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Abstract

We construct a time-asymptotic expansion with pointwise remainder estimates
for solutions to 1D compressible Navier–Stokes equations. The leading-order term
is the well-known diffusion wave and the higher-order terms are a newly introduced
family of waves which we call higher-order diffusion waves. In particular, these
provide an accurate description of the power-law asymptotics of the solution around
the origin x = 0, where the diffusion wave decays exponentially. The expansion is
valid locally and also globally in the L p(R)-norm for all 1 ≤ p ≤ ∞. The proof is
based on pointwise estimates of Green’s function.

1. Introduction

The equations

⎧
⎨

⎩

vt − ux = 0, x ∈ R, t > 0,
ut + p(v)x = ν(ux/v)x , x ∈ R, t > 0,
v(x, 0) = v0(x), u(x, 0) = u0(x), x ∈ R

(1)

describe the motion of a 1D viscous compressible flow. Here v(x, t) is the specific
volume (the reciprocal of the density ρ) and u(x, t) is the flow velocity; t is the
time and x is the Lagrangian mass coordinate related to the Eulerian coordinate X
by x = ∫ X

X0(t)
ρ(X ′, t) dX ′, where X0(t) is the trajectory of a particle moving with

the fluid and initially placed at X0(0) = 0. The system above models barotropic
flow, that is, the pressure p(v) does not depend on the temperature. We assume
that p′(v) < 0 and p′′(v) �= 0 for v > 0 and that the viscous coefficient ν is a
positive constant. The system is often called the p-system and is a typical example
of quasilinear hyperbolic–parabolic viscous conservation laws.
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The purpose of this paper is to construct a time-asymptotic expansion of the
solution to (1) together with pointwise estimates for the remainder. We shall con-
sider solutions close to the steady state (vS, uS) ≡ (1, 0). To study the long-time
asymptotics of such solutions, it is convenient to consider

u1 = p′′(1)
4c

[−(v − 1) + u/c], u2 = p′′(1)
4c

[(v − 1) + u/c] (2)

instead of (v, u). Here c = √−p′(1) is the speed of sound for the state (vS, uS).
It is well-known that ui has the diffusion wave θi as its asymptotic profile. Here

θi (i = 1, 2) is the self-similar solution to the convective viscous Burgers equation
{

∂tθi + λi∂xθi + ∂x (θ
2
i /2) = ν

2∂2x θi , x ∈ R, t > 0,
limt↘−1 θi (x, t) = Miδ(x), x ∈ R,

(3)

where λi = (−1)i−1c, Mi = ∫ ∞
−∞ ui (x, 0) dx , and δ(x) is the Dirac delta function.

An explicit formula for θi is available through the use of Cole–Hopf transformation:

θi (x, t) =
√

ν
(
e

Mi
ν − 1

)

√
2(t + 1)

e− (x−λi (t+1))2

2ν(t+1)

[
√

π +
(
e

Mi
ν − 1

) ∫ ∞
x−λi (t+1)√

2ν(t+1)

e−y2 dy

]−1

.

(4)

The diffusion wave θi describes the leading-order asymptotics in the L p(R)-norm.
In fact, we have the following optimal decay estimates [14]:

‖θi (·, t)‖L p � t−(1−1/p)/2 and ‖(ui − θi )(·, t)‖L p � t−(3/2−1/p)/2 (1 ≤ p ≤ ∞).

The key to proving the L p-decay estimates above—especially for p = 1—is the
pointwise estimates for Green’s function of the linearization of (1) around (vS, uS).
These, in fact, allow us to obtain pointwise estimates for the solution itself [10]:

|(ui − θi )(x, t)| � [(x − λi (t + 1))2 + (t + 1)]−3/4

+[|x + λi (t + 1)|3 + (t + 1)2]−1/2. (5)

The L p-decay estimates are obtained by integrating this.
Pointwise estimates (5) allow us to deduce not just global L p-estimates but also

local ones. In particular, we have |(ui − θi )(x, t)| � t−3/4 for x = λi t + O(1).
Since θi (x, t) � t−1/2 for x = λi t + O(1), the diffusion wave θi also describes the
leading-order asymptotics locally around the characteristic line x = λi t . However,
the situation is different around the origin x = 0. As can be seen from (4), the
diffusion wave θi decays exponentially fast around the origin x = 0 but (5) implies
|(ui − θi )(x, t)| � t−3/2 for x = O(1). Thus the diffusion wave θi provides almost
no information about the long-time asymptotics around x = 0; we need new waves
to capture the asymptotic behavior there.

In [12], van Baalen, Popović, and Wayne constructed a time-asymptotic ex-
pansion of ui in an L2-framework. The leading-order term of the expansion is
the diffusion wave θi but the first higher-order term beyond θi turns out to be a
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wave decaying algebraically as t−3/2 around the origin. It is then natural to ex-
pect that this new wave captures the leading-order asymptotics of the flow around
x = 0. However, the decay estimate for the remainder of the expansion is given
in the H1(R)-norm. This implies only a far from optimal decay estimate around
x = 0. For this reason, we cannot conclude that the higher-order term describes
the leading-order asymptotics of the flow around x = 0.

To overcome this issue, we construct a time-asymptotic expansion of ui with
pointwise estimates for the remainder. The leading-order term is the diffusion wave
θi and the higher-order terms are higher-order diffusion waves ξi;n (n ≥ 1) defined
in the next section. It turns out that |ξi;n(x, t)| � t−(2−1/2n) for x = O(1) as
t → ∞. Setting n = 1,we see that |ξi;1(x, t)| � t−3/2 for x = O(1). The pointwise
estimates for the remainder imply |(ui − ξi;1)(x, t)| � t−7/4 for x = O(1), thus
it is rigorously proved that ξi;1 describes the leading-order asymptotics of ui for
x = O(1). In addition, thanks to the pointwise estimates, our asymptotic expansion
is valid not only in the L2(R)-norm but also in the L1(R)-norm.

The proof is based on pointwise estimates of Green’s function, and the basic
strategy follows that of [10]. The most non-trivial part of the proof is perhaps the
definition of the higher-order diffusion waves ξi;n (n ≥ 1); see (7). Although the
differential equation defining ξi;n does not seem to have a simple solution formula
such as (4),1 we use its structure (by the help of LemmaA.1) to analyze cancellation
effects which are crucial in nonlinear estimates; see the proof of Lemma 3.6.

Before concluding the introduction, we briefly comment on related works. Dif-
fusion wave approximations and pointwise estimates of solutions has been exten-
sively studied for hyperbolic–parabolic systems [10], hyperbolic–elliptic systems
[3], hyperbolic balance laws [13,15], the Boltzmann equation [8], and so on. In
these works, nonlinear diffusion waves similar to θi were constructed and point-
wise estimates of solutions were obtained. However, to the best of our knowledge,
time-asymptotic expansions with pointwise estimates have not been obtained pre-
viously. We mention that the author already analyzed the second-order term ξi;1 in
connection with a fluid–structure interaction problem in [7]; the complete asymp-
totic expansion, however, was not given. We also comment that for multidimen-
sional incompressible Navier–Stokes equations, time-asymptotic expansions were
studied for example in [1,2]. Because the nonlinearity is weaker compared to the
1D case, nonlinear waves similar to ξi;n do not appear in these works.

In the next section, we state our main results. These are proven in Sect. 3.

2. Main Results

To state our main results (Theorem 2.1) we start by defining and discussing
the properties of the higher-order diffusion waves ξi;n (n ≥ 1) mentioned in the
introduction.

1 Nevertheless, we provide accurate asymptotic analysis in Propositions 2.1 and 2.2.
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2.1. Higher-Order Diffusion Waves

Let (v, u) be the solution to (1). Then define ui by (2) and set

Mi =
∫ ∞

−∞
ui (x, 0) dx . (6)

Let ξi;0 = θi/2 with θi defined by (3). We then define the higher-order diffusion
waves ξi;n (n ≥ 1) inductively by the equations

{
∂tξi;n + λi∂xξi;n + ∂x (θiξi;n) + ∂x (θi ′ξi ′;n−1) = ν

2∂2x ξi;n, x ∈ R, t > 0,
ξi;n(x, 0) = 0, x ∈ R.

(7)

Here λi = (−1)i−1c and i ′ = 3 − i , that is, 1′ = 2 and 2′ = 1. We remind the
reader that c = √−p′(1) > 0.

Although we do not have a simple explicit formula for ξi;n like (4), we can still
understand its asymptotic behavior quite well. To explain this, we introduce

αn = 2 − 1

2n+1 , βn = 3

2
− 1

2n+1 (n ≥ −1)

and

ψn(x, t; λ) = [(x − λ(t + 1))2 + (t + 1)]−αn/2,

ψ̃n(x, t; λ) = [|x − λ(t + 1)|αn + (t + 1)βn ]−1,

i;n(x, t) = ψn(x, t; λi ) + ψ̃n(x, t; λi ′).

(8)

Then we have the following decay estimates for ξi;n (we postpone the proof until
we later prove a finer version in Lemma 3.1):

Proposition 2.1. Let n ≥ 1 and ε = max(M1, M2). For k ≥ 0, if ε is sufficiently
small, we have

|∂kx ξi;n(x, t)| ≤ Cn,kε
n+1(t + 1)−k/2i;n−1(x, t)

for some positive constant Cn,k . In particular, when |x | ≤ K for some fixed K > 0,
we have

|ξi;n(x, t)| ≤ Cn,K (t + 1)−αn−1

for some Cn,K > 0. Moreover, for any 1 ≤ p ≤ ∞, there exists Cn,p > 0 such
that

‖ξi;n(·, t)‖L p ≤ Cn,p(t + 1)−(αn−1−1/p)/2.

We can also prove more detailed estimates if we focus on x with (−1)i−1x ≥ 0.
Let

g(z) = ∂xe
− x2

2ν = −(x/ν)e− x2
2ν , (9)

fi;0(z) =
√

ν√
2

(
e

Mi
ν − 1

)
e− z2

2ν

[√
π +

(
e

Mi
ν − 1

) ∫ ∞

z
e−ξ2 dξ

]−1

, (10)
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and

fi;n(z) =
∫ ∞

(−1)i−1z
[ξ − (−1)i−1z]−(1−1/2n)ξe− ξ2

2ν dξ. (11)

We then have the following asymptotic formula. This is obtained from Lemma 3.2
proved in the next section.

Proposition 2.2. Let n ≥ 1 and ε = max(M1, M2). For any K > 0, if ε is suffi-
ciently small, there exist Ai;n, Bi;n, and Cn > 0 such that

∣
∣
∣
∣

{

ξi;n(x, t) − Ai;n
(t + 1)αn−1/2

fi;n
(
x − λi (t + 1)√

t + 1

)

− Bi;n
(t + 1)αn−1/2

g

(
x − λi (t + 1)√

t + 1

)}∣
∣
∣
∣

≤ Cnε
n+1ψn(x, t; λi )

for x with −K ≤ (−1)i−1x. The constants Ai;n and Bi;n are determined from
(M1, M2) defined by (6).

Remark 2.1. The function fi;n appears in [12, Section 4]. It is shown that fi;n(z)
decays exponentially as (−1)i−1z → ∞ but decays algebraically as fi;n(z) ∼
z−αn−1 in the limit (−1)i−1z → −∞. In particular, if |x | ≤ K for some fixed
K > 0, we have

(t + 1)−αn−1/2 fi;n
(
x − λi (t + 1)√

t + 1

)

∼ t−αn−1

Remark 2.2. With some additional effort, we can show that, for −K ≤ (−1)i−1x ,
the higher-order diffusion waves ξi;n (n ≥ 1) are asymptotically equivalent to the
higher-order terms of the asymptotic expansion constructed in [12].

2.2. Time-Asymptotic Expansion with Pointwise Remainder Estimates

Let u0 = (v0 − 1, u0) and denote its anti-derivatives by u±
0 , that is,

u−
0 (x) =

∫ x

−∞
u0(y) dy, u+

0 (x) =
∫ ∞

x
u0(y) dy.

Our main theorem is the following:

Theorem 2.1. For u0 = (v0 − 1, u0) ∈ H6(R) × H6(R), let (v, u) be the solution
to (1). Define ui , θi , and ξi;n by (2), (3), and (7), respectively. Set

ui;1 = ξi;1 + γi ′∂xθi ′ , ui;n = ξi;n + γi ′∂xξi ′;n−1 (n ≥ 2),

where i ′ = 3 − i and γi = (−1)iν/(4c). Then for n ≥ 1, there exist positive
constants δn and Cn such that if

δ:=‖u0‖6 + sup
x∈R

[(|x | + 1)αn |u0(x)| + (|x | + 1)5/4|u′
0(x)|]

+ sup
x>0

[(|x | + 1)βn (|u−
0 (−x)| + |u+

0 (x)|)] ≤ δn,
(12)
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the solution (v, u) satisfies the pointwise estimates

∣
∣
∣
∣

(

ui − θi −
n∑

k=1

ui;k
)

(x, t)

∣
∣
∣
∣ ≤ Cnδi;n(x, t)

for all x ∈ R and t ≥ 0. Here i;n is defined by (8).

As a corollary, we obtain the following L p-decay estimates. Combining this
with Proposition 2.1, it follows that ui ∼ θi + ∑∞

n=1 ξi;n is a time-asymptotic
expansion in the L p(R)-norm for all 1 ≤ p ≤ ∞.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have the optimal L p-
decay estimate

∥
∥
∥
∥

(

ui − θi −
n∑

k=1

ξi;k
)

(·, t)
∥
∥
∥
∥
L p

≤ Cnδ(t + 1)−(αn−1/p)/2 (1 ≤ p ≤ ∞).

Proof. The same bound for ui − θi − ∑n
k=1 ui;k easily follows from Theorem 2.1.

We can replace ui;k by ξi;k thanks to (4) and Proposition 2.1. ��
We also obtain the following local-in-space decay estimates:

Corollary 2.2. Under the assumptions of Theorem 2.1, when |x | ≤ K for some
fixed K > 0, we have

∣
∣
∣
∣

(

ui −
n∑

k=1

ξi;k
)

(x, t)

∣
∣
∣
∣ ≤ Cn,K δ(t + 1)−αn .

Moreover, there exist constants {Ai;k}nk=1 determined from (M1, M2) such that

∣
∣
∣
∣ui (x, t) −

n∑

k=1

Ai;k
(t + 1)αk−1/2

fi;k
(
x − λi (t + 1)√

t + 1

)∣
∣
∣
∣ ≤ Cn,K δ(t + 1)−αn .

Here Mi and fi;k are defined by (6) and (11), respectively.

Proof. Again, the same bound for ui − θi − ∑n
k=1 ui;k easily follows from The-

orem 2.1. We can then replace ui;k by ξi;k thanks to (4) and Proposition 2.1. The
second inequality follows from Proposition 2.2. ��

By Corollary 2.2, and also Remark 2.1, we now have a detailed picture of the
power-law asymptotics of the solution around x = 0 where the diffusion waves
decay exponentially.

Remark 2.3. The termγi ′∂xθi andγi ′∂xξi;n are both neglected in the two corollaries
above. These are negligible in the L p(R)-norm and locally around x = 0 but are
important in the neighborhood of the other characteristic line x = −λi t . For this
reason, these terms are required in the statement of Theorem 2.1.
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Remark 2.4. The rather strong H6-regularity is required to invoke pointwise es-
timates of ∂x (ui − θi ) provided by [10, Theorem 2.6 and Remark 2.8]. The proof
involves energy estimates up to the H6(R)-norm. These also imply a unique global-
in-time existence theorem in appropriate Sobolev spaces. Off course, global-in-time
existence of solutions can be proved with much lower regularity [4,9], but proving
detailed pointwise estimates for such data seems to be difficult at this point.

Remark 2.5. We add a comment on taking the limit n → ∞ in Theorem 2.1 and
also on a possible route to expand the solution to even higher order. A careful
examination of the proof shows that the constant Cn in Theorem 2.1 grows as 2n .
So we cannot simply take the limit. However, as pointed out in [12, p. 1955], it
might be possible to take the limit by adding a logarithmic weight:

∣
∣
∣
∣

(

ui − θi −
∞∑

k=1

ui;k
)

(x, t)

∣
∣
∣
∣ ≤ C∞δ log(t + 2)i;∞(x, t).

Here, C∞ is a constant independent of n and i;∞(x, t) = limn→∞ i;n(x, t).
Since ‖i;∞(·, t)‖L∞ � t−1, to study an asymptotic expansion beyond the order
O(t−1 log t), it seems that we need to identify waves describing this order. Such
waves are identified for example in [5] for generalized Burgers equations. Analo-
gous results for hyperbolic–parabolic systems are, as far as I know, not known. If
such waves are identified, we might be able to expand the solution beyond the order
O(t−1 log t). And drawing an analogy between the heat equation, terms beyond this
order should also depend on higher-order moments

∫ ∞
−∞ xkui (x, 0) dx and not just

on Mi = ∫ ∞
−∞ ui (x, 0) dx .

3. Proof

The following function appears frequently in the subsequent part of the paper:

�α(x, t; λ,μ) = (t + 1)−α/2e− (x−λ(t+1))2

μ(t+1) . (13)

Here λ ∈ R and α,μ > 0. Note that

|θi (x, t)| ≤ A0|Mi |�1(x, t; λi , 2ν), �αn (x, t; λ,μ) ≤ B0ψn(x, t; λ) (14)

for some positive constants A0 and B0. In what follows, the symbols C and ν∗
denote sufficiently large constants.

3.1. Pointwise Estimates of the Higher-Order Diffusion Waves

We start with the proofs of Propositions 2.1 and 2.2.
Proposition 2.1 follows from the following finer version:
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Lemma 3.1. Let n ≥ 1 and ε = max(M1, M2). If ε is sufficiently small, we have

|∂kx ξi;n(x, t) − (−1)i (2c)−1∂kx (θi ′ξi ′;n−1)(x, t)|
≤ Cn,kε

n+1(t + 1)−k/2ψn−1(x, t; λi )
(15)

for any integer k ≥ 0. In particular, we have

|∂kx ξi;n(x, t)| ≤ Cn,kε
n+1(t + 1)−k/2[ψn−1(x, t; λi ) + �2βn−1(x, t; λi ′ , ν

∗)]
≤ Cn,kε

n+1(t + 1)−k/2i;n−1(x, t).

Proof. We assume t ≥ 4 in what follows (the lemma is otherwise easier to prove).
The lemma is trivial for n = 0 if we set ξi;0 = θi/2 and ξi ′;−1 = 0. So it suffices
to prove the lemma for n assuming that it holds for n − 1 ≥ 0. In what follows, we
only prove the case of i = 1 and k = 0 since the other cases are similar. Note first
that, by (7) and Duhamel’s principle, we have ξi;n(x, t) = ζ1;n(x, t) + η1;n(x, t),
where

ζ1;n(x, t) = −(2πν)−1/2
∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x (θ2ξ2;n−1)(y, s) dyds

(16)

and

η1;n(x, t) = −(2πν)−1/2
∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x (θ1ξ1;n)(y, s) dyds.

(17)

We first consider ζ1;n(x, t). Set I (x, t) = −√
2πνζ1;n(x, t) and f = θ2ξ2;n−1.

By Lemma A.1, we have

I (x, t) = (2c)−1
√
2πν f (x, t) + I1(x, t) + I2(x, t),

where

I1(x, t) =
∫ t1/2

0

∫ ∞

−∞
∂x

{

(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s)

}

f (y, s) dyds

and

I2(x, t) = −(2c)−1
∫ ∞

−∞
(t − t1/2)−1/2e

− (x−y−c(t−√
t))2

2ν(t−√
t) f (y, t1/2) dy

− (2c)−1
∫ t

t1/2

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) L2 f (y, s) dyds

=:I21(x, t) + I22(x, t).

Here L2 = ∂t − c∂x − (ν/2)∂2x . By the induction hypothesis, we have

| f (x, t)| ≤ Cεn+1�αn−2+1(x, t;−c, ν∗).
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By Lemmas A.2 and A.3, we obtain

|I1(x, t)| + |I21(x, t)| ≤ Cεn+1�αn−1(x, t; c, ν∗) ≤ Cεn+1ψn−1(x, t; c).
Next, note that (3) and (7) imply

|L2 f (x, t)| ≤ Cεn+1�αn−2+3(x, t;−c, ν∗).

Then by Lemma A.4, we obtain

|I22(x, t)| ≤ Cεn+1ψn−1(x, t; c).
We have thus proved that

|ζ1;n(x, t) + (2c)−1(θ2ξ2;n−1)(x, t)| ≤ Cεn+1ψn−1(x, t; c). (18)

We next consider η1;n(x, t). Note that it is the solution to
{

∂tη1;n + c∂xη1;n + ∂x (θ1η1;n) = ν
2∂2xη1;n − ∂x (θ1ζ1;n), x ∈ R, t > 0,

η1;n(x, 0) = 0, x ∈ R.

This variable coefficient equation can be solved by an iteration scheme. Let η
(1)
1;n

be the solution to
{

∂tη
(1)
1;n + c∂xη

(1)
1;n = ν

2∂2xη
(1)
1;n − ∂x (θ1ζ1;n), x ∈ R, t > 0,

η
(1)
1;n(x, 0) = 0, x ∈ R

and η
(k)
1;n (k ≥ 2) be the solution to

{
∂tη

(k)
1;n + c∂xη

(k)
1;n = ν

2∂2xη
(k)
1;n − ∂x (θ1η

(k−1)
1;n ) x ∈ R, t > 0,

η
(k)
1;n(x, 0) = 0, x ∈ R.

Then we can write η1;n as

η1;n(x, t) =
∞∑

k=1

η
(k)
1;n(x, t). (19)

We now give bounds for η
(k)
1;n (k ≥ 1) inductively. Note first that

η
(1)
1;n(x, t) = −(2πν)−1/2

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x (θ1ζ1;n)(y, s) dyds

(20)

and that (18) implies

|(θ1ζ1;n)(x, t)| ≤ A1ε
n+2�αn−1+1(x, t; c, ν′)

for some positive constants A1 and ν′. Then by [10, Lemma 3.2], we obtain

|η(1)
1;n(x, t)| ≤ MA1ε

n+2�αn−1(x, t; c, ν′)
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for some M > 0. This means that the inequality

|η(l)
1;n(x, t)| ≤ MA1(MA0)

l−1εn+l+1�αn−1(x, t; c, ν′) (21)

holds for l = 1. We then show that (21) holds for l = k + 1 assuming that it holds
for l = k. By the induction hypothesis and (14), we have

|(θ1η(k)
1;n)(x, t)| ≤ A1(MA0)

kεn+k+2�αn−1+1(x, t; c, ν′).

Applying [10, Lemma 3.2] again, this time to the integral representation

η
(k+1)
1;n (x, t) = −(2πν)−1/2

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x (θ1η
(k)
1;n)(y, s) dyds,

we obtain

|η(k+1)
1;n (x, t)| ≤ MA1(MA0)

kεn+k+2�αn−1(x, t; c, ν′).

Therefore, (21) holds for any l ≥ 1, and by taking ε sufficiently small, we get

|η1;n(x, t)| =
∣
∣
∣
∣

∞∑

k=1

η
(k)
1;n(x, t)

∣
∣
∣
∣ ≤ Cεn+2�αn−1(x, t; c, ν′) ≤ Cεn+2ψn−1(x, t; c).

Combining this with (18), we obtain (15). ��
Remark 3.1. The proof above can be modified to show that

|∂kx ξi;m(x, t) − (−1)i (2c)−1∂kx (θi ′ξi ′;m−1)(x, t)|
≤ Cn,kε

m+1(t + 1)−k/2ψn−1(x, t; λi )

holds for all m ≥ n with the smallness of ε depending only on n and k.

We next prove Proposition 2.2. (The proof is rather lengthy andmay be skipped;
the rest of the paper can be read independently.)Define ζi;n andηi;n by (16) and (17),
respectively. Then Proposition 2.2 is a direct consequence of the following lemma.

Lemma 3.2. Let n ≥ 1 and ε = max(M1, M2). Fix k ≥ 0. For any K > 0, if ε is
sufficiently small, there exist Ai;n, Bi;n, and Cn,k > 0 such that

∣
∣
∣
∣∂

k
x

{

ζi;n(x, t) − Ai;n
(t + 1)αn−1/2

fi;n
(
x − λi (t + 1)√

t + 1

)}∣
∣
∣
∣

≤ Cn,kε
n+1(t + 1)−k/2ψn(x, t; λi ) (22)

and
∣
∣
∣
∣∂

k
x

{

ηi;n(x, t) − Bi;n
(t + 1)αn−1/2

g

(
x − λi (t + 1)√

t + 1

)}∣
∣
∣
∣

≤ Cn,kε
n+2(t + 1)−k/2ψn(x, t; λi ) (23)

when −K ≤ (−1)i−1x. Here g and fi;n are defined by (9) and (11), respectively.
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Proof. The lemma is proved by induction in n.
We first consider the case of n = 1. Let i = 1 and k = 0 (the other cases are

similar). We start with the proof of (22). Note that (16) implies

ζ1;1(x, t) = − 1

2
√
2πν

∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) θ22 (y, s) dyds.

In addition, by (4) and (10), we have

θi (x, t) = (t + 1)−1/2 fi;0
(
x − λi (t + 1)√

t + 1

)

.

Hence we may write

θ22 (x, t) = a1;1
(t + 1)

√
2πν

e− (x+c(t+1))2

2ν(t+1) + ∂xr(x, t),

where

a1;1 =
∫ ∞

−∞
f 22;0(z) dz

and

r(x, t) =
∫ x

−∞

(

θ22 (z, t) − a1;1
(t + 1)

√
2πν

e− (z+c(t+1))2

2ν(t+1)

)

dz.

Noting that limx→∞ r(x, t) = 0, we can show that

|r(x, t)| ≤ Cε2�2(x, t;−c, ν∗), |L2r(x, t)| ≤ Cε2�4(x, t;−c, ν∗),

where L2 = ∂t − c∂x − (ν/2)∂2x . We then have

ζ1;1(x, t) = − a1;1
4πν

∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2(s + 1)−1e− (x−y−c(t−s))2

2ν(t−s) e− (y+c(s+1))2

2ν(s+1) dyds

− 1

2
√
2πν

∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂yr(y, s) dyds

= − a1;1
2
√
2πν

∂x

∫ t

0
(t + 1)−1/2(s + 1)−1/2e− (x−c(t−s)+c(s+1))2

2ν(t+1) ds

− 1

2
√
2πν

∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂yr(y, s) dyds.

Concerning the second term, similar calculations leading to the bound of ζ1;n(x, t)
in Lemma 3.1 imply

∣
∣
∣
∣∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂yr(y, s) dyds

∣
∣
∣
∣ ≤ Cε2ψn(x, t; c)
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for −K ≤ x . For the first term, note that a simple change of variable yields

− (t + 1)−3/4

ν
√
2c

f1;1
(
x − c(t + 1)√

t + 1

)

= ∂x

∫ ∞

−1
(t + 1)−1/2(s + 1)−1/2e− (x−c(t−s)+c(s+1))2

2ν(t+1) ds.

Therefore,

ζ1;1(x, t) − a1;1
2ν

√
4πνc

(t + 1)−3/4 f1;1
(
x − c(t + 1)√

t + 1

)

= O(ε2)∂x

∫

s∈(−1,0)∪(t,∞)

(t + 1)−1/2(s + 1)−1/2e− (x−c(t−s)+c(s+1))2

2ν(t+1) ds

+ O(ε2)ψn(x, t; c).
We then set

I (x, t) = ∂x

∫

s∈(−1,0)∪(t,∞)

(t + 1)−1/2(s + 1)−1/2e− (x−c(t−s)+c(s+1))2

2ν(t+1) ds

and show that |I (x, t)| ≤ C�2(x, t; c, ν∗) for −K ≤ x . We first consider Case (i)
|x − c(t + 1)| ≤ (t + 1)1/2. In this case, we simply have

|I (x, t)| ≤ C(t + 1)−1 ≤ C�2(x, t; c, ν∗).

We next consider Case (ii) −K ≤ x ≤ c(t + 1) − (t + 1)1/2. The integral over
(−1, 0) is easy to handle. For s ∈ (t,∞) on the other hand, when t is large (the
case when t is not large is easier), we have

0 ≤ c(t + 1) − x − 2K ≤ x − c(t − s) + c(s + 1),

0 ≤ c(s + 1) − K ≤ x − c(t − s) + c(s + 1).

Hence
∣
∣
∣
∣∂x

∫ ∞

t
(t + 1)−1/2(s + 1)−1/2e− (x−c(t−s)+c(s+1))2

2ν(t+1) ds

∣
∣
∣
∣

≤ C
∫ ∞

0
(s + 1)−1/2e− s2

C(t+1) ds · �2(x, t; c, ν∗) ≤ C�2(x, t; c, ν∗).

We end the analysis of ζ1;1 by considering Case (iii) x ≥ c(t + 1) + (t + 1)1/2.
When s > −1, we have

0 ≤ x − c(t + 1) ≤ x − c(t − s) + c(s + 1) = x − c(t + 1) + 2c(s + 1),

0 ≤ 2c(s + 1) ≤ x − c(t − s) + c(s + 1).

From these, it follows that |I (x, t)| ≤ C�2(x, t; c, ν∗) as in Case (ii). These
prove (22) for n = 1 by setting

A1;1 = a1;1
2ν

√
4πνc

.
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We next prove (23) by using the series representation (19). We first consider

η
(1)
1;1(x, t) = −(2πν)−1/2

∫ t

0

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x (θ1ζ1;1)(y, s) dyds.

The bound (22) for ζ1;1(x, t) implies

(θ1ζ1;1)(x, t) = θ1(x, t)
A1;1

(t + 1)3/4
f1;1

(
x − c(t + 1)√

t + 1

)

+ O(ε3)�αn+1(x, t; c, ν∗).

This holds for all x ∈ R since θ1(x, t) decays exponentially for x ≤ −K . Plugging
this into (20) and arguing similarly to the analysis of ζ1;1, we get

η
(1)
1;1(x, t) = − A1;1b1;1

2πν
∂x

∫ t

0

∫ ∞

−∞
(t − s)−1/2(s + 1)−5/4e− (x−y−c(t−s))2

2ν(t−s) e− (y−c(s+1))2

2ν(s+1) dyds

+ O(ε3)ψn(x, t; c)

= − A1;1b1;1√
2πν

∂x

∫ t

0
(t + 1)−1/2(s + 1)−3/4e− (x−c(t+1))2

2ν(t+1) ds + O(ε3)ψn(x, t; c)

= −4A1;1b1;1√
2πν

(t + 1)−3/4g

(
x − c(t + 1)√

t + 1

)

+ O(ε3)ψn(x, t; c),

where

b1;1 =
∫ ∞

−∞
( f1;0 f1)(z) dz.

Similar analysis for η
(k)
1;1(x, t) (k ≥ 2) shows that

η
(k)
1;1(x, t) = O(εk+2)(t + 1)−3/4g

(
x − c(t + 1)√

t + 1

)

+ O(εk+2)ψn(x, t; c).

Taking the sum
∑∞

k=1, it follows that (23) holds for n = 1 with

B1;1 = −4A1;1b1;1√
2πν

+ O(ε4).

We next prove the lemma for n assuming that it holds for n − 1. Let i = 1 and
k = 0 (the other cases are similar). The induction hypothesis and Lemma 3.1 imply

h(x, t):=(θ2ξ2;n−1)(x, t) − A2;n−1

(t + 1)αn−2/2
θ2(x, t) f2;n−1

(
x + c(t + 1)√

t + 1

)

− B2;n−1

(t + 1)αn−2/2
θ2(x, t)g

(
x + c(t + 1)√

t + 1

)

= O(εn+1)�αn−1+1(x, t; −c, ν∗)

for all x ∈ R (not just for x ≤ K ). We also have ∂xh(x, t) = O(εn+1)�αn−1+2
(x, t;−c, ν∗). Using these, we can show that

L2h(x, t) = O(εn+1)�αn−1+3(x, t;−c, ν∗),
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where L2 = ∂t − c∂x − (ν/2)∂2x . Then similar calculations leading to the bound of
ζ1;1(x, t) above imply (22) with

A1;n = 1

ν
√
4πνc

(A2;n−1a1;n + B2;n−1b1;n),

where

a1;n =
∫ ∞

−∞
( f2;0 f2;n−1)(−z) dz, b1;n =

∫ ∞

−∞
(g f2;0)(z) dz.

The bound (23) for η1;n(x, t) is proved in a way similar to that for n = 1. This ends
the proof of the lemma. ��

For the proof of Theorem 2.1, it is convenient to unify (ξi;n)∞n=1 into a single
function

�i (x, t) =
∞∑

n=1

ξi;n(x, t). (24)

Taking the infinite sum of (7), we see that (�1, �2) is the solution to the system

⎧
⎨

⎩

∂t�1 + c∂x�1 + ∂x (θ
2
2 /2 + θ1�1 + θ2�2) = ν

2∂2x�1, x ∈ R, t > 0,
∂t�2 − c∂x�2 + ∂x (θ

2
1 /2 + θ1�1 + θ2�2) = ν

2∂2x�2, x ∈ R, t > 0,
�1(x, 0) = �2(x, 0) = 0, x ∈ R.

(25)

Then Lemma 3.1 and Remark 3.1 imply the following:

Lemma 3.3. Let

�i;n(x, t) =
∞∑

m=n+1

ξi;m(x, t) (n ≥ −1).

Here ξi;0 = θi/2. Then for n ≥ 0, if ε = max(M1, M2) is sufficiently small, we
have

|∂kx�i;n(x, t) − (−1)i (2c)−1∂kx (θi ′�i ′;n−1)(x, t)| ≤ Cn,kε
n+2(t + 1)−k/2ψn(x, t; λi )

for any integer k ≥ 0. In particular, we have

|∂kx�i;n(x, t)| ≤ Cn,kε
n+2(t + 1)−k/2i;n(x, t).
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3.2. Proof of Theorem 2.1

Let us explain the strategy to prove Theorem 2.1. Note first that by Lemma 3.3,
it suffices to prove the following:

Theorem 3.1. For u0 = (v0 − 1, u0) ∈ H6(R) × H6(R), let (v, u) be the solution
to (1). Define ui , θi , and�i by (2), (3), and (25), respectively. Then for n ≥ 1, there
exist positive constants δn and Cn such that if δ ≤ δn, where δ is defined by (12),
the solution (v, u) satisfies the pointwise estimates

|(ui − θi − �i − γi ′∂xθi ′ − γi ′∂x�i ′)(x, t)| ≤ Cnδi;n(x, t)

for all x ∈ R and t ≥ 0. Here γi = (−1)iν/(4c) and i ′ = 3 − i .

To prove Theorem 3.1, we set

vi = ui − θi − �i − γi ′∂xθi ′ − γi ′∂x�i ′ (26)

and define P(t) by

P(t):=
2∑

i=1

sup
0≤s≤t

∣
∣
∣vi (·, s)i;n(·, s)−1

∣
∣
∣
L∞ . (27)

Our goal is then to prove the inequality

P(t) ≤ Cδ + C(δ + P(t))2 (t ≥ 0). (28)

From this inequality, taking δ sufficiently small, we can conclude that P(t) ≤ Cδ

for all t ≥ 0 by a standard argument (see Sect. 3.2.4).

Remark 3.2. For the argument above to work, we first need to show that P(t)
is finite. This can be proved, for example, by examining the iterative scheme in
[6, Section 2.1] for the construction of the local-in-time solution to (1). The key
step of the scheme consists of solving a variable coefficient parabolic equation,
and by the Levi parametrix method, we can prove a gaussian upper bound for the
fundamental solution. This bound allows us to control the spatial decay of each
approximate solution, and by taking the limit, we can check that P(t) is finite at
least for a short period of time. By the calculations below, it follows that (28) and
hence P(t) ≤ Cδ hold for this short duration. Then a standard continuity argument
shows that P(t) ≤ Cδ actually holds for all t ≥ 0.

The proof of (28) is based on pointwise estimates of Greens’ function [10,11]
which we shall explain in the next section. We also give an integral formulation
of (1). In the remaining sections, we prove bounds for the terms appearing in the
integral equations which yield (28).
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3.2.1. Pointwise Estimates of Green’s Function and Integral Equations Our
equations (1) can be written in the form

ut + Aux =
(
0 0
0 ν

)

uxx +
(

0
Nx

)

(29)

with

u =
(

v − 1
u

)

, A =
(

0 −1
−c2 0

)

, N = −p(v) + p(1) − c2(v − 1) − ν
v − 1

v
ux .

(30)

The matrix A has right and left eigenvectors ri and li (i = 1, 2), corresponding to
the eigenvalue λi = (−1)i−1c, given by

ri = 2c

p′′(1)

[
(−1)i

c

]

, li = p′′(1)
4c

[
(−1)i 1/c

]
.

We note that (2) can be written as ui = li (v − 1 u)T .
We define Green’s function G = G(x, t) ∈ R

2×2 for the linearization of (29)
as the solution to

⎧
⎨

⎩

∂tG + A∂xG =
(
0 0
0 ν

)

∂2x G, x ∈ R, t > 0,

G(x, 0) = δ(x)I2, x ∈ R,

where δ(x) is the Dirac delta function and I2 is the 2×2 identity matrix. In addition,
define G∗ = G∗(x, t) ∈ R

2×2 by

G∗(x, t) = 1

2(2πνt)1/2
e− (x−ct)2

2νt

(
1 −1/c

−c 1

)

+ 1

2(2πνt)1/2
e− (x+ct)2

2νt

(
1 1/c
c 1

)

.

The next theorem is of fundamental importance in our analysis.

Theorem 3.2. ([10, Theorem 5.8] and [11, Theorem 1.3]) For any k ≥ 0, we have

∣
∣
∣
∣∂

k
x G(x, t) − ∂kx G

∗(x, t) − e− c2
ν
t

k∑

j=0

δ(k− j)(x)Q j (t)

∣
∣
∣
∣

≤ C(t + 1)−
1
2 t−

k+1
2

2∑

i=1

e− (x−λi t)
2

Ct ,

where δ(k)(x) is the k-th derivative of the Dirac delta function and Q j = Q j (t) is
a 2 × 2 polynomial matrix. In particular,

Q0 =
(
1 0
0 0

)

, Q1 =
(

0 −1/ν
−c2/ν 0

)

.



Arch. Rational Mech. Anal. (2023) 247:81 Page 17 of 33 81

Moreover, with γi = (−1)iν/(4c), we have

∂kx G(x, t) − ∂kx G
∗(x, t) − ∂k+1

x

2∑

i=1

γi
e− (x−λi t)

2

2νt

(2πνt)1/2

(−1 0
0 1

)

− e− c2
ν
t

k∑

j=0

δ(k− j)(x)Q j (t)

= O(1)(t + 1)−
1
2 t−

k+1
2 e− (x−ct)2

Ct

(
1 −1/c

−c 1

)

+ O(1)(t + 1)−
1
2 t−

k+1
2 e− (x+ct)2

Ct

(
1 1/c
c 1

)

+ O(1)(t + 1)−
1
2 t−

k+2
2

2∑

i=1

e− (x−λi t)
2

Ct .

Here O(1) is a bounded scalar function.

For the analysis of ui , we need pointwise estimates for

gi = (
gi1 gi2

) :=liG
(
r1 r2

)
, g∗

i = (
g∗
i1 g∗

i2

) :=liG
∗ (
r1 r2

)
.

We note that

g∗
i j = (2πνt)−1/2e− (x−λi t)

2

2νt δi j , (31)

where δi j is the Kronecker delta. Then Theorem 3.2 implies

∣
∣
∣
∣∂

k
x gi (x, t) − ∂kx g

∗
i (x, t) − e− c2

ν
t

k∑

j=0

δ(k− j)(x)qik(t)

∣
∣
∣
∣

≤ C(t + 1)−
1
2 t−

k+1
2

2∑

i=1

e− (x−λi t)
2

Ct , (32)

where

qik(t) = li Qk(t)
(
r1 r2

)
.

Moreover, we have

∂kx gi (x, t) − ∂kx g
∗
i (x, t) − γi ′∂

k+1
x g∗

i ′(x, t) − e− c2
ν
t

k∑

j=0

δ(k− j)(x)qik(t)

= O(1)(t + 1)−
1
2 t−

k+1
2 e− (x−ct)2

Ct + O(1)(t + 1)−
1
2 t−

k+2
2 e− (x+ct)2

Ct .

(33)

We next write down an integral equation for vi defined by (26). Let

n = li

(
0
N

)

= p′′(1)
4c2

N , n∗ = −θ21 /2 − θ22 /2 − θ1�1 − θ2�2,

where �i and N are defined by (24) and (30), respectively. Then by Duhamel’s
principle, we obtain
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Lemma 3.4. The function vi defined by (26) satisfies the integral equation

vi (x, t) =
∫ ∞

−∞
gi (x − y, t)

(
u1
u2

)

(y, 0) dy −
∫ ∞

−∞
g∗
i (x − y, t)

(
θ1
θ2

)

(y, 0) dy

− γi ′
∫ ∞

−∞
∂x g

∗
i ′(x − y, t)

(
θ1
θ2

)

(y, 0) dy

+
∫ t

0

∫ ∞

−∞
g∗
i i (x − y, t − s)∂x (n − n∗)(y, s)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
(gi j − g∗

i j )(x − y, t − s)∂xn(y, s) dyds

− γi ′
∫ t

0

∫ ∞

−∞
∂x g

∗
i ′i ′(x − y, t − s)∂xn

∗(y, s)(y, s) dyds.

Here γi = (−1)iν/(4c) and i ′ = 3 − i .

We set

Ii (x, t) =
∫ ∞

−∞
gi (x − y, t)

(
u1
u2

)

(y, 0) dy −
∫ ∞

−∞
g∗
i (x − y, t)

(
θ1
θ2

)

(y, 0) dy

− γi ′
∫ ∞

−∞
∂x g

∗
i ′(x − y, t)

(
θ1
θ2

)

(y, 0) dy (34)

and

Ni (x, t) =
∫ t

0

∫ ∞

−∞
g∗
i i (x − y, t − s)∂x (n − n∗)(y, s)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
(gi j − g∗

i j )(x − y, t − s)∂xn(y, s) dyds

− γi ′
∫ t

0

∫ ∞

−∞
∂x g

∗
i ′i ′(x − y, t − s)∂xn

∗(y, s)(y, s) dyds.

(35)

Lemma 3.4 may then be written as

vi (x, t) = Ii (x, t) + Ni (x, t).

In the next two sections, we prove pointwise estimates for Ii (x, t) and Ni (x, t).

3.2.2. Contribution from the Initial Data Our goal in this section is to prove
the following pointwise estimates for Ii (x, t) defined by (34):

Lemma 3.5. For any n ≥ 1, there exist positive constants δn and Cn such that
if (12) holds, then we have

|Ii (x, t)| ≤ Cδi;n(x, t)

for all x ∈ R and t ≥ 0.
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Proof. We assume t ≥ 1 below (the case when t < 1 is easier to handle). Let

Ii,1(x, t) =
∫ ∞

−∞
g∗
i (x − y, t)

(
u1 − θ1
u2 − θ2

)

(y, 0) dy

and

Ii,2(x, t) =
∫ ∞

−∞
(gi − g∗

i )(x − y, t)

(
u1
u2

)

(y, 0) dy

− γi ′
∫ ∞

−∞
∂x g

∗
i ′(x − y, t)

(
θ1
θ2

)

(y, 0) dy.

Then of course Ii (x, t) = Ii,1(x, t) + Ii,2(x, t).
We first show

|Ii,1(x, t)| ≤ Cδi;n(x, t).

For this purpose, set

η j (x) =
∫ x

−∞
(u j − θ j )(y, 0) dy

and η = (η1 η2)
T . We then have

Ii,1(x, t) =
∫ ∞

−∞
g∗
i (x − y, t)∂xη(y) dy.

By the definition of Mi , see (6), we have

η j (x):=
∫ x

−∞
(u j − θ j )(y, 0) dy = −

∫ ∞

x
(u j − θ j )(y, 0) dy.

This and (12) imply

|η j (x)| ≤ Cδ(|x | + 1)−βn .

We first consider Case (i) |x − λi t | ≤ (t + 1)1/2. In this case, integration by parts
and (31) yield

|Ii,1(x, t)| =
∣
∣
∣
∣

∫ ∞

−∞
∂x g

∗
i (x − y, t)η(y) dy

∣
∣
∣
∣

≤ C(t + 1)−1
∫ ∞

−∞
|ηi (x)| dx ≤ Cδ(t + 1)−1 ≤ Cδi;n(x, t).

We next consider Case (ii) (t + 1)1/2 < |x − λi t | < t + 1 with x − λi t > 0 (the
case when x − λi t < 0 is similar). Again, by integration by parts,

|Ii,1(x, t)| ≤ C(t + 1)−1e− (x−λi t)
2

Ct

∫ (x−λi t)/2

−∞
|ηi (y)| dy

+ Cδ(t + 1)−1
∫ ∞

(x−λi t)/2
e− (x−y−λi t)

2

Ct (y + 1)−βn dy

≤ Cδ(t + 1)−1e− (x−λi t)
2

Ct + Cδ(t + 1)−1/2(|x − λi t | + 1)−βn ≤ Cδi;n(x, t).
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We finally consider Case (iii) |x−λi t | ≥ t+1. For brevity, we assume x−λi t > 0.
In this case, by (12), we have

|Ii,1(x, t)| ≤ C(t + 1)−1/2e− (x−λi t)
2

Ct

∫ (x−λi t)/2

−∞
|(ui − θi )(y, 0)| dy

+ Cδ(t + 1)−1/2
∫ ∞

(x−λi t)/2
e− (x−y−λi t)

2

2νt (y + 1)−αn dy

≤ Cδe− t
C e− (x−λi t)

2

Ct + Cδ(|x − λi t | + 1)−αn ≤ Cδi;n(x, t).

We next show

|Ii,2(x, t)| ≤ Cδi;n(x, t).

Writing

Ii,2(x, t) =
∫ ∞

−∞
(gi − g∗

i − γi ′∂x g
∗
i ′)(x − y, t)

(
u1
u2

)

(y, 0) dy

+ γi ′
∫ ∞

−∞
∂x g

∗
i ′(x − y, t)

(
u1 − θ1
u2 − θ2

)

(y, 0) dy

and applying (33), we see that it suffices to show that

A(x, t) = γi ′∂x

∫ ∞

−∞
g∗
i ′(x − y, t)

(
u1 − θ1
u2 − θ2

)

(y, 0) dy,

B(x, t) = (t + 1)−1
∫ ∞

−∞
e− (x−y−λi t)

2

Ct

∣
∣
∣
∣

(
u1
u2

)∣
∣
∣
∣ (y, 0) dy,

C(x, t) = (t + 1)−3/2
∫ ∞

−∞
e− (x−y−λi ′ t)2

Ct

∣
∣
∣
∣

(
u1
u2

)∣
∣
∣
∣ (y, 0) dy

D(x, t) = e− c2
ν
t
∣
∣
∣
∣

(
u1
u2

)∣
∣
∣
∣ (x, 0)

are all bounded by Cδi;n(x, t). First, this is trivial for D(x, t). Next, since
A(x, t) = γi ′∂xIi ′,1(x, t), modifying the calculations above for Ii,1(x, t) yield
the bound for A(x, t). The bound for B(x, t) is also obtained in a way similar to
that for Ii,1(x, t) (except that we don’t need ηi in the analysis).

Let us finally consider C(x, t). First, Case (i) |x − λi ′ t | ≤ (t + 1)1/2 is easy:

|C(x, t)| ≤ Cδ(t + 1)−3/2 ≤ Cδi;n(x, t).

Case (ii) |x − λi ′ t | > (t + 1)1/2 with x − λi ′ t > 0 is as follows:

|C(x, t)| ≤ C(t + 1)−3/2e− (x−λi ′ t)2
Ct

∫ (x−λi ′ t)/2

−∞

∣
∣
∣
∣

(
u1
u2

)∣
∣
∣
∣ (y, 0) dy

+ Cδ(t + 1)−3/2
∫ ∞

(x−λi ′ t)/2
e− (x−y−λi ′ t)2

Ct (y + 1)−αn dy

≤ Cδ(t + 1)−3/2e− (x−λi ′ t)2
Ct + Cδ(t + 1)−1(|x − λi ′ t | + 1)−αn ≤ Cδi;n(x, t).

The case when x − λi ′ t < 0 is similar. This ends the proof of the lemma. ��
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3.2.3. Contribution from the Nonlinear Terms Our goal in this section is to
prove the following pointwise estimates for Ni (x, t) defined by (35):

Lemma 3.6. For any n ≥ 1, there exist positive constants δn and Cn such that
if (12) holds, then we have

|Ni (x, t)| ≤ C(δ + P(t))2i;n(x, t)

for all x ∈ R and t ≥ 0.

To prove this lemma, we first prove some preparatory lemmas. To state these,
we introduce the notation

Ii [ f ](x, t):=
∫ t

0

∫ ∞

−∞
∂x

{

(t − s)−1/2e− (x−y−λi (t−s))2

2ν(t−s)

}

f (y, s) dyds

for a function f = f (x, t).

Lemma 3.7. Let n ≥ 1 and ε = max(M1, M2). If ε is sufficiently small, we have

|Ii [θi ′�i ](x, t)| ≤ Cε3i;n(x, t).

Proof. Weonlyprove the lemma for i = 1 (the other case is similar).ByLemma3.3,
we have

|(θ2�1)(x, t) + (2c)−1(θ32 /2 + θ22�2)(x, t)| ≤ Cε3�4(x, t;−c, ν∗).

Since

�4(x, t;−c, ν∗) ≤ C(t + 1)−(2+1/2n+1)/2ψn(x, t;−c),

Lemma A.7 implies

|I1[�4(·, ·; −c, ν∗)](x, t)| ≤ C1;n(x, t).

Next, note that (3) and (25) imply

L2θ2 = −∂x (θ
2
2 /2), L2�2 = −∂x (θ

2
1 /2 + θ1�1 + θ2�2),

where L2 = ∂t − c∂x − (ν/2)∂2x . Using these, similar to the bound for ζ1;n in the
proof of Lemma 3.1, we can show that

|I1[θ32 /2 + θ22�2](x, t)| ≤ Cε31;n(x, t).

Combining these, we obtain the lemma. ��
We next show the following:

Lemma 3.8. Let n ≥ 1 and ε = max(M1, M2). If ε is sufficiently small, we have

|Ii [∂xθ2i ′ ](x, t)| ≤ Cε2i;n(x, t).
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Proof. We only prove the lemma for i = 1 (the other case is similar). Applying
Lemma A.1 yields

I1[∂xθ22 ](x, t) = (2c)−1
√
2πν∂xθ

2
2 (x, t) + I1(x, t) + I2(x, t),

where

I1(x, t) =
∫ t1/2

0

∫ ∞

−∞
∂x

{

(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s)

}

∂xθ
2
2 (y, s) dyds

and

I2(x, t) = −(2c)−1
∫ ∞

−∞
(t − t1/2)−1/2e

− (x−y−c(t−√
t))2

2ν(t−√
t) ∂xθ

2
2 (y, t1/2) dy

− (2c)−1
∫ t

t1/2

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) ∂x L2θ
2
2 (y, s) dyds

=:I21(x, t) + I22(x, t).

By Lemmas A.2 and A.3, we obtain

|I1(x, t)| + |I21(x, t)| ≤ Cε2 log(t + 2)�2(x, t; c, ν∗) ≤ Cε21;n(x, t).

For I22(x, t), we apply LemmaA.1 (without the integral on [0, t1/2]), which yields
I22(x, t) = −(2c)−2

√
2πνL2θ

2
2 (x, t) + J2(x, t),

where

J2(x, t) = (2c)−2
∫ ∞

−∞
(t − t1/2)−1/2e

− (x−y−c(t−√
t))2

2ν(t−√
t) L2θ

2
2 (y, t1/2) dy

+ (2c)−2
∫ t

t1/2

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) L2
2θ

2
2 (y, s) dyds

=:J21(x, t) + J22(x, t).

By some tedious calculations, we obtain

L2θ
2
2 = −2∂x (θ

3
2 /3) − ν(∂xθ2)

2

and

L2
2θ

2
2 = ∂2x (θ

4
2 /2) + ν∂x [(∂xθ2)∂xθ22 ] + ν(∂xθ2)∂

2
x θ

2
2 + ν2(∂2x θ2)

2.

Since |L2θ
2
2 (x, t)| ≤ Cε2�4(x, t;−c, ν∗), Lemma A.3 yields

|J21(x, t)| ≤ Cε2�5/2(x, t; c, ν∗) ≤ Cε21;n(x, t).

And since |L2
2θ

2
2 (x, t)| ≤ Cε2�6(x, t;−c, ν∗), Lemma A.4 implies

|J22(x, t)| ≤ Cε2[(x − c(t + 1))2 + (t + 1)]−5/4 ≤ Cε21;n(x, t; c).
This proves the lemma. ��
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Similarly, we can now show the following:

Lemma 3.9. Let n ≥ 1 and ε = max(M1, M2). If ε is sufficiently small, we have

|Ii [∂x (θi ′�i ′)](x, t)| ≤ Cε3i;n(x, t).

We move on to prove the following:

Lemma 3.10. Let n ≥ 1. If δ defined by (12) is sufficiently small, we have

|Ii [θi ′vi ′ ](x, t)| ≤ C(δ + P(t))2i;n(x, t).

Here P(t) is defined by (27).

Proof. We only prove the lemma for i = 1 (the other case is similar). Set f = θ2v2.
Then Lemma A.1 implies

I1[θ2v2](x, t) = (2c)−1
√
2πν f (x, t) + I1(x, t) + I2(x, t),

where

I1(x, t) =
∫ t1/2

0

∫ ∞

−∞
∂x

{

(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s)

}

f (y, s) dyds

and

I2(x, t) = −(2c)−1
∫ ∞

−∞
(t − t1/2)−1/2e

− (x−y−c(t−√
t))2

2ν(t−√
t) f (y, t1/2) dy

− (2c)−1
∫ t

t1/2

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

2ν(t−s) L2 f (y, s) dyds

=:I21(x, t) + I22(x, t).

By Lemmas A.2 and A.3, we obtain

|I1(x, t)| + |I21(x, t)| ≤ CδP(t)�αn+1(x, t; c, ν∗) ≤ CδP(t)1;n(x, t).

To bound I22(x, t), we first note that

L2v2 = L2(u2 − θ2 − �2 − γ1∂xθ1 − γ1∂x�1)

= ν

2
∂2x u1 + ∂xn + ∂x (θ

2
2 /2) + ∂x (θ

2
1 /2 + θ1�1 + θ2�2)

+ γ1∂
2
x (θ

2
1 /2 + 2cθ1) + γ1∂

2
x (θ

2
2 /2 + θ1�1 + θ2�2 + 2c�1)

= ν

2
∂2x (u1 − θ1 − �1) + ∂x (n − n∗) − γ1∂

2
x n∗.

Then set

F = ν

2
∂x (u1 − θ1 − �1) + n − n∗ − γ1∂xn∗

and

G = θ2F − νv2∂xθ2.
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We note that

L2 f = −v2∂x (θ
2
2 /2) + ∂xG − (∂xθ2)F + νv2∂

2
x θ2.

By [10, Theorem 2.6 and Remark 2.8], we have

|∂x (u1 − θ1)(x, t)| ≤ Cδ(t + 1)−1/21;0(x, t), |∂2x u1(x, t)| ≤ Cδ(t + 1)−3/2.2

In addition, applying Taylor’s theorem, we see that

|(n − n∗)(x, t)| ≤ C(δ + P(t))2(t + 1)−1/2[ψn(x, t; c) + ψn(x, t;−c)].

These imply

|G(x, t)| ≤ C(δ + P(t))2(t + 1)−1�αn (x, t;−c, ν∗)

and

|L2 f (x, t) − ∂xG(x, t)| ≤ C(δ + P(t))2(t + 1)−3/2�αn (x, t;−c, ν∗).

Using these and integration by parts, we get

|I22(x, t)| ≤ C(δ + P(t))2
∫ t/2

t1/2

∫ ∞

−∞
(t − s)−1/2e− (x−y−c(t−s))2

C(t−s) (s + 1)−3/2ψn(y, s; −c) dyds

+ C(δ + P(t))2
∫ t

t1/2

∫ ∞

−∞
(t − s)−1e− (x−y−c(t−s))2

C(t−s) (s + 1)−1ψn(y, s; −c) dyds.

Applying Lemmas A.7 and A.9, we obtain

|I22(x, t)| ≤ C(δ + P(t))21;n(x, t).

This proves the lemma. ��
The lemma below can be shown in a similar manner.

Lemma 3.11. Let n ≥ 1. If δ defined by (12) is sufficiently small, we have

|Ii [�2
i ′ ](x, t)| + |Ii [�i ′vi ′ ](x, t)| ≤ C(δ + P(t))3i;n(x, t).

Set

na = − p′′(1)2

8c2
(v − 1)2, nb = −νp′′(1)

4c2
(v − 1)ux , nc = n − na − nb.

(36)

2 The decay estimate for ∂2x u is not explicitly stated in the theorem but is shown in its
proof (see [10, p. 107]). Note that this is where the H6-regularity is used.
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Of course n = na + nn + nc. Correspondingly, set

Ni,a(x, t) =
∫ t

0

∫ ∞

−∞
g∗
i i (x − y, t − s)∂x (na − n∗)(y, s)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
(gi j − g∗

i j )(x − y, t − s)∂xna(y, s) dyds

− γi ′
∫ t

0

∫ ∞

−∞
∂x g

∗
i ′i ′(x − y, t − s)∂xn

∗(y, s)(y, s) dyds,

Ni,b(x, t) =
∫ t

0

∫ ∞

−∞
g∗
i i (x − y, t − s)∂xnb(y, s)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
(gi j − g∗

i j )(x − y, t − s)∂xnb(y, s) dyds,

and

Ni,c(x, t) =
∫ t

0

∫ ∞

−∞
g∗
i i (x − y, t − s)∂xnc(y, s)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
(gi j − g∗

i j )(x − y, t − s)∂xnc(y, s) dyds.

Then Ni (x, t) = Ni,a(x, t) + Ni,b(x, t) + Ni,c(x, t); see (35).
We next prove the following:

Lemma 3.12. Let n ≥ 1. If δ defined by (12) is sufficiently small, we have

|Ni,a(x, t)| ≤ C(δ + P(t))2i;n(x, t).

Proof. Let i = 1 (the case of i = 2 is similar). By integration by parts, we have

N1,a(x, t) =
∫ t

0

∫ ∞

−∞
∂x g

∗
11(x − y, t − s)(na − n∗)(y, s) dyds

+
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)na(y, s) dyds

− γ2

∫ t

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)n∗(y, s) dyds.

By some tedious calculations, we can show that

|(na − n∗)(x, t) − [θ2�1 + γ2∂x (θ
2
2 /2) + γ2∂x (θ2�2) − θ2v2 − �2

2/2 − �2v2](x, t)|
≤ C(δ + P(t))2[(t + 1)−1/2ψn(x, t; c) + (t + 1)−αn/2ψn(x, t;−c)].
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Then Lemmas 3.7–3.11, A.6, and A.7 yield

∣
∣
∣
∣

∫ t

0

∫ ∞

−∞
∂x g

∗
11(x − y, t − s)(na − n∗)(y, s) dyds

∣
∣
∣
∣ ≤ C(δ + P(t))2i;n(x, t).

It remains to show that

|I (x, t)| ≤ C(δ + P(t))21;n(x, t),

where

I (x, t) =
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)na(y, s) dyds

− γ2

∫ t

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)n∗(y, s) dyds.

We define the decomposition I (x, t) = I1(x, t) + I2(x, t) by

I1(x, t) =
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)(na − n∗)(y, s) dyds

and

I2(x, t) =
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)n∗(y, s) dyds

− γ2

∫ t

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)n∗(y, s) dyds.

We first consider I1(x, t). By (32), to show that |I1(x, t)| is bounded by C(δ +
P(t))21;n(x, t), it suffices to prove the same bound for

∫ t

0

∫ ∞

−∞
(t − s)−1(t − s + 1)−1/2e− (x−y−λ j (t−s))2

C(t−s) |(na − n∗)(y, s)| dyds ( j = 1, 2)

and
∫ t

0
e− c2

ν
(t−s)|(na − n∗)(x, s)| ds.

The term corresponding to δ(1)(x) is not needed since q10 = (1/2 −1/2)T . Noting
that

|(na − n∗)(x, t)| ≤ C(δ + P(t))2(t + 1)−1/2[ψn(x, t; c) + ψn(x, t;−c)],

Lemmas A.6, A.7, and A.10 imply the desired bounds for the two integrals above.
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We next consider I2(x, t). We have I2(x, t) = I21(x, t) + I22(x, t) with

I21(x, t) = −
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)(θ21 /2 + θ1�1)(y, s) dyds

+ γ2

∫ t

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)(θ21 /2 + θ1�1)(y, s) dyds

and

I22(x, t) = −
2∑

j=1

∫ t

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)(θ22 /2 + θ2�2) dyds

+ γ2

∫ t

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)(θ22 /2 + θ2�2) dyds.

Taking into account (32) and (33), Lemmas A.6, A.7, and A.10 yield |I21(x, t)| ≤
C(δ + P(t))21;n(x, t) (we divide the domain of temporal integration into [0, t/2]
and [t/2, t] then use integration by parts before applying the lemmas). For I22(x, t),
we proceed as follows: using the technique in the proof of Lemma A.1, we obtain

I22(x, t) = −
2∑

j=1

∫ t1/2

0

∫ ∞

−∞
∂x (g1 j − g∗

1 j )(x − y, t − s)(θ22 /2 + θ2�2)(y, s) dyds

+ γ2

∫ t1/2

0

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)(θ22 /2 + θ2�2)(y, s) dyds

− 1

2c

2∑

j=1

∫ t

t1/2

∫ ∞

−∞
L1(g1 j − g∗

1 j )(x − y, t − s)(θ22 /2 + θ2�2)(y, s) dyds

+ ν

4c

∫ t

t1/2

∫ ∞

−∞
∂2x g

∗
22(x − y, t − s)(θ22 /2 + θ2�2)(y, s) dyds

+ 1

2c

2∑

j=1

∫ t

t1/2

∫ ∞

−∞
(g1 j − g∗

1 j )(x − y, t − s)L2(θ
2
2 /2 + θ2�2)(y, s) dyds

+ 1

2c

2∑

j=1

∫ ∞

−∞
(g1 j − g∗

1 j )(x − y, t − t1/2)(θ22 /2 + θ2�2)(y, t
1/2) dyds,

where Li = ∂t + λi∂x − (ν/2)∂2x . Here we used limt→0(g1 j − g∗
1 j )(x, t) = 0.

The sum of the first two terms on the right-hand side can be bounded using Lem-
mas A.6, A.8, and A.10; the sum of the third and the fourth term can be bounded
using Lemmas A.6, A.7, A.10, and the relation

L1(g1 j − g∗
1 j ) = (ν/2)∂2x g2 j .

To bound the sum of the fifth and the sixth term, noting that

|L2(θ
2
2 /2 + θ2�2)(x, t)| ≤ Cδ2�4(x, t;−c, ν∗),
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it suffices to show that the following integrals are boundedbyC(δ+P(t))21;n(x, t):

A(x, t) =
∫ t

t1/2

∫ ∞

−∞
(t − s)−1/2(t − s + 1)−1/2e− (x−y−c(t−s))2

C(t−s) �4(y, s; −c, ν∗) dyds,

B(x, t) =
∫ ∞

−∞
(t − t1/2)−1e

− (x−y−c(t−√
t))2

C(t−√
t) �2(y, t

1/2; −c, ν∗) dy,

C(x, t) =
∫ t

t1/2

∫ ∞

−∞
(t − s)−1(t − s + 1)−1/2e− (x−y+c(t−s))2

C(t−s) �4(y, s; −c, ν∗) dyds,

D(x, t) =
∫ ∞

−∞
(t − t1/2)−1(t − t1/2 + 1)−1/2e

− (x−y+c(t−√
t))2

C(t−√
t) �2(y, t

1/2;−c, ν∗) dy,

and

E(x, t) =
∫ t

t1/2

∫ ∞

−∞
∂x g

∗
22(x − y, t − s)L2(θ

2
2 /2 + θ2�2)(y, s) dyds

+
∫ ∞

−∞
∂x g

∗
22(x − y, t − t1/2)(θ22 /2 + θ2�2)(y, t

1/2) dy.

We can bound A(x, t) using Lemma A.4, B(x, t) and D(x, t) by Lemma A.3,
and C(x, t) by Lemma A.6. Finally, we consider E(x, t). Taking into account
L2g∗

22 = 0 and limt→0 ∂x g∗
22(x − y, t) = δ(1)(x − y), integration by parts applied

to the operator L2 yields

E(x, t) =
∫ ∞

−∞
δ(1)(x − y)(θ22 /2 + θ2�2)(y, t) dy = ∂x (θ

2
2 /2 + θ2�2)(x, t).

Hence |E(x, t)| ≤ C(δ + P(t))21;n(x, t). This ends the proof of the lemma. ��
The lemma below can be proved similarly. Note thatNi,b(x, t) is related to the

nonlinear term (v − 1)ux as opposed to (v − 1)2 for Ni,a(x, t); see (36). As in
the bound of Ni,a(x, t), the term (v − 1) is dealt with the inequality |vi (x, s)| ≤
P(t)i;n(x, s) (0 ≤ s ≤ t); on the other hand, the first derivative ux is handled
using [10, Theorem 2.6 and Remark 2.8] as in the proof of Lemma 3.10. The term
Ni,c(x, t) can be handled in a similar manner.

Lemma 3.13. Let n ≥ 1. If δ defined by (12) is sufficiently small, we have

|Ni,b(x, t)| + |Ni,c(x, t)| ≤ C(δ + P(t))2i;n(x, t).

Combining Lemmas 3.12 and 3.13, the proof of Lemma 3.6 is complete.

3.2.4. Final Step of the Proof The remaining step of the proof is standard. By
Lemma 3.5 and 3.6, we obtain

P(t) ≤ Cδ + C(δ + P(t))2 ≤ C1δ + C2P(t)2 (37)

for some C1,C2 > 0. Here P(t) is defined by (27). When δ is sufficiently small,
the line y = p and the parabola y = C1δ + C2 p2 intersect at p = p1 and p2,
where

p1 = 1 − √
1 − 4C1C2δ

2C2
, p2 = 1 + √

1 − 4C1C2δ

2C2
.
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Note that C1δ ≤ p1 < p2. By (37), we either have P(t) ≤ p1 or P(t) ≥ p2. Since
P(t) is continuous in t , if P(0) ≤ p1, then P(t) ≤ p1 for all t ≥ 0. By (12), taking
C1 sufficiently large, we indeed have P(0) ≤ C1δ ≤ p1. Therefore, we conclude
that

P(t) ≤ p1 ≤ 1 − (1 − 4C1C2δ)

2C2
≤ 2C1δ.

This ends the proof of Theorem 2.1.
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Appendix A. Lemmas on Convolutions Involving a Heat Kernel

Lemma A.1. Suppose that f = f (x, t) is a C2-smooth function on R× (0,∞). Let λ �= λ′
and ν > 0, and set Lλ′ = ∂t + λ′∂x − (ν/2)∂2x . Then for t ≥ 1, the function I (x, t) defined
by

I (x, t) =
∫ t

0

∫ ∞
−∞

(t − s)−1/2e−
(x−y−λ(t−s))2

2ν(t−s) ∂x f (y, s) dyds

can be written as

I (x, t) = (λ − λ′)−1√2πν f (x, t) + I1(x, t) + I2(x, t),

where

I1(x, t) =
∫ t1/2

0

∫ ∞
−∞

(t − s)−1/2e−
(x−y−λ(t−s))2

2ν(t−s) ∂x f (y, s) dyds

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and

I2(x, t) = −(λ − λ′)−1
∫ ∞
−∞

(t − t1/2)−1/2e
− (x−y−λ(t−√

t))2

2ν(t−√
t) f (y, t1/2) dy

− (λ − λ′)−1
∫ t

t1/2

∫ ∞
−∞

(t − s)−1/2e−
(x−y−λ(t−s))2

2ν(t−s) Lλ′ f (y, s) dyds.

Proof. Let

gλ(x, t) = t−1/2e−
(x−λt)2

2νt .

Dividing the domain of temporal integration, we get

I (x, t) =
∫ t1/2

0

∫ ∞
−∞

gλ(x − y, t − s)∂x f (y, s) dyds

+
∫ t

t1/2

∫ ∞
−∞

gλ(x − y, t − s)∂x f (y, s) dyds.

The first term on the right-hand side is I1(x, t). For the second term, integration by parts
yields

∫ t

t1/2

∫ ∞

−∞
gλ(x − y, t − s)∂x f (y, s) dyds

= −(λ − λ′)−1
∫ t

t1/2

∫ ∞

−∞
gλ(x − y, t − s)

· [−∂s + ∂s − λ∂y + λ′∂y + (ν/2)∂2y − (ν/2)∂2y ] f (y, s) dyds

= (λ − λ′)−1
∫ t

t1/2

∫ ∞

−∞
Lλgλ(x − y, t − s) f (y, s) dyds

− (λ − λ′)−1
∫ t

t1/2

∫ ∞

−∞
gλ(x − y, t − s)Lλ′ f (y, s) dyds

+ (λ − λ′)−1
√
2πν f (x, t) − (λ − λ′)−1

∫ ∞

−∞
gλ(x − y, t − t1/2) f (x, t1/2) dyds,

where Lλ = ∂s +λ∂y − (ν/2)∂2y . Here we used lims→t gλ(x − y, t − s) = √
2πνδ(x − y).

The lemma follows from the equality above by noting that Lλgλ = 0. ��

In the lemmas below, C and ν∗ denote generic large constants. We remind the reader that
�α(x, t; λ, μ) is defined by (13).

Lemma A.2. Let λ �= λ′, μ > 0, and 0 < α ≤ 3. Then we have

∫ t1/2

0

∫ ∞
−∞

(t − s)−1e−
(x−y−λ(t−s))2

μ(t−s) �α(y, s; λ′, μ) dyds

≤
{
C�(α+1)/2(x, t; λ, ν∗) ifα �= 3,
C log(t + 2)�(α+1)/2(x, t; λ, ν∗) ifα = 3.

Proof. See the analysis of I1(x, t) in the proof of [10, Lemma 3.4]. ��
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Lemma A.3. Let λ, λ′ ∈ R, μ > 0, and α > 0 (not necesarily λ �= λ′). Then for t ≥ 1, we
have

∫ ∞
−∞

e
− (x−y−λ(t−√

t))2

μ(t−√
t) �α(y, t1/2; λ′, μ) dyds ≤ C�(α−1)/2(x, t; λ, ν∗).

Proof. See the analysis of I21(x, t) in the proof of [10, Lemma 3.4]. ��
Lemma A.4. Let λ �= λ′, μ > 0, and α > 1. Then we have

∫ t

t1/2

∫ ∞
−∞

(t − s)−1/2e−
(x−y−λ(t−s))2

μ(t−s) �α(y, s; λ′, μ) dyds

≤ C[(x − λ(t + 1))2 + (t + 1)]−(α−1)/4.

Proof. See the analysis of I (1)22 (x, t) in the proof of [10, Lemma 3.4]. ��
Lemma A.5. ([10, Lemma 3.2]) Let λ ∈ R, μ > 0, α ≥ 0, and β > 0. Then we have

∫ t/2

0

∫ ∞
−∞

(t − s)−1(t + 1 − s)−α/2e−
(x−y−λ(t−s))2

μ(t−s) �β(y, s; λ,μ) dyds

≤
{
C�γ (x, t; λ, ν∗) if β �= 3,
C log(t + 2)�γ (x, t; λ, ν∗) if β = 3,

where γ = α + min(β, 3) − 1. We also have

∫ t

t/2

∫ ∞
−∞

(t − s)−1(t + 1 − s)−α/2e−
(x−y−λ(t−s))2

μ(t−s) �β(y, s; λ, μ) dyds

≤
{
C�γ (x, t; λ, ν∗) if α �= 1,
C log(t + 2)�γ (x, t; λ, ν∗) if α = 1,

where γ = min(α, 1) + β − 1.

We remind the reader that ψn(x, t; λ) is defined in (8).

Lemma A.6. Let λ ∈ R, μ > 0, and α, β ≥ 0. Then we have

∫ t/2

0

∫ ∞
−∞

(t − s)−1(t + 1 − s)−α/2e−
(x−y−λ(t−s))2

μ(t−s) (s + 1)−β/2ψn(y, s; λ) dyds

≤
{
C(t + 1)−γ1/2ψn(x, t; λ) if β �= 3 − αn,

C log(t + 2)(t + 1)−γ1/2ψn(x, t; λ) if β = 3 − αn,

where γ1 = α + min(β, 3 − αn) − 1. We also have

∫ t

t/2

∫ ∞
−∞

(t − s)−1(t + 1 − s)−α/2e−
(x−y−λ(t−s))2

μ(t−s) (s + 1)−β/2ψn(y, s; λ) dyds

≤
{
C(t + 1)−γ2/2ψn(x, t; λ) if α �= 1,
C log(t + 2)(t + 1)−γ2/2ψn(x, t; λ) if α = 1,

where γ2 = min(α, 1) + β − 1.

Proof. A straightforward (but lengthy) adaptation of the proof of [7, Lemma A.7] proves
the lemma. ��
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For λ, λ′ ∈ R and K > 0, let

χK (x, t; λ, λ′)
:=char

{
min(λ, λ′)(t + 1) + K

√
t + 1 ≤ x ≤ max(λ, λ′)(t + 1) − K

√
t + 1

}
,

where char{S} is the indicator function of a set S.
Lemma A.7. Let λ �= λ′, μ > 0, α ≥ 0, and 0 ≤ β ≤ 2αn (β �= 2).3 Then for K > 0 large
enough, we have
∫ t/2

0

∫ ∞

−∞
(t − s)−1(t + 1 − s)−α/2e− (x−y−λ(t−s))2

μ(t−s) (s + 1)−β/2ψn(y, s; λ′) dyds

≤
{
C[(t + 1)−γ1/2ψn(x, t; λ) + (t + 1)−γ ′

1/2ψn(x, t; λ′)] if β �= 3 − αn

C[log(t + 2)(t + 1)−γ1/2ψn(x, t; λ) + (t + 1)−γ ′
1/2ψn(x, t; λ′)] if β = 3 − αn

+ C |x − λ(t + 1)|−(αn+min(β,αn+1)−1)/2|x − λ′(t + 1)|−α/2−1/2χK (x, t; λ, λ′),

where γ1 = α + min(β, 3 − αn) − 1 and γ ′
1 = α + min(β, 2) − 1. We also have

∫ t

t/2

∫ ∞
−∞

(t − s)−1(t + 1 − s)−α/2e−
(x−y−λ(t−s))2

μ(t−s) (s + 1)−β/2ψn(y, s; λ′) dyds

≤
{
C(t + 1)−γ2/2[ψn(x, t; λ) + ψn(x, t; λ′)] if α �= 1
C log(t + 2)(t + 1)−γ2/2[ψn(x, t; λ) + ψn(x, t; λ′)] if α = 1

+ C |x − λ(t + 1)|−(αn+β−1)/2|x − λ′(t + 1)|−min(α,1)/2−1/2χK (x, t; λ, λ′),
where γ2 = min(α, 1) + β − 1.

Proof. This is also proved by an adaptation of the proof of [7, Lemma A.8]. ��
Lemma A.8. Let λ �= λ′, μ > 0, α ≥ 0, and 0 ≤ β < 3 − αn. Then we have

∫ t1/2

0

∫ ∞
−∞

(t − s)−1−αe−
(x−y−λ(t−s))2

μ(t−s) (s + 1)−β/2ψn(y, s; λ′) dyds

≤ C(t + 1)−α−(β−αn+1)/4ψn(x, t; λ).

Proof. This is a simple generalization of [7, Lemma A.2]. ��
Lemma A.9. Let λ �= λ′, μ > 0, and α ≥ 0. Then for t ≥ 4, we have

∫ t/2

t1/2

∫ ∞
−∞

(t − s)−1/2−αe−
(x−y−λ(t−s))2

μ(t−s) (s + 1)−βn+1ψn(y, s; λ′) dyds

≤ C(t + 1)−αψn(x, t; λ).

Proof. A simple adaptation of the proof of [7, Lemma A.6] proves the lemma. ��
Lemma A.10. Let λ ∈ R, μ > 0, and α ≥ 0. Then

∫ t

0
e−

t−s
μ (s + 1)−αψn(x, s; λ) ds ≤ C(t + 1)−αψn(x, t; λ).

Proof. The lemma can be proved by slightly modifying the proof of [10, Lemma 3.9].
��

3 The case of β = 2 is excluded just for simplicity.
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12. Van Baalen, G., Popović, N., Wayne, E.: Long tails in the long-time asymptotics of
quasi-linear hyperbolic-parabolic systems of conservation laws. SIAM J. Math. Anal.
39, 1951–1977, 2008

13. Wang, W., Yang, T.: Pointwise estimates and L p convergence rates to diffusion waves
for p-system with damping. J. Differ. Equ. 187, 310–336, 2003

14. Zeng, Y.: L1 asymptotic behavior of compressible, isentropic, viscous 1-D flow. Com-
mun. Pure Appl. Math. 47, 1053–1082, 1994

15. Zeng, Y., Chen, J.: Pointwise time asymptotic behavior of solutions to a general class
of hyperbolic balance laws. J. Differ. Equ. 260, 6745–6786, 2016

Kai Koike
Department of Mathematics,
Tokyo Institute of Technology,

Tokyo
152-8551 Japan.

e-mail: koike.k@math.titech.ac.jp

(Received November 26, 2022 / Accepted July 27, 2023)
Published online August 17, 2023

© The Author(s) (2023)

https://doi.org/10.1007/s00021-022-00732-0

	Time-Asymptotic Expansion with Pointwise Remainder Estimates for 1D Viscous Compressible Flow
	Abstract
	1 Introduction
	2 Main Results
	2.1 Higher-Order Diffusion Waves
	2.2 Time-Asymptotic Expansion with Pointwise Remainder Estimates

	3 Proof
	3.1 Pointwise Estimates of the Higher-Order Diffusion Waves
	3.2 Proof of Theorem 2.1
	3.2.1 Pointwise Estimates of Green's Function and Integral Equations
	3.2.2 Contribution from the Initial Data
	3.2.3 Contribution from the Nonlinear Terms
	3.2.4 Final Step of the Proof


	Acknowledgements.
	References




