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Abstract

We construct a time-asymptotic expansion with pointwise remainder estimates
for solutions to 1D compressible Navier—Stokes equations. The leading-order term
is the well-known diffusion wave and the higher-order terms are a newly introduced
family of waves which we call higher-order diffusion waves. In particular, these
provide an accurate description of the power-law asymptotics of the solution around
the origin x = 0, where the diffusion wave decays exponentially. The expansion is
valid locally and also globally in the L? (R)-norm for all 1 < p < oco. The proof is
based on pointwise estimates of Green’s function.

1. Introduction

The equations

v —uy =0, xeR, t>0,
ur + p()y = v(uy/v)y, xeR, >0, (1)
v(x,0) = vo(x), u(x,0) =up(x), x eR

describe the motion of a 1D viscous compressible flow. Here v (x, #) is the specific
volume (the reciprocal of the density p) and u(x, ¢) is the flow velocity; ¢ is the
time and x is the Lagrangian mass coordinate related to the Eulerian coordinate X
by x = f;(o(t) p(X',1)dX’, where X(t) is the trajectory of a particle moving with
the fluid and initially placed at X((0) = 0. The system above models barotropic
flow, that is, the pressure p(v) does not depend on the temperature. We assume
that p’(v) < 0 and p”(v) # 0 for v > 0 and that the viscous coefficient v is a
positive constant. The system is often called the p-system and is a typical example
of quasilinear hyperbolic—parabolic viscous conservation laws.
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The purpose of this paper is to construct a time-asymptotic expansion of the
solution to (1) together with pointwise estimates for the remainder. We shall con-
sider solutions close to the steady state (vg, ug) = (1, 0). To study the long-time
asymptotics of such solutions, it is convenient to consider

p" (1) _p'()
i [—(v—D+u/cl, ur= I

up = [((v—1)+u/c] 2

instead of (v, u). Here ¢ = \/—p’(1) is the speed of sound for the state (vs, us).
It is well-known that u; has the diffusion wave 6; as its asymptotic profile. Here

6; (i = 1, 2)is the self-similar solution to the convective viscous Burgers equation

{ate,- + A;0x0; + 05 (0%/2) = 3326;, x €R,t>0, 3)

lim~—16;(x, 1) = M;é(x), xeR,

where A; = (=D~ le, M; = ffooo u;(x,0)dx, and é(x) is the Dirac delta function.
An explicit formula for 6; is available through the use of Cole—Hopf transformation:

M;
ﬁ(eT - 1) (x—h; (1+1))2 M 00 R —1
AN v SYRASRS

“

The diffusion wave 6; describes the leading-order asymptotics in the L” (R)-norm.
In fact, we have the following optimal decay estimates [14]:

16; o )llee S e Y2 and (i — 6:)C, Dlle St CP7YP2 (1 < p < o0).

The key to proving the L?”-decay estimates above—especially for p = 1—is the
pointwise estimates for Green’s function of the linearization of (1) around (vg, ugs).
These, in fact, allow us to obtain pointwise estimates for the solution itself [10]:

(i — 0)(x, )] ST — At 4+ 1) 4 (¢ + D174
Hlx + 2+ D+ + 1272 S

The L?-decay estimates are obtained by integrating this.

Pointwise estimates (5) allow us to deduce not just global L?-estimates but also
local ones. In particular, we have |(u; — 60;)(x,1)| < t73/% for x = At + o(l).
Since 0; (x, 1) < t~1/2 for x = 1;t + O(1), the diffusion wave 6; also describes the
leading-order asymptotics locally around the characteristic line x = A;¢. However,
the situation is different around the origin x = 0. As can be seen from (4), the
diffusion wave 6; decays exponentially fast around the origin x = 0 but (5) implies
[(ui —6;)(x, )] < t73/2 for x = O(1). Thus the diffusion wave 6; provides almost
no information about the long-time asymptotics around x = 0; we need new waves
to capture the asymptotic behavior there.

In [12], van Baalen, Popovi¢, and Wayne constructed a time-asymptotic ex-
pansion of u; in an L>-framework. The leading-order term of the expansion is
the diffusion wave 6; but the first higher-order term beyond 6; turns out to be a
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wave decaying algebraically as ~>/2 around the origin. It is then natural to ex-
pect that this new wave captures the leading-order asymptotics of the flow around
x = 0. However, the decay estimate for the remainder of the expansion is given
in the H'(R)-norm. This implies only a far from optimal decay estimate around
x = 0. For this reason, we cannot conclude that the higher-order term describes
the leading-order asymptotics of the flow around x = 0.

To overcome this issue, we construct a time-asymptotic expansion of u; with
pointwise estimates for the remainder. The leading-order term is the diffusion wave
6; and the higher-order terms are higher-order diffusion waves &;.,, (n > 1) defined
in the next section. It turns out that |&;.,(x, )| < =2 for x = O(1) as
t — oo.Settingn = 1, weseethat |§.1(x, )| S t=3/ 2 forx = O (1). The pointwise
estimates for the remainder imply |(u; — &:1)(x, )] < t~7/4 for x = O(1), thus
it is rigorously proved that &;.; describes the leading-order asymptotics of u; for
x = O(1).In addition, thanks to the pointwise estimates, our asymptotic expansion
is valid not only in the L*(R)-norm but also in the L!(R)-norm.

The proof is based on pointwise estimates of Green’s function, and the basic
strategy follows that of [10]. The most non-trivial part of the proof is perhaps the
definition of the higher-order diffusion waves §;.,, (n > 1); see (7). Although the
differential equation defining &;.,, does not seem to have a simple solution formula
such as (4),! we use its structure (by the help of Lemma A.1) to analyze cancellation
effects which are crucial in nonlinear estimates; see the proof of Lemma 3.6.

Before concluding the introduction, we briefly comment on related works. Dif-
fusion wave approximations and pointwise estimates of solutions has been exten-
sively studied for hyperbolic—parabolic systems [10], hyperbolic—elliptic systems
[3], hyperbolic balance laws [13,15], the Boltzmann equation [8], and so on. In
these works, nonlinear diffusion waves similar to 8; were constructed and point-
wise estimates of solutions were obtained. However, to the best of our knowledge,
time-asymptotic expansions with pointwise estimates have not been obtained pre-
viously. We mention that the author already analyzed the second-order term &;.; in
connection with a fluid—structure interaction problem in [7]; the complete asymp-
totic expansion, however, was not given. We also comment that for multidimen-
sional incompressible Navier—Stokes equations, time-asymptotic expansions were
studied for example in [1,2]. Because the nonlinearity is weaker compared to the
1D case, nonlinear waves similar to &;., do not appear in these works.

In the next section, we state our main results. These are proven in Sect. 3.

2. Main Results

To state our main results (Theorem 2.1) we start by defining and discussing
the properties of the higher-order diffusion waves &;., (n > 1) mentioned in the
introduction.

I Nevertheless, we provide accurate asymptotic analysis in Propositions 2.1 and 2.2.
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2.1. Higher-Order Diffusion Waves

Let (v, u) be the solution to (1). Then define u; by (2) and set

M; =/ ui(x,0)dx. (6)

Let &.0 = 6;/2 with 6; defined by (3). We then define the higher-order diffusion
waves §&;., (n > 1) inductively by the equations

0r&iin + hiOxEizn + 0 Bikizn) + Ox Orbisn—1) = 503850, x €R1 >0, )
“;:i;l’l(-x’o)z()y XGR-

Here »; = (—1)'"!'cand i’ = 3 — i, thatis, I’ = 2 and 2’ = 1. We remind the

reader that c = \/—p/(1) > 0.

Although we do not have a simple explicit formula for &;.,, like (4), we can still
understand its asymptotic behavior quite well. To explain this, we introduce

1 3

an=2—ﬁ7 ﬂn=§—w

(n=

-1
and
Yn(x, 15 0) = [(x — At + 1) + (¢ + D]7/2,
Un(x, 13 0) =[x — A( + D|% 4+ ¢ + D7, (8)
Wi (x, 1) = Y (X, 15 40) + Y (X, 15 Air).

Then we have the following decay estimates for &;., (we postpone the proof until
we later prove a finer version in Lemma 3.1):

Proposition 2.1. Let n > 1 and ¢ = max(My, My). For k > 0, if ¢ is sufficiently
small, we have

105, (x, )] < Cpe" Tt + 1) 2 W,y (x, 1)

Sfor some positive constant Cy, k. In particular, when |x| < K for some fixed K > 0,
we have

[&in(x, D] < Cpx (t + 1)~ %=t

Sfor some C, x > 0. Moreover, for any 1 < p < oo, there exists Cy,, > 0 such
that

&0 G, OllLr < Cpp(t 4+ 1)~ @=171/P)/2,

We can also prove more detailed estimates if we focus on x with (—1 )i -y > 0.
Let

§(2) = dee B = —(x/ve I, ©
M; . M; oo -1
fio() = % (eT‘ - 1) 5 [ﬁ+ (eT’ - 1)/Z et dé} . (10)
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and

* i—1 1-1/2" &

fin(@ =/ G Vi I (11
(— 1)1’—1 z

We then have the following asymptotic formula. This is obtained from Lemma 3.2

proved in the next section.

Proposition 2.2. Let n > 1 and ¢ = max(My, M3). For any K > 0, if ¢ is suffi-
ciently small, there exist A;.,, Bj.,, and C,, > 0 such that

HS P P (x—x,-<r+1))_ Bis, (x—)\,-(t+1)>H
D e 2\ T T «+ 0o 28\ T

< Cue" M (x, 15 00)

for x with —K < (—l)i’lx. The constants A;., and B;., are determined from
(M1, M) defined by (6).

Remark 2.1. The function f;., appears in [12, Section 4]. It is shown that f;.,(z)
decays exponentially as (—1)'~!z — oo but decays algebraically as fin(@) ~
z~%-1 in the limit (—1)"~'z — —oo. In particular, if |x| < K for some fixed
K > 0, we have

D™ (—x — it “) e

V41

Remark 2.2. With some additional effort, we can show that, for —K < (—1)'~1x,
the higher-order diffusion waves &;., (n > 1) are asymptotically equivalent to the
higher-order terms of the asymptotic expansion constructed in [12].

2.2. Time-Asymptotic Expansion with Pointwise Remainder Estimates

Letug = (vo — 1, up) and denote its anti-derivatives by u(j)t, that is,

ee]

u(}(x)=/ uo(y)dy, u(J{(X)=/ uo(y) dy.

—0o0 X
Our main theorem is the following:

Theorem 2.1. For ug = (vo — 1, ug) € HO(R) x H(R), let (v, u) be the solution
to (1). Define u;, 6;, and &;.,, by (2), (3), and (7), respectively. Set

Uip;1 = 5[;1 + Vir0x 0y, Uj:n = Si;n + Vi’axéi’;n—l (n>2),

where i’ = 3 —i and y; = (—l)iv/(4c). Then for n > 1, there exist positive
constants 8, and Cy,, such that if

8:=luolle + sup[(|x] + D [uo(x)| 4+ (Ix| + 1 *|ug(x)]]

xeR
(12)
+ sup[(|x] + D" (lug (—x)| + lug (D] < 85,

x>0
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the solution (v, u) satisfies the pointwise estimates

<Mi —0; — Z’h‘;k)(xs )]

k=1

= Cna\yi;n(x» 1)

forallx e Randt > 0. Here \V;., is defined by (8).
As a corollary, we obtain the following L”-decay estimates. Combining this
with Proposition 2.1, it follows that u; ~ 6; + Z;’;l &i.n 1s a time-asymptotic

expansion in the L” (R)-norm for all 1 < p < oo.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have the optimal L?-
decay estimate

H (Mi -0 — Z&;k)(', 1)
k=1

Proof. The same bound for u; — 0; — ZZ:] u;.i easily follows from Theorem 2.1.
We can replace u;.; by &;.x thanks to (4) and Proposition 2.1. O

< Cp8(t+ 1)~ @=V/P/2 (1 < p < 00).

LP

We also obtain the following local-in-space decay estimates:

Corollary 2.2. Under the assumptions of Theorem 2.1, when |x| < K for some
fixed K > 0, we have

(u,» - Zsi;k><x, 0)
k=1

Moreover, there exist constants {Ai;k}Z:1 determined from (M1, M>) such that

< Cpgd(t+1)"

n

Ak x —Ai(t+1)
Mi(x,t)_z(t_l_l)ak_l/zfi;k( \/H-_l )

k=1

< Cn,KS(t + 1)70["-

Here M; and f;.; are defined by (6) and (11), respectively.

Proof. Again, the same bound for u; — 6; — ZZ=1 u;.i easily follows from The-
orem 2.1. We can then replace u;.; by &;.x thanks to (4) and Proposition 2.1. The
second inequality follows from Proposition 2.2. O

By Corollary 2.2, and also Remark 2.1, we now have a detailed picture of the
power-law asymptotics of the solution around x = O where the diffusion waves
decay exponentially.

Remark 2.3. The term y;/9,.6; and y;s 0, §;.,, are both neglected in the two corollaries
above. These are negligible in the L?” (R)-norm and locally around x = 0 but are
important in the neighborhood of the other characteristic line x = —A;¢. For this
reason, these terms are required in the statement of Theorem 2.1.
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Remark 2.4. The rather strong H-regularity is required to invoke pointwise es-
timates of 9 (u; — 6;) provided by [10, Theorem 2.6 and Remark 2.8]. The proof
involves energy estimates up to the H°(R)-norm. These also imply a unique global-
in-time existence theorem in appropriate Sobolev spaces. Off course, global-in-time
existence of solutions can be proved with much lower regularity [4,9], but proving
detailed pointwise estimates for such data seems to be difficult at this point.

Remark 2.5. We add a comment on taking the limit » — oo in Theorem 2.1 and
also on a possible route to expand the solution to even higher order. A careful
examination of the proof shows that the constant C,, in Theorem 2.1 grows as 2".
So we cannot simply take the limit. However, as pointed out in [12, p. 1955], it
might be possible to take the limit by adding a logarithmic weight:

<u,' —6; — ZM,’;k)(x, 1)
k=1

Here, C is a constant independent of n and W;.oo(x, ) = limy— o0 Win(x, 1).
Since [|Wi.00(, OllLe S 1, to study an asymptotic expansion beyond the order
O(t~'log?), it seems that we need to identify waves describing this order. Such
waves are identified for example in [5] for generalized Burgers equations. Analo-
gous results for hyperbolic—parabolic systems are, as far as I know, not known. If
such waves are identified, we might be able to expand the solution beyond the order
O(t~'log ). And drawing an analogy between the heat equation, terms beyond this
order should also depend on higher-order moments |’ * x¥u;(x, 0) dx and not just

on M; = [ u;(x,0)dx.

< Cuxoblog(t +2)W;. 00 (x, 1).

3. Proof

The following function appears frequently in the subsequent part of the paper:

G=re+1)?

O, 13 4, ) = (1 + 1)™ 2wt (13)

Here A € R and «, 1 > 0. Note that
10: (x, )| < AoIM;1O1(x,1;1i,2V), O, (x,1; A, 1) < Bon(x, ;1) (14)

for some positive constants Ag and By. In what follows, the symbols C and v*
denote sufficiently large constants.

3.1. Pointwise Estimates of the Higher-Order Diffusion Waves

We start with the proofs of Propositions 2.1 and 2.2.
Proposition 2.1 follows from the following finer version:
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Lemma 3.1. Let n > 1 and ¢ = max(My, M»). If ¢ is sufficiently small, we have

1088, (e, 1) — (=1 2e) T 0% @& 1) (x, 1))

(15)
< Cop" TN+ D7y (x, 15 1)

or any mteger Z . npartlcu ar, we nave
] k> 0.1 jcul h
1050 (0, O] < Cure™ T @ + D21 (x, 15 1) 4+ Oap, , (x, 15 Ayr, v)]
< Cope" T+ )W,y (x, 1),

Proof. We assume ¢ > 4 in what follows (the lemma is otherwise easier to prove).

The lemma is trivial for n = 0 if we set §;.9 = 6;/2 and §._; = 0. So it suffices

to prove the lemma for n assuming that it holds for n — 1 > 0. In what follows, we

only prove the case of i = 1 and k = 0 since the other cases are similar. Note first

that, by (7) and Duhamel’s principle, we have &;.,(x, t) = {1.,(x, 1) + n1.0(x, 1),

where

Gin(x, 1) = —(2mv) /2 f / (1 = 57 e T 3 Batnn 1) (3, ) dyds

(16)

and

Mo (x, 1) = —2v) ™12 / / (t—s)"%e - poer 3 (0181, (v, 5) dyds.
a7

We first consider 1., (x, t). Set I (x, t) = —v/2mwv{1.,(x, t) and f = 0262.,—1.
By Lemma A.1, we have

I(x,t) = (26)_1\/2]T1)f(x, )+ L(x,t)+ DL(x,t),

where

|/2 - )2
1) = / / { )2 R }f(y,swyds

and

' N = ) 172
Iz(x,z>=—(2c>*/ (t =t/ 12e™ = f(y 1D dy
—00

(x—y—c(t—s))?

t o0
— Qo / f (t—s)"V2e” T Lyf(y,s)dyds
1172 J -0
=:hi(x, 1) + In(x,1).
Here Ly = 9; — c0y — (v/2)8§. By the induction hypothesis, we have

|f(x,0)] < Ce"T @y, ,41(x, 15 —c, V™).
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By Lemmas A.2 and A.3, we obtain

111, D]+ i (x, 0] < Ce"H Oq, (x, 15¢,0%) < Ce" i (x, 15 0).
Next, note that (3) and (7) imply

Lo f (e, 0] < Ce™ O, ,43(x, 1; =, v¥).
Then by Lemma A .4, we obtain
[La(x, 0] < Ce" i (x, 15 0),
We have thus proved that
C1n (e, 1) + 20) T O2820-1) (0, D] < Ce™ i (x, 15 0). (18)
We next consider 71;.,(x, t). Note that it is the solution to

3:’]1 n +C8x771 0+ O (91771 n) = 2 xr]l n ax(elé‘l;n), xeR,t>0,
N1;n(x,0) =0, x eR.

This variable coefficient equation can be solved by an iteration scheme. Let n(l)

be the solution to

By + coeni = 5020 — 9:(011:0). x € R, 1 > 0,
n%@JD=Q xeR

and 17<k) (k > 2) be the solution to

B\ + cdunir = 3020 — o, @il ) x e Rt > 0,
llle(x,O) =0, xeR.

Then we can write 71;., as
k
N, 1) = § 0y (. 0). (19)

We now give bounds for n (k > 1) inductively. Note first that
tia(500) = =) 1/2/ f (1 = ) V2 T @) 0, 5) dyds
(20)
and that (18) implies
@181 (x, D] < A18" P Oq,_y41(x, 15¢,0)
for some positive constants A and v". Then by [10, Lemma 3.2], we obtain

D (0] < MAE" 20, (x, 13 ¢, V)
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for some M > 0. This means that the inequality
1 _
o, (. D < MAL(MAQ)' e H @y, (x,11¢, ) @n

holds for [ = 1. We then show that (21) holds for [ = k + 1 assuming that it holds
for [ = k. By the induction hypothesis and (14), we have
(O . 0] < Aj(M A e H2@q, 1 (x, 1. v).

1;n

Applying [10, Lemma 3.2] again, this time to the integral representation

t o0 2
k+1 _ _ _ x—y—c(t=9)) k
)V, 1) = — @) 1/2/ / (=) 25 8.0 (. 5) dyds,
0 J—o0
we obtain

|T}(k+1) (x’ t)| S MAI(MAo)k8n+k+2®an_] (x, t, C, U/)'

1:n

Therefore, (21) holds for any / > 1, and by taking ¢ sufficiently small, we get

oo

k
Y onfoen
k=1

Combining this with (18), we obtain (15). O

N1 (x, )] = < Ce"20Oq,_,(x,1;¢,V) < Ce" 2,1 (x, 15 0).

Remark 3.1. The proof above can be modified to show that
|8 E1m (6, 1) = (1) 20) 195 Bir&irim—1) (x, 1)
< Gt + DT 21 (1 h)
holds for all m > n with the smallness of ¢ depending only on » and k.

We next prove Proposition 2.2. (The proof is rather lengthy and may be skipped;
the rest of the paper can be read independently.) Define ¢;., and n;., by (16) and (17),
respectively. Then Proposition 2.2 is a direct consequence of the following lemma.

Lemma 3.2. Let n > 1 and ¢ = max(My, M»). Fixk > 0. Forany K > 0, if ¢ is
sufficiently small, there exist A;.,, Bi.n, and Cy ;. > 0 such that

. A C(x=nG+D)
ax {é‘l:n(x’t) (t+1)0(n71/2fl;n ( m )}‘
< Cpp" Tt 4+ )72, (x, 15 04) (22)

and

4k .0 Bin x =it +1)
) —
X ’h,n (t+ 1)0tn—1/2g /—t+1
< Cok 820t + 1)K 24, (x, 15 04) (23)

when —K < (—=1)!~'x. Here g and fi:n are defined by (9) and (11), respectively.
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Proof. The lemma is proved by induction in n.
We first consider the case of n = 1. Leti = 1 and k = 0 (the other cases are
similar). We start with the proof of (22). Note that (16) implies

—c(t—s)

1 t o0 =
{1;1(x,t)=—m8x/0 / (t —s) V2 7%« 9 02(y,s)dyds.
—00
In addition, by (4) and (10), we have

_ x—=Xr+1)
i(x, 1) =@+ D" fio NS
Hence we may write
02(x. 1) = ar;1 (x;c((;j_ll)))z (e )
v r(x, 1),
? (t + DV2my !
where
o
ai:l =/ fzz;()(Z)dZ
—00
and

(x.1) / ’ (92( D) 21 “?Eiﬁi)z) d
r(x,t) = ) — ——————e ¥ Z.
00 2 (t+ DA/ 27v

Noting that lim,_, oo 7 (x, t) = 0, we can show that
Ir(x,0)] < Ce?@x(x, t; —c,v*), |Lor(x,1)| < Ce?Oulx, 1; —c, ™),
where Ly, = 0; — c0y — (v/2)8§. We then have

G—y—ct=s)? _ (+cs+1)?

{1 1(x f) = —4—8x/ / ([ —s) 1/2(3 + 1)_ -6 W@=s) e 2v(s+D dyds

—y—c(t—

(=) )2
— max/o / (t —s)" V2™ 209 oyr(y, s)dyds
—0o0

x—c(t=s)+c(s+1))2

t
L1 ~1/2 1/~ Geeloteat D
— 0 / t+1 s+ 1 e 20(i+1) ds
2421y * 0
~/1 ? /t/m(f Y12 S (3 5) dyd
— -5 e vit=s r(y,s s.
2+/2mv * 0 J-co Y Y

Concerning the second term, similar calculations leading to the bound of ¢;.,, (x, )
in Lemma 3.1 imply

1/2 (x—y—c(t— s))2 2
(t —s)~ BTG oyr(y,s)dyds| < Ce“Yu(x,t; ¢)
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for —K < x. For the first term, note that a simple change of variable yields

(t+ 1)~3/4 <x —c(t + 1))
v/ 2c ! V41
X*C(Y*S)‘FC(S‘FI))Z

o ¢
=3x/ 4+ D" P+ 1) B ds.
—1

Therefore,
G ) — ————=( + 1 g —
S1(x, 1) » 4jwc( ) fi NS

(x—c(t=s)+c(s+1))?

= 0(82)8x/ t+ 1)+ 1DV men  ds
se(=1,0)U(t,00)

+ 0D Yn(x, 15 0).

‘We then set
(x—c(t—s)+c(s+1)%

I(x,l):ax'/ (t_i_])_l/z(s_i_])—l/ze—w ds
se(—1,0)U(zr,00)

and show that |1 (x, )| < CO;(x, t; ¢, v*) for —K < x. We first consider Case (i)
Ix —c(t + )| < (r + 1)!/2. In this case, we simply have

H(x,0)] <Ct+ 17" <COx, 15¢,v%).

We next consider Case (i) —K < x < c(t + 1) — (t + DY/2. The integral over
(—1, 0) is easy to handle. For s € (¢, o0) on the other hand, when ¢ is large (the
case when ¢ is not large is easier), we have

O0<c@t+1)—x—-2K<x—c(t—s)+c(s+1),
O0<cs+1)—K=<x—c(t—s)+c(s+1).
Hence

(x—c(t—s)+c(s+1))2

o0
ax/ ¢+ D)V 4+ 1)V D gy
t

00 2
< C/ (s + 1)V 2e7 T ds - Oy (x, t; ¢, V) < COa(x, t; ¢, V).
0

We end the analysis of ¢1.1 by considering Case (iii) x > c(t + 1) + (¢t + 1)1/2.

When s > —1, we have
O<x—c@t+D)<x—ct—s)+c(s+1)=x—ct+1)+2c(s+ 1),
0<2c(s+1)<x—c(t—s)+c(s+1).

From these, it follows that |I(x, )] < C®j(x,t;c,v*) as in Case (ii). These
prove (22) for n = 1 by setting

at:
Ay =

B 2v\/4nvc'
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We next prove (23) by using the series representation (19). We first consider

D (e, 1) = —(2rv)” 1/2/ f (1 — )12 T 0, 6101 (v, ) dyds,

The bound (22) for ¢1.1(x, t) implies

x—c(t+1)
V41

This holds for all x € R since 0y (x, t) decays exponentially for x < —K. Plugging
this into (20) and arguing similarly to the analysis of ¢.1, we get

@@ 0 =60 )3/41‘11( )+0(e3)®a,,+1<x,r;c,v*>.

Aq.1b1. t 0 _(x—y—c(l—:))z _(yfc(erl))2
Tlil)l(xy 1) = _&3){/ / (t — ) V(s + 1) Wi e e dyds
27V 0 J_oo

+ OEH Y (x. 15 0)

= A\I/ﬂl / t+ 1D~ l/z(v_q_ - 3/4,~ 2v(1+|) ds + 0(8 Y (x,1;¢)
4A1 1b1:1 3/4 ( C(t+1)) 3 .
= — 1 - — 0 n 9 9 bl
E(I-F) NS + 0(e)Yn(x, 15 ¢)

where
bi;1 =/ (f1;0/1)(2) dz.

Similar analysis for niki (x, 1) (k = 2) shows that

x—c(t+1)
JE+1

Taking the sum Z,fi], it follows that (23) holds for n = 1 with

1) = 0@+ 1) ( > + O, (x, 1 ).

4A1.1b11 4
Biy = — L4 0(e*).
b V2mv

We next prove the lemma for n assuming that it holds forn — 1. Leti = 1 and
k = 0 (the other cases are similar). The induction hypothesis and Lemma 3.1 imply

Aot xX+cit+1)
h(x,t):=(0286.,,— ) — —————6h(x, 1) oo | ————
(x, 1):=(6282;n—1)(x, 1) TS 2 (X, 1) f2in 1( NS )
Brp—1 X+c+1)
— =" g | ——2 ) = 0"t t—c vt
(t+ l)an72/2 2()6 )g( m ) (3 ) a”71+1(x Cc,V )

for all x € R (not just for x < K). We also have d,h(x,t) = 0(8”+1)®an_1+2
(x,t; —c, v*). Using these, we can show that

Loh(x,1) = O(e" ™) Oy, 43(x, 1; —c, v¥),
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where Ly = 0; — c0y — (v/2)83. Then similar calculations leading to the bound of
1:1(x, t) above imply (22) with

1
Ay = ———(As.p—1a1:n + Bo.y—1b1:0),
1;n v\/m( 2:n—101;n 2:n—1b1;0)
where
o0 [o)e]
Aal:n :/ (fZ;OfZ;n—l)(_Z)dZv bl;n 2/ (ng;O)(Z)dZ'
—0o0 —0Q

The bound (23) for 1., (x, t) is proved in a way similar to that for n = 1. This ends
the proof of the lemma. O

For the proof of Theorem 2.1, it is convenient to unify (E,-;,,)fl’o:1 into a single
function

Ei(x, 1) = ) Ein(x,0). (24)

n=1

Taking the infinite sum of (7), we see that (Z1, &;) is the solution to the system

9 E1 +cdxB1 + 0x(63/2 + 018 +6,82) = J82E;, x e R,1 > 0,
¥ B — Oy Ep + 0x(07/24+ 0181 + 02E)) = 50285, x € R, > 0, (25)
E1(x,0) = E2(x,0) =0, x eR.

Then Lemma 3.1 and Remark 3.1 imply the following:

Lemma 3.3. Let

Bin(x, )= Y &m(x, 1) (n=—1).

m=n+1

Here &;.0 = 6;/2. Then for n > 0, if ¢ = max(My, M>) is sufficiently small, we
have

183 Eisn (v, 1) = (=1 @) 105 0 Bty 1) (v, D] < Cog™ 2+ DT 290 (6, 15 1)
for any integer k > 0. In particular, we have

0880 (x, )] < Coge" 2t + D)7 20 (x, 1),
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3.2. Proof of Theorem 2.1

Let us explain the strategy to prove Theorem 2.1. Note first that by Lemma 3.3,
it suffices to prove the following:

Theorem 3.1. For ug = (vo — 1, ug) € H®(R) x H(R), let (v, u) be the solution
to (1). Define u;, 0;, and E; by (2), (3), and (25), respectively. Then forn > 1, there

exist positive constants 8, and C,, such that if 6 < 8, where § is defined by (12),
the solution (v, u) satisfies the pointwise estimates

[(u; — 60 — B — yir0xOp — Yirdx Bir)(x, )] < CpdW;n(x, 1)
forallx e Randt > 0. Here y; = (—1)'v/(4c) and i’ =3 —i.
To prove Theorem 3.1, we set
vi =u; —0; — Bi — yy0xbir — yir0x By (26)
and define P(t) by

2

P(t):= Z sup

izp Oss=<t

v $)Win ()7 27)

Our goal is then to prove the inequality
P(t) < C8+C@E+ P(1)* (1= 0). (28)

From this inequality, taking § sufficiently small, we can conclude that P(t) < C§
for all # > 0 by a standard argument (see Sect.3.2.4).

Remark 3.2. For the argument above to work, we first need to show that P(f)
is finite. This can be proved, for example, by examining the iterative scheme in
[6, Section 2.1] for the construction of the local-in-time solution to (1). The key
step of the scheme consists of solving a variable coefficient parabolic equation,
and by the Levi parametrix method, we can prove a gaussian upper bound for the
fundamental solution. This bound allows us to control the spatial decay of each
approximate solution, and by taking the limit, we can check that P(¢) is finite at
least for a short period of time. By the calculations below, it follows that (28) and
hence P (t) < Cé§ hold for this short duration. Then a standard continuity argument
shows that P(t) < C§ actually holds for all 7 > 0.

The proof of (28) is based on pointwise estimates of Greens’ function [10,11]
which we shall explain in the next section. We also give an integral formulation
of (1). In the remaining sections, we prove bounds for the terms appearing in the
integral equations which yield (28).
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3.2.1. Pointwise Estimates of Green’s Function and Integral Equations Our
equations (1) can be written in the form

00 0
ut+Aux:(O v>u”+<N> 29)
X

”:(U_I) A:<Oz_1>, N = —p) + p(1) — A — 1) — v L.
—c* 0 v
(30)

The matrix A has right and left eigenvectors r; and [; (i = 1, 2), corresponding to
the eigenvalue A; = (—1)' !¢, given by

2¢_ [ P
[ - ] li= =52 [(=D 1/c].

p"(1)

ri =

We note that (2) can be written as u; = [; (v — 1u)T.
We define Green’s function G = G(x, t) € R2*? for the linearization of (29)
as the solution to

3G + AdG = 88 932G, x R, t > 0,
Gx,0)=6(x)17, x € R,

where 6 (x) is the Dirac delta function and /> is the 2 x 2 identity matrix. In addition,
define G* = G*(x, ) € R**? by

1 _e=en? (1 —1/c 1 _wxe? (1 1/c
* - v - v
G*(x,1) = 2(2m)t)1/2e 2t (_C | )+ 2(2rrvt)1/26 2t (c e

The next theorem is of fundamental importance in our analysis.

Theorem 3.2. ([10, Theorem 5.8] and [11, Theorem 1.3]) Forany k > 0, we have

k
L‘2 .
FGx, 1) — 5 G (x, 1) —e ! § :S(k_-’)(x)Qj(t)
j=0

_@-xyn?

2
SCu+) B Y e,
i=1

where 8% (x) is the k-th derivative of the Dirac delta function and Q;=0;@)is
a2 x 2 polynomial matrix. In particular,

(10 (0 =1
QO_<00>’ Ql_(—cz/v 0 )
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Moreover, with y; = (—l)iv/(4c), we have

2 _Gown?
e 2vt —1 O
RGN =G ) =0 Y G < 0 1)
i=1
2 k .
—e v Y 8 w0
j=0

x—ct)? —
— 0()(t + 1) 2 F e < ! 1/c>

—c 1

X1C] 2
FOoM) 4+ 1) b e S (i I{C)

2 2
(x—=A;t)
+oME+ ) T EY e d

i=1

Here O (1) is a bounded scalar function.
For the analysis of u;, we need pointwise estimates for
gi = (gi1 8i2) :=liG (r1m), g = (g} g5):=liG*(r1 r2).

‘We note that

xf)»['t)z

(
g;*j:(vat)_lﬂe_ Wi 8y €2

where §;; is the Kronecker delta. Then Theorem 3.2 implies

k
02 .
Ofgi(x, 1) —dkgr(x.t) —e™ v Y 8% D (x)gin (1)
Jj=0

=0

2
<Ca+D I E Y e, (32)
i=1

where

qik(t) =1 Q1) (r1 12) .

Moreover, we have

k
02 .
g, ) — L gr (. t) —yrai el (et — e v Y 84D ()gin (1)
s (33)

(x—ct)? k2 (eten)?

1 k+1 | N
=0+ D72 Te T O+ DT Te @

We next write down an integral equation for v; defined by (26). Let

0 (1) = =
n=1 (N> = p4C2 N, n*=—02/2—02/2— 0,8 — 0,5,

where E; and N are defined by (24) and (30), respectively. Then by Duhamel’s
principle, we obtain
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Lemma 3.4. The function v; defined by (26) satisfies the integral equation

vi(x,f)=/ gi(x—y,t)<Z;>(y,0)dy—/ g?‘(x—y,t)(z>(y,0)dy

1
o —oo >

o 0

1
oo bl

t o0
+ f f gix —y, t —5)d(n —n*)(y,s)(y,s)dyds
0 J—o0
2 t poo
+Z/O f (8ij — &) (x —y,t —5)0un(y,s)dyds
j=170 0T

t oo
— W/o / 0x gl (x —y, t —8)dxn™(y, s)(y, s)dyds.
—0Q

Here y; = (—1)'v/(4c) and i’ =3 —i.

We set
* ui <, 01
Zi(x,1) = / gilx—y,1) <u2> . 0)dy — / g (x—y,1) <92> (v, 0)dy
o0 0
- W/ 0 gl (x —y, 1) (9;) (v,0)dy (34)
and

t oo
Ni(x, 1) =/0 / gli(x =y, 1 =)o (n —n*)(y, $)(y, s) dyds
2 ! poo
+3° /0 f (8ij = 85)(x =y, t —$)den(y.s)dyds  (35)
j=170 0T

t 9]
- )’i’/ / 0x8y(x —y, 1 —$)0n™(y, s)(y, s)dyds.
0 J—o0
Lemma 3.4 may then be written as
vi(x, 1) = Zi(x, 1) + Ni(x, 1).
In the next two sections, we prove pointwise estimates for Z; (x, t) and N (x, t).

3.2.2. Contribution from the Initial Data Our goal in this section is to prove
the following pointwise estimates for Z; (x, t) defined by (34):

Lemma 3.5. For any n > 1, there exist positive constants 8, and C, such that
if (12) holds, then we have

IZi (x, )] = C8Wip(x, 1)

forallx € Randt > 0.
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Proof. We assume ¢t > 1 below (the case when ¢ < 1 is easier to handle). Let

o -0
Ti.1 (x, 1) =/ g =y, (Zl _91> (v, 0) dy
00 2— 0
and

Lin(x,t) = / (g —8)x—y.1) (Z;) (y,0)dy

00 0
- yi// O gi(x =y, 1) (92> (v, 0)dy.

—00

Then of course Z; (x, t) = Z; 1 (x, 1) + Z; 2(x, 1).
We first show

[Zi1(x, )] < C8Y¥ip(x, 1).
For this purpose, set
X
njx) = / (uj —0;)(y,0)dy
—0o0

and n = (1 m2)T. We then have

o0
Ii,l(x,t)=/ g (x —y,0)dn(y)dy.
o0

By the definition of M;, see (6), we have

nj(X)IZ/ (wj—0)(y,0)dy = —/ (uj —0;)(y.0)dy.

—00

This and (12) imply
Inj ()] < Cs(lx| + D~
We first consider Case (i) |x — A;jf| < (r + 1)!/2. In this case, integration by parts
and (31) yield
oo
1Zi,1(x, D) = ‘/ dxgi (x —y, n(y) dy’
—00

o0
<C@+ 1)—1/ Ini ()| dx < C8(r + 1)~ < C8W;.,, (x, 1).

—00

We next consider Case (i) (t + 1)'/? < |x — A;¢| < ¢ + 1 with x — A;¢ > 0 (the
case when x — A;¢ < 0 is similar). Again, by integration by parts,

Cap? [ @=hin/2
T (e D) < Cle 4+ D)l 0 / () dy

S
1 B _()c—y—)»,»t)z )
+ Cé(t+1) e cr (y+ 1D Prdy
(x—Ait)/2
(x—2;2%

<Cs(r+ D) temm T 4084+ D)7V (x — ait| 4+ DTP < €8, (x, 1),
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We finally consider Case (iii) |x — X;¢| > ¢+ 1. For brevity, we assume x — X;¢ > 0.
In this case, by (12), we have

a—rn?  [O=hiD/2
1Zi1(x, )] < Ct+ 1)7V2eai / (i — 6)(y, 0)| dy
—0o0
00 (—y—2;1)?

+C8(t + 1)—1/2f e (y+ 1D %dy
(x—1i1)/2

‘ (=102
<C8e CTe T 4+ C8(lx —Ait] + )% < C8W;.p(x, 1).
We next show
[Zio(x, )] < C8Wip(x,1).
Writing
o0
* * up
Zin(x,t) =f (8 — & — virdxgi)(x —y,1) <M2) (v, 0)dy

—00
R uy — 60
+w/ dgji(x —y, 1) (ul _91>(y,0)dy
—c0 2 y)

and applying (33), we see that it suffices to show that

®© -0
A(x,t)=yi/8xf gh(x —y, 1) (”1 _91>(y,0)dy,
o uy — 6

23]
(uz) ’ (v, 0)dy,
Clx,t) = (t + 1)*3/2/ e

ui
e oo
u
Uz

are all bounded by CéW;.,(x,t). First, this is trivial for D(x, ). Next, since
A(x,t) = yp0xZy 1(x,t), modifying the calculations above for Z; | (x, t) yield
the bound for A(x, ¢). The bound for B(x, t) is also obtained in a way similar to
that for Z; | (x, t) (except that we don’t need #; in the analysis).

Let us finally consider C(x, t). First, Case (i) |x — Ayf| < (t + 1)1/2 is easy:

IC(x, )] < C8(t +1)7? < C8W,(x, 1).

X0 (w—y—yn?

B(x,t):(t—i—l)*l/ P

—00

e} (xfyf)»l-/t)z
- Cr

02
D(x,t)=e v!

(x,0)

Case (i) |x — A;t| > (t + 1)V/? with x — At > 0 is as follows:

a—ipn?  E=ApD)/2
ICG.)l < Ct+ )72 / (m) (5.0)dy
—00 uz
o0 (z\'iv—)»i/r)z
+C6(l + ])73/2/ 67 Cr (y+ ])70(,, dy
(x—rpr1)/2
=y 1)?

<C8(t+ 1) e e 408+ D7 (x — Apt] + 17U < C8W,(x, ).

The case when x — At < 0 is similar. This ends the proof of the lemma. 0O
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3.2.3. Contribution from the Nonlinear Terms Our goal in this section is to
prove the following pointwise estimates for AV; (x, t) defined by (35):

Lemma 3.6. For any n > 1, there exist positive constants 8, and C, such that
if (12) holds, then we have

INi(x, 1) < C(8+ P(1))>Wip(x, 1)
forallx e Randt > 0.

To prove this lemma, we first prove some preparatory lemmas. To state these,
we introduce the notation

t oo (x—y—2j (1—5))%
T f1Cx, 1)i= fo / ax{a—s)—”ze‘zwf—w }f(y,smyds

for a function f = f(x, 1).
Lemma 3.7. Let n > 1 and ¢ = max(My, My). If ¢ is sufficiently small, we have
IZi[65 Eil(x, )] < C& Wiy (x, 1).

Proof. We only prove the lemma fori = 1 (the other case is similar). By Lemma 3.3,
we have

[(B2E1)(x, 1) + 2¢) 7105 /2 + 03 Bo) (x, )| < Ce?Ou(x, 15 —c, v*).
Since
Ou(x, 15—, V") < C(t + )~V 2y (x, 1: o),
Lemma A.7 implies
IZ1[O4(, 5 —c, v)I(x, )] < CWyp(x, 1).
Next, note that (3) and (25) imply
Lofh = —0,(63/2), LaEy = —0:(07/2+ 6181 + 6:E),

where Ly = 0; — ¢0y — (v/2)8f. Using these, similar to the bound for ¢1., in the
proof of Lemma 3.1, we can show that

1165 /2 4 63 Exl(x. )| < C&Wy,p(x, 1).
Combining these, we obtain the lemma. O
We next show the following:
Lemma 3.8. Let n > 1 and ¢ = max(My, My). If ¢ is sufficiently small, we have

1Z:[0:621(x, )] < Ce?W;.(x, 7).
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Proof. We only prove the lemma for i = 1 (the other case is similar). Applying
Lemma A.1 yields

Ti[8:071(x, 1) = 2¢) " W2mvd,03 (x, 1) + 1 (x, 1) + L (x, 1),

where

o1/ s _ —y—c(t=5))? 5
Ii(x,1) = — ) e 20(i=5) 0,05 (y,s)dyds

and

[ Vo1 jp Gy
Iz(x,r)——@c)—/ (t — /27127 e 9,03 (y, 1) dy

— o) f " / (1 — )V T 0, L3y, ) dyds
t
=:ih(x,t) + In(x, ).
By Lemmas A.2 and A.3, we obtain
[11(x, D] + [ 1(x, )] < Ce?log(t +2)Oa(x, 1; ¢, %) < Ce* Wiy (x, 1),
For I»»(x, 1), we apply Lemma A.1 (without the integral on [0, #!/2]), which yields
Toa(x, 1) = —(2¢) 2N 21vL203 (x, 1) + Ja(x, 1),

where

_ my—et=y??
D(x,t) = 2c)” zf (t — 1/2) l/2 20(—/1) L26’22(y,t1/2) dy

+ 20)” 2/ / (1 —5)~ 2™ Tt L292 (v, s)dyds
=D (x, 1) + Joa(x, ).
By some tedious calculations, we obtain
Lo63 = —20,(65/3) — v(d:62)°
and
L3607 = 0705 /2) + v, [(0:02)9.05] + v(0:02)767 + v*(3762)°.
Since | L2653 (x, 1)| < Ce?@4(x, t; —c, v*), Lemma A.3 yields
|J21(x, )| < Ce?Ospa(x, 15 ¢, v*) < Ce Wy (x, 1).
And since |L303 (x, 1)| < Ce?@g(x, t; —c, v*), Lemma A .4 implies
|J22(x, )] < Ce*[(x — c(t + 1))? + (1 + DI7/* < Ce® Wy, (x, 1 ¢).

This proves the lemma. O
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Similarly, we can now show the following:
Lemma 3.9. Let n > 1 and ¢ = max(My, My). If ¢ is sufficiently small, we have
|Zi[0x (6 Bin](x. 1)| < C&¥ Wiy (x, 1).
‘We move on to prove the following:
Lemma 3.10. Let n > 1. If § defined by (12) is sufficiently small, we have
| Zi[6;vir1(x, 1)] < C (S + P(1))* Wiz (x, 1).
Here P(t) is defined by (27).

Proof. We only prove the lemma fori = 1 (the other case is similar). Set f = 6,v;.
Then Lemma A.1 implies

1602l (x, 1) = c) 'V2rv f(x, 1) + L1 (x, 1) + L (x, 1),

where

t
Li(x,t) = /
0
oo (—y—clt—y/1)?

b 1) = —20)"! / (6 — V212 TR f(y, 1Y) dy

—00

1/2

o _12 _(xfyfc(tfs))z
/ It =) V2T B b f(y,s)dyds
—00

and

! 0 1/ _ lamy—c=s)?
—eo [ [ a9 P T g dyas
t —0o0
=:h1(x,1) + In(x,1).
By Lemmas A.2 and A.3, we obtain

111 (e, O] + [121(x, )] < CSP (1) O, (x, 15 ¢, ™) < CSP(H)W1;n(x, 7).

On+1
To bound I (x, t), we first note that
Lovy = Lo(up — 02 — Bz — y10x01 — y10xE1)
= 001 + 0an +0,(63/2) + 0:(0/2 + 011 + 0,82
+ 1102(07 /2 + 2¢61) + 19263 /2 4+ 6181 + 0,82 + 2¢E))

= 2031 =6y — B + 0, (1 — ) — y197ns.

Then set
F = 30,1 =61 = B)+n — e = y10,m,

and

G =6 F —vvy0,6s.
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‘We note that
Lof = —120:(03/2) 4 8,G — (8,02) F + vv20265.
By [10, Theorem 2.6 and Remark 2.8], we have
|0 (u1 — 1) (x, )] < C8(t + 172 Wi00x, 1), [97ur(x, )] < C8(+ 1722
In addition, applying Taylor’s theorem, we see that
|(n — n)(x. 0] < CE+ P0)*(t + 1) Py (x, 15 ¢) + Y (x, 15 —0)].
These imply
1G(x, )| < CE+ P(1)*(t + 1)@y, (x, 1; —c, V")
and
[Laf (x.1) = 0:G(x, )| < CE+ P(1))*(t + 1)7/?8y, (x, 1; —c, v¥).

Using these and integration by parts, we get

(x—y—c(t—s)

t/2 poo . )2
|l (x, )] < C6+ P(1)? / o f (t—s) 2T (s + D7y, 55 —c) dyds
t —00

(—y—c(t—5)2

+CG+ P(1))? /ﬂ[ﬂ /m (t—s5)"le” 5 (s + D ' (y, s; —c)dyds.
Applying Lemmas A.7 and A.9, we obtain
[I2(x, )] < CE+ P(0)) W, (x, 1).
This proves the lemma. 0O
The lemma below can be shown in a similar manner.
Lemma 3.11. Let n > 1. If § defined by (12) is sufficiently small, we have

IZIEZ(x, O] + I [Birvirl(x, )] < C(S + P())> Wi (x, 1).

vp” (1)
4c2

p”(l)z

oz (W= Dh oy =-—

ng = — (v—VDuy, n.=n-—ng— np.

(36)

2 The decay estimate for 8)%14 is not explicitly stated in the theorem but is shown in its
proof (see [10, p. 107]). Note that this is where the H 6—regularity is used.
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Of course n = ny + n, + n.. Correspondingly, set

t o0
Nialx, 1) = /0 / gi(x =y, t — )0 (ng —n*)(y, s)(y,s)dyds
—0Q
2 t poo
+ Z/O / (8ij — &) (x =y, — 5)dxna(y, s) dyds
j=170 e

t [oe]
-y / / 0y 8l (x — y, t —8)0xn*(y, )(y, s)dyds,
0 J—o0

t o0
Nip(x, 1) = / / gi(x —y, t —5)0np(y, $)(y, s)dyds
0 J—o0

2 .t oo
+Z/O/ (81f — &)X — v, 1 — )y (v, 5) dyds,
j=170 0T
and

t oo
M,C(xvt):/o' / gl?ki('x_yﬂt_s)aXnC(yis)(yvs)dyds
—00

2 L poo
0 [t =i vt = ety dys.
j=1 o

Then N; (x, 1) = Nia(x, 1) + Nip(x, 1) + N c(x, 1); see (35).

We next prove the following:
Lemma 3.12. Let n > 1. If § defined by (12) is sufficiently small, we have
Wia(x, 0] < C + P(6)* Wn(x, ).

Proof. Leti = 1 (the case of i = 2 is similar). By integration by parts, we have

t o0
N],au,z):/o/ Beghy (5 = v, 1 = $) (g — n*)(y, 5) dyds
—00
2 t oo
+Z/O/ (g1 — 81,)(x — ¥, 1 — $)na(y, ) dyds
j=1 e

t o0
- y2/ / 3¢5 (x — y, t —s)n*(y, s) dyds.
0 J—o0
By some tedious calculations, we can show that

(g — n*)(x, 1) — [2E1 + 1285 (03/2) + 1205 (02E2) — 6202 — E3/2 — Eavo](x, 1)]
<CE+ PO+ 1)V, 150) + (0 + D72y, (x, 15 —0)].
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Then Lemmas 3.7-3.11, A.6, and A.7 yield

t o0
/ / g (x =yt = $)(na —n*)(y,s)dyds| < C(S + P(1)*Wjn(x, 1).
0 J—oo

It remains to show that
[1(x, )] < CE+ P(1)* Wy (x, 1),

where

2 pt poo
I(-xvt):Z/O / ax(glj_gik])(x_Y»t_s)na(y,s)dyds
j=17E e

t o0
- )/2/ / 92g5(x — y, 1 —s)n*(y, s) dyds.
0 J—oo

We define the decomposition I (x, t) = I1(x, t) + I>(x, t) by
2 ! oo
Lx.1) = Z/ / 0x(81) — 81 = ¥, = $)(na — n*)(y, 5) dyds
. 0 J—0
j=1

and

2, poo
L(x, 1) =Z/0 / (g1 — g1 —y, t —s)n*(y, s)dyds
j=1 >

1 o0
- yZ/ / 3¢5 (x — y, t —s)n*(y, s) dyds.
0 J—o0

We first consider 71 (x, t). By (32), to show that |1 (x, t)| is bounded by C(§ +
P(t))zllll;n(x, 1), it suffices to prove the same bound for

t poo (=y—j (1=
/ / =)'t —s+ DT T @I |(ng — )y, 5)|dyds (j=1,2)
0 J—o0
and

t 02
/ =TI (g — n*)(x, )| ds.
0

The term corresponding to 81 (x) is not needed since 19 = (1/2 —1/2)T. Noting
that

(g — n*)(x, 1) < CS + POt + D)7V [y, (x, 15 ¢) + Ya (x, 15 —O)],

Lemmas A.6, A.7, and A.10 imply the desired bounds for the two integrals above.
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We next consider I>(x, t). We have Ir(x,t) = Ir1(x,t) + I (x, t) with
2 t poo )
Ii(x, 1) = —Z/ / d(g1j — &1 —y, t —5)O7/2+ 01 E)(y, 5) dyds
; 0 J—0
j=1

t o0
+ / / 0285 (x — v, 1 — $)(67/2 + O1E1) (v, 5) dyds
0 —00

and
2t opoo
In(x, 1) = _Z/o / 0x(g1j — g1 )(x — y. 1t — $)(63 /2 + 6282) dyds
j=1 -

t o0
+ y2/0 / 3¢5, (x — y, 1 — $)(63/2 + 6,E7) dyds.
—00

Taking into account (32) and (33), Lemmas A.6, A.7, and A.10 yield |21 (x, 1)| <
C6+P (t))2\111;n (x, t) (we divide the domain of temporal integration into [0, ¢ /2]
and [7/2, t] then use integration by parts before applying the lemmas). For I (x, t),
we proceed as follows: using the technique in the proof of Lemma A.1, we obtain

2 t1/2 o)
In(x, 1) = —Z/O f 3x(g17 — &1 = y. 1 = )(63/2+ 6282) (v, 5) dyds
j=1 -

t
+V2/
0

2
1 t o]
coe 2 [ ] e =g = v = 62 4 0,200 dyds
1 Ji112 J—o0

12

o0
/ 3785, (x — y,t —5)(03/2 + 6,E)(y, 5) dyds
—00

v t 00
b o[ et =yt =062+ 022009 dyds
t —0o0

2
" iZ/r /oo(gl' — &)@ = y. 1 = $)L2(63 /2 + 0:82)(y. 5) dyds
ch_l 12 J_o J J
1 & [
o Z/ (81 — g1 =y, 1 = 1'72)(03/2 + 6:82) (v, 1'/?) dyds,
j=177%

where L; = 0; + ;0 — (v/2)8§. Here we used lim, (g1 — gi“j)(x, t) = 0.
The sum of the first two terms on the right-hand side can be bounded using Lem-
mas A.6, A.8, and A.10; the sum of the third and the fourth term can be bounded
using Lemmas A.6, A.7, A.10, and the relation

Li(g1j —gij) = (v/2)d7 82
To bound the sum of the fifth and the sixth term, noting that

|L2(67/2 + 62E2)(x, )| < C8*Ou(x, 1; —c, v¥),
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it suffices to show that the following integrals are bounded by C (§+ P ()2, (X, 1)

—y—c(t=s))?

i poo x
A(x,t) = / / (t—s)" VPt —s+ 1) V2™ i O4(y, s; —c, v¥)dyds,
12 ) oo

00  (—y—c—y)?
B(x,1) = / (t — V)T e @ (y, 112 e, v dy,
—00

(X*)"FCU*S))Z

t o0
C‘x”):/ / (= 5) ' — s+ )P 0 st —e vy dyds.
12 e

© 1/24~1 12 1 - et 12
D(x,1) =/ ¢ —t"H7 N =2 )T e @ (y, 11— v dy,
—0o0

and

1 o0
Bt = [ [ i -yt = L2032+ 0200, 5) dyds
t —00
o0

+ / Brgh(x — y. 1 — 1Y2)(62/2 + 6,E2) (v, 1) dy.
—o0

We can bound A(x, t) using Lemma A.4, B(x,t) and D(x,t) by Lemma A.3,

and C(x,t) by Lemma A.6. Finally, we consider E(x,t). Taking into account

L>g5, =0and lim; 0 0xg5,(x —y, 1) = 8 (x — ), integration by parts applied

to the operator L; yields
o0
E(x,1) =/ 8V (x — y)(03/2 + 0282) (v, 1) dy = 8:(03/2 + 02E2) (x, 1).

—0o0

Hence |E(x, 1)| < C(8 4+ P(1))*W1.,(x, 7). This ends the proof of the lemma. 0O

The lemma below can be proved similarly. Note that AV; 5 (x, ) is related to the

nonlinear term (v — 1)u, as opposed to (v — )2 for N a(x, 1); see (36). As in

the bound of A 4(x, t), the term (v — 1) is dealt with the inequality |v; (x, 5)| <

P(t)W.,(x,s) (0 < s < t); on the other hand, the first derivative u, is handled

using [10, Theorem 2.6 and Remark 2.8] as in the proof of Lemma 3.10. The term
N ¢(x, t) can be handled in a similar manner.

Lemma 3.13. Let n > 1. If § defined by (12) is sufficiently small, we have
Wi (x. D] + INe(x, 0] < CE+ P(1) Win(x. 1).

Combining Lemmas 3.12 and 3.13, the proof of Lemma 3.6 is complete.
3.2.4. Final Step of the Proof The remaining step of the proof is standard. By
Lemma 3.5 and 3.6, we obtain

P(1) £C8+C@E+ P(1))> < C18 + C2P(1)? 37

for some C1, Co» > 0. Here P(t) is defined by (27). When § is sufficiently small,
the line y = p and the parabola y = C;8 + C»p? intersect at p = p; and p;,
where

1 =V1-4C1G% 1+ V1 =4C1G6
pl_ 2C2 ’ PZ— 2C2 .
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Note that C1§ < p1 < p>. By (37), we either have P(t) < pj or P(t) > p». Since
P(t) is continuous in ¢, if P(0) < pp,then P(t) < pj forallt > 0. By (12), taking
C sufficiently large, we indeed have P(0) < C16 < p;. Therefore, we conclude
that

(1 —4C1Cr¥)

1 —
P(t) < < <2C44.
) =p = 20, <2C,

This ends the proof of Theorem 2.1.

Acknowledgements. This work was supported by Grant-in-Aid for JSPS Research Fellow
(Grant Number 20J00882) and JSPS Grant-in-Aid for Early-Career Scientists (Grant Number
22K13938).

Data Availability Statement Data sharing not applicable to this article as no
datasets were generated or analyzed during the current study.

Declarations

Conflict of interest I declare that I have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Appendix A. Lemmas on Convolutions Involving a Heat Kernel

Lemma A.1. Suppose that f = f(x,t)isa C2—sm00thﬁmction onR x (0, 00). Let . # )/
andv > 0, and set Ly = 9y + /9y — (U/Z)B)%. Then fort > 1, the function I (x, t) defined
by

1/2 (x—y—A(t=s5))" :)
[(x,0) = <r—s> TR 3 f(y, ) dyds

can be written as
I, t) = =2 W2mvfe, o)+ I (x, 1) + Ih(x, 1),

where

112 L)y amy=i=s)?
I (x, f)—/ / —5) 712 2@=s) Oy f(y,s)dyds


http://creativecommons.org/licenses/by/4.0/
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and

0 _ amy=he—y0)?
hx.)=—0—)"" f (t =272 e fy ey dy

(—y—h(t=s)*
— (=) / / (t =)V B Ly f(y,5) dyds.

Proof. Let

12 — (x—rn)2

() =1" e

Dividing the domain of temporal integration, we get
(12
I, r)-/ [t — v s dys

+/ / an(x —y,t —5)ox f(y,5)dyds.
t1/2 J—o00

The first term on the right-hand side is /1 (x, ¢). For the second term, integration by parts
yields

t o0
/ f e (x —y, t =)o f(y,s)dyds
12 J—c0
t o0
=—-—a"! / / G.(x —y,t—5)
12 J 00
[=ds + 5 — Ady + A3y + (u/z)af, - (v/2)3§]f(y, s)dyds

t o0
= ()L—)L’)flv/ / Lyg.(x —y, t —s)f(y,s)dyds
112 J -0
t o0
—(k—k/)flf / &(x =y, t —s)Ly f(y,s)dyds
t1/2 J -0

+(x—x’>-‘¢2mf<x,r)—(x—x’r‘f g.(x =y, 0 =12 f(x, 1) dyds,

where L) = 95 +13dy — (v/2)8y2. Here we used limg—; gy (x —y,t —s) = V/2708(x — y).
The lemma follows from the equality above by noting that L, g, = 0. O

In the lemmas below, C and v* denote generic large constants. We remind the reader that
Ou(x,t; A, ) is defined by (13).

Lemma A.2. Let A # A, >0, and 0 < a < 3. Then we have

112 1,  —y—a(—s)?
[ / (t—s)""e R Og(y,s; A, w)dyds

= | CO@1y2(x, 152, v7) ifa # 3,
Clog(t +2)O(gy1y/2(x, t; A, v*) ifa = 3.

Proof. See the analysis of /1 (x, ) in the proof of [10, Lemma 3.4]. O
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LemmaA.3. Let A, ) € R, > 0, and a > 0 (not necesarily A # z). Then fort > 1, we
have

00 _ (x—y=i(t=v1) 1
/ e wit=vn - Qy(y,t 12 ), w) dyds < CO_1)/2(x, 15 1, v ).

—0o0
Proof. See the analysis of 171 (x, ) in the proof of [10, Lemma 3.4]. O

Lemma A4, Let x # )/, . > 0, and a > 1. Then we have

oo 1)y — Gmy=ii=s)?
/ / (t —s5)" 12 =) @ (y, s34, ) dyds
t1/2 J—o00

< Cllx — At +1)% + (t + D@ D/4,

Proof. See the analysis of 12(;) (x, t) in the proof of [10, Lemma 3.4]. O

Lemma A.5. ([10, Lemma 3.2]) Let L € R, u > 0, « > 0, and B > 0. Then we have

12 5 _Gmy—ri=)?
/ / =)t +1—5)"% 2 T Op(y. 55 A, p) dyds

_[COy 15 2,0%) ifB#3,
Clog(t +2)0y (x,1; 1, v*) if =3,

where y = o + min(S, 3) — 1. We also have

@—y=r=s)?
//2/ (t =) e+ 1572w @p(y, s; k1) dyds

COy(x,t,)»,v ) ifa #1,
Clog(t +2)0y (x,1; 4, v*) ifa =1,

where y = min(o, 1) + 8 — 1.
We remind the reader that v, (x, t; A) is defined in (8).

Lemma A.6. Let A € R, © > 0, and o, B > 0. Then we have

1/2 (x—y=r(1=s))
/ / =)+ 1= w5 (s + )Py (v, 51 0) dyds

| Ca+ DT 2y 0 if B #3—an,
Clog(t +2)(t + D)™/ 2y, (x,1;0) if B =3 — ap,

where y1 = o + min(8, 3 — a) — 1. We also have

(x—y—A(t— v)
f / =)L+ 1—5)7%2" w5 (s + D)7P Py (y, 5; 1) dyds
12

_[Ca+ DTy ) ifoa # 1,
Clog(t +2)(t + D22y (x, 1;0) ifa =1,
where yp = min(a, 1) + 8 — 1.

Proof. A straightforward (but lengthy) adaptation of the proof of [7, Lemma A.7] proves
the lemma. 0O
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For A, A" € Rand K > 0, let
Xk (x, 154,
i=char {min(y, ) + 1) + KVi 1 =& < max(x, 49+ 1) = KViF 1],
where char{S} is the indicator function of a set S.
Lemma A.7. Let A # Mopu>0a>0a1d0 < B <20, (B # 2).3 Then for K > 0 large

enough, we have

/2 | y _myoh—s)? )
/f (=)'t +1—5)" e w5 (s+ D7y, (y, 53 1) dyds

Cllog(t +2)(t + D" 2y, (x, 1) + (¢ + D120, (x, 15001 if =3 — ay
+ Clx — At + D7 Cotmin@entD=D/2 1 30 4 1|72V 2y g (x, 15 0, 1),

{C[(t+1> N2, 150 4 (6 + D72, (x, 1 0] ifB#3—ay

where y1 = o +min(B,3 — o) — 1 and y]/ = o + min(B, 2) — 1. We also have

f/z/ (=9 41— e S )Py, ) dyds
- {C(t + D72 (0, 15 1) + Y (x, 15 2)] ifa#1
Clog(t +2)(t + )72 [ (x, 15 2) + Y (x, 1 4] if o = 1
+ Clx = At + D)@ FA=D2 x5/ 1y T min@ D272y (s, 0,
where yp = min(e, 1) + 8 — 1.
Proof. This is also proved by an adaptation of the proof of [7, Lemma A.8]. O
Lemma A.8. Let A # Mopu>0a>0and0 < B < 3 — ay. Then we have

|/2 (x—y—Ai(t—s))
_ gyl SR B2
(t s) K= (s 4+ D7TP 2y (v, 53 0 dyds

< Cl+ D7 PmatD Ay, (e 10,
Proof. This is a simple generalization of [7, Lemma A.2]. O

Lemma A.9. Let A # AM,u>0 anda > 0. Then for t > 4, we have

t/2 poo _ G—y—i=s)?
/ / (t =)~ V20T T (s 4 )Ty (y, 53 0)) dyds
—00

/2
S CU+ D Yn(x, ;).
Proof. A simple adaptation of the proof of [7, Lemma A.6] proves the lemma. O

Lemma A.10. Let L € R, u > 0, and a > 0. Then

t t—s
/ e P (s+ DT %Yu(x,s;0)ds < Ct+ 1) %Yy (x, 15 1).
0

Proof. The lemma can be proved by slightly modifying the proof of [10, Lemma 3.9].

3 The case of B = 2 is excluded just for simplicity.
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