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Abstract

We study needle formation at martensite/martensite macro interfaces in shape-
memory alloys. We characterize the scaling of the energy in terms of the needle
tapering length and the transformation strain, both in geometrically linear and in
finite elasticity.We find that linearized elasticity is unable to predict the value of the
tapering length, as the energy tends to zero with needle length tending to infinity.
Finite elasticity shows that the optimal tapering length is inversely proportional to
the order parameter, in agreement with previous numerical simulations. The upper
bound in the scaling law is obtained by explicit constructions. The lower bound is
obtained using rigidity arguments, and as an important intermediate step we show
that the Friesecke–James–Müller geometric rigidity estimate holds with a uniform
constant for uniformly Lipschitz domains.

1. Introduction

Shape-memory materials are special alloys that undergo a diffusionless solid-
solid phase transformation upon a change of temperature or stress. During nucle-
ation, complex microstructures emerge, and these microscopic patterns seem to be
closely linked to macroscopic properties of the materials [3,9,32]. The patterns are
usually modeled in the framework of the phenomenological theory of martensite
[6], based on finite or linearized elasticity. The linearized theory is widely used
and has been proven to arise naturally as �-limit of the nonlinear theory for small
displacements [26]. While the linearized theory often provides a good approxima-
tion to the physical (nonlinear) setting, several mathematical results indicate that in
various situations the linear theory can lead to qualitatively different predictions,
see e.g. [3,4,10,16,20,24].
During nucleation of martensite in an austenitic matrix, various interfaces between
austenite and martensite or between different martensitic variants are formed. We
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Fig. 1. Left: Experimental (high-resolution transmission electron microscopy) image of
needles in the Ni65Al35 shape-memory alloy, from Boullay, Schryvers and Kohn [12,
Fig. 5]. Right: Experimental (opticalmicroscopywith polarized light) image of needles in the
Cu14Al3.9Ni shape-memory alloy, courtesy of Chu and James [18,19]. The two pictures
show a similar phenomenon at very different length scales, of the order of a few nanometers
on the left, and of a fraction of a millimeter on the right

focus on interfaces between different regions of laminated martensites, so called
martensite/martensite macrotwins. At such interfaces, one often observes needle-
type microstructures, i.e., laminates where the minority variant drops out at the
interface (see Fig. 1 and [12]). We point out that in many experiments, the needles
show a more complex topological structure, and in particular branch close to the
interface. This leads to different mathematical challenges [13,35,36], but we will
focus here on simple needle structures as sketched in Fig. 2.

The mathematical treatment of such structures within the framework of the phe-
nomenological theory started with the work in [11,12,34,47,48]. In [12], the au-
thors used a static variational model based on linearized elasticity and were able to
predict the bending angle at which the needle meets the interface, in terms of the
measured tapering length of the needle. We point out that the authors here did not
intend to make predictions on the tapering length from the theory. Related prob-
lems of optimal needle shapes near martensite/martensite or martensite/austenite
interfaces have since then been studied extensively, both in the analytical and the
numerical literature, see e.g. [11,15,21,22,29,39–41,43,46–49]. In many numer-
ical simulations, it has been observed that numerical schemes with geometrically
linearized elastic energies are unstable or do not reproduce the experimental results
while geometrically nonlinear models appear more appropriate.

We follow here the recent approach from the numerical study in [21]. We aim at
a better understanding of the length scale of such needle structures, in particular
the tapering length. To determine this length in terms of the material parameters, a
shape optimization problem for the parametrized needle shape is considered.

Let us finally comment on some simplifications that have been proposed in the
literature. The most popular simplification is the linearization of the elastic energy
(see, e.g., [12]). In this note, we will underline the numerical findings from [21]
that the linearized theory is not appropriate to determine the tapering length. More
precisely, we show (see Theorem 3.1) that for any energy-minimizing sequence in
the geometrically linearized setting, the tapering lengths tend to infinity. This is in
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Fig. 2. Sketch of the geometry. The right picture is based on data from the numerical simu-
lation in [21]

Fig. 3. Sketch of the geometry around a martensite/twinned martensite interface. This ge-
ometry is often called a macrotwin

accordance with several other numerical findings in which it was observed that the
geometrically linear model does not yield the expected results (see [21,29,43]).
In [51,52], a relatedproblemofneedle-typemicrostructures near austenite/martensite
interfaces has been investigated. There, the situation is simplified by assuming con-
stant gradient in the very thin needles. Although one does not expect a large contri-
bution to the elastic energy from these small domains, our analysis here indicates
that the optimal energy scaling is not preserved under this simplification. Indeed, a
significant effect seems to come from rotations at rather large angles (comparable
to the shear in the variants).

Let us start with a brief qualitative explanation of the relevant effects. We work
in two dimensions, and denote the eigenstrains of the two martensitic variants by

Aδ =
(
1 δ

0 1

)
, Bδ =

(
1 −δ

0 1

)
. (1.1)

We start from the large-scale picture, as summarized in Fig. 2 and 3. On the far right
there is a laminate between Aδ and Bδ , with volume fraction θ ∈ (0, 1); its average
deformation is F := θ Aδ + (1 − θ)Bδ . On the left of the macro interface we have
only variant Aδ , but with a different rotation Q∗ ∈ SO(2). Compatibility of the
macro interface implies that Q∗Aδ − F is rank-one, and the orientation eθ,δ of the
macro interface is characterized by the condition (Q∗Aδ − F)eθ,δ = 0. This fixes
both Q∗ ∈ SO(2) and eθ,δ as functions of θ and δ, details are given in Lemma 2.1
below (see also Fig. 2). As Q∗ �= Id, the two regions in the Aδ variant are not
rank-one compatible, rank(Aδ − Q∗Aδ) = 2.

In the geometry of Fig. 2, needles are structures by which the volume fraction
of the Aδ phase varies from 0 close to the macro interface to the asymptotic value θ

at large x1. For this qualitative discussion we use non-orthogonal coordinates and
assume that x1 = 0 corresponds to the macro interface. The entire construction is
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affine-periodic in the direction of the macro interface, with a periodicity condition
given by themacroscopic deformation on the left, u(x+eθ,δ) = Q∗Aδeθ,δ = Feθ,δ .
For definiteness, let us assume that the period is 1, and denote by � > 0 the charac-
teristic length scale in the x1 direction. Given these boundary conditions, one then
determines the optimal deformation by minimizing the total elastic energy jointly
over the elastic deformation u and the shape of the interfaces, see Fig. 2 for the
result in a specific situation. The precise functionals we minimize are introduced
below, and given in (3.9) in the geometrically linear case, and in (4.12) for the
geometrically nonlinear one. For simplicity, in this introduction we do not include
a description of the detailed shape of the interfaces, but only a simplified character-
ization, based on volume fractions at fixed x1. For any x1, let a(x1) be the volume
fraction (averaged over one period) of the Aδ phase at given x1; correspondingly
b(x1) for the Bδ phase. Obviously, a(x1)+b(x1) = 1 for all x1, and by the boundary
conditions a(0) = 0, whereas a(x1) ∼ θ and b(x1) ∼ (1 − θ) for x1 � �.

If no rotation is present, and the energy is exactly zero, we necessarily have that
∂2u1 = δ in phase Aδ , and −δ in phase Bδ . The vertical average of ∂2u1 over one
period is then (a − b)δ, which matches the periodicity requirement only if a = θ

and b = 1 − θ . We next include infinitesimal rotations in the picture, assuming
that the rotation angle depends on x1 but not on x2. In particular, if β(x1) is the
average lattice rotation angle at given x1, then one has ∂2u1 = δ + β in the Aδ

and ∂2u1 = −δ + β in the Bδ phase, with ∂1u2 = −β everywhere. Equating the
vertical average to the one required by the periodicity leads to

(a(x1) − b(x1))δ + β(x1) = (2θ − 1)δ. (1.2)

This relation between tapering profile and rotation was first studied in [12], it
permits in particular to express β in terms of a and b. Treating the individual layers
as elastic plates, we see that the change in lattice rotation β ′(x1) generates a bending
energy depending on the curvature, and proportional to

∫ �

0

(
d

dx1
β(x1)

)2

dx1. (1.3)

Inserting the previous expression for β leads to minimizing

δ2
∫ �

0
(a′ − b′)2dx1, (1.4)

which yields, naturally, a(x1) = 1 − b(x1) � θx1/� for x1 ∈ (0, �). Therefore
the total energy is proportional to δ2θ2/�, and the optimal value for � is ∞ (see
Theorem 3.1 below for a precise statement). The geometrically linear model is
unable to predict a finite length scale.

In finite elasticity, one considers an energy density which behaves as

min
R∈SO(2)

|∇u − RAδ|2 = dist2(∇u,SO(2)Aδ) ∼ dist2(∇uA−1
δ ,SO(2)) (1.5)
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in the Aδ phase, and similarly in the Bδ phase (see below, and (4.12) in particular,
for a precise definition) [5,8,44]. A new term enters the picture in the product RAδ .
Indeed, in

Rβ Aδ =
(

cosβ sin β

− sin β cosβ

)(
1 δ

0 1

)
=

(
cosβ δ cosβ + sin β

− sin β cosβ − δ sin β

)
(1.6)

(and the samewith Bδ) there aremore nontrivial entries than in the previous descrip-
tion based on linear elasticity. The ∂2u1 term, similarly to (1.2) above, prescribes
β(x1) in terms of a(x1) − b(x1); the ∂1u1 and ∂1u2 terms are not important for
the same reason as above. However, periodicity requires ∂2u2 to have average 1,
so that |∂2u2 − (Rβ Aδ)22| ∼ 1

2β
2 + δβ. The total energy density is then of order

β ′2 + β2δ2, and balancing terms one obtains that the characteristic length scale is
� ∼ 1/δ. We refer to Proposition 4.3 below for a precise construction. As in (1.2)
we have β ∼ δθ , and therefore this results in a total energy scaling as θ2δ3, as
specified in Theorem 4.2 below.

These results are made precise below.We first formulate a precise mathematical
model for the needle geometry following [21,34,51], with boundary conditions
that fix the long-range structure and the topology but leave the shape of the domain
boundaries free. The key assumptions are affine-periodic boundary conditions along
themacro interface, a boundary data corresponding to a laminate at large x1, and the
fact that the phase boundaries are Lipschitz functions. We then provide, separately
in the linear and in the nonlinear case, explicit upper-bound constructions which
make the above arguments rigorous. We finally show that these constructions are,
up to universal factors, optimal, by providing corresponding lower bounds on the
energy. This involves minimizing not only over the elastic deformation, but also
over the phase interfaces, and hence over the shape of the domains of the different
phases. We present in Sect. 2 the model, in Sect. 3 the linear results, and in Sect. 4
the nonlinear results.

One important difficulty in proving the lower bound is that one has to deal with
Sobolev functions on varying domains. Our argument in particular uses a trace
theorem, a Poincaré inequality, and a geometric rigidity inequality with constants
which are uniform for uniformly Lipschitz domains. Whereas the first two are
already present in the literature, the geometric rigidity estimate has, to the best of
our knowledge, up to now only been provenwith domain-dependent constants, even
if uniformity of the constant for certain classes of domains has been formulated
in the literature without explicit proof (for example, [2, Prop. 1]), and used in the
study of microstructures near austenite/martensite interfaces (see e.g. [51,52]). We
provide in Sect. 5 a full proof of the uniform geometric rigidity inequality for a
general class of domains, which we believe to be of independent interest. The key
ingredient is a uniform weighted Poincaré inequality, which also permits to easily
obtain as byproducts uniform trace and Poincaré estimates.

2. Kinematics and Reduction to a 2D Problem

We describe the crystallographic situation under consideration (see also [12])
building on the crystallographic theory of martensite (see [6]). We consider a
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macrotwin using two martensitic variants, given by wells SO(3)U1 and SO(3)U2.
We make the standard assumption that the transformation stretch matrices are posi-
tive definite with detU1 = detU2 and nontrivial in the sense thatU1 �∈ SO(3)U2. If
laminates with gradients in the two wells are possible, then the wells are rank-one
connected, i.e., there exist R̃ ∈ SO(3), and non-zero vectors a, n ∈ R

3 such that

R̃U2 −U1 = ã ⊗ ñ.

It is shown in [8] that under these assumptions, we may without loss of generality
(up to a linear change of variables) restrict to matrices of the form

Aδ := Id + δe ⊗ e⊥, and Bδ := Id − δe ⊗ e⊥ (2.1)

for some orthogonal unit vectors e, e⊥ ∈ R
3 with δ > 0. Here, δ > 0 measures the

shear, and we will focus on the case of small and moderate strains, |δ| � 1, and in
particular on the limit δ → 0. While we consider the three-dimensional setting, it
turns out that in our analysis, we may restrict to a two-dimensional simplification
since, as shown in [7], the optimal strains are plane strains, cf. Remark 2.2(iii).
Specifically, we shall work in the plane spanned by e and e⊥, and denote by f ∈ R

3

a unit vector perpendicular to that plane. Following [6], the normals to the laminate
and macrotwin interfaces can be determined from the crystallographic theory of
martensite. For that, we collect the necessary linear algebra results in this section.

2.1. Nonlinear elasticity

In the setting of nonlinear elasticity, the direction of the macro interface is
not orthogonal to the one of the laminate, as illustrated in Fig. 2. We denote the
orientation of the macro interface (in the plane orthogonal to f ) by

eδ,θ := 1√
1 + (δθ)2

(e⊥ − δθe). (2.2)

This expression arises as the unique (up to a sign) nontrivial solution of the rank-
one compatibility condition between SO(3)Aδ and the weighted average θ Aδ +
(1− θ)Bδ . We summarize the relevant algebraic conditions in the next Lemma. All
assertions can be checked by direct computation; see, for example, [5].

Lemma 2.1. Let (e, e⊥, f ) be an orthonormal basis of R3, δ ∈ R\{0}, θ ∈ (0, 1),
and let Aδ and Bδ be the matrices given in (2.1). Then it holds that

(i) Aδ − Bδ = 2δe ⊗ e⊥.
(ii) The equation

QAδ − (θ Aδ + (1 − θ)Bδ) = b ⊗ n, Q ∈ SO(3), b ∈ R
3, n ∈ S2

(2.3)

has four solutions. Two of them are (Id,±(1−θ)2δe,±e⊥), the other two have
the form (Q∗,±b∗,±eδ,θ ), where b∗ ∈ R

3,

e⊥
δ,θ := − e + δθe⊥√

1 + (δθ)2
(2.4)
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and

Q∗ :=1 − δ2(1 − θ)2

1 + δ2(1 − θ)2

(
e ⊗ e + e⊥ ⊗ e⊥)

+ 2δ(1 − θ)

1 + δ2(1 − θ)2

(
e⊥ ⊗ e − e ⊗ e⊥)

+ f ⊗ f.

(2.5)

In particular,

Q∗Aδeδ,θ = (θ Aδ + (1 − θ)Bδ)eδ,θ . (2.6)

(iii) There is a unique R0 ∈ SO(3) such that

Q∗Aδ − R0Bδ = a ⊗ e for some a ∈ R
3. (2.7)

The rotation R0 is given by

R0 = Q∗
(
1 − δ2

1 + δ2

(
e ⊗ e + e⊥ ⊗ e⊥)

+ 2δ

1 + δ2

(
e ⊗ e⊥ − e⊥ ⊗ e

)
+ f ⊗ f

)

= 1 + δ4(1 − θ)2 − δ2(−2 + 2θ + θ2)

(1 + δ2)(1 + δ2(1 − θ)2)
(e ⊗ e + e⊥ ⊗ e⊥) +

+ 2δ(1 + δ2(1 − θ))θ

(1 + δ2)(1 + δ2(1 − θ)2)
(e ⊗ e⊥ − e⊥ ⊗ e) + f ⊗ f. (2.8)

(iv) All matrices act trivially on f , i.e.,

Aδ f = Bδ f = Q∗ f = R0 f = f. (2.9)

In Sect. 4we shall consider amacrotwinwith normal e⊥
δ,θ , and twin plane normal

e⊥ deep in the laminate on the right hand side of the macrotwin, see Fig. 3.

Remark 2.2. (i) It follows from (2.2) that eδ,θ → e⊥ as δ → 0, but eδ,θ �= e⊥ for
finite δ.

(ii) If |δ| and θ are small, then the rotation Q∗ as given in (2.5) is a rotation by
roughly 2δ(1 − θ), while R0 is a rotation by roughly −2δθ . In particular, both
rotations are of order δ.

(iii) Motivated by assertion (iv) ofLemma2.1,wemake the following simplification:
We consider only deformations u satisfying ∇u f = f , and, slightly abusing
notation, we identify the matrices introduced above with their restrictions to
the plane spanned by e and e⊥.

2.2. Linearization

We now turn to the geometrically linearized setting. Precisely, for the small
strain case |δ| � 1, we linearize around the identity and define the strain matrices

Alin := Aδ − Id

δ
= e ⊗ e⊥, Blin := Bδ − Id

δ
= −e ⊗ e⊥. (2.10)

We denote by ξsym := 1
2 (ξ + ξ T ) the symmetric part of a matrix, so that

Alin
sym = 1

2
(e ⊗ e⊥ + e⊥ ⊗ e) and Blin

sym = −1

2
(e ⊗ e⊥ + e⊥ ⊗ e). (2.11)

We note the geometrically linearized compatibility properties.
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Lemma 2.3. Suppose that θ ∈ (0, 1), and let Alin
sym and Blin

sym be given by (2.11).
Then it holds that

(i) Alin
sym − Blin

sym = e ⊗ e⊥ + e⊥ ⊗ e.

(ii) θ Alin
sym + (1 − θ)Blin

sym − Alin
sym = (θ − 1)(e ⊗ e⊥ + e⊥ ⊗ e).

(iii) The equation (Alin
sym − Blin

sym − S)v = 0 has a solution S ∈ R
2×2
skw if and only if

v is parallel to either e or e⊥.

Proof. The proof follows from a direct calculation. ��
In particular, in the geometrically linearized setting, both, the macrotwin and

the laminates can have normals e or e⊥. The main difference to the geometrically
nonlinear setting is that the compatibility plane between the two variants is aligned
with the compatibility plane of the macrotwin.

3. Energy Scaling in the Geometrically Linearized Setting

Following [12], we first consider the geometrically linearized setting. With
the strain matrices Alin

sym and Blin
sym as defined in (2.11), we are led to study the

geometrically linearized shape optimization problem involving the displacement.
We consider a periodic cell of a macrotwin using linearized kinematics (see, e.g.,
[3]) and briefly recall the setting. By Lemma 2.3(i), there are two possible directions
for Alin

sym/Blin
sym laminates, given by the normals e and e⊥. Deep in the twinned region

on the right-hand side of the macrotwin, we choose the twin planes to be parallel
to e, and the macrotwin plane parallel to e⊥. Since we work in an orthogonal
coordinate system, for the ease of notation, we set e1 := e and e2 := e⊥, and for
x ∈ span{e, e⊥} = R

2, we use the notation

x1 := x · e1 = x · e, x2 := x · e2 = x · e⊥, and x = (x1, x2).

We describe the needle by the two confining curves f ± : [0,∞) → R which we
assume to be measurable and satisfy

f − � f + � f − + 1 and f +(0) = f −(0)= 0; (3.1)

see Fig. 4. Note that we do not impose any regularity assumptions on f ± but to
get closer to the experimental results, we could also impose a length or Lipschitz
condition without changing the results, see Remark 3.2(i).

We assume that the displacement v ∈ W 1,2
loc (R2;R2) obeys the periodicity

condition

v(x + e2) − v(x) =
(
θ Alin + (1 − θ)Blin

)
e2 = (−1 + 2θ)e1, (3.2)

and we consider the set

ω̂A := {x ∈ R
2 : x1 � 0} ∪

{
x ∈ R

2 : x1 > 0, x2 ∈
⋃
k∈Z

[
k + f −(x1), k + f +(x1)

)}

(3.3)
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Fig. 4. Sketch of the parametrization of the domain in the geometrically linear setting

and its complement,

ω̂B :=
{
x ∈ R

2 : x1 > 0, x2 ∈
⋃
k∈Z

[
k + f +(x1), k + 1 + f −(x1)

)}
. (3.4)

We further assume that there is � > 0 such that for x1 � � the deformation coincides
with a simple laminate, in the sense that there is η ∈ R such that

f −(x1) = η and f +(x1) = η + θ for x1 � �, (3.5)

and

∇v(x) =
{
Alin, if x ∈ (�,∞) × ∪k∈Z(k + η, k + η + θ),

Blin, if x ∈ (�,∞) × ∪k∈Z(k + η + θ, k + 1 + η).
(3.6)

These conditions characterize the class of admissible configurations

A(�)
lin := {

( f ±, v) : ∃η ∈ R s.t. f ± satisfy (3.1) and

(3.5), v satisfies (3.2) and (3.6)} . (3.7)

As the experimental results indicate that � is large (see Fig. 1), we restrict ourselves
to the case � � 1. By periodicity, for the computation of the energy it suffices to
integrate over one period, and therefore to consider

ωA,B := ω̂A,B ∩ (R × (0, 1)) (3.8)

(alternatively, one could take for x1 > 0 only the k = 0 contribution in (3.3) and
(3.4), by periodicity the two choices are equivalent). The elastic shape optimization
problem is then to minimize

Elin[ f ±, v] :=
∫

ωA

1

2
C(e(v) − Alin

sym) · (e(v) − Alin
sym)dx

+
∫

ωB

1

2
C(e(v) − Blin

sym) · (e(v) − Blin
sym)dx (3.9)
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over A(�)
lin . Note that we minimize with respect to both the configuration given by

f ± and the displacement v. Here we denote the symmetric part of the gradient by
e(v) := 1

2 (∇v + ∇T v), and C represents the elastic modulus which satisfies the
standard boundedness and coercivity properties, i.e. C(ξ − ξ T ) = 0 for all ξ and
there exists α > 0 such that

α|ξsym|2 � Cξ · ξ � 1

α
|ξsym|2 for all ξ ∈ R

2×2. (3.10)

The energy functional (3.9) does not contain any interfacial energy term penalizing
the lengths of the interfaces parametrized by f ±. Typically such terms are necessary
to identify the appropriate length scale on which the twin structures form. In our
setting of a periodic cell, however, it is of higher order as long as the curves are
sufficiently regular.
We find the following scaling law for the minimal energy.

Theorem 3.1. There is a constant c > 0 such that for all θ ∈ (0, 1/2] and all
� � 1, we have

1

c

θ2

�
� inf

{
Elin[ f ±, v] : ( f ±, v) ∈ A(�)

lin

}
� c

θ2

�
.

Remark 3.2. (i) We derive the scaling law for the minimal energy without regu-
larity assumptions on f ± but the upper bound uses only a Lipschitz profile with
Lipschitz constant bounded by one.

(ii) If on the right boundary we impose boundary conditions only on f ± (see (3.1))
but not on the deformation (see (3.6)) then there is no minimizing configuration
and the infimum of the energy is zero. The reason for that is that in the linearized
settingwe can have a strain-free Alin

sym/Blin
sym interface along themacrotwin plane

{x1 = 0} (a fact that will also be used in the proof of the upper bound below).
Precisely, consider for n ∈ N the configuration

f −
n ≡ 0, f +

n (x1) =

⎧⎪⎨
⎪⎩
0, if x1 � � − 1

n ,

θnx1 + θ(1 − n�), if � − 1
n < x1 � �,

θ, if x1 > �,

and displacement vn = v given for x ∈ ωA,B by

v(x) = (2θ − 1)x2e1 +
{
2(1 − θ)x1e2, if x1 � 0,

−2θx1e2, if x1 > 0,

and extended to R
2 via (3.2). Then f ±

n satisfy (3.1) and (3.5) with η = 0,
and v satisfies the periodicity condition (3.2) by construction. Further, v ∈
W 1,∞

loc (R2;R2) with

e(v) =
{
Alin
sym, if x1 < 0,

Blin
sym, if x1 > 0,
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and therefore,

0 � Elin[ f ±
n , v] �

∫ �

�−1/n

∫ f +
n (x1)

0

1

α

∣∣∣Alin
sym − Blin

sym

∣∣∣2 dx2 dx1 � θ

αn
,

which implies that limn→∞ Elin[ f ±
n , vn] = 0.

We note that the sequence of profiles for these competitors does not have uni-
formly bounded Lipschitz constants. If one assumes a bound on the Lipschitz
constants L of f ±, then a respective construction has energy ∼ θ2/L . Hence,
for large �, the construction of the proof of Theorem 3.1 has lower energy.

(iii) The scaling law in Theorem 3.1 implies that the tapering length of needles is
not determined by linearized elasticity. Precisely, setting � = ∞, the infimum
of the energy equals zero, which implies that the optimal tapering length of
the needle in this linearized setting is infinite, contradicting the experimental
findings.

(iv) If one interprets the linearized energy as an approximation to the nonlinear
energy (cf. (2.10)), the resulting energy scaling is δ2θ2/�.

Proof. Upper bound. To prove the upper bound, i.e., the second inequality in the
assertion, we use a special case of the construction from [12, Figure 4], which
makes precise the sketch discussed in the introduction (see (1.2)–(1.4)). We set

f −(x1) := 0, η := 0, and f +(x1) :=
{

θ
�
x1, if x1 ∈ [0, �),

θ, if x1 � �.
(3.11)

Then f ± satisfy (3.1) and (3.5). By periodicity, it suffices to describe the associated
displacement v = (v1, v2) on ωA,B . Consider first x1 � 0. We set

v1(x) :=
{
x2

(
1 − 2θ x1

�
+ 2θ

) − 2θ x1
�

+ 2θ, if 0 � x1 � � and 0 � x2 � θ
�
x1,

− (
2θ

( x1
�

− 1
)
x2 + x2

) + 2θ, if 0 � x1 � � and θx1
�

< x2 � 1,
(3.12)

and

v2(x) := θ

�
x21 − 2θx1 + θ� for 0 � x1 � �. (3.13)

We then extend the displacement constantly in x1, i.e., we set

v(x1, x2) = v(�, x2) for x1 > �.

As v(x1, 1) − v(x1, 0) = (2θ − 1)e1 we can extend it periodically to R
2 using

(3.2). Then v ∈ W 1,2
loc ((0,∞) × R;R2) satisfies (3.2) and (3.6). For the gradients,

we have, inside the needle, i.e., for 0 � x1 � � and 0 � x2 � θx1/� that

∇v(x) = − 2θ

�
(x2 + 1)e1 ⊗ e1 +

(
1 − 2θx1

�
+ 2θ

)
e1 ⊗ e2

+
(
2θx1

�
− 2θ

)
e2 ⊗ e1,
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and thus,

e(v)(x) = Alin
sym − 2θ

�
(x2 + 1)e1 ⊗ e1. (3.14)

Outside the needle for 0 � x1 � � and θx1/� � x2 � 1, we have

∇v(x) = −2θx2
�

e1 ⊗ e1 −
(
2θx1

�
− 2θ + 1

)
e1 ⊗ e2 +

(
2θx1

�
− 2θ

)
e2 ⊗ e1,

and thus,

e(v)(x) = Blin
sym − 2θx2

�
e1 ⊗ e1. (3.15)

For x1 < 0, we extend v such that the elastic energy in {x1 < 0} vanishes. We set

v1(x) := v1(0, x2) = 2θx2 − x2 + 2θ, and

v2(x) := 2(1 − θ)x1 + θ�.

Then e(v) = Alin
sym in {x1 < 0}, v is continuous in R2 and is admissible. By (3.14)

and (3.15), we find that there is a constant (not depending on � or θ ) such that by
(3.10)

Elin[ f ±, v] =
∫

ωA∩{x1>0}
1

2
C(e(v) − Alin

sym) · (e(v) − Alin
sym)dx

+
∫

ωB

1

2
C(e(v) − Blin

sym) · (e(v) − Blin
sym)dx

� c
∫

(0,�)×(0,1)

θ2

�2
dx � c

θ2

�
. (3.16)

This concludes the proof of the upper bound. For later reference we remark that
f + and f − are θ/�-Lipschitz.

Lower bound. Let c̃ > 0 be afixed (small) constant chosen below.Let ( f ±, v) ∈
A(�)

lin be an arbitrary admissible configuration. If the elastic energy on the left hand
side of the interface is large, i.e.,

∫
(−1,0)×(0,1)

|e(v) − Alin
sym|2dx � c̃

θ2

�

then the assertion follows. Hence, from now on, we assume that
∫

(−1,0)×(0,1)
|e(v) − Alin

sym|2dx < c̃
θ2

�
.

Thus, by Korn’s inequality, there exists a constant cK > 0 and an infinitesimal
rotation W := w(e2 ⊗ e1 − e1 ⊗ e2) ∈ R

2×2
skew with some w ∈ R such that

∫
(−1,0)×(0,1)

∣∣∣∇v(x) − Alin − W
∣∣∣2 dx � c̃cK

θ2

�
,
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and hence, in particular,
∫

(−1,0)×(0,1)
|∂2v1 − 1 + w|2dx � c̃cK

θ2

�
.

By Fubini’s theorem and Hölder’s inequality, there exists x∗
1 ∈ (−1, 0) such that

∫ 1

0
|∂2v1(x∗

1 , x2) − 1 + w|dx2 � c̃1/2c1/2K
θ

�1/2
. (3.17)

By (3.2), this implies that

|(−1 + 2θ) − (1 − w)| =
∣∣∣∣
∫ 1

0
∂2v1(x

∗
1 , x2)dx2 − 1 + w

∣∣∣∣ � c̃1/2c1/2K
θ

�1/2
.

(3.18)

We finally note that using Poincaré’s inequality and (3.17), there exists b1 ∈ R

such that ∫ 1

0

∣∣v1(x∗
1 , x2) − (1 − w)x2 − b1

∣∣ dx2 � c̃1/2c1/2K
θ

�1/2
.

With (3.18) we can eliminate w and obtain
∫ 1

0

∣∣v1(x∗
1 , x2) − (2θ − 1)x2 − b1

∣∣ dx2 � 2c̃1/2c1/2K
θ

�1/2
. (3.19)

We now consider the slice at x1 = �. By (3.6) and the condition θ � 1/2,
there exists an interval (t, t + 1/4) ⊂ (0, 1) (depending on η) of length 1/4 such
that ∂2v1(�, ·) = (Blin)12 = −1 and therefore v1(�, x2) = b2 − x2 on this in-
terval. However by (3.19) v1(x∗

1 , x2) is close in L1 to a different affine function
than v1(�, x2). We thus estimate the energy from below with this difference using
Hölder’s and triangle inequality:

Elin[ f ±, v] �
∫

(−1,�)×(0,1)
|∂1v1|2dx �

∫
(x∗

1 ,�)×(t,t+ 1
4 )

|∂1v1|2dx

� 4

�

(∫
(x∗

1 ,�)×(t,t+ 1
4 )

|∂1v1|dx
)2

� 4

�

(∫ t+1/4

t

∣∣∣∣∣
∫ �

x∗
1

∂1v1 dx1

∣∣∣∣∣ dx2
)2

= 4

�

(∫ t+1/4

t

∣∣v1(�, x2) − v1(x
∗
1 , x2)

∣∣ dx2
)2

.

If c̃ > 0 is chosen small enough such that c̃1/2 � 1
128c1/2K

, then, for all � � 1, by

v1(�, x2) = b2 − x2 and (3.19),
∫ t+1/4

t

∣∣v1(�, x2) − v1(x
∗
1 , x2)

∣∣ dx2
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�
∫ t+1/4

t
|b2 − b1 − 2θx2|dx2 −

∫ t+1/4

t
|v1(x∗

1 , x2) − (2θ − 1)x2−b1|dx2

� 1

32
θ − 2(c̃cK )1/2

θ

�1/2
� 1

64
θ,

and hence,

Elin[ f ±, v] � θ2

1024�
.

This concludes the proof of the lower bound. ��
The fact that the minimal energy tends to zero as � → ∞ indicates that we cannot
expect existence of minimizers for the problem on the infinite domain. We show
that this is indeed the case, at least if we prescribe that the phase boundaries are
uniformly Lipschitz.

Proposition 3.3. Let L � 1. Then,

(i) For any � � 1 there exists a minimizer ( f ±, v) of Elin in

B(L ,�)
lin :=

{
( f ±, v) ∈ A(�)

lin : f ± L − Lipschitz
}

.

(ii) For B(L)
lin := ⋃

�>0 B(L ,�)
lin , it holds that

inf
B(L)
lin

Elin = 0,

and there exists no minimizer.

Proof. (i) Let � � 1. By (3.16) we have infB(L ,�)
lin

Elin < ∞. Let ( f ±
n , vn) be a

minimizing sequence. Then by the Lipschitz condition and (3.1), we have a uniform
bound supn ‖ f ±

n ‖C0,1([0,�]) < ∞. ByArzelà-Ascoli, there exists a subsequence (not
relabeled, the same subsequence for f + and f −) such that f ±

n → f ± uniformly
on [0, �], which implies f ±(0) = 0, ( f + − f −)(�) = θ , f − � f + � f − +1, and
f ± ∈ C0,1([0, �]) with Lip( f ±) � L . From boundedness of the energy, we get
that supn ‖e(vn)‖L2((−∞,�)×(0,1)) < ∞. Since the periodicity condition (3.2) fixes
that the average of (∇vn)12 is −1 + 2θ , this implies a bound on the full gradients,
supn ‖∇vn‖L2((a,�)×(0,1)) < ∞ for all a < 0. By adding a constant, we can assume
without restriction that all vn have mean zero over (0, 1)2, and thus by Poincaré’s
inequality, we obtain a subsequence that converges weakly in W 1,2

loc (R2;R2) to an

admissible function v ∈ W 1,2
loc (R2;R2). The boundary condition and the periodicity

condition immediately pass to the limit. It remains to estimate the energy of the
limit. Let ε > 0. Then, by uniform convergence, there exists N ∈ N such that
for all n � N , we have graph( f ±

n )⊂Bε( f ±) := {x ∈ R
2 : dist(x, graph( f +) ∪

graph( f −)) < ε}. Then, by lower semicontinuity,

lim inf
n→∞

∫
ω

(n)
A

1

2
C(e(vn) − Alin

sym) · (e(vn) − Alin
sym)dx
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� lim inf
n→∞

∫
ω

(n)
A \Bε( f ±)

1

2
C(e(vn) − Alin

sym) · (e(vn) − Alin
sym)dx

�
∫

ωA\Bε( f ±)

1

2
C(e(v) − Alin

sym) · (e(v) − Alin
sym)dx,

and analogously in ω
(n)
B . Taking ε → 0, the assertion follows.

(ii) By the upper bound of Theorem 3.1, we obtain for � → ∞ a sequence
( f ±

� , v�) ∈ B(L ,�)
lin such that lim�→∞ Elin[ f ±

� , v�] = 0. On the other hand, let

( f ±, v) ∈ B(L)
lin . Then there exists � > 0 such that ( f ±, v) ∈ B(L ,�)

lin , and by the
lower bound of Theorem 3.1, Elin[ f ±, v] > 0. ��

4. Energy Scaling in the Geometrically Nonlinear Setting

It appears that in the geometrically nonlinear setting, the qualitative behavior
of the minimal energy is rather different. On a technical level, the main difference
seems to be that the macrotwin habit plane eδ,θ is not parallel to a plane of com-
patibility of the two wells e⊥. Recall that this property was in particular used to
extend the test function in the upper bound of Theorem 3.1 with vanishing energy
to the left-hand side of the interface.

We first introduce the setting, using the notation from Lemma 2.1. As in Sect. 3,
we assumewithout loss of generality e := e1 and e⊥ = e2.We recall the definitions

eδ,θ := 1√
1 + (δθ)2

(e2 − δθe1), e⊥
δ,θ := − 1√

1 + (δθ)2
(e1 + δθe2). (4.1)

We shall impose the following periodicity condition on admissible deformations:

u(x + eδ,θ ) = u(x) + (θ Aδ + (1 − θ)Bδ)eδ,θ for all x∈ R
2. (4.2)

To parametrize the needle shapes, let f ± : [0,∞) → R be measurable and such
that

f − � f + � f − + 1 and f +(0) = f −(0) = 0. (4.3)

(Later on, we will assume that they are L-Lipschitz.)
The periodicity condition (4.2) suggests that we use the non-orthogonal coor-

dinates introduced by the macrotwin, see Fig. 2. We define the linear map Tδ,θ :
R
2 → R

2 by
Tδ,θ := (eδ,θ · e2)e1 ⊗ e1 + eδ,θ ⊗ e2. (4.4)

We also define d, g : R2 → R by

d(x) := x · e2
eδ,θ · e2 = e2 ·T−1

δ,θ (x), g(x) := − x · e⊥
δ,θ

(eδ,θ · e2)2 = e1 · T−1
δ,θ (x), (4.5)

which is equivalent to
T−1

δ,θ (x) = g(x)e1 + d(x)e2. (4.6)
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Note that d(e1) = 0 and d(eδ,θ ) = 1, so that we can use �d(x)� ∈ Z to label the
cell of periodicity that contains x . In turn, g(x) denotes the coordinate along the
needle, which corresponds to x1 in the geometrically linear setting. We set

ω̂A :={x ∈ R
2 : x · e⊥

δ,θ � 0}∪

∪
{
x ∈ R

2 : x · e⊥
δ,θ < 0, d(x) ∈

⋃
k∈Z

[
k + f −(g(x)), k + f +(g(x))

)}

=Tδ,θ

{
y ∈ R

2 : y1 � 0 or y1 > 0 and y2 ∈
⋃
k∈Z

[
k + f −(y1), k + f +(y1)

)}

(4.7)
and

ω̂B := R
2 \ ω̂A. (4.8)

By periodicity, for the computation of the energy it suffices to integrate over one
period, and therefore to consider the sets

ωA,B := ω̂A,B ∩
{
x ∈ R

2 : d(x) ∈ (0, 1)
}

= Tδ,θ (R × (0, 1)). (4.9)

The class of admissible configurations is given by

Anl :=
{
( f ±, u) : f ± : R → R satisfy (4.3), u ∈ W 1,2

loc (R2;R2) satisfies (4.2)
}

.(4.10)

Note that it depends implicitly on δ and θ via (4.2). For L > 0 we further set

AL
nl := {( f ±, u) ∈ Anl : f ± are L − Lipschitz}. (4.11)

The resulting variational problem then is tominimize over this set the functional

Enl[ f ±, u] :=
∫

ωA

W (∇uA−1
δ )dx +

∫
ωB

W (∇uB−1
δ )dx . (4.12)

Here, W : R3×3 → [0,∞) is a typical nonlinear elastic energy density satisfying

1

cW
dist2(F,SO(2)) � W (F) = W (RF) � cW dist2(F,SO(2))

for all R ∈ SO(2) and F ∈ R
2×2,

(4.13)

with some constant cW > 0.

Remark 4.1. Note that in contrast to the geometrically linearized setting, we do
not assign boundary conditions for the deformation deep in the laminate.

Theorem 4.2. For every L � 1 there are constants cL > 0 and δ0 > 0 such that
for all θ ∈ (0, 1/2] and all δ ∈ (−δ0, δ0), we have

1

cL
|δ|3θ2 � inf{Enl[ f ±, u] : ( f ±, u) ∈ AL

nl} � cL |δ|3θ2.
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There is c f > 0 such that, if δ �= 0, the same holds if one imposes that, for
x1 � c f |δ|−1,

f −(x1) = 0, f +(x1) = θ, ∇u(x) =
{
Aδ, if d(x) ∈ (0, θ),

Bδ, if d(x) ∈ (θ, 1).
(4.14)

Proof. Theupper bound follows fromProposition 4.3, the lower bound fromPropo-
sition 4.9. ��

4.1. Upper Bound

Proposition 4.3. There exists a constant c > 0 such that for every δ ∈ [−1, 1] and
θ ∈ (0, 1

2 ] there are ( f ±, u) ∈ A1
nl such that

Enl[ f ±, u] � c|δ|3θ2.
The functions ( f ±, u) obey (4.14) for x1 � c f |δ|−1 for some universal c f > 0
(provided δ �= 0).

Proof. For δ = 0, we have Aδ = Bδ = Id, and an affine function u(x) = x has
vanishing energy, with f + = f − = 0. Consider now δ �= 0. Let Q∗ be as in
Lemma 2.1. Left of the interface, in {g(x) � 0} = {x · e⊥

δ,θ � 0}, we set
u(x) := Q∗Aδx .

Note that by (2.6), this definition satisfies the periodicity condition (4.2). Set

f −(t) := 0 for all t � 0, (4.15)

and let f + : [0,∞) → [0, 1) be a 1-Lipschitz function with f (0) = 0, to be
determined later. We now describe the deformation. For the ease of notation, we
consider a shifted cell of periodicity, i.e.,

ω∗
A := {x ∈ R

2 : g(x) � 0, 0 � d(x) � f +(g(x))},
ω∗
B := {x ∈ R

2 : g(x) � 0, f +(g(x)) − 1 � d(x) < 0}.
To make an ansatz for the deformation on the right-hand side of the interface, we
consider a rotation and a shift as independent parameters. Let R : [0,∞) → SO(2)
and w : [0,∞) → R

2 be differentiable functions to be determined later, and set

φ(t) := (e2 · eδ,θ )

∫ t

0
R(s)e1ds. (4.16)

The reason for this choice will become clear in (4.23) below. With these quantities,
we define the deformation u : ω∗

A ∪ ω∗
B → R

2 as

u(x) :=
{
uA(x), if x ∈ ω∗

A,

uB(x), if x ∈ ω∗
B,

(4.17)
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where

uA(x) := φ(g(x)) + R(g(x))Aδeδ,θd(x) + w(g(x))d(x),

uB(x) := φ(g(x)) + R(g(x))Bδeδ,θd(x) + w(g(x))d(x).
(4.18)

We note that this yields a continuous function in ω∗
A ∪ ω∗

B since for d(x) = 0 we
have uA(x) = uB(x). To obtain an admissible configuration, the functions R, f +
andw have to satisfy the following properties: first, f + should be 1-Lipschitz with

f +(0) = 0 and f +(t) ∈ [0, 1) for all t > 0. (4.19)

Second, this definition, when extended with the periodicity condition (4.2), should
generate a continuous function on {g(x) � 0} = {x · e⊥

δ,θ � 0}. This requires that

uA(x + eδ,θ ) − uB(x) = (θ Aδ + (1 − θ)Bδ)eδ,θ if d(x) = f +(g(x)) − 1.

Using d(x + eδ,θ ) = d(x) + 1 and d(x) + 1 = f +(g(x)) we obtain

uA(x + eδ,θ ) − uB(x) =R(g(x))Bδeδ,θ

+ f +(g(x))R(g(x))(Aδ − Bδ)eδ,θ + w(g(x)),
(4.20)

so that the periodicity condition is equivalent to

(
f +(g(x))R(g(x)) − θ Id

)
(Aδ − Bδ) eδ,θ

+ (R(g(x)) − Id) Bδeδ,θ + w(g(x)) = 0.
(4.21)

Note that on the line {g(x) = 0} = Reδ,θ , as f +(0) = 0 the function t �→ u(teδ,θ )

is affine. By (2.6), the periodicity condition and u(0) = 0 it coincides with the
expression Q∗Aδx that we used to define u on {g(x) � 0}. Equivalently, one can
see from (4.21) that (R(0) − Id)Bδeδ,θ + w(0) = θ(Aδ − Bδ)eδ,θ , so that (4.17)–
(4.18) give u(teδ,θ ) = uB(teδ,θ ) = R(0)Bδteδ,θ +w(0)t = (θ Aδ+(1−θ)Bδ)eδ,θ t ,
which by (2.6) equals Q∗Aδeδ,θ t .

From now on, we restrict to {g(x) > 0}. Before we give the explicit construc-
tions, we provide an estimate for the energy within this ansatz. We observe that
∇d = 1

eδ,θ ·e2 e2, ∇g = −(eδ,θ · e2)−2e⊥
δ,θ , and

−e1 ⊗ e⊥
δ,θ + eδ,θ ⊗ e2 = (e2 · eδ,θ ) Id . (4.22)

The definition of φ (see (4.16)) was chosen so that φ′ = (e2 · eδ,θ )Re1 = (e2 ·
eδ,θ )RAδe1, which – using (4.22) – implies

φ′(g(x)) ⊗ ∇g + R(g(x))Aδeδ,θ ⊗ ∇d = 1

e2 · eδ,θ

R(g(x))Aδ(−e1 ⊗ e⊥
δ,θ + eδ,θ ⊗ e2)

=R(g(x))Aδ.

(4.23)
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Therefore,

∇uA(x) =φ′(g(x)) ⊗ ∇g + R(g(x))Aδeδ,θ ⊗ ∇d + d(x)R′(g(x))Aδeδ,θ ⊗ ∇g

+ d(x)w′(g(x)) ⊗ ∇g + w(g(x)) ⊗ ∇d

=R(g(x))Aδ − 1

(e2 · eδ,θ )2
d(x)

(
R′(g(x))Aδeδ,θ + w′(g(x))

) ⊗ e⊥
δ,θ

+ 1

eδ,θ · e2w(g(x)) ⊗ e2,

and similarly,

∇uB(x) =R(g(x))Bδ − 1

(e2 · eδ,θ )2
d(x)

(
R′(g(x))Bδeδ,θ + w′(g(x))

) ⊗ e⊥
δ,θ

+ 1

eδ,θ · e2w(g(x)) ⊗ e2.

Hence, the elastic energy of such an admissible test function is estimated by

Enl[ f ±, u] � cW

(∫
ω∗
A

|∇uA(x) − RAδ|2 dx +
∫

ω∗
B

|∇uB(x) − RBδ|2 dx
)

� c
∫ ∞

0

(
|R′(t)|2 + |w′(t)|2 + |w(t)|2

)
dt. (4.24)

Finally, we specify how to choose R, w and f +. We consider the periodicity
condition (4.21) and divide it into two equations, testing with e1 and e2. First, we
set

w · e1 = 0, (4.25)

and take the scalar product of (4.21)with e1.Using that (Aδ−Bδ)eδ,θ = 2δ√
1+(δθ)2

e1

and Bδeδ,θ = e2−δ(1+θ)e1√
1+(δθ)2

, we obtain, multiplying by
√
1 + (δθ)2 and skipping the

arguments g(x) everywhere,

2δ
(
f +e1 · Re1 − θ

) + e1 · Re2 − δ(1 + θ)e1 · Re1 + δ(1 + θ) = 0.

We let α := e1 · Re1, β := e1 · Re2 and solve this equation for f +, which leads to
the definition

f + := θ

α
− β

2δα
+ 1 + θ

2
− 1 + θ

2α

= −1 − θ

2α
− β

2δα
+ 1 + θ

2
. (4.26)

Since R is a rotation, we have |α| = √
1 − β2, and we choose α = √

1 − β2.
Roughly speaking, we expect that for large arguments approximately β = 0 and
α = 1, which correspond to f + = θ . On the other hand, in view of Remark
2.2(ii) since R0 is a rotation by roughly −2δθ , we expect that for small arguments,
β ≈ 2δθ which is positive for δ > 0 and negative for δ < 0. Hence, we assume
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that β
δ
is monotonically decreasing and α is monotonically increasing, so that by

(4.26) also f + is monotonically increasing. We shall fix the value β(0) from the
condition f +(0) = 0, so that monotonicity of f + implies 0 � f + � θ everywhere
and in particular (4.19).

Rearranging terms, the condition f +(0) = 0 is (for α(0) �= 0) the same as

(1 − θ) + β(0)

δ
= (1 + θ)α(0). (4.27)

We choose β(0) such that β(0)/δ > 0, hence squaring and inserting α2 = 1− β2,
this is equivalent to

(
1 + δ2(1 + θ)2

)(
β(0)

δ

)2

+ 2(1 − θ)
β(0)

δ
− 4θ = 0. (4.28)

As θ ∈ (0, 1/2], this quadratic equation has a unique solution with β(0)/δ > 0.
Since the left-hand side is larger than

(
β(0)

δ

)2

+ β(0)

δ
− 2,

we find that β(0)/δ � 1, i.e., |β(0)| � |δ|. Analogously, since the left-hand side
of (4.28) is larger than

2|β(0)|2 + |β(0)| − 2,

we obtain |β(0)| � 4
5 . Further, as the first term in (4.28) is positive we have 2(1 −

θ)
β(0)

δ
< 4θ , and with 2(1 − θ) � 1 this leads to |β(0)| � 4θ |δ|. Summarizing,

|β(0)| � min

{
|δ|, 4|δ| θ,

4

5

}
. (4.29)

We then set, for some � > 0 to be chosen later,

β(s) :=
{

�−s
�

β(0) if s � �,

0 otherwise,
and α(s) :=

√
1 − β2(s). (4.30)

Finally,w ·e2 is determined from (4.21) by testingwith e2. Since R ∈ SO(2) the
definitions of α and β imply e2 · Re2 = α, e2 · Re1 = −β. A similar computation
as above leads to

e2 · w = 1√
1 + (δθ)2

(
1 − α + (

2δ f + − δ(1 + θ)
)
β
)
, (4.31)

which, together with (4.25), defines w. Note that for s � �, we have α = 1
and β = 0 which implies that w(s) = 0. To estimate the energy, we observe

that |β(s)| � |β(0)|� 4
5 , which implies α � 1

5 and |α′| = |ββ ′|√
1−β2

� 5|β ′|. As
|β ′|(s) = |β(0)|

�
� 4|δ|θ

�
for s ∈ (0, �), from (4.26) we have

|( f +)′| �
∣∣∣∣ α′

α2

∣∣∣∣ +
∣∣∣∣ β ′

2δα

∣∣∣∣ +
∣∣∣∣ βα′

2δα2

∣∣∣∣ � c
|β ′|
|δ| � c f

θ

�
(4.32)
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for some universal constant c f > 0, and thus, from (4.31),

∣∣w′∣∣ �
∣∣α′∣∣ + 3|δ| ∣∣β ′∣∣ + 2|δ| |β| ∣∣( f +)′

∣∣ � c|β ′|� c
|δ|θ
�

.

Finally, with 1 − α = β2

1+α
� β2 � |δ| |β| and (4.31), we obtain

|w| � |1 − α| + 2|δ||β| � 3|δ| |β| � cδ2θ.

Hence, using (4.24), we can estimate the energy by

Enl[ f ±, u] � c
∫ �

0

(
|R′|2 + |w′|2 + |w|2

)
dt � c

(
δ2θ2

�
+ �δ4θ2

)
.

Recalling (4.32), if we choose � := c f |δ|−1 we obtain that f + is 1-Lipschitz and
Enl[ f ±, u] � c|δ|3θ2. ��

4.2. Lower Bound

For the lower bound, we need some auxiliary statements.

4.2.1. Technical Preliminaries For v ∈ R
2 we write v⊥ := (−v2, v1).

Lemma 4.4. There is c > 0 such that if α ∈ R, Q ∈ SO(2) and v ∈ R
2\{0} are

such that
|Q(v − αv⊥) − v| � η|v|

for some η � 0, then

|Q − (Id+α J )| �
√
2 η,

where J :=
(
0 −1
1 0

)
.

Proof. This follows immediately by the fact that allmatrices considered are confor-
mal. For clarity we present a short explicit computation. By scaling we can assume
|v| = 1. Let φ ∈ (−π, π ] be such that Q = cosφ Id+ sin φ J . Then

η2 � |Q(v − αv⊥) − v|2 = |v − αv⊥ − QT v|2 = |v − αv⊥ − cosφv + sin φv⊥|2
= (1 − cosφ)2 + (α − sin φ)2.

Then

|Q − ( Id + α J )|2 =|(cosφ − 1) Id + (sin φ − α)J |2
=2(1 − cosφ)2 + 2(sin φ − α)2 � 2η2

concludes the proof. ��
The next lemma concerns stability of the rank-one directions.
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Lemma 4.5. Suppose that δ ∈ [−1, 1] and that QA, QB ∈ SO(2), t ∈ S1 satisfy
t · e1 > 0 and, for some η > 0,

|(QAAδ − QBBδ)t | � η. (4.33)

Then

|QA − QB | � 6

t · e1 η. (4.34)

Proof. We write t = t1e1 + t2e2 and find that |Aδt |+ |Bδt | � 2(1+|δ|) � 4 since
|δ| � 1. Assumption (4.33) gives ||Aδt | − |Bδt || = ||QAAδt | − |QBBδt || � η,
and therefore

4η � ||Aδt | − |Bδt || · ||Aδt | + |Bδt || =
∣∣∣|Aδt |2 − |Bδt |2

∣∣∣ = 4|δ||t1t2|, (4.35)

which implies that

|t2| � η

|δ|t1 . (4.36)

From Aδ = Id+δe1 ⊗ e2 and Bδ = Id−δe1 ⊗ e2 we deduce that

|Aδt − t | = |Bδt − t | = |δ||e2 · t | � η

t1
,

so that, with (4.33),

|QA − QB |√
2

=|QAt − QBt |
�|QAt − QAAδt |

+ |QAAδt − QBBδt | + |QBBδt − QBt |
=|t − Aδt | + |QAAδt − QBBδt | + |Bδt − t |
�2

η

t1
+ η � 3

t1
η,

(4.37)

which concludes the proof.

The next two statements are uniform geometric rigidity and trace statements on
domains which are appropriate sections of the sets ω̃A, ω̃B defined in (4.7)–(4.8).
For claritywepresent here the specific assertion used in the lower bound, postponing
to Sect. 5 the proof in a more general context and the specific definition of (L , R)-
Lipschitz sets.

Proposition 4.6. For any L , M > 0 there are constants L̂, R̂,cL ,M > 0 with the
following property. Let � > 0, f, g : [0, �] → R be L-Lipschitz functions. Assume
that

L�

M
� g(t) − f (t) � ML� for all t ∈ [0, �] (4.38)

and define
ω f,g := {x : x1 ∈ (0, �), f (x1) < x2 < g(x1)}, (4.39)
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fix any θ ∈ (0, 1
2 ] and any δ ∈ [−1, 1]. Then the sets ω f,g and Tδ,θ (ω

f,g) are

(L̂, R̂)-Lipschitz. Further, for any u ∈ W 1,2(ω f,g;R2), and any F ∈ {Aδ, Bδ, Id},
there is QF

u ∈ SO(2) such that

∫
Tδ,θ (ω f,g)

|∇u − QF
u F |2dx � cL ,M

∫
Tδ,θ (ω f,g)

dist2(∇u,SO(2)F)dx (4.40)

and, for some du ∈ R
2,

∫
Tδ,θ (ω f,g)

|u(x) − du − QF
u Fx |2dx � cL ,M

∫
Tδ,θ (ω f,g)

dist2(∇u,SO(2)F)dx .

(4.41)

Proof. By Lemma 5.4 the sets ω f,g are (2L +1, R)-Lipschitz (see Definition 5.1),
for some R which depends only on L and M . We observe that the definition (4.4)
implies T−1

δ,θ = √
1 + (δθ)2(Id+δθe1 ⊗ e2), and therefore

|Tδ,θ | �
√
2, |T−1

δ,θ | �
√
2

(√
2 + 1

2

)
� 3. (4.42)

By Lemma 5.3 we obtain that the sets Tδ,θ (ω
f,g) are (6(2L + 1), 6R)-Lipschitz.

The result for F = Id follows then immediately from Theorem 5.10.
Consider now F = Aδ . For notational simplicity we prove the statement for

ω f,g , the argument for Tδ,θ (ω
f,g) is identical. We define v ∈ W 1,2(Aδω

f,g;R2)

by v(x) := u(A−1
δ x), so that ∇v(x) = ∇u(A−1

δ x)A−1
δ , which implies

dist(∇v,SO(2))(x) = dist(∇uA−1
δ ,SO(2))(A−1

δ x)

� |A−1
δ |dist(∇u,SO(2)Aδ)(A

−1
δ x). (4.43)

By Lemma 5.3, using that |Aδ|, |A−1
δ | � 3, we obtain that the sets A−1

δ ω f,g are

(c(2L + 1), cR)-Lipschitz. Therefore Theorem 5.10 implies that there is QAδ
u ∈

SO(2) such that

∫
A−1

δ ω f,g
|∇v − QAδ

u |2dx � cL ,M

∫
A−1

δ ω f,g
dist2(∇v,SO(2))dx . (4.44)

Using (4.43) and a change of variables, this implies

∫
ω f,g

|∇u − QAδ
u Aδ|2dx � c′

L ,M

∫
ω f,g

dist2(∇u,SO(2)Aδ)dx, (4.45)

and concludes the proof. The case F = Bδ is identical.
The second bound follows immediately from Theorem 5.8. ��

For completeness, we finally note a rescaling property of the trace norm.
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Corollary 4.7. (Trace estimate) Let M0, L > 0. There exists a constant CT with
the following property: Let � > 0, and let f, g : [0, �] → R be L-Lipschitz
continuous with L�

M0
< g(t) − f (t) < M0L� for all t ∈ [0, �]. Then, setting

ω f,g := {x ∈ R
2 : x1 ∈ (0, �), f (x1) < x2 < g(x1)}, for every u ∈ W 1,2(ω f,g)

there exists du ∈ R such that

‖Tu − du‖2L2(∂ω f,g)
� CT �‖∇u‖2L2(ω f,g)

.

Proof. For � = 1, this follows fromLemma 5.4, Theorems 5.8 and 5.9. The general
case follows from rescaling f� : (0, �) → R, f�(t) := � f1(

t
�
) (similarly for g�)

and u� ∈ W 1,2(ω f�,g�
) given by u�(x1, x2) := u(x1/�, x2/�). ��

4.2.2. Proof of the Lower Bound We start introducing some notation. Recall
that the periodicity condition (4.2) is the same as u(Tδ,θ (y + e2)) = u(Tδ,θ (y)) +
(θ Aδ + (1 − θ)Bδ)Tδ,θ (e2). Let f ± : [0,∞) → R be L-Lipschitz with f − �
f + � f − + 1. Given I ⊆ (0,∞) we set

ωI
A :=Tδ,θ ({y : y1 ∈ I, f −(y1) < y2 < f +(y1)}),

ωI
B :=Tδ,θ ({y : y1 ∈ I, f +(y1) < y2 < f −(y1) + 1}) (4.46)

and (for I ⊆ (0,∞) Borel measurable)

E[I ; ( f ±, u)] :=
∫

ωI
A

dist2(∇u,SO(2)Aδ)dx +
∫

ωI
B

dist2(∇u,SO(2)Bδ)dx .

(4.47)

Proposition 4.8. Let L > 0, assume that f ± are L-Lipschitz with f − � f + �
f − + 1, and let I∗ ⊆ (0,∞) be an interval of length 1/(4L). For any u ∈
W 1,2

loc (R2;R2) there is Q ∈ SO(2) such that

∫
ω
I∗
A

|∇u − QAδ|2dx +
∫

ω
I∗
B

|∇u − QBδ|2dx � cE[I∗; ( f ±, u)]. (4.48)

The constant may depend on L.

Proof. For brevity in this proof we write E(I ) for E[I ; ( f ±, u)]. We can assume
L � 1 in the proof (otherwise we cover I∗ with cL subintervals of length 1/4 and
use the result for L = 1 in each of them).

Step 1: Estimate on ω
I∗
A . Let t∗ be the midpoint of I∗ and �∗ its length. We

assume that ( f + − f −)(t∗) � 1
2 . If not, then f − + 1 − f + � 1

2 , and the same
argument can be used swapping Aδ with Bδ and ( f +, f − +1)with ( f −, f +). This
implies

1 � ( f + − f −)(t) � 1

2
− 2L

�∗
2

� 1

4
for all t ∈ I∗. (4.49)
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Fig. 5. Sketch of the sets entering the proof of Proposition 4.8

We write ωA := ω
I∗
A , and cL for a generic constant that may change from line to

line but depends only on L . Proposition 4.6 can be applied (with M = 4) to the set
ωA, and there is Q ∈ SO(2) such that

∫
ωA

|∇u − QAδ|2dx � cL

∫
ωA

dist2(∇u,SO(2)Aδ)dx � cLE(I∗). (4.50)

Note that this concludes the proof in the degenerate caseω
I∗
B = ∅, i.e., if I∗ ∩{ f −+

1 > f +} = ∅. In the other case, we note that there is dA ∈ R
2 such that

∫
ωA

|u(x) − QAδx − dA|2dx � cLE(I∗). (4.51)

Step 2: Estimate on ω
I∗
B . For any Borel set I ⊆ I∗ we write, recalling (4.47)

and the short-hand notation E(I ) = E[I ; ( f ±, u)],

Ê(I ) := E(I ) +
∫

ωI
A

|u(x) − QAδx − dA|2dx . (4.52)

It is clear that E and Ê are measures on I∗, and that Ê(I∗) � cLE(I∗). We shall
first obtain estimates on suitable subintervals of I∗, and then cover I∗ by countably
many such subintervals. Let M > 0 be a fixed number, we shall choose M = 16
below.

Assume that I ⊆ I∗ is an interval of length � ∈ (0, �∗] such that
L�

M
� ( f − + 1) − f + � ML� pointwise on I, (4.53)

see Fig. 5. Then by Proposition 4.6 there is QI
B ∈ SO(2) such that

∫
ωI
B

|∇u − QI
B Bδ|2dx � cL

∫
ωI
B

dist2(∇u,SO(2)Bδ)dx � cLE(I ). (4.54)
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By Poincaré and the trace theorem (see Corollary 4.7), there is d I
B ∈ R

2 such that,
setting γ I+ := Tδ,θ ({(t, f +(t)) : t ∈ I }),
∫

γ I+
|u(x) − QI

B Bδx − d I
B |2dH1 � cL�‖∇u − QI

B Bδ‖2L2(ωI
B )

� cL�E(I ). (4.55)

Analogously, the trace theorem on ω̂I
A := Tδ,θ ({y : y1 ∈ I, f +(y1) − �

4 < y2 <

f +(y1)}), which by (4.49) and � � �∗ � 1/4 is contained in ωI
A, gives∫

γ I+
|u(x) − QAδx − dA|2dH1 � cL�Ê(I ), (4.56)

so that with a triangular inequality and E � Ê , we obtain
∫

γ I+
|QAδx + dA − QI

B Bδx − d I
B |2dH1 � cL�Ê(I ). (4.57)

Therefore there is v ∈ R
2 with v1 � 1

3� and |v2| � Lv1 such that

|(QAδ − QI
B Bδ)v|2 � cL Ê(I ). (4.58)

We apply Lemma 4.5 with t := v/|v|, QA := Q, QB := QI
B , and η :=

(cL Ê(I ))1/2/|v| � 3(cL Ê(I ))1/2/�. Since

t1 = v1

|v| � 1√
1 + L2

,

we obtain |Q − QI
B | � 6

√
1 + L2η and therefore

�2|Q − QI
B |2 � cL Ê(I ). (4.59)

Combining (4.54) and (4.59) we conclude that
∫

ωI
B

|∇u − QBδ|2dx � cL Ê(I ). (4.60)

As L2
(
ω
I∗∩{ f −+1= f +}
B

)
= 0, it remains to show that I∗ ∩ { f − + 1 > f +} can

be covered (up to null sets) by countably many intervals I with the property (4.53)
and finite overlap. For any t ∈ I∗ ∩ { f − + 1 > f +}, the interval

(t − f −(t) + 1 − f +(t)

4L
, t + f −(t) + 1 − f +(t)

4L
) (4.61)

contains t and obeys the property (4.53) with M = 3. By the Besicovitch covering
theorem this family contains a countable set of intervals (Ik)k which covers I∗ ∩
{ f − +1 > f +} and has finite overlap. The intervals (Ik ∩ I∗)k obey property (4.53)
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with M = 6, since f −(t)+1− f +(t)
4 L � 1

4 L = �∗ implies L1(Ik ∩ I∗) � 1
2L1(Ik).

Therefore, by (4.60),∫
ω
I∗
B

|∇u − QBδ|2dx =
∫

ω
I∗∩{ f −+1> f +}
B

|∇u − QBδ|2dx

� cL
∑
k

∫
ω
I∗∩Ik
B

|∇u − QBδ|2dx

�cL
∑
k

Ê(I∗ ∩ Ik) � cL Ê(I∗)

(4.62)

and with (4.51) and Ê(I∗) � cLE(I∗) the proof is concluded. ��
Proposition 4.9. Let L > 0. There are cL > 0, δL > 0 such that for all θ ∈ (0, 1

2 ],
all δ ∈ [−δL , δL ], all ( f ±, u) ∈ AL

nl it holds that

Enl[ f ±, u] � cL |δ|3θ2.
Proof. For brevity, in this proof we write E(I ) := E[I ; ( f ±, u)] and E :=
Enl[ f ±, u].

Step 1. Piecewise affine approximation. Consider the intervals

I j :=
(

j

8L
,
j + 2

8L

)
.

By Proposition 4.8 there are rotations Q j ∈ SO(2) such that, for any j ∈ N, one
has ∫

ω
I j
A

|∇u − Q j Aδ|2dx +
∫

ω
I j
B

|∇u − Q j Bδ|2dx � cLE(I j ) (4.63)

with the constant cL (here and in all following estimates) depending only on L .
We shall use this estimate and the periodicity condition to obtain four different

bounds, which are stated in (4.64), (4.65), (4.67) and (4.68).
Step 2. Continuity term. With a triangular inequality, using L1(I j ∩ I j+1) =

1/(8L) from (4.63), |Q j − Q j+1| � |Q j Aδ − Q j+1Aδ| |A−1
δ |. and |A−1

δ | � 3 we
obtain ∑

j∈N
|Q j − Q j+1|2 � cLE((0,∞)). (4.64)

Step 3. Left boundary term. By the trace theorem used in ω
I0
B , recalling that

f −(0) = f +(0), from (4.63) we obtain that for some d0 ∈ R
2

∫
(0,1)

|u(teδ,θ ) − Q0Bδeδ,θ t − d0|2dH1 � cLE(I0) � cL E .

By geometric rigidity and the trace theorem used in Tδ,θ ((−1, 0) × (0, 2)) there
are Q− ∈ SO(2) and d− ∈ R

2 such that∫
(0,2)

|u(teδ,θ ) − Q−Aδeδ,θ t − d−|2dH1
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� cL

∫
Tδ,θ ((−1,0)×(0,2))

W (∇uA−1
δ )dx � cL E

which, with the periodicity condition, implies

|Q−Aδeδ,θ − vθ | � cL E
1/2,

where vθ := (θ Aδ +(1−θ)Bδ)eδ,θ = (Id+δ(2θ −1)e1⊗e2)eδ,θ .With a triangular
inequality,

|Q0Bδeδ,θ − vθ | � cL E
1/2.

We observe that Bδeδ,θ − vθ = −θ(Aδ − Bδ)eδ,θ = −2δθe1/
√
1 + δ2θ2. As

|vθ − e2| � c|δ|, Bδeδ,θ = vθ + 2δθv⊥
θ + O(δ2θ) we have

|Q0(vθ + 2δθv⊥
θ ) − vθ | � cL

(
E1/2 + δ2θ

)
,

and from Lemma 4.4, we obtain

|Q0 − Id+2δθ J | � cL E
1/2 + cLδ2θ. (4.65)

Step 4. Volume term. The periodicity condition (4.2) implies that the average

of ∇ueδ,θ over ω
I j
A ∪ ω

I j
B coincides with vθ ,

1

L2(ω
I j
A ∪ ω

I j
B )

∫
ω
I j
A ∪ω

I j
B

∇ueδ,θdx = (θ Aδ + (1 − θ)Bδ)eδ,θ = vθ .

From (4.63) we obtain∣∣∣∣∣
∫

ω
I j
A

∇ueδ,θdx − L2(ω
I j
A )Q j Aδeδ,θ

∣∣∣∣∣
+

∣∣∣∣∣
∫

ω
I j
B

∇ueδ,θdx − L2(ω
I j
B )Q j Bδeδ,θ

∣∣∣∣∣ � cLE1/2(I j ).

Therefore, setting λ j := L2(ω
I j
A )/L2(ω

I j
A ∪ ω

I j
B ) and w j := (λ j Aδ + (1 −

λ j )Bδ)eδ,θ = (Id+δ(2λ j − 1)e1 ⊗ e2)eδ,θ , we obtain∣∣Q jw j − vθ

∣∣ � cLE1/2(I j ). (4.66)

Since

w j − vθ = 2δ(λ j − θ)(e1 ⊗ e2)eδ,θ = 2δ(λ j − θ)√
1 + δ2θ2

e1

and |e1 + v⊥
θ | � c|δ|, we have |Q j (vθ + 2δ(θ − λ j )v

⊥
θ ) − vθ | � cE1/2(I j ) +

cδ2|λ j − θ | and again by Lemma 4.4 we obtain our first volume estimate

|Q j − Id+2δ(θ − λ j )J | � cL
(
E1/2(I j ) + δ2|λ j − θ |

)
. (4.67)

At the same time,

|vθ |2 = 1 + δ2(θ − 1)2

1 + δ2θ2
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and

|Q jw j |2 = |w j |2 = 1 + δ2(2λ j − θ − 1)2

1 + δ2θ2
,

so that, from (4.66) and |w j | + |vθ | � C , we obtain the second volume estimate

cLE(I j )
1/2 �

∣∣Q jw j − vθ

∣∣ · ∣∣Q jw j + vθ

∣∣
�

∣∣∣|w j |2 − |vθ |2
∣∣∣ = 4δ2(1 − λ j )|θ − λ j |

1 + δ2θ2
. (4.68)

Step 5. Conclusion of the proof. Using (4.65) and (4.67) for j = 0, there is
cL > 0 (fixed for the rest of the proof) such that

|δ| |λ0| � cL E
1/2 + cLδ2θ+cLδ2|λ0 − θ |� cL E

1/2 + 2cLδ2θ + cLδ2|λ0|.
Choose δ0 > 0 such that δ0 � 1/(6cL). Then for |δ| � δ0, we have cLδ2|λ0| �
1
6 |δ| |λ0|, the last term can be absorbed in the left-hand side, and we obtain

5

6
|δ| |λ0| � cL E

1/2 + 2cLδ2θ.

If |λ0| � 1
2θ then, using 2cLδ2θ � 1

3 |δ|θ , we obtain
5

12
|δ|θ � cL E

1/2 + 1

3
|δ|θ,

so that E � Cδ2θ2, and we are done.
Assume now that |λ0| � 1

2θ . By (4.68), for any j ∈ N such that |λ j | � 1
2θ

we have E(I j ) � c′
Lδ4θ2. Therefore there are at most finitely many such j . Let

� := min{ j ∈ N : |λ j | > 1
2θ}, so that (4.68) gives

E � c′
L�δ4θ2. (4.69)

Using (4.65) and (4.67) againg for j = �,

|Q� − Q0 − 2δλ� J | � c′′
L E

1/2 + c′′
Lδ2θ + c′′

Lδ2|λ�|.
As |2δλ� J | = 2

√
2|δ| |λ�|, if δ0 is chosen so that c′′

Lδ0 � 1
2 , then

|Q� − Q0| �2
√
2|δ| |λ�| − c′′

L E
1/2 − c′′

Lδ2θ − c′′
Lδ2|λ�|

�2|δ| |λ�| − c′′
L E

1/2 − c′′
Lδ2θ

�|δ| θ − c′′
L E

1/2 − c′′
Lδ2θ � 1

2
|δ|θ − c′′

L E
1/2,

where in the third step we used |λ�| � 1
2θ . As above, if E � (4c′′

L)−2δ2θ2 then
we are done. Otherwise |Q� − Q0| � 1

4 |δ|θ . With (4.64) and Cauchy-Schwarz we
conclude

c′′′
L E �

�−1∑
j=0

|Q j − Q j+1|2 � 1

�
|Q0 − Q�|2 � 1

16

δ2θ2

�
,
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and therefore, recalling (4.69),

E � CL

(
δ2θ2

�
+ �δ4θ2

)
� 2CL |δ|3θ2,

which concludes the proof. ��

4.3. Existence of Minimizers

In this section, we show existence of minimizers of the shape optimization
problem (4.12) on the set defined in (4.11) under the additional assumption that the
energy density W is quasiconvex. The notion of quasiconvexity was introduced by
Morrey [42] and is a central concept in the calculus of variations since it guarantees
existence of minimizers for variational problems of the form minu

∫
W (∇u) dx

under ratherweak additional assumptions onW , see for example [23,44] for general
presentations.

Proposition 4.10. Let W obey (4.13) and be quasiconvex. Let L � 1, θ ∈ (0, 1
2 ],

δ ∈ [−1, 1]. Then the functional Enl defined in (4.12) has a minimizer in the setAL
nl

defined in (4.11).

Proof. Weproceed along the lines of theproof ofProposition3.3(i). Let ( f ±
j , u j ) ⊂

AL
nl be a minimizing sequence. By subtracting constants, we can assume without

loss of generality that ∫
(0,1)×(0,1)

u j (x) dx = 0. (4.70)

After passing to a subsequence, the functions f ±
j converge locally uniformly to

L-Lipschitz functions f ±∗ which by uniform convergence satisfy (4.3). For every
m ∈ N, by the lower bound in (4.13), there is a uniform bound on the L2-norms

‖∇u j‖L2(Tδ,θ ((−m,m)2)) � Cm
(
E((−m,m), ( f ±

j , u j )) + m|Aδ|2
)

,

and hence, by (4.70), there is a subsequence that converges locally weakly inW 1,2

to u∗ ∈ W 1,2
loc (R2;R2). By Rellich’s theorem, the limiting function u∗ satsifies the

periodicity condition (4.2). Let ω∗
A and ω∗

B denote the respective domains induced
by f ±∗ , which are defined as in (4.7)–(4.9). By quasiconvexity ofW and the growth
condition (4.13), we get lower semi-continuity of the energy restricted to compact
sets in (ω∗

A ∪ ω∗
B)\graph( f ±∗ )\(Reδ,θ ), and hence, choosing a diagonal sequence

as in the proof of Proposition 3.3, we find, for every m > 0,

E((−m,m), ( f ±∗ , u∗)) � lim inf
j→∞ E((−m,m), ( f ±

j , u j )). (4.71)

Then

E((−m,m), ( f ±∗ , u∗)) � lim inf
j→∞ E(R, ( f ±

j , u j )) = lim inf
j→∞ Enl[ f ±

j , u j ] = inf
AL

nl

Enl.
(4.72)

As Enl[ f ±∗ , u∗] = E(R, ( f ±∗ , u∗)) = sup{E((−m,m), ( f ±∗ , u∗)) : m > 0}, this
concludes the proof. ��
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It would be natural to ask if for a minimizer ( f ±∗ , u∗) the functions f ±∗ (x1)
have a finite limit as x1 → ∞. This does not follow from the above proof. Another
open question is whether the condition that f ± are Lipschitz is needed, or if it can
be replaced by a term of the form

σ

∫ ∞

0
(

√
1 + ( f ′+(x1))2 +

√
1 + ( f ′−(x1))2 − 2)dx1, (4.73)

which represents the additional length of the interfaces with respect to the “flat”
situation.

5. Korn’s Inequality and Geometric Rigidity for Uniformly Lipschitz
Domains

5.1. Uniformly Lipschitz Domains

We show that certain estimates on Sobolev functions hold uniformly for a class
of bounded open sets which are uniformly Lipschitz. We focus on bounded sets
and use the following definition, which is a variant of the one in [38, Def. 13.11].
For x ∈ R

n , we use the notation x = (x ′, xn) with x ′ ∈ R
n−1 and xn ∈ R.

Definition 5.1. Let L , R > 0. An open set � ⊆ R
n is (L , R)-Lipschitz if there is

ε > 0 such that

(i) |x − y| < Rε for all x, y ∈ �;
(ii) For each x ∈ ∂� there are fx ∈ Lip(Rn−1;R) with Lip( fx ) � L and an

isometry Ax : Rn → R
n such that Bε(x) ∩ � = Bε(x) ∩ Vx , where

Vx := Ax {(y′, yn) ∈ R
n−1 × R : yn < fx (y

′)}. (5.1)

This definition ensures on the one hand uniformity of the Lipschitz constant, on the
other hand uniform size of the neighbourhoods in which (5.1) holds with respect
to the size of �.

Remark 5.2. (i) The definition is monotonous, in the sense that if � is (L , R)-
Lipschitz then it is also (L ′, R′)-Lipschitz for any L ′ � L , R′ � R.

(ii) From x ∈ ∂� one immediately obtains that ŷ := A−1
x x obeys ŷn = f (ŷ′); one

can assume without loss of generality that ŷ = 0.
(iii) Condition (ii) implies that the open segment joining x = Ax ŷ with Ax (ŷ−εen)

belongs to �; in particular R � 1.
(iv) Suppose � ⊆ R

n and ε > 0 satisfy property (i) of Definition 5.1 and prop-
erty (ii) with Bε(x) replaced by x + (

(−ε, ε)n−1 × (−2εL , 2εL)
)
. Then �

is (L , R0)-Lipschitz with R0 = Rmax{1, 1/(2L)}. On the other hand, if �

is (L , R)-Lipschitz then � satisfies property (ii) of Definition 5.1 with Bε(x)
replaced by x + (

(−ε0, ε0)
n−1 × (−2ε0L , 2ε0L)

)
with ε0 := ε√

n
min{1, 2L}.

Similar statements holds for other sets whose size is uniformly controlled by ε.
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(v) One can reduce to the case that only finitely many functions fx appear, after
changing R to 2R. Indeed, if � ⊂ R

n is (L , R)-Lipschitz then (using the
notation of Definition 5.1) the balls Bε/2(x), x ∈ ∂�, cover ∂�. By Vitali’s
covering theorem there is a subset x1, . . . , xM such that ∂� ⊆ ∪M

i=1Bε/2(xi ) and
Bε/10(xi ) ∩ Bε/10(x j ) = ∅ for i �= j . Since ∂� is contained in a ball of radius
Rε, we have M � (10 · R + 1)n . As for every x ∈ ∂� there is i ∈ {1, . . . , M}
such that Bε/2(x) ⊆ Bε(xi ), only the M functions fx1 , . . . , fxM are relevant.

(vi) Let � be such that there are open sets ωi , i = 1, . . . , M , Lipschitz functions
fi with Lip( fi ) � L and isometries Ai such that ωi ∩ � = ωi ∩ Vi , Vi :=
Ai {y : yn < fi (y′)}, and assume that there is ε > 0 such that for all x ∈ ∂�

there is i with Bε(x) ⊆ ωi . Then property (ii) in Definition 5.1 holds and � is
(L , diam(�)/ε)-Lipschitz.

Lemma 5.3. Let � ⊆ R
n be (L , R)-Lipschitz, F ∈ R

n×n an invertible matrix.
Then the set F� ⊆ R

n is (cF (L + 1), cF R) Lipschitz, with cF := |F | · |F−1|.
Proof. Let ε > 0 as in Definition 5.1 for� and set ε′ := ε/|F−1|. Pick y ∈ ∂(F�)

and let x := F−1y ∈ ∂�. We first show that

Bε′(y) ⊆ FBε(x).

To see this, we pick z ∈ Bε′(y), consider z′ := F−1z, and compute |z′ − x | =
|F−1(z − y)| � |F−1||z − y| < ε. Therefore z′ ∈ Bε(x) and z ∈ FBε(x). Further,
diam(F�) � |F | diam�, hence setting R′ := |F | |F−1|R we have diam(F�) �
R′ε′.

Fix again y ∈ ∂(F�). We need to show that

(F�) ∩ Bε′(y) = Iy{wn < g(w′)} ∩ Bε′(y) (5.2)

for some isometry Iy and some g ∈ Lip(Rn−1;R) with Lip(g) � L ′; the precise
value of L ′ is given below.

We let x := F−1y as above. By property (ii) in Definition 5.1 there are an
isometry Ax and an L-Lipschitz function f : Rn−1 → R such that

� ∩ Bε(x) = Ax {zn < f (z′)} ∩ Bε(x). (5.3)

Then Bε′(y) ⊆ FBε(x) implies

(F�)∩ Bε′(y) = (F(�∩ Bε(x))∩ Bε′(y) = (FAx {zn < f (z′)})∩ Bε′(y). (5.4)

The isometry Ax can be written as Ax z = b + Rz for some R ∈ O(n). We set
η := |FRen| ∈ (0, |F |], pick a rotation Q ∈ SO(n) such that FRen = ηQen , and
let T := QT FR ∈ R

n×n . Then FR = QT and QTen = ηQen , which implies
T en = ηen . We shall show below that

T {zn < f (z′)} = {wn < g(w′)}, (5.5)

with g as stated after (5.2). This implies that

FAx {zn < f (z′)} = Fb + FR{zn < f (z′)} = Fb + QT {zn < f (z′)}
= Fb + Q{wn < g(w′)} = Iy{wn < g(w′)}, (5.6)
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where Iyw := Fb + Qw, which together with (5.4) concludes the proof of (5.2)
and therefore of the Lemma.

It remains to construct g ∈ Lip(Rn−1;R) such that (5.5) holds. We observe that
T is invertible, with |T−1| = |F−1| and T−1en = 1

η
en , and write

T−1(w′, wn) =
(
Sw′, 1

η
wn + s · w′

)
(5.7)

for some s ∈ R
n−1 and S ∈ R

(n−1)×(n−1), invertible. These obey max{|S|, |s|} �
|T−1| = |F−1|. Then

1

η
wn + s · w′ < f (Sw′) (5.8)

is the same as
wn < g(w′) := η · ( f (Sw′) − s · w′), (5.9)

so that
{zn < f (z′)} = T−1{wn < g(w′)}, (5.10)

which is the same as (5.5). The function g : Rn−1 → R constructed above is Lips-
chitz, with Lip(g) � η(|S|Lip( f ) + |s|) � |F |(|F−1|L + |F−1|). This concludes
the proof. ��
Lemma 5.4. Let f, g : [0, �] → R, � > 0, L > 0, and set

ω f,g := {x ∈ R
2 : x1 ∈ (0, �), f (x1) < x2 < g(x1)}.

Assume that α� � g − f � β� for some α, β > 0, and that Lip( f ),Lip(g) � L.
Then ω f,g is (2L + 1, R)-Lipschitz for some R which depends only on α, β and L.

Proof. Let ε := �
2(1+L)

min{α, 1}, R := (β + 1 + L)�/ε. Clearly R depends only
on α, β, and L , and its definition ensures that condition (i) in Definition 5.1 holds.
The choice of ε ensures that |(x1, f (x1)) − (x ′

1, g(x
′
1))| � ε for all x1, x ′

1 ∈ [0, �],
so that the top and bottom boundaries can be treated separately.

We consider points close to the lower-left corner, in the sense that we show
property (ii) of Definition 5.1 for x in (see Fig. 6)

ALL := {0} ×
[
f (0),

f (0) + g(0)

2

]
∪ {(x1, f (x1)) : x1 ∈

[
0,

1

2
�

]
} ⊆ ∂ω f,g;

(5.11)
the other three corners can be treated analogously. We extend f to R, setting
f (t) = f (0) for t < 0 and f (t) = f (�) for t > �. By the choice of ε we see that
for all x ∈ ALL the ball Bε(x) does not intersect {z : z2 = g(z1)} and {z : z1 = �},
in the sense that

Bε(x) ∩ ω f,g = Bε(x) ∩ {z ∈ R
2 : z1 > 0, z2 > f (z1)}. (5.12)

After a translation, we can assume f (0) = 0. In order to make the mentioned
boundary the graph of a Lipschitz function we need a nontrivial rotation, as illus-
trated in Fig. 6. Let Q ∈ SO(2) be such that Qe2 bisects the angle between e2 and



63 Page 34 of 44 Arch. Rational Mech. Anal. (2023) 247:63

Fig. 6. Sketch of the rotation in the proof of Lemma 5.4. The shaded area is the one where
y2 < F(y1), the dotted line shows the direction (1, L)

(1, L), which means that Q is a clockwise rotation by α := 1
2 (

π
2 − arctan L). Then

there is a unique function F : R → R such that

{z ∈ R
2 : z2 > f (z1)} = Q{y ∈ R

2 : y2 > F(y1)}, (5.13)

obviously F(0) = 0. One can check that F is L ′ := tan(π
2 −α)-Lipschitz, and that

L ′ = L + √
1 + L2 � 1 + 2L . At the same time, by the definition of Q and L ′

{z ∈ R
2 : z1 > 0} = Q{y ∈ R

2 : y2 > −L ′y1}. (5.14)

Recalling (5.12), we see that it suffices to intersect these two sets.We define F̃(t) :=
max{−L ′y1, F(y1)}, which is also L ′-Lipschitz. Then for every x ∈ ALL we have

Bε(x) ∩ ω f,g = Bε(x) ∩ Q{y : y2 > F̃(y1)}. (5.15)

This concludes the proof. ��

5.2. Weighted Poincaré Inequality

The next result is a quantitative version of the estimate in [37, Theorem 8.8].

Theorem 5.5. (Weighted Poincaré) Let � ⊆ R
n be a connected, bounded (L , R)-

Lipschitz set, p ∈ [1,∞). Then for any u ∈ W 1,p
loc (�;Rk) there is a ∈ R

k such that

‖u − a‖L p(�) � cWP‖ dist(·, ∂�)∇u‖L p(�). (5.16)

In particular, u ∈ L p(�;Rk) if the right hand-side in (5.16) is finite. The constant
cWP depends only on n, p, L and R.

We first prove the result in one dimension, by an explicit computation.
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Lemma 5.6. Let I = (a, b) ⊆ R be a bounded interval, ϕ ∈ C1(I ), E ⊆ I with
positive measure, α ∈ R, p ∈ [1,∞). Then

∫
I
|ϕ − α|pdt � cp

L1(I )

L1(E)

[∫
E

|ϕ − α|pdt +
∫
I
(t − a)p|ϕ′|p(t)dt

]
. (5.17)

The constant cp depends only on p.

Proof. If the right-hand side is finite, then the function ϕ can be extended contin-
uously to (a, b]. Let β := ϕ(b). For any x ∈ I by the fundamental theorem of
calculus applied to |ϕ − β|p we have

|ϕ − β|p(x) � p
∫ b

x
|ϕ(t) − β|p−1|ϕ′(t)|dt. (5.18)

We integrate over all x ∈ I and use Fubini’s theorem to get that

∫ b

a
|ϕ − β|p(x)dx � p

∫ b
a

∫ b
x |ϕ(t) − β|p−1|ϕ′(t)|dt dx

= p
∫ b
a (t − a)|ϕ(t) − β|p−1|ϕ′(t)|dt. (5.19)

With Hölder’s inequality,

∫ b

a
|ϕ − β|p(x)dx � p‖|ϕ − β|p−1‖L p′ (I )‖(· − a)ϕ′‖L p(I ) (5.20)

so that, as ‖|ϕ − β|p−1‖L p′ = ‖ϕ − β‖p−1
L p ,

‖ϕ − β‖L p(I ) � p‖(· − a)ϕ′‖L p(I ). (5.21)

By a triangular inequality,

|α − β|(L1(E))1/p � ‖ϕ − α‖L p(E) + ‖ϕ − β‖L p(I ), (5.22)

so that, with a further triangular inequality,

‖ϕ − α‖L p(I ) � |α − β|(L1(I ))1/p + ‖ϕ − β‖L p(I )

� 2p
(L1(I ))1/p

(L1(E))1/p

[‖ϕ − α‖L p(E) + ‖(t − a)ϕ′‖L p(I )
]
,

(5.23)

which concludes the proof. ��
Lemma 5.7. Let � ⊂ R

n be (L , R)-Lipschitz, ε as in Definition 5.1, x∗ ∈ ∂�,
r ∈ (0, ε/(4 + 4L)], p ∈ [1,∞). For any u ∈ W 1,p

loc (�) there is α ∈ R such that
∫

�∩Br (x∗)
|u − α|pdx � c

∫
�

dist p(x, ∂�)|∇u|p(x)dx . (5.24)

The constant c depends only on n, p, and L.
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Proof. By Definition 5.1 we have Bε(x∗) ∩ � = Bε(x∗) ∩ V , where (as in (5.1)),

V := A{(y′, yn) ∈ R
n−1 × R : yn < f (y′)} (5.25)

for some isometry A and L-Lipschitz function f : Rn−1 → R. As the assertion is
invariant under rotations and translations we can assume that A is the identity and
that x∗ = 0; from x∗ ∈ ∂� we then obtain f (0) = 0.

Let h := r L ∈ (0, ε/4) and consider the cylinder T := B ′
r × (−3 h,−2 h)

(see Figure 7). For any x ′ ∈ B ′
r we have f (x ′) � −r L = −h, and therefore

f (x ′) − xn � h for all (x ′, xn) ∈ T . Further, from (3 h)2 + r2 � 9
16ε

2 + 1
16ε

2 =
5
8ε

2 � ε2 we obtain that T ⊆ Bε ∩ V . As the shape of T (up to uniform rescaling)
depends only on L , by the usual Poincaré inequality (for a fixed domain) there is
α ∈ R with ∫

T
|u − α|pdx � cr p

∫
T

|∇u|pdx, (5.26)

with c depending only on n, p, L . For every x ′ ∈ B ′
r we apply Lemma 5.6 to u(x ′, ·)

with I = (−3h, f (x ′)) and E = (−3h,−2h), and obtain, using h = L1(E) �
L1(I ) � 4 h,

∫
I
|u(x) − α|pdxn � c

∫
I
| f (x ′) − xn|p|∇u|p(x)dxn + c

∫
E

|u(x) − α|pdxn .
(5.27)

LetU := (B ′
r×(−3h,∞))∩V , so that Br∩� = Br∩U andU ⊆ Bε∩V = Bε∩�.

We integrate over x ′ ∈ B ′
r , use (5.26) and r L = h � f (x ′)−xn for all (x ′, xn) ∈ T

to conclude∫
U

|u − α|pdx � c
∫
B′
r

∫
(−3h, f (x ′))

| f (x ′) − xn|p|∇u|pdxndx ′

+ c
∫
T

| f (x ′) − xn|p|∇u|pdx

� c
∫
U

| f (x ′) − xn|p|∇u|pdx,

(5.28)

where the constant c depends only on L , p, and n. We finally show that there is
cL > 0, depending only on L , such that

| f (x ′) − xn| � cL dist(x, ∂�) for all x ∈ U. (5.29)

Indeed, for any x ∈ U let y ∈ ∂� be such that d := dist(x, ∂�) = |x−y|.We know
that | f (x ′)| � h = r L and that xn ∈ (−3h, h), which imply | f (x ′)−xn| � 4h � ε,

and with |x ′| < r we obtain |x | �
√
r2 + (3 h)2 �

√
5
8ε. We distinguish two cases.

If y �∈ Bε then |x − y| � (1 −
√

5
8 )ε and the proof of (5.29) is concluded (if cL

is sufficiently large). If instead y ∈ Bε then necessarily y ∈ ∂V and yn = f (y′),
which implies d2 = |y′ − x ′|2 + | f (y′) − xn|2. As f is L-Lipschitz, f (y′) �
f (x ′) − L|x ′ − y′|, so that

d � max{|x ′ − y′|, f (x ′) − L|x ′ − y′| − xn}. (5.30)
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Fig. 7. Sketch of the geometry in the construction of Lemma 5.7

If d � 1
2 ( f (x

′) − xn), then we are done (with any cL � 2). Otherwise, 1
2 ( f (x

′) −
xn) > d � ( f (x ′) − xn) − L|x ′ − y′| implies Ld � L|x ′ − y′| � 1

2 ( f (x
′) − xn)

which concludes the proof of (5.29) for any cL � 2L .
Inserting (5.29) and Br ∩ V ⊆ U in (5.28) concludes the proof. ��

Proof of Theorem 5.5. It suffices to consider the scalar case; by density it suffices
to prove the inequality if u is C1(�). For brevity, let A := ‖ dist(·, ∂�)∇u‖L p(�).
Let ε be as in Definition 5.1 and fix rB := ε/(12(L + 1)) (the reason will become
clear below).

We first show that for every x ∈ � there is α(x) ∈ R such that

‖u − α(x)‖L p(BrB (x)∩�) � cA, (5.31)

with c depending only on n, p, L and R. To see this, we distinguish two cases. If
dist(x, ∂�) � 2rB this follows from the usual Poincaré inequality applied to the
ball BrB (x) ⊂ �, with dist(·, ∂�) � rB in BrB (x). If not, we fix x∗ ∈ ∂� with
|x∗ − x | < 2rB and use Lemma 5.7 to B3rB (x∗) (this is the point where the size of
rB is fixed). As BrB (x) ⊆ B3rB (x∗), this concludes the proof of (5.31).

By Vitali’s covering theorem, there is a finite set x0, . . . , xK ∈ � such that
� ⊂ ∪K

k=0Bk , Bk := BrB/2(xk), with the smaller balls BrB/10(xk) pairwise disjoint.
In particular, since they are all centered in � and the diameter of � is bounded by
Rε, we obtain K � (1 + 10Rε/rB)n � cRnLn . Let αk := α(xk). We claim that,
for every k = 1, . . . , K , one has

rn/p
B |α0 − αk | � cK A. (5.32)

To see this, fix k, and let j0 := 0, j1, . . . , jH := k be finitely many indices in
{0, K } such that Bjh ∩ Bjh+1 ∩ � �= ∅ for all h. They exist since � is connected,
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which means that there is a continuous curve in � which joins a point of B0 ∩ �

with a point of Bk ∩ �; as the curve is compact it is covered by finitely many of
the balls. We can further assume the indices jh to be distinct. Indeed, if jh = jh′
for some h < h′, we can remove h, h + 1, . . . , h′ − 1 from the set. As there are at
most K balls, we obtain H � K .

In turn, Bjh ∩ Bjh+1 ∩ � �= ∅ implies that the larger balls have significant
overlap. Indeed, for each x ∈ � one has Ln(� ∩ BrB/2(x)) � cLrnB , and recalling
that the radius of the balls Bk is rB/2, we obtain

cLr
n
B � Ln(BrB (x jh ) ∩ BrB (x jh+1) ∩ �). (5.33)

Using (5.31) on these two balls and then a triangular inequality,

rn/p
B |α jh − α jh+1 | � cA, (5.34)

which, as H � K , implies (5.32). Finally, using that the balls B0, . . . , BK cover
�,

‖u − α0‖L p(�) �
K∑

k=0

[
‖u − αk‖L p(Bk∩�) + (Ln(Bk))

1/p|αk − α0|
]

� cK 2A.

(5.35)
��

Many well-known results from the literature follow easily from the weighted
Poincaré inequality and its proof above. We start with a Poincaré inequality (see
for example [45, Theorem 1.2]).

Theorem 5.8. (Poincaré inequality) Let � ⊂ R
n be a connected, bounded (L , R)-

Lipschitz set and p ∈ [1,∞). Then there exists a constant cPo > 0 depending only
on n, p, L, and R such that for all u ∈ W 1,p(�;Rk) there exists du ∈ R

k with

‖u − du‖L p(�) � cPo diam(�)‖∇u‖L p(�).

Proof. This follows from Theorem 5.5, using that dist(x, ∂�) � diam(�) for all
x ∈ �. ��

With the same strategy as above we can obtain a uniform estimate on the trace
operator, as a map fromW 1,p to L p of the boundary. Also this result is well-known
in the literature; see, e.g., [38, Theorem 18.40].

Theorem 5.9. (Trace) Let� ⊆ R
n be a bounded (L , R)-Lipschitz set, p ∈ [1,∞).

Then the trace operator T : W 1,p(�;Rk) → L p((∂�,Hn−1);Rk) obeys

‖Tu‖L p(∂�) � cTr(d
1−1/p‖∇u‖L p(�) + 1

d1/p
‖u‖L p(�)), (5.36)

where d := diam(�). The constant cTr depends only on n, p, L and R.
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Proof. This can be proven along the same lines as Theorem 5.5. One starts showing
that, in the setting of Lemma 5.6, one has

|ϕ(a) − α|p � cp
1

L1(E)

∫
E

|ϕ − α|pdt + cp(L1(I ))p−1
∫
I
|ϕ′|p(t)dt. (5.37)

To see this, it suffices to observe that for any t ′ ∈ E the fundamental theorem of
calculus in (a, t ′) ⊆ I gives

|ϕ − α|(a) � |ϕ − α|(t ′) +
∫
I
|ϕ′|(t)dt. (5.38)

We take the p-th power, average over all t ′ ∈ E , and use Hölder’s inequality in the
last term to obtain (5.37).

In the next step we observe that, with r as in Lemma 5.7, for any x ∈ ∂�,
∫
Br (x)∩∂�

|u − α|pdHn−1 � cr p−1
∫

�

|∇u|pdx + c

r

∫
�

|u − α|pdx, (5.39)

with c depending only on n, p, L . This follows from (5.37) with a change of
variables, integrating over the same domain as in Lemma 5.7. The passage to
the integral in Hn−1 follows observing that Br (x) ∩ ∂� is the graph of an L-
Lipschitz function. The coefficients can be replaced by the corresponding powers
of d (by property (iii) in Remark 5.2 ε � diam�, by property (i) in Definition 5.1
diam� � Rε). Finally, we cover ∂� with no more than cRn(ε/r)n such balls, as
in the proof of Theorem 5.5, and conclude the proof. ��

5.3. Rigidity

We prove a version of geometric rigidity from [28] and of Korn’s inequality
with uniform constant on all (L , R)-Lipschitz sets. Instead of repeating the entire
proof, and checking that the variuos constants depend on the domain only through
the parameters L and R, we show that the estimate for a general domain can be
reduced to the one for a cube. We refer to [14] for the proof for general p and a
review of the literature on Korn’s inequality and rigidity. The explicit dependence
of the constant on the shape of the domain was analyzed, in the specific case of
long and thin domains, in [30,31]. Korn’s inequality was derived for John domains
and related classes using different techniques, see [1,25,33] and references therein.

Theorem 5.10. (Uniform rigidity) Let � ⊆ R
n be a connected, bounded (L , R)-

Lipschitz set, p ∈ (1,∞). Then for any u ∈ W 1,p(�;Rn) there are R ∈ SO(n)

and S ∈ R
n×n
skw such that

‖∇u − R‖L p(�) � cRig‖ dist(∇u,SO(n))‖L p(�) (5.40)

and
‖∇u − S‖L p(�) � cRig‖∇u + ∇uT ‖L p(�). (5.41)

The constant cRig depends only on n, p, L and R.
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We recall that both estimates do not hold for p = 1 and p = ∞.

Proof. For the case that � is a cube both results are well known. We prove the first
inequality, the proof of the second one is almost identical.

The key observation is that the constant depends on the domain only via the
weighted Poincaré estimate. The general structure of the argument, using aWhitney
decomposition of the domain, is similar to the one used in [28] for the harmonic part.
Indeed, there rigidity was first proven in small cubes, and then the second derivative
was estimated using harmonic estimates. Here we instead construct a new function
(called β below) which interpolates between the values of the rotation in each
cube, using a partition of unity. This permits to avoid discussing the dependence
on the domain of the constants involved in the initial truncation in the proof of
[28]. This argument is almost identical to the one used in [17], we repeat it here for
completeness.

We intend to construct a partition of unity subordinated to a Whitney covering
of�, done as in [50, Section VI.1] or [27, Sect. 6.5]. Precisely, we select countably
many cubes Q j := x j + (−r j , r j )n such that, letting Q̂ j := x j + (− 1

2r j ,
1
2r j )

n

denote cubes with the same center and half the size,

χ� �
∑
j

χQ̂ j �
∑
j

χQ j � cχ�, (5.42)

and
r j � dist(Q j , ∂�) � cr j . (5.43)

The constant c in (5.42) and (5.43) depends only on the dimension n. These con-
ditions imply that the cubes have finite overlap, and that if Q j ∩ Qk �= ∅ then
1/c � r j/rk � c.

We fix ϕ∗ ∈ C∞
c ((−1, 1)n; [0, 1]) with ϕ∗ = 1 on (− 1

2 ,
1
2 )

n , let ϕ̂ j (x) :=
ϕ∗((x − x j )/r j ) and ϕ j := ϕ̂ j/

∑
k ϕ̂k . Using (5.42) one obtains ϕ j ∈ C∞

c (Q j ),∑
j ϕ j = 1 in �, and |∇ϕ j | � c/r j . By the estimate for the cube, for each j there

is R j ∈ SO(n) such that

‖∇u − R j‖L p(Q j ) � cn,p‖ dist(∇u,SO(n))‖L p(Q j ). (5.44)

We define β : � → R
n×n as a smooth interpolation between the R j , β :=∑

j ϕ j R j . Using
∑

j ϕ j = 1 in �, ϕ j � 1 and the finite overlap,

‖∇u − β‖p
L p(�) = ‖

∑
j

ϕ j (∇u − R j )‖p
L p(�) � c

∑
j

‖∇u − R j‖p
L p(Q j )

. (5.45)

Using first (5.44) in each cube Q j and then summing via (5.42) leads to

‖∇u − β‖p
L p(�) � c

∑
j

∫
Q j

|∇u − R j |pdx � c
∫

�

dist p(∇u,SO(n))dx . (5.46)

At the same time, the distance between ∇u and the R j controls the derivative of β.
Indeed, from

∑
j ϕ j = 1 we obtain

∑
j ∇ϕ j = 0 on �, so that

∇β =
∑
j

∇ϕ j R j =
∑
j

∇ϕ j (R j − ∇u). (5.47)
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At this point we recall that |∇ϕ j | � c/r j , and that dist(Q j , ∂�) � cr j , which
implies that

dist(x, ∂�)|∇ϕ j |(x) � cχQ j (x) for all x ∈ �. (5.48)

Therefore∫
�

dist p(x, ∂�)|∇β|pdx � c
∑
j

∫
Q j

dist p(x, ∂�)|∇ϕ j |p|∇u − R j |pdx

� c
∑
j

∫
Q j

|∇u − R j |pdx .
(5.49)

We then apply the weighted Poincaré inequality in Theorem 5.5 and obtain that
there is R∗ ∈ R

n×n with

‖β − R∗‖p
L p(�) � c

∫
�

dist p(x, ∂�)|∇β|pdx � c
∫

�

dist p(∇u,SO(n))dx .

(5.50)
Finally, we let R be the matrix in SO(n) closest to R∗. Then, using that |R− R∗| =
dist(R∗,SO(n)) � |R∗ − ∇u|(x) + dist(∇u(x),SO(n)) pointwise we obtain

|R − R∗|(Ln(�))1/p � c‖ dist(∇u,SO(n))‖L p(�), (5.51)

which, together with (5.46) and (5.50), concludes the proof. ��
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