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Abstract

On a smooth bounded Euclidean domain, Sobolev-subcritical fast diffusion
with vanishing boundary trace is known to lead to finite-time extinction, with a
vanishing profile selected by the initial datum. In rescaled variables, we quantify
the rate of convergence to this profile uniformly in relative error, showing the rate
is either exponentially fast (with a rate constant predicted by the spectral gap),
or algebraically slow (which is only possible in the presence of non-integrable
zero modes). In the first case, the nonlinear dynamics are well-approximated by
exponentially decaying eigenmodes up to at least twice the gap; this refines and
confirms a 1980 conjecture of Berryman and Holland. We also improve on a result
of Bonforte and Figalli by providing a new and simpler approach which is able
to accommodate the presence of zero modes, such as those that occur when the
vanishing profile fails to be isolated (and possibly belongs to a continuum of such
profiles).

1. Introduction

Setting my; = 1 — niq [26], consider the fast diffusion equation with the

exponent 0 < m € (ml_%, 1), integrable non-negative initial data, and Dirichlet
boundary conditions, on a smooth bounded domain 2 C R":
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wy = A(w™) on Q

1.1
w=0o0noR. (.1

This equation models heat flow in a material whose thermal conductivity mw” !

depends inversely on its local temperature w. With m = 1/2 this has also been
used to model the diffusion of plasma ions across a magnetic field in simulations
[43] and experiments [51]. For such an initial value problem, it is known that the
vanishing Dirichlet boundary conditions drive the solution w to become extinct in
finite time, e.g., [15,45,46]. To understand the vanishing profile, rescale around the
extinction time 7' > 0,

m T
In
1l-m T-—-r1

’

wix, 1) = (1 = m)(T — 1)) T7 v (x, 1), =

to obtain an equation for v(x, r) with p = 1/m:

9 p
(v—>=Av+v”0nQ

ar \ p (1.2)

v =00n0%2.

The rescaled solution v on €2 is known to converge (both subsequentially [15] and
sequentially [32]) as + — oo to some unique profile V (x) selected by the initial
datum; moreover, V is a positive solution to the stationary elliptic problem

AV +VP =00nQ

1.3
V =00n0%. (13)
Solutions to (1.3) represent critical points of the Lyapunov functional [14]
1 2 1 p+1
E(U) - E”VI}HLZ(Q) - m”v”Lerl(Q) (14)
for the dynamics (1.2). Sobolev subcriticality p~" > m;_y = 2—% implies LP*!-

coercivity of the energy on the LP*!-unit sphere, from which the existence of
positive steady states (1.3) had earlier been derived by Berger [10]. Brezis and
Nirenberg showed such solutions need not be unique however [16]; other unique-
ness and nonuniqueness results concerning positive solutions in specific domain ge-
ometries may be found in the works of Gidas—Ni—Nirenberg [33] on the ball, Dancer
[23,24] on connected approximations to disjoint unions of balls, Damascelli—
Grossi—Pacella [25] on domains with symmetry, Zou [52] on rough balls, Akagi—
Kajikiya [4] who used instability to show that uniqueness fails on thin annuli, so
solutions and their rotations form continuous families, and Akagi [5] who showed
the stability of energy minimizers. On the other hand, Feireisl-Simondon [32]
showed that the evolution (1.2) selects and converges to one of the positive solu-
tions V of (1.3) (which may depend on the initial datum) as ¢+ — co. They did not
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give aresult on the convergence rate. Later Bonforte et al. [12] showed convergence
v=V

in relative error i := T 1.e.
t
fim |20 —0, (1.5)
t—oo || V(x) L2(Q)

and provided an exponential rate of convergence in entropy sense, under a non-
degeneracy condition which they were able to verify for m close to 1.

It has been a problem of considerable interest (a) to quantify the rate of conver-
gence unconditionally, and (b) to predict the higher-order asymptotics of the relative
error h. In contrast to the analogous questions set on the full space 2 = R”, resolved
in [26] and its references [8,21,22,29,39,44], this challenge is compounded by the
fact that the linearized problem has unstable modes (including those correspond-
ing to T-translations in the original variables, which blow up at different times 7'),
and can also have zero modes, including modes called integrable that arise e.g. for
reasons of symmetry, as for the thin annuli mentioned above. Recently, Bonforte
and Figalli overcame some of these challenges to solve (a) for C%“-generic smooth
domains including the ball [11]. In a suitable Hilbert space, they show the linearized
evolution of 4 is generated by a self-adjoint operator possessing a complete basis of
eigenfunctions. To summarize their findings: the unstable (negative) modes cannot
be active due to Feireisl and Simondon’s convergence, and neutral (zero) modes
are absent on generic domains [50], in which case they show that the relative er-
ror decays uniformly with an exponential rate A no smaller than the first positive
eigenvalue. On arbitrary smooth domains however, such a result eludes their tech-
niques, which rely on the kernel of the linearized operator being trivial, and hence
the limiting profile being isolated. A simpler derivation of the rate of exponential
convergence was subsequently obtained under the same restriction by Akagi [6];
although he expresses convergence in terms of an energy rather than the entropy
or relative error, these quantities can be compared using the boundary regularity
theory of [37]. Finally, Jin and Xiong showed unconditionally that the rate of con-
vergence is at least algebraic in ¢ [36], but with a power that is not explicit. In
the present manuscript, we bridge this wide gap (between exponential upper and
algebraic lower bounds on the rate) by developing a new approach which yields
that ||| L either decays exponentially with rate A or else decays algebraically at
arate 1/¢ or slower. In the second case, not only must zero modes be present, but
they must be non-integrable in a sense made precise below. Moreover, when the
decay rate is exponential, we address (b) by showing that the longtime asymptotics
of the nonlinear problem are described by the linearized dynamics up to the error
e~ produced by quadratic corrections. This refines and confirms a conjecture
made for the case n = 1 by Berryman and Holland [15].

Besides being more powerful, our approach is also simpler than Bonforte and
Figalli’s. Instead of augmenting Del Pino and Dolbeault’s nonlinear entropy method
[29] with approximate orthogonality conditions, we rely on an ODE lemma of Merle
and Zaag [42], which implies that the dynamics are eventually dominated either by
stable or neutral modes. We must also control the nonlinearity by adapting parabolic
regularity estimates to the geometry of the steady state around the domain boundary.
Delicately matching these estimates to the ODE argument allows us to estimate the
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rate of convergence via the dichotomy described above. From there we use Hilbert
projection techniques to get an asymptotic expansion up to an e~>* error. The latter
resembles Denzler, Koch and McCann’s treatment of higher-order asymptotics in
the narrower range mg = 1 — % < m < 1 of evolutions on the unbounded domain
2 = R"—though the linearized analysis around the selfsimilar spreading solution
described in [26,27] and their references is more subtle than the present problem,
and our rate estimate does not require us to establish differentiable dependence
of the flow on initial conditions. On the other hand, the whole space problem is
not plagued by the multiplicity and continua of limiting profiles that we presently
face. In the current setting, finer aspects of the dynamics (beyond rate 21) may
conceivably be described by constructing invariant manifolds, but we defer the
exploration of this possibility to future research. In the porous medium regime
(which refers to the complementary range of nonlinearities m > 1) on the whole
space €2 = R", such a construction was completed by one of us [47,48] following
earlier work of Angenent [7] for n = 1 and Koch [40] for n > 1.

The remainder of this manuscript is structured as follows: the Section?2, we
rewrite the problem in terms of the relative error, for which most of our analysis is
conducted, summarize the spectral theory and introduce some notation. Along with
the necessary terminology, Section 3 states our two main dichotomy results. After
recalling variants of the Merle—Zaag lemma [42] due to K. Choi with Haslhofer
and Hershkovits on the one hand [18] and with Sun on the other [20], our first
dichotomy—separating fast and slow convergence—is proved in Section4, apart
from the parabolic regularity estimates which yield a quadratic bound in the rel-
ative error for the nonlinearity. These are postponed to Section5. The remaining
dichotomy is established in Section 6.

2. Linearized Dynamics and Relative Error

v—=V

In terms of the relative error & := v

, the dynamics (1.2) take the form
oth+ Lyh = N(h), 2.1

where Ly is the linear operator relative to V,

Lyh = —%A(hV) — ph
=—VI"PAR—2VPVV -Vh—(p—1h
=V~ 1"PV . (V3Vh) — (p— D) h,
and N (h) is the nonlinearity, given by
N(h) =1A+h)?P - l—ph—i—(l—(l—i-h)”_l)a,h. 2.2)
Observe that N (h) = My (h) for any solution £ to (2.1), where

My (h) = (A+h)P —1-ph)+ (1 Lyh. (23)

1
(1 + hyr=1 B (1+h)1’—1>
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Indeed, solving (2.1) for 9, 1, dividing by the prefactor and shifting the nonlinearities
onto the right-hand side yields N (h) = My (h). This allows us to exchange temporal
for spatial derivatives of & in the nonlinearity. Since in most parts of the paper the
reference stationary solution is fixed, we will often write L = Ly for notational
simplicity.

The relative error and the linear operator are best understood when analyzed
in suitable weighted Lebesgue and Sobolev spaces. Given o > 0 and a positive
solution V to (1.3), the weighted inner product

(f. 8o 2/ fgV°dx
Q

makes LCZr = L?,(Q) = {f : (f, fle < oo} into a Hilbert space. We will
occasionally be concerned with more general Lebesgue spaces induced by the

norm
1
q
IIfIILg=</ Ifl"dug) ,
Q

where du, (x) := V(x)?dx. Weighted (homegeneous) Sobolev spaces such as H;
are defined analogously; c.f. (2.4) below.

Multiplication by V acts as an isometry between Lf7 41 and Li_l. Under
this isometry, the linear operator Ly + pI is unitarily equivalent to an operator
L=Vo(Ly+ pI) o V~! with compact inverse on Li_], whose spectral theory,
subject to vanishing Dirichlet boundary conditions, was elucidated by Bonforte
and Figalli [11]: the corresponding operator L= Ly is a self-adjoint semibounded
operator on Li 1>the spectrum of L is discrete and the eigenfunctions form a basis

of Li +1- They are critical points for the restriction of the weighted Dirichlet energy

Ev($) = l9l7, = / Vo[> Vdx (2.4)
2 Q

to that subset of the L ;| unit-sphere for which the boundary trace of ¢V vanishes.
Using two nonnegative integers I and K, let us list the eigenvalues with repetition
as

Ar S .S A1 <0=x=...=2k_1 <Ag = ....

e Theinteger / represents the dimension of the unstable modes of L (and coincides
with the Morse index of E(v) from (1.4) at V).

e K represents the dimension of kernel of L and any corresponding eigenfunctions
are called Jacobi fields.

e Let us call the eigenfunctions which correspond to A_; to A_j the unstable
modes, those corresponding to Ag to Ax_1 the neutral (or central) modes, and
the remaining eigenfunctions (starting with eigenvalue A )the stable modes.
The corresponding eigenspaces will be denoted by E,,, E. and Ej, respectively.

They are understood as subspaces of L%H, so that L?,Jr] =E,QE.®E;.



16 Page 6 of 48 Arch. Rational Mech. Anal. (2023) 247:16

el =1—-p=1- % and it is actually simple (a.k.a. multiplicity 1, so
A_j < Aj—y) with corresponding eigenfunction 1 (called the ground state).
In the original variables it corresponds to time translation of the solution; the
signs I > 0 > A_j account for the fact that t-translations of a given solution
disappear at different times 7" hence diverge sharply from each other under the
rescaling appropriate for one of them.

Notation. We finally comment briefly on some notation that we will frequently
use throughout this work: We write a < b if there is a constant C such thata < Cb.
The constant C may depend on the limiting profile V, the domain, and other param-
eters such as p = 1/m, but this dependence is continuous under small perturbations
of V in the relatively-uniform topology generated by (3.6) below, hence C may be
regarded as being locally independent of V. We write # >> 1 to indicate # must be
sufficiently large.

3. Fast Versus Slow Convergence Dichotomies

Recall Bonforte et al. [12] showed if V (x) is the limit solution of v(x, t) (see
[32]) then the relative error h(t) = @ — 1 decays uniformly:

17llLo(@) = o(1) as t — oo. 3.1)

In this section we describe two dichotomy theorems which establish that a spectral
gap gives the sharp rate of exponential convergence, unless the linearized dynamics
has a non-integrable kernel in the refined sense of Definition 3.3. When Definition
3.3 fails to be satisfied, we show the convergence occurs either exponentially at the
rate of the spectral gap or no faster that O (1/1).

Theorem 3.1. (Firstdichotomy for asymptotic behavior) For0 < m € (ml_%, )=
(%, 1), let @ C R" be a smooth bounded domain and v(x,t)= 0 on (x,t) €
Q x [0, 00) be a bounded solution to the evolution problem (1.2). Let V(x) be

the classical solution to (1.3) satisfying (1.5). Then there exist positive constants
& = ¢e(V, p)and C = C(V, p) such that whenever ||h(t)||L~ < ¢ forallt 2 0,
exactly one of the following alternatives holds:

(1) the relative error h(t) := % — 1 decays algebraically or slower
Cllh®)lL= 2 O z@n™' Vs (3.2)
(2) the relative error h decays exponentially or faster,
CTH RNz, S IhOl~ S Ce IOz, Y21 (33)

where A = Ag > 0 is the first positive eigenvalue of linearized operator L in
2.1).
Moreover, whenever (3.3) holds for some . 2 Lg and any C = C(V, p, A), if
J € Ny is given such that Ay < 2A and hj < Ajy1 =: 1, and @o, @1, ..., @J are
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corresponding eigenfunctions chosen in such a way that they can be extended to a
complete Lf, 41 orthonormal basis, then there are constants C; € R such thatt 2> 1
yields

e*2)»l lf‘u > 2)\”
S ClhO2, x 1™ ifu=21, (34
P
Ly e 1t ifu < 2X,

J
h(t) =Y Cie g
i=0

for some C = C’(V, p, A, C). Finally, C; = 0 for any A; € [0, X) so, in particular,
foranyi < K.

Remark 3.2. (1) The result of Bonforte—Figalli in [11] shows (3.3) when K = 0
(meaning ker Ly is trivial). This assumption prevents the first alternative (3.2).
(2) As Bonforte and Figalli argued, we can relax the boundedness assumption on
v in Theorem 3.1 since initial conditions
LY(Q) if m e (mo, 1) =(1—2,1)
wEY U LI ifmemig,mol= (3.1~ 2]
q>5(1—m)

lead to solutions which remain bounded after any short time [28].

(3) Due to Bonforte, Grillo and Vazquez result (3.1), the smallness assumption on
our initial data is no restriction either.

(4) Notice the factor ¢ appearing in the bound (3.4) when . = 2 accounts for the
possibility of the kind of eigenvalue resonances described in [7].

As remarked above, triviality of the kernel, K = 0, implies exponential decay.
However, we can also show that in certain situations, exponential decay also oc-
curs when K > 0. For example, some kernel of L can be obtained as a tangent
variation among stationary states (as for the non-rotationally symmetric limit states
V found by Akagi and Kajikiya on thin annuli [4]): if there is a one-parameter
family (Vi)se(—so.50) Of solutions to (1.3) with Vo = V and 9,V (0) # O, then
L(W) = 0. If all zero modes are accounted for by such continuous symmetries
in the sense of Definition 3.3 below, exponential decay occurs in spite of the fact that
K > 0. To formulate this more precisely, consider the whole family S ¢ H'(Q) of
weak solutions V to the Dirichlet problem (1.3), i.e. Sobolev functions for which
¢ € C1(Q) implies

/w-Vde :/ @VPdx. (3.5)
Q Q

In Lemma 5.1, we shall eventually infer S C C 3.@(Q) for some o € (0, 1) and that
V/W e L*®(Q) for all V, W € S. The latter implies that the sets

B/(V):={WeS:[I¥ 1o <r} (3.6)

form the base {B,(V)},~0,ves for a topology on S, called the relatively-uniform
topology. We call V € S an ordinary limit if S forms a manifold of dimension
K = dimker Ly near V, which the error relative to V embeds differentiably into
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L 1. More explicitly, call & a stationary relative error if it is a time-independent
solution to (2.1), or equivalently satisfies the nonlinear (singularly) elliptic equation

Lyh = M(h), where M(h) = (1 +h)? —1— ph; (3.7
here M (h) = N(h) = My (h) since h is stationary.

Definition 3.3. (Ordinary limit) We say that V is an ordinary limit if there exists
a constant 6 € (0, 1), an L; 41-open neighborhood U of 0 in ker Ly and a C 1
diffeomorphism

Qv U lp2,) > W€ L¥ N HY : Lyh = M), [l S 8112 ).

with the properties that
Py (0) =0, (ddy)o=id.
In this definition, the identity map is the one on ker Ly .
The point of this definition is the following theorem:

Theorem 3.4. (Second dichotomy: convergence to ordinary limits is fast) Under
the hypotheses of Theorem 3.1, if a solution to (1.2) converges to an ordinary limit
V € S, then convergence takes place exponentially fast: i.e., (3.3) holds.

Here are some preliminary (rather formal) observations.

Remark 3.5. (Ordinary limits have integrable kernels)

(1) If h(s) is a smooth curve with Lyh(s) = M (h(s)) and h(0) = 0, then
Y = 03h(0) e ker Ly.

() If Y € ker Ly consider h(s) = @y (sy) for s small. Then

Lvh(s) = M(h(s)), h(0)=0, dh(0)= .

This remark shows the kernel of Ly satisfies the next definition if V € S is an
ordinary limit.

Definition 3.6. (Integrable kernel) The kernel of Ly is called integrable if for each
@ € ker Ly, there is a one-parameter family {V};e(—¢ ) C S of solutions to (1.3),
withVo:Vandego

In the context of minimal surfaces and geometric evolution equations, analogous
concepts of kernel integrability date back at least to Allard—Almgren [3] and Simon
[49] respectively. Simon used analyticity to show a converse to Remark 3.5. Inspired
by this, it is natural to expect integrability of the kernel of Ly to imply that V is an
ordinary limit—though we have not verified this in the present context. Note that
a limit V can fail to be ordinary in one of three ways: either (a) S can fail to be a
manifold nearby; or (b) S can be a manifold locally which the relative error fails
to embed differentiably into L2(vPthy: or (¢) locally S can be a differentiably
embedded manifold whose dimension is strictly less than that of ker Ly. It is
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natural to expect that limits which fail to be ordinary are rare: To the extent that
the behaviour of S mimics the stratification and singularities of an analytic variety,
we imagine that (a) occurs only on a set having local codimension one in S. Based
on the regularity results we establish below, we are skeptical that (b) ever occurs.
And inspired by the genericity results of, e.g., Saut and Teman [50], we conjecture
that (c) is non-generic in the sense that there is a dense G in S on which the kernel
of the linearized operator has the same dimension as S; i.e. the extra zero modes
associated with non-ordinary limits are coincidences whose eigenvalues become
non-zero upon perturbation. (A weaker conjecture is that a perturbation of 2 as
well as V preserving the dimension of S is required to restore ordinariness.) It is
these expectations that motivate our choice of the term ‘ordinary’.

We finally translate the leading order asymptotics that we found for the relative
error back to the original fast diffusion equation (1.1) and its convergence towards
the separation-of-variables solution

Wx,t)=((1=-m)(T — r))lflm V(x)%. (3.8)

Theorem 3.7. (Quantitative approach to self-similarity in original variables) For
0<me (ml_%, 1), let @ C R" be a bounded smooth domain and w(x,t)= 0
on (x,7) € Q x [0, 00) be a bounded solution to the evolution (1.1) converging
towards the separation-of-variables solution W (x, t) given by (3.8). Then there

exists C = C(p, V) such that for || v“",—'; — 1l o@xio,7 and T — © > O sufficiently
1
small, after multiplication by (T —t)~ T=m exactly one of the following alternatives

holds:

(1) the difference w — W decays logarithmically or slower,

1 1
T —1) Tm ) —W(r z—
( ) lw(r) @l 2 Clo(1— 1)

(2) or the difference w — W decays algebraically or faster,

(T = 0P () = WS Ol 1y, (1= 5 ¥

— 1) TFrfw(t) — W(T)| o= — — =) T,
e="ymey ~ M T T

Remark 3.8. Analogous estimates hold true for the relative error % —1

Proof. (Proof, Case 1) We start with the logarithmic decay estimate for which we
assume that the first case in Theorem 3.1 applies. Then

1 1

- < = — < —V|?

SR = 0 = Vi S o = VI,

where we have used in the second inequality that (v — VZ=@w+V)v—-V)=
(h+2)V(v—V) < Viv— V| by the uniform boundedness of 4. Hence, by the

definitions of w and W and the relation between ¢ and t, the latter estimate is
equivalent to

- < N m __ yym
lo2(1— %) ~ (T — 1) T |w(r) w (T)”L},-
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We now use the elementary estimate [a” — b™| < m (a™ ' 4+ b~} |a — b for
a,b € Ry to bound

@™ = W@ Ve S (w@ W) vt - W)l

p—1

S(T—rrl(v

v(r)p—1

+ 1) lw(z) — W(z)l.

Since V /v = 1/(h + 1) is uniformly bounded by hypothesis, the above analysis
gives that

1
—— < (T — 1) T |w() — W), 1,
ol g ST T @ Wl
as desired.

Case 2. We finally convert the exponential decay estimate on the relative error
into an estimate for the fast diffusion equation (1.1). From the second case in
Theorem 3.1, the definitions of W and w and the relation between ¢ and t we infer
that

w™ (0)

1Ol < gy

T Mg
-1 e MKt < (1 = YTom
Iz, e S A=)

We shall now invoke the elementary estimate |a — 1] < |a™ — 1| which holds
true for a close to 1 to conclude a control on the relative error,

maq
W) e < 2O

| W) W (0)

T mhg
— g2, (1= )T

which yields the desired statement in view of the scaling of W and the boundedness
of V,

w(t) — W(r)

lw(t) = W(@)re = ||W(T)||L°°||W”L°°
= w(T) _
S(T—o)T=n| W) Ll L.

This concludes the proof of the theorem.

4. Proof of First Dichotomy (Apart from Smoothing Estimates)

We start with an L? semigroup estimate which is at the heart of our analysis.

Lemma 4.1. (Energy growth control under nonlinear evolution) Let h be a solution
to the nonlinear equation (2.1)—(2.2) with initial datum ho € L??+l’
that ||h||~ < ¢ for some ¢ > 0. Then there exists C > 0 such that for ¢ > 0 small

enough and all t > 0, the following holds:

and assume

t
1A @17+ / IVhI7 dr < e liholl7
P 0

p+1
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Proof. Tt will be convenient to consider the purely spatial form (2.3) of the non-
linearity N (u) = My (u) when working with (2.1)—(2.2). Then setting dut (x) :=
V (x)Pdx, testing (2.1) with 1V P*! and integrating by parts, we arrive at the identity

1d

= h2dup+1+/|vm2dm

:(p—l)/h2d/L 1+/L((l+h)p—l—ph) du pt1
" (1 + hyr~! o

+f ((Ly_l _ 1) Vi dus + (p - 1)/h <#>p|w|2duz
I +h 1+ h
1\t
- [ ((m) ‘1) W

Because |h| < ¢ < 1, the right-hand side can be controlled by quadratic expres-
sions, more precisely,

d
o[ g +f|w|2dm§fh2dup+1 +8/|Vh|2duz~

If ¢ is sufficiently small, the gradient terms can be absorved into the right hand
side, and the resulting estimate can be solved with the help of a standard Gronwall
argument. This proves the lemma.

The proof of our first dichotomy, Theorem 3.1, is based on two main ingredients.
On the one hand, our argument will rely on a fundamental dynamical systems result
that is due to Merle and Zaag [42], and which in turn improves on an earlier related
result by Filippas and Kohn [31]. On the other hand, we have to exploit some
smoothing properties of the parabolic equation.

The Merle—Zaag lemma is concerned with a system of weakly coupled first order
ordinary differential equations featuring stable, neutral and unstable solutions. It
states that under the assumption that the unstable modes fail to grow, the long
time asymptotics are dominated by precisely one of the other two modes. This
lemma provides an effective way to extract the quantized behaviour of the solution
prescribed by the discrete spectrum of its limit. It plays a pivotal role in recent
progress on classifications of ancient solutions (solutions defined for (—oo, T']) to
parabolic equations [1,2,9,19] and entire solutions to elliptic equations [17] arising
from geometry. In classifications of ancient flows, the lemma is applied backward
in time (i.e. t = —s). One advantage in backward problems is that there are only
finitely many stable eigenfunctions (imagine, for instance, the laplacian A has
only finitely many positive eigenfunctions); this makes the classifications possible.
Meanwhile in the forward problem, there are infinitely many stable eigenfunctions.
The lemma is used to investigate the asymptotic behavior of solutions. To obtain the
stated dependencies of the constants in our first dichotomy requires a refinement
of the Merle-Zaag Lemma due to K. Choi et al.
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Lemma 4.2. (Choi-Haslhofer—Hershkovits refinement [ 18, Lemma4.6]) Let X (s),
Y (s), and Z(s) be non-negative absolutely continuous functions on [0, 00) satisfy-

ingX+Y+7Z>0,

d
S X2z ey + 2,
ds

dY
|d—| Se(X+Y+2),and
s

dz
— +ZZeX+Y),
ds

for each ¢ € (0, ﬁ) and a.e. s € [so(g), 00). If

lim (X + Y + Z)(s) =0,
§—>00

then X < 2e(Y + Z) for s 2 so(¢) and either
X))+ Z(s) =0 (s))ass — o©

or
X (s) + Y(s) £ 100 Z(s) for s = so(e).

Proof. A proof is given in Appendix B of [19].

For later use we also recall a quantitative adaptation of the Merle Zaag lemma
to a compact time interval proved by Choi and Sun in [20]. In Sect. 6 their result
will be motivated and used to prove our second dichotomy.

Lemma 4.3. (Choi—Sun refinement [20, Lemma B.2]) Suppose X (s), Y (s), and
Z(s) are non-negative absolutely continuous functions on some interval [—L, L]
such that 0 < X +Y 4+ Z < n for some n > 0. Suppose that there exist two
constants o > 0 and A > 0 such that

dx

— —AX2—-0(Y+2),

ds
dy
== o(X+Y +2),
ds

dz

d—+AZ§a(X+Y),

s

for any s € [—L, L]. Then there exists og = oo(A) such that if 0 < o < og it
holds that

8o _AL
X+Z< TY +4ne~ "4 foranys € [—L/2, L/2].

The next proposition provides the crucial control that we need to estimate the
nonlinear terms in the relative error dynamics (2.1) quadratically.

Proposition 4.4. (Spatially uniform control of time derivatives) Let k € Ny and
t > 0 fixed. Then if |h| L~ < € with & sufficiently small, there exists a constant
C =C(t,k,m, V) such that

19ROl < Cllhol 2 -
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We postpone the proof and a discussion of this proposition to the next subsec-
tion and show first how to deduce our first dichotomy from Lemmas 4.1-4.2 and
Proposition 4.4.

Proof of Theorem 3.1. In this proof, for the sake of convention, we omit the sub-
scripth,Jrl = L2(vPtyanduse || f| := ||f||Lz+l.Positive constants e = &(V, p)
P

and C = C(V, p) are not fixed yet, ¢ may become smaller, and C may become
larger until they are fixed.

Let us denote by Ps, P, and P, the orthogonal projections of Li 41 onto the
stable, center, and unstable eigenspaces E;, E. and E,, respectively. Moreover,
we write hy = Pgh, h, = P:h, and h,, = P,h for the projected solutions. A
straightforward computation reveals that

d
3 17l Z =Atllhull = INMWI,

S INMII, 4.1)

d Al

dr'¢
d

Ellhsll < —xkllhsll + IN,

where we recall A_; and Ak are the negative and positive eigenvalues of L= Ly
closest to zero. As an example, for the case of the evolution on the stable subspace,
we observe that

oths + Lhy = PyN(h), 4.2)

and teS[lIlg lth hS ‘ gl S
2 1 || || ( 8 h ) < 8 N( ))‘
ns n L N n n

The third estimate in (4.1) now results from the lower bound on the stable eigen-
values and the Cauchy—Schwarz inequality. The first and the second estimates are
derived analogously.

In order to estimate the nonlinearities in (4.1), we note that for |4| < ¢, (provided
that ¢ is sufficiently small) there is C1 = C1(p) such that

IN(h)| = Cilh| (Ih] + [0;:h1)

4.3
< Cilhl(Ihl + C |lh(t = DD, @

by Taylor expansion followed by the smoothing estimates of Proposition 4.4 for
t = 1. By virtue of Bonforte et al. [12] uniform bound on the relative error (3.1),
for any small £ > 0 there exists a time #y(£) such that

IN(h@)]l < Elh(1)] forany 1 = 19(&). (4.4)

Plugging this estimate into (4.1), we observe that if &4 # 0, then hg, h. and h,
satisfy the hypothesis Lemma 4.2 with s = At where A := %min(M,] [, Ik D).
Therefore, unless 4 is stationary (and thus trivial), either

1wl + sl = o(llell) (4.5)
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or

1002 A
Ihull + Nkl = —=Ilhs |l for t = 10(8). (4.6)

Note in particular, the second alternative (4.6) implies ||k, || + ||hc]l = o(|lhs]))-
We discuss the implications of each case individually, starting from the latter case
(4.6).

Case 2. First, by choosing ¢ = ¢(V, p) sufficiently small, we may assume ||z, || +
lhell S %Hhs || for all ¢ = 1. Here, note that = 1 is needed as Proposition 4.4 is
applied to estimate N (h). Moreover, by the same argument we used to derive (4.4),
there is Cp = C»(V, p) such that

[N = Caellh(@)]| forz = 1.
Combining the above, the estimate of the nonlinearity (4.4) becomes
[N = Caellh@®)]| = 2Cae||hs (D) ],

for t+ = 1. The third estimate in (4.1) thus turns into the differential inequality

d
g s < —(kk —2C29) 1Al

V

for + 2 1, which yields via a Gronwall argument
s ()] < e~ *x 2D 1)),

By another application of (4.6) and the semigroup estimate from Lemma 4.1, this
estimate can be translated into the full solution

IR0 S e”HE 20290 g 4.7)

To improve this inequality by removing the &, fix & small so that 2Ch¢ < %)» K>
and refine the estimate of the nonlinearity with the help of the quadratic bound (4.3),
the smoothing estimates from Proposition 4.4 and the previous estimate (4.7),

[N S UhO Nz + 10 @) L) 1R @)l
S @ = DIA@]
< e—Z(AK—Zczs)t”hOHZ,

for t = 1. Substitution into the third estimate of (4.1) finally establishes a differ-
ential inequality, which yields

IR S e " |holl,

via (4.6), for all t = 0 (recalling ||21]| < |ho|l from Lemma 4.1). By another
application of Proposition 4.4, this estimate can be upgraded towards a uniform
convergence result,

IR S e " R,
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for r+ 2 1. Having established (3.3), it remains to identify the leading order expan-
sion (3.4). Let us begin by noting that whenever (3.3) holds for some A = Ag and
any C, repeating the previous estimate on the nonlinearity yields the improvement

INGRE)IE Ce™ M || holl* (4.8)

for t = 1, where C=C (V, p, A, C). Since the nonlinearity is quadratic, modes
corresponding to eigenvalues in the interval [0, 21) are accessible via a simple ODE
argument. For any i, the projection y; = (h, ¢;) satisfies the differential inequality

d
‘a)’i +Myi' SN,

which can be rewritten as

d ;. —(@r=2i)t
_(emyl.)‘ < o ( i) ,
dt ~

as a consequence of (4.8). Integration in time thus yields for any 7 = 2> 1 that
‘ekil‘yi (t) _ e}»,‘Tyi (T)‘ S e*(zkf)\[)t’

where we have used the fact that A; < 2. This bounds implies that T > 7 y; (T
is a Cauchy sequence, so that, sending 7 — oo, we find

(h(0), pi) = yi(t) = Cie ™" 4+ O (e M) (4.9)

for some C; € R.
We now estimate with the help of the decomposition h = hs + h. + hy, the

triangle inequality and the fact that the eigenfunctions ¢y, . .., ¢, are orthonormal
that
J J J
lh=>" Cie @il £ Iyi—Cie ™[+ hs=>_ yigill+ el +hull. (4.10)
i=0 i=0 i=0

We have just seen that the first term on the right-hand side is < e =2 Recalling the
spectral decomposition of L and (4.2), the next contribution, z = ||hs — Zijzl vigi |l
satisfies the differential inequality

d
it uz S INMI. (4.11)

Similarly to the argumentation above, we rewrite (4.11) as
d
M7y < e—(2k—u)t’
LGRS

and deduce that
e M if o> 2A,

2(t) S {re” M if =24, (4.12)
e M if u < 24,
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via integration.
Finally, regarding the remaining terms in (4.10), the first two estimates in (4.1)
imply that
d d
_ h . — h > _ —2)»1"
dt” cll + dt” ull 2 —e
and thus, an integration from ¢ to oo gives, thanks to the fact that || .|| + ||A,|| — O
ast — 0o,
IheOI + 1h (O] S e (4.13)

Therefore, substituting (4.9), (4.12), and (4.13) into (4.10), we deduce that
e ifu > 24,

SAte™M ifp=24,
e M if u < 2A

J
h(t) =Y Cigie ™!
i=0

as desired. If C; # 0 for some A; € [0, 1), then (3.4) contradicts (3.3); thus A; = A
as asserted.

Case 1. In case the neutral modes are dominating (4.5), an estimate analogously to
the one in Case 2 above gives rise to the bound

INh@)I < 2C2e]|he (D],

provided that t = 7. for some 7. large enough. By plugging this into the middle
equation of (4.1), we find that

d
allhcll = —2Ca¢|lhc|l,
and thus, via (4.5),

IR+ DI 2 et + DI Z heON 2 1RO

for any r = 1.. With this information at hand, we may reconsider our previous
bound on the nonlinearity. This time, making use of the pointwise estimate in (4.3)
and the smoothing properties from Proposition 4.4, we have that

ING@)I S A = DIROT S 1RO S e @],

forany t 2 ¢, for some (possibly larger) .. The second estimate in (4.1) now turns
into the growth condition

d
g 1@l 2 —lheI,
which yields the lower bound
1
RO 2 ke Z o

if t 2 1. for some 1.
This concludes the proof of Theorem 3.1.
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5. Smoothing Estimates

In this section, we use parabolic regularity techniques to prove Proposition 4.4.
We remark that optimal (boundary) regularity estimates were derived recently by
Jin and Xiong for the rescaled solution v of (1.2) rather than the relative error h
[35]. However, from Theorem 5.1 in their paper we easily infer that

3 n e CO((r, 00) x Q) (5.1)

for any k € N and t > 0. This insight will simplify the derivation of our regularity
estimates substantially.

Smoothing features are typical for parabolic equations and they remain true in
the time and tangential directios for the singular parabolic equation under consider-
ation; see (5.1) and Corollary 5.12. In transversal direction, regularity is limited (if
p is not an integer) [35]. Indeed, simple scaling arguments for the elliptic problem
suggest that V (x) ~ adist(x, 02) + b dist(x, BQ)”+2 close to the boundary, and
the same behavior can be expected for the parabolic problem (1.2).

For deriving the smoothing estimates in Proposition 4.4, we notice that the
leading order contribution in the nonlinearity (2.2) is of the order |2||9;h| < |0 h],
and plays thus the role of a perturbation term in regularity estimates. Moreover,
the equation is invariant under differentiation in time and in tangential coordinates
near the domain boundary (at least with regard to the leading order contributions),
and thus, regularity in these variables is propagated and even further increased by
parabolicity. We deal with higher-order derivatives of the nonlinearity by applying
suitable interpolations, so that eventually, derivatives of the nonlinearity will play
the role of perturbations similarly to the nonlinearity itself as discussed above. Of
course, smoothing proceeds instantaneously but not uniformly in time. For this
reason, the estimates in or behind Proposition 4.4, Equation (5.1) or Corollary 5.12
deteriorate as t — 0.

Before addressing the dynamical problem, we need to estimate the first three
derivatives for weak solutions of the nonlinear elliptic problem (1.3), starting from
the known result (5.2). Later we’ll see that higher-order tangential derivatives of
this solution can also be estimated near the domain boundary.

Lemma 5.1. (Regularity of asymptotic profile) Forany a € (0, 1) with« <p-1,
if V.e HY(Q) satisfies (3.5) for all ¢ € C(Q), then V € C>%() and, for any
x €,

dist(x, 92) < V(x) < dist(x, 9Q), (5.2)
and [VV ()], V2V )], V3V ()| <1 (5.3)

hold. Furthermore, there exists an r 2 1 such that
IVV(x)| 2 1 (5.4)

for any x € Q with dist(x, 9Q2) < r.
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Proof. Forafixed V € §, the first estimate is established, for instance, in Theorem
1.1 in [28] (on the level of the evolutionary problem) or Theorem 5.9 in [13]; the
form of (5.2) makes it clear that the constants depend continuously on V in the
relatively-uniform topology on S. The second and the third estimate follow from
maximal regularity estimates and Sobolev embeddings. Indeed, since V € L*>(£2)
thanks to (5.2), we must have that V € W24(Q) for any g € (1, 00) based on
Calderén—Zygmund estimates for the elliptic problem (1.3), see, e.g., Chapter 11
in [41], and thus V e C1*(Q) for any € (0, 1) by Sobolev embeddings. It
follows that 3; V? = pVP~19;V € CO*(Q) provided that @ < p — 1, and thus one
spatial derivative of the equation shows V € C>%(Q) by Schauder estimates, see,
e.g., Chapter 6 in [34].

The statement in (5.4) is a consequence of the above. Indeed, according to
(5.2), at the boundary V grows linearly in the direction of the inner normal. By the
estimates (5.3), we must thus have (5.4) in a neighborhood of the boundary.

Our first step in the derivation of the smoothing estimates is a maximal regularity
estimate for the linearization of (2.1). More precisely, we consider the inhomoge-
neous linear equation

Oh— VTPV (V2Vh) = (p — Dh + |, (5.5)

with zero initial data. For general initial data ko € Lf, 41 and inhomogeneities
f e LY, T); Li +1)» asolution is always understood in the weak sense. A weak
solution of (5.5) refers to a function & € L>®((0, T); LiH) N L0, T); H)) in
the spaces provided by Lemma 4.1 such that

— f/ ho; e dup+1dt+// Vo - Vhdu,de
0,T)x 0,T)xQ

(5.6)
_ / f ((p = Dh + Pgdupsrds + / Ol ho ditpsn
0,T)xQ Q

forany ¢ € C g ([0, T) x Q) of compact support. It should be stressed that we
do not impose spatial boundary conditions on % in the parabolic problem (5.5),
which turns out to be well-posed (only) in this case. This is a consequence of the
observation that by (formally) integrating by parts in the gradient term in the weak
formulation (5.6), the boundary term vanishes thanks to the Dirichlet boundary
conditions satisfied by V, see (1.3).

Existence of weak solutions can be derived via standard methods, for instance,
via Galerkin approximations based on an Li 41 orthonormal basis consisting of
eigenfunctions of the linear operator L= Ly . Moreover, from standard energy
estimates (derived similarly to those in Lemma 4.1), we infer the uniqueness of
weak solutions.

What is a crucial tool in our theory is a maximal regularity estimate for the
linear equation (5.5), that we consider, for convenience, with L% » inhomogenity
and zero initial data, see Proposition 5.5 below.

In the interior of €2, maximal regularity for the parabolic problem (5.5) follows
by standard theory, see, e.g., Chapter 7.1 in [30], because the diffusivity coefficients
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are strictly positive in the interior as a consequence of (5.2). We shall thus focus on
the boundary from here on and we fix xo € d2. Let  denote a cut-off function on
R" interpolating smoothly between n = 1 in B, (xg) and n = 0 outside of B>, (x().
A short computation reveals that the localized solution H = nh satisfies the

problem
&H—V 7PV . (V2VH)=F +G, (5.7)

where F' and G are given by
F=nf, G=-=2V'"PVy.Vh—V'"PhAy —2V"PhVV . V.

The lemma guarantees that G belongs to L2(L% p) provided that i € L2(Li N

L2(H21), which is assumed for our weak solutions.

Lemma 5.2. (Weighted Poincaré/Hardy type inequality) Allh € Li 11 OFIZI satisfy
ez S Ikl + VA -

In particular, it holds that
1z, S Whllz + VA3

The proof of the first statement is based on an interpolation argument and the
properties of the limit V. The latter then follows via Holder’s and Young’s estimate.

Proof. We start considering the first estimate. Because C°°(Q) is dense in Li an

H21 ,cf. Lemma 2 in [47], it is enough to establish the estimate for smooth functions.
We first notice that an integration by parts and the defining properties of V in (1.3)
yield

/h2|VV|2dx = —/hZVAde —Z/th-VVde
=/h2V”+1dx—2/th-VVde.

Making use of the elementary inequality ab < a® + b* /4 thus gives that

WRIVVIL2 S Wkllzz, + IVAT 3.

The first statement of the lemma is now a consequence of the fact that 1 < V/+! 4
|VV]|, which holds true thanks to Lemma 5.1.

For the second statement, we apply Holder’s inequality, and the previous bound
to estimate

p+l p—1 p+1 p—1 p+l1 p—1

Rl < RN ALY <AL IR + 1kl 2 VA .
1l gz, < WANZ IR S URNZ Il + Al 19AI S

The desired result is then a consequence of Young’s inequality ab < a? + b4’ for
any Holder conjugates g and ¢’.
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We shall now flatten the boundary. Upon a rotation of the coordinate system,
we may assume that the boundary inside B, (xp) can be written as a graph of a
function y, for instance,

QN Bor(x0) = {x = (x', xn) € Bar(x0) : xn > y(x)} .

We set x = ¢(x) = (x', x, — y(x')), which defines a diffeomorphism in the
support of 17, and maps the boundary 92 into the hypersurface R”~! x {0}. In terms
of H(t,%) = H(t,x), V(&) = V(x), F(1,%) = F(t,x), and G(1,%) = G(t, x)
the localized equation (5.7) becomes

A A

&H—V~I"PV . (V?AVH) = F + G, (5.8)

A I | =Vy
S\ =TV R )
Notice that the transformed equation (5.8) has to be considered on the halfspace R’ .

The advantage of (5.8) over the (5.5) is that in the new variables, the weight and
its tangential derivatives can be estimated by the distance to the flattened boundary.

where

Lemma 5.3. (Derivatives of asymptotic profile parallel to flattened boundary) For
any X € (2 N By, (x9)) and k € N, both

B SVE) < &

and .
DLV S A, (5.9)

hold. Moreover, 17/)?n belongs to C>® for some v € (0, 1) witha < p — 1.
Proof. We start by noticing that the boundary estimate (5.2) translates into
2 SV S Ha (5.10)

under the change of variables. Indeed, since

distx, 9% = inf (1" =¥+ (o = v (0))?)

y/eRn—l
on the one hand, by choosing y’ = x’, we immediately deduce that
dist(x, Q) < x, — y(x) = X,.

On the other hand, as the minimizer y’ solves the optimality condition x’ — y’ =
(xn =y ()V'y (), we find

B S =y OO+ IV Yl lx" =y S (14 1V ylle) dist(x, 8<2).

Thus dist(x, d2) is comparable to x,,, which implies (5.10) via (5.2).
We have to show that this estimate remains true for tangential derivatives. Since
Lemma 5.1 asserts V € C39, (5.9) follows directly for k € {0, 1, 2} via Taylor
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expansion because the homogeneous boundary conditions are invariant under dif-
ferentiation in tangential direction. For larger values of k, we have to transform
the elliptic equation (1.3) into a problem on the half-space. In a similar way as we
transformed the parabolic equation, we find that

—V - (AV(HV) =hAVP + B-VV +CV,

for some smooth and bounded functions B and C on R’ that depend only on
the regularity and the shape of the boundary 9€2. Differentiating with respect to
tangential variables x; for any i < n, we find that

~V - (AV(#Hd;, V) = f

with f € C1:%, since e.g. Lemma 5.1 shows 8);[(\71’) = pr df‘gv
of a C* function with a ratio in which the C>% numerator and C** denominator
both vanish linearly at the halfspace boundary. On any smooth bounded subdomain
of the halfspace containing ¢ (€2 N By, (xy)), Schauder theory (e.g., Chapter 6 in
[34]), then implies ﬁa,@. V e C3 g0 that (5.9) holds for k = 3. For larger k,
choosing a sequence 7jx—; > 7 of nested cutoffs satisfying the same hypotheses
as 173 = 7, and a multi-index 8 € N6’71 x {0} consisting of |8| = k — 2 tangential
derivatives yields

to be the product

—V - (AV(iDPV)) = fp.

Induction on k gives fg € C* hence ﬁkﬁﬂV € C3* and (5.9) for all k; this
induction relies on the decay already established for the derivatives of V which
appear in the p-homogeneous nonlinearities, (and the fact that of the k—1 derivatives
of V that contribute elsewhere to fg, all but two are in tangential directions).

Finally, the third statement of the lemma follows from Lemma 5.1 and Taylor
expansion.

It follows immediately from the preceding lemma that the problem in (5.8) can be
further rewritten as

aH — %,V R2AVHA)=F+ G (5.11)

for some new elliptic A~, and where G is the sum of G and other lower-order terms
of the same class. The weak formulation in (5.5) now turns into

— // H8,¢dftps1de + // V§ - AVH dfipde
(0,T)xR". (0,T)xR"

(5.12)
=[G [ Aod] Ly dnp,
(0.T)xR", R’

for any ¢ € LZ(L%) N LZ(HZI) NH! (Liﬂ) vanishing near the endpoint 7.
We now prove maximal regularity for the problem in (5.11).
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Lemma 5.4. (Maximal regularity for linearized inhomogeneous halfspace prob-
lem) Let F and G be given in L2(L%p) and let H € L2(L§+]) N L2(H21) be a

weak solution of (5.11) with zero initial data. Then H e LXHY N LZ(H22) N
yler2 0,72 ;

H(L3,) N C(L7, ) with

IV ANz, + 1001203 )+ IVH 202 + IV H 203,

5 ”F”LZ(L%p) + ”G”LZ(L%],) + ||VH||L2(L%) + ”H”LZ(L%p)'
Proof. In order to simplify the notation, we drop the hats and tildes from here on.
Moreover, we set G = 0. We will here only give formal arguments. The estimates
can be derived rigorously by approximating F' smoothly and using suitable finite
difference quotient approximations for the test functions, see, e.g., Chapter 6.3 in
[30].

In a first step, we use (an approximation with smooth cut-offs in time of) ¢ =

—X(0,T) 8,? H forsome k € {1,...,n — 1} as atest function in (5.12), where xo,r)
is the characteristic function for the time interval, and we obtain

// HoZd,(xo.1yH) dpaprdt — // V(32H) - AVH dudr
(0,00) xR%}

(0,T)xR%
=— // OFHF dpupydr.
(0,T)xR™

Multiple integrations by parts then yield

1 (T d
—f —/ (8kH)2dup+1dt+// VorH - AV H dpodt
2Jo dr /gy (0.T)xR".

= —// a,§HFd/,L,,+1dr—// VorH - (¢ A)V H duodt,
(0,T)xR”. (0.T)xR"

(5.13)
and invoking the ellipticity of the matrix A, the Cauchy—Schwarz inequality and
recalling that H was assumed to have zero initial data yields

1 1
21712 2
||3kH||Loo<L%+l) T IVaHI 212 S ||3kH||L2(L%)||F||L2(L%p) FUIVHIL2(12)

Via the elementary estimate ab < ga® + ¢~ 'b%, we can control the second order
term on the right-hand side. We have thus derived the desired control over the
second order tangential and mixed derivatives, namely

13cH ooz, + IV 22y S 1F sy + IVH 23

Moreover, an application of Lemma 5.2 provides also the control over the first order
tangential derivatives, because p + 1 > 2 implies:

IIXJpakHIILgp =llokHlz2 S o Hll 2+ IVOHIl L3
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Notice that a replacing the time interval (0, 7') in (5.13) by (¢, t + ¢) shows also
the continuity of ||y H || ; 2 1 in time.
p+
In order to control the transversal derivatives, it is now enough to focus on the
Xy variable, and thus study the one-dimensional problem

11—
oH — x, pan(x;%AnnanH)zF,

because all the other terms that appear in (5.11) are now known to belong to L% -
In order to simplify the notation further, we drop the subscripted n’s in the rest
of the proof. Furthermore, the problem becomes more accessible if we freeze the
diffusivity function A at an arbitrary point x,. That is, we study the equation

OH — Ax P (x%0 H) = F —x P9, (x%(A, — A)oy H),

where we have set A, = A(x,). Thanks to the regularity of A, it holds that |A, —
A(x)] < 8 for x and x, in the interval (0, §). We should thus localize the problem
further by smuggling in a cut-off function 7 satisfying » = 1 in (0, §) and vanishing
outside of (0, 28). This way, we are led to considering
o (H) — Awx ™' 7Pa, (x% 0, (H))
=nF + (A= A)x~ P, (5% (nH)) — 2x' P oxnAd H
—2x P9, nAH + x'"Pnd, Ad, H — x'"P8?nAH,

and we write F for the right-hand side for brevity and set H = nH. Now, if we
can show that

10 H 13+ 19xH 2 + 197 H D3 S IF 3 (5.14)
the statement follows if § is sufficiently small, because
- ~ ~ 1 1
2
1Fllz) S NFlgz, +810cH 1 2 + 81021 3 + Sos Hllpz + S 1H |2,

by the regularity of A and the properties of the cut-off function. In view of the
interpolation Lemma 5.2, the L? norm on H can be replaced by the L%  as in the
statement of the lemma.

We have now reduced the multi-dimensional problem with variable coefficients
(5.11) to a one-dimension problem with constant coefficient,

&H — Aux 7P, (x?9.H) = F.

We have to do one more transformation in order to arrive at a problem that is
better behaved. Indeed, if we change variables X = xPtl § = A«(p + 1)2t,
H({,%¥) = H(t,x) and F(f, ¥) = F(t, x) the above equation turns into

OH —x°3;(3° N o;H) = F,

where 0 = ﬁ This is precisely the linear version of the parabolic equation that
characterizes the porous medium dynamics in a neighborhood of the Barenblatt
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solution as studied earlier in [38,40,48]. It is well-understood: Calderon—Zygmund
and Muckenhoupt theory is available and provides estimates

. . 5~ .
197 H 1Lz + 10 Hliz + N0z Hll 2 SIFI L2,

for any ¢ € (—1,2(c + 1) — 1), see the proofs of Proposition 3.23 in [38] or
Proposition 4.23 in [48]. Our choice is g = #, which is equivalent to (5.14).
We summarize our findings as follows:

Proposition 5.5. (Linear inhomogenous a priori estimates) Let h be a weak solution
to the linear equation (5.5) with zero initial datum and f € LZ(L%p)ﬂLl(Li_H).
Then for all T > 0, the following holds:

2
”Vh”L“’((O,T);L?,_H) + ||3th”L2((0,T);L%p) + ||Vh”L2((0,T);L2) + IV h”LZ(((),T);L%)

5 ”f”LZ((O,T);L%p) + ”h”LZ((O,T);L%p)'
(5.15)

Proof. Since 2 C R” is bounded, its boundary can be covered by finitely many
open balls, sufficiently small that within each of them, the boundary can be ex-
pressed as a graph over any of its tangent planes. The complement of these open
sets in €2 can be covered by one additional open set compactly contained in the
interior of 2. Choosing a partition of unity subordinate to this covering, we flatten
the boundary in each of the covering balls and apply Lemma 5.4. The analogous
estimates in the interior of €2 follow from standard parabolic estimates and the
boundedness of log V. Combining these estimates in the original variables using
the partition of unity, the proposition follows from a linear analog of Lemma 4.1.

This maximal regularity result can be easily combined with the energy estimate
for the nonlinear problem.

Lemma 5.6. (Nonlinear smoothing 1) Let h be a solution to the nonlinear equation
(2.1) with initial datum hgy € L?H_l and assume that ||h|| ~ < ¢ for some & > 0
small enough. Then, for any 0 < t < 1 < T there exists C = C(t,T,n, p,V)
such that

2
||3th||L2((r,T);L§p)) VAl 2@ ry 2wy + IV R 2 ry:02)) S CllhollLi+l~
(5.16)

Proof. We denote by ¢ a smooth cut-off function that is 1 in the time interval [z, T']
and zero in [0, 7/2]. We localize the evolution (2.1) with the help of this function

% (Ch) = VTPV L (VAV(ch) = (p — DEh+hd, +¢N (),  (5.17)
and apply the maximal regularity estimate from Proposition 5.5 to the effect that
||8t(§h)||L2(L%p) + ||V(§h)”L2(L2) + ||V2(§h)||L2(L%)
S ”{h”LZ(L%p) + ||h8;§' ||L2(L%p) + ||§N(h)”L2(L%p)'
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Thanks to the particular structure of the nonlinearity (2.2), the third term on the
right hand side can be estimated by

||§N(h)||L2(L%p) S, ||h8t§||L2(L%p) + ||§h”L2(L%p) + 8||at(§h)||L2(L%p)-

Using the fact that L%, 41 embeds continuously into L% » by the virtue of (5.2), the
above estimates combine with the pointwise bounds from Lemma 4.1 to give

1Ml 2z, + IVE 2z + IV 23

<c (g”a,(;h)uLQ(L%p) + IIhollLiH> .

Choosing ¢ small enough and invoking the properties of the cut-off function yields
the statement of the lemma.

Before turning to higher-order derivatives, we use integration by parts to estab-
lish a class of interpolation inequalities which will allow us to control the effects
of the nonlinearity.

Lemma 5.7. (Interpolation) Let ¢ € C°(R") be given, g = 2 and k, £ € N with
k > €. Then it holds

k—1
k k=t _
[NARRIR RS Al 5 Z ID™ DXl 1.

m=0

Proof. To keep the notation as simple as possible, we perform a rather symbolic
calculation. That is, we write " for some partial derivative of mth order, 0" = 9¢
with |a| = m. In our argument, the precise value of « is not of importance.

We start with an integration by parts to notice that

/wma‘mkﬂx

kq—2¢

=/|¢|‘1a@ha@h|a‘h| T dx

kq—2¢

5/|¢|‘f|8‘*‘h|w“1hua‘hl ? dx+/I1/f|‘1*‘|avf||a“h||a‘h|k"«;(dx

41 kg—2¢
kq

-1
k kg X -
g(/'ll"q'azflh'ﬁd") q (/"//I’ﬂa“‘h\ﬁ dx) </|‘/f|"|afh|%" dx) q
1 kq—k—t+1
kg k ‘.
+</|'/’|q'3€71h|ﬁdx> q (/"/flq\a@hﬁqd)

1
(et e

where the last estimates follow from Holder’s inequality. Here, we employ the
convention that

-1

k 7
(/It/flqla“thl dx) ! = |||z forl =1.
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Applying Young’s inequality in the form ab < ea? + Cs,gbﬁ for some arbitrarily
small ¢ and 6 € (0, 1) to the right hand side yields

£+1

-1
q k 2t kq 7
/|w|“|afh|% dr < (fww‘f“m% dx) (/|x/f|"|a“1h|ﬁ dx)
BT T
ki - k—1)gq -
+ </|¢|q|a‘f—‘h|ﬁ dx) </|a¢|q|a‘3h|( 7 dx) .

It remains to apply an iteration procedure. For this purpose, we set, fork = £+m,

14
—m (k*m)
Ak, 0. m) = </|D"’w|‘f|D‘h|“‘z”’ dx) ‘.

B, m) := AL +m, €, m),
C(k, €) := A(k, €,0)

and notice that Ag := A(k, 0, m) = ||| L. Upon rescaling &, we may assume
from here on that Ag = 1. (We may always assume Ag # 0 as otherwise the lemma
is vacuously true.) With this notation, the previous estimate becomes

4

Ck, 0) < Ch, € — D2C(k, €+ 1)% + C(k, £ — ))FET Ak, €, DFT, (5.18)

and the statement of the lemma can be rephrased as

=~

-1
Clh, 0! S S Bk —m,m), (5.19)
=0

3

foreverykand 1 £ ¢ <k — 1.

The proof will be a double-induction on (k, £). We start by noticing that for
k = 2and ¢ = 1, our objective (5.19) is nothing but the estimate (5.18) just proven.
Suppose k = 3 is fixed and that (5.19) holds true for k — 1 and any £ < k — 2. Our
goal is to show (5.19) for fixed k and all 1 £ ¢ < k — 1.

We first need some auxiliary inequalities. Note for ¢ = D1/, it holds that

14
(k=) —(m—1)) ((k=D)=(m=T))q
Ak, €, m) = (f D" DR dx)

= Ak—1,4,m —1)

and since the estimate in (5.18) is independent of the choice ¥, the inductive
hypothesis (5.19) allows us to estimate

k—1—1
Ak—1,6,00T = Clk— 1,07 < Bk —1—m,m)

m=0
—1-1

k
= Z Atk —1,k—1—m,m)
m=0
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or

k—1

k—1
Ak, 6, 1) T < D" Bk —m,m),
m=1

for any ¢ < k — 2. Plugging this bound into (5.18) gives

Clh, 0) < Clh, 6 — 1)2CKh, £ +1)?

k=1 FFeT (5.20)
4
+C(k, £ — 1)FF (Z Bk —m, m)> .
m=1
We claim that this estimate implies
. . k—1
Clk, )T S Clk. £+ 1D)TT + > Bk —m,m) (5.21)
m=1

forany 1 < ¢ < k — 1. Indeed, the case £ = 1 follows directly from (5.20) because
C(k,0) = Ag = 1. The general case follows by induction: We suppose that (5.21)
is proved for 1,2, ..., £ — 1 and we aim at establishing it for £. For this purpose,
we use Young’s inequality in (5.20) to the effect that

k K P
Clk, )7 S eClk, €= D71+ Clk, £+ DT + Y Bk —m,m),

m=1

for some arbitrary . Invoking the hypothesis that (5.21) holds true for £ — 1, we
then deduce

k—1

Ck 0 S eCk, OF + Ck, €+ DT+ Y Bk —m,m),
m=1
which gives (5.21) for £ if ¢ is chosen small enough.
It remains to iterate (5.21) to find
. k—1 k—1
Clk. )t SCk.k)+ Y Bk—m,m)=>_ Blk—m,m),
m=1 m=0

which is what we aimed to prove, cf. (5.19).

We will now perform an intermediate step towards higher-order regularity esti-
mates by lifting the norms on the left-hand side in (5.16) to the next order in time.
Higher-order time derivatives will be considered subsequently simultaneously with
suitable higher-order spatial derivatives. The intermediate step that we take in the
following lemma is necessary in order to control lower-order error terms that appear
later as a result of a transformation of the equation close to the boundary; see (5.22)
below.
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Lemma 5.8. (Nonlinear smoothing 2) Let h be a solution to the equation (2.1)
with initial datum hqo € L§7+1 and assume that ||h| L~ < ¢ for some ¢ > 0. Then
if € is small enough and 0 < v < 1 < T, it holds that

2 2
197 Al 2o,y 3,y + IV ORI 2y 22y + IV 2o 7yazy) S Thollzz -

Proof. Regularity in time was proved already by Jin and Xiong, see (5.1) above. In
order to get control over the mixed derivatives, we proceed carefully by considering
finite difference quotients d]h(t) = s~L(h(t + 5) — h(s)). We consider the same
cut-off function in time as in the proof of Lemma 5.6. Then localizing the nonlinear
equation and “differentiating” (5.17) with respect to time, we obtain

Od; (chy — V=PV - (V2VdS (£h))
= (p — DA’ (¢h) + d*hd, ¢ + hd} 8¢ + ¢dS N (h) + N(h)ds¢.
Regarding the nonlinear terms, we notice that
IN()| S 1R+ 1R110; 2]
and
\d N ()| < hlld; R + |d; 19k | + |h]|3:dSh].

Therefore, using 2| < ¢ < 1 and making use of the maximal regularity estimate
for the linear problem, Proposition 5.5, we find that

”8tdts ({h)”LZ(L%p) + ”des({h)”Lz(Lz) + ”Vzdzs(;h)”LZ(L%)
,S ”Xspt{h”L2(L%p) + ”Xspt{dtsh”LZ(L%p)
+ ||§dtsh3th||L2(L%p) + Edeat({h)”LZ(L%py

If ¢ is sufficiently small, the last term on the right-hand side can be absorbed into
the left-hand side. Moreover, the (remaining) expressions on the right-hand side
are bounded uniformly in s by the virtue of Jin and Xiong’s regularity statement
(5.1). We may thus pass to the limit s — 0 and find

102E M2z, + IVOEM 202y + 1920 E M 202,
S Wtspeehlagey ) + Dtpc Wbl 20z ) + 1E@ R 202 -
Now, applying the interpolation Lemma 5.7 in the form
||§|3th|2||L2(L§p) S Al Lee ||§3t2h||L2(L§p) + ||h||L°°||8t§8th||L2(L%p)a
and using again that |h| < ¢ < 1 leads us to the estimate
||3;2(§h)||L2(L%P) + Vo (Eh) 212y + ||V231(§h)||L2(L§)
N ”XsptfhllLZ(L%P) + ”Xspt{ath”LZ(L%p),

provided that ¢ is sufficiently small. Since 2, < pp41 by the virtue of Lemma
5.1, we can now apply Lemmas 4.1 and 5.6 and deduce the statement of the lemma
by the properties of the cut-off function.
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Similarly to the derivation of the maximal regularity estimate in Proposition 5.5,
the derivation of higher-order regularity estimates requires attention only in a neigh-
borhood of the boundary. Indeed, in the interior the equation is parabolic with
smooth coefficients, and thus, higher-order estimates in the interior just follow by
standard iterative arguments based on the maximal regularity estimate from Propo-
sition 5.5. As before, we shall thus focus on the boundary from here on. We choose
essentially the same notation as in the proof of Proposition 5.5 and we fix xo € 92
arbitrarily and let n denote a cut-off function on R” interpolating smoothly between
n = lin B,(xg) and n = 0 outside of By, (xp). Moreover, as in the proofs of Lem-
mas 5.6 and 5.8, we have to introduce a cut-off function ¢ defined on [0, co) that
satisfies = 0in [0, /2] and ¢ = lin [r, T] for some 0 < 7 < 1 < T'. Treating
the nonlinearity N (h(x)) =: f(x) as an inhomogeneity and smuggling ¢ 7 into the
equation, we find that H = ¢{nh satisfies

&H -V~ 7PV . (V’VH)=(p—1)H+ F +G, (5.22)
where
F=tnf, G==2V'""P;Vn.-Vh—=V'"PrhAn =20V PhVV -V + 'nh.

We now apply the same diffeomorphism ¢ that we used in order to transform the
elliptic problem (5.7) into the half-space problem (5.11), and arrive at

WH -V 1PV . (VPAVH)=(p— DH + F +G. (5.23)

We will now derive control on higher-order derivatives for equation (5.23). As
before, we interpret the weighted Lebesgue norms with respect to the simpler weight
X, and we consider L" (L621) =L"((0,7T); Lz(ﬂq)) with measure dji, = 1 dz and
typically r = 2. Moreover, we write z = (¢, X") for the time and flattened tangential
variables, whereas V denotes the full spatial gradient (tangential and normal) in
flattened coordinates.

Lemma 5.9. (Tangential smoothing by the linear inhomogeneous evolution) Let
H be a solution to the transformed equation (5.23). For any k € N and o’ € N
with |&'| = k, it holds that

IID§8;I§||L2(L%p) + IDEVH 22y + IDEVZH 212,

Lo L (5.24)
S DD Fl gz ) + D IDEG s .
=0 £=0

Proof. As G can be considered as an inhomogeneity, we can set G = 0 for nota-
tional convenience.

We can proceed as in the proof of Proposition 5.5 and show that (5.15) holds
true on the half-space, that is, we have

1A N2z ) + VA0 + 1V Bllagg S1E g ) (529)
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Note that the implicit constant in this estimate might be time-dependent and blow
up for infinite times. Now, we differentiate (5.23) in time and tangential direction.
Form € Np and &’ € N3 ™', it holds that

3,9m9% A — VImPY L (vEAVaM Y H)
= (p—Da"o% A + 9" F
+E8 7Y el Y bapal A,

IS|BIS e |+1 IS|BIS |
B2 Bu=1

for some continuous and bounded functions ag, bg on R. We can now apply the
maximal regularity estimate (5‘252 and find (5.24) via iteration and thanks to the
fact that X,, < 1 in the support of H.

~

Now, we translate the above estimate to the nonlinear setting. That is, we con-
sider f = fo + f1, with

fo=0+h?P —1—ph, fi= ((1 + Pl = 1) a,h.

and we write F; (1, £) = (DA fi(®) = ¢(t)n(x) f; (x) for the transformed and
truncated quantities. Moreover, we write i (7, X) = h(z, x). The nonlinearities are
bounded as follows.

Lemma 5.10. (Spacetime localized boundary estimates for the nonlinearity)
Suppose that ||h||L~ < ¢ for some ¢ K 1. Then, for any k € Ny there exists a
constant v € (0, 1) such that

k
k£ k— N +if .
1D Fill 2z ) S € ) IDE" @D hll 2y ) Vi € {0,1).

m=0

Proof. We drop the hats for notational convenience. We start considering the esti-
mate for Fj, and notice that

0Fy =Y (Z)azﬁw o fo.

Be

by the multi-dimensional Leibniz rule, where we have set ¥ = ¢n. We inspect the
nonlinearity and find by Young’s inequality and an iterative argument that

181
108 fol SIRNOLRI+ " (8T k|,

Y
1<y ISI81-1
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provided that ¢ is sufficiently small and |B| = 1. Therefore, summing over any
multi-indices « with || = k and integrating in space and time, we have that

k—1
k
I D5 Foll 213,y < Wl DERN 2 ) + D IWIDIRI Tl 23 )
=1

k—1

+ 2 Il | DXy DY Rl a3
m=0
k—1 m—1

+ 2 D IDEYIDIA Ell s )

m=2 {=1

Let’s discuss the right-hand side term by term. The first term is exactly of the kind
we are looking for. For the second one, we apply Lemma 5.7 and find,

k—1 k—1

I k—
D MVIDAIT 2z ) S " Y IDIY DI hll 23 ).
=1 m=0

for some v > 0. The remaining terms are bounded by the same quantity.

The treatment of f] is similar. This time, derivatives of the nonlinearity are
bounded as follows,

—1 0—m
£—m
DL fi] S RIIDEOR| + Y Y |DIR| # D9kl

m=0 n=1

as can be observed by Young’s inequality and an iterative argument. With the help
of the Leibniz rule, we thus obtain

k—1
IDEF 203 ) S IR Y DEBRY 23 5 + D Wl | DS 9 DLdi R 2 g3
=0

k—1 k—m

k—m
+ 2 D IWIDIAI DY okl 2 gz

m=0 n=1

k=1 £—1 £—m

k—¢ {—m
0D D IDET YD R D oy o .

=0 m=0 n=1

and absorbing d; into D, and an application of the Holder inequality furthermore
yields
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k
||Dz F ”LZ(L%,,)

k—1
< e (nwf“hnmgp) +>° ||D§‘¢D£+‘h||Lz(L%p)>
=1

k—1 k—m -
D"h % I;cTIIn Dm+lh m+1 k
+ I IDERI N s, IV e | Z(Lz
m=0 n=1
k=1 ¢—1¢t—m oy m
k—¢ == /1 k—¢ 1y 5 ¢+1
+ 33 Y Dkt D ||L;L2 IDE=“y | D ) 5T,
) ( Zp)
=0 m=0 n=1

‘We now invoke Lemma 5.7 to the effect that

k
k k11—
IDEF 203 ) S " D IDIY D ™ hl oy ).
m=0

for some v > 0.

With these preparations, we are in the position to extend the L? estimates from
Lemmas 4.1, 5.6, and 5.8 to z-derivatives of any order where z = (z, X’) denotes
the tangential and time variables and V denotes the full spatial gradient (tangential
and normal) in flattened coordinates. For our purposes, it is enough to bound the
unweighted terms in these estimates.

Proposition 5.11. (Tangential nonlinear smoothing in Hilbert norms) Let H be the
solution to the transformed equation (5.23) and suppose that | H || L < & for some
& small enough. Let 0 < 1 < 1 < T be given. Then, for any k € Ny, it holds that

IDEV A 22 + IDEV2H 2 < kol 2

Proof. We start by noting that the estimates from Lemmas 4.1, 5.6 and 5.8 easily
translate into the localized setting, so that

o N A
”HHLOO((O’T)?L?;H) + ”8’H”L2((I,T);L%p) + ||3[ H”Lz((r,T);L%p)
A A A A Ao A
+ ||VH||L2((T,T);L2) + ”Val‘H”Lz((r,T);Lz) +1IV H”Lz((r,T);L%) (5.26)
IV H N 2o, 10z S Wholl 2

In order to derive estimates on derivatives of the next order, we invoke Lemma
59withk =1,

1D<8: Al 213 ) + 1DV Hl 22y + 1DV H 1213,
. . R A (5.27)
5 ”F”LZ(L%P) + ”DZF”Lz(L%P) + ”G”LZ(L%,)) + ”DZG”LZ(L%]J)

Of course, our presentation here is a bit formal: Instead of considering derivatives
D., we should more carefully apply difference quotients to the nonlinear equation.
We have done so in Lemma 5.8 to deal with time derivatives. Because of the known
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reguarity in time (5.1), passing to the limit in the difference quotients don’t cause
any problems, also in the nonlinear terms. The strategy remains the same for higher
order derivatives in time, and we may generously simplify our presentation here by
considering proper time derivatives in the sequel.

When it comes to higher order derivatives in tangential direction, a result anal-
ogous to (5.1) is missing, but will be derived by us in Corollary 5.12 below. We
should thus be a bit more careful in our argumentation. For the sake of a simpler
presentation though, we shall keep the notation D, and will tacitly interpret it as
difference quotients in the tangential variables. Only in the discussion of the leading
order nonlinear terms, we shall recall its actual meaning. For all other terms we
will be rather formal.

Let us start considering the lower-order terms. From the definition of G we
deduce that

”G”LZ(L%p) + ”DZG”L2 LZ )~ ||Xspt1//h||L2 (L?) + ||Xspt1//Vh||L2(L2
+ ”Xspthzh”LZ(Lz) + ”XspthZVhHLZ(L%)y

where we have set ¢ = ¢7).

We will now apply an interpolation to modify the weights on the right-hand
side. Let ¢ be a cut-off function that is 1 in the support of ¥ and vanishes outside of
a small neighborhood S;'[T/f of this support. Then it holds for any regular function

& that
fova-f(E)pes

—2/£n¢gans dz —2/£n¢8n¢§2d)€.

An application of the Cauchy—Schwarz inequalities then yields

”XspthHLz(Lz) 5 ||Xspt1/f§||L2(L%) + ”XWV%-”LZ(L%)'

This argument can be repeated by writing X = 1 £ 2] 1 and using that i, <
i for g = 2, to derive
||Xsptw§||L2(L2) 5 ”XSptl//g”Lz(Lg) + ||XWV§||L2(L%)7 (5.28)

for any g € 2N. By interpolation, this estimates extends to any ¢ > 0.
Making use of this interpolation-type estimate with suitable choices of ¢ in the
above estimate for G and estimating [t2, < flp4+1 S fl2 S 1 yields

h||L2(L2 D + X7 vh”LZ(Lz)

sptyr
ath”LZ(LZ +lxz

sptyr
+ lIxgoy

||G||L2(L§p) + ||DzG||L2(L2 S gy

at%i’\l ||L2(L2)

sptyr sptyr

+ x5 — V2 h”LZ(L%),

sptyr
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We may now invoke (5.26) with suitable choices of 7, T and spatial cutoff r to
deduce that

”G”LZ(L%p) + ||DzG||L2(L%p) S ||h0||Lf7+1~

It remains to estimate the nonlinear terms in (5.27). We promised to be more
careful when considering higher order tangential difference quotients and we should
thus briefly discuss the rigorous treatment of the leading order nonlinear terms.
Because tangential derivatives leave the limit function V invariant in terms of
scaling, cf. Lemma 5.3, these are terms of the order w|dffz| |8,fz| and w|ﬁ||8,dffz|,
where d is the difference quotient operator in direction X;, see also Lemma 5.8.
By using the smallness of H in the assumption, the second of these terms can
be absorbed into the left-hand side before passing to the limit s — 0. The other
term can be split into the two quadratic terms ¥ (d; l;)2 and (8,?1)2, among which
we only have to consider the first one, because time regularity is already settled.
Here, we notice that this term is bounded uniformly in s, because ||1//(8,fz)2|| Lﬁp

can be estimated by ||ﬁ Izl wafﬁ I 12 plus lower order terms via the interpolation

Lemma 5.7 and by using fi2, < fi2 in the support of 7). This term is controlled via
(5.26). There are no further regularity issues popping up when considering higher
order tangential derivatives. We shall continue with the rather formal discussion
and summarize here that Lemma 5.10 implies

1E N2,y + 1D Fll 23 )
S e (IWhllaga ) + 1 Dohll iz ) + 19 D2l ez
+ 1DV hll 23 ) + 1D Dkl 23, )
S Ixspewhl g ) + Ixspry Dl i ) + " ID2H 23 )
S ol + e IDdH 213 ) + " IDV Hll 212,

where the last inequality is due to (5.26). .
Plugging these estimates (for the lower-order terms involving G and the non-
linearities involving F) into (5.27) thus yields

N A AN

ID=0H N 1213 ) + 1DV Hl 22 + 1DV H 23 < ol 2
provided that ¢ is chosen small enough that the final terms above which it multiplies
can be absorbed into the left hand side.

This procedure can be iterated, with a suitable adaption of 7, T and the radii r
of the spatial cut-off functions 7 in each step to prove that

IDE8 Al 21 ) + IDEVH 22y + IDEV2H 2 < Tholl 2 -
inductively. This implies the desired bounds.

Finally, we use generalized Sobolev embeddings to pass from L2 to L™ esti-
mates.
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Corollary 5.12. (Tangential nonlinear smoothing in weighted uniform norms) Let
H be the solution to the transformed equation (5.23) and suppose that || H e S &
for some & small enough. Let 0 < v < 1 < T be given. Then, for any k € Ny, it
holds that

I DEH o) + 15 DIV H o) < kol 2 -

Proof. The estimate basically follows from Proposition 5.11 via generalized Sobolev
embeddings using compact support in the z = (¢, x’) € R" variables, followed by

(two) integrations in x, where we have a vanishing boundary condition at one end

xp, = r only. Indeed, for m € N with m > n/2, it holds that

m m
k 7y k Y k Y
IDEH Loy S D NIDE Hllpa2y + ) IIDE 0, Hllp2r2).
=0 =0

We now use the Hardy inequality
||§||L2(L2) f, ||3£n5||L2(L%),

whose proof is similar to that of (5.28), to eliminate the zero-order terms on the
right-hand side, thus,

m+1
DAl roey S D IDEV A 22,
=0

Finally, we apply Proposition 5.11 to infer the desired control of the first term in
the statement of the lemma. The second term is bounded analogously, by applying
the same argument to £, D*V H in place of D¥H.

We are now well-prepared to prove Proposition 4.4.

Proofs of Proposition 4.4. As aconsequence of Corollary 5.12 and the construction
of H, we find for any xg € 02,0 < 7 < 1 < T and any r > 0 small enough that

k
197~z 2.1y x B, cop) S holl2 -
In particular, covering a small band along the domain boundary with a finite number
of balls, the latter extends to the band , = {x € Q : dist(x, Q) < r} for some
small r > 0,
k

107 hllLoe (xS kol 2 -

As mentioned earlier, similar (but simpler, thanks to the strict parabolicity) argu-

ments in the interior of the domain €2 yield analogous estimates on Q \ €,. Both
together prove the statement of the proposition.
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6. Proof of Second Dichotomy

In this final section, we turn to the proof of Theorem 3.4, which states optimal
exponential convergence of the relative error under the assumption that V is an
ordinary limit in the sense of Definition 3.3. Thanks to our first dichotomy result—
Theorem 3.1—and Proposition 4.4, it is enough to establish convergence at some
exponential rate, which is the main result of the present section.

Theorem 6.1. (Ordinary limits are approached exponentially fast) Under the hy-
potheses of Theorem 3.1, if V is an ordinary limit of the dynamics (1.2), the con-
vergence takes place exponentially fast, i.e., there exists a rate y > 0 such that

||h(f)||L2+] =0( ") as t — oo.
P

The proof of exponential convergence relies on Choi and Sun’s refinement—
Lemma4.3—of the Merle—Zaag dynamical systems result recalled above. It roughly
says that if a solution is known to be small on a large time interval, then, up to a
possible error caused by the neutral modes, the stable and unstable modes should
be much smaller than an exponentially decaying term in the middle of this time
interval. (Note the unstable modes tend to decay like the stable ones if time goes
backward and this is why we need to go to the middle of time interval.) The main
issue to take care of is thus the control of the neutral modes.

The underlying idea for controlling the neutral modes is reducing the amplitude
of the neutral modes by changing the reference stationary solution in the direction
of the neutral modes. This can be effectively done if the limit V' is ordinary. This
strategy goes back to the work of Allard and Almgren [3], who gave kernel inte-
grability conditions guaranteeing that minimal surfaces converge to their tangent
cones sequentially and exponenentially fast. See also Section 6 of Simon [49], or the
recent contributions of Choi, Choi, Kim and Sun in various combinations [17,20].

In order to pursue this strategy, we have to prove that being an ordinary limit is
an open property among stationary solutions S. This crucial insight requires some
technical preparations.

Lemma 6.2. (Lower semicontinuity of kernel dimension at an ordinary limit) Let
V € S be an ordinary limit and § > 0 as in Definition 3.3. Let V € S be sufficiently
close that h = V/V — 1 satisfies ||h|pe < 8, so that h = Oy () for some
Y € ker Ly. Then it holds that

Vv
5(dd>v)¢(keer) CkerLy. 6.1)

Proof. Let0 € U C ker Ly the neighbourhood provided by Definition 3.3. We fix
another element in the kernel, ¢ € ker Ly, and choose sg small enough such that
¥ +s¢ € U for any s € (—so, s9). Then hy = Dy (¥ + s¢) defines a family of
stationary relative errors (3.7) with hg = h, or equivalently, V =V, +1) €
S defines a stationary solution in terms of the original variables with Vo = V.
Changing the reference stationary solution hy =V, / V — 1 solves hg = 0 and

Lyhs = M(hy).
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We may now rewrite

~ Vv
hs = v (v (¥ +58) — Py (¥)),

and thanks to the regularity properties of the diffeomorphism @y, differentiation
in the previous two identities yields

\% - -
L; <§<d<bv>¢z> = Ly dylsmo iy = M'(0) dyl,m0 s = 0,

since M (h) = O(h?) as h — 01in (3.7). The latter verifies the inclusion (6.1).

The next lemma guarantees that spectral gaps are preserved by nearby stationary
solutions.

Lemma 6.3. (Continuity of spectral gap and nullity) Let V € S be an ordinary
limit and let the sequence {Vi}ien € S of stationary solutions converge to V
relatively-uniformly, meaning hy = Vy/V — 1 satisfies

lhellpe — 0 as £ — oo.

Let {¢¢}eeN denote a sequence of normalized eigenfunctions, i.e.,
1
Ly,¢p¢ = M, and /qﬁfvfr dx =1,

for some Ly € R. Suppose that the sequence of eigenvalues is bounded, |\¢| < A
for some A > 0. Then there exists a subsequence {¢p¢, }reN and a function ¢ €
L2(VPtldx) such that

¢e, — @llL2vrtiayy —> 0 ask — oo.

The limiting function ¢ is a normalized eigenfunction, i.e,
Lvp = rp, and /¢2VP+‘ dx = 1,

for some ) € R. Moreover, the following hold true:

(1) If ¢ =0 forall £ € N, then .. = 0.
) If ¢ > Oforall € € N, then ) > 0.
B)Ifre <O0foralll e N, then . < 0.
The lemma entails, in particular, that if |1,| > O for all £ € N, then

liminf |A¢| = min{—2X,, As},
{— 00

where 1, is the largest negative and A is the smallest positive eigenvalue of Ly .
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Proof. For the compactness assertion, we aim to bound sup, ||¢¢| 1. Applying
Proposition 5.5 with h/t = ¢y = f/(ret + 1) yields the unweighted gradient
bound

I99elizz S Gt Dligell 3 + el 2 S e+ Dliellyz | S A+2.

Now the local independence (in the relatively-uniform topology) of constants in
< on V; € S combines with Lemma 5.2 to imply the sequence ¢, is bounded in
the Sobolev space H!(€2). Via a Rellich compactness argument, we conclude that
{@¢}een converges strongly subsequentially in L? (and then also in L2(VP+1dx))
and weaklyin H 1(V2dx) towards some function ¢. Moreover, thanks to the Bolzano—
Weierstrall theorem, we find that the sequence of eigenvalues {A;}sen converges
subsequentially to some A € R.

Considering a common subsequence (indexed by £;) and passing to the limit
in the weak formulation of the eigenvalue equation,

1
/V¢ek~vagidx = (ke +p— 1)/¢ekfv@‘;+ dx,

where we also use the uniform convergence of the relative error %y, we find that ¢
is a normalized eigenfunction of Ly with eigenvalue A.

It remains to derive the assertion on the sign of the limiting eigenvalues. The
first statement is trivial, while the proofs of two others are identical. Let’s thus
focus on one of them, say the middle one. It is clear that the limiting eigenvalue is
nonnegative, A = 0 and we have to rule out that it is in fact zero. For this purpose,
we note that the eigenfunctions ¢, are orthogonal to the kernel,

/ ¢tV dx =0 forany ¢y € ker Ly,. (6.2)

We pick ¢ € ker Ly and define {; € ker Ly, according to the inclusion (6.1)
derived in Lemma 6.2 by

&e d®y)y, <,

B he + 1
where ¥, € ker Ly is such that hy = ®y (Y¥y). It is straightforward to verify that
¢¢ converges to ¢ strongly in L?(VP*!dx) as £ — oo. Indeed, because of the
imposed convergence of the relative error i, and since the diffeomorphism @y
vanishes only at the origin, we must have that ¥, — 0 strongly in L2(vpPth,
Furthermore, by the continuity of the derivative d®y, it holds that (d®y )y, — id.
Using once again the uniform convergenve of the relative error, we conclude that
Co — Cin L2(VPHdx).

We now pass to the limit in the orthogonality condition (6.2) with our particular
construction of the ¢;’s, which was arbitrary in the choice of ¢, and find

/qj;Vpde =0 forany ¢ € ker Ly.

Hence, ¢ is a (nontrivial) eigenfunction of Ly that is orthogonal to the kernel. We
conclude that & > 0 as desired.
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The preceeding analysis allows us to conlude quite easily that the dimension of the
kernels of the linear operators remains constant if the reference stationary solution
is changed in a neighborhood of an ordinary limit V.

Lemma 6.4. (Invariance of the kernel dimension near ordinary limits) Let V € §
be an ordinary limit and 8 > 0 as in Definition 3.3. Let V € S be a stationary
solution close to V in the sense that h = V/V — 1 satisfies ||h||p~ < 5 for some
8§ € (0, 8). Then § sufficiently small implies

dimker Ly = dimkerL\;.

Proof. As a consequence of Lemma 6.2, and because (d®y ) is an isomorphism,
it is clear that
K =dimker Ly < dimker L. (6.3)

We argue that both kernels have indeed the same dimension if § is sufficiently
small. We give an indirect argument and derive a contradiction by assuming that
there exists a sequence hy = V;/V — 1 satisfying ||h¢|| o < % and dimker Ly, =
K + 1. We pick K + 1 orthonormal (and thus linearly independent) functions

b1, .-, e, k41 inker Ly,.
By the virtue of Lemma 6.3, there exist subsequences (that we will not relabel)
and normalized functions ¢1, ..., ¢x+1 in ker Ly such that

dex —> P In L> (VP as £ — oo.

In particular, using in addition that {/,}¢eN is converging uniformly, we find that
P15 ..., k41 is orthonormal. Thus, the dimension of ker Ly is at least K + 1,
which contradicts (6.3).

Collecting these technical preparations, we are able to derive the aforemen-
tioned key feature: that ordinariness is a relatively-uniformly open property in the
set S of stationary limits.

Proposition 6.5. (Ordinary limits form an open subset of S) Let V € S be an
ordinary limit. If V. € S is a stationary solution sufficiently close to V in the
relatively-uniform topology, then V is also an ordinary limit.

Proof. By combining the results from Lemmas 6.2 and 6.4, we see that

Vv
V ker LV = (dtbv),/,(ker Lv),

where ¢ € ker Ly issuchthath = ®y (). It follows that the mapping ®; defined
by

@30 i= = [@v (4 + (@)™ ) - v,

for y € ker Ly,isaC I diffeomorphism from a neighborhood of 0 € ker Ly
into the set of stationary solutions L‘;fz = M(h) and satisfies all the properties
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listed in Definition 3.3, as can be readily verfied. Notice also that we have see
the construction of this diffeomorphism already in the proof of Lemma 6.2: If
¢ € ker Ly is sufficiently small so that h; = ®y (¥ + ¢) is well-defined, then
Ve = V(hy + 1) is a stationary solution and the relative error ﬁ{ with respect to

he= 1= h =L 41) =L @@+ 0 — Dy,
‘ vV v

solves the stationary error equation relative to the reference point V.

We will now derive a building block for the proof of Theorem 6.1 which exploits
both the previous Proposition 6.5 and the Choi-Sun refinement of the Merle-Zaag
Lemma 4.3, to yield a suitable reduction of the neutral modes as announced at the
beginning of this section. The actual proof of exponential convergence will follow
subsequently by iteration.

Proposition 6.6. (Improvement by changing reference stationary solutions) Let
V € S be an ordinary limit (1.3). There exist four constants &g, 8o € (0, 1) and
7, C € (1, 00) with the following property: Let V(1 + h(t)) solve the dynamics
(1.2) and stay near V,

sup |2 (1) Lo = bo; (6.4)
t>0

{(V(1 + g5)}s>0C S be a family of stationary solutions to (1.3) also close to 'V,

sup [l gsllzoe = 8o; (6.5)
520

and suppose V(1 + h(t)) is e-close to V(1 + gg) ont € [s, s + 2],

sup  ||h(t) —gsll;2 =e (6.6)
tels,s+2] ptl

forall s 2 0 for some ¢ < s.
Then there is another family of stationary solutions {V (1 + gs)};>, so that
V(1 +h(t)) is 5-close to V(1 + gs) ont € [s, 5 + 2]

sup () = &ll2 S - (6.7)
rels,s+2] pt1 T 2
forall s 2 ©. Moreover; for each s 2 0, g, . is close enough to g that
ligs — &s+rllLe = Ce. (6.8)
In the proof of Theorem 6.1 below, the exponential convergence rate y = % is

determined by the delay t provided by the preceding prop.



Arch. Rational Mech. Anal. (2023) 247:16 Page 41 of 48 16

Proof. To simplify the notation, we write
”f”\7 = ||f||L2(‘7p+l)

for any ‘7~ stationary solution (1.3). We start by noting that for two stationary
solutions V.= V(1+g)and V = V(1 +g) to (1.3) with ||g]| L, [|8llLe = 8o < 1,

there holds
146 o
0
L < N
Iflly < (1_50> 171l

i.e., two norms are equivalent

Iy < WAy

provided 8y < 1/2. Throughout this proof, f < g denotes the inequality f < Cg
for some constant C which may depend on n, m, and V but uniform in small &,
80, and large 7.

It suffices to show how & is chosen so to satisfy (6.7) and (6.8). For other g,/ ,
s’ > 0, we may shift the time of original problem by s’, consider V(1 + h(s" + 1))
and V(1 4 gy4) in place of V(1 4 h(t)) and V(1 + g;), respectively, and re-
apply the previous assertion. We now notice that by the triangle inequality and the
hypothesis in (6.6), we have that

llgs+2 — &sllv = llgs+2 — hst1llv + llhs1 — gsllv = 26,

for any s 2 0, and thus by iteration,

g2k — gollv = ke, (6.9)

for any k € No. By another application of the triangle inequality on (6.6) and (6.9),
it holds that, for T > 1,
sup [[h(t) — gollv < Te. (6.10)
1€[0,27]

Letusdenote V := V(1+ £0), anew stationary solution. If we write the solution
V(1 4+ h(t)) to (1.2) in terms of V and its relative quantity by V(1 + h(t)) =
\7(1 + fz(t)), then fz(t) = h(ﬁ)__;go_ Note that ﬁ(t) solves the evolution equation for
relative error

dh+ Lyh = Ny (h), (6.11)

equation (2.1) with new refenence stationary solution V.
In view of (6.4), (6.5), (6.10), and the equivalence between || - ||y and || -
observe that

s

. 280 s
sup [ (1)[| L < and  sup [[h()|y < Te. (6.12)
20 1 =40 re[0,27]

If we choose &y sufficiently small, then the smoothing estimate in Proposition 4.4
applies to h(t), a solution to (6.11), and we have

sup  [[A(0) Lo + 1320 | S et (6.13)
tell,27]
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(In fact, the constants ¢ and C in Proposition 4.4 depend on V, not V. Since
V= V(1 + go) and ||gollz~ < 80, by assuming &y is small, we may assume & and
C do not depend on the choice of g.)

In the next step, we aim at applying a Merle—Zaag-type lemma to the unstable,
center, and stable modes of 4. For this purpose, we introduce the L2(VPHdx) or-
thogonal projections P,, P, and P; onto the unstable, center, and stable eigenspaces

generated by L;, and write hy, = P,h,h. = P.hand hy = P;h. Arguing similarly
to the proof of Theorem 3.1, we derive the system of ordinary differential equations

d - - 8 8 8
g 1ully + Aullully z —Cet (”hu”‘? + llhclly + ”hs”\?) ,

A

d - - - -
‘Enhcnv Cet (Wully + lclly + sy )

d - -~ ~ ~ ~
Sy +Zslliully < Cer (Il + lielly + Wil )

for all # € [1, 2], for some constant C > 0, where A, is the largest negative and
s the smallest positive eigenvalue of L ;. Note that &9 > 0 and T > 0 are not fixed
yet. Let us denote o := Cet. Suppose we choose &g and t so that

- 1 -~
A= Emin{—ku, As},

[IA

Ceo

|I/\

o

then the system implies
d - o > ~ ~
il =Xhully = —o (Ielly + Whsly)

d -
‘allhcllv

<o (Ihully + lcllg + sy )

d - . ~ ~
g+l < o (Iully + Iely)

for any ¢ € [1, 27]. By the virtue Of Lemma 4.3 and the bound in (6.12), there exits
a constant oy dependent only on A such that if we further assume Cgot < o, it
holds that

Mru @)y + 1hs @l S eTllhe@®lly +ete 57 S (e1)* +eTe 57, (6.14)

for any t € [%, %’]. Here, we applied the lemma on the interval ¢ € [5, 5 r1. We

remark that as a direct consequence of Lemma 6.3, X can be bounded away from
zero uniformly in V, more precisely, we can suppose that

~ 1
A > Emin{—ku, As} (6.15)

if 8o is chosen sufficiently small.

We still have to bound the center modes. For this, we make use of the fact that, by
the virtue of Proposition 6.5 and our hypothesis in (6.5), the limit V= Vigs+ 1)
is ordinary. We denote by @, the diffeomorphism between suitable subsets of
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ker L; and the set of stationary solutions relative to V described in Definition 3.3.
Thanks to the bound in (6.12) that ||ﬁc(r)||‘; < ||ﬁ(t)||‘~, < et, for any small 5,
if egt is chosen sufficiently small, there exists a function g, = @y (he(T)) with
gzl < $ solving Ly (87) = M(g,) (i.e., V(l + g7) solves (1.3).) Moreover,
since @ ;(0) = 0 and (d®y;)o = id, we have that

18: — he(@lly = 1@y (he(1)) — @y (0) — (dD)o(he ()l

g (6.16)
=o(|hc(D)y) = o(eT).

In order to observe that this estimate is stable under-order-one variations in time, we
recall that the center modes solve the (finite dimensional) system Blfzc = f’c Ny (fz).
An integration over some interval [z, f] and the quadratic estimate (4.3) on the
nonlinearity give

t t
o) = he@ly < [ Nl a5 [ (il + 1ol ) Wil dr.
T T
We apply the bound in (6.12) and (6.13) to conclude that

sup  lae(t) — he(@) g S (eT)%,
te[t,t+2]

and thus, (6.16) can be generalized to

sup  |§r — he ()]l = o(e7). (6.17)
te[t,t+2]

Later when we show (6.8), it will be necessary to quantify the relation between $
and et. For this purpose, we notice that since g; solves L;g; = M(g:), it satisfies
the estimate || g ||z~ < [&¢ ||, and the inequality is uniform in V and depends only
on the bound in (6.5). Indeed, this estimate can be derived parallel to the smoothing
estimates in Proposition 4.4. Therefore, using the properties of the diffeomorphism
@ again, we observe that

1§l S Ngclly = 1Py ey S et (6.18)

Let us summarize what we have obtained so far. We showed there is small
80 > 0 and ¢ > O such that if g7 < cg and & < &g, then there is a stationary
solution V(1 + g:) with the estimates (6.14), (6.16), (6.17), and (6.18). We shall
now transform g into the solution g, of (3.7) that we are looking for. We thus set

g = (g0 + D&z + go- (6.19)

Recalling that /(7) and h(t) are related by the same transformation, A (t) = (go +
1)h(¢) + go, and using the estimates (6.5), we have that

1h(t) — & llv = ll(gs + D@ — g v S Nh@0) — &l
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It remains to use the estimates in (6.14) and (6.17) together with the triangle in-
equality to deduce

N _ 15
sup  |h(t) — &cllv < (e1)* + ete 547 4 o(eT).
telr,7+2]

First choose 7 large (independently from V thanks to (6.15)) and then ¢ sufficiently
small to satisfy egt < ¢g and (6.7)

. 1
sup  [|h(t) = &:llv = ¢
te[r,t+2]

for any ¢ < &g.
Finally, (6.8) is an immediate consequence of (6.18) and the definition of g; in
(6.19).

We now have all the tools at hand to proceed to the proof of the exponential
convergence result.

Proof of Theorem 6.1. The idea is to iterate Proposition 6.6. By a translation in
time, we may assume that

sup [A(®) L= = &1
t>0

for some 1 < min(8y, &9). Moreover, we choose &1 small so that 2Ce < 8¢ holds,
where C < oo is the constant in Proposition 6.6.

To start with, we consider the trivial solution family go s := 0 for s = 0, which
trivially satisfies the hypothesis of Proposition 6.6 with ¢ = ¢;. Therefore there
exists a family of stationary errors {0 s},>, satisfying

sup [|8o,sllze = Ceq
s>t

and

™

N 1
sup [[h(t) — Gosll2 = =
tels,s+2] T 2

for all s = 7. Hence, the translated family {g; s},>( Where g1 s = 8o s+ satisfies
again the hypothesis of Proposition 6.6, this time with ¢ = /2 and k() replaced
by h(t + 7). We perform a series of iterations, leading to families {g s},> for any
k € N satisfying -
€1
sup A +kt) — grsll;2 S — (6.20)
tels,s+2] P 2k
and

Ceq
llgk—1,s — k.sllLoe = 21 (6.21)
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for all s = 0. Notice that the latter and the fact that we started with the trivial
solution go s = O entails that

k k
—k
lgeslze £ lgr—e41.s — gh—eslloe £ 2Ce1 Y 275 <2Ce1 < &,
¢=1 =1

by our choice of &1, which guarantees that condition (6.5) holds true in every
iteration step.

Moreover, the estimate (6.21) also implies that, for any fixed s, the sequence
8k.s converges geometrically in L> to some goo s,

Ceq
”gk,x - goo,s||L°° § 2_](,

for any k € N and s = 0. We conclude via the triangle inequality and estimate
(6.20) that

Ih(t +K7) = gooslly2 | = C1270

for some new constant Cy, any s = 0 and any ¢ € [s, s + 2]. Picking s = ¢t = 0,
we deduce exponential convergence with rate y = (log2)/t towards goo,0, which
must actually vanish, g« 0 = 0, because A(¢) is decaying to zero by the virtue of
the Bonforte—Grillo—Vazquez theorem [12], cf. (1.5). This finishes the proof of the
second dichotomy.
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