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Abstract

In this paper, we show that any embedded capillary hypersurface in the half-
space with anisotropic constant mean curvature is a truncated Wulff shape. This
extendsWente’s result (Pac JMath 88:387–397, 1980. https://doi.org/10.2140/pjm.
1980.88.387) to the anisotropic case and He–Li–Ma–Ge’s result (Indiana Univ
Math J 58(2):853–868, 2009. https://doi.org/10.1512/iumj.2009.58.3515) to the
capillary boundary case. The main ingredients in the proof are a new Heintze-
Karcher inequality and a new Minkowski formula, which have their own interest.

1. Introduction

Capillary phenomena appear in the study of the equilibrium shape of liquid
drops and crystals in a given solid container. The mathematical model has been
established through the work of Young, Laplace, Gauss and others, as a variational
problem on minimizing a free energy functional under a volume constraint. A
modern formulation ofGauss’model includes a possibly anisotropic surface tension
density, which we are interested in. For more detailed description of the isotropic
and anisotropic capillary phenomena, we refer to [12] and [6].

For our purposes, we consider the anisotropic capillary problem in the half-
space

R
n+1+ = {x ∈ R

n+1 : 〈x, En+1〉 > 0}.
Here En+1 denotes the (n+1)-coordinate unit vector. Let� be a compact orientable

embeddedhypersurface inRn+1+ with boundary ∂� lying on ∂Rn+1+ , which, together
with ∂Rn+1+ , encloses a bounded domain �. Let ν be the unit normal of � pointing
outward �. We consider the free energy functional
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E(�) =
∫

�

F(ν)dA + ω0|∂� ∩ ∂Rn+1+ |,

where the term
∫
�
F(ν)dA is the anisotropic surface tension and the term ω0|∂�∩

∂Rn+1+ | is the wetting energy accounting for the adhesion between the fluid and the
walls of the container. Here F : Sn → R+ is a C2 positive function on S

n , such
that (∇2F + Fσ) > 0, where σ is the canonical metric on Sn and∇2 is the Hessian
on Sn , and ω0 ∈ R is a given constant. The Cahn-Hoffman map associated with F
is given by

� : Sn → R
n+1, �(x) = ∇F(x) + F(x)x,

where∇ denote the gradient on Sn . One easily sees that�(x) = DF̃(x), where F̃ is
the positive one-homogeneous extension of F toRn+1 and D denotes the Euclidean
derivative. The image�(Sn) of� is a strictly convex, closed hypersurface inRn+1,
which is the unit Wulff shape with respect to F , which we denote by WF .

In the isotropic case F ≡ 1, the global minimizer of E under a volume con-
straint is characterized as a spherical cap by De Giorgi, which is the solution to the
relative isoperimetric problem; see for example [27, Chapter 19]. In the anisotropic
case, the global minimizer of E under volume constraint has been characterized by
Winterbottom [11] as a truncated Wulff shape, which is also called a Winterbottom
shape, orWinterbottom construction in applied mathematics, especially in material
science; see for example [4] and references therein. TheWinterbottom construction
can be viewed as the capillary counterpart of Wulff construction, which character-
izes the global minimizer for purely anisotropic surface tension, see [13,32,35]. For
anisotropic free energy functionals involving a gravitational potential energy term,
the existence, the regularity and boundary regularity of global minimizers have
been studied by De Giorgi [7], Almgren, [1] and Taylor [33]; see also the recent
work by De Philippis and Maggi [6,8]. For the symmetry and uniqueness of global
minimizers we refer to the work of Baer [5] for a class of F with certain symmetry,
following the work of Gonzalez [15] in the isotropic case, via a symmetrization
technique.

In this paper, we shall study the rigidity for the stationary surfaces for the free
energy functional E under a volume constraint. Given a variation {�t } of �, whose
boundary ∂�t moves freely on ∂Rn+1+ and according to a variational vector field Y
such that Y |∂�∈ T (∂Rn+1+ ), the first variation formula of E is given by

d

dt
|t=0 E(�t ) =

∫
�

HF 〈Y, ν〉 dA +
∫

∂�

〈Y, R(p(�(ν)))〉 ds + ω0

∫
∂�

〈Y, μ〉 ds,

where HF is the anisotropic mean curvature of �, p is the projection onto the
{ν, En+1}-plane, R is the π/2-rotation in the {ν, En+1}-plane, μ is the conormal of
∂� ⊂ �, see [22,23,30]. For its proof we refer to the one of [23, Proposition 2]. It
follows that the stationary points of E amongC2 hypersurfaces under a volume con-
straint are anisotropic ω0-capillary hypersurfaces with constant anisotropic mean
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curvature. In this paper we say a hypersurface inRn+1+ with boundary ∂� ⊂ ∂Rn+1+
anisotropic ω0-capillary if

〈�(ν),−En+1〉 = ω0, on ∂�. (1.1)

We emphasize that it is not necessarily a constant anisotropicmean curvature hyper-
surface. Moreover we are interested in hypersurfaces which intersect with ∂Rn+1+
transversely.

The rigidity of embedded closed constant mean curvature hypersurfaces was
obtained by Alexandrov [2] in the celebrated Alexandrov’s theorem, that any em-
bedded closed hypersurface of constant mean curvature in Rn+1 must be a sphere.
In the proof Alexandrov introduced the famous moving plane method. Wente [34]
showed that any embedded compact hypersurface of constant mean curvature with

capillary boundary inRn+1+ is a spherical cap. Taking into account of the anisotropy,
He–Li–Ma–Ge [17] proved that any embedded closed hypersurface in R

n+1 with
constant anisotropic mean curvature must be aWulff shape. See also a related result
by Morgan [28] in R2 for a more general anisotropic function F . We also mention
that the Alexandrov-type theorem for general finite perimeter sets has been proved
in the isotropic setting by Delgadino-Maggi [9], and in the anisotropic setting by
De Rosa-Kolasiński-Santilli [10]. For the closely related work on the stability prob-
lem of constant anisotropic mean curvature hypersurface without boundary or with
capillary boundary, we refer to [16,22–26,30] and references therein.

Our main result in this paper is the following Alexandrov-type theorem for em-
bedded anisotropic capillary hypersurfaces of constant anisotropic mean curvature

in R
n+1+ .

Theorem 1.1. Let ω0 ∈ (−F(En+1), F(−En+1)). Let � ⊂ R
n+1+ be a C2 em-

bedded compact anisotropic ω0-capillary hypersurface with constant anisotropic
mean curvature. Then � is an ω0-capillary Wulff shape.

An ω0-capillary Wulff shape is part of a Wulff shape in R
n+1+ such that the

anisotropic capillary boundary condition (1.1) holds. We remark that the assump-
tion ω0 ∈ (−F(En+1), F(−En+1)) is a necessary condition so that Wulff shapes
intersect with ∂Rn+1+ transversely, see Remark 2.1.

As mentioned above, Theorem 1.1 for the isotropic case was proved by Wente
in [34], where he used Alexandrov’s moving plane method. However, the moving
planemethod fails in general for the anisotropic case, at least if F has less symmetry.
A new proof of Wente’s result has been done by the authors [21] through the
establishment of a Heintze-Kacher-type inequality in the capillary problem, which
is inspired by the original idea of Heintze-Karcher [18] (see also Montiel-Ros
[29]). This method is flexible to the anisotropic case and this is the way we achieve
Theorem 1.1.

Following this way we first need to establish a Heintze-Harcher type inequality
for anisotropic capillary hypersurfaces. In order to state the inequality, we need a
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constant vector EF
n+1 ∈ R

n+1 defined as

EF
n+1 =

{
�(En+1)
F(En+1)

, if ω0 < 0,

−�(−En+1)
F(−En+1)

, if ω0 > 0.
(1.2)

Note that EF
n+1 is the unique vector in the direction �(En+1), whose scalar prod-

uct with En+1 is 1. When ω0 = 0, one can define it by any unit vector. This
constant vector plays a crucial role in the paper. A hypersurface is said to be strictly
anisotropic-mean convex if HF > 0.Nowwe state our anisotropicHeintze-Karcher
inequality.

Theorem 1.2. Letω0 ∈ (−F(En+1), F(−En+1)) and� ⊂ R
n+1+ be a C2 compact

embedded strictly anisotropic-mean convex hypersurface with boundary ∂� ⊂
∂Rn+1+ such that

〈�(ν(x)),−En+1〉 = ω(x) ≤ ω0, for any x ∈ ∂�. (1.3)

Then it holds that ∫
�

F(ν) + ω0
〈
ν, EF

n+1

〉
HF

dA ≥ n + 1

n
|�|. (1.4)

Equality in (1.4) holds if and only if � is an ω0-capillary Wulff shape.

We will follow the argument in [21] to prove Theorem 1.2. The main idea is to
define suitable parallel hypersurfaces ζF (·, t), in order to sweepout the enclosed
domain � and use the area formula to compute the volume. A crucial ingredient is
an anisotropic angle comparison principle in Proposition 3.1 which enables us to
prove the surjectivity of ζF .

Then we need the following anisotropic Minkowski-type formula:

Theorem 1.3. Letω0 ∈ (−F(En+1), F(−En+1)) and� ⊂ R
n+1+ be a C2 compact

anisotropic ω0-capillary hypersurface. Let H F
r be the (normalized) anisotropic r-

th mean curvature for some r ∈ {1, . . . , n} and H F
0 ≡ 1 by convention. Then it

holds ∫
�

HF
r−1

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
− HF

r 〈x, ν〉 dA = 0. (1.5)

In particular, ∫
�

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
− HF

1 〈x, ν〉 dA = 0. (1.6)

Remark 1.1. We remark the importance of using the constant vector EF
n+1. In fact,

(1.4) and (1.5) hold true, if we replace EF
n+1 by En+1. However, if one used En+1

instead of EF
n+1, we could only prove our main Theorem 1.1, for a smaller range

ω0 ∈ (−1/Fo(En+1), 1/Fo(−En+1)). For one of reasons see Proposition 3.2. The
main reason lies in the proof of the Heintze-Karcher inequality. For details, see
Remarks 3.1 and 3.2. This is one of the crucial differences between the isotropic
case and the anisotropic case.
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For the isotropic case F ≡ 1, (1.4) and (1.5)were proved by the authors [21].We
refer to [21] and [36] for a historical description of the Heintze-Karcher inequality
and the Minkowski formula respectively, and references therein.

The anisotropic Heintze-Karcher inequality and the anisotropicMinkowski for-
mula for closed hypersurfaces have been proved by He–Li–Ma–Ge [17, Theorem
4.4] and He–Li [19]. In this case, our argument provides a slight improvement for
the anisotropicHeintze-Karcher inequality, at least when F is even, see Remark 3.3.

Corollary 1.1. Let � ⊂ R
n+1 be a C2 closed embedded strictly anisotropic-mean

convex hypersurface. Then it holds that
∫

�

F(ν)

HF
dA ≥ n + 1

n
|�| + max

{
0,max

e∈Sn

∫
�

〈ν,�(e)〉
HF

dA

}
. (1.7)

Equality holds if and only if � is a Wulff shape.

Finally we follow an argument of Ros [31] by combining Theorems 1.2 and 1.3
to establish the Alexandrov-type theorem for capillary hypersurfaces with constant
anisotropic mean curvature, Theorem 1.1, and also the Alexandrov-type theorem
for capillary hypersurfaces with constant higher order anisotropic mean curvature
whose definition will be given in Sect. 2.

Theorem 1.4. Let ω0 ∈ (−F(En+1), F(−En+1)). Let � ⊂ R
n+1+ be a C2 embed-

ded compact anisotropic ω0-capillary hypersurface with constant r-th anisotropic
mean curvature for some r ∈ {2, . . . , n}. Then � is an ω0-capillary Wulff shape.

The rest of the paper is organized as follows. In Sect. 2, we provide more
details about the anisotropic mean curvature and the higher order anisotropic mean
curvature, togetherwith theWulff shape and theω0-capillaryWulff shape. InSect. 3,
we prove the Minkowski-type formula in Theorem 1.3 and the Heintze-Karcher-
type inequality in Theorem 1.2. In Sect. 4, we prove the Alexandrov-type theorem,
Theorems 1.1 and 1.4.

2. Preliminaries

Let F : Sn → R+ be a C2 positive function on Sn such that (∇2F + Fσ) > 0.
We denote

AF = ∇2F + Fσ.

Let Fo : Rn+1 → R be defined by

Fo(x) = sup

{ 〈x, z〉
F(z)

| z ∈ S
n
}

,

where 〈·, ·〉 denotes the standard Euclidean inner product. We collect some well-
known facts on F and Fo, see e.g. [17].

Proposition 2.1. For any z ∈ S
n and t > 0, the following statements hold:
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(i) Fo(t z) = t Fo(z).
(ii) 〈�(z), z〉 = F(z).
(iii) Fo(�(z)) = 1.
(iv) The following Cauchy–Schwarz inequality holds:

〈x, z〉 ≤ Fo(x)F(z). (2.1)

(v) The unit Wulff shape WF can be interpreted by Fo as

WF = {x ∈ R
n+1 : Fo(x) = 1}.

A Wulff shape of radius r centered at x0 ∈ R
n+1 is given by

Wr0(x0) = {x ∈ R
n+1 : Fo(x − x0) = r0}.

Let � ⊂ R
n+1+ be a C2 hypersurface with ∂� ⊂ ∂Rn+1+ , which encloses

a bounded domain �. Let ν be the unit normal of � pointing outward �. The
anisotropic normal of � is given

νF = �(ν) = ∇F(ν) + F(ν)ν,

and the anisotropic principal curvatures {κF
i }ni=1 of � are given by the eigenvalues

of the anisotropic Weingarten map

dνF = AF (ν) ◦ dν : Tp� → Tp�.

The eigenvalues are real since (AF ) is positive definite and symmetric. For r ∈
{1, · · · , n}, the (normalized) r -th anisotropic mean curvature is defined by

HF
r = 1(n

r

)σ F
r ,

where σ F
r be the r -th elementary symmetric function on the anisotropic principal

curvatures {κF
i }ni=1, namely,

σ F
r =

∑
1≤i1<···<ir≤n

κF
i1 · · · κF

ir ,

In particular, HF = σ F
1 is the anisotropic mean curvature and HF

1 the normalized
anisotropic mean curvature. Alternatively, the r -th anisotropic mean curvature HF

r
of � can be defined through the identity

Pn(t) =
n∏

i=1

(1 + tκF
i ) =

n∑
i=0

(
n

i

)
HF
i t i (2.2)

for all real numbers t .
It is easy to check that the anisotropic principal curvatures of Wr (x0) are 1

r ,
since

νF (x) = x − x0
r

, on Wr (x0). (2.3)
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For the convenience of the reader, we provide a proof of (2.3). We first consider the
unit Wulff shape, WF . Since the unit normal vector ν of WF at x ∈ WF is given
by �−1(x), then the anisotripic normal is just x . For the general case, one use a
translation and a scaling.

A truncated Wulff shape is a part of a Wulff shape cut by a hyperplane, say
{xn+1 = 0}. Namely, it is an intersection of a Wulff shape andRn+1+ . As mentioned
above, it was used by Winterbottem [11]. At a first glimpse, it is not very easy to
image why the hyperplane intersects a Wulff shape at a “constant angle" as in the
isotropic case, namely (1.1) holds. It follows from

〈νF ,−En+1〉 = 〈 x − x0
r

,−En+1〉 = 〈 x0
r

,−En+1〉,
which is a constant.

Remark 2.1. The boundary condition 〈�(ν),−En+1〉 = ω0 implies ω0 ∈
(−F(En+1), F(−En+1)). Indeed, by the Cauchy-Schwarz inequality (2.1),

−F(En+1) = −F(En+1)F
o(�(ν)) ≤ 〈�(ν),

− En+1〉 ≤ Fo(�(ν))F(−En+1) = F(−En+1). (2.4)

Since � is embedded, � intersects ∂Rn+1+ transversely. It follows that equality
in (2.4) cannot hold. Therefore, ω0 ∈ (−F(En+1), F(−En+1)) is a necessary
condition for anisotropic ω0-capillary hypersurfaces.

From our work in this paper, one can in fact introduce a notion of “anisotropic
contact angle" as follows, which is a natural generalization of the contact angle in
the isotropic case. We define θ : ∂� → (0, π) by

− cos θ =
⎧⎨
⎩

F(En+1)
−1〈νF ,−En+1〉, if 〈νF ,−En+1〉 < 0,

0, if 〈νF ,−En+1〉 = 0,
F(−En+1)

−1〈νF ,−En+1〉, if 〈νF ,−En+1〉 > 0.

If θ = π/2, or equivalently 〈νF ,−En+1〉 = 0, we call that the anisotropic hy-
persurface intersects ∂Rn+1+ perpendicularly, or it is a free boundary anisotropic
hypersurface.

3. Minkowski-type formula and Heintze-Karcher-type inequality

3.1. Minkowski-type formula

To prove the Minkowski-type formula, we need the following structural lemma
for compact hypersurfaces inRn+1 with boundary, which is well-known andwidely
use; see, for example [3,20].

Lemma 3.1. Let � ⊂ R
n+1 be a compact hypersurface with boundary. Then it

holds that

n
∫

�

νdA =
∫

∂�

{〈x, μ〉 ν − 〈x, ν〉 μ} ds. (3.1)
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In the paper we denote μ the unit outward co-normal of ∂� in �. Recall EF
n+1

defined in (1.2). It is easy to check that

〈EF
n+1, En+1〉 = 1. (3.2)

Proof of Theorem 1.3. We first prove (1.6). We begin by introducing the following
C1 vector field along �:

XF (x) = F(ν(x))x − 〈x, ν(x)〉 νF (x).

Observe that XF is indeed a tangential vector field along �, since

〈XF , ν〉 = F(ν) 〈x, ν〉 − 〈x, ν〉 〈νF , ν〉 = 0.

Notice also that along � we have

div�(XF ) = nF(ν) + 〈dν(∇F), x〉 −
〈
x, dν(νTF )

〉

− 〈x, ν〉 HF = nF(ν) − HF 〈x, ν〉 , (3.3)

where div� is the divergence on �. In the second equality, we have used the self-
adjointness of dν. Here νTF and xT denote the tangential projection on � of νF

and x respectively. In particular, νTF = νF − 〈νF , ν〉ν = ∇F(ν). On one hand,
integrating (3.3) along � and using the divergence theorem, we find

∫
�

nF(ν) − HF (x) 〈x, ν〉 dA =
∫

∂�

F(ν) 〈x, μ〉 − 〈x, ν〉 〈νF , μ〉 ds. (3.4)

On the other hand, by (3.1) we have

−nω0

∫
�

〈
ν, EF

n+1

〉
dA =

∫
∂�

(−〈x, μ〉
〈
ν, EF

n+1

〉
ω0 + 〈x, ν〉

〈
μ, EF

n+1

〉
ω0)ds.

(3.5)

It is easy to see that at any x ∈ ∂� ⊂ ∂Rn+1+

En+1 = 〈ν, En+1〉 ν + 〈μ, En+1〉μ,

and hence we have

−ω0 = 〈En+1, νF 〉 = 〈ν, En+1〉 F(ν) + 〈μ, En+1〉 〈νF , μ〉 , (3.6)

0 = 〈En+1, x〉 = 〈ν, En+1〉 〈x, ν〉 + 〈μ, En+1〉 〈x, μ〉 . (3.7)

Moreover by (3.2) we have

1 = 〈EF
n+1, En+1〉 = 〈ν, En+1〉〈EF

n+1, ν〉 + 〈μ, En+1〉〈EF
n+1, μ〉. (3.8)

This yields that

− 〈x, μ〉
〈
ν, EF

n+1

〉
ω0 + 〈x, ν〉

〈
μ, EF

n+1

〉
ω0
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= 〈x, μ〉
〈
ν, EF

n+1

〉
〈ν, En+1〉 F(ν) − 〈x, ν〉

〈
μ, EF

n+1

〉
〈ν, En+1〉 F(ν)

+ 〈x, μ〉
〈
ν, EF

n+1

〉
〈μ, En+1〉 〈νF , μ〉 − 〈x, ν〉

〈
μ, EF

n+1

〉
〈μ, En+1〉 〈νF , μ〉

= 〈x, μ〉
〈
ν, EF

n+1

〉
〈ν, En+1〉 F(ν) + 〈x, μ〉 〈μ, En+1〉

〈
μ, EF

n+1

〉
F(ν)

− 〈x, ν〉 〈ν, En+1〉
〈
ν, EF

n+1

〉
〈νF , μ〉 + 〈x, ν〉

〈
μ, EF

n+1

〉
〈μ, En+1〉 〈νF , μ〉

= F(ν) 〈x, μ〉 − 〈x, ν〉 〈νF , μ〉 ,

where we have used (3.6) in the first equality, (3.7) in the second equality and (3.8)
in the last one. In particular, this identity, together with (3.4) and (3.5), implies

∫
�

nF(ν) − HF (x) 〈x, ν〉 dA = −n
∫

�

〈
ν, ω0E

F
n+1

〉
dA,

which is (1.6).
Next we prove (1.5) for general r by using (1.6) as in [21]. Consider a family

of hypersurfaces �t with boundary for small t > 0, defined by

ϕt (x) = x + t (νF (x) + ω0E
F
n+1) x ∈ �.

We claim that �t is also an anisotropic ω0-capillary hypersurface in R
n+1+ . On one

hand, the ω0-capillarity condition and (3.2) yield that for any x ∈ ∂�,
〈
νF (x) + ω0E

F
n+1,−En+1

〉
= ω0 − ω0 = 0.

Hence, ϕt (x) ∈ ∂Rn+1+ for x ∈ ∂� which means ∂�t ⊂ ∂Rn+1+ . On the other hand,
denoting by eFi an anisotropic principal vector at x ∈ � corresponding to κF

i for
i = 1, · · · , n, we have

(ϕt )∗(eFi ) = (1 + tκF
i )eFi , i = 1, . . . , n. (3.9)

We see from (3.9) that ν�t (ϕt (x)) = ν(x), and in turn ν
�t
F (ϕt (x)) = νF (x). Here

ν�t and ν
�t
F denote the outward normal and anisotropic normal to �t respectively.

In view of this, we have〈
ν

�t
F (ϕt (x)),−En+1

〉
= 〈νF (x),−En+1〉 = ω0.

Therefore, �t is also an anisotropic ω0-capillary hypersurface in R
n+1+ and hence

(1.6) holds for �t for any small t . Exploiting (1.6) for every such �t , we find that
∫

�t=ϕt (�)

(
F(νt ) + ω0

〈
νt , E

F
n+1

〉)
− HF

1 (t) |y 〈y, νt 〉 dAt (y) = 0. (3.10)

By (3.9), the tangential Jacobian of ϕt along � at x is just

J�ϕt (x) =
n∏

i=1

(1 + tκF
i (x)) = Pn(t), (3.11)
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where Pn(t) is the polynomial defined in (2.2). Moreover, using (3.9) again, we
see that the corresponding anisotropic principal curvatures are given by

κF
i (ϕt (x)) = κF

i (x)

1 + tκF
i (x)

. (3.12)

Hence fix x ∈ �, the anisotropic mean curvature of �t at ϕt (x), say HF (t), is
given by

HF (t) = P ′
n(t)

Pn(t)
=

∑n
i=0 i

(n
i

)
HF
i t i−1

Pn(t)
, (3.13)

where HF
i = HF

i (x) is the i-th mean curvature of � at x .
Using the area formula, (3.11) and (3.13), we find from (3.10) that∫

�

n
(
F(ν) + ω0

〈
ν, EF

n+1

〉)
Pn(t) − t (〈x, νF (x)〉

+ω0

〈
x, EF

n+1

〉)
P ′
n(t) − P ′

n(t) 〈x, ν〉 dAx = 0.

As the left hand side in this equality is a polynomial in the time variable t , this
shows that all its coefficients vanish, and hence a direct computation yields (1.5).
��

We remark that the definition of the family of capillary hypersurfaces �t was
inspired by [21]. These are the parallel hypersurfaces in the case of capillary bound-
ary.

Remark 3.1. If we replace EF
n+1 by En+1 in the proof, every step above is valid and

we achieve that∫
�

HF
r−1 (F(ν) + ω0 〈ν, En+1〉) − HF

r 〈x, ν〉 dA = 0.

Alternatively, we can prove directly that∫
�

HF
r−1

〈
ν, EF

n+1

〉
dA =

∫
�

HF
r−1 〈ν, En+1〉 dA.

Since we do not need it in this paper, we omit the proof.

3.2. Heintze-Karcher-type inequality

To prove theHeintze-Karcher-type inequality, we need the following key propo-
sition, which amounts to be an anisotropic angle comparison principle. It is clear
that in the isotropic case it is trivial. However in the anisotropic case it is non-trivial.

Proposition 3.1. Let x, z ∈ S
n be two distinct points and y ∈ S

n lie in a length-
minimizing geodesic joining x and z in Sn, then we have

〈�(x), z〉 ≤ 〈�(y), z〉 .

Equality holds if and only if x = y.
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Proof. We denote d0 = dSn (x, z) and d1 = dSn (x, y), where dSn denotes the
intrinsic distance on S

n . If y �= x , clearly 0 < d1 ≤ d0. Let γ : [0, d0] → S
n be

the arc-length parameterized geodesic with γ (0) = x , γ (d0) = z. Considering the
function

f = 〈�(γ (t)), z〉, t ∈ [0, d0],
we have that

〈�(y), z〉 − 〈�(x), z〉 = f (d1) − f (0)

=
∫ d1

0

〈
d

dt
�(γ (t)), z

〉
dt =

∫ d1

0
〈Dγ̇ (t)�(γ (t)), z〉dt, (3.14)

where D is the Euclidean covariant derivative. Since γ is length-minimizing, it is
easy to see that

〈γ̇ (t), z〉 ≥ 0, ∀t ∈ (0, d0).

Thus z can be expressed as z = sin sγ̇ (t) + cos sγ (t) with some s ∈ (0, π). It
follows that

〈Dγ̇ (t)�(γ (t)), z〉 = sin s(∇2F + F I )(γ̇ (t), γ̇ (t)),

Since (∇2F + F I ) > 0, we get 〈Dγ̇ (t)�(γ (t)), z〉 > 0 for any t ∈ (0, d1).
This fact, together with (3.14), leads to the assertion. ��

We note that when y = z, Proposition 3.1 is nothing but the Cauchy-Schwarz
inequality (2.1), since one readily observes from Proposition 2.1(ii)(iii) that

〈�(x), z〉 ≤ Fo(�(x))F(z) = 〈�(z), z〉 .

The Cauchy-Schwarz inequality (2.1) also impies the following property:

Proposition 3.2. For ω0 ∈ (−F(En+1), F(−En+1)), if holds that

F(z) + ω0

〈
z, EF

n+1

〉
> 0, for any z ∈ S

n .

Proof. It is clear that we need not to consider the case ω0 = 0. If ω0 < 0, we
only need to consider the points z satisfying 〈z, EF

n+1〉 > 0. At any such z, since
ω0 > −F(En+1), we have

F(z) + ω0

〈
z, EF

n+1

〉
>F(z) − F(En+1)

〈
z,

�(En+1)

F(En+1)

〉

≥ F(z) − F(z)Fo(�(En+1)) = 0,

where we have used the Cauchy-Schwarz inequality for the second inequality.
For the caseω0 > 0, we just need to consider the points z such that 〈z, EF

n+1〉 <

0. Since ω0 < F(−En+1), using the Cauchy-Schwarz inequality again, we find

F(z) + ω0

〈
z, EF

n+1

〉
>F(z) + F(−En+1)

〈
z,−�(−En+1)

F(−En+1)

〉

≥ F(z) − F(z)Fo(�(−En+1)) = 0.

The proposition is thus proven. ��
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Now we can start to prove Theorem 1.2.

Proof of Theorem 1.2. Let � ⊂ R
n+1+ be an anisotropic capillary hypersurface

satisfying (1.3). For any x ∈ �, let κF
i (x) be the anisotropic principal curvature

and eFi (x) be the corresponding anisotropic principal vector of � at x such that
|eF1 ∧ eF2 ∧ · · · ∧ eFn | = 1. Since � is strictly anisotropic mean convex,

max
i

κF
i (x) ≥ 1

n
H F (x) > 0, for x ∈ �.

We define

Z =
{

(x, t) ∈ � × R : 0 < t ≤ 1

max κF
i (x)

}
,

and

ζF : Z → R
n+1, (3.15)

ζF (x, t) = x − t
(
νF (x) + ω0E

F
n+1

)
. (3.16)

Claim: � ⊂ ζF (Z).
Recall Wr (x0) is the Wulff shape centered at x0 with radius r . For any y ∈ �,

we consider a family of Wulff shapes {Wr (y + rω0EF
n+1)}r≥0. Since y ∈ � is an

interior point, we definitely have Wr (y + rω0EF
n+1) ⊂ � for r small enough. On

the other hand, by the assumption −F(En+1) < ω0 < F(−En+1), the definition
(1.2) of EF

n+1 and Proposition 2.1(i)(iii), it is easy to see that

Fo(−ω0E
F
n+1) < 1.

It follows that

Fo(y − (y + rω0E
F
n+1)

) = r Fo(−ω0E
F
n+1) < r,

which implies that for any small r > 0, y is always in the domain bounded by the
Wulff shape Wr (y + rω0EF

n+1). Hence Wr (y + rω0EF
n+1) must touch � as we

increase the radius r . Consequently, for any y ∈ �, there exists x ∈ � and ry > 0,
such that Wry (y + ryω0EF

n+1) touches � for the first time, at some point x ∈ �.
In terms of the touching point, only the following two cases are possible:

Case 1. x ∈ �̊.
In this case, since x ∈ �̊, the Wulff shapeWry (y + ryω0EF

n+1) is tangent to �

at x from the interior. Hence

ν(x) = νW (x), (3.17)

where νW denotes the outward unit normal of Wry (y + ryω0EF
n+1). Moreover,

since the touching of Wry (y + ryω0EF
n+1) with � is from interior, we see that

dν ≤ dνW , (3.18)
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in the sense that the coefficient matrix of the difference of two classical Weingarten
operators dν − dνW is semi-negative definite. It follows from (3.17) and (3.18)
that

AF (ν) ◦ dν ≤ AF (νW ) ◦ dνW . (3.19)

Since the anisotropic principal curvatures of Wry (y − ryω0EF
n+1) are equal to

1
ry
,

we see from (3.19) that

max
1≤i≤n

κF
i (x) ≤ 1

ry
.

Invoking the definition of Z and ζF , we find that y ∈ ζF (Z) in this case.
Case 2. x ∈ ∂�.
We will rule out this case by the capillarity assumption (1.3). Let νWF (x) be the

outward anisotropic normal toWry (y + ryω0EF
n+1). It is easy to see that

νWF (x) = �(νW (x)) = x − (y + ryω0EF
n+1)

ry
.

Recall that y lies in the interior of �. Thus 〈y, En+1〉 > 0. On one hand, in view
of (1.3) and (3.2) we have〈

νWF (x),−En+1

〉
= 1/ry 〈y, En+1〉 + ω0〈EF

n+1, En+1〉
> ω0 ≥ ω(x) = 〈νF (x),−En+1〉 . (3.20)

On the other hand, since the Wulff shapeWry (y + ryω0EF
n+1) touches � from the

interior, we have

〈ν(x),−En+1〉 ≥
〈
νW (x),−En+1

〉
.

Since ν, νW and −En+1 lie on the two-plane orthogonal to Tx (∂�), we see that ν
lies actually in the geodesic joining νW and −En+1 in Sn . It then follows from the
angle comparison principle Proposition 3.1 that

〈�(ν(x)),−En+1〉 ≥
〈
�(νW (x)),−En+1

〉
.

This is a contradiction to (3.20). The Claim is thus proved.
By a simple computation, we find that

∂tζF (x, t) = −
(
νF (x) + ω0E

F
n+1

)
,

DeFi
ζF (x, t) =

(
1 − tκF

i (x)
)
eFi (x).

Thanks to Proposition 3.2, a classical computation yields that the tangential Jaco-
bian of ζF along Z at (x, t) is just

JZ ζF (x, t) = (F(ν) + ω0〈ν, EF
n+1〉)

n∏
i=1

(1 − tκF
i ).



25 Page 14 of 19 Arch. Rational Mech. Anal. (2023) 247:25

By virtue of the fact that � ⊂ ζF (Z), the area formula yields

|�| ≤ |ζF (Z)| ≤
∫

ζF (Z)

H0(ζ−1
F (y))dy =

∫
Z
JZ ζFdHn+1

=
∫

�

dA
∫ 1

max{κFi (x)}
0

(
F(ν) + ω0

〈
ν, EF

n+1

〉) n∏
i=1

(1 − tκF
i (x))dt.

By theAM-GMinequality, and the fact thatmax
{
κF
i (x)

}n
i=1 ≥ 1

n H
F (x), we obtain

|�| ≤
∫

�

dA
∫ 1

max{κFi (x)}
0

(
F(ν) + ω0〈ν, EF

n+1〉
) (

1

n

n∑
i=1

(
1 − tκF

i (x)
))n

dt

≤
∫

�

(
F(ν) + ω0〈ν, EF

n+1〉
)
dA

∫ n
HF (x)

0

(
1 − t

H F (x)

n

)n

dt

= n

n + 1

∫
�

F(ν) + ω0〈ν, EF
n+1〉

HF
dA,

which gives (1.4).
If equality in (1.4) holds, then from the above argument, we see κF

1 (x) = . . . =
κF
n (x) for all x ∈ �. It follows from [17, Lemma 2.3] that � must be a part of a
Wulff shape Wr0(x0) for some r0 and some point x0. Hence HF is a constant n

r0
and since νF (x) = x−x0

r0
, we get, for x ∈ ∂�,

ω(x) = 〈νF (x),−En+1〉 = 1

r0
〈x0, En+1〉 := ω̃0,

which is a constant.
From the equality in Heintze-Karcher inequality and the Minkowski-type for-

mula (1.5), taking into account that HF is a constant, we deduce that

ω0

∫
�

〈
ν, EF

n+1

〉
dA = ω̃0

∫
�

〈
ν, EF

n+1

〉
dA.

By the divergence theorem and (3.2),
∫

�

〈
ν, EF

n+1

〉
dA = |∂� ∩ ∂Rn+1+ | �= 0.

It follows that ω̃0 = ω0 which means � is a ω0-capillary Wulff shape.
Conversely, for any ω0-capillary Wulff shape, we can see easily from the

Minkowski-type formula (1.5) and the fact of constant anisotropic mean curva-
ture that equality holds in (1.4). This completes the proof. ��
Remark 3.2. We may use in the proof another foliation of Wulff shapes {Wr (y +
rω0En+1)}r≥0. To ensure thatWr (y + rω0En+1) intersects with � for large r , we
need to assume

ω0 ∈
(

− 1

Fo(En+1)
,

1

Fo(−En+1)

)
. (3.21)
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We can follow the proof to achieve that
∫

�

F(ν) + ω0 〈ν, En+1〉
HF

dA ≥ n + 1

n
|�|. (3.22)

under the assumption (3.21). On the other hand, by virtue of the Cauchy-Schwarz
inequality, we see that (3.21) is in general more restrictive than the natural assump-
tion ω0 ∈ (−F(En+1), F(−En+1)). This is the reason why we introduce EF

n+1.

Proof of Corollary 1.1. It is clear that any closed hypersurface can be seen as a
capillary surface in a half space with a empty boundary. For any e ∈ S

n we can see
e as En+1 and apply Theorem 1.2.

First consider ω0 ∈ (−F(En+1), 0). Together with the definition of EF
n+1 (1.4)

gives us

∫
�

F(ν)

HF
dA ≥ n + 1

n
|�| − ω0

∫
�

〈ν, EF
n+1〉

HF
dA = n + 1

n
|�|

− ω0

F(En+1)

∫
�

〈ν,�(En+1)〉
HF

dA.

It follows that∫
�

F(ν)

HF
dA ≥ n + 1

n
|�| + max

{
0,

∫
�

〈ν,�(En+1)〉
HF

dA

}
.

Then we consider ω0 ∈ (0, F(−En+1)). Similarly, in this case (1.4) gives us
∫

�

F(ν)

HF
dA ≥ n + 1

n
|�| + max

{
0,

∫
�

〈ν,�(−En+1)〉
HF

dA.

}
.

This completes the proof of (1.7). ��
Remark 3.3. When F is even, i.e., F(x) = F(−x), we have

∫
�

F(ν)

HF
dA ≥ n + 1

n
|�| + max

e∈Sn

∫
�

〈ν,�(e)〉
HF

dA

(
≥ n + 1

n
|�|

)
,

since in this case �(−En+1) = −�(En+1). Hence

either
∫

�

〈ν,�(En+1)〉
HF

dA ≥ 0 or
∫

�

〈ν,�(−En+1)〉
HF

dA ≥ 0.

4. Alexandrov-type Theorem

We first prove a result on the existence of an elliptic point for an anisotropic
capillary hypersurface.

Proposition 4.1. Let ω0 ∈ (−F(En+1), F(−En+1)) and let � ⊂ R
n+1+ be a C2

compact embedded anisotropic ω0-capillary hypersurface, then � has at least one
elliptic point, i.e. a point where all the anisotropic principal curvatures are positive.
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Proof. We fix a point y ∈ int(∂� ∩ ∂Rn+1+ ). Consider the family of Wulff shapes
Wr (y + rω0EF

n+1). Observe that for any x ∈ ∂� and any r > 0, there holds

〈
νWF (x), En+1

〉
=

〈
x − y

r
+ ω0E

F
n+1, En+1

〉
= ω0 = 〈νF (x), En+1〉 . (4.1)

Since � is compact, for r large enough, � lies inside the domain bounded by the
Wulff shapeWr (y+rω0EF

n+1). Hence we can find the smallest r , say r0 > 0, such
that Wr0(y + r0ω0EF

n+1) touches � at a first time at some x0 ∈ � from exterior.

If x0 ∈ �̊, then � and Wr0(y + r0ω0EF
n+1) are tangent at x . If x0 ∈ ∂�, from

(4.1), we conclude again that � and Wr0((y + r0ω0EF
n+1)) are tangent at x . In

both cases, by a similar argument as in the proof of Theorem 1.2, we have that the
anisotropic principal curvatures of � at x0 are larger than or equal to 1

r0
. ��

Proof of Theorem 1.1andTheorem 1.4Webeginby recalling thatω0 ∈ (−F(En+1),

F(−En+1)) ensures the non-negative of F(ν)+ω0
〈
ν, EF

n+1

〉
pointwisely along�,

thanks to Proposition 3.2.
On one hand, by virtue of Proposition 4.1 and Gärding’s argument [14] (see

also [17, Lemma 2.1]), we know that HF
j are positive, for j ≤ r and for any x ∈ �.

Applying Theorem 1.2 and using the Maclaurin inequality HF
1 ≥ (HF

r )1/r and the
constancy of HF

r , we have

(n + 1)(HF
r )1/r |�| ≤ (HF

r )1/r
∫

�

F(ν) + ω0
〈
ν, EF

n+1

〉
HF
1

dA

≤
∫

�

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
dA. (4.2)

On the other hand, using the Minkowski-type formula (1.5) and the Maclaurin

inequality HF
r−1 ≥ (HF

r )
r−1
r , we have

0 =
∫

�

HF
r−1

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
− HF

r 〈x, ν〉 dA

≥
∫

�

(HF
r )

r−1
r

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
− HF

r 〈x, ν〉 dA

= (HF
r )

r−1
r

∫
�

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
− (HF

r )
1
r 〈x, ν〉 dA

= (HF
r )

r−1
r

{∫
�

(
F(ν) + ω0

〈
ν, EF

n+1

〉)
dA − (n + 1)(HF

r )
1
r |�|

}
,

where in the last equality we have used that

(n + 1)|�| =
∫

�

divx dx =
∫

�

〈x, ν〉 dA.

Thus equality in (4.2) holds, and hence � is an anisotropic ω0-capillary Wulff
shape. This completes the proof. ��
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