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Abstract

We provide a relatively compact proof of the BPHZ theorem for regularity
structures of decorated trees in the case where the driving noise satisfies a suitable
spectral gap property, as in the Gaussian case. This is inspired by the recent work
(Linares et al. in A diagram-free approach to the stochastic estimates in regularity
structures, 2021. arXiv:2112.10739) in the multi-index setting, but our proof relies
crucially on a novel version of the reconstruction theorem for a space of “pointed
Besov modelled distributions”. As a consequence, the analytical core of the proof
is quite short and self-contained, which should make it easier to adapt the proof to
different contexts (such as the setting of discrete models).
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1. Introduction

Over the past decade, there has been substantial progress in the application of
pathwise techniques to solution theories for singular stochastic PDEs. Besides the
original theory of rough paths [11,21,22], these include paracontrolled calculus [12]
and regularity structures [14]. A common thread is that the probabilistic aspects of
a problem are encoded in the construction of a random element of some nonlinear
space of distributions/functions (a “model” in the language of [14]), while the
solution theory itself is then purely deterministic, once a realisation of the model
is fixed.

The BPHZ theorem obtained in [9] is a crucial ingredient in this programme,
since it allows for the construction of random models in a wide variety of contexts.
Unfortunately, while this result is extremely flexible, its proof is rather long and
difficult to follow. Recently, Otto and coauthors obtained a version of the BPHZ
theorem in a specific context that, instead of the Feynman diagram techniques used
in [9], makes use of Malliavin calculus and spectral gap estimates [19]. (See also
[18] for a description of the algebraic structure underpinning their approach.) We
refer the reader also to [10] where a spectral gap based approach was used to obtain
similar estimates in a more limited setting.

In the present article, building on some of the analytic results from [15], we
extend and simplify this technique to obtain a relatively short and self-contained
proof of the BPHZ theorem for arbitrary regularity structures of the type constructed
in [4] and naturally appearing in the study of semilinear singular SPDEs. While it is
restricted to noises satisfying a spectral gap condition (therefore mainly Gaussian
noises), our conditions appear to be optimal in that context.

Comparing to [19], the main advantages of our approach are:

1. We make no particular structural assumption on the class of stochastic PDEs
that can in principle be covered by our result, except for local subcriticality.
In particular, we cover all the situations covered by the general machinery
developed in [2,4].

2. The analytic “core” of our proof is very short. This is especially the case when
all the driving noises are more regular than space-time white noise, in which
case Section 3.2 on pointed modelled distributions contains pretty much all of
the required analytic ingredients. This core generalises naturally to a variety of
slightly different setups, although the technicalities arising from the rest of the
proof may require non-trivial adaptation.

3. We obtain not only uniform bounds on suitable smoothened models but their
convergence to a unique limit, which is a crucial ingredient when using these
techniques to prove “weak universality” type results.

As this article was nearing completion, the preprint [1] was released. There, the
authors recover the convergence of the model associated to the geometric stochas-
tic heat equation studied in [3]. This is achieved by combining the spectral gap
inequality with the algebraic structure described in [6] and the analytic techniques
developed in [17]. These bounds are obtained by treating the specific trees appear-
ing in this problem “by hand”, so it is not clear whether their approach could treat
the level of generality considered here.



Arch. Rational Mech. Anal. (2024) 248:9 Page 30f 81 9

1.1. Structure of Proof

We now give a short description of the overall structure of our proof, which is
heavily inspired by [18,19]. This subsection assumes that the reader is somewhat
familiar with the context of [14]. For notational simplicity, we assume here that
there is only one driving noise.

Since we are interested in a result applicable to singular stochastic PDEs, we
consider regularity structures with basis vectors given by certain labelled trees as in
[4,14]. We are then interested in obtaining uniform in & bounds on ﬁit, where I:If(
denotes the BPHZ lift (see [4,9]) of the driving noise & to the ambient regularity
structure and t denotes one of its basis vectors.

Write then 7 for the regularity structure generated by the set of basis vectors
which include at most k copies of the noise. The proof then goes by estimating the
action of ﬁi on T} by induction over k.

For k = 1, one uses the spectral gap inequality and a Kolmogorov-type criterion
to conclude that the driving noises & do almost surely belong to a suitable Besov—
Holder space as desired. For larger values of k, we remark that the derivative
Dy T8 7 of T15 7 with respect to the noise £ in the direction / is a sum of multilinear
terms in & of degree at most kK — 1. One can therefore hope to be able to find a
modelled distribution Hy 1 \with values in Tr—1 (where we assume that we already
have good bounds on the renormalised model ﬁ) such that Dy, ﬁfc T=RH; 7 with
R the reconstruction operator. The spectral gap inequality then states that bounds
on [[(RHT") (@) Lrq) and on E(FIE 1) (¢}) yield bounds on || (FE7)(@}) | Lo (q)-
Since one can hope to control Ef[f;t as a consequence of the centring condition
defining the BPHZ lift, this then provides the desired induction step.

Some of the hurdles that need to be overcome along the way are as follows:

1. Atthe analytic level, one needs to find a suitable space of modelled distributions
which on the one hand is large enough to contain the desired Hy oh (which is
itself relatively easy to “guess” by induction) in a way that’s uniform over
h’s belong to the relevant space appearing in the spectral gap condition (the
Cameron—Martin space in the case of Gaussian noises), but on the other hand
is small enough so that the bounds on %R Hy " match the bounds appearing
in the definition of a model. It turns out that this can only be achieved by
looking at a suitable family of x-dependent “pointed” Besov-type spaces of
modelled distributions. These are similar to the spaces appearing in [15,20],
but the required optimal bounds on their reconstruction are much tighter than
the bounds obtained there.

2. While it is straightforward to “guess” an inductive expression for Hy ! such
that the identity D, I151 = RH M " holds for the canonical lift TT (i.e. without
any renormalisation), it is not obvious a priori that the same expression also
holds for renormalised models.

3. While the BPHZ model specifies that II7 has vanishing expectation for basis
vectors T of negative degree, it is not obvious in general how to use this to control
E(ﬁit)((pﬁ). Instead, we introduce a different centring condition (which we
call the BPHZ model) which does allow to obtain such a control, and we then
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show a posteriori that control on the BPHZ model implies control on the BPHZ
model.

1.2. Article Structure

We begin this paper by gathering the relevant algebraic framework that forms
the setting of our main result. In particular, Section2 is devoted to a high level
description of the regularity structures and models appearing in [4], alongside the
renormalisation groups that act on them. Additionally, in that section we fix our
probabilistic assumptions on the driving noise and state the main result of this paper,
which is the content of Theorem 2.33.

Section 3 is then devoted to the study of spaces of modelled distributions;
especially the pointed modelled distributions described in the previous subsection.
The tools developed in this section are not restricted to the regularity structures
appearing in [4], however their application in this setting forms the analytic core of
our proof. In a final preparatory section, Section 4, we identify the Fréchet derivative
(with respect to the driving noises) of a renormalised model as the reconstruction
of a particular family of modelled distributions of the type studied in Section 3.

With these tools in hand, the core of our proof is then contained in the remaining
sections. In Section 5, we derive uniform bounds on the BPHZ model. In Section 6,
we then show that this family converges as mollification is removed. Finally, in
Section 7, we then transfer our results to the context of the BPHZ model of [4].

In the appendices, for the reader’s convenience, we gather some relatively ele-
mentary technical tools that are used throughout the paper.

1.3. Notation and Conventions

Throughout this article, we will consider an integer dimension d = 1 of space-
time to be fixed. In addition, we will fix a d-dimensional space-time scaling s which
is nothing but a multi-index s = (5i)f.1: | Whose entries are positive real numbers.
We write |s] = Y0 5.

Given such a scaling and z = (zi)flzl € R9, we define

d
def 1 .
l2ls £ lzil'/e

i=1

We note that | - |s does not define a true norm on R but it does induce a translation
invariant metric. We will nonetheless often refer to this quantity as the (s-scaled)
norm and will write Bs(x, r) for the corresponding ball around x of radius r.

A choice of scaling also induces a scaled degree for multi-indices k € Z¢
defined by setting

d
ks = kisi.

i=1
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When talking about the degree of a polynomial, we shall always mean the notion
of degree for our scaling s that is induced by the above definition.

In addition, a choice of scaling defines an appropriate way of rescaling test
functions that respects that scaling. Concretely, given a function ¢ : RY — R,
A € (0,1]and x € R?, we define ¥} (y) = A71#ly (A7 (y — x)) where A 7%z =
(A™%izg; )le .Inthe case where & = 2%, we will often write as a shorthand ’u”;]f = 1//?
and it should always be clear from context which of these is meant.

The spaces of distributions of interest to us will then be a scale of local Besov
spaces that respect our given scaling. Fora < 0, p, g € [1,00] and r > |«/|, we let
973‘1",’ q be the space of distributions ¢ on R4 such that, for each compact set & C R4,

|

where LK = L9((0, 1): A~'d)) and %, is the same distinguished set of test func-
tions as appearing in [14, Definition 3.7]. For « = 0, we let %‘[’7 4 be the space of

sup 3.71(¢. 72|
nERBr

def
||§||%qu;k = < 00,

LP(Rdx)

q
L A

distributions ¢ on RY such that, for every compact set & C RY,

I, né)l‘
A’C(

18Ny, 2 | sup 146, me)]
neRB,

S
P.q up

Pp-
Egéil'od LP(k;dx)

LP(f:dx) + H H IX
n A
For the particular case where p = g = oo, we write €% = Boo. 0o Foran alternative
characterisation of these spaces, we refer the reader to “Appendix A”.
Finally, we let H* = H*(R?) be the (L?) Sobolev space of regularity s which
is nothing but the space of distributions ¢ such that ||¢|| @S ,Rd < 00 with the
topology induced by this choice of norm. ‘

2. Setting and Main Result

Since the aim of this article is to obtain stochastic estimates for the BPHZ model
defined in [4], we begin this section by briefly recalling the relevant algebraic set-up
from that paper and providing references for the reader who is interested in more
detail.

2.1. Regularity Structures of Decorated Trees

We begin by recalling the definition of a regularity structure given in [14, Def-
inition 2.1].

Definition 2.1. A regularity structure is a triple (7, 4, §), where

1. The index set o C R is locally finite and bounded below.

2. The model space 7 = P I 18 an gl-graded vector space such that each
I 1s a Banach space.

3. The structure group G acts linearly on I such that forevery I' € € and t € Jy,
Mt—t1€eJ4= Dp-o Tp-

aed
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Assumption 2.2. In addition to the above definition, we will assume throughout
that our regularity structures contain the polynomial structure in the sense that
for k € N, J is isomorphic to (Fpoly)x and that there exists a group morphism
€ — Gpoly such that the action of € on EBkeN Ik coincides with the pullback of
the action of Gy,01y under this group morphism.

For our purposes, the main family of regularity structures of interest will be
the reduced regularity structures described in [4, Section 6.4] with model spaces
consisting of linear combinations of decorated trees.

2.1.1. Typed and Decorated Trees

Definition 2.3. A rooted tree is a connected acyclic graph 7 = (N7, E7) with a
distinguished vertex pr called the root. A rooted forest is a graph in which each
connected component is a rooted tree.

We remark that a rooted tree has a natural partial order on vertices where u < v
if and only if u lies on the unique path from v to the root. This extends in the obvious
way to a partial order on rooted forests. This partial order induces maps e > e,
and e > e, where (e, e.) are the pair of vertices incident to e and e, < e. In
turn, this induces a partial order on edges by writing e < ¢ if and only if ¢, < &,

We then fix a finite set £ of types which we assume comes equipped with a
partition £ = £, U £_ where we call elements of £ kernel types and elements
of £_ noise types. The purpose of this set is to allow us to associate to each edge
in the tree an integral kernel or driving noise.

Definition 2.4. A degree assignment is amap | - | : £ — R such that |t|g > O for
allte £5.

Throughout this paper, we assume that a choice of degree assignment is fixed.
One should think of a degree assignment as quantifying for t € £, the degree of
regularisation of the corresponding integral kernel and for t € £_ as quantifying
the regularity (or lack thereof) of the corresponding noise.

Definition 2.5. A rooted tree T is said to be typed if it is equipped with a map
t: Er — Lsuchthatif t(e) € £_ then e is maximal in the partial order on E7 and
for distinct edges e, e’ with t(e), t(¢) € £_ one has that e, # e;,. Typed (rooted)
forests are defined analogously.

We will henceforth implicitly assume that all trees and forests appearing are
typed and rooted, so we drop these qualifiers. We will call edges with labels in £
kernel edges and edges with labels in £_ noise edges.

Definition 2.6. A decorated forest is a forest F' equipped with a node label n :
Ng — N9 and an edge label ¢ : Efp — N4, Given a forest F and decorations n, ¢
on F, we denote the corresponding decorated forest by F'.
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A degree assignment on the type set £ induces a corresponding notion for
semi-decorated forests by setting

def

IFMs 2 ) (t@)ls — le(@)la) + Y [n@w)ls. 2.1)

ecER ueN(F)

def

where N(F) = Nr\e. [{e € Er :t(e) € 2_}] is the set of nodes that will later
correspond to integration variables when we interpret trees as functions.

Remark 2.7. In [4], an additional decoration o appears which tracks suitable in-
formation from contracted subtrees during the recursive renormalisation process.
For the majority of this paper, we will work exclusively on the reduced regularity
structure of [4, Section 6.4] where this decoration vanishes and hence we will not
include it.

2.1.2. The Reduced and Extended Structures of [4] It is unfortunately not the
case that the vector space generated by the set §) of all decorated trees for a given
set of types £ forms a regularity structure. The reason is that whilst §) is naturally
graded by (2.1), the homogeneities arising in this way are typically neither locally
finite, nor bounded from below.

The usual solution to this problem is to restrict the set of trees that are allowed
in the basis of the model space via a prescription for which combinations of edges
can appear at any given vertex known as a rule [4, Definition 5.8].

Throughout this paper we will assume that a so-called complete, normal, sub-
critical rule R has been fixed. For precise definitions we refer the reader to [4,
Definitions 5.7, 5.14, 5.22]. For our purpose, the precise definition will not matter
except insofar as it is required for the constructions of [4] to yield a regularity struc-
ture. Since the details of that construction are not important to us, we will satisfy
ourselves here with a high-level description of their output which will be sufficient
for the remainder of the paper.

The upshot of the constructions of [4] is that the regularity structures obtained in
this way always come with a distinguished basis (elements of which are represented
by decorated trees) as well as a partial product (defined by joining trees at their roots
and setting the node decoration of the new root to be the sum of the node decorations
of the original roots) and a finite number of abstract integration operators of the form
Jk[ fork € N? and [ € £, (obtained by grafting a tree onto a “trunk” consisting of
an edge of type [ and edge label k).

Every basis vector can then be obtained from the elementary ones (correspond-
ing to trees consisting only of a single noise edge or of just the root) by repeated
applications of the product and operations of the form Jkt. The only purpose of
the rule R is to restrict the trees considered for inclusion as basis vectors of the
regularity structure to avoid the problem mentioned for the naive approach.

We will assume that the choice of degree on £ and of the rule R is such that
the resulting regularity structure has finite dimensional components of each degree
and for convenience we will assume that the choice of norm on each homogeneous
component is such that the basis trees are orthonormal (so that in particular, the
norm on each homogenous component comes from an inner product).
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For k € N we will often write X* for the tree consisting of a single vertex p
withlabeln(p) = kandforte £_,k € N9 we will write E]Z for the tree consisting
of a single edge of type t with with edge decoration k and vanishing node label.
We will often write ¢ = E?. We will also assume that for t € £, we have that
jktX k = 0. Following the notation of Definition 2.1, we write I for the resulting
model space and B for the corresponding basis of trees.

It remains to the describe the structure group associated with this regularity
structure, since the details of the construction are important to ensure that various
operations involved in our main argument respect the structure of our induction.
We will give a description closer in spirit to that of [14, Section 8], however we note
that the object constructed is ultimately the same as the one in [4] (see Section 6.4
there) and so only coincides with the precise description of [14, Section 8] up to a
change of basis.

We write I for the linear span of formal expressions of the type

(X TT50m m e Bom # Xk and 57l > 0], 2.2)
i

def

where the product ranges over a finite index set and where |jkt‘1,' ls = |Tls+]|tls—kls-
We endow I, with its natural structure as a commutative algebra which is suggested
by the notation (2.2).

We then have a natural family of maps jkt :' 9 — T4 given by setting for a
semi-decorated tree t

[ Firif |Fils > O,
-

0 otherwise
and extending linearly and multiplicatively.

Since the meaning will be clear from context, we will usually denote this map
also by Zkt. Additionally, we define amap A : I — I ® T by setting

Al=1Q1, AX;=X;1+1Q X;, 2.3)

as well as requiring that A is multiplicative and satisfies

¢ ¢ X X"y
AFir=(F@DAT+ Y T @ Firtm T (2.4)
1! !
where Fft =3 Ficle CXT gt . The structure group is then the character

group of I actingon J vial'yr = (1 ® f)Ar.

Remark 2.8. The reason for introducing the operators jkt is to simplify the expres-
sions for the characters in (2.6) without having to introduce the twisted antipode
from [4]. This is also closer to the original setup of [14], see [4, Section 6.4].
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We note that unlike in [ 14, Section 8], we have not provided a definition of A E¢
for t € £_ as part of the base case given in (2.3) of the recursive construction for
A. The reason for this is that we write E¢ = .F'1 so that this case is covered by
(2.4).In [14], only the case of noises of negative degree is considered in which case
(2.4) yields AE¢ = E¢ ® 1 which coincides with the one given there. However, in
the case where |t|s > 0, additional terms appear which correspond to the need for
“positive renormalisation” that will appear in the treatment of such symbols.

As an addition to the construction of [4], we will assume that the reduced
regularity structure is truncated to include only symbols of degree at most R for
some R > 0 chosen to be sufficiently large. This is sufficient for all current analytic
applications of the results of that paper and will be a key simplifying assumption
since it implies that of is finite.

At times, we will refer also to the extended regularity structure of [4]. The
main difference between this structure and the reduced structure is that the trees
forming a basis of the model space T * of the extended structure have an additional
decoration 0 : Ny — Z% @ Z(£) which is used to keep track of the information
on components of the tree that get contracted during the recursive renormalisation
procedure that will eventually be performed. The model space and structure group
then admit an analogous description to the one given for the reduced structure.

Since a full description of these details is lengthy and unnecessary for the core
of our argument, we refer the interested reader to [4, Section 5].

Assumption 2.9. For the remainder of the paper, we will assume that each regu-
larity structure appearing is an instance of (a truncation of) either the reduced or
extended regularity structure for some complete, normal, subcritical rule.

For the reader not familiar with [4], this should be treated as a technical as-
sumption required to use the constructions of that paper which is satisfied by all the
rules arising naturally from subcritical stochastic PDEs. It guarantees on one hand
that the structure is finite-dimensional at homogeneities below each level and on
the other hand that the renormalisation group acting on the structure is sufficiently
rich.

2.2. Models and Renormalisation

The key analytic objects that we wish to study are models on the given regularity
structure. Here, we write our definition in a form that is amenable to the treatment
of renormalised models given in the case of the reduced/extended structures since
it will later make introduction of notation more convenient.

Definition 2.10. A smooth model on R with scaling s on the reduced/extended
structure (', o, 6) consists of a pair of maps (IT, I') where

1. There exist characters (fy) cre On Jy (or T* in the case of the extended
structure) such that I'yy, = Fx’1 Fy where Fy = (1 ® fy)A,
2. :RY x T — €®(RY) is such that [T, Ty = TI,.
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We additionally assume that the following analytic bounds hold for all y > 0 and
compact sets & C RY:
lef — —1
Tl = SUPyegs, SUPg <y SUPyep, SUP;c(0, 1] SUPreq, » 1Tl ITeT(9})] < o0,
def — —1
ITlly i = SUPg gy SUP yep SUPreg, 6 = YIP NIz T Iyl < 0.
Remark 2.11. These “semi-norms” yield a natural topology on the space of models.
When showing convergence, we will always restrict ourselves to some fixed but
arbitrary y > 0 and assume then without loss of generality that our regularity
structure is finite-dimensional.

In addition to the above requirements, we will want to ensure that our models
correctly encode the action of integration against the desired integration kernels.
To this end, we fix a choice of kernel for each label [ € £

Definition 2.12. A kernel assignment is a tuple K = (K¢)(cg, such that for each
t € £4, K¢ satisfies [14, Assumption 5.1] with g = |t|s.

Definition 2.13. A model Z = (I1, I') is admissible if

1. Fork € N4, T1. X¥(z) = (z — 2)* and for T € T such that X¥7 € T, HZXk‘L' =
. x*. 1.z
2.Forte £,k e N and € T such that jkt‘l,' € I, we have that

- / )
M9t = DK + @) — ) @Dkﬂﬁ*nzr(z).

|j‘s<‘f/f‘f|5

As is usual, we will without loss of generality assume that for an admissible
smooth model (T1, I'), the characters f; satisfy

LX) =—xi,  fuFo) = —(DFK + T1)(x) 2.5)

when t € £ is such that [t|s + |t|s — |k|s > O and that when t € £_ is such that
[t|ls — |k|ls > O (which is possible since we allow noise edges of positive degree),
we have that

fo(F) = —DFg(x) (2.6)

for some family of functions & € @/,

It then follows that IT = I, F x_l is independent of x and we may equivalently
represent the given model in the form (II, f). As such, we will in what follows
interchange between these two descriptions without comment.

Remark 2.14. In general, there is no completely canonical way to associate a pair
(IT, f) to the pair (IT, I'). In the above we obtain a fixed definition only because
we have made particular choices for how to define fy(X;) and fy (jktl), which
correspond to insisting that I1X; = x; and IIE¢ = &.

However, for any constants ¢; and polynomials {P; : t € £_, |t|s > 0} such
that P has degree less than [t|g, there exists a choice of characters f; such that
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def

y Hxﬁx_l is such that I:IX,- = —x; +¢; and l:[Et = &t + Py, where Fx is the
map corresponding to f;. We would then have IIF, = IT, = IIF, so that we see
that our choice of (I, f) is far from canonical.

However, in this paper our perspective is always that we start with fixed noises
£ € 6!t and consider models constructed from them. This means that for us there

will always be a well-defined choice of characters f associated to a model (IT, I')
by (2.5).

We denote by Ml (J) the space of all smooth and admissible models on I and
remark that the pseudometrics defined in Definition 2.10 induce a metric topology
on M~ (7). We denote the completion of M~ (J) under this topology by o (J)
and note that it includes models which are distributional in nature, rather than
function-valued.

We will however be particularly interested in models that are constructed in
a canonical way from a smooth driving noise and those that can be obtained by
renormalisation of such a model.

Definition 2.15. A smooth noise is a tuple & = (&¢)tce_ such that & € B (RY)
for every t € £_. As in [9], we denote by Q4 the collection of all smooth noises.

Definition 2.16. The canonical lift £ (£¢) of a smooth driving noise £ is the unique
admissible model such that

1. If 71, 7o € T are trees such that 7117 € T, then [T, 7170 = I, 7 - [1; 1.
— Dk
2.Forte £, T B¢ =& — D k). <11, DaE (. _

As is by now well known, it is typically not the case that if £, denotes a sequence
of smooth approximations of a distributional driving noise £ then & (£;) converges
as ¢ — 0. Instead, it is in general necessary to deform the definition of the product
so0 as to produce a convergent sequence of models from these canonical lifts. This
is the procedure of renormalisation of models that we will address in the next
subsection.

2.2.1. The Renormalisation Group Thus far in the regularity structures litera-
ture, there are two distinct objects that have been given the name “renormalisation
group” for a given instance of the reduced/extended regularity structure. In this
paper, we will have reason to work with both objects and thus in this section we
will clarify the relation between them and prepare notation.

In particular, we identify nested groups €_ C R described in [4, 14] respec-
tively, together with their action on M~ (J) that will encode the renormalisation
that will later appear.

The larger group ‘R is the renormalisation group constructed in [14, Section 8].
Whilst the definition of this group entails fewer properties for its elements, we will
have cause to work with an element of 2R \ 6_ later and thus will require it.

Definition 2.17. R is the group of linear maps M : § — I such that M commutes
with the operators Zkt for t € £,, MX* = X* and such that

AMTZ‘E@l—l—ZT(l)@T(Z)
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where |[t7(V|; > |7|s and AM is constructed in [14, Proposition 8.36].

Remark 2.18. [14] also requires upper triangularity for another map AM However
by [17, Theorem B.1], this condition actually follows automatically from the other
conditions imposed in the construction.

The action of 94 on the space Ml (7) is given by setting M (I, I') = (ITM, I'M)
where I'M = (FM)~'FM,

nMe = M, ® foaMz,  FMr=(1® fiM)Ax,

and M is constructed in [14, Prop. 8.36].

At times, the renormalisation group of [14] will be unwieldy for our purposes.
At these times, we will restrict our statements to elements of the group €_ described
in [4, Sec. 6.4], which is a subgroup of R by [4, Thm 6.36].

As mentioned previously, the construction of [4] also yields a regularity struc-
ture 7 whose model space I consists of trees with an additional node decora-
tion o : Ny — Z4 @ Z4(£). Additionally, [4] provides a Hopf algebra T°* of trees
of negative degree whose character group €%* is the renormalisation group on the
extended structure. An element g € €% acts on models on the extended structure
via precomposition with Mg* 2 g® DAL Here A : T - T QT isa
co-action which (when ignoring the presence of decorations) extracts and contracts
negative degree subtrees. The precise definition of the objects in this construction
won’t be important to us and so we refer the interested reader to [4, Secs 5-6] for
more details.

We will actually only make use of the subgroup 6_ C €%* consisting of char-
acters that are reduced in the sense that they do not depend on the additional
decoration o. The importance of 6_ stems from the fact that there is a canonical
embedding Mo (T) — My(T ) whose image is preserved under the action of G_
on Mo(T *). There, it furthermore coincides with the action of 6_ on Ay (9 ) men-
tioned earlier, thus justifying the abuse of notation. (One has compatible canonical
inclusions €_ «— €% «— R as well as G_ — R — R*)) In what follows, we
will often without comment make use of these identifications.

2.2.2. Spaces of Random Models We now turn to the description of the spaces
of random models that will be under consideration for the remainder of this paper.

As in [19], our main assumption on the random driving noises appearing in the
construction of models in this paper is a certain spectral gap inequality. In order
to formulate this inequality for a collection of driving noises indexed by £_, we
introduce some useful function spaces.

Definition 2.19. Given amap s : £_ — R, we set
H(gH =[] #°©
tef_

where the Sobolev space H? is the space of distributions ¢ that satisfy || || B3 iR <
oo equipped with the obvious choice of norm. ’
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Since the product is finite, there is no ambiguity regarding the topology on this
space. However, since we will want to characterise the resulting norm by duality
later, we will equip the product space with the norm resulting from the £!-product.

Fix now a dimension d and write @' (£_) = @' (R?)*~, with @' (R?) the space
of Schwartz distributions on R?. Recall that a function F: @' (£_) — R is said to
be cylindrical if there exist k € N, ¥y, ..., Yy € %(Rd), t,...,.t, € £_and a
smooth function F in k real variables such that F(§) = F G W), .o &y (Yn).
For such an F, we define its gradient by

k

oF _

E(é)t = E i F (e, (Y1), ... . (W) Wi 8¢, ¢
i=1

This is interpreted as an element of H¥(£_) for any choice of s : £ — R.

Definition 2.20. Givens : £_ — R, we say thata @’(£_)-valued random variable
& satisfies the spectral gap inequality for s if the bound
5 1/2
> 2.7
H*(£-)

Remark 2.21. By applying the spectral gap inequality to 2 for F cylindrical, one
concludes from it that there exists a constant C4 such that the bound

» 1/p
:| ) (2.8)
Hs(£-)

holds uniformly over smooth cylindrical functions with p = 4. Iterating this argu-
ment, one obtains the same inequality for all p of the form 2X with k € Z,. (See
for example [13, Lem. 2] for a similar argument.)

By the same argument, the bound (2.8) with p = p¢ implies the same bound
with p = p02k. Throughout this work, we could have replaced (2.7) with (2.8) for
some fixed p = po = 2. The only change would be that in Sections5 and 6 we
would then replace pp = 2% with py = po2*. However, as noted in the remark
following this one, in most cases the choice py = 2 will suffice so we choose to
stick to this case for notational simplicity.

,71/2 oF
E[IF©PR]" < C2<|E[F(€)] |+E [H¥

holds uniformly over all cylindrical functions F.

oF
E[|F@&)P]"" < cp<|E[F<s)] |+ E [HE

Remark 2.22. In the Gaussian setting, it is well known that the spectral gap in-
equality holds so long as the Sobolev norm appearing on the right hand side is the
Cameron—Martin norm of the corresponding Gaussian measure (see [7, Theorem
5.5.1]).

We will often require a slightly different choice of norm (as dictated by As-
sumption 2.31), however it will typically be the case that our choice of norm will
be stronger than the corresponding Cameron—Martin norm so that our assumption
is weaker than the usual condition for Gaussian measures. For example, in the
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case of space-time white noise, the Cameron—Martin norm is nothing other than
the L2-norm. However, the corresponding part of Assumption 2.31 corresponds to
requiring s to be a small but positive real number in this case.

This is done to avoid working with Besov spaces of integer regularity, which
frequently exhibit different behaviour to their non-integer regularity counterparts.

It is unfortunately not the case that, for a given model (IT, I') on a regularity
structure I, the random variables IT, 7 (1) are cylindrical as a function of &, where
T € I and ¥ € D(RY). Nonetheless, we will throughout apply the spectral gap
inequality to such functions of the noise without further ado. This can always be
justified by an application of the following technical lemma, for which we only
provide a sketch proof since it is not the main conceptual novelty of our approach.

In order to state the lemma, we first fix some notation. We fix the weight function
w(x) = (14 |x|*)!#/2+1 on R¥ and write C@;L (R?) for the corresponding weighted
®~L space, namely distributions in 6, are such that

()| < Cw(x)r™k,

uniformly over x € R, € %" and A € (0, 1]. These weighted spaces will not be
important in the rest of this paper, and appear only to avoid the need for some ad
hoc notion of derivative on a Fréchet space.

Lemma 2.23. Let s be as in Definition 2.20 and let

e 18l _
o 2 T 62 @9,
teg_

for some (fixed but arbitrary) k > 0. Suppose that & is a centred D' (£_)-valued
random variable satisfying the corresponding spectral gap inequality (2.7).

Then & admits a version taking values in “6,, with moments of all orders. Let
furthermore F: 6,, — R be continuously Fréchet differentiable such that both F
and its Fréchet derivative are of polynomial growth. Then F also satisfies (2.7).

Sketch of Proof. Let i/ be a smooth compactly supported test function. By apply-
ing (2.8) to F[£] = &(*), we obtain for each p of the form 2%

Isl

€D e S ¥l gswe ) S A0,

where the last bound follows from the scaling properties of H*( and the implicit
constant is allowed to depend on p.

As a result, the fact that & admits a version in €,, with moments of all orders
then follows from a simple variant of Kolmogorov’s continuity test in the form of
Theorem B.1, using the fact that )" ;4 1/w(x) < oc.

For¢ e %,;L(Rd), we define

1

(A

£(69)6: (2.9)
xeANB(e~1)
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where {0 : x € A, = (sZ)d } is a smooth partition of unity such that 6¢ is supported
in B, (x, ce) for a positive constant ¢ chosen such that the resulting ce-balls cover
the full space. One then checks that ¢ — ¢ in €, as ¢ — 0.

It then follows from continuous Fréchet differentiability of F, that if &
({)teg_ then F[£°] — F[£]inR and dF[£°] — dF[£] in H*(£_) (where in
the latter case, we make use of the continuous embedding (6,)* — H*(£_)).
Therefore, since (f, g°) = (f¢, g), we can write dF°[£](n) = dF[&°][n°] =
(dF[£F]%, n) where we interpret d F[£°] as an element of H®(£_) to conclude that
for fixed & € 6y, dF°[&] — dF[£]in HS(L_)-norm. The result then follows by
an application of the dominated convergence theorem. O

g def

We will now assume that a map scal : £_ — R is fixed for the remainder of
this paper. When we say that an Q24,-valued random variable satisfies the spectral
gap inequality without specifying s we will always mean that it satisfies the spectral
gap inequality for s = — scal. Here the choice of sign is to simplify notation in our
later arguments where we will treat the norm in the derivative term by duality so
that scal corresponds to the regularity of the space we end up working with.

The map scal captures the amount by which the scaling of our driving noise
differs from that of white noise, modulo some small perturbation which we will
make for purely technical reasons in order to avoid integer regularities in our Besov
spaces.

Definition 2.24. We let 4l (20) denote the set of Q24.-valued random variables &
such that

1. The law of & is invariant under the natural action of RY on Qg given by
translations.

2. & satisfies the spectral gap inequality with s = — scal.

3. Forevery x € R?, k € N? and t € £_, DF&¢(x) has finite moments of all orders
and has vanishing first moment.

Remark 2.25. This definition is more restrictive than the one found in [9, Defini-
tion 2.13]. The difference is that that paper aims to estimate norms of models via
moment-cumulant techniques and thus later makes assumptions on certain norms
that control cumulants of the noise. We will instead replace this control on cumu-
lants with the spectral gap assumption and thus we encode that at the level of the
definition here.

The noises we are interested in do not satisfy Definition 2.24 due to their lack
of regularity. However, they will satisfy the following, which implies that their
convolutions with a mollifier satisfies Definition 2.24.

Definition 2.26. We let 4L (2() be the set of all @' (£_)-valued random variables &
that are centred and that satisfy the analogues of points 1 and 2 in Definition 2.24.

Given £ € JMl(R20), applying the action of the renormalisation group G_ to
the canonical lift £ (£€) yields a collection of random models. We will now identify
several spaces of random models that contain such models that will be required in
the sequel.
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Definition 2.27. We denote by Myand (T) the space of all 91y (J)-valued random
variables that are stationary in the sense that there exists an action t of R? on the
underlying probability space by measure preserving maps such that for x, y, h €
RY, the identities

Tpiqn(w) =M (thw),  Tigpnyin(@) =Ty y(tho) (2.10)

hold almost surely, where T, 1,7 (y) = Il t_(y + h).
We let M ;ang (T) denote the subspace of Mrand (T°) consisting of random models
Z such that there exists M € 6_ and & € M (R2so) such that Z = MZ(§).

Remark 2.28. It is straightforward to see from [4, Equation 6.20] that all models
constructed from the lift of a stationary noise via the action of €_ are stationary
and hence lie in M 404 (9).

In what follows, we will assume that all random models under consideration
are stationary in the sense of Definition 2.27. As mentioned previously, our aim is
to consider random models constructed via renormalisation of the canonical lift of
mollifications of & € M (£2p). Given & € Qq and a sequence M" € G_, we obtain a
family of models Z" = (IT", I'") in M;ang (T) defined by setting Z"* = M, &£ (&,)
where &, = 0" * & for some mollifier p.

Our goal in this paper is then to show convergence for the sequence of models
given by this construction for a distinguished sequence of elements M,, known as
the BPHZ renormalisation which is constructed in [4].

For brevity, we will not delve into the precise details of the construction of [4]
here. Rather, we will satisfy ourselves with a description of its defining properties.

Definition 2.29. For £ € MA (QAOO), the BPHZ renormalised model corresponding
to & is the unique model (IT, I') in €_(Z(§)) such that for each tree T € T of
negative degree one has that

E[fz(h)] =0

where I = I, I:“x_l.
Given anoise & € J(£29) and a mollifier o, we will often write 7n = (ﬁ”, f”)
for the BPHZ renormalised model corresponding to &, = 0" * &.

Existence and uniqueness of a renormalised model with these properties follows
from the results of [4, Section 6] and in particular Theorem 6. 18 there. For an explicit
description of the action of 1" on trees, we refer the reader to [9, Equations 3.5
and 4.27].

In fact, we will proceed by first considering a slight variant of the BPHZ renor-
malisation which we call the BPHZ renormalisation that is better adapted to our
approach for estimating the first term on the right hand side of the spectral gap
inequality.

Definition 2.30. For § € Ml (S2x), the BPHZ renormalised model corresponding
to & is the unique model (IT, I") in €_(Z£(&)) such that for each tree T € I of
negative degree one has that

E[MTot(¢)] =0 @2.11)
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where ¢ is as in Definition A.1. B o
Given anoise & € M (L2p) and a mollifier o, we will often write Z"* = (IT", I'")
for the BPHZ renormalised model corresponding to &, = 0" * &.

Since we will only ever consider models that are stationary in the sense of
Definition 2.27 the arbitrary choice of 0 as a distinguished base point appearing in
the above definition is not of particular importance.

Existence and uniqueness of such a model follows from straightforward adap-
tation of the proof of [4, Theorem 6.18] by replacing their character g— (IT) with
the character g~ (IT) = E[I1g7(¢)]. The specific construction will not be of par-
ticular importance outside of the property (2.11) and as a result we once again
avoid introducing the lengthy notation required to discuss the constructions of [4]
in detail.

2.3. Assumptions and Main Results

Our main goal in this paper is to show that if we fix a driving noise & satisfying
the spectral gap inequality and let &, = 0" * & then MPPHZZ (£,) is a convergent
sequence of models. We split this task into two parts. We begin by establishing
uniform bounds on this sequence of models and only once these bounds are estab-
lished do we turn to the convergence result. This division provides an opportunity
to demonstrate the core of our argument without the technicalities required for con-
vergence and also allows us to simplify the exposition of the proof of convergence.

In order to obtain these results, we will apply a Kolmogorov criterion for models
(a statement and proof of which can be found in “Appendix B”) which reduces the
task of obtaining uniform bounds to the task to verifying that the assumption (B.1)
is satisfied. Similarly, the task of obtaining convergence is reduced to showing that
for each ¢ > 0 there exists an N € N such that for n, m = N, the pair of models
M,?PHzg(én), M,EPHZQ (&) satisfy assumption (B.2) uniformly in n, m.

Whilst such a result is more narrow than the estimates obtained in [9], it does
cover their main application.

However in order to formulate such a result, we will need to make some re-
strictions on the trees that appear in the reduced regularity structure. We assume
that

Assumption 2.31. For every t € £_, we assume that —|s| < |t|s < scal t — |s]/2
and that |t|s + |s|/2 and scal t have the same sign.

We also assume that if n; denotes the number of noise edgesin t then |7|; = |T]g

implies that n; = nz and that, for every tree T € J containing at least two edges,
we have |T|s > —%.
Remark 2.32. These restrictions should be compared with the corresponding [9,
Assumption 2.24 and Definition 2.28]. The first and last of our assumptions do
appear there also, however our second assumption which is adapted to the spectral
gap inequality, is replaced by a more complex assumption which ensures that non-
renormalisable cumulants aren’t formed when taking expectations of the resulting
Feynman diagrams.
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Since the assumptions of [9] on the trees appearing in the reduced regular-
ity structure are not automatic from the constructions of [4], applications of that
framework require checking these assumptions. This is significantly simpler with
the assumptions on trees made here since our only assumptions that aren’t posed
at the level of the labels themselves are relatively straightforward ones.

Additionally, we will make infinitesimal losses in regularity at various stages
in our (inductive) proof. This is typically accounted for by the fact that the natural
value for the degree of the noise under consideration is an “infinitesimal amount”
less than some fixed value. Since this “infinitesimal amount” doesn’t have a natural
fixed value, we can alter it throughout the argument to allow ourselves the wiggle
room to accommodate these losses.

This phenomenon already occurs in [9] and is accounted for by the supposition
that there is a second degree assignment on the structure that does not alter its core
algebraic construction but does assign every negative degree tree a degree that is at
least ¥ > 0 lower than the original assignment.

In that paper, this assumption is only needed for one further degree assignment
since estimates are established for each tree individually and the wiggle room is
only needed to ensure that the estimates are good enough to apply a Kolmogorov
criterion of the same type as Theorem B.1.

However, we will need to make use of the wiggle room more often since our
proof is inductive in the number of edges so that the bounds on the model at the
previous stage are fed as input into the argument that the bounds at the current stage
hold. At each stage then, we will want to apply Theorem B.1 to convert our bounds
into control on the norm of the model and this means that at each stage we will
make a loss of the same type as in [9]. As a result, we need a sequence of degree
assignments, each of which encodes some amount of wiggle room.

We define degree assignments for k € N by

TI® = tls + knek, (2.12)

where k¥ > 0 is a sufficiently small fixed constant. Note that the case k = 0
corresponds to our original degree assignment on the reduced regularity structure.
In particular, it is a consequence of Assumptions 2.9 and 2.31 that foreach N € N
there exists a k > 0 (sufficiently small) such that for each k < N

1. Assumption 2.31 is also satisfied with | - |5 replaced by | - gk).

2. The orders on trees induced by | - |s and | - |§,k) coincide.
3. The rule R generating our regularity structure is also complete and subcritical
: : (k)
with respect to the degree assignment | - | .

With these assumptions the place, the main result of this paper can then be
stated as follows:

Theorem 2.33. Suppose that 7 = (T, dd, ) is an instance of the reduced regu-
larity structure satisfying Assumptions 2.9 and 2.31 and that & € M (). Then,
for any mollifier o, if M,}?PHZ € R denotes the BPHZ choice of renormalisation

corresponding to o" * &, then the sequence of models A M,]?PHZSf(Q” * &)
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converges in probability as n — oo, for the topology on the space of admissible
models discussed in Remark 2.11.

Remark 2.34. It also follows from a minor modification of our proof that the limit
is independent of the choice of mollifier o. This is because, given a second mollifier
0, all of our estimates can also be applied to the sequence of models

MEPHZSB (0" % &), meven

Zn —
MPBPHZ (5" % £), n odd

to obtain convergence of that sequence of models.

3. Spaces of Modelled Distributions

‘We now turn to establishing the core analytic tools that will be used in our proof
of Theorem 2.33. Our eventual goal is to describe the Fréchet derivative of a model
in terms of certain modelled distributions that have properties that are sufficient
to capture the core analytic information for our proof. To that end, we introduce a
series of results regarding various spaces of modelled distributions in this section.

3.1. Besov Modelled Distributions

In this subsection, we recall the definitions of Besov modelled distributions
92)};@ from [15]. We remark that the definitions and subsequent results will differ
very slightly from [15] since we will work with local rather than global bounds in the
definitions of all of our objects. (For conciseness, we will not use the convention of
adding ‘loc’ to the names of the local spaces since all the spaces appearing here are
local.) Despite this, we will not include proofs of the direct analogues of the results
of [15] in this paper since they follow from the precisely the same techniques: one
only needs to keep track of the domain on which bounds are required to hold.

Definition 3.1. For y € R, p, g € [1, 00], and a model Z = (I1, I'), let 92)1, g =
D) 4(Z) be the Fréchet space of all measurable maps f : R — 9., such that,
for all ¢ € ¢, and for all compact sets & C R4, we have

1. Local bound:

£ L eary < 0@

2. Translation bound:

dh

Is|
|5

‘ | f (x4 h) = T, xf(x>|§ ‘
IlE

B(O 1 LP(Rdx) |h
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We write || £l p.q,y:# for the corresponding family of seminorms. Since we often re-

strict to the case g = oo, we will write 9)% = 95;)00 and || £l .y ;% = I fll o0yt

Additionally, given a second model Z =0, f € E)Zﬁg,q(Z) and f €
D).4(Z) we define

Ifs Fllpg.yin = sup I1f () = FElelLrchax
{<y

1/q
q
dh
Is]
LP (f;dx) hls

| A f () = A f ),
nly

+ sup /
¢<y \/BO,D

where A f(x) = f(x+h) = apne f(0) and Ay f (x) = O +1) =P f(2).
Remark 3.2. As usual, there is some ambiguity as to the choice of representative
of an element @;,q. In the above definition we have chosen a unique representative
by insisting that these elements take values in ., , however it is often natural
to say that functions f : R — J that contain terms of degree y or higher are
elements of this space. When we do so, it should be understood that we mean that
Q., f € D}, in the sense of the above definition.

It is easy to check that if 7 > y and f : R? — J; satisfies the local bounds
for all ¢ < y and the translation bound (with no projection Q_, present) for all
¢ < y then, provided that g = coor y ¢ 9, one has Q, f € @Z,q thus justifying
our convention.

This observation leads us to make the following assumption:

Assumption 3.3. We will make it a standing assumption that when we consider
the case ¢ < oo, we have that y ¢ o, and will often use this observation without
comment in what follows.

The main result of [15] is the following version of the reconstruction theorem
(here stated in its local form). We remark that the proof given in [15] relies on tools
from wavelet analysis and so makes a slightly more restrictive assumption on the
choice of scaling than we have done. A wavelet free proof of a more general result
is provided in [5, Theorem 3.2] which is certainly sufficient for our purposes.

Theorem 3.4. Let (T, A, 6) be a regularity structure and Z = (I1, T") be a model.
Let y € Ri\N, and set « = min(A\N) A y. If ¢ = oo, let @ = «. Otherwise
suppose that @ < «.

Then, for y > 0, there exists a unique continuous linear map R : EJZSZ,CI (Z) —

PBE  such that

P-q
2" | sup [(Rf — Ty f(x). n})|
neR” LP (f:dx) 104 (n)
S Mgy 1Tz (L + 1T, 3.1

uniformly over all f € 95;(1, all compact subsets . € R and all models (I1, ).
Here % denotes the 2-fattening of k.
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Given a second model Z = (1, T"), the bound

2" | sup (Rf —RF — T f(x) + [ f (), 1)
neR’ LP(f;dx) 4 (n)
S5 Wy A I =Tz + 1T = T3 (3.2)

holds uniformly over compact sets & Q_Rd and choices of models and modelled
distributions satisfying 1 f1l, . + 17N,y + 1215 + 1217 < C

Remark 3.5. It is in principle possible to establish existence of a reconstruction
operator on QE},’, 4 fory < 0. Later, we will in fact apply the reconstruction bound in
that case. However, we will always then have a particular value of the reconstruction
in mind and, since uniqueness fails when y < 0, the existence part of the statement
is then of no use to us. As a result, we don’t pursue this route further.

At this point, we observe that by Besov embedding, it follows that if f € %;,q
for y > 0 and f takes values in a sector of regularity o € R then R f € ®*~Isl/P,
On the other hand, if f is sufficiently regular (i.e. if y is sufficiently large) one
would expect its reconstruction to actually belong to 6.

Our next result will provide for y < « + |s|/p an interpolation between these
two settings. For convenience, we restrict to the case ¢ = 0o since that is the only
setting in which we will apply the result.

Theorem 3.6. Fix a model Z = (I1, ") and let f € 92); (Z) take values in a sector

V and let a = min(Ay\N). Let y be such that 0 < y < a + |s|/p and suppose
that y — |s|/p & N. Then the reconstruction R f from Theorem 3.4 takes values
in the Besov—Hdlder space @Y 1517

Additionally, we have, for any compact set k C RY, the bound

1S llgr—tme S W 7 ITT o7 (1 T, ) (3.3)

Given a second model Z = (I1,T) and f € 9235,00(2) taking values in the
same sector as f, we also have that

1R —R Fllgreimn SWF5 7 + 1T =Tz + IT =Tl G4

uniformly over compact sets k C ]Rd and choices of models and modelled distri-
butions satisfying | f1l, o5 + 17N, g + 1215 + 1215 < C.

Proof. Fory > |s|/p, by (alocal analogue of) [15, Theorem 4.1] we have %Z,q C

ngofgi‘”’ so that R f € GY~151/P by Theorem 3.4. As a result, we will assume
without loss of generality thaty = y —|s|/p < 0. We fix ¢, p as in Definition A.1.

To obtain the bound (3.3), by Theorem A.3, it suffices to show that for n = 0,
we have [R f ((p;f)| < 27" where the implicit constant depends on the model and
choice of f only through the right-hand side of (3.3). The bound (3.4) follows via
similar ideas that are only notationally more complex, so we only include a proof
of the first bound.
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We first note that by the convolution semigroup type property (A.1) of ¢, we
can write

(RS, )| = ’/ (RS, oy (x) dx |,
which in turn is bounded by

(3.5)

‘ / (RS = T f ), oy ™l () dx | +

‘ / M f (), i)y () dic|

Regarding the first term, Theorem 3.4 implies that the L? norm (in x) of (R f —
I, £ (x), p2*) is of order 27" (with a constant of the correct type). Applying
Holder’s inequality, this immediately yields the desired bound of order 2~"(¥ ~ls/P)
without any assumption other than y > 0.

To bound the second term, we use again (A.1) to write

/(H FO) @ hel () da _// (M f (), @)l (2) p)) (x) dx dz.

Note that the outer integral is restricted to a ball of radius ©(27") around y (which
is fixed once and for all) and, for fixed y, z, the function x — ,oxH(z),o (x) is

of the form 2~ "|5|1ﬁ2’f+1 for some nice test function v which still depends on y, z
itself, but in a way that’s uniformly bounded in 6" (for any fixed r > 0) and with
uniformly bounded supports.

This shows that it is sufficient to get a bound of the form

| / M £ (0, ) 2 @) dx| S AN, 5 1T, 5 (1+ IT1L,2777 (3.6)
We then rewrite 1//?“ as a telescopic sum:
n—H 1// + Z Rk

Here, R = y*+1 — % To bound the first term, we write I1, f(x) = IT.T",, f (x)
and exploit the fact that f; € L? for every { < y by definition, so that

’ f I, f (x), @2 12) Y2 (x) dx

< Z 272 L 1Ny 1T (L T )
=an0

S 27N FIL g T (L IT )
S27N M T (L4 T, )

where we used the fact that y < o by assumption and wrote p’ for the exponent
conjugate to p.
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For the remaining terms, we use the fact that R integrates to 0 to write

‘/(fo(x)wp?“) RE(x) dx

= ‘ / / (T, (f () — T £ (X)), @772 RE (o) X () dx due

5 Z 2—)1,3

an0<B<y

f/ Fg(x, ) RE () xf (x + h) dx dh‘

where y is an arbitrary test function integrating to 1.
Applying Holder’s inequality in x, we obtain a bound of order

Z z—nﬂz—k(}’—ﬂ)zk\ﬁ\/P|||f|||p yih
an0<p<y

which has a sum in k < n of the correct order since y — 8 — |s|/p < 0 by

assumption. O

Since by now multiplication of modelled distributions and Schauder estimates
for modelled distributions of positive regularity are well understood, we will omit
discussion of such results in this paper (though we will later include similar state-
ments for variants of these spaces). However, we will also be interested in a version
of the usual Schauder estimates for Besov modelled distributions of negative reg-
ularity.

The only real barrier for such results is that in this regime the reconstruction
is not unique and therefore the usual definition of the abstract integral has some
ambiguity due to its dependence on the choice of reconstruction. However, it is the
case that for any suitable choice of reconstruction, analogues of the usual Schauder
results hold.

Definition 3.7. For y € R, p € [1, oc0], a candidate for the reconstruction of
f € 923; is a distribution & f such that for each compact subset # C R¢ there
exists a C(f; #) > 0 such that

for all A € (0, 1] and compact sets & < R,
A candidate for the reconstruction operator on Qb; isamapR : 925; — D' (RY)
such that for each f € @), R f is a candidate for the reconstruction of f.

< C(fi RN (3.7)

sup |(gif - fo(-x)’ ni)”LF(k'dx) -

neB’

Given y < 0 and a candidate R f for the reconstruction operator of f € D7,
it is now straightforward to mimic the usual definition of the abstract integration
operators. That is, we define for t € £, the abstract integration operators 3{;
via the same formula as in the case y > 0 given in [14, Equation (5.15)], where
appearances of the reconstruction of f there are replaced by our candidate for its
reconstruction. We then have the following analogue of the Schauder estimates:
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Theorem 3.8. Lety < 0and suppose that R f is a candidate for the reconstruction
of f € 92);. Then %;,f € QZS;HHS and satisfies the bound

WFHy £l ytitiete S CCF ) + N f lpyin (L ITTIL,. )

Furthermore, K¢ x R f is a candidate for the reconstruction of 3{; f. In par-

ticular when y + |t|s > 0 so that the reconstruction operator R on E’b%“tls is
uniquely defined, we have that gl%;f =KixRf.

Additionally, given a second model 7 and a candidate R f for the recon-
struction operator of f € 92); (Z) such that for each compact k there exists
C(f, fi k) > 0 such that

we have that

< C(f, Fi RN,
Loy = (fs [i R)

sup [(f — ] = Tef () + Tl f (). m))|
neR”

Iy £ Fy Fllpy+itiin S CCF fr ) + T =Tz
HIT =Tl + 0F5 Fllp.yen

where for any C > 0, the implicit constant can be chosen uniformly over || Z|| yif T
IZIl,.7 + 0N pyin + W fllpyie + COf R) + C(fi R) = C.

Proof. The proof is almost line by line the same as the proof of [15, Theorem 5.1]
with the only significant difference outside of adapting to the local setting being
that one replaces applications of the reconstruction theorem by references to (3.7),
so one has to be a bit more careful to correctly track the constants showing up in
the proof. O

3.2. Pointed Modelled Distributions

Whilst Besov modelled distributions are a powerful tool for describing generic
distributions at the level of the regularity structure, they do not capture some im-
portant properties for our purposes. In particular, given a model (I1, I'), we are
interested in describing the Fréchet derivative in the driving noise of terms of the
form I, t ((p%). The most important feature of such terms (and their derivatives) is
that they behave as if they were a more regular distribution locally around the point
X.

To this end, we introduce a novel space of pointed modelled distributions which
are precisely those modelled distributions which behave like Besov modelled dis-
tributions, but exhibit more regular behaviour around some distinguished point.
In this paper we consider spaces of pointed modelled distributions whose Besov
nature has parameter ¢ = oo. This is mainly for convenience and isn’t a serious
technical requirement, however such results are sufficient for all of our needs and
this assumption does simplify some proofs.
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We begin by defining

» 1/p
T <f If(y)l”dy> .
ly—x|Zh

Here and in what follows, we consider the value p € [1, 0o) to be fixed and so we
will often suppress it in the notation and simply write || f ||, . for the above quantity.
In our applications we will always take p = 2, but the results of this section hold
for arbitrary values.

Definition 3.9. Given y,v € R, amodel Z = (I, ") and x € RY, we let ng’v;x
be the set of elements f € 9)}; that admit the additional bounds

1 lelir S AT NFO + 1) = Tysny FOellicay S RIE A7, (3.8)

uniformly over A € (0, 1] and |h|s < A. We call the first of these bounds the local
bound and the second the translation bound.

We then define || £l 5,y,v;x to be the smallest constant implicit in the notation
< such that the local and translation bounds for f hold.

Given a second model Z and f € D), (Z), f € D" (Z) we then write

- NS = Flels
If, Fllpyve = sup sup —————==
Py ¢<y re(0,1] AVTY
AR ) = An fDle 1 xay
+ sup sup sup .

Ae(0.1] 1hlls <t <y |h|L Ay

Remark 3.10. Whilst typically we will be most interested in the case v > y, we
remark that Definition 3.9 adds non-trivial constraints beyond the definition of @),
even in the case v < y.

Indeed, whilst in that regime the translation bound is immediate from the defi-
nition of EZ;, the local bound is non-trivial since it places constraints stronger than
mere L? integrability on components with { < v.

The idea here is that f € )" if it belongs to 2}, but behaves “better” by an
order v — y near the point x. Our main technical result is that the reconstruction
of such distributions behaves “as if” it were in €"~1°!/? (as opposed to @Y ~1%I/P
as in Theorem 3.6), provided that it is tested against rescaled test functions centred
around x, which translates this intuition at the level of modelled distributions into
a precise statement for their reconstructions.

Our proof of this reconstruction result will proceed by obtaining a standard
Besov modelled distribution with certain norm behaviour by localising a pointed
modelled distribution around x and then applying Theorem 3.6. As a result, before
discussing reconstruction of pointed modelled distributions, it is natural for us to
discuss their products.

In order to cleanly state our multiplication result, we begin by fixing some
context and notation. Throughout this subsection Z = (IT, I') and Z = (IT, I") will
be models and we will sectors V; and V; of .7 of regularity o] and «; respectively.



9 Page 26 of 81 Arch. Rational Mech. Anal. (2024) 248:9

We will assume that .7 comes with a product * such that (Vy, V,) is y-regular for
Yy =W +o) A2 +a.
We will write %;’V’X(V; Z) for the set of elements of %Z’U‘X(Z) that take

values in the sector V. Given fi € D" (Vy; Z) and f> € D127 (Va; Z) our
goal will be to show that the product

FEfix, LEQ (fixf) (3.9)

lies in a suitable space of pointed modelled distributions.

We first remark that it follows from the multiplication result for Besov modelled
distributions that we will only have to consider the pointed bounds in what follows.
We will often suppress the notation , simply replacing it either by - or simply by
writing 172 = 71 * T since the presence of the product will always be clear from
context.

Theorem 3.11. In the context described above, suppose that fi € D" (Vy; Z)
and fr € D27 (Va; Z) where i, v € Rand p; € [1,00]. Let y = (y1 +a2) A
R
(y2 + 1) and let p satisfy = 4+ e
Then f = fi %, fr € 92)%’”'+v2’x and the bound

|||f|||p,y,v;x f, |||fl |||p1,y1,V|;x . |||f2|||p2,y2,vz;x

holds.
_ Additionally, if fi € D" (Vi; Z) and fo € Dy (Va; Z) then for f =
f1 *y f2 we have the bound

|||fa f"lp,y,v;x 5 |||fls fl "lpl,yl,ul;x + |||f2s f2”|pz,y2,v2;x + ”F - F”ylvyz;Bx

uniformly over choices of fi, fi, Z, Z such that

Wfillprynvises Wfillprynvnses 1T lyivns e 1T vy, < C-

Remark 3.12. In the application we have in mind, we will always apply this result
with p; = p (typically equal to 2) and p> = o0, but since the general result is no
more difficult to obtain we include its proof here.

Proof. We first consider the case of a single model and begin by verifying the local
bound. By Holder’s inequality, we have that

W lelwp D MAlglaxp l f2le—pllnr.p
a1 SBSi—w

SO MR Al e 2l i
a1 SBSC—wp

S AT Ay v 2l s,y i

as desired.
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We now move to the translation bound. We write as usual

SO+ =Typny f(y)
=[0G +h) =Typmy i 2(y +h)
+ iy + M2y +h) = Typny fa(y)]
—[AG+h) - 1—‘y+h,yfl()’)] 2y +h) — Fy+h,yf2()’)]~

To control the first term, we note that ||| Ay, f1(y) f2(y + A)l¢ llx,x, p;ay is bounded
by

o MARAWIe—plaxpray 120 + B plls . poay

@ SpSi—a
1—=$+B 4 v — -
S Z |h|g AVITVIAY? /3”lfl|||p1,y1,u1;x|||f2|||p2,y2,vz;x
@ Spli-a
+a2—¢ - — — o—
<D RETET R 2 P Ay s 2l i
@ Spli—a

Yito2—=Ea vi+m—y—
SRS By s 2l .y, v

Switching the roles of f1 and f> in the above yields the desired bound on the
second term and we are left to consider [||Ay, f1 (V) Ap 2()]¢ 15..x, p:ay- We bound
this term by

Yo MARAM Il prayllAn 2O e—plax, poidy
a1 St —an

49— o —
S T gl 2l i

a1 SSc—wm

SRR 2 filly o 2l v

We turn now to the bounds for f — f. The local bounds work in much the same
way as in the case of a single pointed modelled distribution so we will consider
only the translation bound. We write

Af) —Af) =T+ T+ T3+ Ty + Ts

for

Ty = [Anfi — A fil(y) fa(y + h)

To =Tyiny i) [Anfo — Ap f21(0)

T3 = —yyny[fi — A1) A fo(y)

Ty = —[Cyiny 1) = Tyany i An f2(y)
Ts = A fi(y) L) — ()]
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The desired bounds on 77 and 75 follow in much the same way as the bounds
in the single model case. The remaining three bounds are all obtained in a similar
way to each other so in the interest of brevity we only consider 7. We write

Talelowep S D MTyany A slax.priay 11ARF2 = Db fale—pllxx. poiay
a1 SpSc—m

< Y S P NA G 1AL = Ay Fale—pllnx.ps
a1 St —an BSn<y
— - — + _ -
<N S R TR AT g &l i
a1 SBZ¢ BSn<y

s o i
SIRETTEONHR T 6 By s s

which yields the desired bound. O

With this result in hand, we proceed with our plan to obtain a reconstruction
result for pointed modelled distributions via localisation. The key observation here
is

Proposition 3.13. Suppose f € D" (Z) is such that supp f < B(x, 1) for
A € (0, 1]. Then

W Mpyie S AW M,y vix

with a constant that is independent of A and f.
Additionally, given a second model Zand f € E’b};_’v;x(Z) such that supp f C
B(x, 1), we have the bound || f. fll p,y;r < A"V Wf fllp,y,vix-

Proof. For the local bound in the definition of [| f|l ,,., we note that, since f is
supported in B(x, A), we can write for { < y

I lelzrey < M Flelix S A N py e S 27N lpyvsxs

as desired, where we used the definition of || £l 5,,,v;x in the second inequality.
We now turn to the translation bounds in the definition of || f |l »,,;%. We divide
into the cases |h|s < A and |h|; > A since the definition of || £l ,,,v.x only gives
us added information in the former case.
First suppose that |2|s < A. With Ay, f as in Definition 3.1, we write

AR D ellLrkiayy S MARFOe 2 S ATV RET N Np.yvee
which is a bound of the desired type. (Recall that we are considering the case
q = o0.) In the regime |h|s > A, we write

HARf O elierdy S M Felerd + 3 1815 I Flc e
¢(<B<y
S Y W Myl hle R TE S f il hIE AT
(SB<y

The bound in the case of two pointed modelled distributions then follows in
essentially the same way. O
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In order to leverage this result, recall that the reconstruction operator is local in
the following sense:

Lemma 3.14. Let f, g € E)Z}; with y > 0 and let Y be a smooth test function. If
Jf =g onsuppy, then R f(Y) = Rg(VY).

This gives us the ability to leverage Proposition 3.13 if we can suitably lift bump
functions into an appropriate 925; space.

We fix a smooth compactly supported function x such that x(x) = 1 for
|x|s < 2 and, for given & > 0, define the Taylor lift of order w of its rescaled
version by

Kls ( pk X
0.0 = 3 a0/
Ikl<p

Notice that we suppress the i dependency in the notation since the precise value
of u will not be important to us so long as it is sufficiently large.

The preceding results then allow us to derive pointed versions of the recon-
struction theorem.

Theorem 3.15. Let y € (0, o + |s|/p) \ N and suppose that f € E)Z)%’V’X(Z) takes
values in a sector of regularity a < 0. Then writing By for the closed ball around
x of radius 2,

R LA S AT PN f Uy e ITT 8, (1 + 11T [y 8,), (3.10)

uniformly over . € (0, 1] and € R".
Further, for § < A, we have that

”(Qf - Hyf()’)’ wg)”)u,x,p;dy ,S )\vﬂ/y/|||f|||p,y,v;x”H”)/;Bx(l + ”F”}/;BX)-
(3.11)

Given a second model Z and f € QZ)Z’U’X (Z) taking values in the same sector
as f, we have that

MVPUR S — RF, 9
S Fllpywix 1Ty 8, (L4 Ty 8,)
+ |||f|||p,y,u;x (”H - 1:[||y;Bx(1 + ”F”)/;BX) + ||1:I||V;Bx||r - 1:‘”y;BX) .

and further

WSV RS —Rf — Ty f(3) + Ty 3 D) e, prdy

is bounded by the same quantity.
In the case where « = 0, @ = min(dy\N), @« <y — |s|/p <@ and y,y —
|s|/p € N, the same bounds hold for € %{&J'
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Proof. We provide a proof of the bounds for a single model; those for two models
following similarly.

A straightforward calculation yields that if we take @ = y — o then x; €

Therefore, by Lemma 3.11, it follows that f5(y) = f(¥)x,(y — x) defines an
element of 1" with | 5ll .y, S A7V II.fl p.y.v:x uniformly in A by Propo-
sition 3.13. Since [(R f, goﬁ)| = (R fr, (p?)l by Lemma 3.14, the bound (3.10)
follows from Theorem 3.6. The bound (3.11) follows similarly from Theorem 3.4.
O

DL 4O and that ||, lloo,y —a,0:x < 1 uniformly in A.

We now turn our attention to establishing analogues of the usual Schauder
estimates for pointed modelled distributions.

We note that our definition of the abstract integration map here will differ from
the one for the usual spaces of Besov modelled distributions. The reason for this is
that in order to preserve the better behaviour around the distinguished point x it turns
out to be necessary to subtract off a suitable Taylor jet around that distinguished
point.

As usual, we will assume that a kernel assignment K = (K Yes . has been
fixed and will fix achoice of t € £ and write 8 = |t|; and suppress the dependency
on t in the kernel in order to simplify the forthcoming notation.

Definition 3.16. For y,v > 0, p € [1,00] and f € QZ)Z’U;X, we define the pointed
abstract integral %;,’f f of fby

L =IfM+FWFO)+ Ny HO) =T, F ()

where
xk
For= 3 ORI
|kls <IT|+p
Xk
Wy N = Y DK (@RS =TGN
kls<y+p

3 (X +y—x)k

= (D*K *Qif)(x)).

T2, F () = Oy
[k|s<v+B—Isl/p

Remark 3.17. Since DFK isn’t a smooth test function, it is not immediately obvi-
ous that the evaluation of the distribution DX K %% f at the point x is a well defined
operation. However, this is a consequence of Theorem 3.15 in essentially the same
way as the corresponding statement in [14, Lemma 5.19] is a consequence of the
reconstruction theorem there.

Later, given akernel assignment (K Yer . wewill write X

t X
y.,te I, ‘N)’»t’ Tv,p,t

for the operators defined in this way for the kernels K.
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Additionally, in order to simplify upcoming expressions we will set
Ky (@) ="Ky —2)— Y =0 (x —2)
n;y,x ) = nly Z (l —k)' n{X 7).
1=k
ls=n
We will also repeatedly use the following estimates, which are immediate to

obtain from the definitions but we state separately here for the reader’s convenience.

Lemma 3.18. Fix a model Z = (I1,T) and let | € QZ)Z’V;X(Z). Then for ¢ <y
and |h|s < A

||<Hy®g“f(y)» 77§;>||A,x,p;dy < (ITT[s; B, |||f|||p,y,v;x5§)\v_§

@ Apf ). 1) axpray S D ITTlls;m, (14 [T N5, 1212 &2 ¢
n:¢ <<y

Additionally, given a second model Z = (11, T) and f € QZ%’U;X(Z), we have the
bounds

Ty — TyQc £ (9), m5) lnxaprdy S €AY (I = Tls; 8, + ILf5 fllpyvix)

and
Ty @ A f (v) = Ty @ A f () 05 1. x. prdy

SO TR (IZ = Zllsis, + 05 Fllpyix)
n:¢Sn<y

uniformly over choices of Z, Z, f. f such that | Z| 5.8, + | Zlls; 8, + Il fll p.y,vix +
WAy v = C.

Proof. The results in the case of a single model follow immediately by applying
the definition of the norm of the model followed by the definition of || £l 5.y, v:x-

In the case of two models, a similar approach works where one has to ap-
propriately rewrite the difference of models. For example, for the first inequality
in this case we would write IT,Q; f(y) — I:Iy@l;f(y) = (I, — I:Iy)@l;f(y) +
I yQr (f(y) — £(y)) and then proceed in almost the exact same way as in the case
of a single model.

The second inequality for the case of two models is then similar. O

The main result of this subsection is the following theorem:

Theorem 3.19. Fix models Z = (I1,T") and Z = (I1,T) and for p € [1, o],
y,v € Rand x € R4, let 3{;,’5 , 372;,’5 be the corresponding pointed integration
operators.

Then for f € E%[};’U;X(Z) valued in a sector V such that0 < y < a + |s|/p

where @ = min(sdy \N), one has %;jff € SZBZJ”‘L}’H’L};X(Z) and further

|||%;:\[;7f”|p,y+ﬁ,v+ﬁ;x 5 ||H||y;Bx(1 + ”F||y;Bx)|”f|”p,y,v;x
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where B is the order to which the kernel K is regularising.
Additionally, given f € QB,);’V;X(Z)

WFEy:D 2 Ey S fllpy+posp SNZ = Zlsis, + If5 fllpoyvix

uniformly over choices of Z, Z., f. f such that Zlls.B, + ||Z||8;BX F W Mp,yvix +
Wl pyvix = C.

Proof. Asis usual in these proofs, the bounds at non-integer homogeneities follow
immediately from the definition so we will consider only the bounds at integer
levels.

We let ng be the largest integer such that 2770 = 4. Since |k|s < ¥ + B by
assumption, we can write k!Q X |, f(y) = Znéno I, + Zn>no J, where

def

I S (@S, Ky Py = 3 £ (), 05Ky = )

¢S|kls—B
I EARS T f ), 5 Ky =)+ D (T fe (1), 8 Ky — )
¢>lkls—B
(y _x)l—k ;
- Y ek )
1>k
[1lsSv+B—Is|/p

We will first derive bounds on || 1, | x,» for n < no.
Lemma 3.18 immediately yields a bound of order 2"(¥I==¥=¢ on the sum-
mand of the second term so that we are left to consider only the first term.

To bound this term, we apply [14, Proposition A.1] to write

R Ky Maep S ) H fR RS AT+ = )@ (v~ x.dh)
ledAk ,

Ax,p

where A% | = {j : [k+jls < a+ﬂ—_|5|/p},aA{;,p ={j € AL, j—em(j) € AL)
for m(j) = min{i : j; # 0} and @Q/(y — x, -) is a signed measure supported on
{h : h; € [0, (y — x);]} with total mass (y;—f)/

Since in the domain of integration |h|s < |y — x|s < A, we can apply Theo-

rem 3.15 to bound [(R f, 3K K, (x + h — -))| < 27 (iHkls=B=v+Isl/P) This yields
the bound

R, K52 M p < Z pn(ll+kls—B—v-+ls|/p) llls+lsl/p

n;y,x ~
led Ak ,
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so that, in total,

> Ml

n<ng

S| S onkepo0um g 5 gnlikla=povtlal/p); eel/p
n<ng | {S|kls—B led Ak

v, p

< Bkl

as required.

We now turn our attention to J,, forn > ng. Here, applying the second statement
of Theorem 3.15 to the first term, Lemma 3.18 to the second term and the first
statement of Theorem 3.15 to the third term yields the bound

Z 1. p < Z I:zn(lklsﬂ)/))\v)/ + Z n(kls—=p—¢) 5 v=¢

n>nq n>=no ¢>|kls—B

+ ¥ Allkszn(llsﬁV+5/p):| < a7,
12k
llls Sv+B—Isl/p

again, as required.
We now turn our attention to the translation bound at integer homogeneities.

We fix i € R? such that || < A. We remark that a (slightly fiddly but essentially
straightforward) calculation shows that

(y —x)/ i . Xk
MNTS,f ) = Y e DMK )

T
@iy !

where the sum is over multi-indices k, j,/ such that |k|]s < y + B8,y + B <
lk+1lls <v+B—Is|/pand |k + j +[|s < v+ B —|s|/p. In what immediately
follows, for a fixed multi-index k such that |k|s < y + B, we write M} for the set
of (j, ) such that (k, j, [) satisfies the above conditions.

We will split our consideration for the translation bound into 3 regimes. We let
mg be the largest integer such that 270 > |h|,. Note that ng < mg. We then write
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K'QrApf(y) = Zn§no 11; + Zno<n§mo 1; + Zn>mo L;z’ where

7 def

L E(Rf =Ty f(y+h), Ky +h — )

hl
DR A Ry ICED)

Lll+kls<y+p
+ Y (M@ AR f (). 3K (y +h =)

¢>kls—B
—x) Kl .
S W g DR, (- )
Ghaw, At
BERF =T f), Kyl ) = 3 (M@ Anf (), 8 Ky + 1 — )
¢SIkls—p
—x) .
S W g DR, - )
T A
l
" k,v+B—Is|/ h k1, v+B—]s|/
I, = (R, Kn;;+h,y )+ Z ﬂ<%f’ Kn;y,x ")

Ly+BZ|l+kls Sv+p—Is|/p
k,
— (L f D). Kyl ) = 3 (@ A f (), 0¥ K (y + 1 — ).
¢SIkls—p

First, we bound |L} |y x,, for n > mgo. An application of the second claim in
Theorem 3.15 to the first and second term, the first claim in that result to the final
term and of Lemma 3.18 to the third term immediately yields

”L;z”)»,x,p < on(kls—=p=y) , v=y + Z |h|¥|szn(|k+l\5—ﬁ—y)kv—y

L)l+kls<y+pB
+ Z Z|h|g_fzn(\k\*ﬁ*n))\‘)*§
¢>lkls—Bn=>¢
£ Y (e aliletislpont-+p=lsl/p=lit 41l
(J,D)eMy

It is then straightforward to see that this implies the required bound.

The bounds on [|J;[lx.x,p, II1;]lx,x,p follow similarly by first applying [14,
Proposition A.1] to any term including an appearance of an expression of the form
K, and then applying one of Theorem 3.15 or Lemma 3.18 in a very similar
way to many of the bounds already derived in this proof. As a result, we omit the
details for these terms.

It remains to obtain the bounds for the instance in which there are two models.
These bounds follow in almost the same way as above, replacing the applications of
statements in Lemma 3.18 and Theorem 3.15 with their analogues for differences
of models and hence we again omit the details for brevity. O
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Once again, we will also need to apply (pointed) Schauder estimates in the case
where ¥ < 0. As in the non-pointed variant of the result that follows, the proof
of estimates in this regime follow almost line-by-line as in the y > 0 case by
replacing applications of the bound coming from the Pointed Reconstruction The-
orem (Corollary 3.15) with an assumed bound on candidates for the reconstruction
operator. Therefore we will provide only a statement of our Schauder estimate in
this case.

Definition 3.20. For y,v e R, x € R4 and p € [1, oo], a candidate for the pointed

reconstruction of f € QDZ’V;X is a distribution R f that is a candidate for the
reconstruction of f as an element of QBZ,OO such that the constant C(f; By) for f
in Definition 3.7 can be taken such that

(R f g2 S C(f: Ba TP,
KR f — Ty £ ) @D Irxpray S C(fs BOA V87

A candidate for the pointed reconstruction operator on %%‘v;x is then a map

R Dy — D'(R?) such that for every f € D", R f is a candidate for the
pointed reconstruction of f.

Given y £ 0, v € R and a candidate R f for the reconstruction of f € QZ)Z’U;X
the formula for ;7 f in Definition 3.16 makes perfect sense and we will take it
as a definition of the pointed abstract integration in this setting. With this in mind,
we have the following result.

Theorem 3.21. Ler y <0, v € Rand p € [1, o). Fix models Z, Z.
If R f is a candidate for the pointed reconstruction of f € E%};’V;X(Z) then
%;jff € 2)7)[};+’3’U+’3;x(2) and further
2
|||%;ﬁ:5f|”p,y+ﬂ,v+ﬂ;x g C(f:By) + |||f|"p,y,v;x (1 + ”Z”y;BX)

where B is the degree to which the corresponding kernel is regularising.

Additionally if R f is a candidate for the pointed reconstruction of f € 923;’ "NZ)
such that

HRS = RS, 0 S CUf, HHrvlee
KRS —RF =Ty f ) + Ty F O, @) awopray S U HHRTTSY

then
WKL F Tl Fllpoyspooix S CU T+ IF Fllpoyis + 125 Zlyi,

uniformly over modelled distributions f, f and models Z, Z such that || f || pyvix T
WfNp.yvix + 1ZIy B, + 1 Z1ly:8, + C(f; Bx) + C(f; By) = C.



9 Page 36 of 81 Arch. Rational Mech. Anal. (2024) 248:9

3.3. Modelled Distributions Measured in Negative Sobolev Norm

Unfortunately, whilst the tools of the last section will be good enough for us
to obtain uniform bounds on renormalised models built from mollifications of a
fixed driving noise, they are not quite good enough to obtain convergence of those
models.

The problem that propagates throughout our constructions is essentially that if
0 1s a mollifier at scale ¢ then whilst o, * f — f asn — oo for any fixed f in
L7, this convergence is not uniform over the L? unit ball. Since that is the kind of
convergence we would require (once lifted to the level of modelled distributions)
our previous framework runs into a problem.

However, it is nearly the case that we do have the desired convergence. We mean
this in the sense that, as usual in this kind of situation, uniform convergence does
occur in any sensible weaker topology, for example supy ¢y, p=1 f—0exf ||93;§7 —
0ase — O forevery k > 0.

To this end, we introduce in this section another variant of our reconstruction and
integration results which will allow us to track the behaviour of Besov and pointed
modelled distributions through negative Sobolev norms of their coefficients. Since
these negative Sobolev norms are controlled by L”-norms, as sets the spaces we
work with will coincide with the standard Besov and pointed spaces respectively.
The interesting addition will be that we will derive a number of results extend-
ing the results of the previous sections to obtain bounds on abstract integrals and
reconstructions of such modelled distributions that depend on negative regularity
Sobolev norms of coefficients of the modelled distributions involved.

We assume throughout this section that for { € o, we have a distinguished
orthonormal basis B; of J; . In our application of these results we will be interested
in the case of the reduced regularity structure so that B; will be given by the set of
trees of degree ¢, however our results here are not limited to that structure.

We begin with the setting of Besov modelled distributions.

Definition 3.22. For f € 9}, let

def
| flly,—«,p;x = sup sup ||fr||%;“p(k)~
<y teB; ’

where f; is the coefficient of f in direction 7.

Our strategy throughout all the proofs of this subsection will be to obtain bounds
on norms of very bad regularity on the objects under consideration that depend on
Il - ly,—« p;r and then use interpolation to obtain a bound in a space of better
regularity that will depend on a smaller power of this norm, which will be sufficient
for our purposes later.

Such proofs are unfortunately necessarily notationally rather messy when writ-
ten out in full, but are also all conceptually very similar to each other. As a result,
we will provide one proof that demonstrates how the interpolation works in some
detail and then in the other proofs will omit the details of the interpolation step.

Throughout this subsection, we will let Z = (T1, I'), 7 = (I:I, ') denote an
arbitrary pair of admissible models.
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We first aim to establish several results that will allow us to control the recon-
struction operator in terms of this Sobolev-type norm. In the result that follows,
we obtain control on the 973‘[3‘7 ¢ seminorms of the reconstruction. We remark that
it would have sufficed to consider Besov seminorms of much worse regularity
since we only use this result as input for a further interpolation argument. However
obtaining the regularity we list below requires no additional effort.

Proposition 3.23. Fix models Z = (I1,T), Z = (I1,T) and parameters p €
[1, 00l and y € Ry \N. Then for any sufficiently small k > 0, there exists a 6 > 0
such that for f| € %;(Z), fr € %Z(Z)

IR fillggee ey < 1MLy ML IIO /1 |||p Vit

—k,pik
Additionally, uniformly over || f; |||p yiit IIFIIV gt ||F||y 7t ||H||y gt ||H|| 7S
C,
_ G e < _ ) e _me
1% f1 = R follggas iy S 11 = fl8 o +IT=TT1° o+ 0 =9 ..
Proof. We begin with the case of a single model. Since this proof is otherwise
notationally dense, we will track only the dependency on the Sobolev type norm
explicitly and will absorb the other terms into the implicit constant.
We write f = f1 for notational convenience. We note that it follows from the

proof of [5, Theorem 3.2] that if ¢ is as in Definition A.l then we can write the
973‘;‘,;2 () norm of R f as

n(a—e)
:2%2 he A ‘LP%)
where
An(x) = / M, f ) (@)} (y)dy+Z / I, f D@ R (v — 2) dy dz

andR:pl—pl*p.

To bound the term corresponding to the first term of A,, we first note that
applying the definition of the model immediately yields a bound of 27"%. However
this bound has no dependency on || f ”J/,—K,p:f_c'

In order to obtain a bound that does have such a dependency we write

sup [ 11, F@Edy = sup 33 [ M r@hntonay.

neRB’ neRB’ <y TeB;

We define gap(y) to be the minimum distance between distinct elements of the
degree set ,,. We will assume that k < gap(y). We also recall that, by the scaling
properties of Besov spaces, sup, g, |7} ||%;/ ) < 2meAnlsl/p where p’ is the
Holder conjugate of p. ’
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Further, for y, y € B(x, 27"), we have that

ITyT(e}) — M5 (ep)| = [Ty — M (@] + M7 (py — ¢5)]
= Ty(z = Ty50) (@) + [T5(e) — @)

The first term on the right-hand side is bounded by a term of order 27|y — 7 |82P().
For the second term, we note that |¢, (x) — ¢5(x)| = |y — ¥I, and similarly for its
derivatives. Therefore, there is a ¥ € 9" such that ga’y’ — go;’ =|y— yw;. It then
follows that [T (¢y — <p;-f)| <27y — ).

Hence, y +— l'Iyr(go;‘) is Holder continuous of order gap(y) with a norm of
order 27"* on B(x, 27"). By a standard multiplication result for 93;,,1 spaces (see
e.g. [5, Theorem 3.11]), we obtain that y > (I, go;L)n;l (y) € %;,’p/ with a norm
of order 2"« —a+lsl/p)

Hence, since the obvious bilinear map on %;}f‘q, X D (Rd ) extends to a bounded

bilinear map on %;,“q, x B}, 4» we have that

’/fr(y)(nyrv <ﬂ§)f7f§(y) dy‘ S zn(KiaHS‘/p)”f”y,f/c,p;f;'

By choosing 6 such that 6 (« + |s|/p) < € and interpolating between our order
27" bound and this bound we obtain

2n(o¢—s)

[ oo e <IrIe

LP (Ridx) epik
We are then only left to consider the sum in k.
First, we obtain a bound that does not depend on our Sobolev norm which we

will use for interpolation. We write

‘ / I, f (DR (y — 20 (y) dy dz

< ‘ / I, f () (E R % ' (2) dz

+‘ f M, (f(2) = Doy FON@THRYy — D () dydz|.  (3.12)
We then have

‘ / I, f (@R« () dz| S 275 RE 5 )l 1.

Since convolution with R¥ annihilates polynomials of up to a suitably high degree,
we can replace 1" with its Taylor jet to degree r to find that || R¥ %[ .1 < 27k 2"
uniformly in 7. In total, we obtain that

‘ / M, £ (2) (@2 R 5 i (z) dz| < 27K +einr,
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For the second term on the right hand side of (3.12), applying the definition of the
model and of || f1l,,;» immediately yields a bound of order 27kr.
Therefore

S szy + sz(r+<x)2nr
LP(k)

sup / I, £ ) @D () RA(y — 2) dy dz
n

We now turn to obtaining a bound that depends on our Sobolev type norm.
Again, we expand f(y) in terms of our basis to write

' / I, f @Ry — D (y) dy dz

=) 2

{<y t€B;

/ Fe LT (@ R (y — 20 (y) dy dz

By a straightforward estimate, one finds that ||R§ s, o (B) S 2kUetlsD and
I, gy < 2" CHE/P) where B = B(z,27%).
Additionally, for y, y € B, we have that

|<Hyt — H)'yf, (pk+2>| = |<Hy[T — Fy}’vf], (pk+2>| 5 Z_kaly — }';|gap()’)

Z Z

so that y Hyl’((p§+2) is gap(y)-Holder with a norm of order 27k on B. There-

fore, again applying Besov multiplication and duality results and not being careful
to obtain the sharpest estimates since we will anyway interpolate these bounds, we
get that

' f Fr LT (@R (y — 20 () dy dz

S, ”f”y,flc,p;ft\/\ 2—kl¥2k(2K+|5|(1+1/p)) dZ
lz—x| <277

< 2k(2k_a+|5|(l+l/p))”f”y,f/(,p;f;
which yields the same bound on the L? (%; dx) norm up to an irrelevant multiplica-
tive constant.

We define ¢ = 2k + |s|(1 + 1/p). Interpolating between our bounds, we have
that for every 6 € [0, 1],

sup / I, f (S ()R (y — z) dy dz
n

LP ()

< [z—ky(l—9)29k(c—a) T 2—ka2(1—9)kr2k90] ||f||9
v.—i,pik
By choosing 6 to be sufficiently small, we can ensure that the term in brackets is
summable in k to a term of order C(n) such that |C(n)2"*~#)| < 1 which yields
the desired result.
The case of two models follows via essentially the same techniques but is even
more notationally dense and so we omit its proof. O
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Theorem 3.24. Fix models Z = (I1,T), Z = (11, ) and parameters p € [1, oo],
a < 0andy € Ry\N such that 0 < y < a + |s|/p. Then for any k > 0, there
exists a 0 > 0 such that for f1 € 925; (Z) valued in a sector V of regularity o, the
following bound holds

AN Ty (14 T 5)

A y—Isl/p—« 0
IR f1WD] S A LA, el g

uniformly over A € (0, 1] and y € R".
Given f € QDZ (Z) valued also in V, we also have the bound

1R A — R A

S (VT B (P T P

—K,
uniformly over | fill , .5 + ITlL,.5 + IT1L,.5 + ML + [T,z < C.

In the case where a = 0, let @ = min(Ay \N). Then for0 < y < a + |s|/p,
assuming that y — |s|/p € N, the same bounds hold uniformly over Y € %{&J'

Proof. By Proposition 3.23 and Besov embedding, there exists a C > 0 such that

sup sup R [ () S ACYr)°

1A Ty (1 T )
xek Y eRB,

y,—k.pit

for sufficiently small 0, >0, uniformly over A € (0, 1]. Interpolating this bound
with the bound of Theorem 3.6 immediately yields the result for a single model.
Since the only difficulty here is in notational complexity and the ideas of such an
interpolation were already demonstrated in the proof of Proposition 3.23 we omit
the details. O

We will also be interested in applying Schauder estimates to modelled distri-
butions with coefficients that are small in a negative Sobolev norm. To this end, we
have the following result.

Proposition 3.25. Fix models Z = (I1,I') and V4 = (11, T) and suppose that fi €
92)5 (2), f» € 923; (Z) where y € Ry\N. If K, &, are the abstract integration
operators for the models Z, Z defined in [14, Equation (5.15)] then

||%yfl||y+ﬂ,—/<,p;k
< (Ilf1 Iy, e peie + LA (2N e ) A+1Zl,.5)

y,—k.pit p.yik

1Hy f1 — Ky Folly+p—c.pite
SO =T,z +I0 =TIz +1fi = 2, i
_ 1-6
+ A fzII Ifi= Rl g

—k,pife

where the second bound has an implicit constant which can be chosen uniformly
over I1fill,yz + 1T + ITIL o + 1T, 7 + ITT1L,.5 < C.
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Proof. Asusual, the bounds at non-integer homogeneities follow immediately from
the definition so that we are left only to consider the terms valued in the polynomial
part of the regularity structure.

We note that the component of &,, f1 in the direction X k for |k|s < y can be
written as

(X (Ml i), 0K = ) + Ry = T i), 0K = ).

n20 ¢>lkls—p

We apply the definition of a model to write

[mec e, o K =, S 37 10 il )27
Bp.pk) ceBs p.p

to see that the first term has a sum in n of the correct order.

For the second term, we must again interpolate between two bounds. On the
one hand, since the E’B;’; (%) norm is controlled by the L? (%) norm, Theorem 3.4
immediately yields a bound of order 27" +A~Ikls)_On the other hand, we can treat
the reconstruction operator and the model appearing in this term separately.

Proposition 3.23 yields the bound

RS 8 K x = NlLoey S 277700

Further, the same treatment as used to control the first term yields a bound of order

I f ”y,ﬂc,p;fcz_n(a-’_ﬂ_lkb)

on (T £1(x), 8 Kn(x = ))llgyx -
Since y + B — |k|s > O, interpolating between these bounds will yield a bound
that is summable in n to a term of the correct order.
The bounds in the case of multiple models then follow in much the same way.
O

We will also require the pointed analogues of all of these statements. Again, the
proofs here would be tedious but are conceptually no different to the non-pointed
versions. As a result we only provide very brief sketches of the proofs for the
following two results.

Theorem 3.26. Let y € R \N be such that 0 < y < «a + |s|/p and suppose that
f e QD;'U’X (Z) takes values in a sector of regularity a < 0. Then writing By for

the closed ball around x of radius 2, for every ¢ > 0 sufficiently small, there exists
6 > 0 such that

R LA S AP WIS e 1T, (L T 8,),

uniformly over ) € (0, 1] and € B".
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Given a second model Z and f € Qb%’v’x (Z) taking values in the same sector
as f, we have that

MNPV R f — R F, )
St = £l e pip, + I =T 5 + 1T =T%. 5.

uniformly over || fillp.y.vix + 1T 1L + I 0,7 + 1Tz + I, < C.
In the case where « = 0, if o = min(dy\N) and 0 < y < a + |s|/p then the
same bounds hold uniformly over r € %{&J.

Proof. This follows by interpolating between the bounds of Proposition 3.23 and
Theorem 3.15. O

Theorem 3.27. Fix models Z = (I1,T") and Z = (II,1) and for p € [1, 00]
let 3{;,’5 , 3{;5,’5 be the correspondiizg pointed integration operators. Suppose that
f1€ EJZ});’U’X(Z) and fr € %Z’V’X(Z) are valued in the sector V, y,y —|s|/p ¢ N
and that 0 < y < a + |s|/p for & = min(dy \N).

Then we have the bounds

1Fy: 8 filly+.—k. pite

S (1l e+ WANE L IA ) A+ 121,00

1H, 0 1 = FyL folly+p.—c, pite

ST =Tl + 10 = Tl + 1 = foll, e
+IA =Rl il =21,

—k,pif

where the second bound has an implicit constant which can be chosen uniformly
over 1 fill,yz + 1Tz + ITIL . + 1T, 7 + ITT1L,.5 < C.

Proof. By Proposition 3.25, it suffices to consider |7 » f ||%;ykp(f¢). This term is
valued in the polynomial structure and has coefficients that depend on pointwise
evaluations of the reconstruction of f. Therefore control on this term follows in a
very similar fashion as to control on the terms considered in the proof of Proposi-
tion 3.25 by making use of Theorem 3.26 at the appropriate point. O

4. Fréchet Derivatives of Renormalised Models

In order to bound the derivative term on the right-hand side of the spectral
gap inequality applied to IT, 7 (1), we will want to describe the Fréchet derivative
of a model with respect to the underlying noise in terms of a pointed modelled
distribution so as to obtain bounds from Theorem 3.15.

In this section we recursively define a family of pointed modelled distributions
for this task. Essentially this is done by observation in the base case, noting that
there is only one plausible definition for a tree of the form T = F!o, and then by
postulating that the obvious analogue of the Leibniz rule holds for products.
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We will also introduce a second family of modelled distributions on a larger
regularity structure. The idea here is that whilst the first family is well-adapted to the
task of obtaining analytic bounds, it is more difficult to see that its reconstruction
really coincides with the Fréchet derivative of the model. The second family of
modelled distributions is better suited to this task since the augmented regularity
structure we construct is exactly formed so as to allow us to encode the action of
shifts in the driving noise. In doing this we follow the sketch given in [16, Section
5], however there is an error in that work that we must correct for.

The goal will then be to relate these two constructions so as to see that the former
family of modelled distributions does suitably describe the Fréchet derivative of
the model.

We will let y; = o + |s]/2 — nok where o is the lowest degree of all non-
polynomial terms appearing in the smallest sector containing 7, n is the number
of noise edges in T and ¥ > 0 is a sufficiently small constant (to be fixed later)
such that there is no integer k € Z with y; < k < a; + |s]/2. We also write
deg, 7 = degt + |s]/2 and we adopt the shorthand y; = vz,. We adopt the
convention that if T € Jpoly then o = o0.

Remark 4.1. The inclusion of a n,« term in the definition of y; is necessary since
our reconstruction result and hence also our Schauder estimate apply only to the
regime 0 < y < a¢ + |s|/2. Whilst in what follows it would seem natural to take
yr = ar + |s|/2, this would prevent us from applying these results, so we must
allow for a small loss of regularity. Since we will only use analytic estimates for
the resulting pointed modelled distribution around their distinguished point, this is
not an issue.

def

Given an element n € # = H™(L_)* = [[,co H¥ (L), our goal

is now to inductively define a collection H; " of modelled distributions whose
reconstruction will be seen to coincide with the derivative of the renormalised
model IT,7 in the direction n of the underlying driving noise, so long as 7 is
sufficiently smooth.

Since we will eventually have in mind the case where a family of models is
built from mollifications at dyadic scales of the underlying noise, we will write the
construction with this in mind here.

We first define modelled distributions f7 by fF(z) = I'z;t and then set

x x*
HIL o)=Y, Sr| @ xnom) - PID " xnam)] @)

sen <n k!

HE' () = Hy (3) =0, 4.2)

where P{[ f] denotes the Taylor polynomial of f at base point x up to degree a.
We also set

HE! (v) = fEG) HENG) + HETG) FE(), (4.3)
and
HE 0) = (H e, e Hron ) ), (4.4)
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in the case where y; > 0. We will handle integration in the case y; < 0 by hand
later, which will complete the recursive definition of this family of pointed modelled
distributions.

We remark that (4.3) also implies the corresponding Leibniz rule for multiple
products as a consequence of the fact that f;f =f7 fzf and the associativity of our
product.

Remark 4.2. In principle, planted trees of the form Jktr for k € N\ {0} also show
up in the reduced regularity structure. For such trees, we note that if we denote by
Jplant the linear subspace of I generated by planted trees then there is a natural
abstract gradient D; : V — V on the sector V = Jplant U Tpoly given by setting
D; X ; = §; ; and extending to the polynomial structure by the Leibniz rule and by
setting D,Jktr = Jkt e T We refer the reader to [14, Section 5.4] for a definition
of an abstract gradient.

The upshot of this construction in our case is that since D; : Vo, — Vg,
and commutes with the action of the structure group, it is immediate from the
definitions that if f € 923; then D; f € 923;75" (with a similar result in the pointed
case). Additionally, since for admissible models we have that I1, D;t = D;Il,t, it
is the case that RD; f = D; %R f. Therefore, one can define H;}z; = pkHY)
and all of our desired results automatically extend along this definition.

As aresult, we will assume without loss of generality that all planted trees are
of the form .7! for the remainder of this paper in order to simplify notation.

Jtrin

We begin by verifying that it is indeed the case that H eyt

Lemma 4.3. Let t € £_. Then for n € # we have that H ! € D3°"F. Further,
we have the bound

sup |||H~ |||2,)/t»)/t;x S
InlI=1

where the norm appearing in the set over which the supremum is taken is the 7
norm.

Proof. Since H f”? = 0 when yt < 0, we may assume without loss of generality
that ¢ > 0. We ﬁrst note that H . 9237/‘ with the desired control on the norm.
This is essentially immediate from [5, Proposmon A.5] in combination with the
embeddings 93;2 ) > 93]2/00 %go,clél/z.

Therefore we turn to éonsidering the pointed bounds required in the definition
of 923;”". In fact, since y = v, the pointed translation bound follows immediately
from its non-pointed variant so that we are left only to consider the local bound.

Here we treat the regimes |t|s > 0 and |t|s < O differently, though we again
only demonstrate the bound at degree 0. In the latter regime, we choose p € [1, c0)
such that |t|s + |s|/2 < |5|1’2—;2 < scal t. Then, by Holder’s inequality, we write

1/2 1/2
10" % el e < 10" % el el
Lp2
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scal t—|s| &~

By Besov embedding, n¢ € %Scalt C By,

2 . Since this is a positive regu-
p=2
larity Sobolev space by our choice of p, the above yields a bound of order Al
which is sufficient, again by our choice of p.
It remains to consider the case [t|s > 0. Here we use that ¢ € 93' ‘5 ~ by Besov

embedding so that || p" * n¢ — P)lc ls [p" * n¢lllx.x can be estimated in the right way
by using Taylor’s theorem and applying an L bound to the resulting integrand. O

Unfortunately, (4.1), (4.2), (4.3) and (4.4) do not quite provide a complete
definition of this family of modelled distributions since it is not guaranteed that
yr > 0. As a result, it may be that (4.4) is not well-defined by an application of
Theorem 3.19. In this case, we will want to make use of Theorem 3.21 which means
that we will require an a priori candidate for the pointed reconstruction of Hf ;’:Z for
each 7 such that y; < 0. For this, we first identify the circumstances in which y;
can be non-positive.

Lemma 4.4. Suppose that y; < 0. Then t is of the formt = E¢- X* (T2, Flia;)
where |t|; < —|s|/2 and for each i, oy, + |l;|s + |t]s + |5]/2 > 0.

Proof. If y; < 0 then a; < —|s]/2. By Assumption 2.31, this is only possible
if there exists t € £_ with |t|s < —|s|/2 such that E; lies in the smallest sector
containing t. By definition of the map A this is only possible if 7 is of the form
specified in the statement.

To obtain the inequality for o, note that there exists a subtree 6; of o; such
that oy, + |li]ls = |F li5; 5. It then follows that uth o0; is a tree in the reduced
regularity structure so that the inequality follows by Assumption 2.31. O

Given this restriction on the kind of problematic trees that can arise, we have
hope to provide a candidate for the pointed reconstruction by hand in these instances.
We first show that the obvious candidate for the reconstruction of H =, in the case

where y¢ < 0 (namely simply nf = p” * 1) is suitable. We empha51se that in all
of our discussion of candidates for the reconstruction in the case where y; < 0, the
bounds that we obtain will be independent of the choice of n.

Lemma 4.5. Given t € £_ such that |t| < —|s|/2and n € ¥, n{ = 0" *xn¢isa

candidate for the E%y‘ YEX pointed reconstruction of H =) 77 . Furthermore, we have
the bound

C(fsh) S lnlloe-

Proof. The pointed bounds follow in this case from their non-pointed variants so
that it suffices to show that { is a candidate for the 925%/’ reconstruction of H. ét”n
Since y; < 0, the desired reconstruction bound is of the form

lnt, ¢ Lr(rear) S CCFRIA.
Therefore the result is immediate from the embedding %72/’2 — 973;’00 O

Next, we turn to the more complex task of providing a candidate for the pointed
reconstruction of each tree T with more than one edge such that y; < 0. Since
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multiplication with terms of the form X is a straightforward operation, it will
suffice for us to consider trees 7 that have a vanishing node label at the root.

Lemma 4.6. Suppose y; < 0andt = B¢~ (]_[:l | Tl G,) = Etf Then there exists
y > 0 such that fxE‘ -HX e QZ)y degy Tix . Additionally, n}} - T1,T is a candidate

Tn
Yo VX . T x N/
Sfor the D, pointed reconstruction of f - Son = O.

In particular, it follows that Qi(fxE‘ - HZ n) + n{ - 1T is a candidate for

,de; ; . . . .
the Sb;’ B2 %% pointed reconstruction of HW:', where R is the reconstruction

,d ; . s . . .
operator on EJZ; 2T Furthermore, if C (H'Tx . : ) is the corresponding constant in
Definition 3.20 then

C(H;,) S WHE N2,z degy 730 + ll5) (1 + 1 Z 1 ve; B,)-

Proof. The first statement is a straightforward consequence of Theorem 3.11 and
Lemma 4.4.

Since the final statement is an immediate consequence of the first two, it remains
to see that n} - TI, 7 is a suitable candidate for the pointed reconstruction of f7 -

é':n = 0. (The reason why it vanishes is the presence of the projection in (3.9).)

The bound on C(H f ;? ) follows by tracking the constants in the bounds obtained
throughout this proof. This is straightforward but notationally messy and so we
omit this detail.

To obtain suitable bounds on (1} - I1,7) ("), inspired by [5, Theorem 3.11],
we set

Ro- Y S

kls<p

where B = min; a5, + |l;]s. (I1,T is guaranteed to be a function in b by
Lemma 4.4.)
Choosing ¢ as in Definition A.1 and using (A.1) in the last step, one has

(I TLE)(p) = / (T1E) ) Y7 () dy = Jim / (HTLE) () Y77 () dy

= / i (Fy - @y () dy + Z / L (Fy - (s = @)y (v) dy
/ n{ (Fy - i (y)dy+Z / f L (Fy - oS P RY )y (v) dy dz
k>m

where R = p! — pl % p.
The first term in this expression is bounded by

‘ f i (Fy - i)y (y)dy‘ ' / i (¢ —y)kwy)a’fnmyww)dy
[k|s <

<92 m(scali;+\7:|5 [s1/2) < 2—m\r|5
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since scal t — |s|/2 > |t|5. Here the second inequality was obtained by hitting the
model with an L bound and applying Cauchy—Schwarz in L? to what is left.
We now turn our attention to the summand, which we rewrite as

/ / MECF, - Y RE 59 (2) dz

+ f f 0 (Feon = Fgh™?) RE =)y 2 + ) dz dh.

For the first term write,

‘ f n(F; - oS RN x gl (2) dz

S Y [ (-2 P)aimrrt syl @ d:
lil<p

< Y ol kil bhljle) gk pmrmlel/2
lils<B

where the last inequality follows again by applying an L° bound to the model,
Cauchy—Schwarz to the integral and using the improved bound on the convolution
R¥ x Y that follows from the fact that R¥ annihilates polynomials so that a Taylor
jet of ¥' can be inserted. Since we can choose r to be as large as we like, this
bound is summable in k to a bound of order 27" (cal t+I7ls=Is1/2) which is of the
correct order as before.

It remains to consider

/ / W ((Fon = Fgl™2) RE=mywi 2 + b dz dh.

def

.. 1
Writing 77 (x, h) = f(x + 1) — 3., 9! f (x), we have that

_»)J .
(Fen— Fo = — 3 L= phlile ),
ljls<B ’

Therefore, by an application of [ 14, Theorem A.1], we have that the remaining term
is

>y f / (= 27 D T (2 + W) R (—h)e!™ (z + )@ (du, h) dh dz
|j‘5<ﬁleaNé

where BNIQ ={l e N’ : |I+j|s > B and there exists i such that ||+ j—e;|s < B}.
By first bounding the appearance of the model by an L™ estimate and performing
the integral in u#, we obtain a bound of order

33 pmEliil pkile

ljls<B leaN/Jé

/ (0" 10(( — DGR~y ( + h) dz dh.
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Applying Cauchy—Schwarz to the integral in z, and using the fact that R*
integrates to 1, we obtain a bound of order 2—m(|Tls—p—lsl/2)p—k(B+scal t) Gjpce
B = min; oy, +|;|s and scal t > [t|s+]|s]/2, Lemma4.4 implies that +scal t > O,
so that this bound is summable in k to a bound of the correct order. ]

The family of modelled distributions H is now uniquely defined by the
specifications (4. 1) (4 2), (4.3), (4.4), as well as the candidate for the pointed re-
construction of H 7 in the case y; < 0 provided by Lemma 4.6. Additionally, the
proof of the followmg result is now automated by the machinery of Section 3.2 and
Lemma 4.6.

We remind the reader that we have restricted our consideration to a finite di-
mensional regularity structure so that in particular there is a finite collection of trees
T C J such that I is spanned by 7.

Proposition 4.7. There exists k € N and a compact set & containing x such that

max  sup H. 2.y, degs v S (1+ 120190 (4.5)
Inllge <1

Proof. With all the machinery in hand, this result now follows by a straightforward
induction in the number of edges using Lemma 4.3 to handle the base case where
T = E¢, Theorem 3.11 to handle the case t = 711 - 1» in the inductive step,
Theorem 3.19 to handle integration in the inductive step in the case y; > 0 and
finally using Theorem 3.21 and Lemma 4.6 to handle integration in the case y; < 0.
O

It remains to show that this family of pointed modelled distributions is related
via the reconstruction operator (or our inserted candidate for the reconstruction) to
the Fréchet derivative of the given model in direction 7. For this, we will restrict
ourselves to slightly smoother directions which will make no difference in our
eventual analysis by virtue of (4.5) and a density argument.

We now write scalg t = scal t + 6 and define the space of sufficiently smooth
directions

— 1_[ (escalgt(Rd)
w i

tel_

with 6;; as on page 15, where 6 > 0 is a fixed constant which is such that scaly :
£_ — R,. Later, in Section4.1, it will be the case that we will want to take 6 to
be sufficiently large so that a certain augmented structure has nice properties, but
for the time being this assumption is not needed.

Since we wish to harvest this additional smoothness, we will want to include
more terms in the expansion than appear in the definition of the H’s. In order to
avoid confusion as to which reconstruction operator is in play or where truncations
are implicitly present, we introduce a second family of functions G ’77 ‘RY — I,

for some y; > 0 whose projection onto J.,, will agree with H o 7 and whose
reconstruction will agree with that of H 1 ,, (including when y; = O).
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Proposition 4.8. There exists a © > 0 and, for every 1 € 6}, afamily of modelled
distributions G such that if 7r = (ar + |5]/2) V 0 then for every homogeneous

T € J, one has that Gx e Yt = 92)00 oor <y, Gx,n = H:’” and when yr <

0, QiG n T coincides wzth the candidate for the reconstruction of H given in
Lemma 4 6.

Remark 4.9. In the case where y; > 0, it follows from the fact that Qy, Gf T =

H T "7 and the uniqueness of the reconstruction operator that QRG SRH';:

Proof. Our construction will again be an inductive one (over the number of edges).
As in the case of the H’s, we set G;’ﬁn = 0 and we define

Xk
X1 k tls nk
Gglu= Y. [P — PHeIDb).
ks <yt

It is straightforward to see that so long as & < scalg t, these definitions provide
elements of 97+ and satisfy the desired properties.

We now move to the induction step, beginning with the case of integration.
We suppose that we are given a homogeneous t € J such that G* Z € D7 and
%Gi;z = ‘%Htx;r?'

We define

X0 _ [ ~x.n X x,n
GJ[r;n - %?z Gt;n - Tdeg2 r,Z;IGr;n (4.6)

where ?}5 [ _ is the usual abstract integration map on 97" corresponding to the integral

kernel K (see [14, Section 5]) and T)‘2 ( 1s as in Definition 3.16.

We remark that the latter term is well defined since the reconstruction op-
erator appearing coincides with QiH ., S0 that its pointwise evaluations at x
do make sense. It is straightforward to check by comparing the definitions that
Q<) Gy G* '7 = H; [Z,n. Additionally, since the second term in (4.6) is polynomial,
one actually obtains

.h 2l
Gy, € @7, (4.7)
which is an improvement since in general the inequality 41, < 9, + |[|s may be
strict.

Regard_ing multiplication, as for H:rl?n, we define G);fnn =i G;;Z(y) +
Gon) fE).

It follows immediately from [14, Theorem 4.7] that

x,h (Vetap) A(Ye+ar)
Grf;n SR rere
where @, is the lowest degree in the smallest sector containing t (rather than the
lowest non- polynomzal degree). Since o = (a; + az) A (G + af) we conclude
that if a7 + |s]/2 = 6, then this product does indeed belong to 777 .

If this constraint on a.; fails then, by choosing 6 sufficiently small, we have

that a7 < —|s|/2 and Lemma 4.4 implies that without loss of generality we can
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assume that T = E¢ and 7 = ([]}_, F"0;). Further, for 6 sufficiently small, for
each i we have that o, + [li|s + [t|s = —|s]/2 + 6.

We then note that f G;Z e gymini (7o; +lils+Itls) < 0 by [14, Theorem 4.7].
Additionally, since for each i, oy, + |l;]5 >0, fxf is valued in a function-like sector
and lies in @°¢ for any ¢ > 0, we conclude also that f7 G;‘Z € 97, In total, this

implies that G ’? lies in the correct space.
It follows 1mmed1ately from the definitions and the induction hypothesis that

Q-y,; G e = =H f rnn so that it only remains to check that in the case where y;7 < 0,

the reconstruction of Gf’f'?n coincides with our candidate for the reconstruction of
x.7
TR . . . -
Without loss of generality, we will again assume that t = E¢ and T =
(]_[f'_1 Fhi a,) By uniqueness of the reconstruction operator and the form of our

candldate for the reconstruction of HT 3o , it will suffice for us to see that R ( f t.
) = nt I, 7.
Slnce G B , 1s valued in Fpoly so that the model acts multiplicatively on f7 Gy :7 0
by umqueness of the reconstruction, in the case |t|s < 0 it suffices to see that for
d
yeR

9

k
’ / <m(2) % (y))n Tyl (@) dz| <

[kls <yt

This is straightforward by applying a naive uniform bound on the model and using
Taylor’s theorem to treat the first term since ¢ = 6 in this case. Since we have
already covered several similar but less simple estimates in this section we will
omit the details. The adaptations required in the case |t|; > 0 are also essentially
the same as in the proof of Lemma 4.3 and so we also omit repetition of those
techniques here. O

4.1. Identification of the Fréchet Derivatives

In this section we show that, for n € €}, we have the previously announced

identity

Dyt = RH_),
where D, denotes the Fréchet derivative in the direction n and 1" is a model
constructed via the action of the renormalisation group €_ on &£ (£"). By Proposi-
tion 4.8, it suffices to show that D, [T}t = Qti ' and this is the route we pursue.

For the remainder of this sectlon for notatlonal simplicity we will consider n
to be fixed and will suppress the dependence on n in our models and modelled
distributions.

We will broadly follow the sketch of proof in [16, Section 5] (see also [8,
Section 3.2] for a similar construction, but in a restricted setting). However, in the
notation of [16] for this sentence only, itis not true that f;¥ () is a linear combination
of terms of deg-degree equal to deg  (as can be seen by considering fzj T (z) since
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deg and deg agree on polynomials). Since this claim was crucial to the correctness
of their argument, we must make adaptations to correct for this error here.

We consider an augmented regularity structure J where we duplicate every
noise E¢ and assign degree deg E¢ = scaly ttoits twin E¢. The augmented structure
is then spanned by those trees that can be obtained from a tree in J by substituting
some of its noise edges with their respective twins.

More precisely, I is the reduced regularity structure for the noise labels £ =
£ U{t:te £ }andrule R formed by extending the rule R to treat the edges
with labels in the latter set in the same way as their twins.

‘We note that it follows from Assumption 2.31 that all trees in g containing an
instance of Z¢ have positive degree so long as @ is chosen sufficiently large. Hence,
it follows from [14, Theorem 5.14, Proposition 3.31] that for such 6 (which we
now assume to be fixed), given n € 6, any admissible model IT for I extends
uniquely to an admissible model II" for T J with the property that nz, = nt for
every t € £_. Furthermore the map (5, IT) — ¥, (I) = I1" is continuous in the
respective topologies. We henceforth assume that such a model is fixed.

We then define the operators FY2): T — Jpoly as in [14, Eq. 5.11], as well as

setting fort € I 5, (2): T — poly to be the map obtained by setting jrt(z) =
©<deg3‘r5t(z)

Similarly to the way the modelled distributions H; " are defined, we define a
collection of 7 -valued modelled distributions indexed by T € J by setting fZX ‘=0
forall k € N,

=, = Xk
S=8cr ) rlpte - Pt

|k|s <scalg t

and then inductively
Fr=f IR BT @=(0 43 @3 @rL) [T @), 4.8)

Definition 4.10. A IT"-polynomial is amap f : RY — J such that for any z, 7 we
have that f(z) = "2 f(2)

Proposition 4.11. Forall t € F and z € R, f " is a I"-polynomial.

Proof. We need only check that fZ’ (z) = ng f; (2).

This is trivially true in the case where T = X* and in the case where 7 = Z this
follows by construction from the action of the structure group on E¢ by a tedious
calculation that is made somewhat simpler by noting that fZE‘(Z) — Iz sz‘(z) is
valued in the polynomial part of the regularity structure so that one can leverage
injectivity of IT; on polynomials.

Seeing that the property is stable under multiplication is straightforward since
the maps 7 have the same property and I'" is multiplicative. Hence we will consider
now the case of integration.

Here we write

M@ =11 (9450 - 7o) ffe.
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Applying [14, Lemma 5.16] to the first two terms on the right-hand side yields
~at _ ~. - ~
I 7 ) = (I + $'OITL 1 () - TL 3 @) f1 (2).

The first term on the right-hand side equals (F* 4+ $(2)) f7 (?) by the induction

hypothesis. For the second term, we note that ng = I'z; on polynomials and
write Id = ng ng to see that this term is equal to ngjt(z)f‘i’z F;’Z fzf (z). We then
recognise the right-hand side of (4.8) and conclude that we have indeed proven the

identity I']_ fzj () = fzj 7 (7) as claimed. O

We now write @: 5 — T for the map that sends any symbol containing an
instance of E¢ (for some t) to 0 and otherwise acts as the identity. We then have
the following result relating these two definitions.

Proposition 4.12. Let n € 6, let I1 be an admissible model for I, and endow g
with the admissible model I1". For any t € I, one then has the identity

RHZ" = R I =11 f1(2), (4.9)
where R is the reconstruction operator for II".

Proof. The identity R" sz =11 f; (z) follows at once from the fact that fzf () =
r] ~- . . 7] - - . . -
I f7 (@) by Pr9p0s1t10n 4.11, so that IT: 7 (2) is independent of Z. o
We then claim that for every homogeneous element t one has the identity

Qoj, [T = G¥" (4.10)

whence the first equality follows from the uniqueness of the reconstruction operator
and Proposition 4.8. We show (4.10) again by induction. Clearly, it holds for the
base cases thanks to the fact that deg @t =Yg,

Regarding integration, say t = .F'o, we note that the definition of G
guarantees that

Z,n
Jto

Lk
RGP =K'« RGZ" — Y (Dka*QaGg")(z)—( kf) :
|k|s<deg T ’

and similarly for IT, fzf (z) (and therefore R" f;’).

Itis also straightforward to see from the induction hypothesis that A = Q-y, (Gy"—
f7) takes values in the Taylor polynomials. Since we know furthermore that when
considered as modelled distributions valued in I both G and f; belong to &7+ by

Propositions 4.8 and 4.11, A coincides with the Taylor lift of a function Ag € @,
so that we necessarily have A = 0 since Ag = RG7" — R f7 = 0. O

It now remains to prove that R" f;f = DyIl; 7. To do this, we identify models
constructed via the canonical lift and the action of the renormalisation group from
the noise & + 7. We are again inspired by the sketch argument given in [16, Section
51
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For ¢ > 0, to describe such a model we construct another family of IT"-
polynomials which we denote by f°°.

We define fZXk’S(Z) =Tz, XFand £54°(x) = B¢ +& /.. We then recursively
define

@ = R f0 @, 7@ = (54 71@) — TR R @rL) f575@).

Additionally, we define maps Af, : I — T recursively by setting A% E¢ =

B¢, Az, XK = I'z,X*, declaring that A£, is multiplicative, and by setting
ALI' = TN+ (F OTz — T 5 () £ @)
We then define Z¢ : Mo(T) — Mo(T) by setting Z¢(I1", ') = (I1,T)
where I'z; = Af_and .1 = IT7 7% ().
Proposition 4.13. The map Z¢ - /%0(91:) — Mo () is well-defined.

Proof. We are required to show that for II"” = (T17, ') € Mo(T), it is the case
that Z°I1" = (I1, I'") is a model on I .

A%,
We observe that it follows by a simple induction that f, * = f;"g, where
we extended the definition of f,°° to all T € T by linearity. Since t — f;°
is an injective map, this also yields that AT A, = Af_. Therefore the algebraic

7,6

requirements for Z¢II” to be a model do hold and it remains to verify the analytic
requirements.

For the bounds on IT, it follows from a simple induction that f,"¢ is a linear
combination of terms of degree at least |t |4 so that the bounds on I, are immediate
since no uniformity in ¢ is required.

This leaves us to consider the bounds on I'. These follow again by an inductive
argument where the only non-trivial step is obtaining the appropriate bound for
'z, 7tr. The bound in this case is immediate for the first term in the definition
of A%t so that leaves us only to obtain the appropriate bound on (¥:Tz(3)
- T:.342)) /¥ (2). This however follows from the observation made above on
the degree of terms in f;°° and a minor adaptation of the proof of [14, Lemma
5.21], so we omit the details. O

It is straightforward to check by induction that if & denotes the canonical lift
then Z*Y, £ (&) = L(§ +en). (Recall that Y, : IT — II".) Since we wish to work
with renormalised models, it is natural to ask if this construction commutes with
the renormalisation group in the sense that for M, € §_ we have that

M Z* Y, L&) = Z°Y, ML (§). (4.11)

We emphasise here that we restrict ourselves here to elements g of the subgroup
6_ of R described at the end of Section2.2.1. This subgroup consists of elements
that are of the form @M;X = Q(g ® 1)A_, where g is a reduced character (in the
sense that it does not depend on the decoration o) on the space T °*.
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This is necessary since we split the proof of the commutation result (4.11) into
two parts. In the first part, we establish a commutation result with the map %, and
in the second we establish a commutation result with Z¢.

For the first of these steps we will need to restrict to elements of §_ whilst in
the second step we will need to introduce a particular element of R \ G_ that will
describe the action of Z* so that we will require both descriptions in what follows.

As was mentioned in Section2.2.1, we will identify elements of €_ (which
are properly speaking linear maps M : § — ) with the corresponding reduced
characters g on J* and we will write M, when we wish to make clear that we
mean the corresponding element of R.

To prove the relation (4.11), we follow the sketch argument given at the end of
[16, Section 5.1], making the necessary adaptations to turn it into a rigorous and
correct argument in the general setting considered here.

As mentioned, for our first intermediate step, we would like to introduce a map
® : 6. — €_ on characters such that YyM Il = Mo o)Y,I1. Here €_ is the
analogue of 6_ for the structure g.

We define such a @ by setting ®(g) = g o Q whereﬁz is the linear map which
sends each tree containing an edge with a decoration in £_ \ £_ to 0 and otherwise
acts as the identity map.

Proposition 4.14. For any g € G_, one has the identity Yy M X1 = Mo o) Y, I1.

Proof. Since it is clear that these models agree on instances of E¢, by [14, Theorem
5.14, Proposition 3.31], it is only necessary to check that the two models agree on
elements of J.

This follows from the explicit description of AMs, AM) given in [4, Theorem
6.36] since one can easily check that the map L such that AM*© = L(g ® DAL
extends the corresponding map L for M,. O

In order to show that (4.11) holds, it now remains to see that Z° Mg o) " =
M,Z°I" for M" € Mo(T). To do this, we describe the action of Z¢ as being
given (up to composing with the natural projection il — () by an element of the
renormalisation group R for T

We define a map M? : T > 9 by replacing all instances of a noise E¢ in a
symbol with E¢ 4 £Ey. At this point, since M? is a multiplicative map, it follows
by a simple induction using Lemmas C.1 and C.2 that M¢ € R. Additionally, we
have the following result relating M*¢ to the map Z°.

Proposition 4.15. Let P : Ml — Jl be the natural projection. Then Z¢ = P o M®.

Proof. It suffices to see that fort € T, (1 @ fi)AM v = f7°(x) where f; is as
defined in [14, Eqs 8.20-—8.21]. We check that this identity holds by induction.
The base cases where T = X¥ or t = E¢ hold by construction. Since M*¢ is multi-
plicative, the inductive step involving multiplication is immediate from Lemma C.2
since f, is multiplicative.
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It remains to see that this relation is stable under integration. By Lemma C.1
we can write

1 fx)AMSjT =(IF D1 fx)AMe-[
Xk .
- Z F(f)(jk QDU f)AM .

|k|>|7|+B
By the induction hypothesis, this is nothing but

Xk
IR = Y T feG )

[k|>|T|+B

which is easily checked to coincide with the definition of £ ©** (x). o

We are now in position to prove the following result.
Proposition 4.16. For I" € Jl we have that Mg ZETI" = Z° Mg () T1".

Proof. By Proposition 4.15, it suffices to see that M*Me ) [1" = Ma gy MEII".
By Proposition C.3 and the definition of the action of the renormalisation group,
for this it suffices to see that M® and Mg gy commute on J.

This follows immediately from the fact that every tree containing a term & has
positive degree so that by its definition Ae_x never extracts such a tree to be hit by
the character g in the definition of M ). |

The equality Z*Y,Z (&) = £ (£ + en) alongside the previous results on com-
mutation with renormalisation then immediately yield the following Lemma.

Lemma 4.17. For g € 6_, we have that M, & (& + en) = Z*Y, (M 2L (£)) O
We are now in position to prove:

Theorem 4.18. For t € J, n € 6}, and I = (I1, ") in the orbit of £ (&,) under
the renormalisation group §_, we have that DyI1,T = SRHTZZ

Proof. By Proposition 4.12, it suffices to check that if %, (IT) = (I17, I'") then
7 f7(z) = DyIl,7.

It follows from a straightforward induction that f,°(z) is a polynomial in &
with constant term reconstructing to 1,7 and first order term given by & f;

By Lemma 4.17, we can then write

D, = lim &~ [(l'[zr + el f7(2) + 0(82)> - nzr]
E—> T
which immediately yields the desired result. O

Remark 4.19. As already hinted at earlier, Theorem 4.18 does not hold in general
if we replace 6_ by the larger renormalisation group R defined in [14]. This can be
seen already on the base case T = &y since, if there are two elements t1, t; € £_
with [t;]s = |t2]s, then the map M that swaps the corresponding noises belongs to
fR. In that case however, setting I1 = M < (§,), one has

D, Ey, =n},. RHZ", =ni.

atl;n
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5. Uniform Bounds for the BPHZ Model

In this section we will derive (uniform in m) bounds on E[||Z™ ”5%] where

Z™ = (I, T™) is the BPHZ model constructed from the driving noise & as
defined in Definition 2.30 and p = 2 for an arbitrary k € Z . In order to give a
more precise statement of the main result of this section we first introduce some
relevant notation.

We let F_ denote the set of trees T € I such that |t]|; < 0 and, given a tree
T € F_, we write F_(7) for the set of all subtrees of T that have at least one noise
edge fewer than 7. We then also set F_ = | J, g F_ (7).

Since F_ is a finite set, we can order its elements 71, ..., Ty, in such a way that
for each j < ng — 1 we have that (ne;, 17jls) < (14, [Tj+1ls) where ny is the
number of noise edges of 7 and the ordering on pairs is lexicographic. We remark
here that when it is the case that ny; = nq, and |7j]s = [tk|s, the order in which
they appear will not matter to us since in this case we have that 7y ¢ V% and vice
versa.

The broad approach of our proof is to proceed to control the behaviour of the
BPHZ model on each of the symbols 7; via induction in j. Since we will need to
apply the Kolmogorov criterion given in Theorem B. 1 at each stage of the induction,
we will lose an arbitrarily small (but still positive) amount of regularity at each step.

In order to encode this in our proof in a way that separates the core analytic ideas
from this technicality, we introduce the following sequence of regularity structures.
WesetT0 = Ipoly- Then, given FJ for Jj < no,welet VU+D pe the smallest sector
of I containing 7/ and t j+1. We then define T U+D to be the regularity structure

with model space VU*D homogeneities given by | - |;N7j ~1 and structure group
given by the restriction of the structure group of 7 to VU1 Here N is a fixed
constant which is much larger than ng.

An important observation that will allow for the inductive nature of our proof
is that the algebraic structure we just described is compatible with an induction in
the number of noise edges appearing.

Lemma 5.1. The sector V) is spanned by {t1, ..., T;} U Jpoly.

Proof. We proceed by induction in j where the base case with j = 0 is trivial.

Hence it remains to see that V) = V=D @ Rq; is in fact a sector. By the
induction hypothesis, if T € V) then 7 = apTpoly + Z,j:1 a;7; where a; € R
and Tyoly € Ypoly. Therefore, we only need to show that I' € 6, we have that
I'zj e ‘7(-/), since VU= i a sector.

We then note that if A is the operator introduced in (2.3) and (2.4) and AT =
> 7D @%@ (in Sweedler notation) then TV is a subtree of 7 and forI" € €, 'Tisa
linear combination of the 7(!). Hence it follows that 't =T = bor]POly—FZ{;ll bit;

where rjPOly € Jpoly and b; € R. This completes the proof. O

We also observe that if k = j and H:j ’Zl is the pointed modelled distribution

corresponding to the Fréchet derivative of 1ot ;j in direction n on the regularity
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structure T¥, then as a T -valued function, Hf;’r'z is independent of k. As a result,

the only dependency on k lies in the choice of space we consider this pointed

modelled distribution to be a member of and hence the corresponding norm. Since

this is always clear from context, we suppress the k dependency in the notation.
We are now ready to proceed with the main result of this section.

Proposition 5.2. Forall k € 7., there exists a constant C > 0 such that uniformly
inm,n € Nand 1 £ j < ng, we have the bound

(N=j) | = p _
E Z onpeluls ‘Hgtl((pén)) k_,_”r‘m”g’fj <C. (5.1

SIS

where py = 2F.
In particular, it follows from Theorem B.1 that for each fixed p € [1,00),
E [||Zm ”57%] is bounded uniformly in m.

In order to separate the novel core of our proof from the technical details that
use only ideas that are already more standard in the theory, we will break much
of the induction step down into a variety of more simple preparatory results that
will play a role in the inductive loop of the proof of Proposition 5.2. In preparation
for Section 6, each of these preparatory statements will also have a version for a
difference of two models that will not be needed in the proof of Proposition 5.2.

A typical instance of our inductive step proceeds in 3 stages which we will
outline below.

In the first stage, we gain control on the norm of IT on VU ~D when viewed
as a sector of I/, This is the point at which we will require a loss of regularity to
apply the Kolmogorov criterion.

Lemma 5.3. Suppose that for a sufficiently large p € [1, 00)
(N—j+1) | = P
Bl Y 2w Apneg| | <1
1<I<j-1
Then for each compact set .  R?, we have that

E 10, | 1

where VU=V is viewed as a sector of T/
Additionally, if there exists a 0 > 0 and ¢ > 0 sufficiently small such that for
natural numbers ny 2 np

(N=j+1) _ _ p
E Z 2"[7(|Tl|5 T —g) Hglfl(ﬂﬂ(()n)) _ HSZTZ((P(()H)) 5 2—121129
1SISj-1
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then for each compact set . € RY, we have that

N 2 P —pnab
E[1fm - gy, ] s 2
where VU=V is again viewed as a sector of T .

Proof. By Lemma 5.1, 7A%DEN spanned by {t1,...,Tj—1} U Jpoly. The result
then follows immediately from the Kolmogorov criterion contained in Theorem B.1

since |r|ék+1) = |'C|.(5k) + kn so that the relevant assumption amongst (B.1) and
(B.2) is satisfied in each case. O

The second step in our inductive loop will be to show that control on Z on
VU= c FJ already implies control on ||’ Il . The proof of this fact is essentially
part of the proof of [ 14, Theorem 10.7], however since our setting is slightly different
and we must take more care as to which moments we assume bounds for, we provide
a proof here.

Lemma 5.4. Let p; = 2 for k € Z. sufficiently large.
Suppose that for each compact set £ C R?, we have the bound

- 1/ pr+1
Elizng,] s
- 1/ pi
Then for each compact set t, £ [llFHW%] <1

If additionally we have that for each compact set & C RY and ny 2 ny, there
exists 0 > 0 such that

- - 1/ prs1
. Pk+1 —n20
E[1Zm; 21050, s
then for each compact set t. € RY we have that
- _ 1/pk
ny _ pn2 Pk —n20
E[HF r ||gj;k] < gmf

Proof. We begin with the case of a single model.

By Lemma 5.1, it suffices to appropriately control || f’j}y 7 ||§j ) for . < |ty |£~N_j )
éj ) denotes the norm on S}j .
For !l < j, we fix a tree T such that ¢ = |f|gN7j). We note that by Assump-
tion 2.31, n; is independent of our choice of T satisfying this condition and so the

and/ < j where || - ||

quantity n; < n; is well-defined. We can then write
Il o\
x#y |lx — y|lals ¢
Xx,yek

- (=D
e, wl s
—E|| sup A i i =y
¢

(N—j+1)
x#y |lx — y|||fl|s —¢{—n
x,yek

e 1/ pr

—ng)K

Fi-Lik ~

= 1
5 diamfg/(nq—n;)KE |:”Fn| Pk ] / Pk <1
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by assumption.

It then remains to consider the case I = j. In order to do this, we note that
by construction, we are in one of three cases. Either there exist k, [ < j such that
T; = 71 - 77 or there exists k < j and t € £, such that 7; = Ftr or 7; = & for
e £_ with |l]s > 0.

In the latter of these cases, we note Q y« f‘)’clyE[ = DFg(x) — (Ty|[Iﬁ DFEN(y)

where Tj’ f denotes the Taylor jet of f at y up to order y. In particular, the de-
sired bound in this case follows from Taylor’s theorem since by an application of
Proposition B.3 the spectral gap inequality implies that E[||&]|” k‘f‘l VP <1,
In the former case, we can write
I T S | N - T T
B¢

As a result, writing

” Fn T ” )

xy

Tk, j, )= s

x#y I = ypis

we obtain the bound
E[T(.j.j. O] < Y E[T@.k j BTl j. ¢ — p)™]
B=¢
S Z E[T(n,k, J, ﬂ)pk“]% E[C(n,1, j, ¢ — BP*+']?
B=¢
SE[IFIZ, ] s

gi—-l-p

where we used a similar argument as in the / < j case to change between choices
of degree which creates only a multiplicative factor of diam % to a positive power.

In the latter case where 7; = $'tx we are in the setting of the extension
theorem [14, Theorem 5.14] which immediately yields our desired result, up to
accommodation of the change between degree assignments, which is done in the
same way as in the previous case.

We now turn to obtaining the desired bounds on "' t; — I'"2¢; for I < j. In
fact, the bounds for [ < j just require us to handle the shift in degree in the same
was as in the case of a single model hence we move straight to the case [ = ;.

First, we note that if 7; = E( for |[|s > 0 with [ € £_ then the desired bounds
follow in a similar way to the case of a single model since E[||p"! * & — p"2 %
é[”%ms] 5 2_17"2‘['5]}3[”5[”%“5]-

Therefore we can again write withoutloss of generality 7; = 7j-ty or7; = & Yo
forl, k < j. In the latter case, the desired bound again follows from the Extension
Theorem [14, Theorem 5.14] so we consider only the former case. Here, we write

Pk
l—*nl )
E | | sup xxy —” Eay ] tj’ll STi+T
oreh eyl
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where
Pk+17] %
. T n - Tl
= Z]E[I’(nz,k, L OPFPE sup )
= X#y llx — ylllls ~=nte
Pk+17] %
. I — rkn(”
ZZE[F(n],l,j,g)PH‘]ZE sup ™
Cén -Xx;éy ”x B y”lrll 7n+§

Making similar adjustments as in the case of a single model to accommodate
the change in degree, we obtain the bound

1 1
= = 2 = 2
T+ Ty SE[(IF g 156+ 1E" g s) " | BLIF" — P22, ]
which is a bound of the desired order since the first term in the product on the right
hand side is bounded a constant independent of n1, ny by the result in the case of
a single model. O

The final step in a typical instance of the inductive loop is to convert this norm
control into control on

Here, our techniques will differ depending on the sign of the degree of t;. In the
case where 7; has negative degree, we will apply the spectral gap inequality. This
case is the meat of the proof of Proposition 5.2. If this degree is positive then
control automatically follows from the rigid structure that is imposed on the action
of the model on symbols of positive degree as a result of their analytic properties,
as shown in the following lemma.

(N=j)
E[znl’h’j‘s / ‘ TJ(QU(n))

Lemma 5.5. Suppose that |7;|$" )

compact set k C RY we have that

> 0 and that for some k € Z, and for each

<1

_ 1/ P41
m | Pk+1 m | Pk+1
B[N 1L + 177125

N=)) | = 1/px
ThenE[z’”’k‘W‘ﬁ " g o) I"k] <L

If additionally for each compact set . C R and n\ = n» we have that for
some 6 > 0,

_ _ — Pk+1
E [||1-[n1 — 1™ ”[‘jk(jll)k + ”Fl’ll Fnzngkj—%—lk] SJ 2*”29

then we have that

(N=]) | = - 1/pk
B [27n i ) - A ep| ™ 2.
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Proof. By [14, Proposition 3.31] and its proof, we only need to see that if f ;‘ (y) =
l;’y”xtj -1 Fhen f7 is valued in vU=D_ By definition of V), f7 is certainly
valued in V), In addition, it follows from the construction of the structure group
that £ (y) is a linear combination of trees with strictly fewer edges than are in ;.
This implies the desired result.

The proof in the case of two models is similar, using our uniform bounds on
the individual models when needed. |

With these preparatory results in place, we will turn to the core of the proof of
Proposition 5.2.

Proof of Proposition 5.2. We fix p; as in the statement. We let N; be an upper
bound on the number of applications of Lemmas 5.3, 5.4 and 5.5 and of Cauchy—
Schwarz that are required in any of the finitely many induction steps required to
exhaust the structure in our proof. We choose not to write this value explicitly since
it depends on the power k appearing in Proposition 4.7 and it is always clear that
its exact value is unimportant to us. Let Ny = ngNj.

We will prove by induction in j that if k(j) = k + No — N1 j then

E [znpkwm?’“ |00 o (o) | + ||1=m||§";f)] <cC. (5.2)
which is stronger than (5.1) by our choice of k().

Since T0 = Jpoly, the case j = 0 is trivial so that it remains to check the
induction step.

We therefore assume the bound (5.2) is known up to j — 1 and aim to prove
that it holds for j. Since all of our bounds will be uniform in choice of m € N, we
will suppress the m-dependency in the notation in what follows.

By Lemmas 5.3, 5.4 and 5.5, we can assume that |7; gN_") < 0 and that for
each compact set & C RY we have that

= (1 Ph(D-3 o Pk() =3
E (IR, + ITI2 ] s 1.

We will now apply our spectral gap assumption. This yields

1/p

i} 1/ B}
E[\Hofj(¢8)|p] ! S E[Moz)(gp)] +E oE

H—SCHI(,Q,_)

where we will choose that p = pryy_4;.
We consider the two terms on the right hand side separately and begin with the
first of these two terms.
. . . n_ 0 n—1, k+1 k : r 0y] —
Here the idea is to write o = @5+ i—o (¢ —¢;)- Since E [Hotj ((po)] =0
by the definition of the BPHZ model, it remains to consider

E [ Mo (e - )]
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Here, we note that it follows from (2.10) that for each m, E[T1 2T (@] is inde-
pendent of z. In particular, since R¥ integrates to 0 we can write

B [flor; ™! = )] = [ B[, (Far; = 1) ™)) R ay.

where R is as in the proof of Lemma 4.6.
Since |y|s < 27% on the domain of integration, it then immediately follows that

~

o (N=)) _ _
E[forstwh*! =) ]| < 2795 "E (I lyo-nsg - ITl554]

which by Cauchy—Schwarz is bounded by a constant multiple of 27*I7j 15" Slnce
I7jls V=i~ o by assumption, summing this bound over the regime k < n yields
the bound

_ (N=j)
E Moz, ()] < 27"l

as required.
Hence, we now turn to the derivative term. Here, we begin by applying duality
to write

0 [Mot; (¢f)]

T = sup |D,71:[orj(<p6‘)|.

H-scal(g_) Inlge <1

From the results of Section4 and a density argument, the right-hand side can
be written as

sup ’9{ s
Inllge =1
neB;

w

where, in the case where Yz < 0, the reconstruction should be interpreted as our
provided candidate for the reconstruction given in Lemmas 4.5 and 4.6.

In the case y;; > 0, by Theorem 3.15, since deg, 7; — [s]/2 = |7j5 - ]), we
obtain a bound of order

e
27 o g sup WLy ey v
lInllse =1

It follows by a simple induction that H_ . " is valued in VU~D 5o that the desired
bound follows from the previous bounds Proposmon 4.7 and Cauchy—Schwarz.

In the case y; < 0, the desired bound follows from the definition of a candidate
for the pointed reconstruction operator together with Lemma 4.5, Lemma 4.6 and
Proposition 4.7 where the last of these is used to control the corresponding constant
in the application of Lemma 4.6.

This completes the inductive proof that (5.1) holds for all j. The remaining
statement then follows immediately from Theorem B.1. O
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6. Convergence of the BPHZ Model

In this section, we turn to establishing the convergence of the BPHZ models
as mollification is removed. By the results of the previous section, we will be able
to assume uniform control on the norms of the models appearing in this section.
Additionally many of the steps in our inductive loop will have no real difference
to those of the previous section, only requiring that we apply the versions of our
statements that were obtained for the differences of models.

Despite this, the techniques of the previous section are not enough to establish
convergence since our approach to estimating the Fréchet derivative of the model
will fail. To illustrate the reason for this, we point out that whilst it is the case
that SUP| 15 <1 llo™ * n¢ ||933L:gu *) is bounded uniformly in 7, it is not the case that

SUP 15 <1 llo™ *n¢ — n¢ ||973§°,3] th) 0asn — oo. Consequently, we do not expect

X, x, L .
”'ZI —H ”72 to have vanishing norm as n, np — oo uniformly over the necessary

set of choices of 1 in our argument even in the case where 7 = Ey.

In order to account for this, we observe that it is the case that for |t|s > —|s|/2,
SUP| o <1 | D¥o™ % n¢ — DK™ % n¢||yy—« — Oasny, no — oo for any choice of
k > 0and |k|s < scal t.

Since Hétnn = 0if |t|s £ —]s|/2, for T = B¢ we do then know that the
coefficients of H ':;771 - er;‘:z have vanishing H ™ norm as n1, no — oo with the
desired uniformity in 7.

To formalise this statement, we recall some of the constructions from Section 3.3
and fix corresponding notation. For each ¢ € ¢, we will assume that B; is the set

of trees of degree ¢ so that B = Urea B forms a basis of I which we will assume
to be orthonormal without any loss of generality. For f € QE%’ , we remind the
reader that || fl,,—«,2;# then denotes a negative regularity Sobolev norm on the
coefficients of f in the directions in B; see Definition 3.22.

Lemma 6.1. For any k > 0, there exists a @ > 0 such that for each compact set
PCRYandte £,

X0 X1 —no0
sup |”HE¢;n1 - Hgt;nz |||)/¢,—K,2;k S, 27",
lInllge <1

Proof. For f € L?,let R,f = 0" % f. Then for each x > 0 and compact set
% C RY, a straightforward computation shows that

sup I f — Rufllg— S 27"/,
Ifl,2=1

The result is then immediate from the preceding discussion. O

In practice, we will want to take « to be sufficiently small so that we can
apply various duality results. Additionally, we will often have to replace 6 with
some smaller value when passing this bound onto bounds for the pointed modelled
distributions corresponding to trees with more edges. As a result, we will specify
a value for neither « nor 6 here. Instead, we will assume that « > 0 is fixed to be
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sufficiently small to satisfy the various implicit constraints throughout this section
and will make no attempts to be optimal in our obtained rate of convergence.

The various reconstruction results of Section 3.3 then give us hope to obtain the
desired estimates on R"! H — Rm H: * '7 . The missing ingredient, and hence
our next order of business in thls section, 1s the propagation of our bounds on the
negative Sobolev norms of coefficients to all levels of the regularity structure.

We begin our process of controlling these Sobolev type norms by considering
their behaviour under multiplication. We have the following lemma:

Lemma 6.2. Fix k € Z,. Suppose that there exists a 6 > 0 such that for each

ni 2 ny and compact set k. C R4 we have the bound

= mno || Pk+1 0'7 Pik+ - 0
E| I — F"2||9~;é + max sup ||H(T o — Hy n2||y6’7K2 o | S2penmt,
e e <1

Then it follows that for the same parameters we have that

_ Pk < —prh20
E| sup ”Hrr n Hrr no ”Vrr —eh | S 2 )
nllge <1

Proof. For ¢ < y;z and a € B, we write
70.7 0.7
Qa (Hrf;nl - Hrf;nz)

LGy A i B (A ey A | I CR Y

where f " (y) = I_‘;’ér and @, is the projection onto the span of a.
We then have that

0,7 ,1; 0,7 ,T;n
(anlf " anzf 2)

= S (A8, A2%) 0ohf ™ el (15 15

where the sum is over those trees b, ¢ € | J, <, By such thata = b - c.

For the first term in this sum, we note that if « > 0 is smaller than the smallest
gap between consecutive homogeneltles in our structure then Q. f, B2 s in CK ()
with a norm of order ||F||Q‘ i Therefore, since multiplication is a bounded op-

erator from %2 2()‘%) X C K (fe,) to %; ’5 (%), we obtain a bound on the first term of
order ||T||2 Tiit | H . n1 — I 1 ||Vr —«.2:%- This is a bound of the correct order by an
apphcatlon of Cauchy—Schwarz and Proposition 5.2.

For the term @bI:I?;’;’Z . (ft R "2) we write

(e (ft o fo’m) Lo ) = sup @ (57 — T757)|
Z

ST —T™|lg.4
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and then note that our desired bound follows from the fact that the Sobolev norm
is bounded by the L?-norm. Indeed, we then have

E[ sup ||®hﬁ?;’22 Qe (fof;n1 - f(me) |‘§;€£’§(k)i|

lInllge <1
Pk
L%(k)

1/2

_ _ 1/2

0,

SE[ sup ||@bHr;gz||'L’2f2>] E[Ilrnl - rnzllof}k;%l]
lInllse =1

su| o ol a (5" - 57)
Inllge <1

which is a bound of the right order by Proposition 5.2.
The second term on the right hand side of (6.1) is bounded similarly by swapping
the roles of 7 and 7 in the above. O

It remains to consider the effect of the abstract integration operator. We again
write ¥_ = {11, ..., T,} where the trees are as in the previous section.

In this setting, we break our consideration into three cases. We write 7; = .f g
forsome! < j. We then consider separately the case where y;, > 0, where 7; = B¢
for t € £_ such that |t|s < —|s|/2 and finally the remaining symbols for which
Yy 0.

In the first case, we will apply Theorem 3.27 to obtain our desired result. In this
result, we work on the regularity structure J/.

Lemma 6.3. Fix k € Z. Suppose that T, = Sl forl < j and that vy > 0.
Suppose additionally that there exists a 6 > 0 such that for each compact . € R¢
we have the bound

0,n 0,7 | Pr+1 =y =1y Pk =iy =1 || Pk+1
R L
nilg =
— n20
5 2~ Pk+1mb

Then there exists a 0 > 0 such that for each compact . € R¢ we have that

E|: sup [[HOT — HYP }gz—f’k”zé.

Tjini T ye s =k, 2k
Inllge =1 !

Proof. This result is an immediate corollary of Theorem 3.27 and the uniform
bounds of the previous section. O

We now turn to the remaining two cases. We begin with the case where 7; =
F'7 and vy < 0. The key estimate that we will need is the contents of the following
result:

Lemma 6.4. Suppose that scalt < 0 so that |t|s < —|s|/2. Then for any ¢ > 0,
ny = ny and . C R? we have that

sup lo™ # e — @" s el gygeat e ) S 27
lInllge =1 ’
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Proof. Itwillsuffice to show thatsupy, .. <1 | Supy cgr (@™ *ne—n6 Y 1282y S
Ascal t—sz—nle' -

For A = 27" we write
™ (y) — " x Yt (y)] < / W () — (v — 2)l0" (2) dz
< /)f‘s‘*llzl,o'”(z) dz < A7lsl=lp=m,

As aresult, for any & > 0, A°2™"1¢ (yy* — o"! % yr*) is a test function at scale 2A up
to a fixed multiplicative constant. Since we have that sup,,.. < 7]l BEAL(R) <1,
= ,00

this then yields the bound

1
sup || sup (0" # ne = ne Yl 2gsan S AT
Inllze St ¥ EB”

It remains to consider the regime where & < 27! In this regime, we apply
Jensen’s inequality to obtain

I sup (16 0™ 5 U2 gy S // sup [(ne, ) P! () dxdy 5 2
YeR”

which implies the desired bound. The term where no mollification is present is

treated similarly. O

With this estimate in hand, we are ready to obtain our integration result for the
case where ; = Egand 7; = Fle.

Lemma 6.5. Suppose that y; < 0. Then there exists a 6 > 0 such that for each
compact subset &, C RY we have that

IH Hy!

_ —ns6
j;,- . g[gt;m”w,r,—xﬂ;k S/ 2

sup
Inllge =1

Proof. Since Hg’:,’nl = 0 in this setting, we have that
j[~ oy ) = j[Ht )

Xk
= D M En— e ann K- )
[kls <yt+Ills ’

X +y-0t
- ) M e e, K (=)
[kls <Itls+1l|s '

For terms appearing in the first sum, Lemma 6.4 imply a bound on the L?(%; dy)
norm as in the treatment of the corresponding terms in the proof of Theorem 3.27.
For the terms in the second sum, we assume that ¢ is chosen to be sufficiently small
so that y¢ + & < scal t. Then, applying the embedding %S“‘H £ 93';!?00 and a
similar treatment yields the desired bound. O
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This leaves us to consider the case where y;, < 0 and 7; # E¢. Here, the key
probabilistic estimate is contained in the following Lemma.

Lemma 6.6. Suppose that k € Z., yr, < 0 and that we can write Tj = B¢ - 7

where 1) = 1—15;21 Flio;. Suppose additionally that there exists a 0 > 0 such that
for each compact . C R we have the bound

3 3 Pk+1 2 3 Pk+1 - 0
B[N — 5, , + N5 = F 2t ] S 2,

Then there exists a @ > 0 such that for each compact & < R? we have that

- [ sup [[(@" *ne) - T 7y — (™ %) - ﬁ?nll%cmq-fa} < 2Pt
Hnll%él o0 1

Proof. We write

(@" xmy) - Ty — (0™ % ny) - T2y
= (0" xn— " xny) - iy + (0" * ny) - (M1 — M727))

and estimate each term on the right hand side separately.

The desired estimate on the first term follows from Lemma 6.1 since by
Lemma 4.4 we can apply the multiplication result contained in [5, Theorem 3.11]
and by Proposition 5.2 the part of the resulting bound that comes from the model
is uniformly controlled.

This leaves us to consider the second term. Here we observe that [T2' 7; — [T}2 17
has a 6% (%) norm of order ||TT"" — T1"2||y;(j-1. 4. Therefore, the same approach

as above yields a bound of order E [||I:I”1 — ||€k<j, 1)] which is of the correct

order by hypothesis. O
At this point, we are ready to obtain our final integration result.

Lemma 6.7. Suppose that k € Z., yr, < 0 and that we can write Tj = B¢ - 1

where 1] = ]—[le Flio;. Suppose additionally that there exists a 0 > 0 such that
for each compact k. C R? we have the bound

A1 pyne g Phtl Pl _ e P+l —Pk+1n20
B[ = At + IE = i | < ommena?,

Then there exists a @ > 0 such that for each compact & C R? we have that

0.7 0.7 Pk —prn2b
E| su H —H o | S27PemY
[nnmpgl 1 gty = Mtesiny ”Vfw—K*”‘_ ~

Proof. The proof is much the same as the proof of Theorem 3.27. The only real
modification is that at points in the proof of that result where we applied Theo-
rem 3.26 we will instead use the bound provided in Lemma 6.6. This is done in
much the same way as in the proof of Lemma 6.5 and so we omit the details. O
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Combining the results of the previous lemmas with Theorem 3.27, a simple induc-
tion then yields the following result.

Proposition 6.8. Fix k > j € Z.. Suppose that there exists a 6 > 0 such that for
each compact set k, C R? and each n; > no we have that

B[N — 2, + N0 = Tt ] s 2mmen,

Then there exists a 0 such that for the same set of parameters and for | < j

0 N Pk—j —pk,'nzé
E|: sup ”Hr[nl r[ nz“Vrl —K2k:| 52 ! .
lInllze <1

With this result in hand, we are finally in a position to prove the convergence
result that was promised in this section.

Theorem 6.9. Fix k € Z. There exists 0, & > 0 such that for each compact set
t CR? 1 < j<ngandn, = na, we have the bound

[ S 2l i ) — g niep|™ o+ I —f"2||§’;}
1SIS)

< pmpkmf (6.2)

Proof. We choose N, Ny, N>, k(j) as in the proof of Proposition 5.2 and we aim
to prove by induction in j that

[ S 2 i ) — () + T - F"zn”“”}
1SIS)

< 27 Primb (6.3)

The base case j = 0 is again trivial.

Solongase > Oissufficiently small, by Lemmas 5.3, 5.4 and 5.5 we can assume
at the j-th inductive step that there exists a & > 0 such that for each compact set &
andn; = ny

B[N = s, + NE = P22 5 2mr-amd

and that |7} |s V=)~ 0 without any loss of generality.
We again apply the spectral gap inequality to write

- _ 1/
e[| o)~ )| ] "

0 [T 7j(¢) — Mg’ (¢5)]
9§

p 1/p
SE[Mg'tj(9) — Mg* ()] + E
H—sca]():_)

for p = pij+1)-
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We consider first the first term on the right hand side. As in the single model
case, we write ¢ = <p0 + > s 0(<pk+] — goo) Since

E[fye@)] =0
by the definition of the BPHZ model, it remains to consider
E[ (s — ) @ - o) = /]E [(f5'7 = Ag) @) | R dy.

Using translation invariance as in the proof of Proposition 5.2, this is nothing
but

[ B[ miE - ™) £ o)
+E [(ﬁ’;l - ﬁ'y’Z) (e - r,)(go"“)] R¥(y)dy.
Therefore, we obtain
‘]E[ My'r; — l'[”zr]) (g™ — gog)]‘

<27kl g [Ty G IT™ = T2l
HIT2 g ITT™ = T2 -1y ] -

By our assumption that |7;|g (V=1 — 0 and an application of Cauchy-Schwarz and

the uniform boundedness glven by Proposition 5.2, the right hand side has a sum

over k < n of order 277 s 2 29 as desired.
It remains to consider the second term on the right hand side of the spectral gap
inequality. In the same way as in the proof of Proposition 5.2, it suffices to bound

p
- I ﬁup<1 %anr n|((p0) glnzHr ,,2(§0g)
nllge =
nee;,

where here R" is the reconstruction operator corresponding to the model I (or
in the case where Yz < 0 is our candidate for that reconstruction).

In the case Where vr; >0, the desired bound is immediate from Theorem 3.26
and Proposition 6.8. When y;; < <0 however, we need to do slightly more.

In the case where 7; = E¢ for [t|s < —|s|/2, the desired bound follows from
Lemma 6.4 and the embedding %Scal RN 93'”5 for sufficiently small & > 0.

In the remaining case where 1; 5 =8¢ -yforg = I—[f 7 lig;, it is sufficient
to consider only the term for 'HY Ht, since the other term in the definition is covered
by Theorem 3.26 by the first part of Lemma 4.6.

On the one hand, we have the bound

E [ sup  [((@" * ) - T — (0™ % my) - 27y, <P6'>|p} < 27 pmlp=prltls
Inllge <1
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provided by Lemma 6.6 and the usual embedding between Besov spaces.
On the other hand, we have the bound

E [ sup  [((@™ % ny) - Mg — (0" % 1y) - 121y, w{})l”} < 27pltils
Inllge <1

from Lemma 4.6.
Interpolation between these bounds yields the desired result and completes the
proof. O

7. From the BPHZ model to the BPHZ Model

In this section, we will deduce the converge of the BPHZ renormalised models as
in Definition 2.29 from the convergence of the BPHZ renormalised models, which
in turn follows from Theorem 6.9 in combination with Theorem B.1. The key
observation is that by [4, Remark 6.20], the BPHZ renormalised model constructed
from the canonical lift of &, coincides with the BPHZ renormalisation of the BPHZ
model constructed from &,,.

We recall that from [4], we can write f[ﬁt =" ® I:Iﬁ)A;(r where g" () =
E[ﬁnsﬂgxt (0)] and the critical property of the map A is that for each 7, if we write
in Sweedler notation Aj; 7 =7 1 @ 1@ then each vV is of negative degree and we
have for t® that |[t®|; > |7|s. Here sﬂe’x is the negative twisted antipode on the
extended structure introduced in [4, Proposition 6.6]. This leads to the following
observation:

Lemma 7.1. Suppose that g" defined above forms a pointwise convergent sequence
of characters. Then the sequence Z" = (I1", I'") of BPHZ renormalised models is
convergent in L in Myqnq(T) for each p € [2, 00).

p]

where the supremum is over ¥ € %B", A € [0, 1), x € £ and homogeneous T € T
such that ||t|| = 1. This can be written as

Proof. We write

(ﬁglz _ ﬁ;%) W)

E[Hfl"' —ﬁ"2||§‘k] =E| sup APl
’ (W, h,X,T)

E| sup AT PITls
(W hx,T)

_ _ p
(gnl(r(l))nﬁlr(z) _ gnZ(T(z))nf;z,a)) (w?)‘ }

where A™1 = 1D ®@1@_ Since [t P |; = |r]s, this expression then admits a bound
by a constant multiple of the following term:

o
sup |g" (@) —g"z(f(l))‘ E[”HMHS‘-/%]
T ;

ny (- 2)yp 1% — 1772 |?
+suplg" (e )PE I — 2L |
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Since our regularity structure is finite dimensional, pointwise convergence of g”
implies that the supremum over 7 in the first of these terms vanishes asny, np — oo.
Therefore, by Proposition 5.2 the first of these terms vanishes as n1, ny — o0. For
the second term, we note that the pointwise convergence of g" implies that the
supremum is uniformly bounded so that this term vanishes also as n1, ny — oo by
Theorem 6.9. O

As a result the remainder of this section is dedicated to establishing that we do
indeed have pointwise convergence of this sequence of characters.

We fix an arbitrary smooth and compactly supported function ¥ such that
[¥(y)dy = 1. We recall from [4, Section 6.3] that we have two natural ways
in which translation by an element of R? acts on our space of models. The first
is given by setting T, (I)t(z) = Mt(z — h) and the second is given by setting
Th(t(z) = (I ® gy) Ak t(z) where AZ is defined in [4, Corollary 5.32] and
gn 1s defined by setting g, (X;) = —h; and g, (jk[r) = 0. In particular, the exact
form of the operator AJ, will not be important to us since g, will vanish on all
non-polynomial trees it extracts to the right so that the tree on the left will agree
with T except in its decorations and will have degree no more than the degree of 7.

For |7]s < 0, we can then exploit the stationarity assumption in the form of [4,
Definition 6.17] (which is equivalent to our stationarity assumption) to write

¢"(t)=E [ﬁnd&t(O)]
- [E[nidscm]vma
= B[ (. cP)y)]

where szi;( is the negative twisted antipode introduced in [4, Section 6.1] and
Afdgt =t ® 1@ in Sweedler notation.

The desired result then follows from the following lemma since in our setting
ifte £ and [t|s — |k|s > Othen f;'(§ 1) is a linear combination of terms of the
form D/ p" % £¢(x) which gives a Cauchy sequence in the relevant L? topology by

the spectral gap assumption.

Lemma 7.2. Suppose that Z"" = (I1", I'") is a sequence of models such that for
each t € £_ with |t|s = 0, each k € N and each x € R?, f)f(jktl) is a Cauchy
sequence (Where f' is the character on I, corresponding to the model Z").

Then for each t € I and x € R, fi(t) is a convergent sequence. In partic-
ular, it follows that for each v € T and € R, the map "t (Y) is a convergent
sequence.

Proof. We fix models (IT, I"), (IT, ).

The result for fy is trivially true when 7 is a monomial and is true by assumption
fort = fkt(’ for t € £_. By multiplicativity, it then suffices to consider the case
where T = Jk[cr forl € £, and k € N¥ such that |o|s + |l|s — |k|s > 0. We have
that
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AO-F@ISY Y Mo = o) @KLC - 0)

n20|l|s<|Fols

< Y I = g, - 270 leH s lktle),
n=0

where f, is the character corresponding to the model (IT, I').
Therefore since |o|s + |l|s — |k + I|s > 0, we can perform the sum in n to
conclude. O

Remark 7.3. Inthe case where £_ contains only labels of negative degree, Lemma 7.2
should be interpreted as saying that the map (IT, I') — f; () is automatically con-
tinuous for each fixed x € R? and v € I, which is essentially the contents of [4,
Proposition 6.31]. However that result does not correctly handle the case of noises
of positive degree and so we provide a separate statement here.
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Appendix A: Local Besov Spaces

In this appendix, we collect some results regarding the local Besov spaces
defined in Section 1.3. The most important of these will be the characterisation of
these spaces via a distinguished kernel with a semigroup type property.

The other properties ought not surprise any reader familiar with the theory of
Besov spaces defined by global behaviour. We include these results only because
the Fourier analytic tools often used in the treatment of such spaces don’t adapt well
to our local setting and so it is necessary to affirm that this does not pose difficulties
in obtaining the usual results.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We will begin by introducing our alternative characterisation of the spaces %; 7
As an intermediary step, we note that the LK norm in the definition can be replaced
by an £9 type norm.

To see this, given A € (0, 1],letn(A) = max{n : 27" = A}. Thenfor A € (0, 1],
n € " there exists a constant C > 0 (which is uniformly bounded in the choice
of % and ) and a test function ¥ € %" such that n* = C 1,02_"('\). Consequently, in
the case where o < 0, an equivalent family of seminorms on 9,  is given by

(6. n2 ")l
sup ————

def
R | =

LP(R3dx) | gg

The analogous result is true in the case « = 0 by replacing %" with QS’W | in
the above discussion.

With this step in hand, we introduce the convolution kernel we will use to
characterise these spaces. Our definition is taken from [11], though we refer the
reader also to [23, Section 2] for a similar construction.

Definition A.1. Fix an even, smooth function p : R? — R that is supported in the
s-scaled ball of radius % such that f,o(x)xk dx = 8 for0 = |k|s < r. We let
p"(x) = 278l p (275 x) and set form > n

p(n,m) — pn * pn+1 %% pm—l * pm'
Define ¢" = lim;;— 00 p(’“”) € 62° where the limit converges in 6 foralla > 0.

It is straightforward to verify that ¢” (x) = 2"1%19%(2"%x) by verifying the same
relation for p""™ and passing to the limit. In particular, the superscript notation
here coincides with the use of that notation for rescaling a test function. We also
note that this choice of kernel has a convolution semigroup type property; namely
that

¢" = p" %"t (A.1)

For{ € @' (R?), wedefine &, = ¢ x¢" . We then define the following collections
of seminorms on &7 .

Definition A.2. For « < 0, compact & C R4 and p,q € [1, o0], we define

def

|§|%7J,q?f¢ |2M ||Cn||Lp(f¢) ||(q(n) < 00.

Fora 2 0, we let |¢ |s ik denote the quantity

IZollrcry + 2" || sup [(Cn, n)] + 2" N1¢ns1 — Callrer)
UE%[M
LP (k) 24 (n)

We then have the following characterisation of %%Q 7
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Theorem A.3. Fix p,q € [1,00] and o € R. For ¢ € @' (RY) and for compact
% C R we have that

@ < z
”{l'%p,q(k) ~ |C|@,%.q;fg,

where k. denotes the 1-fattening of #.
In particular, B, , is the set of distributions ¢ such that for each compact set &,
el @a i < OO and the family of seminorms | - | Bt induces the same topology.

Proof. The case o < 0 is a special case of [35, Proposition A.5]. The case « = 0
follows by essentially the same ideas so we omit the details. O

Appendix B: A Kolmogorov Criterion for Models

In order to obtain boundedness or convergence of sequences of models on
structures of decorated trees, the standard tool in the literature is the Kolmogorov
criterion provided in [14, Theorem 10.7]. In this section of the appendix, we will
slightly modify the proof of that result.

We do this for two reasons. Firstly, the proof appearing in [14] uses in a crucial
way techniques of wavelet analysis that we would like to remove in order to permit
a more general choice of scaling. Secondly, the statement and proof in [14] do not
allow the presence of noises of positive degree and so we must make the necessary
adaptations to allow for those.

The main result of this section is then the following.

Theorem B.1. Let V be a sector of I and suppose there is a k > 0 such that for
every tree T which is either of negative degree or is a noise of positive degree, for
everyn 2 0 and for every p € [1, 00) that the bound

E[| Moz (p)|P] < 27 Pritle—pin (B.1)

holds. Then for compact sets £, C R, IE[||Z||";;&] <1
If additionally the bound

E[|Mot(¢f) — Mot (@)1 < ePf2pritls=pin (B.2)
holds then B[|| Z; Z|1},.,1 < &°.

Our intention is to follow the structure of the inductive proof provided in [14,
Theorem 10.7] and make amendments only where necessary. In particular, in the
interest of brevity, we freely borrow notation from that proof.

The most significant difficulty not present in the setting of [14] is that since we
do not use wavelet techniques, we no longer have a characterisation of the norm of a
model in terms of its values at countably many base points. Instead, the best we can
hope for is the following result which should be compared with [14, Proposition
3.32] and whose proof is a corollary of the proof of the Reconstruction Theorem
given in [5] in the same way that [14, Proposition 3.32] is a corollary of the proof
of the Reconstruction Theorem given there.
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Proposition B.2. For every compact set . C R? and every sector V, the following
bounds hold.

1‘[ n
ITly.e < (14 |T]lv.z) sup sup sup Supzcml xa(ey)l
a€Ay aeVy nz()xeff, ”a”

_ M.a — H.a)(e"
ITT— Mllv;s S (1+Tlly;s) sup sup sup supz‘*”'( - <))
a€Ay a€Vy n>0 xef llell

This means that pulling the resulting suprema over base points x outside of
expectations will take more work. To achieve this, we will apply the classical
Kolmogorov criterion. Whilst the result and its proof are essentially standard and
found in many textbooks on stochastic analysis, often the explicit bounds we require
are not part of the statement (though they are a corollary of a careful reading of
the proofs given) and so we choose to provide an explicit statement here for the
reader’s convenience.

Proposition B.3. Let £ C R? be a compact, let ¢ € (0,11, K = 1, p = 1, and
8 > 0 be such that 6p > |s|, and let {Fy}xcr, be a collection of random variables
such that

_ 1
sup B[|Fy|P]1 < 1, sup Ilx — yISPE[IF: — FyIP]7 S K2, (B3)
xek x,yefc<
|[x—yls e

Then, there exists a 6 (k)-valued random variable F such that, for every x € *,
F(x) = Fx almost surely, and such that

1/p
E [sup |F(x)|p:| < C (7P 4 gOgOIslP),
xek

for some fixed constant C which depends only on the diameter of % and the implicit
constants in (B.3).

In order to verify the hypotheses of this criterion, it will be useful to be able to
apply bounds of the type given in (B.1) and (B.2) with the test function ¢ replaced
with an arbitrary ¢ € 9". To this end, defining V; to be the smallest sector
containing t and V. to be the largest subsector of V; that does not contain 7, we
have the following result.

Lemma B4. Let T € T with ||t|| = 1 and suppose that for p € [1, 00) and every
n = 0 we have that

E[[Moz(¢f)|71"/P < 27"

and that

2 2
ELIT g,y 127 + ELITI, 1727 < 1

Then sup., cgr E[| Moz (y)|P1V/P < 27nitls,
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If additionally we suppose that for some 60 > 0
E[| Mot (¢f) — Mot (pf)|P1"/7 < e727"17)e
and that
—_ T 112 _Ance q1/2p < 6
ELIT = Tligy, v, 1757 + ELITT =TI | Se
then we have that

sup E[|Tloz(¥) — ot (y)|P1 < ePfarritls,
Y eR"

Proof. As usual, we consider only the case of a single model here for brevity.
We can write

[Tz L

M@l ") + 30 Tt (U (51— g th))
k>0

Lr

IMe @y o, + 3 [er (vl (@ 50— gty
k>0

A

Lp
(B.4)

where the LP-norms are with respect to the underlying probability measure.
We consider first an arbitrary term in the sum on the right hand side. We can
write the k-th term in this sum as

H/(er)(wﬁ“‘) (1/5’3 — "k Wf) (y)dy (B.5)

Lr

Taylor expanding 1" to order N and arguing as in the paragraph following [11,
equation (13.20)], we have that

X X ~ *
Additionally, we note that the integral in y has support in a ball of radius of order
27"s,
Therefore, inserting this bound and applying Jensen’s inequality, we find that
the term (B.5) can be bounded by

1/p
_ P
kN (/B . Cz_n)z"'ﬁ'EHer (<p§”+k))‘ ]dy) .

By writing I, 7 ((p§,”+k)) = I, Ty, ((p;”+k)), we obtain a bound of order

2~ Nk=(+R)I7ls wwhich has a sum in k of the correct order so long as we select N
such that N > —|t]s.
Control on the first term of (B.4) then follows similarly. O
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With this result in hand, we obtain the following corollary of Proposition B.3,
which is a specialisation of that result to the case where F, = 2"7ls [T xT(@).

Corollary B.5. Under the hypotheses of Lemma B.4 we have that

n 1/p —n|t|
B[ sup Mz (e)] " g 27l

xek

and that

n = n 1/p 0~—n|t|

B[ sup IMLz(¢) — Mr@p)?] " a2l
xek

Proof. As usual, we illustrate only the case of a single model.

The result will follow if we verify the hypotheses of Proposition B.3 for Fy as
above with K = 2" and ¢ = 27". Since the first bound in (B.3) is automatic from
our assumptions, we consider only the second required bound.

For this, we write

[Tt (py) — Myt(@y)] = [Tkt — TayT1(@)] + [Ty T (@) — @)1

Control on the terms resulting from the first part of the right hand side are straight-
forward by assumption and for the second term on the right hand side control
follows from Lemma B.4 since for [x — y| < 27" we have that |y — x|~} (o} — gog)
is a test function at scale 27" centred at y. O

With these preparatory results in place, the proof of Theorem B.1 is reduced to a
fiddly set-up involving a sequence of shifted degree assignments. Since this holds
no new conceptual ideas, we provide only a sketch proof.

Sketch of Proof of Theorem B.1. As usual, the proof in the case of two models is

similar to the case of one model so we will deal only with the latter of these cases.
We define 7, Tn+ and 7, as in the proof of [14, Theorem 10.7]. We let N be

such that 7, = 9 and we equip 7, (and hence Tni) with the degree assignment

171" where | - |

chosen to be small enough so that for every t € T, |t]s + k > |T]|
We note that by Proposition B.2

1/p
E| T4 -

1/2p k (N—n—1) 1/2p
SE[(I + IIFIITM%)ZI’] DD IEALE E[suplﬂxri(wﬁ)lzf’}
n>0 i—=1 xek

is as in (2.12) and « > O appearing there is additionally
(V)
s -

where {t; :i =1, ..., k} is a basis of T,

Applying Corollary B.5 to control the right hand side yields the bound given
in [14, Equation (10.4)] without the use of wavelets. Since the rest of the proof
given there is wavelet free, the only remaining detail is to show that the presence
of noises of positive degree does not cause any issues.
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The reason that these require extra accommodation is thatif |[|s > O then 'y, E(
is not automatically controlled by the action of the model on symbols earlier in the
induction via an application of [14, Theorem 5.14].

However, since for T = Z; we have that \o/r C Jpoly, the bound (B.1) can be
written as

I/p B
E[I(f —pll= g, go;:>|f’] S anitlsmnk

where P} f is the Taylor jet of f around x to order y and here f is any function
such that ITE; = f induces the model (I, I') on V;.

def

We then note that if F, = 2"Ils (f — P)l”sf, @), we have the bound

27Ms || Fy — Fyllze

S IF = PN, @ — @™ lier + 1F — Pl o) ee + 1(F — P, @)oo
y

where |x — y| ~ 27/ and we have used the fact that convolution with ¢* fixes
polynomials of appropriate degree to change the scale of the test function in the
latter two terms.

It then follows from an application of Proposition B.3 that

1/p
E[sup sup 27"MMs | — P)l“‘r’f, §0§)|pi| <1
n>0xek

so long as p is sufficiently large.

In turn, this implies that E[[Dkf]ﬁ‘s_‘k‘s;ﬁ]l/P < 1 where k is such that for
any non-zero multi-index j, |j + k|5 = |l|s and [ f]a: 5 denotes the usual o¢-Holder
seminorm on %.

Since the X/ component of "y & is nothing but DJ f(x) — (Pyulﬁ DJ ) (x),
the desired control on I'yy 8y then follows from an application of Taylor’s theorem.
O

Appendix C: Properties of AY

We now gather some elementary properties of the group R that will be useful
in the sequel. For notational convenience, in these results and in their proofs we
will suppress the dependence of integration maps on the decorations t € £.

Lemma C.1. Let AMt = D @ t@ (adopting Sweedler’s notation for coprod-
ucts). Then we have that

Xk
AMFr =(FoHAaM — Z —'®jk(r(1))t(2).
k|>z|+8
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Proof. Let ./l denote the multiplication operator on I andlet A : I — T ® I
be as in [14, Section 8.1]. Define D = (1 ® Jl)(A ® 1) and recall that by the proof
of [14, Proposition 8.36], we have that

AMr = D' (M @ M)At

where we observed that D is invertible since it can be written as D = 1 — D for a
nilpotent map D.
By the definition of A, we can write
. N xk xt .
(M ®M)AFT = (IMQM)AT+ > T ® M5k+lf
|k+lls<Itls+B

Xk X!
=JenhpaMr+ Y e 3k+z(r(”)r(2)
lk-Hlo <[ ls+B

On the other hand,

Xk
D(F @ HAM T — Z D (F ® jk(t(l))t(2)>
Ik|>|7|+6 '

xk
=@enpAYr+ 3T Tre X ety

[+l <]t |+B

Xk
- 2 D<F®fk(f(l))r(2)>
|k|>|T|+B )
Xk
=(F® DAYt + Z IO ;k+,(r<1>)r<2>
k<]t |46
k
- ¥ i—@l,zﬂz(r(”)z@
|k+1|>|T|+B

where the last equality follows by definition of A on polynomial terms.

Since |[tV|s > |75 by construction of AM | this shows that the expressions for
D applied to both the left and right hand side of our desired inequality coincide.
Since D is invertible this concludes the proof. O

Lemma C.2. Suppose that whenever t, 11,72 € I with T = 11172 we have that
Mt = Mt M71y. Then AM7z = AM7 AM .

Proof. This is immediate from the fact that AY = D~'(M ® M )A where D, M
and A are all multiplicative. O

Lemma C.3. Suppose that My, My € R with MiMy = MaM,. Then (AM ®
M)AM2 = (AM2 @ M) AM,

Proof. By the proof of [14, Lemma 8.43] both sides coincide with AM for M =
M{M>, = My M;. m|
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