (t j z j ⊗ ν)Hn−1 ∪Mj−1
i=1 {x ∈ Qν : x · ν = i

kM j
}

+((z − (Mj − 1)t j z j ) ⊗ ν)Hn−1 {x ∈ Qν : x · ν = 1
k }.

Therefore, by the L1(Qν;Rm) lower semicontinuity of F0 we conclude that

1

k
hqc(kz ⊗ ν) = F0(wk, 1; Qν) ≤ lim inf

j→∞ F0(u j,k, 1; Qν)

= lim inf
j→∞

∫
Ju j,k

g([u j,k](x), ν) dHn−1(x)

= lim inf
j→∞ (Mj − 1)g(t j z j , ν) = lim inf

j→∞
g(t j z j , ν)

t j
.

As this holds for every sequence, this implies

hqc,∞(z ⊗ ν) ≤ lim inf
(t,z′)→(0,z)

g(t z′, ν)

t
. (3.27)

Indeed, the superior limit in the definition of hqc,∞ is actually a limit on rank-1
directions being hqc,∞ convex on those directions.

Let now z̃ j → 0 be a sequence for which

lim inf
z→0

g(z, ν)

hqc,∞(z ⊗ ν)
= lim

j→∞
g(̃z j , ν)

hqc,∞(̃z j ⊗ ν)
.

Upon setting z j := z̃ j
|̃z j | , up to subsequences wemay assume that z j → z∞ ∈ Sn−1.

In addition, t j := |̃z j | → 0. Therefore, being hqc,∞ one-homogeneous we have
that

g(̃z j , ν)

hqc,∞(̃z j ⊗ ν)
= g(t j z j , ν)

t j

1

hqc,∞(z j ⊗ ν)
.

By the latter equality, by (3.27) and by the continuity of hqc,∞ we infer

lim inf
z→0

g(z, ν)

hqc,∞(z ⊗ ν)
≥ 1 . (3.28)

The conclusion follows at once from (3.26) and (3.28).

We now identify hqc,∞ explicitly as stated in (2.10).

Proposition 3.10. For all ξ ∈ R
m×n

hqc,∞(ξ) = �(�
1/2)qc,∞(ξ) . (3.29)
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Proof. With fixed ξ ∈ R
m×n , the very definition of h in (2.6) and the growth

condition (2.3) easily imply

hqc,∞(ξ) = lim sup
t→∞

hqc(tξ)

t
≤ lim sup

t→∞
�(�

1/2)qc(tξ)

t
= �(�

1/2)qc,∞(ξ).

Let ε > 0, then for every t > 0 consider ϕt ∈ C∞
c (Q1;Rm) such that

hqc(tξ) ≥
∫
Q1

h(tξ + ∇ϕt (x))dx − ε . (3.30)

Note that

Et :={x ∈ Q1 : h(tξ + ∇ϕt (x)) = �(tξ + ∇ϕt (x))}
={x ∈ Q1 : �

1/2(tξ + ∇ϕt (x)) ≤ �} ,

so that ∫
Et

��
1/2(tξ + ∇ϕt (x))dx ≤ �2.

Therefore, being h ≥ 0 (cf. again (2.3)) from (3.30) we infer that

hqc(tξ) ≥
∫
Q1

��
1/2(tξ + ∇ϕt (x))dx − �2 − ε ≥ �(�

1/2)qc(tξ) − �2 − ε,

from which we conclude that

hqc,∞(ξ) ≥ lim sup
t→∞

�(�
1/2)qc(tξ)

t
= �(�

1/2)qc,∞(ξ).

From Propositions 3.9 and 3.10 we deduce straightforwardly the ensuing state-
ment.

Corollary 3.11. For all ν ∈ Sn−1 we have

lim
z→0

g(z, ν)

�(�
1/2)qc,∞(z ⊗ ν)

= 1.

We conclude this section by proving that, under our hypotheses, the superior
limit in the definition of (�

1/2)∞ is in fact a limit and that the operations of quasi-
convexification and of recession for �

1/2 commute.

Proposition 3.12. We have that

(i) (�
1/2)∞(ξ) = (�∞)

1/2(ξ) = lim
t→∞

�
1/2(tξ)

t
, for all ξ ∈ R

m×n;

(ii) (�
1/2)qc,∞ = (�

1/2)∞,qc.

(iii) In the special case �2(ξ) := dist2(ξ,SO(n)) one obtains hqc,∞(ξ) = �|ξ |
for all ξ ∈ R

m×n.
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Proof. The second equality in (i) follows immediately from (2.4). Then, the first is
a consequence of the very definition of recession function. Alternatively, by (2.5)
we infer that, for all δ > 0, there is Cδ > 0 satisfying

(�
1/2)∞(ξ) ≤ (1 + δ)�

1/2(ξ) + Cδ, for all ξ ∈ R
m×n . (3.31)

This, together with the definition of recession function, implies (i).
(ii) Since (�

1/2)qc ≤ �
1/2, we immediately deduce (�

1/2)qc,∞ ≤ (�
1/2)∞. By

[57, Rem. 2.2(ii)], (� 1/2)qc,∞ is quasiconvex, hence (�
1/2)qc,∞ ≤ (�

1/2)∞,qc.
Let us check the converse inequality. Let ξ ∈ R

m×n . By definition of quasi-
convexification and (3.31) we have

(�
1/2)∞,qc(ξ) ≤

∫
(0,1)n

(�
1/2)∞(ξ + ∇ϕ)dx ≤ (1 + δ)

∫
(0,1)n

�
1/2(ξ + ∇ϕ)dx + Cδ,

for all ϕ ∈ C∞
c ((0, 1)n;Rm). Hence, taking the infimum over ϕ gives

(�
1/2)∞,qc(ξ) ≤ (1 + δ)(�

1/2)qc(ξ) + Cδ.

Since (�
1/2)∞ and therefore (�

1/2)∞,qc are positively one-homogeneous, we obtain

(�
1/2)∞,qc ≤ (�

1/2)qc,∞,

which yields the thesis.
(iii) From the definition of �2 one easily obtains (�

1/2
2 )∞(ξ) = |ξ |. As this

function is quasiconvex, it coincides with (�
1/2
2 )∞,qc, the assertion follows then

from (ii) and Proposition 3.10.

4. Lower Bound

4.1. Domain of the Limits

In order to characterize the compactness properties and the space in which the
limit is finite it is useful to consider the scalar simplification of the functional,
F scal

ε : W 1,2(A;R × [0, 1]) → [0,∞],

F scal
ε (u, v; A) :=

∫
A

(
f 2ε (v)|∇u|2 + (1 − v)2

4ε
+ ε|∇v|2

)
dx . (4.1)

From (2.3), one immediately obtains that for any (u, v) ∈ W 1,2(A;Rm × [0, 1])
1

c
max

i=1,...,m
F scal

ε (ui , v; A)−cLn(A) ≤ Fε(u, v; A) ≤ c
m∑
i=1

F scal
ε (ui , v; A)+cLn(A)

(4.2)
with the same constant c ≥ 1 as in (2.3). In particular, [33, Prop. 6.1] implies that
if (uε, vε) → (u, v) in L1(�;Rm+1) with

lim inf
ε→0

Fε(uε, vε) < ∞
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then u ∈ (GBV (�))m and v = 1 Ln-a.e. � (for a different proof see Remark 4.7).
In addition, for every i ∈ {1, . . . ,m}

∫
�

hconvscal (|∇ui |)dx +
∫
Jui

gscal(|[ui ](x)|)dHn−1 + �|Dcui |(�) < ∞ . (4.3)

Here hconvscal : [0,∞) → [0,∞) is the convex function explicitly defined by

hconvscal (t) := (�t ∧ t2)conv =
{
t2, if t ∈ [0, �

2 ],
�t − �2

4 , otherwise,

(cf. (2.16)–(2.17)). We remark that it coincides with the simplified model hsimp for
m = 1 (cf. Lemma 2.3). Further, gscal : [0,∞) → [0, 1] is the function implicitly
defined by

gscal(t) := inf
Ut

∫ 1

0
|1 − β|

√
f 2(β)|α′|2 + |β ′|ds (4.4)

where Ut := {α, β ∈ W 1,2((0, 1)) : α(0) = 0, α(1) = t, 0 ≤ β ≤ 1, β(0) =
β(1) = 1}. In particular, gscal satisfies
(i) gscal is subadditive: gscal(t1 + t2) ≤ gscal(t1) + gscal(t2) for every t1, t2 ∈

[0,∞),
(ii) 0 ≤ gscal(t) ≤ 1 ∧ �t ,
(iii) gscal(t)

t → � as t → 0+

(cf. formula (1.6) in [33, Theorem 1.1] for the definition of gscal, and [33, Section 4]
for further properties).

In formula (4.3) the total variation of the Cantor part of the scalar function ui ∈
GBV (�), |Dcui |(�), is defined as the least upper bound of the family of measures
|Dc

(
(ui ∧ k) ∨ (−k)

)|(�), for k > 0 (cf. [7, Definition 4.33, Theorem 4.34]). A
similar construction can be performed for every u ∈ (GBV (�))m .

Precisely, [5, Lemma 2.10] or [45, Theorem 2.7] give that for every u ∈
(GBV (�))m for which |Dcu| is a finite measure on �, one can construct a vector
measure on�with total variation coinciding exactly with |Dcu|(B) for every Borel
subset B of �. For this reason such a vector measure, is denoted by Dcu. Let us
briefly recall the construction of Dcu. To this aim, the family of truncations Tk
defined in (3.11) is employed. Indeed, for every u ∈ (GBV (�))m such that |Dcu|
is a finite measure on �, it is possible to show that the following limit exists for
every Borel subset B of �

λ(B) := lim
k→∞ Dc(Tk(u))(B) . (4.5)

In addition, λ is actually independent from the chosen family of truncations. The
set function λ turns out to be a vector Radon measure on �, and moreover equality
|λ|(B) = |Dcu|(B) is true for every B as above.

Finally, for functions u ∈ (GBV (�))m satisfying estimate (4.3) it is also true
that

Hn−1({x ∈ Ju : u+(x) = ∞ or u−(x) = ∞}) = 0 (4.6)
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(cf. [5, Proposition 2.12, Remark 2.13]), here one works with the one-point com-
pactification of Rm . We remark that we deal with (GBV (�))m and not with the
strictly larger space GBV (�;Rm), which is not even a vector space, see [7, Re-
mark 4.27]. Using the notation of [45, Definition 3.1], the domain of finiteness of
the functional F0 in (2.13) can be written precisely as (GBV�(�))m × {1}, where
(GBV�(�))m is the space of functions u ∈ (GBV (�))m such that the energies
(4.3), computed for the truncations (ui ∧ k) ∨ (−k), are bounded uniformly with
respect to k, for i ∈ {1, . . . ,m}.

4.2. Surface Energy in BV

We prove below the lower bound in BV for the surface term. We recall that the
definition of the surface energy density g has been given in (2.12).

Proposition 4.1. Let u ∈ BV (�;Rm), and (uε, vε) → (u, 1) in L1(�;Rm+1).
Then for all A ∈ A(�)∫

Ju∩A
g([u], νu)dHn−1 ≤ lim inf

ε→0
Fε(uε, vε; A) (4.7)

where g has been defined in (2.12).

Proof. Let (uε, vε) → (u, 1) in L1(�;Rm+1) be such that

lim inf
ε→0

Fε(uε, vε; A) < ∞.

Up to subsequences and with a small abuse of notation, we can assume that the
previous lower limit is in fact a limit. Let us define the measures με ∈ M+

b (A)

με :=
(
f 2ε (vε)�(∇uε) + (1 − vε)

2

4ε
+ ε|∇vε|2

)
Ln A.

Extracting a further subsequence, we can assume that

με ⇀ μ weakly∗ inM(A) = (C0
c (A))′ (4.8)

as ε → 0, for some μ ∈ M+
b (A), so that

lim inf
ε→0

Fε(uε, vε; A) ≥ μ(A).

Equation (4.7) will follow once we have proved that

dμ

dHn−1 Ju
(x0) ≥ g([u](x0), νu(x0)), Hn−1-a.e. x0 ∈ Ju ∩ A . (4.9)

We will prove the last inequality for points x0 ∈ Ju ∩ A such that

dμ

dHn−1 Ju
(x0) = lim

ρ→0

μ(Qν
ρ(x0))

Hn−1(Ju ∩ Qν
ρ(x0))

exists finite,

lim
ρ→0

Hn−1(Ju ∩ Qν
ρ(x0))

ρn−1 = 1,
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where ν := νu(x0) and Qν
ρ(x0):= x0 + ρQν is the cube centred in x0, with side

length ρ, and one face orthogonal to ν. We remark that such conditions define a set
of full measure in Ju ∩ A.

For x0 ∈ Ju ∩ A as above, we get

dμ

dHn−1 Ju
(x0) = lim

ρ→0

μ(Qν
ρ(x0))

ρn−1 = lim
ρ∈I

ρ→0

lim
ε→0

με(Qν
ρ(x0))

ρn−1

where we used (4.8) and

I :=
{
ρ ∈ (0,

2√
n
dist(x0, ∂A)) : μ(∂Qν

ρ(x0)) = 0
}
.

We introduce

γε := inf{z ∈ [0, 1] : f (z) ≥ ε−1/2}= 1

1 + �ε1/2
,

ṽε := min{vε, γε}
and compute

Fε(uε, ṽε; Qν
ρ(x0)) = Fε(uε, vε; Qν

ρ(x0) \ {vε > γε})
+

∫
Qν

ρ(x0)∩{vε>γε}
�(∇uε)dx

+ (1 − γε)
2

4ε
Ln(Qν

ρ(x0) ∩ {vε > γε})

≤ Fε(uε, vε; Qν
ρ(x0)) + �2

4
ρn ,

where in the last step we used that the definition of γε implies 1 − γε = �γεε
1/2

≤ �ε1/2. Therefore

dμ

dHn−1 Ju
(x0) ≥ lim sup

ρ∈I
ρ→0

lim sup
ε→0

Fε(uε, ṽε; Qν
ρ(x0))

ρn−1 . (4.10)

By (2.5), for every δ ∈ (0, 1) one has �(ξ) ≥ (1 − δ)�∞(ξ) for ξ sufficiently
large. As �∞ is continuous, there is C(δ) > 0 such that

�(ξ) + C(δ) ≥ (1 − δ)�∞(ξ) for all ξ.

We choose δρ → 0 such that ρC(δρ) → 0. As ε f 2(ṽε) ≤ 1, we have

ε f 2(ṽε)�(∇uε) ≥ (1 − δρ)ε f 2(ṽε)�∞(∇uε) − C(δρ)

with ρ1−nLn(Qν
ρ)C(δρ) = ρC(δρ) → 0 as ρ → 0. We conclude by (4.10) that

dμ

dHn−1 Ju
(x0) ≥ lim sup

ρ∈I
ρ→0

lim sup
ε→0

F∞
ε (uε, ṽε; Qν

ρ(x0))

ρn−1 , (4.11)
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whereF∞
ε has been defined in (2.11). Setting y := (x−x0)/ρ ∈ Qν , and changing

variable in the previous expression we get

dμ

dHn−1 Ju
(x0) ≥ lim sup

ρ∈I
ρ→0

lim sup
ε→0

F∞
ε (uρ

ε , ṽρ
ε ; Qν),

where wρ(y) := w(ρy+ x0) for y ∈ Qν . Recalling that uε → u in L1(�;Rm), by
diagonalization we can find subsequences {ρk}k and {ε(ρk)}k such that uρk

ε(ρk )
→

[u](x0)χ{y·ν>0} + u−(x0) in L1(Qν;Rm) and

dμ

dHn−1 Ju
(x0) ≥ lim

k→∞F∞
ε(ρk )

(uρk
ε(ρk )

, ṽ
ρk
ε(ρk )

; Qν).

Being F∞
ε invariant for translations of the first argument, we find

dμ

dHn−1 Ju
(x0) ≥ lim inf

k→∞ F∞
ε(ρk)

(uρk
ε(ρk )

, ṽ
ρk
ε(ρk )

; Qν) ≥ g([u](x0), νu(x0)),
that is (4.9), and this concludes the proof.

4.3. Diffuse Part in BV

Proposition 4.2. Let u ∈ BV (�;Rm), (uε, vε) → (u, 1) in L1(�;Rm+1), A ∈
A(�). Then∫

A
hqc(∇u)dx +

∫
A
hqc,∞(dDcu) ≤ lim inf

ε→0
Fε(uε, vε; A) (4.12)

where hqc and hqc,∞ have been defined in (2.6)–(2.9).

We remark that this statement can be proven using the lower-semicontinuity
result by Fonseca and Leoni [55, Th. 1.8], following an argument similar to that
used in [5, Subsection 4.1]. Instead, our proof is based on the following result from
[3, Theorem 4.1], see also [7, Theorem 5.47].

Theorem 4.3. (Ambrosio-Dal Maso) Let φ : Rm×n → [0,∞) be quasiconvex and
such that

0 ≤ φ(ξ) ≤ c(1 + |ξ |) for all ξ ∈ R
m×n,

and define F : L1(�;Rm) → R by

F(u) :=
⎧⎨
⎩
∫

�

φ(∇u)dx, if u ∈ W 1,1(�;Rm),

∞, otherwise in L1(�;Rm).

Then for any u ∈ BV (�;Rm) we have

sc−(L1)-F(u) =
∫

�

φ(∇u)dx +
∫

�

φ∞(dDsu),

where φ∞(ξ) := lim supt→∞ φ(tξ)/t . In particular the latter functional is lower
semicontinuous with respect to the strong L1(�;Rm) convergence.
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We start with a truncation result.

Lemma 4.4. There are two functions α, β : (0, 1) → (0, 1), with limδ↑1 αδ = 1
and limδ↑1 βδ = 0, such that for any ε > 0, (uε, vε) ∈ W 1,2(�;Rm × [0, 1]),
δ ∈ (0, 1) and A ∈ A(�) there is ũδ

ε ∈ GSBV (A;Rm) such that

Hδ(ũ
δ
ε; A) ≤ Fε(uε, vε; A) + h(0)Ln(A ∩ {vε ≤ δ}),

where Hδ is defined for A ∈ A(�) and w ∈ L1(A;Rm) by

Hδ(w; A) :=
⎧⎨
⎩

αδ

∫
A
hqc(∇w)dx + βδHn−1(A ∩ Jw), if w ∈ GSBV (A;Rm),

∞, otherwise.
(4.13)

If one has (uε, vε) → (u, 1) in L1(�;Rm+1) as ε → 0, then ũδ
ε → u in L1(A;Rm)

as ε → 0, for any fixed δ ∈ (0, 1).

We stress that, for the sake of notational simplicity, we will omit here and below
the explicit dependence of ũδ

ε on the set A.

Proof. Wefix δ ∈ (0, 1) and ε > 0.We compute, for any pair (u, v) ∈ W 1,2(�;Rm

× [0, 1]),

Fε(u, v; A) ≥
∫

{ε f 2(v)>1}∩A
�(∇u)dx +

∫
{ε f 2(v)≤1}∩A

(
ε f 2(v)�(∇u) + δ2

(1 − v)2

4ε

)
dx

+
∫
A

(
(1 − δ2)

(1 − v)2

4ε
+ ε|∇v|2

)
dx

≥
∫

{ε f 2(v)>1}∩A
�(∇u)dx + δ

∫
{ε f 2(v)≤1}∩A

v��
1/2(∇u)dx

+
√
1 − δ2

∫
A

|∇(�(v))|dx

≥ δ

∫
A

(
�(∇u) ∧ v��

1/2(∇u)
)
dx +

√
1 − δ2

∫
A

|∇(�(v))|dx

≥ δ

∫
A

vh(∇u)dx +
√
1 − δ2

∫
A

|∇(�(v))|dx, (4.14)

where h has been introduced in (2.6) and � : [0, 1] → [0, 1
2 ] is defined by

�(t) :=
∫ t

0
(1 − s)ds = t − 1

2
t2 . (4.15)

We observe that � is strictly increasing, �(1) = 1
2 and in particular � is bijective.

By the coarea formula,
∫
A

|∇(�(v))|dx =
∫ 1/2

0
Hn−1(A ∩ ∂∗{�(v) > t})dt.

Therefore there is t̄ ∈ (�(δ2),�(δ)) such that

(�(δ) − �(δ2))Hn−1(A ∩ ∂∗{�(v) > t̄}) ≤
∫
A

|∇(�(v))|dx .
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We define

ũ := uχ{�(v)>t̄}∩A ∈ GSBV (A;Rm)

(dropping the dependence on both ε and δ from ũ) and obtain from (4.14),

Fε(u, v; A) ≥δ�−1(t̄)
∫
A
h(∇ũ)dx +

√
1 − δ2(�(δ) − �(δ2))Hn−1(A ∩ Jũ)

−h(0)Ln({�(v)≤t̄}∩A).

We recall that t̄ ≥ �(δ2) and that � is increasing, define αδ := δ3, βδ :=√
1 − δ2(�(δ) − �(δ2)), and conclude

Fε(u, v; A) ≥ αδ

∫
A
h(∇ũ)dx + βδHn−1(A ∩ Jũ)−h(0)Ln({v ≤ δ}∩A).

We also remark that ‖ũ − u‖L1(A) ≤ ‖u‖L1({v≤�−1(t̄)}), hence, if the sequence
uε is equiintegrable and vε → 1 in L1(A), we obtain that uε − ũε → 0 in
L1(A;Rm).

The next lemma is a minor reformulation of [64, Lemma 5.1]. The latter im-
proves the statement of [7, Theorem 3.95] on the convergence of the blow-ups of a
BV -function in a Cantor point. A more general version of this result can be found
in [70, Lemma 10.6].

Lemma 4.5. Let u ∈ BV (�;Rm) and let η : � → Sm−1, ξ : � → Sn−1 be Borel
maps such that Dcu = η ⊗ ξ |Dcu|. Then, for |Dcu|-a.e. x ∈ � and for all given
μ ∈ M+(�), there exists a sequence ρi → 0, as i → ∞, such that

μ(∂Qξ(x)
ρi

(x)) = 0, for all i ≥ 1, (4.16)

tρi := |Du|(Qξ(x)
ρi (x))

ρn
i

→ ∞, tρiρi → 0, (4.17)

u(x + ρi y) − u
Qξ(x)

ρi (x)

tρi ρi
→ η(x)χ(y · ξ(x)) strictly-BV (Qξ(x);Rm),

(4.18)

as i → ∞, for some nondecreasing function χ : (−1/2, 1/2) → R with

|Dχ |((−1/2, 1/2)) = 1, (4.19)

where u
Qξ(x)

ρi (x)
denotes the average of u over Qξ(x)

ρi (x).

Proof. For simplicity we will denote Q1 := Qξ(x), Qρ(x) := x + ρQ1, and

uρ
x (y) :=

u(x + ρy) − u
Qξ(x)

ρ (x)

tρρ
, for y ∈ Q1.
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By general properties of BV functions (4.17) holds for the entire family ρ → 0
and by Radon-Nikodym differentiation

lim
ρ→0

Dcuρ
x (Q1)

|Dcuρ
x |(Q1)

= η(x) ⊗ ξ(x), (4.20)

|Dcu|-a.e. x ∈ �. Up to a further |Dcu|-negligible set, [7, Theorem 3.95] and [64,
Lemma 5.1] provide a sequence ρi → 0 such that

|Duρi
x | ⇀ γ weakly*-M(Q1), (4.21)

uρi
x (y) → ux (y) := η(x)χ(y · ξ(x)) weakly*-BV (Q1;Rm), (4.22)

as i → ∞, for some γ ∈ M+(Q1) with γ (Q1) = 1 and some nondecreasing
function χ : (−1/2, 1/2) → R with |Dχ |((−1/2, 1/2)) ≤ 1.

Let us check that the sequence ρi → 0 can be chosen such that (4.16) holds.
Indeed, fixed i ∈ N\{0}, we have μ(∂Qsρi (x0)) = 0 for L1-a.e. s ∈ (0, 1/ρi).
Moreover, the maps

s ∈ (0, 1/ρi) �→ usρix ∈ L1(Q1,R
m),

s ∈ (0, 1/ρi) �→ |Dusρix | ∈ M+(Q1)

are continuous as s → 1−, respectively for the convergences L1(Q1;Rm) and
weak*-M(Q1), by definition of u

ρ
x and tρ . Hence, we can find si ∈ (0, 1) such that

(4.16), (4.17) and the L1(Q1,R
m) convergence in (4.18) hold for siρi in place of

ρi .
We next check (4.19). By (4.21) and (4.22) we have that |Dux | ≤ γ . Hence,

for t ∈ (0, 1) such that γ (∂Qt ) = 0, recalling that |Duρi
x |(Q1) = γ (Q1) = 1, we

obtain

|Duρi
x |(Qt ) → γ (Qt ), |Duρi

x |(Q1 \ Qt ) → γ (Q1 \ Qt ),

Duρi
x (Qt ) → Dux (Qt ).

We infer that

lim sup
i→∞

|Duρi
x (Q1) − Dux (Q1)| ≤ 2γ (Q1 \ Qt ),

and letting t → 1− gives Duρi
x (Q1) → Dux (Q1) as i → ∞. In conclusion

Dux (Q1) = lim
i→∞ Duρi

x (Q1) = lim
i→∞

Duρi
x (Q1)

|Duρi
x |(Q1)

= η(x) ⊗ ξ(x),

and then Dχ(−1/2, 1/2) = 1. This gives (4.19) by monotonicity of χ . Finally,
|Dux |(Q1) = 1 provides the strict-BV (Q1;Rm) convergence in (4.18).

Proof of Proposition 4.2. Step 0: Preparation. We assume (uε, vε) → (u, 1) in
L1(�;Rm+1) for some u ∈ BV (�;Rm). Let A ⊆ A(�), δ ∈ (0, 1) and let ũδ

ε be
as in Lemma 4.4. We define the measure

μδ
ε := αδh

qc(∇ũδ
ε)Ln A + βδHn−1 (A ∩ Jũδ

ε
),
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so thatμδ
ε(A) = Hδ(ũδ

ε; A) ≤ Fε(uε, vε; A)+h(0)Ln(A ∩ {vε ≤ δ}). Passing to a
subsequence we can assume that lim

ε→0
Fε(uε, vε; A) exists finite and that μδ

ε ⇀ μδ

weakly∗ in the sense of measures on A as ε → 0, for some μδ ∈ M+
b (A). If we

can show that

dμδ

dLn
(x0) ≥ αδh

qc(∇u(x0)) for Ln-a.e. x0 ∈ A (4.23)

and

dμδ

d|Du| (x0) ≥ αδh
qc,∞

(
dDu

d|Du| (x0)
)

for |Dcu|-a.e. x0 ∈ A (4.24)

for all δ ∈ (0, 1), then the conclusion follows.
Step 1: Absolutely continuous part. We prove (4.23). We can assume that the

left-hand side is finite. First we observe that for Ln-a.e. x0 ∈ A one has

dμδ

dLn
(x0) = lim

ρ→0

μδ(Qρ(x0))

ρn
= lim

ρ→0
ρ∈I

lim
ε→0

μδ
ε(Qρ(x0))

ρn

where Qρ(x0) := x0 + (− 1
2ρ, 1

2ρ)n and I := {ρ ∈ (0, 2√
n
dist(x0, ∂A)) : μδ

(∂Qρ(x0)) = 0}. We define uρ : Q1 → R
m by

uρ(y) := u(x0 + ρy) − u(x0)

ρ
.

By the properties of BV , for Ln-a.e. x0 ∈ A, after possibly extracting a further
subsequence, uρ(y) → ∇u(x0)y in L1(Q1;Rm) as ρ → 0. We further define

uρ
ε (y) := ũδ

ε(x0 + ρy) − u(x0)

ρ

so that uρ
ε → uρ in L1(Q1;Rm) as ε → 0 for any fixed ρ > 0 (and δ ∈ (0, 1)). We

take a diagonal subsequence so that wi (y) := uρi
εi (y) → ∇u(x0)y in L1(Q1;Rm)

and

dμδ

dLn
(x0) = lim

i→∞

[∫
Q1

αδh
qc(∇wi )dx + βδ

ρi
Hn−1(Jwi ∩ Q1)

]
. (4.25)

We fix M ∈ N and for every i , by averaging we choose ki ∈ {M + 1, . . . , 2M}
such that ∫

{aki <|wi |<aki+1}
hqc(∇wi )dx ≤ 1

M

∫
Q1

hqc(∇wi )dx , (4.26)

which implies that ŵi := Tki (wi ), with Tki defined in (3.11), obeys

∫
Q1

hqc(∇ŵi )dx ≤ (1 + C

M
)

∫
Q1

hqc(∇wi )dx+CLn({|wi | ≥ aki }). (4.27)
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Indeed, in view of (2.8) and ‖∇Tki ‖L∞(Rm ) ≤ 1 we have
∫
Q1

hqc(∇ŵi )dx ≤
∫

{|wi |≤aki }
hqc(∇wi )dx

+
∫

{aki <|wi |<aki+1}
hqc(∇ŵi )dx + h(0)Ln({|wi | ≥ aki+1})

≤
∫
Q1

hqc(∇wi )dx + C
∫

{aki <|wi |<aki+1}
hqc(∇wi ) + CLn({|wi | ≥ aki }) .

The inequality in (4.27) then follows from (4.26).
Moreover, note that if aM > ‖∇u(x0)y‖L∞(Q1) + 1 then wi → ∇u(x0)y

implies ŵi → ∇u(x0)y in L1(Q1;Rm).
We recall that Tki ∈ C1 implies Hn−1(Jŵi ∩ Q1) ≤ Hn−1(Jwi ∩ Q1). From

(4.25) and ρi → 0 we deduce Hn−1(Jwi ∩ Q1) → 0 and, with |ŵi | ≤ aM+1
pointwise,

|Dsŵi |(Q1) =
∫
Jŵi

∩Q1

|[ŵi ]|dHn−1 ≤ 2aM+1Hn−1(Jwi ∩ Q1) → 0

and therefore ∫
Q1

hqc,∞(dDsŵi ) ≤ c|Dsŵi |(Q1) → 0.

With (4.25) and (4.27), using that wi → ∇u(x0)y in measure, we get

αδ lim
i→∞

[∫
Q1

hqc(∇ŵi )dx +
∫
Q1

hqc,∞(dDsŵi )

]
≤ (1 + C

M
)
dμδ

dLn
(x0).

By the lower semicontinuity of the functional in the left-hand side (Theorem 4.3)
and ŵi → ∇u(x0)y in L1(Q1;Rm) we deduce

αδh
qc(∇u(x0)) ≤ (1 + C

M
)
dμδ

dLn
(x0)

for Ln-a.e. x0, every M , and every δ. This proves (4.23).
Step 2: Cantor part. We prove (4.24). By Alberti’s rank-one theorem we can

assume without loss of generality that

dDu

d|Du| (x0) = η(x0) ⊗ ξ(x0) (4.28)

with η(x0) ∈ Sm−1, ξ(x0) ∈ Sn−1 for |Dcu|-a.e. x0 ∈ A. We fix a unit cube
Q1 := Qξ(x0) with one face orthogonal to ξ(x0), write Qρ(x0) := x0 + ρQ1, and
select a sequence ρi → 0 as in Lemma 4.5, applied for the given u ∈ BV (�,Rm)

and μ := μδ .
As above, for |Dcu|-a.e. x0 one has

dμδ

d|Du| (x0) = lim
ρ→0

μδ(Qρ(x0))

|Du|(Qρ(x0))
= lim

i→∞ lim
ε→0

μδ
ε(Qρi (x0))

|Du|(Qρi (x0))
.
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We define

uρ
ε (y) := ũδ

ε(x0 + ρy) − uQρ(x0)

tρρ
,

so that, defining ux0(y) := η(x0)χx0(y · ξ(x0)), limρ→0 limε→0 u
ρ
ε = ux0 in

L1(Q1;Rm) (for every δ ∈ (0, 1)) and

dμδ

d|Du| (x0) = lim
i→∞ lim

ε→0

[
αδ

ρn
i tρi

∫
Qρi (x0)

hqc(∇ũδ
ε)dx + βδ

ρn
i tρi

Hn−1(Jũδ
ε
∩ Qρi (x0))

]

= lim
i→∞ lim

ε→0

[
αδ

tρi

∫
Q1

hqc(tρi ∇uρi
ε )dy + βδ

ρi tρi
Hn−1(Juρi

ε
∩ Q1)

]
.

Taking a diagonal subsequence we see that there is εi → 0 such that

wi := uρi
εi

→ ux0 in L1(Q1;Rm)

with |Dux0 |(Q1) = 1, and setting ti := tρi → ∞,

dμδ

d|Du| (x0) = lim
i→∞

[
αδ

ti

∫
Q1

hqc(ti∇wi )dy + βδ

ρi ti
Hn−1(Jwi ∩ Q1)

]
.

We fix M > 0 and, by averaging, for every i choose ki ∈ {M + 1, . . . , 2M} such
that ∫

Q1∩{aki <|wi |<aki+1}
hqc(ti∇wi )dx ≤ 1

M

∫
Q1

hqc(ti∇wi )dx,

which implies that ŵi := Tki (wi ) ∈ SBV ∩ L∞(Q1;Rm) obeys, arguing as in
Step 1 above and by taking into account that ti → ∞,

lim sup
i→∞

∫
Q1

αδ

ti
hqc(ti∇ŵi )dy + βδ

ρi ti
Hn−1(Jŵi ∩ Q1)

≤ (1 + C

M
) lim
i→∞

∫
Q1

αδ

ti
hqc(ti∇wi )dy + βδ

ρi ti
Hn−1(Jwi ∩ Q1)

+ C

ti
Ln({|wi | > aki })

= (1 + C

M
)
dμδ

d|Du| (x0). (4.29)

Further, sinceχ is bounded, forM sufficiently largewe have ri := ‖ŵi−ux0‖L1(Q1)

→ 0. For every i we select qi ∈ (1 − r1/2i , 1) such that
∫

∂Qqi

|ŵ−
i − u+

x0 |dHn−1 ≤ 1

r1/2i

‖ŵi − ux0‖L1(Q1)
= r1/2i → 0,

where ŵ−
i and u+

x0 denote the inner and outer trace, respectively, and define

w∗
i :=

{
ŵi , in Qqi ,

ux0 , in Q1 \ Qqi .
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Then, the choice of qi , (4.29), and ρi ti → 0 yield

∫
Q1

hqc,∞(dDsw∗
i ) ≤ cr1/2i +cMHn−1(Jŵi ∩Q1)+

∫
Q1\Qqi

hqc,∞(dDsux0) → 0.

(4.30)
In addition, we get from (2.8) and ti → ∞

lim
i→∞

∫
Q1\Qqi

1

ti
hqc

(
ti∇ux0

)
dy ≤ lim

i→∞ c
∫
Q1\Qqi

d|Dux0 | = 0 . (4.31)

Further, w∗
i ∈ BV (Q1;Rm) and supp(w∗

i − ux0) ⊂⊂ Q1. By [7, Lemma 5.50]
and Theorem 4.3

∫
Q1

1

ti
hqc

(
ti∇w∗

i

)
dy +

∫
Q1

hqc,∞(dDsw∗
i ) ≥ 1

ti
hqc

(
ti Dux0(Q1)

)
.

Therefore, being Dux0(Q1) = η(x0) ⊗ ξ(x0)Dχ((−1/2, 1/2)) a rank-one matrix,
the latter estimate together with (4.30) and (4.31) yield that

hqc,∞(Dux0(Q1)) = lim
i→∞

1

ti
hqc(ti Dux0(Q1))

≤ lim inf
i→∞

[∫
Q1

1

ti
hqc(ti∇w∗

i )dy +
∫
Q1

hqc,∞(dDsw∗
i )

]

≤ lim inf
i→∞

∫
Q1

1

ti
hqc(ti∇ŵi )dy.

Recalling (4.29), we infer that

αδh
qc,∞(Dux0(Q1)) ≤ (1 + C

M
)
dμδ

d|Du| (x0),

for every M sufficiently large. Therefore, by letting M → ∞ we conclude that

αδh
qc,∞(Dux0(Q1)) ≤ dμδ

d|Du| (x0).

As Dux0(Q1) = η(x0) ⊗ ξ(x0)Dχ((−1/2, 1/2)) = η(x0) ⊗ ξ(x0), this and (4.28)
conclude the proof of (4.24).

The lower bound in BV follows at once from the lower bounds for the surface
and the diffuse parts.

Theorem 4.6. Let u ∈ BV (�;Rm). Then, for all A ∈ A(�)

F0(u, 1; A) ≤ �(L1)- lim inf
ε→0

Fε(u, 1; A), (4.32)

where Fε and F0 have been defined in (2.1) and (2.13).
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Proof. For simplicity, we will prove the statement for A = �. We argue by local-
ization. Assume that (uε, vε) → (u, 1) in L1(�;Rm+1), with u ∈ BV (�;Rm),
and that

lim inf
ε→0

Fε(uε, vε) < ∞.

Set

μ(A) := lim inf
ε→0

Fε(uε, vε; A), for all A ∈ A(�),

λ := Ln � + Hn−1 Ju + |Dcu|
ψ1 := g([u], νu), ψ2 := hqc(∇u) + hqc,∞(

dDcu

d|Dcu| ),

and notice thatμ is a monotone set function which is superadditive on disjoint open
sets, λ is a positive Borel measure and ψi are positive Borel functions satisfying

μ(A) ≥
∫
A

ψidλ, for i = 1, 2 and A ∈ A(�)

thanks to Propositions 4.1 and 4.2. By [28, Proposition 1.16] we conclude

μ(�) ≥
∫

�

(ψ1 ∨ ψ2)dλ,

which gives the thesis.

Remark 4.7. From the argument in Lemma 4.4 one can also deduce directly that
u ∈ (GBV (�))m . Indeed, consider (uε, vε) → (u, v) in L1(�;Rm+1) with
supε Fε(uε, vε) < ∞. Necessarily v = 1 Ln-a.e. on �. Moreover, with fixed
δ ∈ (0, 1), keeping the notation introduced in Lemma 4.4, using the growth condi-
tions on h (see (2.8)) we get

∫
�

|∇ũδ
ε|dx + Hn−1(Jũδ

ε
) ≤ c(Fε(uε, vε) + 1) ,

for some positive constant c depending on δ and on Ln(�). In particular, for each
component (ũδ

ε)i of ũ
δ
ε, i ∈ {1, . . . , n}, we have (ũδ

ε)i ∈ GSBV (�) and

∫
�

|∇(ũδ
ε)i |dx + Hn−1(J(ũδ

ε)i
) ≤ c(Fε(uε, vε) + 1) .

Then, if k > 0 and τk(s) := (s ∨ k) ∧ (−k), from the estimate above we infer
that |D(τk((ũδ

ε)i ))|(�) ≤ Ck , with Ck > 0 depending on k and on the sequence,
but not on ε. Therefore, there is a subsequence that converges weakly in BV (�).
This implies, recalling that ũδ

ε → u in L1(�;Rm) as ε → 0 for all δ ∈ (0, 1), that
τk(ui ) ∈ BV (�) for all k. In conclusion, we deduce that ui ∈ GBV (�), for all
i ∈ {1, . . . , n}, and thus u ∈ (GBV (�))m .
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4.4. Lower Bound in GBV

In this section we extend the validity of the lower bound Theorem 4.6 to ev-
ery u ∈ (GBV (�))m . We first prove that the functional F0 is continuous under
truncations.

Proposition 4.8. Let F0 and Tk be defined as in (2.13) and (3.11), respectively.
Then, for all u ∈ (GBV (�))m with F0(u, 1) < ∞ we have

lim
k→∞F0(Tk(u), 1) = F0(u, 1).

Proof. We prove the convergence of the volume, Cantor and surface terms sepa-
rately. It is useful to recall for the rest of the proof that ‖∇Tk‖L∞(Rm ) ≤ 1.

For the volume part, we observe that (2.8) implies |∇u| ∈ L1(�). We have
∇(Tk(u)) = ∇u for Ln-a.e. x ∈ �k := {|u| ≤ ak}, therefore in view of (2.8) we
get

∣∣∣
∫

�

hqc
(∇(Tk(u))

)
dx −

∫
�

hqc(∇u)dx
∣∣∣ ≤ c

∫
�\�k

(1 + |∇u|)dx,

so that, as ak → ∞ as k ↑ ∞, we conclude

lim
k→∞

∫
�

hqc
(∇(Tk(u))

)
dx =

∫
�

hqc(∇u)dx .

For the surface term we recall that JTk (u) ⊆ Ju for every k ∈ N with νTk (u) = νu
for Hn−1-a.e. x ∈ JTk (u). Then, thanks to (4.6) we infer that (Tk(u))± → u±,
χJTk (u)

→ χJu and |[Tk(u)]| ≤ |[u]| Hn−1-a.e. in Ju , and then we conclude

lim
k→∞

∫
JTk (u)

g([Tk(u)], νTk (u))dHn−1 = lim
k→∞

∫
Ju
g([Tk(u)], νu)χJTk (u)

dHn−1

=
∫
Ju
g([u], νu)dHn−1

thanks to Lemmata 3.7 and 3.8 (ii) and to the Dominated Convergence Theorem.
For what the Cantor part of the energy is concerned, by (2.8) we have that

0 ≤ hqc,∞(ξ) ≤ c|ξ |. Further, the definitions of Tk and of Dcu outlined in (4.5)
yield in particular

Dc(Tk(u)) �k = Dcu �k

|Dc(Tk(u))| � |Dcu|, d|Dc(Tk(u))|
d|Dcu| ≤ 1.

Thus,
∣∣∣
∫

�

hqc,∞(dDc(Tk(u))) −
∫

�k

hqc,∞(dDcu)

∣∣∣
≤ c

∫
�\�k

d|Dcu| = c|Dcu|(� \ �k),
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and therefore

lim
k→∞

∫
�

hqc,∞(dDc(Tk(u))) =
∫

�

hqc,∞(dDcu),

which concludes the proof.

We are ready to prove the lower bound for generalized functions of bounded
variations.

Theorem 4.9. Let u ∈ (GBV (�))m. Then

F0(u, 1) ≤ �(L1)- lim inf
ε→0

Fε(u, 1), (4.33)

where Fε and F0 have been defined in (2.1) and (2.13).

Proof. Let u ∈ (GBV (�))m and let (uε, vε) ∈ W 1,2(�;Rm+1) be such that
(uε, vε) → (u, 1) in L1(�;Rm+1), with vε ∈ [0, 1] Ln-a.e. in �. Without loss
of generality we can suppose that lim infε→0 Fε(uε, vε) < ∞, that the latter is
actually a limit (up to a subsequence not relabeled), and that (uε, vε) → (u, 1)
Ln-a.e. in �. In particular, from Sect. 4.1 we infer that u ∈ (GBV (�))m , with
|∇u| ∈ L1(�) and satisfying (4.6) and (4.3), so that F0(u, 1) < ∞.

Recalling the definition of the truncation Tk in (3.11), we have that Tk(uε) →
Tk(u) in L1(�;Rm) for any k and that Tk(u) ∈ BV (�;Rm), beingF0(u, 1) < ∞.
Hence, we can apply Theorem 4.6 to say that

F0(TkM (u), 1) ≤ lim inf
ε→0

Fε(TkM (uε), vε). (4.34)

We claim that for all M ∈ N there is kM ∈ {M + 1, . . . , 2M} independent of ε

such that after extracting a further subsequence

Fε(TkM (uε), vε) ≤
(
1 + c

M

)
Fε(uε, vε)+cLn({|uε| > aM }), (4.35)

for some c > 0 independent of ε and of M . Given this for granted, we get by (4.34),
(4.35) and by the convergence uε → u in measure

lim sup
M→∞

F0(TkM (u), 1) ≤ lim inf
ε→0

Fε(uε, vε).

Finally, using the continuity under truncations forF0 established in Proposition 4.8,
we obtain

F0(u, 1) ≤ lim inf
ε→0

Fε(uε, vε)

and hence (4.33).
It remains to prove (4.35). To this aim we argue as in Proposition 3.2 using

De Giorgi’s averaging-slicing method on the range. First, for all k ∈ N we split the
energy contributions

Fε(Tk(uε), vε) = Fε(uε, vε; {|uε| ≤ ak}) + Fε(Tk(uε), vε; {ak < |uε| < ak+1})
+Fε(0, vε; {|uε| ≥ ak+1}). (4.36)
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By (2.3) and the definition of Tk , the last but one term in the previous expression
can be estimated as

Fε(Tk(uε), vε; {ak < |uε| < ak+1}) ≤ c
∫

{ak<|uε |<ak+1}
f 2ε (vε)�(∇uε)dx

+cLn({ak < |uε| < ak+1}) + Fε(0,vε; {ak < |uε| < ak+1}) , (4.37)

for some c > 0. Summing (4.36) and (4.37) and averaging, we conclude that there
exists kM,ε ∈ {M + 1, . . . , 2M} such that

Fε(TkM,ε
(uε), vε)≤ 1

M

2M∑
k=M+1

Fε(Tk(uε), vε)

≤
(
1 + c

M

)
Fε(uε, vε)+cLn({|uε| > aM }) ,

for some c > 0. As ε → 0, there exists a subsequence of {kM,ε} that is independent
of ε. This yields (4.35) and concludes the proof.

5. Upper Bound

In this Section we prove the � − lim sup inequality in Theorem 2.1. In or-
der to be able to obtain existence of minimizers for the perturbed functionals (see
Sect. 6), we consider a perturbed version of the functional which includes an addi-
tional uniformly coercive term, and prove the upper bound directly for the modified
functional. We fix a function η : (0, 1] → [0, 1] such that

lim
ε→0

ηε

ε
= 0 (5.1)

and define

Fη
ε (u, v; A) := Fε(u, v; A) + ηε

∫
A

�(∇u)dx, (5.2)

where Fε has been defined in (2.1).
One key ingredient in the proof of the upper bound is that the �-limit of Fη

ε

satisfies the hypotheses of [20, Theorem 3.12], so that it can be represented as an
integral functional. Its diffuse and surface densities will be identified by a direct
computation.

In order to prove that �- limε→0 Fη
ε (u, 1; ·) is a Borel measure, we first check

the weak subadditivity of the �-upper limit of Fη
ε .

Lemma 5.1. Let u ∈ L1(�;Rm), let A′, A, B ∈ A(�) with A′ ⊂⊂ A, then

�(L1)- lim sup
ε→0

Fη
ε (u, 1; A′ ∪ B)

≤ �(L1)- lim sup
ε→0

Fη
ε (u, 1; A) + �(L1)- lim sup

ε→0
Fη

ε (u, 1; B), (5.3)

where Fη
ε has been defined in (5.2).
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Proof. To simplify the notation let us set F ′′ := �(L1)- lim supε→0 F
η
ε . It is

not restrictive to assume that the right-hand side of (5.3) is finite, so that u ∈
(GBV ∩ L1(A ∪ B))m . Let (uA

ε , vA
ε ), (uB

ε , vB
ε ) ∈ W 1,2(�;Rm+1) be such that

(uJ
ε , v J

ε ) → (u, 1) in L1(�;Rm) × L1(�) , (5.4)

and

lim sup
ε→0

Fη
ε (uJ

ε , v J
ε ; J ) = F ′′(u, 1; J ), (5.5)

for J ∈ {A, B}.
Step 1. Estimate (5.3) is valid if u ∈ BV ∩ L2(A ∪ B;Rm) and (5.5) holds

for two sequences converging to u in L2(�;Rm). For δ := dist(A′, ∂A) > 0 and
some M ∈ N, we set for all i ∈ {1, . . . , M}

Ai :=
{
x ∈ � : dist(x, A′) <

δ

M
i

}
,

and A0 := A′, so that Ai−1 ⊂⊂ Ai ⊂ A. Let ϕi ∈ C1
c (�) be a cut-off function

between Ai−1 and Ai , i.e., ϕi |Ai−1 = 1, ϕi |Ac
i
= 0, and ‖∇ϕi‖L∞(�) ≤ 2M

δ
. Then,

we define

uiε := ϕi u
A
ε + (1 − ϕi )u

B
ε , (5.6)

and

viε :=

⎧⎪⎨
⎪⎩

ϕi−1 vA
ε + (1 − ϕi−1)(v

A
ε ∧ vB

ε ), on Ai−1,

vA
ε ∧ vB

ε , on Ai \ Ai−1,

ϕi+1(v
A
ε ∧ vB

ε ) + (1 − ϕi+1) vB
ε , on � \ Ai .

(5.7)

For i ∈ {2, . . . , M − 1}, (uiε, v
i
ε) ∈ W 1,2(�;Rm+1). Arguing exactly as in [33,

Lemma 6.2], for all ε > 0 we can find an index iε ∈ {2, . . . , M − 1} such that

Fη
ε (uiεε , viεε ; A′ ∪ B) ≤ Fη

ε (uA
ε , vA

ε ; A) + Fη
ε (uB

ε , vB
ε ; B)

+ c

M

(
Fη

ε (uA
ε , vA

ε ; B ∩ (A \ A′))

+Fη
ε (uB

ε , vB
ε ; B ∩ (A \ A′))+Ln(B ∩ (A \ A′))

)

+c M

δ2

∫
B∩(A\A′)

|uA
ε − uB

ε |2 dx + c Mε

δ2

∫
B∩(A\A′)

|vA
ε − vB

ε |2 dx .

Passing first to the limit as ε → 0 and then as M → ∞ we obtain (5.3) having
assumed that uJ

ε → u in L2(�;Rm), J ∈ {A, B}.
Step 2. Estimate (5.3) is valid if u ∈ (GBV ∩ L1(A ∪ B))m . We use De

Giorgi’s slicing/averaging techniques on the co-domainby employing the truncation
functions introduced in (3.11). The argument is analogous to that developed in Step
1 of Proposition 3.2.
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Note that if u ∈ (GBV (A ∪ B))m then Tk(u) ∈ BV ∩ L∞(A ∪ B;Rm).
In addition, for all k ∈ N and J ∈ {A, B} it is easy to check that Tk(uJ

ε ) ∈
W 1,2(�;Rm), that Tk(uJ

ε ) → Tk(u) as ε → 0 in L2(�;Rm), and that

Fη
ε (Tk(uJ

ε ), v J
ε ; J ) = Fη

ε (uJ
ε , v J

ε ; {|uJ
ε | ≤ ak})

+ Fη
ε (Tk(uJ

ε ), v J
ε ; {ak < |uJ

ε | < ak+1})
+ Fη

ε (0, v J
ε ; {|uJ

ε | ≥ ak+1}) . (5.8)

We estimate the last but one term. The growth conditions on � (cf. (2.3)) and
‖∇Tk‖L∞(Rm ) ≤ 1 yield for a constant c > 0

Fη
ε (Tk(uJ

ε ), v J
ε ; {ak < |uJ

ε | < ak+1}) ≤ c
∫

{ak<|uJ
ε |<ak+1}

(ηε + f 2ε (v J
ε ))�(∇uJ

ε )dx

+ cLn({ak < |uJ
ε | < ak+1}) + Fε(0,v

J
ε ; {ak < |uJ

ε | < ak+1}) . (5.9)

Collecting (5.8) and (5.9) we conclude that

Fη
ε (Tk(uJ

ε ), v J
ε ; J ) ≤ Fη

ε (uJ
ε , v J

ε ; J )

+ c
∫

{ak<|uJ
ε |<ak+1}

(ηε + f 2ε (v J
ε ))�(∇uJ

ε )dx+cLn({|uJ
ε | > ak}) .

Let now M ∈ N, by summing up the latter inequality for both A and B and by
averaging, there exists kε,M ∈ {M + 1, . . . , 2M} such that

Fη
ε (Tkε,M (uA

ε ), vA
ε ; A) + Fη

ε (Tkε,M (uB
ε ), vB

ε ; B)

≤ 1

M

2M∑
k=M+1

(
Fη

ε (Tk(uA
ε ), vA

ε ; A) + Fη
ε (Tk(uB

ε ), vB
ε ; B)

)

≤
(
1 + c

M

)(
Fη

ε (uA
ε , vA

ε ; A) + Fη
ε (uB

ε , vB
ε ; B)

)

+ cLn({|uA
ε | ≥ aM+1}) + cLn({|uB

ε | ≥ aM+1}). (5.10)

Up to a subsequence, we may take the index kε,M = kM , i.e. to be independent of
ε. Therefore, passing to the limit as ε → 0, the convergence uJ

ε → u in measure
for J ∈ {A, B}, (5.4), (5.5), (5.10) and Step 1 yield

F ′′(TkM (u), 1; A′ ∪ B) ≤F ′′(TkM (u), 1; A) + F ′′(TkM (u), 1; B)

≤
(
1 + c

M

)(
F ′′(u, 1; A) + F ′′(u, 1; B)

)
(5.11)

+cLn({|u| ≥ aM+1}). (5.12)

Eventually, since TkM (u) → u in L1(�;Rm) as M ↑ ∞, by the lower semiconti-
nuity of F ′′ for the L1(�;Rm) convergence we conclude (5.3).

We are now ready to prove the upper bound inequality.
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Theorem 5.2. LetFη
ε andF0 be defined in (5.2) and (2.13), respectively. For every

(u, v) ∈ L1(�;Rm+1) it holds that

�(L1)- lim sup
ε→0

Fη
ε (u, v) ≤ F0(u, v). (5.13)

Proof. Given a subsequence (Fη
εk ) of (Fη

ε ), there exists a further subsequence, not
relabeled, which �-converges to some functional F̂ , that is,

F̂ = (F ′)− = (F ′′)−, (5.14)

where F ′ and F ′′ denote here the �(L1)-lower and upper limits of Fη
εk and where

the subscript − denotes the inner regular envelope of the relevant functional ( [41,
Definition 16.2 and Theorem 16.9]).

We remark that F̂(u, v; ·) is the restriction of a Borel measure to open sets by
[41,Theorem14.23]. Indeed, F̂(u, v; ·) is increasing and inner regular bydefinition;
additivity follows from (5.14), once one checks that (F ′)− is superadditive and
(F ′′)− is subadditive. The former condition is a direct consequence of the additivity
ofFε(u, v; ·) and [41, Proposition 16.12]. The latter follows fromLemma 5.1 along
the lines of [41, Proposition 18.4], using Lemma 5.1 instead of [41, (18.6)].

We divide the proof of (5.13) into several steps. First note that it is sufficient to
prove it for v = 1 Ln-a.e. on �.

Step 1. Estimate on the diffuse part for u ∈ BV (�;Rm). We first prove a
global rough estimate for F ′′ which actually turns out to be sharp for the diffuse
part if u ∈ BV (�;Rm). To this aim we set H : L1(�;Rm) × A(�) → [0,∞] as

H(u; A) :=
∫
A
h(∇u) dx (5.15)

if u ∈ W 1,1(�;Rm), and ∞ otherwise, where h has been defined in (2.6). We next
prove the bound

F ′′(u, 1; A) ≤ H(u; A) (5.16)

foru ∈ W 1,1(�;Rm).Given this estimate for granted, on setting H∗ : L1(�;Rm)×
A(�) → [0,∞]

H∗(u; A) :=
∫
A
hqc(∇u) dx (5.17)

if u ∈ W 1,1(�;Rm), and∞ otherwise, the lower semicontinuity ofF ′′ with respect
to the L1(�;Rm) topology and the relaxation result with respect to the sequential
weak topology inW 1,1(�;Rm) in [4, Statement III.7] (or [40, Theorem 9.1]) imply
then that

F ′′(u, 1; A) ≤ H∗(u; A) .

In turn, from the estimate above, Theorem 4.3 finally yields

H(u; A) := sc−(L1)-H∗(u; A) =
∫
A
hqc(∇u) dx +

∫
A
hqc,∞

(
dDsu

)
, (5.18)
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for every u ∈ BV (�;Rm). Therefore, the bound

F ′′(u, 1; A) ≤ H(u; A) (5.19)

follows for every u ∈ BV (�;Rm) and A ∈ A(�).
To prove (5.16), assume first that u is an affine function, say u(x) = ξ x + b,

with ξ ∈ R
m×n , b ∈ R

m . Then, the pair

uk := u, vk := 1 − √
2�εk�

1/4(ξ),

is such that (uk, vk) → (u, 1) in L2(�;Rm) × L1(�) and recalling ηεk → 0

lim sup
k→∞

Fη
εk

(uk, vk; A) ≤ Ln(A)��
1/2(ξ).

Instead, if

ūk := u, v̄k := 1

we get

lim sup
k→∞

Fη
εk

(uk, vk; A)=Ln(A)�(ξ).

Therefore, we conclude (5.16) for every affine function u in view of the last two
estimates.

Assume now that u ∈ C0(�;Rm) is a piecewise affine function, say u(x) =∑N
i=1(ξi x + bi )χ�i (x), with ξi ∈ R

m×n , bi ∈ R
m , and �i ∈ A(�) disjoint and

with Lipschitz boundary, and such that Ln(� \ ∪N
i=1�i ) = 0. Then, set

uk := u, vk :=
N∑
i=1

ϕiv
i
k

where for each i ∈ {1, . . . , N }

vik :=
{
1 − √

2�εk�
1/4(ξi ), if �

1/2(ξi ) > �,

1, if �
1/2(ξi ) ≤ �,

and {ϕi }1≤i≤N is a partition of unity subordinated to the covering {�δ
i }1≤i≤N of

�, �δ
i an open δ-neighborhood of �i for δ > 0, i.e. ϕi ∈ C∞

c (�δ
i ), 0 ≤ ϕi ≤ 1,

ϕi = 1 on �−δ
i ,

∑N
i=1 ϕi = 1 in � (we write �−δ

i := {x : Bδ(x) ⊆ �i }). Then, a
straightforward computation shows that

lim sup
k→∞

Fη
εk

(uk, vk; A)

≤
N∑
i=1

Ln(�δ
i ∩ A)h(ξi ) + c

N∑
i=1

Ln(�δ
i \ �−δ

i ),
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where c depends on �, �, and ξ1, . . . , ξN . Therefore we conclude (5.16) when u is
piecewise affine, namely as δ → 0 in the latter inequality we have

F ′′(u, 1; A) ≤
N∑
i=1

Ln(�i ∩ A)h(ξi ) = H(u; A).

If u ∈ W 1,1(�;Rm), we consider an extension of u itself (still denoted by u for
convenience) to W 1,1

0 (�′;Rm), for some open and bounded �′ ⊃⊃ � (recall that
� is assumed to be Lipschitz regular). Then, we use a classical density result [50,
Proposition 2.1 in Chapter X] to find uk ∈ W 1,1

0 (�′;Rm) piecewise affine such that
uk → u in W 1,1(�′;Rm). The continuity of H for the W 1,1(�;Rm) convergence,
and the lower semicontinuity ofF ′′ for the L1(�;Rm+1) convergence finally imply
(5.16).

Step 2. Inner regularity of F ′′(u, 1; ·) and existence of the �(L1)-limit in
A ∈ A(�) for u ∈ BV (�;Rm). First we show that if u ∈ BV (�;Rm) then

F ′′(u, 1; ·) = (F ′′)−(u, 1; ·). (5.20)

Given an open set A and δ > 0, we can find open sets A′, A′′, and C , with
A′ ⊂⊂ A′′ ⊂⊂ A and A \ A′ ⊂ C , such that H(u;C) ≤ δ, where H is defined in
(5.18). Then, by Lemma 5.1 and (5.19) we get

F ′′(u, 1; A) ≤ F ′′(u, 1; A′ ∪ C) ≤ F ′′(u, 1; A′′) + H(u;C) ≤ F ′′(u, 1; A′′) + δ.

Hence, (5.20) holds true and in turn by (5.14) we have

F̂(u, 1; ·) ≤ F ′(u, 1; ·) ≤ F ′′(u, 1; ·) = F̂(u, 1; ·),
so that the �-limit of Fη

εk (u, 1; ·) exists and coincides with F̂(u, 1; ·) for all u ∈
BV (�;Rm).

Step 3. Integral representation of the �(L1)-limit on BV (�;Rm)×{1}. We
nowwould like to represent F̂ as an integral functional through [20, Theorem 3.12]
and to estimate its diffuse and surface densities. In order to satisfy the coercivity
hypothesis [20, Eq. (2.3’)], we introduce an auxiliary functional

F̂λ(u, 1) := F̂(u, 1) + λ|Du|(�)

for all u ∈ BV (�;Rm), where λ ∈ (0, 1] is a small parameter. Indeed, (4.2), (4.3),
(2.16) and (5.19) yield

λ|Du|(�) − cLn(�) ≤ F̂λ(u, 1) ≤ c(|Du|(�) + Ln(�)),

for allu ∈ BV (�;Rm) and for some c > 0.Note that F̂λ also satisfies the continuity
hypothesis [20, Eq. (2.4)], since

Fη
εk

(u(· − z), v(· − z); z + A) = Fη
εk

(u, v; A),

Fη
εk

(u + b, v; A) = Fη
εk

(u, v; A),

for all (u, v) ∈ W 1,2(�;Rm+1), z, b ∈ R
m , A ∈ A(�), and analogous properties

then hold for F̂ .
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The integral representation result [20, Theorem 3.12] then applies to F̂λ + cLn

and gives, for u ∈ BV (�;Rm) and A ∈ A(�), taking also into account the
aforementioned translational invariance,

F̂λ(u, 1; A) =
∫
A
hλ(∇u)dx +

∫
Ju∩A

gλ([u], νu)dHn−1 +
∫
A
h∞

λ (dDcu),

where

hλ(ξ) := lim sup
δ↓0

1

δn
inf

{
F̂λ(w, 1; δQ) : w ∈ BV

(
δQ;Rm),

w(x) = ξ x on ∂(δQ)} , (5.21)

for ξ ∈ R
m×n , Q being a cube with side length 1 centered in the origin;

gλ(z, ν) := lim sup
δ↓0

1

δn−1 inf
{
F̂λ(w, 1; δQν) : w ∈ BV

(
δQν;Rm),

w = wz on ∂(δQν)
}
, (5.22)

for z ∈ R
m , ν ∈ Sn−1, Qν being a cube with side length 1 and a face orthogonal to

ν and wz := zχ{x ·ν>0};

h∞
λ (ξ) := lim sup

t→∞
hλ(tξ)

t
,

for ξ ∈ R
m×n . Let us estimate separately the three densities above. First, observe

that by (5.19) we have

hλ(ξ) ≤ 1

δn
F̂λ(ξ x, 1; δQ) ≤ hqc(ξ)+λ|ξ |, (5.23)

so that
h∞

λ (ξ) ≤ hqc,∞(ξ)+λ|ξ |, (5.24)

for all ξ ∈ R
m×n . We next show that

gλ(z, ν) ≤ g(z, ν) + λ|z|, (5.25)

for z ∈ R
m , ν ∈ Sn−1. From (5.22) we have

gλ(z, ν) ≤ lim sup
δ↓0

1

δn−1 F̂λ(wz, 1; δ Qν)

= lim sup
δ↓0

1

δn−1 F̂(wz, 1; δ Qν) + λ|z|. (5.26)

In turn, bydefinitionof F̂ for every sequence (ũk , ṽk) → (wz, 1) in L1(δ Qν;Rm+1)

we have
F̂(wz, 1; δ Qν) ≤ lim sup

k→∞
Fη

εk
(ũk, ṽk; δ Qν). (5.27)

The proof of (5.25) therefore reduces to the construction of a suitable sequence
(ũk, ṽk), which depends implicitly on δ ∈ (0, 1), z and ν. By Proposition 3.4
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applied with the sequences ε∗
k := εk/δ and η∗

k := ηεk , there are (u∗
k , v

∗
k ) → (wz, 1)

in L2(Qν;Rm+1), such that

lim
k→∞F∞

ε∗
k
(u∗

k , v
∗
k ; Qν) = g(z, ν) (5.28)

and
lim
k→∞ η∗

k‖∇u∗
k‖2L2(Qν )

= 0. (5.29)

We define (ũk, ṽk) ∈ L2(δ Qν;Rm+1) by

ũk(y) := u∗
k

( y
δ

)
, ṽk(y) := v∗

k

( y
δ

)
.

Obviously (ũk, ṽk) → (wz, 1) in L2(δ Qν;Rm+1). A change of variable and a
straightforward computation using εk = δε∗

k yield

F∞
εk

(ũk, ṽk; δ Qν) = δn−1F∞
ε∗
k
(u∗

k , v
∗
k ; Qν),

‖∇ũk‖2L2(δ Qν )
= δn−2‖∇u∗

k‖2L2(Qν )
.

(5.30)

Fixed ρ > 0, by (2.5) we have

�(ξ) ≤ (1 + ρ)�∞(ξ),

for |ξ | large, and then

�(ξ) ≤ (1 + ρ)�∞(ξ) + C(ρ),

for some C(ρ) > 0 and all ξ ∈ R
m×n . Then, with (5.30)

Fεk (ũk, ṽk; δ Qν) ≤ (1 + ρ)F∞
εk

(ũk, ṽk; δ Qν) + C(ρ)Ln(δ Qν)

= (1 + ρ)δn−1F∞
ε∗
k
(u∗

k , v
∗
k ; Qν) + C(ρ)δn .

Similarly, from the growth conditions in (2.3) and (5.30),

ηεk

∫
δ Qν

ψ(∇ũk)dx ≤ cηεk (‖∇ũk‖2L2(δ Qν )
+ δn) = cηεk δ

n−2‖∇u∗
k‖2L2(Qν )

+ cηεk δ
n .

Summing these two estimates,

Fη
εk

(ũk, ṽk; δ Qν) ≤ (1 + ρ)δn−1F∞
ε∗
k
(u∗

k , v
∗
k ; Qν)

+C(ρ)δn + cηεk δ
n−2‖∇u∗

k‖2L2(Qν )
+ cηεk δ

n,

and taking the limit k → ∞, by (5.27), (5.28) and (5.29),

F̂(wz, 1; δ Qν) ≤ lim sup
k→∞

Fη
εk

(ũk, ṽk; δ Qν) ≤ (1 + ρ)δn−1g(z, ν) + C(ρ)δn .

(5.31)
We divide by δn−1 and take the limit δ → 0. Comparing with (5.26),

gλ(z, ν) ≤ (1 + ρ)g(z, ν) + λ|z|, (5.32)
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and since ρ was arbitrary (5.25) follows.
In conclusion, as λ → 0, estimates (5.23), (5.24) and (5.25) imply that for all

u ∈ BV (�;Rm)

F̂(u, 1) ≤ F0(u, 1).

This, together with the lower bound Theorem 4.6 allows to identify uniquely the
�-limit of the subsequenceFη

εk . Finally, Urysohn’s property ( [41, Proposition 8.3])
extends the result to the whole family Fη

ε .

Step 4. Representation of the �(L1)-limit on (GBV (�))m × {1}. To extend
the validity of (5.13) to u ∈ (GBV (�))m we argue by truncation. Indeed, if k ∈ N

and Tk is the truncation operator defined in (3.11), then by Steps 1–3 we infer that

F ′′(Tk(u), 1) ≤ F0(Tk(u), 1).

The conclusion then follows by the L1-lower semicontinuity of F ′′ and by Propo-
sition 4.8.

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The lower bound has been proven in Theorem 4.9. The
upper bound follows by Theorem 5.2 with ηε = 0.

6. Compactness and Convergence of Minimizers

Next theorem establishes the compactness of sequences equibounded in energy
and in L1.

Theorem 6.1. LetFε be defined in (2.1). If (uε, vε) ∈ W 1,2(�;Rm+1) is such that

sup
ε

(
Fε(uε, vε) + ‖uε‖L1(�)

)
< ∞,

then there exists a subsequence (u j , v j ) of (uε, vε) and a function u ∈ (GBV ∩
L1(�))m such that u j → u Ln-a.e. and v j → 1 in L1(�).

Proof. This follows arguing componentwise, that is, estimating Fε with its one-
dimensional counterpart evaluated in a component, and applying theone-dimensional
compactness result obtained in [33, Theorem 3.3] as done in Sect. 4.1 (see also the
argument in Remark 4.7).

Convergence of minimizers and of minimum values follow now in a standard
way by Theorems 2.1 and 6.1. Let ηε > 0 be as in (5.1), i.e. such that ηε/ε → 0
as ε → 0, consider the corresponding family Fη

ε defined in (5.2) and let w ∈
Lq(�;Rm), with q > 1. Let now Gε, G0 : Lq(�;Rm) × L1(�) → [0,∞] be
defined as

Gε(u, v) :=
⎧⎨
⎩
Fη

ε (u, v) +
∫

�

|u − w|qdx, if (u, v) ∈ W 1,2(�;Rm × [0, 1]),
∞, otherwise
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and

G0(u, v) := F0(u, v) +
∫

�

|u − w|qdx,

where Fε and F0 have been defined in (2.1) and (2.13), respectively.
The assumption on the asymptotic ratio ηε/ε → 0 as ε → 0 is needed to avoid

that the term ηε�(∇u) competes with the term (1− v)2/ε, overall influencing the
limit behaviour. Indeed, if ηε ∼ ε, we expect to gain a control on |[u]|, so loosing
the limit cohesive effect (compare with [53]).

Instead, the addition of the term ηε�(∇w) is instrumental to guarantee the
existence of a minimizer for Gε, provided that � is quasiconvex. In general, the
coercivity of Gε only ensures existence of minimizing sequences (u j

ε ) j converging
weakly in W 1,2(�;Rm) to some ūε minimizing the relaxation of Gε. Since exis-
tence at fixed ε does not interact with the �-convergence, we state our result for
asymptotically minimizing sequences.

Corollary 6.2. Let (uε, vε) ∈ W 1,2(�;Rm+1) be such that

lim sup
ε→0

(
Gε(uε, vε) − mε

) = 0,

where mε := inf(u,v)∈W 1,2(�;Rm+1) Gε(u, v). Then vε → 1 in L1(�) and a subse-
quence of uε converges in Lq(�;Rm) to a solution of

min
u∈(GBV (�))m

G0(u, 1).

Moreover, mε tends to the minimum value of G0.

Proof. The proof of the corollary will be divided in three steps.
Step 1. �-limit of Fη

ε in Lq × L1. We check that passing from the L1 × L1 to
the Lq × L1 topology, the expression of the �-limit of Fη

ε remains the same

�(Lq × L1)- lim
ε→0

Fη
ε (u, v) = F0(u, v).

The lower bound is an immediate consequence of that in L1 × L1 (Theorem 4.9,
being the Lq convergence stronger than the L1 convergence).

As for the upper bound, we argue by truncation. First take a subsequence ofFη
ε

(not relabelled for convenience) and fix u ∈ BV ∩L∞(�;Rm)withF0(u, 1) < ∞.
Then Theorem 5.2 yields the existence of a sequence (uε, vε) ∈ W 1,2(�;Rm+1),
such that (uε, vε) → (u, 1) in L1(�;Rm+1) and

lim sup
ε→0

Fη
ε (uε, vε) ≤ F0(u, 1).

Fix M ∈ N large enough such that aM > ‖u‖∞ (see (3.11) for the definition of
aM ) and, for every ε > 0, choose kε,M ∈ {M + 1, . . . , 2M} such that
∫

{akε,M <|uε |<akε,M+1}
(ηε + f 2ε (vε))�(∇uε)dx ≤ 1

M

∫
�

(ηε + f 2ε (vε))�(∇uε)dx .
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This implies

Fη
ε (Tkε,M (uε), vε) ≤ (1 + C

M
)Fη

ε (uε, vε)+CLn({aM+1 < |uε|}),
with Tkε,M (uε) uniformly bounded in L∞, Tkε,M being defined in (3.11). This ar-
gument has been used several times throughout the paper, see for example Theo-
rem 4.9. Passing to a further subsequence in ε, we can take kε,M = kM indepen-
dent of ε. Since (TkM (uε))ε is uniformly bounded in L∞ and M is large, we get
TkM (uε) → TkM (u) = u in Lq(�;Rm) and in particular Ln({aM+1 < |uε|}) → 0
as ε → 0, hence

lim sup
ε→0

Fη
ε (TkM (uε), vε) ≤

(
1 + C

M

)
F0(u, 1).

Diagonalizing with respect to M and recalling the lower estimate, we conclude that
every subsequence of {Fη

ε }ε has a subsequence that �(Lq × L1)-converges to F0
in L∞(�;Rm) × L1(�). Finally Urysohn’s lemma gives the convergence of the
entire sequence in the same space.

Let us consider now the general case u ∈ (GBV ∩ Lq(�))m . Then Tk(u) ∈
(BV ∩ L∞(�))m , with Tk again defined by (3.11), and

�(Lq × L1)- lim sup
ε→0

Fη
ε (Tk(u), 1) ≤ F0(Tk(u), 1),

by the first part of the proof. As k → ∞ we have Tk(u) → u in Lq(�;Rm) and
we conclude by the lower semicontinuity of the �-limsup and the continuity of F0
(see Proposition 4.8).

Step 2. �-limit of Gε in L1 × L1. We check now that

�(L1 × L1)- lim
ε→0

Gε(u, v) = G0(u, v).

The lower bound simply follows by Theorem 4.9 using ηε ≥ 0 and the lower
semicontinuity of

∫
�

|w−u|qdx with respect to the convergence in L1. In particular,
if �(L1 × L1)- lim infε→0 Gε(u, v) < ∞, then u ∈ (GBV (�) ∩ Lq)m and v = 1
Ln-a.e. on �.

As for the upper bound, from Step 1 we know that for all u ∈ (GBV (�)∩Lq)m

there exists a recovery sequence for Fη
ε in Lq × L1. This is in particular a recovery

sequence for Gε in L1 × L1, which gives the conclusion.
Step 3. Convergence of minimizers. Let now (uε, vε) ∈ W 1,2∩ Lq(�;Rm+1)

be a minimizing sequence for Gε. Being

sup
ε>0

(Fε(uε, vε) + ‖uε‖Lq (�)) < ∞,

Theorem 6.1 gives the existence of a function u ∈ (GBV (�) ∩ Lq)m and of
a subsequence, not relabelled, such that uε → u Ln-a.e. on � and vε → 1 in
L1(�;Rm). In addition, by Hölder inequality∫

{|uε−u|>1}
|uε − u|dx ≤ ‖uε − u‖Lq (�)

(
Ln({|uε − u| > 1}))1−1/q

≤ c
(
Ln({|uε − u| > 1})1−1/q

,
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and the right-hand side tends to 0 since uε → u in measure on �. Also, (uε −
u)χ{|uε−u|≤1} → 0 in L1(�;Rm) by dominated convergence, hence we conclude
that uε → u in L1(�;Rm).

By Step 2 and a general property of �-convergence [41, Corollary 7.20], we
conclude that (u, 1) is a minimizer of G0 and that Gε(uε, vε) → G0(u, 1). Finally,
we check that in fact uε → u in Lq(�;Rm). From the previous steps we have

Gε(uε, vε) → G0(u, 1),∫
�

|u − w|qdx ≤ lim inf
ε→0

∫
�

|uε − w|qdx,
F0(u, 1) ≤ lim inf

ε→0
Fη

ε (uε, vε),

so that ∫
�

|uε − w|qdx →
∫

�

|u − w|qdx .

Together with the pointwise convergence, this implies uε → u in Lq(�;Rm) by
generalized dominated convergence.
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