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Abstract

We introduce a data-driven approach to the modelling and analysis of viscous
fluid mechanics. Instead of including constitutive laws for the fluid’s viscosity
in the mathematical model, we suggest directly using experimental data. Only a
set of differential constraints, derived from first principles, and boundary condi-
tions are kept of the classical PDE model and are combined with a data set. The
mathematical framework builds on the recently introduced data-driven approach
to solid-mechanics (Kirchdoerfer and Ortiz in Comput Methods Appl Mech Eng
304:81–101, 2016; Conti et al. in Arch Ration Mech Anal 229:79–123, 2018). We
construct optimal data-driven solutions that are material model free in the sense
that no assumptions on the rheological behaviour of the fluid are made or extrap-
olated from the data. The differential constraints of fluid mechanics are recast in
the language of constant rank differential operators. Adapting abstract results on
lower-semicontinuity and A -quasiconvexity, we show a �-convergence result for
the functionals arising in the data-driven fluid mechanical problem. The theory is
extended to compact nonlinear perturbations, whence our results apply not only to
inertialess fluids but also to fluids with inertia. Data-driven solutions provide a new
relaxed solution concept. We prove that the constructed data-driven solutions are
consistent with solutions to the classical PDEs of fluid mechanics if the data sets
have the form of a monotone constitutive relation.

1. Introduction

In recent years, a significantly increasing availability of data has lead to new
approaches in appliedmathematics, such as materials science and (turbulencemod-
els in) fluid dynamics. These approaches are aimed at systematically exploiting the
data in order to avoid high computational costs or modelling based computational
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errors. Particularly in machine learning-based engineering and numerical simula-
tions this has attained considerable attention. In contrast, a rigorous mathematical
theory is yet to be made available.

In this article, a new data-driven approach to the mathematical modelling and
analysis of viscous fluid mechanics is introduced.

Traditional mathematical models that describe viscous fluid flow are based on
force balance equations, such as conservation of momentum and mass on the one
hand, and on certain constitutive laws that account for the viscous behaviour of a
fluid on the other hand. Both of these together lead to systems of partial differential
equations, such as the Navier–Stokes system, for which different analytical and
numerical solution concepts are used in order to describe the flow behaviour of the
fluid. In this traditional PDE-based approach, data is only used in order to determine
constitutive laws for the fluid viscosity.

The data-driven approach proposed in this paper aims to exploit available data
(strain–stress pairs) directly and to incorporate them into a constrainedminimisation
problem the solution of which is a field of strain–stress pairs that still satisfies the
differential constraints, but also approximates the given data set best.

1.1. First principles for incompressible fluid mechanics

The behaviour of an incompressible fluid at any instant t in time may be de-
scribed by its velocity field u : x �→ u(x) ∈ R

d which induces a strain(-rate)
ε : x �→ ε(x) ∈ R

d×d
sym

ε = 1

2

(
∇u + ∇uT

)
, (1.1)

the symmetric gradient of the velocity field. Moreover the fluid generates a stress
field σ : x �→ σ(x) ∈ R

d×d
sym which, in the case of an inertialess fluid, satisfies

− div σ = f, (1.2)

with an external force density f : x �→ f (x) ∈ R
d . Both (1.1) and (1.2) are pre-

scribed differential constraints and are also called compatibility conditions. The
strain ε and the stress σ cannot be any field – they have to be a symmetric gra-
dient of another field in the first, and admit a predefined divergence in the second
case. For fluids with inertia the force balance (1.2) has to be complemented by
the inertial forces proportional to ∂t u + (u · ∇)u. This results (after suitable non-
dimensionalisation) in the equation

∂t u + (u · ∇)u − div σ = f.

However, in this paper we restrict our analysis to the stationary case ∂t u = 0, i.e.
we study the problem

(u · ∇)u − div σ = f.

Since our analysis is mainly based on variational arguments suited for stationary
problems, we postpone the time-dependent case to a separate work.
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1.2. The PDE-based approach: constitutive laws for viscous fluids

Hitherto, the modelling and analysis of a rich set of phenomena in viscous fluid
mechanics relies on constitutive laws describing the relation between the strain
field ε and the stress field σ . A commonly used relation is

σ = −π id+2μ(|ε|)ε,
which relies on the assumption that the stress comprises two components – the
term σp = −π id induced by the pressure π , and the viscous stress σ̃ = 2μ(|ε|)ε.
Here, μ : s �→ μ(s) ∈ R+ denotes the viscosity of the fluid. This depends on the
strain rate and measures the resistance of the fluid to deformation. Mathematically,
the pressure π : x �→ π(x) ∈ R is the Lagrange multiplier corresponding to the
incompressibility condition div u = 0. In the simplest model of a viscous fluid,
the viscosity μ is assumed to be constant μ ≡ const and the corresponding fluid
is called Newtonian. In other words, the relation between the viscous forces and
the local strain rate is perfectly linear, the constant viscosity being the factor of
proportionality. In the case of an inertialess incompressible Newtonian fluid one
obtains the well-known Stokes equations

{
−μ�u + ∇π = f

div u = 0.
(1.3)

For incompressibleNewtonianfluidswith inertiaoneobtains the (stationary)Navier–
Stokes equations

{
(u · ∇)u − μ�u + ∇π = f

div u = 0.
(1.4)

Although it is reasonable in many practical applications to assume a fluid being
Newtonian, real fluids that account for viscosity are in fact non-Newtonian, i.e.
they feature a nonlinear relation between the stress σ and the rate of strain ε. A
widely-used constitutive relation is given by

μ(|ε|) = μ0|ε|α−1, α > 0, (1.5)

and the corresponding fluid’s are called power-law fluids or Ostwald–de Waele
fluids. The exponent α > 0 denotes the so-called flow-behaviour exponent and
μ0 > 0 is the flow consistency index. In the case 0 < α < 1 the fluid exhibits a
shear-thinning behaviour as its viscosity decreaseswith increasing shear-rate, while
the fluid is called shear-thickening in the case α > 1. In this case the viscosity is an
increasing function of the shear rate. The corresponding stationary non-Newtonian
Navier–Stokes system reads as

{
(u · ∇)u − div

(
2μ(|ε(u)|)ε(u)

) + ∇π = f

div u = 0.
(1.6)

For α = 1 we recover a Newtonian behaviour. In practice, constitutive laws
for the viscosity are derived from experimental measurements. This is done by
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determining the parameters inside a prescribed class of laws, for instance μ0 and
α in the case of power-law fluids (1.5), to best approximate the measured data. A
large part of the mathematical knowledge in the mechanics of viscous fluids comes
from the theoretical and numerical analysis of partial differential equations such
as Stokes equation and Navier–Stokes equation, that are derived using constitutive
laws. Here, a lot of progress has been made by allowing for increasingly general
classes of (nonlinear) viscosity laws (see for example [17,19,21,22]).

1.3. A variational data-driven approach

Nowadays, the availability of data and the possibility to mine them is increas-
ing drastically. In the present work, instead of including constitutive laws in the
mathematical models, we suggest to directly use data in order to find the strain field
ε and the stress field σ that satisfy the respective differential constraints and, at the
same time, approximate the data best. In order to realise this mathematically, we are
inspired by the articles [7,16], where a similar approach has first been introduced
in the context of solid mechanics.

In the present paper, data sets consist of strain–stress pairs (ε, σ ) ∈ R
d×d ×

R
d×d . We might think of these data as being extracted from one or several experi-

ments but more generally data represent any available information about the fluid
(cf. [7]). This informationmight be obtained by preprocessing actual measurements
of other physical quantities, refined numerical simulations, or theoretical consider-
ations (like invariance under rotations).We emphasise that the step of preprocessing
is also necessary when deriving constitutive laws from measurements.

The motivation for replacing the classical PDE-based approach by the data-
driven approach is the following. Once one accepts the fundamental assumptions
(first principles) about the nature of the fluid leading to the differential constraints,
the PDE-based approach generates two errors with respect to modelling the real
world: First, the experimental equipment is imperfect, leading to measurement
errors. Second, the fitting of a material law to the experimental data introduces a
modelling error. The data-driven approach entirely avoids this second step.
Turning to the remaining source of errors, with perfect equipment and infinitely
manymeasurements, we expect to recover the viscosity law of the fluid (if it exists).
In reality, measurements are however restricted by

• the inaccuracy of the equipment leading to a measurement error;
• a limited number of data points. This comprises both ‘density of measurements’
(i.e. given a strain ε ∈ R

d×d , how many data points lie in a neighbourhood of
ε?), as well as ‘range of measurement’ (how large is the range of values of ε

that can be measured in the experiment?).

Nevertheless, if over the course of several consecutive measurement series the
measurement error decreases or the density and range of data points increases,
we expect the experimental data to converge to the material law. Mathematically,
we give consideration to this behaviour by introducing different notions of data
convergence. In this paper, we restrict ourselves to the study of the following two
settings:
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Table 1. Measurement error and range of measurement

Range of measurement
Constant (unbounded) Increasing

Error Constant (no improvement) Need to deal with ”bad“ data Need to deal with ”bad“ data

Decreasing Section 4.1 Section 4.2

• data with increasing quality and an unbounded range of measurements;
• data with increasing quality and a bounded but increasing range of measure-
ments.

An overview of the possible settings and where they are discussed in this paper is
given in Table 1.

In the case of non-increasing accuracy, measurements for a given strain rate
ε ∈ R

d×d might be located in a neighbourhood of the exact value with a certain
likelihood. In this case, the set of data converges in aweak sense to somedistribution,
see [4]. See also [28] for the analysis of single outliers in measurements.

1.4. Related results on data-driven approaches

In the past years, the drastically increasing availability of large and diverse
data has lead to new data-driven approaches in (mathematical) fluid mechanics and
materials science. In the context of this paper it seems worthwhile to explicitly
address data-driven elasticity models and data-driven turbulence models.

The scientific contributions in the field of data-driven elasticity models are
particularly noteworthy from the methodological point of view, as many of the
mathematical tools used in this paper are based on ideas of [7,16]. In the context of
an elastic body deforming under the effect of external forces, the relevant fields are,
similarly to the case of fluid mechanics, the strain ε and the stress σ . In [7,8,16]
a (material-dependent) strain–stress relation is replaced by data. The data-driven
elasticity framework and our approach differ in the kind of constraints that strain and
stress field have to satisfy. Note in particular that in the case of elasticity the strain
need not be tracefree but more importantly our constraint set is merely semilinear
as opposed to linear in the elasticity case.

From the application-oriented point of view also the efforts made in data-driven
turbulence modelling are of great interest. We recall that the present paper is only
concerned with the stationary Navier–Stokes equations. However, once one con-
siders the time-dependent setting, one of the big challenges is the onset of turbulent
behaviour driven by the inertia of the fluid.

Hitherto, experimental and numerical data have mostly been used in order to
gain insights into aspects of modeling and to validate numerical and analytical
results. More recently, significant effort has been made in the utilisation of data
in order to systematically inform turbulence models and/or to quantify and reduce
modelling errors and uncertainties. Since it is numerically prohibitive to model tur-
bulence up to very small scales, on the conceptual level, the data-driven approaches
are based on the observation that it is advantageous to replace small scale turbulence
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by effective models that take into account the effects that microscopic dynamics
have on large scale averaged quantities (for example via an effective viscosity). The
question how these quantities depend on the small scales is also known as the clo-
sure problem. In this context we refer to two classical approaches for this problem
– Large Eddy Simulations and the Reynolds Averaged Navier–Stokes system.

The Large Eddy Simulation has been proposed in [29]. The basic idea is to first
ignore the computationally expensive smallest length scales and to first consider
only the large scales of (turbulent) the Navier–Stokes flow with high Reynolds
number on a rather coarse grid. Then sub-grid-scale models [23] are introduced
in order to deal with the unsteadyness of the flow, i.e. with the small scales. The
closure problem consists in finding appropriate sub-grid-scale models, due to the
nonlinear dependence of the large scales on the small scales.

The general idea of the Reynolds Averaged Navier–Stokes system is to decom-
pose the quantities of interest into averaged mean quantities that take into account
the large scales and fluctuating quantities that take turbulent fluctuations into ac-
count. Using this decomposition one can derive equations for the bulk behaviour of
the average quantities such as the mean velocity. However, the so-called Reynolds
stress appearing in this equations depends on the turbulent fluctuations. As a rem-
edy one tries to express the turbulent quantities in terms of the average quantities.
We refer the reader for instance to the review article [10]. This is hitherto done by
means of constitutive laws.

Linear constitutive laws for the relation between the Reynolds stresses and
the mean strain rate have thus far not provided satisfactory predictive accuracy in
many engineering-relevant flows [6,26]. For this reason more involved nonlinear
laws have been proposed [6,30]. Alternatively, Deep Learning approaches based
on data have been proposed (cf. for instance [18]).

1.5. Mathematical approach for the data-driven problem and main results

We follow the mathematical approach proposed in [7] in a solid mechanical
context. To this end, we first split the stress σ = −π id+σ̃ into π id = − 1

d tr(σ ) id
and its viscous part σ̃ .

Throughout the paper we assume that the data set D comprises pairs (ε, σ̃ ) of
strain and viscous stress only. The pressure π (i.e. the trace of σ ) is not included in
the data set, since we allow π to attain arbitrary values. This is due to the fact that
the pressure does not play a role in the constitutive law for the viscosity but arises
as a Lagrange multiplier corresponding to the incompressibility constraint.

Given adata set Dn = {(εβ, σ̃β)}β∈Bn , consisting of pairs (εβ, σ̃β) of symmetric
and trace-free matrices in R

d×d , we consider the functional

In(ε, σ̃ ) =
{´



dist ((ε(x), σ̃ (x)) ,Dn) dx, (ε, σ̃ ) ∈ C

∞, else
(1.7)

as a measure for the distance of functions (ε, σ̃ ), defined on a simply connected
and bounded C1-domain 
 ⊂ R

d , to the data set. Here, C is the constraint set of
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fields ε, σ̃ satisfying the prescribed differential constraints and suitable boundary
conditions, and dist(·, ·) is a suitable distance function.

In the present paper, the set of differential constraints is given by (1.1) in com-
bination with either the inertialess force balance or the stationary Navier–Stokes
force balance. That is, we study both the linear constraint set

⎧
⎪⎨
⎪⎩

ε = 1
2

(∇u + ∇uT
)

div u = 0

− div σ̃ = f − ∇π,

(1.8)

as well as the nonlinear constraint set
⎧⎪⎨
⎪⎩

ε = 1
2

(∇u + ∇uT
)

div u = 0

− div σ̃ = f − (u · ∇)u − ∇π.

(1.9)

The set of constraints is complemented by suitable boundary conditions. Typical
boundary conditions in fluid mechanics are the no-slip condition

u = 0 on ∂
 (1.10)

and the Navier-slip condition
{

τ · (σν + λu) = 0, τ ∈ T ∂


u · ν = 0 on ∂
.
(1.11)

Here, λ � 0 is the inverse of the so-called slip length and ν denotes the outer normal
to ∂
. Moreover, T ∂
 denotes the tangential bundle of ∂
. The case of free slip
τ · σν = 0 for τ ∈ T ∂
 is included via λ = 0. The second condition in (1.11)
expresses the non-permeability of the boundary.

Less natural is the Neumann type boundary condition

σν = 0 on ∂
. (1.12)

In the linear case (1.8), we are able to handle all three types of boundary condi-
tions (1.10), (1.11), and (1.12). In the nonlinear case (1.9), we are able to handle
the physical boundary conditions (1.10) and (1.11). In some cases we allow for
inhomogeneous boundary conditions, i.e. non-zero right-hand sides.

Coming back to (1.7), a minimiser (or a minimising sequence) of the functional
In always satisfies the compatibility conditions for ε and σ̃ and is as close to the
experimental data Dn as possible.

In the case in which a sequence Dn of data sets approximates a limiting set D ,
corresponding to a constitutive law, it is expected that the minimisers vn = (εn, σ̃n)

of the functional In converge to a solution v of the PDE corresponding to the
constitutive law.Onemain contribution of the present article is to specify conditions
under which this is true. We use the following notion for convergence of data sets:

Definition 1.1. We say that a sequence of closed setsDn converges toD ,Dn → D ,
if the following is satisfied:
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(i) Fine approximation on bounded sets: There are sequences an → 0 and
Rn → ∞ such that for all n ∈ N and for all z ∈ D with |z| < Rn , it holds that

dist(z,Dn) � an(1 + |z|).
(ii) Uniform approximation on bounded sets: There are sequences bn → 0 and

Sn → ∞ such that for all n ∈ N and for all zn ∈ Dn with |zn| < Sn , it holds
that

dist(zn,D) � bn(1 + |zn|).
Here, | · | = dist(·, 0) defines a pseudo-norm.

The sequences an and bn represent the relative error, while Sn and Rn describe
the measurement range. Note that condition (i) ensures that every point in the
limiting set is approximated by data points in Dn while condition (ii) ensures that
the Dn approximates D uniformly.

Moreover, the notion of convergence introduced in Definition 1.1 (ii) is justified
from an experimental point of view. Indeed, for a given experimental setup we
expect the measurements to be precise only within a certain range, |z| � Sn . For
instance, in the experiment conducted by Couette [9], the aim of which was to
measure the viscosity of a fluid, the range Sn is linked to the aspect ratio of the
rotating cylinders. In the setting of this article, the absolute error is allowed to grow
with the range of measurements, which extends the setting studied in [7], where
the absolute errors are required to converge to zero.

From a mathematical point of view, the above notion of convergence is justified
by the observation that we may restrict the analysis to p-equi-integrable recovery
sequences in the �-convergence result below. Indeed, the first main result of this
article is

• �-convergence (Theorem 5.11 and Theorem 5.15): If Dn → D and the Dn

satisfy a certain growth condition, then In �-converges to

I ∗(ε, σ̃ ) =
{´



QA dist

(
(ε(x), σ̃ (x)) ,D

)
dx, (ε, σ̃ ) ∈ C

∞, else,

whereQA is a suitable convex envelope of the distance function corresponding
to the differential operators defining the compatibility conditions (1.1) and (1.2).

There are twomain challenges in the proof of this result.One difficulty is the suitable
modification of sequences of functions while preserving differential constraints and
given boundary conditions. To overcome this challenge we prove the following
result, which might be of independent interest:

• p-equi-integrability and boundary conditions (Theorem 3.9) If a weakly
convergent sequence un of L p-functions on 
 ⊂ R

d satisfies some differential
constraint A un = 0 for a constant coefficient (and constant rank) differential
operator A , we can modify un slightly in the sense of closeness in Lr for
r < p. The modified sequence still satisfies the differential constraint and the
same boundary conditions, but is p-equi-integrable (i.e. no concentrations of
mass occur).
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This modification result, together with slight adaptations of existing theory on
relaxation subject to a linear differential constraint, yieldsTheorem5.11.Moreover,
overcoming the second challenge, we show that the relaxation result continues to
hold when we include compact nonlinear perturbations in the constraint set C ,
see Theorem 3.13. This includes in particular the inertia term [u �→ (u · ∇)u] :
W 1

p(
;Rd) → W −1
q (
;Rd), whenever p > 3d/(d + 2) and 1/p + 1/q = 1.

In the case of a data set given by a constitutive law, data-driven solutions provide
a new solution concept. Another main result of this article proves that, in the case
of monotone constitutive laws, this solution concept is compatible with the concept
of weak solutions to PDEs:

• Consistency (Sect. 6): If the data setD corresponds to a monotone constitutive
law, e.g. D = {(ε, |ε|α−1ε)} in the case of power-law fluids, and if the corre-
sponding PDE admits a solution, then for a map v = (ε, σ̃ ) the following three
statements are equivalent:
(i) v is a minimiser of I ∗, i.e. a solution to the relaxed data-driven problem;
(ii) I ∗(v) = 0, i.e. there exists a sequence vn ⇀ v with I (vn) → 0;
(iii) v is a solution to the corresponding PDE (i.e. to (1.6) in the nonlinear case)

in the classical weak sense.

In the case of non-monotone constitutive laws, the requirement I ∗(v) = 0 amounts
to a relaxed solution concept that might be useful for instance in order to deal with
viscoelastic fluids.

1.6. Outline of the paper

Section 2 shows how the fluid mechanical problems fit into the general theory
of constant rank operators. In Sect. 2.1 we introduce relevant notation and recall
the notion of �-convergence with respect to the weak topology of L p-spaces. In
Section 2.1.4 we recall the generalised form of Problem (1.7), where the differential
constraint (ε, σ̃ ) ∈ C is written abstractly as A v = 0 and the distance function
is replaced by some function f(x, v). In Sect. 2.2 it is demonstrated that the fluid
mechanical setting fits into this abstract framework.

An abstract theory for lower-semicontinuity of functionals under linear differ-
ential constraints has been developed by Fonseca & Müller ([12], see also [2])
and we recall these results at the beginning of Sect. 3. The remainder of Sect. 3 is
devoted to the modification of the corresponding arguments to fit the fluid mechan-
ical setting of the present paper. In particular, we show the crucial Theorem 3.9,
which allows us to modify sequences to be equi-integrable, while still respecting
both the differential constraints and the boundary conditions. This result is used to
extend relaxation results, previously obtained in [2], to the situation of a semilinear
differential constraint in Theorem 3.13.

For Sects. 4–6 we return to the fluid mechanical setting and apply the abstract
results of Sect. 3.

In Sect. 4 we discuss two different notions of data convergence on a purely set-
theoretic level; in particular these notions of convergence are not directly connected
to the differential constraints. First, in Section 4.1 we introduce a form of data
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convergence which corresponds to fixed range of measurement (lower-left entry of
Table 1) and show that this is equivalent to a suitable notion of convergence for the
unconstrained functionals

Jn(ε, σ̃ ) =
ˆ




dist ((ε(x), σ̃ (x)) ,Dn) dx . (1.13)

For results about �-convergence of constrained functionals of type (1.7), however,
we canweaken the notionof convergence toDefinition1.1. This type of convergence
is examined in Sect. 4.2. The reason for this convergence being of interest for �-
convergence, is discussed already at the beginning of Sect. 3 in Theorem 3.6.

The abstract results of Sect. 3 and results about distance functions to data sets
Dn of Sect. 4 are combined in Sects. 5. In Section 5.1 and Section 5.2 we introduce
the data-driven problem both for inertialess fluids and fluids with inertia. We show
that, given boundary conditions and a suitable pointwise coercivity condition, the
functionals In in (1.7) are coercive on the phase space V . Therefore, we can apply
results from Sect. 3 to get the respective �-convergence result (Theorem 5.11 and
Theorem 5.15).

Finally, Sect. 6 links the (relaxed) data-driven problem I ∗(v) = 0 to the partial
differential equations obtained by including a constitutive law in the modelling.
We show that if the data set D coincides with the set obtained by a monotone
constitutive law, i.e. D = {(ε, σ̃ ) : σ̃ = 2μ(|ε|)ε}, then solutions to the relaxed
data-driven problem are weak solutions to the classical PDE problem and vice
versa.

2. Functional Analytic Setting of the Fluid Mechanical Problem

In this sectionwe introduce an abstract functional analytic framework that offers
a convenient way to reformulate the differential constraints. First, in Section 2.1,
we recall the notion of �-convergence and the notion of constant rank operators.
The latter requires a short reminder on some results from Fourier analysis. In
Section 2.2we showhow the differential operators appearing in the fluidmechanical
applications fit into the framework of constant rank operators.

2.1. �-convergence and constant rank operators

2.1.1. Underlying function spaces Let
 ⊂ R
d be a bounded, simply connected

set with C1-boundary and let

Y = R
d×d
sym,0 :=

{
A ∈ R

d×d : A = AT , tr(A) = 0
}

be the set of symmetric trace-free matrices in R
d×d . We mainly study functions

v : 
 → Y × Y and we shall write v = (ε, σ̃ ) to denote their components and
σ = −π id+σ̃ for a function π : 
 → R. One might think of ε as the strain and σ̃
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the viscous part of the stress. For 1 < p, q < ∞ with 1/p + 1/q = 1, we consider
the phase space

V = L p(
; Y ) × Lq(
; Y ),

equipped with the norm

‖v‖V = ‖ε‖L p + ‖σ̃‖Lq .

WecallY ×Y the local phase space. Recall thatwe assume throughout the paper that
the pressureπ (i.e. the trace of σ ) is not considered as part of the data. Consequently,
each data set Dn is a subset of Y × Y . In order to introduce a distance on Y × Y ,
for pairs (εi , σ̃i ) ∈ Y × Y , i = 1, 2, we define

dist((ε1, σ̃1), (ε2, σ̃2)) = 1
p |ε1 − ε2|p + 1

q |σ̃1 − σ̃2|q
and therewith

d((ε1, σ̃1), (ε2, σ̃2)) = (dist ((ε1, σ̃1), (ε2, σ̃2)))
1

max{p,q} . (2.1)

The function d(·, ·) is defined by taking the p-th, respectively the q-th root of
dist(·, ·), in order to guarantee that the triangle inequality is satisfied. Thus, d(·, ·)
defines a metric on Y × Y .

Accordingly, we define the distance on the phase space V by

dist(v1, v2) =
ˆ




dist (v1(x), v2(x)) dx, v1, v2 ∈ V .

We start by proving that the distance function d(·, ·), introduced in (2.1), defines
a metric.

Lemma 2.1. The map d : (Y × Y ) × (Y × Y ) → R is a metric.

Proof. Positivity, definiteness and symmetry are clear. The triangle inequality fol-
lows from the elementary inequality

(
(a1 + a2)

p + (b1 + b2)
q) 1

max{p,q} �
(
a p
1 + bq

1

) 1
max{p,q} + (

a p
2 + bq

2

) 1
max{p,q} ,

(2.2)

with if being valid for all ai , bi ∈ [0,∞), i = 1, 2, and p � q. Indeed, assume
withput loss of generality that p � q. Then, since the functions s �→ sq/p, s �→
s1/p s ∈ R, are concave, we obtain

[
(a1 + a2)

p + (b1 + b2)
q]1/p �

[
(a1 + a2)

p + (
bq/p
1 + bq/p

2

)p
]1/p

�
[
a p
1 + (

bq/p
1

)p
]1/p +

[
a p
2 + (

bq/p
2

)p
]1/p

= (
a p
1 + bq

1

)1/p + (
a p
2 + bq

2

)1/p
.

��
In what follows we embed 
 into the d-dimensional torus Td when it is conve-

nient.Without loss of generality we therefore assume that
 is compactly contained
in (0, 1)d . In general we use C as a generic constant. However, we use specific con-
stants whenever it is convenient.
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2.1.2. �-convergence In this subsection we recall some well-known results on
�-convergence that are frequently used throughout the paper. We use this notion of
convergence to consider the behaviour of functionals of type (1.7) and (1.13) under
convergence of the data.

Definition 2.2. Let (X, d) be a metric space. A sequence of functionals In : X →
[−∞,∞], �-converges to I : X → [−∞,∞], in symbols I = � − limn→∞ In ,
whenever the following is satisfied:

(i) liminf-inequality: For all x ∈ X and for all sequences xn → x we have

I (x) � lim inf
n→∞ In(xn).

(ii) limsup-inequality: For all x ∈ X there exists a sequence xn → x (called the
recovery sequence) such that

I (x) � lim sup
n→∞

In(xn).

Remark 2.3. (i) Inmetric spaces the constant sequence In = I possesses a�-limit
I ∗, namely the lower-semicontinuous hull of I , given by

I ∗(x) = inf
xn→x

lim inf
n→∞ I (xn). (2.3)

I ∗ is called the relaxation of I .
(ii) If each xn is a minimiser of In and xn → x , then x is a minimiser of I .
(iii) One may define�-convergence on topological spaces, cf. [11]. This reproduces

the definition onmetric spaceswhen equippedwith the standard topology.Weak
convergence is not metrisable on Banach spaces. However, it is metrisable on
bounded sets of reflexive, separable Banach spaces. Hence, if a functional I
satisfies a certain growth condition; i.e.

α(‖x‖) � I (x) (2.4)

for a function α : [0,∞) → R with α(t) → ∞ as t → ∞, we may use the
metric for weak convergence defined on bounded sets of the Banach space and
treat the Banach space together with the weak topology as a metric space.

(iv) In topological spaces, especially in Banach spaces equipped with the weak
topology, the constant sequence In = I does in general not possess a sequential
�-limit, as the infimum in (2.3) does not need to be a minimum.

(v) If I does not satisfy the growth condition (2.4), it is possible to consider the
sequential �-limit, given as in Definition 2.2. However, this might not exist,
even if the topological �-limit of a sequence of functionals exists. In particular,
the constant sequence might not have a sequential �-limit.

In the following we only consider the sequential �-limit of sequences in the
weak topology of some Banach space (usually L p × Lq ). If the functional I is coer-
cive in the sense of (2.4), then the sequential �-limit coincides with the topological
�-limit.

The following lemma links�-convergence to uniform convergence of function-
als.
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Lemma 2.4. (Uniform convergence and �-convergence) Let V be a reflexive, sep-
arable Banach space equipped with the weak topology. Suppose that In, I : V →
[−∞,∞], such that In → I uniformly on bounded sets of V . If the sequential
�-limit of the constant sequence I exists, then also In possesses a �-limit and

� − lim
n→∞ In = � − lim

n→∞ I = I ∗.

Note that the sequential�-limit of the constant sequence I exists if the functional
is coercive.

Proof. If vn ⇀ v is a bounded sequence in V , we have

lim sup
m→∞

sup
n∈N

|Im(vn) − I (vn)| = 0.

Therefore,

lim sup
n→∞

In(vn) = lim sup
n→∞

I (vn) � I∗(v) and lim inf
n→∞ In(vn) = lim inf

n→∞ I (vn) � I∗(v),

which establishes both the lim sup-inequality and the lim inf-inequality. ��
2.1.3. Korn–Poincaré inequality In this subsection, we revisit a combination
of Korn’s inequality (i.e. the full gradient is controlled by its symmetric part) and
Poincare’s inequality to obtain an estimate of the form

‖u‖W 1
p

� C‖ε‖L p , where 1 < p < ∞ and ε = 1
2

(
∇u + ∇uT

)
.

This estimate is a straightforward consequence of the p-Korn inequality and the
Poincaré inequality, cf. for instance [5]. For the convenience of the reader we
provide the proof. In what follows we use the notation

R
d×d
skew := {A ∈ R

d×d : A = −AT }. (2.5)

Lemma 2.5. (Abstract Korn–Poincaré inequality) Let 1 < p < ∞ and 
 ⊂ R
d

be open, connected, and bounded with C1-boundary. Then the following is true:

(i) There is a constant C = C(p,
), such that for any u ∈ W 1
p(
;Rd) we have

that

‖u − (Au x + bu)‖W 1
p

� C‖∇u + ∇uT ‖L p ,

where Au = 1
2

ffl



∇u − ∇uT dx and bu = ffl



u dx.
(ii) Let X ⊂ W 1

p(
;Rd) be a closed subspace, such that

X ∩
{

Ax + b : A ∈ R
d×d
skew, b ∈ R

d
}

= {0}.
Then there is a constant C = C(p,
, X), such that for any u ∈ X we have
that

‖u‖W 1
p

� C‖∇u + ∇uT ‖L p .
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Proof. (i) Recall that there is a first-order differential operator ˜A with constant
coefficients, such that

∇2u = ˜A
(
1
2

(
∇u + ∇uT

))
.

Therefore, we can bound

‖∇2u‖W−1
p

� C‖∇u + ∇uT ‖L p . (2.6)

Using Nečas’ lemma [1,25] for functions with zero mean twice and writing A′
u =ffl



∇u dx , we get that

‖u − (A′
u x + bu)‖W 1

p
� C‖∇2u‖W−1

p
. (2.7)

To obtain an inequality featuring only the skew-symmetric part Au = 1
2

(
A′

u

)
−(A′

u)T note that by the triangle inequality

‖u − (Au x + bu)‖W 1
p

� ‖u − (A′
u x + bu)‖W 1

p
+ ‖(Au − A′

u)x‖W 1
p
.

The statement follows by estimating each term on the right-hand side by C‖∇u +
∇uT ‖L p . For the first term we combine (2.7) and (2.6) to obtain

‖u − (A′
u x + bu)‖W 1

p
� C‖∇u + ∇uT ‖L p .

Using Poincaré’s and Jensen’s inequalities, the second term can be estimated by

‖(Au − A′
u)x‖W 1

p
� C‖Au − A′

u‖L p

= |
|1/p
 




1
2

(
∇u + ∇uT

)
dx � C‖∇u + ∇uT ‖L p .

(ii) Note that the space

X̃ =
{

Ax + b : A ∈ R
d×d
skew, b ∈ R

d
}

is finite-dimensional. As a consequence, if P̃ : W 1,p(
;Rd) → X̃ is a projection,
then there is a constant C(X), such that

‖u‖W 1
p

� C‖u − Pu‖W 1
p
, u ∈ X. (2.8)

Indeed, if (2.8) were false, then there would exist a sequence un ⊂ X with
‖un‖W 1

p
= 1 and ‖un − Pun‖W 1

p
→ 0 as n → ∞. As Pun ∈ X̃ is bounded

and X̃ is finite dimensional, there is a subsequence Pun j converging strongly to

some y ∈ X̃ . Since ‖un − Pun‖W 1
p

→ 0, this implies un j → y in W 1
p(
;Rd). But

this is a contradiction, as X is closed, ‖un j ‖W 1
p

= 1 and X ∩ X̃ = {0}. Part (i) in
combination with (2.8) yields (ii), since Pu = Au x + bu . ��
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2.1.4. Constant rank operators In this subsection we introduce the version
of constant rank operators used in this paper. To this end, we slightly adapt the
notion of homogeneous constant rank operators [24] since the differential operator
A (ε, σ̃ ) = (curl curlT ε, div σ̃ ) appearing in the fluid mechanical application is
only componentwise homogeneous.

We consider a differential operatorA defined on functions v : 
 → R
m1 ×R

m2

defined via

A (v1, v2) = (A1v1,A2v2),

where A1 and A2 are homogeneous constant coefficient differential operators of
order ki , i = 1, 2, i.e.,

Ai : C∞(
;Rmi ) → C∞(
;Rli ), Aivi =
∑

|α|=ki

Ai
α∂αvi . (2.9)

Recall that the Fourier symbols corresponding to the operators defined in (2.9) are
given by

Ai [ξ ] :=
∑

|α|=ki

Ai
αξα ∈ Lin(Rmi ;Rli ), i = 1, 2.

Definition 2.6. A = (A1,A1) satisfies the constant rank property if both A1 and
A2 satisfy the constant rank property; that is, if

dim kerAi [ξ ] = ri for some fixed ri ∈ N and for all ξ ∈ R
d \ {0}.

The characteristic cone of A is defined as

�A :=
⋃

ξ∈Rd\{0}
kerA1[ξ ] × kerA2[ξ ] ⊂ R

m1 × R
m2 .

The operator A satisfies the spanning property whenever

span�A = R
m1 × R

m2 .

Remark 2.7. If ui ∈ W ki
pi (Td;Rmi ) can be written as

ui =
∑

ξ∈Zd

ûi (ξ)e−2π iξ ·x , i = 1, 2,

then ui ∈ kerAi if and only if for all ξ ∈ Z
d\{0} we have ûi (ξ) ∈ kerAi [ξ ]. If, in

addition, the operators Ai satisfy the constant rank property, then Z
d \ {0} can be

replaced by R
d\{0}.
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2.1.5. Fourier symbols and Fourier multipliers In this subsection, we recall
some important facts about constant rank differential operators that are connected
to the Fourier transform on the d-torus Td . As we can consider the constraint
operatorsA1 andA2 separately, we assumeA ′ : C∞(Rd;Rm) → C∞(Rd ;Rl) to
be a constant coefficient differential operator of order kA ′ , i.e.,

A ′v =
∑

|α|=kA ′
Aα∂αv. (2.10)

Analogously, we consider B′ : C∞(Rd ;Rh) → C∞(Rd ;Rm) a constant coeffi-
cient differential operator of order kB′ . We call B′ a potential of A ′, whenever
the corresponding Fourier symbols satisfy

ImB′[ξ ] = kerA ′[ξ ], for all ξ ∈ R
d \ {0}. (2.11)

If v ∈ C∞(Td;Rm) ∩ L p(Td;Rm), 1 � p < ∞, we may write

v(x) =
∑

ξ∈Zd

v̂(ξ)e−2π iξ ·x and v̂(ξ) :=
ˆ

Td

v(x)e−2π iξ ·x dx .

For such v and W : Rd\{0} → Lin(Rm;Rl), we may define a linear operator W
on C∞(Td;Rm) ∩ L p(Td;Rm), 1 � p < ∞, by

W (v)(x) =
∑

ξ∈Zd

W(ξ)(v̂(ξ))e−2π iξ ·x ,

such that W (v) : Td → R
l . If W maps boundedly into some function space, W (v)

can be defined for general v ∈ L p(Td;Rm), 1 � p < ∞, by using density. Such an
operatorW is calledFourier multiplier. The algebraic identity (2.11) in combination
with standard Fourier multiplier theory leads to the following statements:

Proposition 2.8. ([27]) Let A ′ : C∞(Rd ;Rm) → C∞(Rd;Rl) be a differential
operator as in (2.10). Then the following holds true:

(i) A ′ satisfies the constant rank property if and only if there exists a potential
B′ : C∞(Rd ;Rh) → C∞(Rd;Rm) of A ′.

(ii) If B′ is a potential of A ′, there exists a Fourier multiplier operator B′−1 : Lq

(Td;Rm) → W
kB ′
q (Td;Rh) of order −kB′ , such that for any 1 < q < ∞ we

have

‖B′ ◦ B′−1v − (v − v̂(0))‖Lq � Cq‖A ′v‖
W

−kA ′
q

,

for some positive constant Cq > 0 that does only depend on q.

For weakly, but not strongly, convergent sequences on bounded sets, there are
essentially two possible effects. There can be oscillations and concentrations. For
weak lower-semicontinuity results, oscillations are much easier to handle than con-
centrations. The notion of p-equi-integrability prevents concentration.
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Definition 2.9. A set X ⊂ L p(Td;Rm) is called p-equi-integrable if

lim
δ→0

sup
v∈X

sup
|E |<δ

ˆ

E
|v|p dx = 0.

Lemma 2.10. Let W : C∞(Td;Rm) → C∞(Td;Rm) be a0-homogeneous Fourier
multiplier. Then, for any 1 < p < ∞ the following holds true:

(i) W : L p(Td;Rm) → L p(Td;Rm) is bounded;
(ii) W is continuous from L p(Td;Rm) to L p(Td;Rm) with respect to the weak

topology of L p(Td;Rm);
(iii) If X ⊂ L p(Td;Rm) is a p-equi-integrable and bounded set, then W (X) is also

p-equi-integrable.

Proof. (i)Part (i) follows from theMikhlin–Hörmandermultiplier theorem(e.g.[12,
14]).
(ii) This follows from the fact that the adjoint operator W ∗ is bounded from
L p′(Td;Rm) to L p′(Td;Rm).
(iii) In order to verify the p-equi-integrability of W (X), we follow the the lines of
the proof of [12, Lemma 2.17].
Step 1: Construction of a truncated sequence. There exists R > 0 and for all
ε > 0 there exists a δ > 0, such that we have

sup
v∈X

‖v‖p
L p

< R and sup
v∈X

sup
|E |<δ

ˆ

E
|v|p dx < ε.

For a > 0 consider the function τa : Rm → R
m , defined by

τa(z) =
{

z, |z| < a

0, |z| � a.

Then, for fixeda > 0 andu ∈ X , the set {τa◦u : u ∈ X} is bounded in L∞(Td;Rm).
Therefore, by (i), the set {W (τa ◦u) : u ∈ X} is bounded in Lr (Td;Rm) for r � p.
Step 2: p-equi-integrability of the truncated sequence. We show that, for fixed
a ∈ N, the set {W (τa ◦ u)}u∈X is p-equi-integrable.
Taking Step 1 into account, this follows from the fact that any bounded set X ′ ⊂
L2p(Td;Rm) is already p-equi-integrable. To prove this, assume for contradiction
that there exists a bounded set X ′ ⊂ L2p(Td;Rm) that is not p-equi-integrable.
Then there exist un ⊂ X ′, En ⊂ Td with |En| → 0, as n → ∞, and an ε > 0,
such that

ˆ

En

|un|p dx > ε, n ∈ N.

By Jensen’s inequality this implies

|En|
ˆ

En

|un|2p dx > ε2,
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which contradicts the assumption that un is bounded in L2p(Td;Rm) and that
|En| → 0.

We conclude that, for any ε > 0, there is δa(ε) > 0, such that, for all u ∈ X
we have the implication

|E | < δa(ε) �⇒
ˆ

E
|W (τa ◦ u)|p dx < ε. (2.12)

Step 3: p-equi-integrability of W (X).We show that Step 2 together with p-equi-
integrability of X implies that W (X) is p-equi-integrable.
Using p-equi-integrability and boundedness, we may estimate

lim
a→∞ sup

u∈X
‖u − τa ◦ u‖p

L p
� lim

a→∞ sup
u∈X

ˆ

{u�a}
|u|p dx

� lim
a→∞ sup

u∈X
sup

E : |E |<Ra−p

ˆ

E
|u|p dx = 0. (2.13)

Therefore, we find that

lim
a→∞ sup

u∈X
‖W (u − τa ◦ u)‖L p � C lim

a→∞ sup
u∈X

‖u − τa ◦ u‖L p = 0. (2.14)

Let now ε > 0. By (2.14), there exists a(ε) ∈ R+, such that

sup
u∈X

‖W (u − τa(ε) ◦ u)‖L p < ε
2 .

In combination with (2.12), for all sets E with measure smaller than δa(ε)(ε/2),
this yields
ˆ

E
|W u|p dx �

ˆ

E
|W (τa(ε) ◦ u)|p dx +

ˆ

E∩{|u|�a}
|W (u − τa(ε) ◦ u)|p dx

< ε
2 + ε

2 = ε.

Therefore, the set W (X) is p-equi-integrable. ��

2.2. The differential operator A for problems in fluid mechanics

In this section, we discuss how the fluid mechanical constraints (1.8) and (1.9)
fit into the previously outlined abstract setting. We consider the two differential
operators

{
A1 = curl curlT : C∞(Td; Y ) → C∞(Td; (Rd)⊗4)

A2 = div : C∞(Td; Y ) × C∞(Td;R) → C∞(Td;Rd)

as follows:
{(

curl curlT (ε)
)

i jkl = ∂i jεkl + ∂klεi j − ∂ilεk j − ∂k jεil , i, j, k, l = 1, . . . , d

(div(σ̃ , π))i = (div(σ̃ − π id))i = ∑d
j=1 ∂ j (σ̃ − π id)i j , i = 1, . . . , d.
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The Fourier symbol of the differential operator A1 is given by

(A1[ξ ](ε))i jkl = ξiξ jεkl + ξkξlεi j − ξiξlεk j − ξkξ jεil ,

ξ ∈ R
d \ {0}, ε ∈ Y, i, j, k, l = 1, . . . , d.

For A2, the Fourier symbol reads as

(A2[ξ ](σ̃ , π))i =
d∑

j=1

ξ j σ̃i j − ξiπ, ξ ∈ R
d \ {0}, (σ̃ , π) ∈ Y × R, i = 1, . . . , d.

For a fixed ξ ∈ R
d \ {0}, the set kerA1[ξ ] × kerA2[ξ ] is given as follows. Let

Yξ ⊂ Y be defined as

Yξ =
{

a � ξ : a ∈ R
d , a ⊥ ξ

}
,

where a � ξ = 1
2 (a ⊗ ξ + ξ ⊗ a) is the symmetric tensor product. Note that Yξ is

a (d − 1)-dimensional subspace of Y . Then

kerA1[ξ ] = Yξ ,

meaning that the space dimension of kerA1[ξ ] is (d − 1) and

kerA2[ξ ] =
{
(σ̃ , πσ̃ ) : σ̃ ∈ Y ⊥

ξ

}
,

where πσ̃ is defined as the unique π ∈ R, such that A2[ξ ](σ̃ , π) = 0, i.e.,

πσ̃ = ξ T σ̃ ξ

|ξ |2 .

The differential condition curl curlT ε = 0 for ε ∈ L p(Td; Y ) with
´

Td
ε dx = 0

encodes that ε is a symmetric gradient, i.e. there is u ∈ W 1
p(Td;Rd) satisfying

‖u‖W 1
p

� C‖ε‖L p , ε = 1
2

(
∇u + ∇uT

)
and div u = 0.

The differential operator

B1 : C∞(Td;Rd) ∩ ker div −→ C∞(Td; Y ) : u �−→ 1
2

(
∇u + ∇uT

)

can be treated as if it was a potential of A1.

Remark 2.11. Due to the additional constraint div u = 0, B1 is not a potential to
A1 in the sense of (2.11). In particular, Proposition 2.8 cannot be applied directly.
Note, however that a function u ∈ W 1

p(Td;Rd) with zero average satisfies the
differential constraint div u = 0 if and only if

u = curl∗ U
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for a suitable function U ∈ W 2,p
(
Td;Rd×d

skew

)
, where curl∗ is the adjoint of curl;

in other words curl∗ is a potential of div. In particular, this also means that if

ε = 1
2

(∇u + ∇uT
)
, then there exists U ∈ W 2

p

(
Td;Rd×d

skew

)
such that

ε = 1
2

(
∇ + ∇T

)
◦ curl∗ U.

Consequently, B̃1 = 1
2

(∇ + ∇T
) ◦ curl∗ is a potential of A1.

For the purpose of applying Fouriermethods, we can use the symmetric gradient
B1 on divergence-free matrices instead of the true potential. The suitable inverse
of B1 in the Fourier space is

B−1
1 = curl∗ ◦B̃1,

which is a Fourier multiplier of order 1 + (−2) = −1.

The potential to the differential operator A2 is not relevant in this setting. Let
us remark that the condition

− div σ̃ + ∇π = f,

for (σ̃ , π) ∈ Lq(Td; Y × R) and f ∈ W −1,p(Td;Rd), can be rewritten in terms
of σ̃ only, as

− curl ◦ div σ̃ = curl f.

Another strategy to tackle the linear problem from a ”purely“ Fourier analytic per-
spective would be to ”forget“ about the pressure π by using the operator ˜A2(σ̃ ) =
curl ◦ div σ̃ . Note that in this approach the operator curl ◦ div acting on σ̃ is the ad-
joint operator of 1

2

(∇ + ∇T
) ◦ curl∗ which acts on U . For the non-linear problem,

cf. Section 5.2, this approach yields the equation

− curl div σ̃ = curl f − curl(u · ∇)u. (2.15)

Webelieve however, that from thefluid dynamical point of view it ismore instructive
to include the pressure π ∈ Lq(
) by sticking to the more physical equation

− div σ̃ = f − (u · ∇)u − ∇π.

3. Existence of Minimisers: Weak Lower-Semicontinuity and Coercivity

It is the structure of the differential constraints, with constant rank operators
of different order, the quasilinear perturbation of the otherwise linear constraints,
the boundary conditions, and the natural location of ε and σ̃ in different spaces,
which necessitates Sect. 3, where all of these challenges are adressed in an abstract
setting.
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3.1. A -Quasiconvexity

In order to studyweak lower-semicontinuity results,wefirst introduce thenotion
ofA -quasiconvexity for a constant rank operatorA = (A1,A2) as defined in the
previous section.

Definition 3.1. A (measurable and locally bounded) function f : Rm1 ×R
m2 → R

is called A -quasiconvex if for all z = (z1, z2) ∈ R
m1 × R

m2 and for all test
functions ψ = (ψ1, ψ2) ∈ TA with

TA =
{
ψ ∈ C∞(Td;Rm1 × R

m2) : A ψ = 0 and
ˆ

Td

ψ dx = 0

}
, (3.1)

it holds that

f(z) �
ˆ

Td

f(z + ψ(x)) dx . (3.2)

For f ∈ C(Rm1 × R
m2) we define the A -quasiconvex envelope QA f of f as

QA f(z) = inf
ψ∈TA

ˆ

Td

f(z + ψ(x)) dx . (3.3)

f is called �A -convex if for all z ∈ R
m1 × R

m2 and all w ∈ �A the function

t �−→ f(z + tw)

is convex.

Note that the A -quasiconvex envelope QA f of a continuous function f is the
largest A -quasiconvex function smaller than f [12]. Moreover, a function f is
A -quasiconvex if and only if f = QA f.

Proposition 3.2. (Properties ofA -quasiconvex functions) Let A = (A1,A2) be a
differential operator satisfying the constant rank property and the spanning prop-
erty and let f : Rm1 × R

m2 → R. Then the following holds true:

(i) If f is locally bounded and A -quasiconvex, then f is continuous;
(ii) if f is continuous, then QA f is A -quasiconvex and for all z ∈ R

m1 × R
m2 it

holds that

QA f(z) = sup{g(z) : g is A -quasiconvex and g � f};
(iii) if f is continuous and A -quasiconvex, then f is �A -convex;
(iv) if f is A -quasiconvex, 1 < p, q < ∞ and for all z ∈ R

m1 ×R
m2 it holds that

f(z1, z2) � C
(
1 + |z1|p + |z2|q

)
,

then f is locally Lipschitz continuous and
∣∣f(z1, z2) − f(w1, w2)

∣∣ �C
(
1 + |z1|p−1 + |w1|p−1 + |z2|α + |w2|α

) · |z1 − w1|
+ C

(
1 + |z1|β + |w1|β + |z2|q−1 + |w2|q−1) · |z2 − w2| ,

where α = (p − 1)q/p and β = (q − 1)p/q.

Statements (i)–(iii) are slight adaptions of [12, Section 3] for the case of first-
order operators to the higher-order case. Statement (iv) is a (p, q)-adaptation of
[13,15,20], where the L p-setting is treated. The proof relies on the fact that any
A -quasiconvex function is �A -convex.
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3.2. Weak lower-semicontinuity under differential constraints

Throughout this paragraph we consider 1 < p, q < ∞, a Carathéodory func-
tion f : 
×R

m1 ×R
m2 → R and functionals I, J : L p(
;Rm1)× Lq(
;Rm2) →

R defined by

J (v) =
ˆ




f(x, v(x)) dx and I (v) =
{

J (v), A v = 0

∞, else,
(3.4)

The next proposition is a straight-forward adaption of the semi lower-continuity
result [12, Theorem 3.6] to the (p, q)-setting.

Proposition 3.3. Let1 < p, q < ∞, let f : 
×R
m1×R

m2 → Rbe a Carathéodory
function, and assume that there exists C > 0 such that the following growth con-
dition is satisfied:

0 � f(x, z1, z2) � C(1 + |z1|p + |z2|q),

for almost all x ∈ 
 and all (z1, z2) ∈ R
m1 × R

m2 . (3.5)

Moreover, let f(x, ·) be A -quasiconvex for a.e. x ∈ 
, where A = (A1,A2) is a
constant rank operator with Ai having rank ki . Then the following holds true:

(i) Along all sequences vn ⇀ v in L p(
;Rm1) × Lq(
;Rm2) with A vn → A v

strongly in W −k1
p (
;Rm1) × W −k2

q (
;Rm2) the functional J is sequentially
weakly lower-semicontinuous, i.e.

J (v) � lim inf
n→∞ J (vn);

(ii) the functional I is sequentially weakly lower-semicontinuous on L p(
;Rm1)×
Lq(
;Rm2).

Wedo not provide the proof of Proposition 3.3 here, since it is largely analogous
to the proof of [12, Theorem 3.6], which is based on a suitable notion of equi-
integrable sequences. In the (p, q)-setting, the right notion of equi-integrability is
the following:

Definition 3.4. Aset X ⊂ L p(
;Rm1)×Lq(
;Rm2) is called (p, q)-equi-integrable,
if for all ε > 0 there exists a δ > 0, such that

E measureable , |E | < δ �⇒ sup
v∈X

ˆ

E
|v1|p + |v2|q dx < ε;

that is {v1}v∈X and {v2}v∈X are p-equi-integrable and q-equi-integrable, respec-
tively.

The key insight for Proposition 3.3 is that it suffices to consider (p, q)-equi-
integrable sequences. This is the content of the following propositionwhich is again
a straightforward adaption of the p-setting:
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Proposition 3.5. Let 1 < p, q < ∞ and let f : 
 × R
m1 × R

m2 → R be
a Carathéodory function satisfying the growth condition (3.5). Let vn ⇀ v in
L p(
;Rm1) × Lq(
;Rm2) and suppose that there is a (p, q)-equi-integrable se-
quencewn ⊂ L p(
;Rm1)×Lq(
;Rm2) such that for some θ withmax (1/p, 1/q) <

θ < 1 it holds that

‖vn − wn‖Lθp×Lθq −→ 0.

Then we have that

lim inf
n→∞ J (wn) � lim inf

n→∞ J (vn).

The proof of Proposition 3.5 is contained in the proof of the following theorem:

Theorem 3.6. Let 1 < p, q < ∞ and let X ⊂ L p(
;Rm1) × Lq(
;Rm2) be
weakly closed. Moreover, let f, fn : 
 × R

m1 × R
m2 be Carathéodory functions.

We define the functionals I X
n , I X : X → R as

I X
n (v) =

{´


fn(x, v) dx, v ∈ X

∞, else,
and I X (v) =

{´


f(v) dx, v ∈ X

∞, else.

Suppose that X satisfies the following condition:

(H1) For all bounded sequences vn ⊂ X there exists a (p, q)-equi-integrable
sequence wn ⊂ X, such that wn − vn → 0 in measure.

Suppose further that fn and f satisfy that

(H2) there exists a constant C > 0, such that for all (z1, z2) ∈ R
m1 × R

m2 and
almost every x ∈ 
 we have

0 � fn(x, z1, z2), f(x, z1, z2) � C(1 + |z1|p + |z2|q);
(H3) f and fn are uniformly continuous on bounded sets of Rm1 × R

m2 , i.e. there
exists a monotone function νR : [0,∞) → R with νR(s) → 0 as s → 0, such
that for all n ∈ N, all z1, z2 ∈ R

m1 × R
m2 with |z1|, |z2| � R, and for almost

every x ∈ 
:

|fn(x, z1) − fn(x, z2)| + |f(x, z1) − f(x, z2)| < νR(|z1 − z2|);
(H4) the functionals with integrands fn converge uniformly on equi-integrable sub-

sets, i.e. for all equi-integrable sets B ⊂ L p(
;Rm1) × Lq(
;Rm1) and for
all ε > 0 there exists nε ∈ N, such that for all v ∈ B and all n � nε it holds

∣∣∣∣
ˆ




fn(x, v(x)) − f(x, v(x)) dx

∣∣∣∣ � ε.

Then the functionals I X
n and I X enjoy the following properties:

(i) for all sequences vn ⇀ v in X, there is a sequence wn ⇀ v in X such that

lim sup
n→∞

I X
n (wn) � lim inf

n→∞ I X (vn);
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(ii) for all sequences vn ⇀ v in X, there is a sequence w̄n ⇀ v in X such that

lim sup
n→∞

I X (w̄n) � lim inf
n→∞ I X

n (vn);

(iii) if the sequential �-limit of the constant sequence I X exists, then the sequential
�-limit of I X

n exists and

� − lim
n→∞ I X

n = � − lim
n→∞ I X .

Note that the constraint set C in the fluid mechanical application is weakly
closed and may thus play the role of the set X .

Proof. (i)Themain idea of the proof is to show that a suitable version of Proposition
3.5 holds, namely that sequences wn ⊂ X as in (H1) already satisfy (i). To this
end, let vn ⊂ X be bounded, and let wn ⊂ X be a (p, q)-equi-integrable sequence,
such that wn − vn → 0 in measure. Then we have that

lim sup
n→∞

I X
n (wn) − I X (vn) = lim sup

n→∞

ˆ




fn(x, wn) − f(x, vn) dx

� lim sup
n→∞

ˆ




fn(x, wn) − f(x, wn) dx

+ lim sup
n→∞

ˆ




f(x, wn) − f(x, vn) dx .

Due to (H4) and the (p, q)-equi-integrablility ofwn the first term tends to 0. In order
to estimate the second term, let L > 0 be a constant such that ‖vn‖L p , ‖wn‖L p � L .
Then, using (H2), for any R > 0 we obtainˆ



f(x, wn) − f(x, vn) dx

=
ˆ

{|wn |,|vn |�R}
f(x, wn) − f(x, vn) dx +

ˆ

{|wn |�R}∪{|vn |�R}
f(x, wn) − f(x, vn) dx

�
ˆ

{|wn |,|vn |�R}
νR

(|wn − vn |) dx + sup
E : |E |<2(L/R)min(p,q)

ˆ

E
C(1 + |wn,1|p + |wn,2|q ) dx .

The first integral on the right-hand side of this inequality converges to 0 as n → ∞,
sincewn −vn → 0 in measure by (H1). Moreover, since the sequencewn is (p, q)-
equi-integrable, the second integral can be bounded by a constant cR with cR → 0
as R → ∞. Consequently,

lim sup
n→∞

ˆ
f(x, wn) − f(x, vn) dx � 0

and we conclude that

lim sup
n→∞

I X
n (wn) � lim inf

n→∞ I X (vn). (3.6)

(ii) The second statement is obtained in the same way by swapping the roles of fn
and f. Note that we can uniformly estimate

ˆ

{|wn |,|vn |�R}
fn(x, wn) − fn(x, vn) dx,
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as all fn have the same modulus of continuity on bounded sets, cf. (H3).
(iii) If the sequential �-limit of I X exists (we denote it by I X∗), then for all v ∈ X
the following holds true.

(a) Every sequencevn ⊂ X withvn ⇀ v in X satisfies I X∗(v) � lim infn→∞ I X (vn).
(b) There exists a sequence vn ⊂ X with vn ⇀ v in X , such that I X∗(v) �

lim supn→∞ I X (vn).

The lim inf-inequality for I X
n is ensured by (ii), i.e. if vn ⇀ v in X , then

lim inf
n→∞ I X

n (vn) � lim sup
n→∞

I X (w̄n) � lim inf
n→∞ I X (w̄n) � I X∗(v),

as w̄n ⇀ v in X . On the other hand, the lim sup-inequality follows from (i): the
recovery sequence vn (or at least a suitable subsequence) can be modified to an
equi-integrable recovery sequence wn . By (i), we find that

I X∗(v) � lim sup
n→∞

I X (vn) � lim inf
n→∞ I X (vn) � lim sup

n→∞
I X
n (wn).

This completes the proof. ��
The main challenge in applying Theorem 3.6 to the case in which X is a set

given by differential constraints and boundary conditions is to verify Hypothesis
(H1). In Sect. 4 we check the conditions (H2)–(H4) on the integrand f. To verify
(H1), for a given sequence vn we need to construct a suitable (p, q)-equi-integrable
modification wn that conserves both the differential constraints and the boundary
conditions. For this purpose we need the following two auxiliary results:

Lemma 3.7. Let (X, dX ) be a complete metric space. Suppose that xn is a sequence
in X, such that xn → x and that, for m ∈ N, we have xn,m with

lim
m→∞ sup

n∈N
dX (xn,m, xn) = 0 and lim

n→∞ dX (xn,m, x) = 0 for all m ∈ N.

Then xn,m → x uniformly in m, as n → ∞.

Proof. Let ε > 0. Then there exists mε ∈ N, such that for all m � mε

dX (xn,m, xn) < ε
2

and an Nε, such that for all n > Nε we find that

dX (xn, x) < ε
2 .

Moreover, there are N 1, . . . , N mε , such that for all m = 1, . . . , mε it holds

n > N m �⇒ dX (xn,m, x) < ε.

Choosing N = max{Nε, N 1, . . . , N mε } yields that for any n > N and m ∈ N we
have

d(xn,m, x) < ε,

which is the required uniform convergence. ��
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The following result is due to [12, Lemma 2.15]. It allows to construct (p, q)-
equi-integrable modified sequences. However, in general these modified sequences
fail to conserve the constraints.

Proposition 3.8. Let vn be a bounded sequence in L p(
;Rm). Then there exists a
p-equi-integrable sequence ṽn with the following properties:

(i) for almost every x ∈ 
 we have |ṽn(x)| � |vn(x)|;
(ii) for every q < p we have limn→∞ ‖vn − ṽn‖Lq = 0.

The following theorem allows us to obtain modified sequences that continue to
satisfy both differential constraints and boundary conditions:

Theorem 3.9. (Equi-integrable sequences & boundary values) Suppose that A :
C∞(Rd;Rm) → C∞(Rd ;Rl) is a homogeneous differential operator of order
kA , satisfying the constant rank property and that B is a potential of A in the
sense of (2.11). Let 
 ⊂ R

d be an open and bounded set with Lipschitz boundary.
Let vn ⇀ 0 in L p(
;Rm) and A vn → 0 in W −kA

p (
;Rl). Then there exists a

sequence wn ⊂ W kB
p (
;Rh) such that the following holds true:

(i) the sequence
∑kB

j=0 |∇ jwn| is p-equi-integrable;
(ii) ‖Bwn − vn‖Lq → 0, as n → ∞ for any q < p;

(iii) wn is compactly supported in 
.

The main difficulty in the proof compared to the statement without boundary
values in [12] is to obtain the compact support.

Proof. Step 1: Construction of the sequence. We assume by scaling that 
 ⊂⊂
(0, 1)d , i.e. it may be viewed as a subset of the d-dimensional torus Td . We extend
vn by 0 outside 
. Let m ∈ N. We define open sets Vm and Um , such that Vm ⊂⊂
Um ⊂⊂ 
; in particular,

{x ∈ 
 : dist(x, ∂
) > 2/m} ⊂ Vm ⊂ {x ∈ 
 : dist(x, ∂
) > 1/m},
{x ∈ 
 : dist(x, ∂
) > 4/m} ⊂ Um ⊂ {x ∈ 
 : dist(x, ∂
) > 3/m}.

Then there exist ϕm ∈ C∞
c (Vm) with ϕm ≡ 1 on Um and ψm ∈ C∞

c (
) with
ψm ≡ 1 on Vm , such that for all k, m ∈ N

‖∇kψm‖L∞ , ‖∇kϕm‖L∞ � C(k)mk .

By Proposition 3.8 there exists a p-equi-integrable sequence ṽn , such that ‖ṽn −
vn‖Lq → 0 for q < p. Therefore, as vn converges weakly to 0, so does ṽn . We
define

v̄n,m = ϕm ṽn, w̄n,m = B−1v̄n,m and wn,m = ψmw̄n,m .

We claim that we can take an appropriate diagonal sequence wn,m(n) with m(n) →
∞, as n → ∞, such that wn,m(n) satisfies the requirements of Theorem 3.9. The
purpose of the following steps is to construct such a sequence m(n).
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Step 2: Estimates on v̄n,m . First, we show that

lim
m→∞ sup

n∈N
‖ṽn − v̄n,m‖L p = 0. (3.7)

To this end, note that there is a constant C > 0, such that

|
 \ Vm | � |
 \ Um | � C
m (3.8)

since 
 has Lipschitz boundary. Then we deduce that

sup
n∈N

‖ṽn − v̄n,m‖L p � sup
n∈N

‖ṽn‖L p(
\Um)

� sup
n∈N

sup
|E |�|(
\Um)|

‖ṽn‖L p(E)

� sup
n∈N

sup
|E |�Cm−1

‖ṽn‖L p(E).

As ṽn is p-equi-integrable, the right-hand side converges to 0, as m → ∞. Thus,
(3.7) is established.

Second, we bound the W −kA
q -norm of A v̄n,m . We claim that there exists a

sequence M1(n) with M1(n) → ∞, as n → ∞, such that for all m(n) with
m(n) � M1(n) and m(n) → ∞, as n → ∞, there exists 1 < q < p such that

lim
n→∞ ‖A v̄n,m(n)‖W

−kA
q (Td ;Rl )

= 0. (3.9)

Note that if ṽn is in Ck(
;Rm), then we may write

A v̄n,m = A (ϕm ṽn) = (A ṽn)ϕm +
∑

|α|=kA

∑
β<α

(
α

β

)
Aα∂β ṽn∂α−βϕm .

Therefore, by applying the definition of W −kA
q (Td;Rl), we may estimate

‖A v̄n,m‖
W

−kA
q (Td ;Rl )

� ‖A ṽn‖
W

−kA
q (
;Rl )

‖ϕm‖
W

kA∞ (
)

+C‖ṽn‖W−1,q (
)‖ϕm‖
W

kA +1
∞ (
)

. (3.10)

Due to density of Ck(
;Rm) in L p(
;Rm), inequality (3.10) is still valid even if
ṽn is merely in L p(
;Rm). With the estimates for the derivatives of ϕ we get that

‖A v̄n,m‖
W

−kA
q (Td ;Rl )

� C

(
mkA ‖A ṽn‖

W
−kA
q (
;Rl )

+ mkA +1‖ṽn‖W−1
q (
;Rl )

)
.

Note that, on the one hand, A ṽn → 0 in W −kA
q (
;Rl), as A vn → 0 in

W −kA
p (
;Rl) and ṽn − vn → 0 in Lq(
;Rm) for q < p. On the other hand, as

ṽn is bounded in L p(
;Rm) and weakly converging to 0, ṽn → 0 in W −1
q (
;Rm)

strongly, due to the compact embedding of Lq(
;Rm) into W −1
q (
;Rm). There-

fore, choosing

M1(n) :=
(
min

{
‖A ṽn‖

W
−kA
q

, ‖ṽn‖W−1
q

}) −1
3kA −→ ∞, as n → ∞,

(3.11)
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we get that

lim
n→∞ sup

m�M1(n)

‖A v̄n,m‖
W

−kA
p (Td ;Rl )

= 0. (3.12)

Last, let us note that due to equi-integrability of ṽn and |v̄n,m | � |ṽn|, also the set
{v̄n,m}n,m∈N is equi-integrable.

Step 3: Upper Bound on ‖Bwn,m − vn‖Lq . First, we note that, by definition,
wn,m is compactly supported in 
 for any m ∈ N, as ψm is compactly supported
in 
. Moreover, it holds that

‖Bwn,m − vn‖Lq � ‖Bwn,m − Bw̄n,m‖Lq + ‖Bw̄n,m − v̄n,m‖Lq

+ ‖v̄n,m − ṽn‖Lq + ‖ṽn − vn‖Lq

=: (I) + (II) + (III) + (IV).

We already established by the choice of ṽn (c.f. Proposition 3.8), that (IV) → 0,
as n → ∞. Furthermore, (III) → 0, as n → ∞, whenever m = m(n) → ∞, cf.
(3.7). Proposition 2.8 yields

(II) � |A v̄n,m(n)| +
∣∣∣∣
ˆ

Td

v̄n,m(n) dx

∣∣∣∣ .

The first term tends to 0 by (3.12), wheneverm(n) � M1(n) is a sequence diverging
to ∞ as n → ∞, while the mean of ṽn,m(n) converges to zero since ṽn ⇀ 0 and
because of (3.7). It remains to bound (I).To this end, note that the triangle inequality
and then Hölder’s inequality imply that

(I) � ‖(1 − ψm)Bw̄n,m‖Lq +
∑

|α|=kB

∑
β<α

‖Bα∂βw̄n,m∂α−βψm‖Lq

� ‖(1 − ψm)‖Lqp/(p−q)‖Bw̄n,m‖L p + mkB ‖w̄n,m‖
W

kB −1
q

� m(q−p)/(pq)‖Bw̄n,m‖L p + mkB ‖w̄n,m‖
W

kB −1
q

.

The first term vanishes (uniformly in n ∈ N) as m → ∞, due to the uniform L p

bound on Bw̄n,m , as the operator W = ∇kB ◦ B−1 is a 0-homogeneous, smooth
Fourier multiplier. Moreover, for the second summand note that due to Lemma
2.10 (ii) W is continuous from Lq(Td;Rm) to Lq(Td;Rh ⊗ (Rd)⊗kB ) in the weak
topology. Recall, that ṽn ⇀ 0, as n → ∞ in L p(Td;Rm), that v̄n,m is uniformly
bounded in L p(Td;Rm) and for fixed m ∈ N, v̄n,m = ϕm ṽn ⇀ 0. The weak
topology of L p(Td;Rm) is metrisable on bounded sets, whence we may apply
Lemma 3.7 to get that the convergence

v̄n,m ⇀ 0 in L p(Td;Rm), as n → ∞
is uniform in m ∈ N. Again, by the boundedness of W , it holds that

W v̄n,m ⇀ 0 in L p(Td;Rh ⊗ (Rd)⊗kB ) uniformly in m. (3.13)
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For s < p∗ = dp/(d − p), the embedding W kB
p (Td;Rh) ↪→ W kB −1

s (Td;Rh) is
compact. Hence, uniformweak convergence of∇kB w̄n,m , together with Poincaré’s
inequality, imply that

lim
n→∞ sup

m∈N
‖w̄n,m‖

W
kB −1
s

= 0. (3.14)

This holds in particular for s = p < p∗. Therefore, choosing M2(n) as

M2(n) :=
(
sup
m∈N

‖w̄n,m‖W kB −1,p

) −1
2kB

implies for any sequence m(n) with m(n) � min{M1(n), M2(n)} and m(n) → ∞,
the inequality

‖Bwn,m(n) − vn‖Lq −→ 0, as n → ∞.

Step 4: Equi-integrability of wn,m . It remains to show that we may choose
the diagonal sequence wn,m(n) in such a fashion, that ∇ jwn,m(n) is still p-equi-
integrable for all 1 � j � kB . Note that

∇ jwn,m = ψm∇ j w̄n,m +
j−1∑
i=0

∇ i w̄n,m ⊗ ∇ j−iψm .

The sequence w̄n,m is uniformly bounded in m and n in W kB
p (Td;Rm), as v̄n,m is

uniformly bounded in L p(Td;Rm) andB−1 maps L p(Td;Rm) to W kB
p (Td;Rh).

Hence, for j < kB , ∇ j w̄n,m is bounded in Lr (Td;Rh ⊗ (Rd)⊗ j ) for some r > p
and thus |ψm∇ j w̄n,m | � |∇ j w̄n,m | is p-equi-integrable. Furthermore, observe that
we have the pointwise estimate

|∇ i w̄n,m ⊗ ∇ j−iψm | � mkB |∇ i w̄n,m |1
\Vm .

Hence, for p-equi-integrability it suffices to show that there is M3(n) → ∞, as
n → ∞, such that for i < kB the sets

{
∇kB w̄n,m : m � M3(n)

}
(3.15)

{
mkB ∇ i w̄n,m1
\Um : m � M3(n)

}
(3.16)

are p-equi-integrable. Indeed, (3.15) is clear, even for m ∈ N, instead of only
m � M3(n), using again that W = ∇kB ◦ B−1 is a smooth 0-homogeneous
Fourier multiplier. On the other hand, ∇kB w̄n,m = W (ṽn,m) and W (ṽn,m) is p-
equi-integrable for m, n ∈ N by Step 1. In (3.14) we have already established the
convergence

lim
n→∞ sup

m∈N
‖w̄n,m‖

W
kB −1
s

= 0
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for all s < p∗. Let now s ∈ (p, p∗) be fixed. Then for all measurable sets E we
find that

ˆ

E
|∇ i w̄n,mmkB 1
\Vm |p dx � mkB p

ˆ

E∩(
\Vm )

|∇ i w̄n,m |p

� mkB p|E ∩ (
 \ Vm)|
( 

E∩(
\Vm )

|∇ i w̄n,m |s dx

)p/s

� |E | s−p
p mkB p sup

m̃∈N
‖w̄n,m̃‖p

W
kB −1
s

.

Note that |E | s−p
p → 0, as |E | → 0. Hence we assume that m � M3(n), with M3

defined as

M3(n) :=
(
sup
m∈N

‖w̄n,m‖
W

kB −1
s

) −1
2kB −→ ∞, as n → ∞. (3.17)

We conclude that for any 0 � j � kB the set
{
∇ jwn,m : n ∈ N, m � M3(n)

}

is p-equi-integrable.
Finally, choosing a sequence m(n) → ∞, as n → ∞, with m(n) �

min{M1(n), M2(n), M3(n)} → ∞ completes the proof. ��
Corollary 3.10. (Preservation of boundary conditions) Let 
 ⊂ R

d be an open
and bounded set with Lipschitz boundary. Suppose that A : C∞(Rd;Rm) →
C∞(Rd;Rl) is a homogeneous differential operator of order kA , satisfying the
constant rank property. Let v ∈ L p(
;Rm) and let vn ⊂ L p(
;Rm), such that

vn ⇀ v in L p(
;Rm) and A vn → A v in W −kA
p (
;Rl). Suppose that B is a

potential of A .

(i) Suppose that v can be written as v = Bu. There exists a sequence un ⊂
W kB

p (
;Rh), such that
(a) un − u is compactly supported in 
;
(b) Bun is p-equi-integrable;
(c) ‖Bun − vn‖Lr (
) → 0 for some 1 < r < p.

(ii) There is a sequence v̄n ⊂ L p(
;Rm), such that
(a) A v̄n = A v;
(b) v̄n − v is compactly supported in 
;
(c) v̄n is p-equi-integrable;
(d) ‖v̄n − vn‖Lr (
) → 0 for some 1 < r < p.

Corollary 3.10 is used to modify sequences of functions in the constraint set C
to obtain equi-integrable sequences while at the same time preserving differential
constraints and boundary conditions. Note that in problems of fluid mechanics the
boundary conditions are typically given for u, the potential of ε, therefore part (i)
is suitable for boundary conditions on the fluid velocity u being the potential of the
strain. On the other hand, boundary conditions for σ are directly given in terms of
the stress. Hence part (ii) is suitable there.
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3.3. Relaxation

If the function f is not A -quasiconvex, the functional I in (3.4) fails to be
weakly lower-semicontinuous. Hence, we cannot ensure existence of minimisers
just by using the direct method in the calculus of variations. However, when study-
ing the data-driven problem, it is enough to consider approximate minimisers, i.e.
minimising sequences vn with I (vn) converging to the infimum of I , and their weak
limits v∗. In the following, we define a functional I ∗ such that it is the relaxation
of I . Thus, any weak limit v∗ of a minimising sequence is a minimiser of I ∗ and,
vice versa, any minimiser of I ∗ is a weak limit of approximate minimisers.

3.3.1. Relaxation under a linear differential constraint We recall the definition
of I from (3.4). For simplicity, we use for the quasiconvex envelope of a function
f : 
 × R

m1 × R
m2 → R the short-hand notation

QA f(x, v) = QA (f(x, ·))(v).

Note that by Proposition 3.3 the functional I ∗ given by

I ∗(v) :=
{´



QA f(x, v(x)) dx, A v = 0

∞, else,

is weakly lower-semicontinuous in L p(
;Rm1) × Lq(
;Rm2). That I ∗ is indeed
the relaxation of I is a consequence of the following (linear) result [2].

Proposition 3.11. Let (v1, v2) ∈ L p(
;Rm1) × Lq(
;Rm2). Furthermore, let
f : 
 × R

m1 × R
m2 → R satisfy the following assumptions:

(A1) f : 
 × (Rm1 × R
m2) → R is a Carathéodory function;

(A2) there is C > 0 such that for almost every x ∈ 
 and (v1, v2) ∈ R
m1 × R

m2

it holds that

0 � f(x, v1, v2) � C(1 + |v1|p + |v2|q).

Then, for any ε > 0 there exists a bounded sequencevn = (vε
1,n, vε

2,n) in L p(
;Rm1)×
Lq(
;Rm2), such that

(i) vε
1,n ⇀ v1 in L p(
;Rm1) and vε

2,n ⇀ v2 in Lq(
;Rm2) as n → ∞;
(ii) A1v

ε
1,n = A1v1 and A2v

ε
2,n = A2v2;

(iii) vε
n is almost a recovery sequence, i.e.

ˆ




QA f(x, v) dx � lim
n→∞

ˆ




f(x, vn,ε) dx − ε.

Remark 3.12. The (almost) recovery sequence vε
n in Proposition 3.11 is bounded

in L p(
;Rm1) × Lq(
;Rm2) with a bound that depends on ε. Consequently, a

priori we might not be able to take a weakly convergent diagonal sequence v
ε(n)
n ,

such that
ˆ




QA f(x, v) dx � lim
n→∞

ˆ




f
(

x, vε(n)
n

)
dx .
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However, for fixed v = (v1, v2) ∈ L p(
;Rm1) × Lq(
;Rm2), let us define the
constraint set Cv as the set of functions (w1, w2) ∈ L p(
;Rm1) × Lq(
;Rm2)

satisfying
{
A1w1 = A1v1

A2w2 = A2w2.

We say that a functional J is coercive on Cv , provided

v ∈ Cv and ‖v‖ → ∞ �⇒ J (v) → ∞. (3.18)

If J : v �→ ´



f (x, v) dx is coercive, there is a uniformboundon the L p(
;Rm1)×
Lq(
;Rm2)-norm of vε

n . By taking a diagonal sequence of vε
n we may conclude

the existence of a recovery sequence vn satisfying
ˆ




QA f(x, v) dx � lim
n→∞

ˆ




f(x, vn) dx .

Coercivity as defined in (3.18) is classically obtained by assuming that

f (x, v) � C1(|v1|p + |v2|q) − C2. (3.19)

This strong pointwise coercivity condition is however not suitable for our setting.
The distance function to a set K only satisfies (3.19) if the set K is bounded. Instead,
we use a weaker coercivity condition of the type

f (x, v) � C1(|v1|p + |v2|q) − γ v1 · v2 − C2. (3.20)

In general, v1 · v2 does not have a good pointwise bound. Nevertheless, in the fluid
mechanical setting, appropriate boundary conditions allow us to bound the integral´



v1 · v2 dx , cf. Section 5.

3.3.2. Relaxation under a semi-linear differential constraint As above, let

 ⊂ R

d be an open and bounded domain with Lipschitz boundary. Instead of
considering a linear differential constraint, e.g.

{
A1v1 = 0

A2v2 = f,

we include a semilinear term. In the fluid mechanical setting this semilinear term
is given by

ε �−→ (u · ∇)u,

where u is uniquely determined by ε due to boundary conditions and the constraint
ε = 1

2 (∇u + ∇uT ).

We fix a suitable general setting. Let, as beforeA1 : L p(
;Rm1) → W −k1
p (
;

R
l1) be a constant rank operator with a potential B1 : W

kB 1
p (
;Rh1) → L p(
;

R
m1) andA2 : Lq(
;Rm2) → W −k2

p (
;Rl2) be a constant rank operator. In addi-
tion, we require the semilinear term to satisfy the following:
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(A3) θ : 
 × R
h1 × (Rh1 ⊗ R

d) . . . × (Rh1 × R
h1 ⊗ (Rd)⊗kB 1 → R

m1 is a
continuous map;

(A4) The map � defined on W
kB 1
p (
;Rh1) via

(�u)(x) = θ
(
x, u(x),∇u(x), . . . ,∇kB 1 u(x)

)

is continuous from the weak topology of W
kB 1
p (
;Rh1) to the strong topol-

ogy of Lr (
;Rl2) for some r > q.

We study the following set of constraints:

⎧⎪⎨
⎪⎩

A1v1 = 0

v1 = B1u1

A2v2 = A2�(u1).

(3.21)

Theorem 3.13. Let f : 
 ×R
m1 × Y → R satisfy the assumptions (A1)–(A2) from

Proposition 3.11 and let � : L p(
;Rm1) → W −1
r (
;Rl2) and A1, A2 satisfy

the aforementioned hypotheses (A3)–(A4). Suppose that u1 ∈ W k1
p (
;Rh1) and

v = (v1, v2) ∈ L p(
;Rm1) × Lq(
; Y × R), such that u1 = B1v1 and A2v2 =
�(u1). Then, for all ε > 0, there exist bounded sequences uε

1,n ⊂ W k1
p (
;Rh1)

and vε
n ⊂ L p(
;Rm1) × Lq(
; Y × R) such that

(i) B1uε
1,n = vε

1,n;
(ii) uε

1,n − u1 is supported in 
n ⊂⊂ 
;
(iii) A2v

ε
2,n = A2�(uε

1,n);
(iv) vε

2,n − v2 is supported in 
n ⊂⊂ 
;
(v) vε

n is almost a recovery sequence, i.e. it satisfies

ˆ




QA f(x, v) dx � lim
n→∞

ˆ




f(x, vε
n) dx − ε.

Remark 3.14. (i) The statement ofTheorem3.13 is quite strong concerningbound-
ary conditions. Indeed, the recovery sequence consisting of uε

1,n and vε
2,n pre-

serves both the boundary conditions of u1 and the boundary conditions of v2.
Thus, it is possible to use the statement independently of the particular boundary
conditions (Dirichlet, Neumann, …) in Sect. 5.

(ii) Remark 3.12 is still valid in the setting of Theorem 3.13. More precisely, if we
have a coercivity condition on the functional restricted to functions obeying
3.21 and some boundary conditions, then we may find a recovery sequence
satisfying (i)–(iv) and

ˆ




QA f(x, v) dx � lim
n→∞

ˆ




f(x, vn) dx .
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Proof of Theorem 3.13. By the linear relaxation result Proposition 3.11 there ex-
ists a sequence (v̄1,n, v̄2,n) ⊂ L p(
;Rm1) × Lq(
; Y ×R) weakly converging to
v = (v1, v2) satisfying⎧

⎪⎨
⎪⎩

A1v̄
ε
1,n = 0

A2v̄
ε
2,n = A2v2 = A2�(u1)´



QA f(x, v) dx � limn→∞

´


f(x, vn) dx − ε

By Proposition 3.5 and Corollary 3.10 we may take ũε
1,n ∈ W k1

p (
;Rh), and
ṽn ∈ L p(
;Rm1) × Lq(
; Y × R), such that

(i) ṽε
1,n = B1ũε

1,n ;
(ii) the first k1-derivatives of ũε

1,n are p-equi-integrable;
(iii) ṽε

2,n is q-equi-integrable;
(iv) A2ṽ

ε
2,n = A2�(u1);

(v) the functions ũε
1,n and ṽε

2,n satisfy the boundary conditions
{
spt(ũε

1,n − u1) ⊂ 
n

spt(ṽε
2,n − v2) ⊂ 
n

for some 
n ⊂⊂ 
;
(vi)

´


QA f(x, v) dx � limn→∞

´


f(x, ṽε

n) dx − ε.

We set vn
1 = ṽε

1,n and uε
1,n = ũε

1,n and modify ṽε
2,n by

vε
2,n = ṽε

2,n + wε
2,n

such that A2v
ε
2,n = �(uε

1,n). In particular, we solve the following equation:
{
A2w

ε
2,n = A2(�(vε

1,n) − �(v1)), x ∈ 


spt(w̃ε
2,n − v2) ⊂⊂ 


(3.22)

But we know that wε
2,n = �(uε

1,n) − �(u1) already is a solution to this system. As
uε
1,n − u1 is supported inside 
n ⊂⊂ 
, so is uε

1,n due to the definition of the map
�, cf. (A3) and (A4). Due to weak-strong continuity we have

‖wε
2,n‖Lr = ‖�(uε

1,n) − �(v1)‖Lr −→ 0 as n → ∞.

Then vε
2,n := ṽε

2,n + wε
2,n still is q-equi-integrable, as ṽε

2,n is q-equi-integrable and
wε
2,n bounded in Lr (
; Y × R) for some r > q; hence also p-equi-integrable.

Moreover, as vε
1,n ⇀ v1 in L p(
; Y ) and � is weak-strong continuous,

‖ṽε
2,n − vε

2,n‖Lr = ‖wε
2,n‖Lr −→ 0 as n → ∞,

and we conclude by Proposition 3.5 that

lim inf
n→∞

ˆ




f(x, vε
1,n, vε

2,n) dx � lim inf
n→∞

ˆ




f(x, ṽε
1,n, ṽε

2,n) dx .

As ṽε
2,n −v2 is compactly supported in
, vε

2,n −v2 satisfies the demanded boundary
conditions and A vε

2,n = A2�(vε
1,n). Hence, (up to a subsequence) vε

n is almost a
recovery sequence. ��
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Remark 3.15. The statement of Theorem 3.13 is taylored towards its application
for fluid dynamics, cf. Section 5.2. Observe that in the proof of Theorem 3.13, a
main step was to solve the differential equation

A2w = A2
(
�(uε

1,n) − �(u1)
)

(3.23)

together with suitable boundary conditions. This equation is solved by the obser-
vation, that (�(uε

1,n) − �(u1)) already satisfies the boundary conditions.
If we generalise the setting to other non-linearities, we need more assumptions

on the non-linearity. For example, consider a constraint like
⎧⎪⎨
⎪⎩

A1v1 = 0

v1 = B1u1

A2v2 = ζ(u1)

for some map ζ : W
kB 1
p (
;Rh1) → W

−kA 1
q (
;Rh2). Then weak-strong continu-

ity is not enough, as one also needs to solve the analogue of (3.22) with suitable
boundary conditions. If for example, A2 = div, then a further condition is as fol-
lows:Whenever u1 and u′

1 satisfy spt(u1−u′
1) ⊂⊂ 
, then

´
ζ(u1)−ζ(u′

1) dx = 0
(such that the divergence-equation is solvable, cf. [3]).

4. Convergence of Data Sets

In this section, we define two different notions of data convergence, i.e. we
define a suitable topology on closed subsets ofY ×Y .We show that these notions are
equivalent to convergence of the unconstrained functionals J in (1.13). In particular,
these notions of data convergence are independent of the underlying differential
constraint. Recall that we assume that the data consist of pairs of strain ε and the
viscous part σ̃ of the stress; the pressure π is not part of the data.

4.1. Data convergence on bounded sets

Definition 4.1. Let Y ×Y be equipped with the metric d : Y ×Y → R and (Dn),D
be closed, nonempty subsets of Y × Y . We say that Dn converges to D strongly in

the topology Tbd, Dn
bd−→ D , if the following is satisfied:

(i) Uniform approximation: There exists a sequence an → 0, such that for all
n ∈ N and for all z = (ε, σ̃ ) ∈ D it holds that

dist(z,Dn) � an(1 + |ε|p + |σ̃ |q).

(ii) Fine approximation: There exists a sequence bn → 0, such that for all n ∈ N

and for all zn = (εn, σ̃n) ∈ Dn it holds that

dist(zn,D) � bn(1 + |εn|p + |σ̃n|q).



30 Page 36 of 63 Arch. Rational Mech. Anal. (2023) 247:30

We consider the functionals defined on V by

J (v) =
ˆ




dist(v,D) dx and Jn(v) =
ˆ




dist(v,Dn) dx .

Theorem 4.2. Let Dn,D be closed, nonempty subsets of Y × Y . The following
statements are equivalent:

(i) Dn
bd−→ D;

(ii) For all v ∈ V it holds that

lim
n→∞ Jn(v) = J (v)

and this convergence is uniform on bounded subsets of V .

Proof. ‘(i) ⇒ (ii)’. Suppose without loss of generality that 0 ∈ D . Otherwise we
translate the underlying space which at most changes an, bn by a bounded factor.
Let v ∈ V , with

´


dist(v, 0) dx � R. We assume without loss of generality that

p � q. Then for n ∈ N we may estimate
ˆ




dist(v,D) dx =
ˆ




d(v,D)p dx �
ˆ




(d(v,wn) + d(wn,D))p dx,

where wn(x) ∈ Dn is a point inDn such that d(v(x), wn(x)) = d(v(x),Dn). Note
that, as 0 ∈ D and due to the uniform approximation property,we obtain a pointwise
bound on wn , i.e. d(wn(x), 0) � 2d(v(x), 0) for n large enough. Therefore, for
some ε > 0 we get

ˆ




dist(v,D) dx �
ˆ




(
d(v,Dn) + bn

(
1 + dist(wn, 0)

)1/p
)
)p

dx

�
ˆ




(
d(v,Dn) + 2bn

(
1 + dist(v, 0)

)1/p
)p

dx

� (1 + ε)

ˆ




d(v,Dn)p + C(ε, p)bp
n
(
1 + dist(v, 0)

)
dx

�
ˆ




dist(v,Dn) dx +
(

ε

ˆ




dist(v,Dn) dx + C(ε, p)bp
n (1 + R)

)
.

Note that
´



d(v,Dn)p dx is bounded from above (for n large enough) by 2´



d(v, 0)p dx � 2R as 0 ∈ D and 0 is approximated uniformly by elements
of Dn . Therefore, for any δ > 0 we may choose ε and n0 ∈ N such that for all
n > n0 we have

ε

ˆ




dist(v,Dn) dx <
δ

2
and C(ε, p)bp

n (1 + R) <
δ

2
.

Consequently, there exists δ(R, n) → 0, such that for allv ∈ V with
´


dist(v, 0) dx �

R it holds that

J (u) � Jn(v) + δ(R, n). (4.1)
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For the lower bound on J (v) we can do the same calculation using fine instead of
uniform approximation and find that for any v ∈ V with

´


dist(v, 0) dx � R we

have
ˆ




dist(v,Dn) dx �
ˆ




dist(v,D) dx +
(

ε

ˆ




dist(v,D) dx + C(ε, p)a p
n (1 + R)

)
.

We argue as for the lower bound, to obtain δ̃(R, n) → 0, such that for all v ∈ V
with

´
dist(v, 0) dx � R

Jn(v) � J (v) + δ̃(R, h). (4.2)

Therefore, the convergence Jn(v) → J (v) is uniform on bounded subsets of V .
‘(ii)⇒ (i)’. We prove the statement by contradiction. Suppose first, that D is
not uniformly approximated, i.e. there exists a > 0 and a subsequence znk =
(εnk , σ̃nk ) ⊂ D , such that

dist(znk ,Dnk ) > a
(
1 + |εnk |p + |σ̃nk |q

) = a
(
1 + dist(znk , 0)

)
.

We assume without loss of generality that 0 ∈ D . Let �nk be a subset of 
 with
measure |
|(1 + dist(znk , 0))

−1. We define

vnk (x) :=
{
0, x /∈ �nk

znk , x ∈ �nk .

Then
´


dist(vnk , 0) is bounded uniformly from above by |
|. Furthermore,

ˆ




dist(vnk ,D) = 0, k ∈ N.

On the other hand,
ˆ




dist(vnk ,Dnk ) �
ˆ

�nk

dist(znk ,Dnk ) � |�nk | · a
(
1 + dist(znk , 0)

)
� |
|a.

Therefore, Jn(v) does not converge to J (v) uniformly on bounded sets of V .
If Dn is not a fine approximation of D , the argument is similar. Then there

exists b > 0 and a subsequence znk ∈ Dnk , such that,

dist(znk ,D) > b
(
1 + dist(znk , 0)

)
.

Again, assume that 0 ∈ D . We may assume that there exists a sequence z′
n → 0

with z′
n ∈ Dn , otherwise for v ≡ 0, it holds that

lim sup
h→∞

ˆ




dist(v,Dn) dx > 0 =
ˆ




dist(v,D) dx .

Let �nk be a subset of 
 with measure |
|(1 + dist(znk , 0))
−1 and define

vnk (x) :=
{
0, x /∈ �nk

znk , x ∈ �nk .
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As argued before,
´


dist(vnk ,D) dx is bounded uniformly by |
| and for k ∈ N

we find that
ˆ




dist(vnk ,Dnk ) dx =
ˆ


\�nk

dist(0,Dnk ) dx −→ 0 as k → ∞.

But, for the distance to D we have
ˆ




dist(vnk ,D) =
ˆ

�nk

dist(znk ,D) � |�nk | · b
(
1 + dist(znk , 0)

) = b|
|.

Therefore, the convergence Jn(v) → J (v) cannot be uniform on bounded subsets
of V . ��

The definition of this type of convergence is motivated by Lemma 2.4. In par-

ticular, we have as a consequence that if Dn
bd−→ D , then the sequential �-limit of

Jn and of the constant sequence J coincide, i.e

� − lim
n→∞ Jn = � − lim

n→∞ J.

4.2. Data convergence on equi-integrable sets

Definition 4.3. We say that a sequence of closed setsDn ⊂ Y × Y converges toD

in the Teq-topology, Dn
eq−→ D , if the following is satisfied.

(i) Fine approximation on bounded sets: There are sequences an → 0 and
Rn → ∞ such that for all n ∈ N and for all z ∈ D with |z| < Rn , it holds that

dist(z,Dn) � an(1 + |z|).
(ii) Uniform approximation on bounded sets: There are sequences bn → 0 and

Sn → ∞ such that for all n ∈ N and for all zn ∈ Dn with |zn| < Sn , it holds
that

dist(zn,D) � bn(1 + |zn|).
Remark 4.4. The following statements are equivalent to theuniform approximation
on bounded sets:

• For all R > 0 there is a sequence aR
n → 0 such that for all z ∈ D with

dist(z, 0) < R we have

dist(z, Dn) � aR
n (1 + |ε|p + |σ̃ |q).

• For all a > 0 and R > 0, there is an n(a, R) such that for all z ∈ D with
dist(z, 0) < R and n > n(a, R) we have

dist(z, Dn) � a(1 + |ε|p + |σ̃ |q).

Similar equivalent statements hold for the fine approximation on bounded sets.
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Theorem 4.5. Let Dn,D be closed, nonempty subsets of Y × Y . The following
statements are equivalent:

(i) Dn
eq−→ D in the Teq-topology.

(ii) The functionals Jn converge uniformly to J on (p, q)-equi-integrable subsets
of V . That is, if X ⊂ V is (p, q)-equi-integrable, then

lim
n→∞ sup

v∈X
|Jn(v) − J (v)| = 0.

Proof. ‘(i)⇒ (ii)’: The proof is similar to the proof of Theorem 4.2.We only prove
that fine and uniform approximation imply that, for a (p, q)-equi-integrable subset
X ⊂ V , we have

lim inf
n→∞ inf

v∈X
Jn(u) − J (u) � 0. (4.3)

The converse inequality follows similarly. For simplicity assume that 0 ∈ D and
that p � q. For some fixed R > 0 we estimate

In(v) − I (v) =
ˆ




dist(v,Dn) − dist(v,D) dx =
ˆ

{dist(v,0)�R}
dist(v,Dn) − dist(v,D) dx

+
ˆ

{dist(v,0)>R}
dist(v,Dn) − dist(v,D) dx

�
ˆ

{dist(v,0)�R}
dist(v,Dn) − dist(v,D) dx

− C
ˆ

{dist(v,0)>R}
(1 + |ε|p + |σ̃ |q ) dx .

(4.4)

We now estimate both integrals on the right-hand side from below and start with the
second term. The set X ⊂ V is (p, q)-equi-integrable. Hence, there is an increasing
function ω : R+ → R+ such that

ˆ

E
(1 + |ε|p + |σ̃ |q) dx � ω(|E |).

The set X is bounded. Thus, defining

M := sup
v∈X

ˆ




1 + |ε|p + |σ̃ |q dx,

we find that the measure of {dist(v, 0) > R} is bounded by M R−1. Consequently,
we obtain

− C
ˆ

{dist(v,0)>R}
1 + |ε|p + |σ̃ |q dx � −Cω(M R−1). (4.5)

We turn to the first term in (4.4). If dist(v(x), 0) � R, we may find somew(x) ∈ D
with dist(w(x), 0) � (2p + 2q)R, and

dist(v(x),D) = dist(v(x), w(x)).
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Due to uniform approximation for all w(x), we can estimate for n large enough
ˆ

{dist(v,0)�R}
dist(v,Dn) − dist(v,D) dx

=
ˆ

{dist(v,0)�R}
d(v,Dn)p − d(v,D)p dx

=
ˆ

{dist(v,0)�R}
d(v,Dn)p − d(v,w)p dx

�
ˆ

{dist(v,0)�R}
d(v,Dn)p − (

d(v,Dn) + d(w,Dn)
)p dx

�
ˆ

{dist(v,0)�R}
−εd(v,Dn)p − Cεd(w,Dn) dx

� −εM − Cεan M.

Together with (4.5) this implies

Jn(v) − J (v) � −Cω(M/R) − εM − Cεan M.

Choosing R(ε) and n large enough, then for any ε there is nε, such that

Jn(v) − J (v) � −2Mε, v ∈ X, n � nε,

which establishes (4.3).
‘(ii) ⇒ (i)’: This implication is a consequence of the same counterexamples as in
Theorem 4.2. Indeed, suppose that the setsDn do not uniformly approximateD on
bounded sets. Then there exist R > 0, a > 0 and a sequence znk ⊂ D , such that
dist(zn, 0) � R and

dist(znk ,Dnk ) � a(1 + |εnk |p + |σ̃nk |q).

By the same construction as in the proof of Theorem 4.2, that is

vnk :=
{
0, x /∈ �nk

znk , x ∈ �nk ,

we obtain a sequence, such that J (vnk ) = 0 and Jn(vnk ) � a|
|with vnk uniformly
bounded in L∞(
; Y × Y ) and hence vnk is also (p, q)-equi-integrable. For fine
approximation the argument is again very similar. ��

5. The data-driven problem in fluid mechanics

In this section we apply the theory developed in the previous sections to the
setting of fluid mechanics. We thus specialise to an explicit set of constraints C
consisting of differential constraints and boundary conditions. In Section 5.1 we
consider the case of inertialess fluids, leading to a set of linear differential con-
straints. In Section 5.2 we consider nonlinear differential constraints. In both cases
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we work with the following boundary conditions defined on three mutually disjoint
and relatively open parts of the boundary �D, �R, �N ⊂ ∂
 that satisfy

�D ∪ �R ∪ �N = ∂
 and

Hd−1(�̄D \ �D) = Hd−1(�̄R \ �R) = Hd−1(�̄N \ �N ) = 0

and have C1-boundary as subsets of the manifold ∂
. We consider (ε, σ̃ ) ∈
L p(
; Y ) × Lq(
; Y ) with an associated velocity field u : 
 → R

d , where
ε = 1

2

(∇u + ∇uT
)
and a pressure fieldπ : 
 → R, such thatu andσ = −π id+σ̃

satisfy the following boundary conditions.

(D) No-slip/Dirichlet boundary conditions:

u = g on �D for g ∈ W 1−1/p
p (�D;Rd).

(R) Navier-slip/Robin boundary conditions:
{

u · ν = gν

PT ∂
 ((σ̃ − π id)ν + λu) = hτ

on �R

for gν ∈ W 1−1/p
p (�R) and hτ ∈ W −1/q

q (�R;Rd). Here, λ � 0 is the inverse
slip-length and PT ∂
 is the orthogonal projection to the tangent space. Note
that the second equation can equivalently be cast as

PT ∂
 (σ̃ ν + λu) = hτ on �R . (5.1)

(N) Neumann boundary conditions:

(σ̃ − π id)ν = h on �N for h ∈ W −1/q
q (�N ;Rd).

Remark 5.1. (i) The boundary conditions for u can be understood as conditions
for ε in a suitable weak formulation. For instance, if �D = ∂
, then (D)
is equivalent to the following condition on ε. For any ϕ ∈ W 1

q (
; Y ) with
div ϕ = 0 we have

ˆ




ε · ϕ dx =
ˆ

∂


g(ϕ · ν) dHd−1.

However, since an ε that is contained in the constraint set C automatically
admits a corresponding u (see (linD) below and following explanation), we
write the conditions directly for u. A similar remark applies to the appearance
of π .

(ii) The Navier-slip boundary condition (R) requires PT ∂
u ∈ W −1/q
q (�R;Rd)

since the other two terms in (5.1) are contained in this space. Since ε ∈
L p(
; Y ), and by Lemma 2.5 together with a trace estimate, we have u ∈
W 1−1/p

p (�R;Rd). The space W 1−1/p
p (�R) embeds into W −1/q

q (�R), whenever
either p � q or

1 − 1
p − d−1

p � − 1
q − d−1

q .
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Thus, since q = p
p−1 , we require

p � 2d
d+1 . (5.2)

We can therefore treat the Navier-slip boundary condition in the physically rel-
evant dimensions d = 2 and d = 3 for p � 4/3 and for p � 3/2, respectively.

(iii) The Navier boundary condition (R) includes the so called free-slip boundary
condition for λ = 0.

(iv) For simplicity we assume in the following that either �N = ∂
 or �D �= ∅.
This allows us to control ‖u‖W 1

p
in terms of ‖ε‖L p and the boundary data via

the Korn–Poincaré inequality, cf. Lemma 2.5. If �R �= ∅, while �D = ∅, it
becomes tedious to specify under which conditions this control can still be
obtained. See Lemma 5.2 and Remark 5.3 below.

(v) We specify further conditions, under which the boundary condition for
(σ̃ − π id)ν is well-defined below, as there are differences between the case
with and without inertia.

In order to obtain a Korn–Poincaré type inequality, u has to be uniquely deter-
mined by the above boundary conditions

{
u = g, x ∈ �D

u · ν = gν, x ∈ �R
(5.3)

and the constraint

ε = 1
2

(
∇u + ∇uT

)
,

or the conditions must be invariant under renormalisation by rigid body motions.

Lemma 5.2. (Validity of the Korn–Poincaré inequality under boundary conditions)
Let 
 ⊂ R

d be open and bounded with C1-boundary and let ∂
 = �̄D ∪ �̄R ∪
�̄N be as specified above. Moreover, suppose that g ∈ W 1−1/p

p (∂
;Rd), gν ∈
W 1−1/p

p (∂
) and that for all A ∈ R
d×d
skew, b ∈ R

d we have that
{

Ax + b = 0, x ∈ �D

(Ax + b) · ν(x) = 0, x ∈ �R
�⇒ A = 0, b = 0. (5.4)

Then the following statements hold true:

1. If u1 and u2 satisfy (5.3) and

∇u1 + ∇uT
1 = ∇u2 + ∇uT

2 ,

then u1 = u2.
2. For all u ∈ W 1,p(
;Rd) obeying (5.3) with �D �= ∅, the Korn–Poincaré

inequality

‖u‖W 1,p � C(1 + ‖∇u + ∇uT ‖L p ) (5.5)

holds for a constant C = C(
, �D, �R, g, gν, p).
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Proof. (i): The assertion follows from the fact that if ∇u1 + ∇uT
1 = ∇u2 + ∇uT

2 ,
then u1 − u2 = Ax + b for some A ∈ R

d×d
skew and b ∈ R

d . Condition (5.4) then
implies that A = 0 and b = 0.
(ii): The vector space X ⊂ W 1

p(
;Rd) of functions satisfying the homogeneous
boundary conditions in (5.3) satisfies, due to (5.4),

X ∩ {Ax + b : A ∈ R
d×d
skew, b ∈ R

d} = {0}.
By transposition we get the inhomogeneous version (5.5) for the affine space of
functions satisfying (5.3). ��
Remark 5.3. Indeed, (5.4) is a rather weak condition on the set 
. For example, in
dimension d = 2, the weakest boundary condition in the case �D = ∅ would be

(Ax + b) · ν(x) = 0 on �R .

Since Rd×d
skew is one-dimensional, we can explicitly set

A =
(

0 1
−1 0

)
.

It follows that the only sets not satisfying (5.4) are such that �R is a subset of
concentric circles. Moreover, if �D �= ∅, then (5.4) is automatically satisfied.

In dimension d = 3, the situation is similar. Indeed, if �D �= ∅, then (5.4) is
satisfied. If �D = ∅, then, if �R is a subset of the boundary of a domain that is
rotationally symmetric around a certain axis, (5.4) is not satisfied.

Remark 5.4. Uniqueness of u is only important for fluids with inertia. For in-
ertialess fluids, u only appears in the constraints through boundary conditions.
Therefore, even if ε = 1

2 (∇u1 +∇uT
1 ) = 1

2 (∇u2 +∇uT
2 ) for u1 �= u2 enjoying the

same boundary conditions, it does not matter for the system of equations whether
we take u1 or u2. In contrast, for fluids with inertia, the contribution (u · ∇)u in
the differential constraints causes the choice of u to be important. Therefore, in the
linear setting, even if the prescribed boundary conditions (D), (R) and (N) allow to
choose different u ∈ W 1

p(
;Rd), for example if �N = ∂
, we may project onto a
subspace that does not allow multiple solutions to

ε = 1
2

(
∇u + ∇uT

)
.

Consequently, we can apply Lemma 2.5 in this situation.

5.1. Inertialess fluids

In this section we study inertialess fluids leading to the set of linear differential
constraints from (1.8). That is, we consider

⎧⎪⎨
⎪⎩

ε = 1
2

(∇u + ∇uT
)

div u = 0

− div σ̃ = f − ∇π,

(linD)
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where f ∈ Lq(
;Rd) is given. Both Robin- and Neumann boundary conditions
are well-defined as (σ̃ − π id), div(σ̃ − π id) ∈ Lq(
). Combining this with the
Dirichlet boundary condition, the constraint set is given by

Clin := {(ε, σ̃ ) ∈ V : (linD), (D), (R), and (N ) are satisfied}. (linC)

Note that the statement ‘(ε, σ̃ ) satisfies (linD)’means that there are u ∈ W 1
p(
;Rd)

and π ∈ Lq(
) such that (linD) is satisfied. For data sets Dn,D ⊂ Y × Y we
consider the functionals In and I as in (1.7).

5.1.1. Coercivity In this subsection we verify coercivity of the functionals In and
I .

Definition 5.5. We call a function f : Y × Y → R (p,q)-coercive, if there exist
C1, C2 > 0 and γ ∈ R such that

f(ε, σ̃ ) � C1(|ε|p + |σ̃ |q) − C2 − γ ε · σ̃ . (5.6)

We say that f has (p,q)-growth, if there is C0 > 0 such that

f(ε, σ̃ ) � C0(1 + |ε|p + |σ̃ |q).

For v ∈ V we define the functional

I (v) :=
{´



f(v) dx, v ∈ Clin

∞, else,
(5.7)

in analogy to (1.7).

Remark 5.6. In Sect. 4 we examine data convergence without the differential con-
straints, in particular we study the unconstrained functional J . In general, we do
not expect a coercivity statement of the type

‖v‖V → ∞ �⇒ J (v) → ∞.

In the following we prove that coercivity follows in the presence of the differential
constraints together with suitable boundary conditions, i.e. it holds that

‖v‖V → ∞, v ∈ Clin �⇒ I (v) = J (v) → ∞.

We can include the term ε · σ̃ on the right-hand side of (5.6) because it is a Null-
Lagrangian. This becomes clear in Remark 5.7 and in the proof of Lemma 5.8
below. In some sense we only require coercivity away from the collinearity set
{(ε, σ̃ ) : ε = βσ̃ , β ∈ R}. Because we expect ε and σ̃ to be colinear for classical
fluids, this kind of transversal coercivity is a natural condition for the distance to
the data sets which takes the role of f later on.
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Remark 5.7. For the purpose of exposition, we prove a coercivity result for func-
tions on the torus. Here, averages of the functions (ε, σ̃ ) take over the role of
boundary values and the role of the differential constraints can be isolated more
clearly.

Let f be (p, q)-coercive. We claim that there are constants C1, C2 > 0, such
that for any (ε0, σ̃0) ∈ Y × Y and all (ε, σ̃ ) ∈ L p(Td; Y ) × Lq(Td; Y ) satisfying

⎧
⎪⎨
⎪⎩

´
Td

(ε, σ̃ ) dx = 0

ε = 1
2

(∇u + ∇uT
)

div σ̃ = ∇π,

(5.8)

for some π ∈ Lq(Td), we have the following coercivity:
ˆ

f(ε0 + ε, σ̃0 + σ̃ ) dx � c1

ˆ

Td

|ε|p + |σ̃ |q dx − c2(1 + |ε0|p + |σ̃0|q). (5.9)

We compute
ˆ

Td

(ε0 + ε) · (σ̃0 + σ̃ ) dx

=
ˆ

Td

ε · ((σ̃0 + σ̃ ) − (π0 + π) id) dx + ε0 ·
ˆ

Td

(σ̃0 + σ̃ ) dx

=
ˆ

Td

1

2

(
∇u + ∇uT

)
((σ̃0 + σ̃ ) − (π0 + π) id) dx + ε0 · σ̃0 dx

=
ˆ

Td

∇u ((σ̃0 + σ̃ ) − (π0 + π) id) dx + ε0 · σ̃0

= −
ˆ

Td

u · div(σ̃ − π id) dx + ε0 · σ̃0 = ε0 · σ̃0.

Therefore,
∣∣∣∣
ˆ

Td

(ε0 + ε) · (σ̃0 + σ̃ ) dx

∣∣∣∣ � |ε0|p + |σ̃0|q .

We conclude that
ˆ

f(ε0 + ε, σ̃0 + σ̃ ) � C1

ˆ

Td

|ε0 + ε|p + |σ̃0 + σ̃ |q dx − C2 − γ

ˆ

Td

ε · σ̃ dx

� C1

ˆ

Td

|ε|p + |σ̃ |q dx − C ′
2(1 + |ε0|p + |σ̃0|q).

Using the boundary conditions instead of averages, we obtain coercivity of the
functional also on bounded domains, as long as the integrand is (p, q)-coercive.

Lemma 5.8. (Coercivity in
with boundary values) Suppose that f, g, gν, hτ , and
h are given as in (linD), (D), (R), and (N). We assume that either �N = ∂
 or
�D �= ∅. If �R �= ∅, then we additionally assume p � 2d/(d + 1). Suppose
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that f : Y × Y → R is (p, q)-coercive and has (p, q)-growth. Then there are
C3, C4 > 0,such that for I from (5.7) and for all v = (ε, σ̃ ) ∈ V

I (v) � C3

ˆ




(|ε|p + |σ̃ |q) dx − C4.

Proof. We may assume that v ∈ Clin, otherwise there is nothing to show. By the
coercivity of f we have

I (v) =
ˆ




f(ε, σ̃ ) dx �
ˆ




C1(|ε|p + |σ̃ |q) − C2 − γ ε · σ̃ dx . (5.10)

Since v ∈ Clin,

ε = 1
2

(
∇u + ∇uT

)
,

for some u with

‖u‖W 1
p

� C
(
1 + ‖ε‖L p

)
,

due to the Korn-Poincaré inequality from Lemma 5.2(ii). Furthermore we have the
following estimate

‖σ̃ ν‖
W−1/q

q (∂
)
+ ‖πν‖

W−1/q
q (∂
)

� C
(‖σ̃‖Lq + ‖ f ‖Lq

)
, (5.11)

which is due to − div σ̃ + ∇π = f . Let us now estimate the last term in (5.10).
The following computations will be done under the assumption that all functions
are smooth. The statement follows by density. Observe that

ˆ




ε · σ̃ dx =
ˆ




1
2

(
∇u + ∇uT

)
· (σ̃ − π id) dx =

ˆ




∇u · (σ̃ − π id) dx

= −
ˆ




u · (div σ̃ − ∇π) dx +
ˆ

∂


u · (σ̃ − π id)ν dH d−1

=
ˆ




u · f dx +
ˆ

∂


u · (σ̃ − π id)ν dH d−1. (5.12)

On the one hand, we have the following estimate for the bulk term:
∣∣∣∣
ˆ




u · f dx

∣∣∣∣ � ‖u‖L p‖ f ‖Lq � C
(
1 + ‖ε‖L p

) ‖ f ‖Lq . (5.13)

On the other hand, the boundary contribution can be estimated on the Dirichlet part
by

∣∣∣∣
ˆ

�D

u · (σ̃ − π id)ν dH d−1
∣∣∣∣ =

∣∣∣∣
ˆ

�D

g · (σ̃ − π id)ν dH d−1
∣∣∣∣

� ‖g‖
W 1−1/p

p (�D)

(
‖(σ̃ − π id)ν‖

W−1/q
q (�D)

)

� ‖g‖
W 1−1/p

p (�D)

(
‖σ̃ − π id ν‖

W−1/q
q (�D)

)
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� C
(‖ε‖L p + ‖σ̃‖Lq + ‖ f ‖Lq

)
, (5.14)

and on the Navier part by first isolating the term with the sign

ˆ

�R

u · (σ̃ − π id)ν dH d−1 =
ˆ

�R

gνν · (σ̃ − π id)ν

− λ|PTx ∂
u|2 + PTx ∂
u · hτ dH d−1, (5.15)

and then estimating

∣∣∣∣
ˆ

�R

gνν · (σ̃ − π id)ν + PTx ∂
u · hτ dH d−1
∣∣∣∣

� ‖gν‖W 1−1/p
p (�R)

‖(σ̃ − π id)ν‖
W−1/q

q (�R)
+ ‖u‖

W 1−1/p
p (�R)

‖hτ‖W−1/q
q (�R)

� C
(
1 + ‖ε‖L p + ‖σ̃‖Lq + ‖ f ‖Lq

)
, (5.16)

and on the Neumann part by

∣∣∣∣
ˆ

�N

u · (σ̃ − π id)ν dH d−1
∣∣∣∣ =

∣∣∣∣
ˆ

�N

u · h dH d−1
∣∣∣∣

� ‖u‖
W 1−1/p

p (�N )
‖h‖

W−1/q
q (�N )

� Ch‖ε‖L p . (5.17)

Inserting (5.15) into (5.12) and using the result together with (5.13), (5.14), (5.16),
and (5.17) in (5.10) yields

I (v) � C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C2 − γ

ˆ




ε · σ̃ dx

� C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C

(‖ε‖L p + ‖σ̃‖Lq + 1
)

� C1

2

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C, (5.18)

where we used Young’s inequality in the last step and the constants depend on
d,
, f, g, gν, h, hτ . ��

Lastly we check, that indeed the function dist(·,D) is (p, q)-coercive if D
contains data for which ‘ε and σ̃ are aligned well enough’.

Lemma 5.9. The distance function dist(·,D) to a setD ⊂ Y ×Y is (p, q)-coercive
if and only if there are c1 ∈ R and c2 > 0, such that

D ⊂ {(ε, σ̃ ) ∈ Y × Y : c1ε · σ̃ + c2 > |ε|p + |σ̃ |q}. (5.19)

Remark 5.10. Condition (5.19) means that the data very roughly behaves like a
power law for data points with large strain, i.e. σ ∼ β|ε|α−1ε whenever (σ, ε) ∈ D
for α = p − 1. The factor β however might depend on the strain ε.
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Proof. ‘�⇒’: Suppose first that the distance function toD is (p, q)-coercive, i.e.

dist((ε, σ̃ ),D) � C1(|ε|p + |σ̃ |q) − C2 − γ ε · σ̃ .

Then, for all (ε, σ̃ ) ∈ D we have

0 � C1(|ε|p + |σ̃ |q) − C2 − γ ε · σ̃

and therefore,

(ε, σ̃ ) ∈ D �⇒ |ε|p + |σ̃ |q < c2 + c1ε · σ̃ .

‘⇐�’: For the converse direction we need to prove that the distance function to the
set

D = {(ε, σ̃ ) ∈ Y × Y : c1ε · σ̃ + c2 > |ε|p + |σ̃ |q}
is (p, q)-coercive. The constant c2 only makesD thicker by a finite amount. To see
this, for (ε, σ̃ ) ∈ D , write σ̃ = αε+σ̃⊥ with ε ·σ̃⊥ = 0 and define σ̃β = αε+βσ̃⊥.
Since ε · σ̃ = α|ε|2 we must have |σ̃⊥|q � c2 + cα|ε| because of (ε, σ̃ ) ∈ D .
Then |σ̃β |q � cq |αε|q + βq |σ̃⊥|q while ε · σ̃ = ε · σ̃β . Decreasing β, we find a
σ̃β such that c1ε · σ̃ > |ε|p + |σ̃ |qand such that dist((ε, σ̃ ), (ε, σ̃β)) is bounded
independently of (ε, σ̃ ).

Thus, we may assume that c2 = 0 since this only shifts C2 in (5.6). Then D is
(p, q)-homogeneous, i.e. (ε, σ̃ ) ∈ D ⇒ (λε, λp/q σ̃ ) ∈ D for all λ > 0. This in
turn implies that the distance function is (p, q)-homogeneous, i.e.

dist
(
(λε, λp/q σ̃ ),D

) = λp dist ((ε, σ̃ ),D) . (5.20)

for all λ > 0. Let S = {|ε|p + |σ̃ |q = 1} be the unit sphere. Then the set

E := S ∩ {2c1ε · σ̃ � |ε|p + |σ̃ |q}
is compact and has positive distance to D , i.e. there exists a > 0 such that

(ε, σ̃ ) ∈ E �⇒ dist((ε, σ̃ ),D) > a.

Hence, setting

c = max
(ε,σ̃ )∈E

(|ε|p + |σ̃ |q − 2c1ε · σ̃ ),

we have

(ε, σ̃ ) ∈ S �⇒ dist((ε, σ̃ ),D) � a

c
(|ε|p + |σ̃ |q − 2c1ε · σ̃ ),

where we use that the right-hand side is smaller than 0 on in the complement of E ,
while it is smaller than a in E . This and (5.20) show that the distance function dist
is (p, q)-coercive. ��
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5.1.2. �-convergence

Theorem 5.11. (�-convergence in the linear setting) LetDn,D ⊂ Y ×Y be closed,
nonempty sets, and let Clin be given by (linC). Moreover, suppose that

(i) The distance functions to Dn and D are uniformly (p, q)-coercive, i.e. there
are c1, c2, such that

Dn,D ⊂ {(ε, σ̃ ) ∈ V × V : c1ε · σ̃ + c2 > |ε|p + |σ̃ |q};
(ii) Dn

eq−→ D;
(iii) if �R �= ∅, let p � 2d

d+1 .

Then the functional In �-converges to I ∗, where

I ∗(v) =
{´



QA dist(v,D) dx, v ∈ Clin

∞, else.

Proof. The hypotheses of Theorem 3.6 are all satisfied with fn = dist(·,Dn),
f = dist(·,D) and X = Clin. Indeed, (H1) is Corollary 3.10, (H4) is the assumption

Dn
eq−→ D and (H2) is satisfied by distance functions of sets, such that D,Dn ∩

B(0, R) �= ∅ for some R > 0. This in turn follows from nonemptyness and

Dn
eq−→ D . Condition (H3) follows from the fact that the functions f in our setting

are distance functions, hence even locally Lipschitz continuous. Finally, the set
X = Clin is weakly closed because for a bounded sequence vn = (εn, σ̃n) ⊂ V the
pressure πn satisfies, after suitable renormalisation,

‖πn‖Lq � C
(‖σ̃n‖Lq + ‖ f ‖Lq

)

and is thus also bounded. Since the differential constraints (linD) are linear, it is
possible to take the limit for a subsequence. Therefore, Theorem 3.6 implies that
In �-converges to the �-limit of I , which is given by I ∗ due to Proposition 3.11. ��
Remark 5.12. Theorem 4.5 establishes equivalence between data convergence and
uniformconvergence of Jn towards J if there is no differential constraintA v = 0. It
is not clear whether such an equivalence holds for the constrained functionals In and
I . Indeed, in an abstract degenerate setting, e.g. kerA [ξ ] = {0} for all ξ ∈ R

d\{0},
so that only constant functions are in kerA , it is easy to see that the equivalence
does not hold. In this case, uniform approximation for bounded/equi-integrable
functions in the constraint set C is equivalent to pointwise uniform approximation
on bounded sets. That is, there are Rn → ∞ and ãn → 0, such that for all z ∈ D
with dist(z, 0) � Rn

dist(z,Dn) � ãn .

This is considerably weaker than the notions of convergence introduced in Defini-
tion 4.1 and Definition 4.3. A similar notion holds for fine approximation. Never-

theless, from a physical viewpoint, the pointwise data convergence Dn
eq−→ D is a

reasonable assumption and we are thus not interested in a complete characterisation
of convergence for the constrained functionals.
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5.2. Fluids with inertia

In this subsectionwe consider the systemof differential constraints, correspond-
ing to a fluid with inertia

⎧⎪⎨
⎪⎩

ε = 1
2

(∇u + ∇uT
)

div u = 0

− div σ̃ = f − ∇π − (u · ∇)u.

(nlD)

Regarding the boundary conditions,wemake the following assumptions throughout
this subsection:

(B1) �N = ∅, i.e. there are only no-slip and Navier-type boundary conditions;
(B2) �D �= ∅;
(B3) One of the following two statements is true

(B3a) p > 3d
d+1 ;

(B3b) g = 0, gv = 0 and hτ = 0.

Note that assumption (B3b) represents the important case of a non-permeable
boundary. In comparison to the linear problem (linD), the set (nlD) of differen-
tial constraints admits a direct coupling between ε and σ̃ through the inertial term
(u ·∇)u. For this set of differential constraints to still bemeaningful, the inertial term
(u · ∇)u needs to be in the same space as f , div σ̃ , and ∇π . Since u ∈ W 1

p(
;Rd),
for p < d (otherwise we use u ∈ W 1

r (
;Rd) for all r < d), we have by em-
bedding u ∈ Ldp/(d−p)(
;Rd) and thus u ⊗ u ∈ Ldp/(2d−2p)(
;Rd×d), which
implies (u · ∇)u = div(u ⊗ u) ∈ W −1

dp/(2d−2p)(
;Rd). In order for this space to be

contained in W −1
q (
;Rd), we must have

q = p

p − 1
� dp

2d − 2p
, (5.21)

which implies

p � 3d

d + 2
. (5.22)

Throughout this section we assume that (5.22) holds. This includes the Newtonian
case p = 2 in the physical dimensions d = 2, 3. We shortly discuss the require-
ments on the boundary conditions. Recall that σ̃ obeys the equation

div σ̃ − ∇π = div(u ⊗ u) − f,

which is well-defined in W −1
q

(

;Rd

)
, but the right-hand side has additional reg-

ularity, which allows for trace theorems. Observe that (u · ∇)u is contained in
Lq

(

;Rd

)
, whenever p > 3d

d+1 , such that for those exponents the regularity of the
boundary conditions is fine. However, the proof Lemma 5.13 reveals that the dual
pairing of g with (σ̃ − π id) v (on�D ) and the dual pairings of gv with (σ̃ − π id)v
and of hτ with u (on �R ) need to be well-defined. Therefore, one needs to assume
additional regularity, e.g. that hτ ∈ W −1/q

q
(
�R;Rd

)
, which is a higher regularity
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than expected. For simplicity, we therefore stick with zero boundary conditions if
p < 3d

d+1 .
In this subsection we consider the constraint set

Cnl := {(ε, σ̃ ) ∈ V : (nl D), (D), and (R) are satisfied.} (nlC)

5.2.1. Coercivity in the semilinear case In this subsection we check that func-
tionals of the form (5.7), with Cnl given by (nlC), are still coercive.

Lemma 5.13. (Coercivity in the semi-linear setting) Let p � 3d/(d + 2) and
assume that the assumptions (B1)–(B3) hold. Let f be (p, q)-coercive and let Cnl
be given by (nlC). Then there are constants C3, C4 > 0, such that

I (v) =
ˆ




f(ε, σ̃ ) dx � C3

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C4. (5.23)

Proof. Similarly to the proof of Lemma 5.8, we need to estimate
´

ε · σ̃ dx , as for
any (ε, σ̃ ) ∈ Y × Y

f(ε, σ̃ ) � C1(|ε|p + |σ̃ |q) − C2 − γ ε · σ̃ . (5.24)

Since v ∈ Cnl, there is a u such that

ε = 1
2

(
∇u + ∇uT

)
,

for some u, where

‖u‖W 1
p

� C
(
1 + ‖ε‖L p

)
(5.25)

due to the Korn–Poincaré inequality, Lemma 2.5 and Lemma 5.2. Furthermore, we
have the estimate

‖σ̃ ν‖
W−1/q

q (∂
)
+ ‖πν‖

W−1/q
q (∂
)

� C
(
‖σ̃‖Lq + ‖ f ‖Lq + ‖u‖2W 1

p

)
, (5.26)

which is due to − div σ̃ + ∇π = f − (u · ∇) u.
Indeed, repeating the calculation from the proof of Lemma 5.8 and then using

the nonlinear force balance, we obtain
ˆ




ε · σ̃ dx = −
ˆ




u · (div σ̃ − ∇π) dx +
ˆ

∂


u · (σ̃ − π id)ν dHd−1

=
ˆ




u · (u · ∇)u + u · f dx +
ˆ

∂


u · (σ̃ − π id)ν dHd−1

=
ˆ




div

(
1

2
u|u|2

)
+ u · f dx +

ˆ

∂


u · (σ̃ − π id)ν dHd−1

=
ˆ




u · f dx +
ˆ

∂


1

2
(u · ν)|u|2 + u · (σ̃ − π id)ν dHd−1. (5.27)
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For the first term we use (5.25) to bound

∣∣∣∣
ˆ




u · f dx

∣∣∣∣ � ‖u‖W 1
p
‖ f ‖Lq � C

(
1 + ‖ε‖L p

) ‖ f ‖Lq . (5.28)

For the boundary term we consider the cases (B3a) and(B3b) separately.
Case (B3a):We split ∂
 = �D ∪ �R and start with

ˆ

�D

1

2
(u · ν)|u|2 − u · (σ̃ − π id)ν dHd−1

=
ˆ

�D

1

2
(g · ν)|g|2 − g · (σ̃ − π id)ν dHd−1

� ‖g‖3L3(�D) + ‖g‖
W 1−1/p

p (�D)

(
‖σ̃ ν‖

W−1/q
q (�D)

+ ‖πν‖
W−1/q

q (�D)

)

� C
(
1 + ‖u‖2W 1

p
+ ‖σ̃‖Lq

)

� C
(
1 + ‖ε‖2L p

+ ‖σ̃‖Lq

)
. (5.29)

Note that W 1−1/p
p (�D) embeds into L3(∂
), whenever

1

3
� 1

p
+ 1 − 1/p

d − 1
.

This holds in view of assumption (5.22). For the other part of the boundary we
estimate

ˆ

�R

1

2
(u · ν)|u|2 − u · (σ̃ − π id)ν dHd−1

=
ˆ

�R

1

2
gν |u|2 − gνν · (σ̃ − π id)ν + λ|PTx ∂
u|2 − PTx ∂
u · hτ dHd−1.

(5.30)

For the terms without sign we obtain

∣∣∣∣
ˆ

�R

1

2
gν |u|2 − gνν · (σ̃ − π id)ν − PTx ∂
u · hτ dHd−1

∣∣∣∣
� ‖gν‖L3(�R)‖u‖2L3(�R) + ‖gν‖W 1−1/p

p (γR)

(
‖σ̃ ν‖

W−1/q
q (�R)

+ ‖πν‖
W−1/q

q (�R)

)

+ ‖hτ‖W−1/q
q (�R)

‖u‖
W 1−1/p

p (�R)

� C
(
1 + ‖u‖2W 1

p
+ ‖σ̃‖Lq

)

� C
(
1 + ‖ε‖2L p

+ ‖σ̃‖Lq

)
. (5.31)
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Inserting (5.30) into (5.27) and using the result together with (5.28), (5.29), (5.31),
and the (p, q)-coercivity of f, yields

I (v) � C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C2 − γ

ˆ




ε · σ̃ dx

� C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C

(
1 + ‖ε‖2L p

+ ‖σ̃‖Lq

)

� C1

2

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C,

where we use Young’s inequality and the fact that p > 2.
Case (B3b): Since g = 0, gv = 0, and hτ = 0, the boundary term simplifies to
ˆ

∂


1

2
(u · v)|u|2 − u · (σ̃ − π id)v dHd−1 = −

ˆ

�R

PTx ∂
u · PTx ∂
(σ̃ v)dHd−1

=
ˆ

�R

λ
∣∣PTx ∂
u

∣∣2 dHd−1.

(5.32)

By inserting (5.32) into (5.27) and the (p, q)-coercivity of f, we obtain

I (v) � C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C2 − γ

ˆ




ε · σ̃ dx

� C1

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C

(
1 + ‖ε‖L p

)

� C1

2

(
‖ε‖p

L p
+ ‖σ̃‖q

Lq

)
− C,

where we use again Young’s inequality.
��

5.2.2. Continuity of �(u) = u ⊗ u To verify the assumptions of Theorem 3.13,
in particular the weak closedness of Cln, we show that the map

u �−→ u ⊗ u

is continuous from the weak topology of W 1
p(
;Rd) to the strong topology of

Lr (
; Y ) for some r > q.

Lemma 5.14. Let p > 3d/(d + 2). Then there is an r > q = p/(p − 1), such
that � is continuous from W 1

p(
;Rd), equipped with the weak topology, into to
Lr (
; Y ).

In view of Korn’s inequality (Lemma 2.5) bounded sets in L p(
; Y ) are mapped
to bounded sets in W 1

p(
;Rd) by the map ε �→ u. Hence, the map � might also
be seen as a map ε �→ u ⊗ u.

Proof. For p � d the result immediately follows from the case p < d by first
embedding into W 1

τ (
;Rd) for some τ < d. Thus, let p < d. Then W 1
p(
;Rd)
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embeds compactly into Ls(
;Rd) for all s < dp/(d − p). In particular, for every
weakly convergent sequence un ⊂ W 1

p(
;Rd), the sequence

�(un) = un ⊗ un

converges strongly in Lr (
;Rd) for r < dp/(2d − 2p). This can be satisfied at
the same time as r > q = p/(p − 1) if and only if p > 3d/(d + 2). ��

5.2.3. �-convergence with semilinear constraint

Theorem 5.15. (�-convergence in the semilinear setting) Let Dn,D ⊂ Y × Y be
closed, nonempty sets and let Cnl be given by (nlC). Moreover, suppose that:

(i) The distance functions to Dn and D are uniformly (p, q)-coercive, i.e. there
are c1, c2, such that

Dn,D ⊂ {(ε, σ̃ ) ∈ V × V : c1ε · σ̃ + c2 > |ε|p + |σ̃ |q};
(ii) Dn

eq−→ D;
(iii) p > 3d

d+2 ;
(iv) assumptions (B1)–(B3) hold.

Then the functional In �-converges to I ∗, where

I ∗(v) =
{´



QA dist(v,D) dx, v ∈ Cnl

∞, else.

Proof. The proof is very similar to the proof of Theorem 5.11. Indeed, as the
constraint setCnl isweakly closedbyLemma5.14, the only difficulty, givenv ∈ Cnl,
is to find a recovery sequence lying in Cnl. This is achieved in Theorem 3.13. ��

6. Consistency of Data-Driven Solutions and PDE Solutions in the Case of
Material Law Data

In this section we consider data that are given by a constitutive law, i.e.

σ̃ = 2μ(|ε|)ε, ε ∈ Y,

for a viscosity μ : R → R. We compare the solutions obtained by the classical
PDE approach to minimisers of the data-driven functional. As before, we assume
�N = ∅ and call a pair (ε, σ̃ ) ∈ L p(
; Y ) × Lq(
; Y ) a weak solution to the
stationary Navier–Stokes equation, if there is u ∈ W 1

p(
;Rd) and a pressure π ∈
Lq(
), such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε = 1
2

(∇u + ∇uT
)
, x ∈ 


div u = 0, x ∈ 


(u · ∇)u − div(2μ(|ε|)ε) + ∇π = f, x ∈ 


(D), (R), x ∈ ∂
,

(6.1)
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where (6.1)3 has to be satisfied in W −1
q (
;Rd). Note that the system (6.1) is

equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε = 1
2

(∇u + ∇uT
)
, x ∈ 


div u = 0, x ∈ 


− div σ̃ = f − ∇π − (u · ∇)u, x ∈ 


σ̃ = 2μ(|ε|)ε, x ∈ 


(D), (R), x ∈ ∂
.

(6.2)

We may interpret the convergence of data sets discussed in Sect. 4 as an increase
of the accuracy of measurement. If a constitutive law exists, then the limit D of
data sets Dn should represent this law. Since we assume that the set D is given by
a constitutive law ε �→ σ̃c(ε), we consider data sets

D = {(ε, σ̃ ) : σ̃ = σ̃c(ε)}. (6.3)

For typical constitutive laws, a solution to the induced partial differential equation
(6.2) exists and it is natural to ask whether (approximate) solutions to the data-
driven problem with Dn converge to a solution of (6.2). It turns out that this is true
if the constitutive relation is monotone. Indeed, assume that (ε, σ̃ ) ∈ Cnl, i.e. that
the differential constraints

⎧
⎪⎨
⎪⎩

ε = 1
2

(∇u + ∇uT
)
, x ∈ 


div u = 0, x ∈ 


− div σ̃ = f − ∇π − (u · ∇)u, x ∈ 


are satisfied. If in addition I (u) = 0, and thus u is a minimiser, then we have

(ε, σ̃ ) ∈ D = {(ε, σ̃ ) : σ̃ = σ̃c(ε)} almost everywhere.

Consequently, a minimiser of I satisfying I (u) = 0 is a solution to the partial
differential equation. Conversely, given a constitutive law σ̃c and a weak solution
to the partial differential equation (6.2), we may construct the setD as in (6.3) and
observe that any solution to the partial differential equation (6.2) is also aminimiser
of I .

If the data set D is a limit of measurement data sets Dn , it is not clear a priori
whether a sequence of (approximate) minimisers un of In converges weakly to a
solution u to the partial differential equation because we can only infer I ∗(u) = 0
and not I (u) = 0. This is addressed in the following proposition, which directly
follows from the relaxation statement Theorem 5.15.

Proposition 6.1. Let p > 3d/(d + 2) and let ε �→ σ̃c(ε) be a given constitutive
law. Moreover, assume that the corresponding data setD is given by (6.3), such that
the distance function dist(·, ·) is (p, q)-coercive. If the partial differential equation
(6.2) admits a weak solution v, i.e. minv∈C I (v) = 0, then a function v∗ is a
minimiser of I ∗ if and only if

v∗ ∈ {QA dist((ε, σ̃ ),D) = 0}
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almost everywhere. Moreover, if

{QA dist((ε, σ̃ ),D) = 0} = D, (6.4)

then any such approximate solution v∗ is already a solution to the partial differential
equation (6.2).

In the following we characterise some constitutive laws satisfying (6.4). To this
end, we study the set

{QA dist((ε, σ̃ ),D) = 0}.

Definition 6.2. Let 1 < p < ∞ and q = p/(p − 1). For a set D ⊂ Y × Y we
define the A -(p, q)-quasiconvex hull of D as

D (p,q) = {(ε, σ̃ ) ∈ Y × Y : QA dist((ε, σ̃ ),D) = 0} .

We call a set D ⊂ Y × Y A -(p, q)-quasiconvex if D = D (p,q).

6.1. Newtonian fluids

In the Newtonian setting the fluid’s viscosity is constant, i.e. μ(|ε|) ≡ μ0 > 0
and hence the relation between the local strain ε and the viscous stress σ̃ is linear
with σ̃ = 2μ0ε. In the following, we assume without loss of generality that μ0 =
1/2. That is, we have p = q = 2 and the constitutive law is given by the data set

DN = {(ε, ε) : ε ∈ Y } ⊂ Y × Y.

Note that, in terms of ε and σ̃ , the Newtonian data setDN and the distance function
dist(·, ·) can be written as

DN =
{
(ε, σ̃ ) : ε · σ̃ = 1

2

(
|ε|2 + |σ̃ |2

)}
and dist((ε, σ̃ ),DN ) = 1

2 |ε − σ̃ |2.
Since in this case dist((·, ·),DN ) is already a convex function, it is also A -
quasiconvex and we have that

QA dist((ε, σ̃ ),DN ) = dist((ε, σ̃ ),DN ).

Consequently, we observe that the A -(2, 2)-quasiconvex hull D (2,2)
N of DN is

given by

D (2,2)
N = {(ε, σ̃ ) : dist((ε, σ̃ ),DN ) = 0} = DN .

Therefore, any solution to the data-driven problem for Newtonian fluids is also a
weak solution to the partial differential equation, in the sense that u ∈ W 1,p(
;Rd)

satisfies {
(u · ∇)u = −∇π + 1

2�u, x ∈ 


div u = 0, x ∈ 


and the boundary conditions (D), (R).
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6.2. Power-law fluids

In the case of power-law fluids, the constitutive law for the fluid’s viscosity is
μ(|ε|) = μ0|ε|α−1ε with given flow-consistency indexμ0 > 0 and flow-behaviour
exponent α > 0. Consequently, we have σ̃ = 2μ0|ε|α−1. As above, we set without
loss of generality μ0 = 1/2. In the previously used notation, we thus consider
1 < p < ∞, q = p/(p − 1) and α = p/q = 1/(p − 1) and suppose that the
material law is given by the data set

DP =
{
(ε, |ε|α−1ε) : ε ∈ Y

}
⊂ Y × Y.

Observe that, for α �= 1, the set DP is not convex. Consequently, also the corre-
sponding distance function is not convex. However,

(ε, σ̃ ) ∈ DP ⇐⇒ ε · σ̃ = 1
p |ε|p + 1

q |σ̃ |q .

It turns out that theA -(p, q)-quasiconvex hullD (p,q)

P ofDP in fact coincides with
the data set DP . In order to verify this, we rely on the following observation (see
also [32]):

Lemma 6.3. Let dist(·,D) be (p, q)-coercive. Then

D (p,q) =
⋂

f∈Tp,q

{f(z) � 0},

where Tp,q is the set of all continuous functions f ∈ C(Y × Y ) satisfying

• f is A -quasiconvex;
• f(z) � 0 for all z ∈ D;
• |f(ε, σ̃ )| � C(1 + |ε|p + |σ̃ |q).

Proof. ‘⊇’: Since QA dist(·,D) is contained in Tp,q , it is clear that⋂
f∈Tp,q

{f(z) � 0} is a subset of D (p,q).

‘⊆’: Suppose now that (ε0, σ̃0) ∈ D (p,q). Then there exists a sequence (εn, σ̃n) ∈
L p(Td; Y ) × Lq(Td; Y ) with zero average, satisfying the differential constraint
such that

ˆ

Td

dist
((

ε0 + εn(x), σ̃0 + σ̃n(x)
)
,D

)
dx <

1

n
, n ∈ N. (6.5)

Due to the coercivity of the distance function we can bound

‖εn‖L p + ‖σ̃n‖Lq � C(1 + |ε0|p + |σ̃0|q), n ∈ N.

Take now f ∈ Tp,q . Then f is locally Lipschitz continuous thanks to Proposition
3.2 (iv). Definewn = (ε′

n, σ̃
′
n) as the projection of (ε0 +εn, σ̃0 + σ̃n) ontoD . Then,

in view of (6.5) we find that,

‖ε0 + εn − ε′
n‖L p −→ 0 and ‖σ̃0 + σ̃n − σ̃ ′

n‖Lq −→ 0.
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The local Lipschitz continuity of f and the boundedness of (εn, σ̃n) now imply
∣∣∣∣
ˆ

Td

f(ε0 + εn, σ̃0 + σ̃n) − f(ε′
n, σ̃

′
n) dx

∣∣∣∣ −→ 0 as n → ∞. (6.6)

Using A -quasiconvexity of f, (6.6), and the non-positivity of f this implies

f(ε0, σ̃0) � lim inf
n→∞

ˆ

Td

f(ε0 + εn, σ̃0 + σ̃n) dx � lim inf
n→∞

ˆ

Td

f(ε′
n, σ̃ ′

n) dx � 0.

Eventually, we find that (ε0, σ̃0) ∈ ⋂
f∈Tp,q

{f(z) � 0} and the proof is complete.
��

Corollary 6.4. Let p, q, α and DP be as before. Then

D
(p,q)

P = DP .

Proof. Lemma 6.3 implies that we only need to find a function f, which is A -
quasiconvex, is non-positive in (ε, σ̃ ) if and only if (ε, σ̃ ) ∈ DP and has (p, q)-
growth. The function

f(ε, σ̃ ) := 1
p |ε|p + 1

q |σ̃ |q − ε · σ̃

exactly satisfies these assertions. Therefore, D (p,q)

P = DP . ��

6.3. Monotone material laws

Again, consider 1 < p < ∞, q = p/(p − 1) and α = p/q. We consider a
constitutive law

σ̃ (ε) = 2μ(|ε|)ε (6.7)

for a viscosity μ ∈ C
(
R+;R+

)
. For better readability we omit the factor 2 in (6.7)

in the following calculations. Furthermore, throughout this subsection we assume
that the material law σ̃ (·) is monotone, i.e. for all ε1, ε2 ∈ Y we have

(ε1 − ε2) · (σ̃ (ε1) − σ̃ (ε2)) � 0;
and we denote a := lims→0 μ(s)s. The data set DM corresponding to the consti-
tutive law ε �→ σ̃ (ε) is given as follows (cf. Fig. 1):

DM = Dε ∪ D0, Dε = {
(ε, σ̃ (ε)) : ε ∈ Y \ {0}}, D0 = {

(0, σ̃ ) : |σ̃ | � a
}
.

(6.8)

Remark 6.5. (i) Monotonicity of such a radial-symmetric function σ̃ (ε) is equiv-
alent to monotonicity of its one-dimensional counterpart

s �−→ μ(s)s.

Therefore, the limit a = lims→0 μ(s)s is well-defined.
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Fig. 1. A monotone material set DM and the separating function f0 for a given (ε0, σ̃0) ∈
DM

(ii) The setting includes the previously discussed cases ofNewtonian andpower-law
fluids, as well as Ellis-law fluids [31]. Furthermore, it allows the strain–stress
graph to have a discontinuity at zero, so-calledHerschel-Bulkley fluids, cf. [22].

Theorem 6.6. Let p, q, α and DM be as above. Then we have

D
(p,q)

M = DM .

Proof. As for the proof of Corollary 6.4 for the power-law case, it suffices to find
A -quasiconvex separating functions (Lemma 6.3). For (ε0, σ̃0) ∈ DM we define
the function (cf. Fig. 1).

f0(ε, σ̃ ) = −(ε − ε0) · (σ̃ − σ̃0).

This function is A -quasiconvex (even A -quasiaffine, i.e. f and −f are A -quasi-
convex) and has (p, q)-growth, as

|f0(ε, σ̃ )| � 1
p |ε − ε0|p + 1

q |σ̃ − σ̃0|q .

To conclude that D (p,q)

M = DM we still need to show that

(i) f0 is non-positive on DM ;
(ii) for all (ε, σ̃ ) /∈ DM there is (ε0, σ̃0) ∈ DM , such that f0(ε, σ̃ ) > 0.

(i): Take (ε, σ̃ ) ∈ D . Suppose that |ε| � |ε0| (the other case is rather similar). Then

−f0(ε, σ̃ ) = (ε − ε0) · (σ̃ − σ̃0)
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= (ε − ε0) · (μ(|ε|)ε − μ(|ε0|)ε0)
= μ(|ε0|)(ε − ε0) · (ε − ε0) + (ε − ε0) · ((

μ(|ε0|) − μ(|ε0|)
)
ε
)

� 0 + (
μ(|ε0|) − μ(|ε0|)

)(|ε|2 − |ε||ε0|
)

� 0

(ii): Suppose that (ε, σ̃ ) /∈ DM . If ε �= 0, this means that σ̃ �= μ(|ε|)ε. In that
case, consider

εt = ε + t (σ̃ − μ(|ε|)ε)
and σ̃t = μ(|εt |)εt . If ε = 0, simply take εt = te11. For now, take ε �= 0, the other
case is quite similar. Then for t < 0 small enough

−ft (ε, σ̃ ) = (ε − ε0) · (σ̃ − σ̃t ) = t (σ̃ − μ(|ε|)ε) · (σ̃ − μ(|εt |)εt ) < 0

as the map

t �−→ (σ̃ − μ(|εt |)εt )

is continuous. Hence, there is t < 0, such that

(σ̃ − μ(|ε|)ε) · (σ̃ − μ(|εt |)εt ) > 0.

To summarise, there is a function ft ∈ Tp,q , such that ft (ε, σ̃ ) > 0, whenever
(ε, σ̃ ) /∈ DM . ��
Remark 6.7. Starting from the constitutive law ε �→ σ̃c(ε), there are two choices
forDM . We may defineDM as in (6.8) or only take the setDε introduced in (6.8).
For the A -quasiconvex hull this does not make a difference, i.e.

D
(p,q)

ε = D
(p,q)

M = DM . (6.9)

Indeed, (6.9) can be verified by calculating the �A -convex hull of the set Dε

(that is, we successively take convex combinations along �A ). The �A -convex
hull is a subset of the A -quasiconvex hull. Therefore, it suffices to show that the
�A -convex hull of Dε contains DM . This in turn follows from the fact that

kerA2[ξ ] = {σ̃ ∈ Y : σ̃ ξ = 0} + R(ξ ⊗ ξ) �⇒ �A2 = Y.

Using this observation, the �A -convex hull of {(0, σ̃ ) : |σ̃ | = a} ⊂ Dε is the
convex hull D0. Consequently, the �A -convex hull and therefore also the A -
quasiconvex hull of Dε contain DM .
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