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Abstract

We analyze the behavior of weak solutions to compressible viscous fluid flows
in a bounded domain in R

3, randomly perforated by tiny balls with random size.
Assuming the radii of the balls scale like εα , α > 3, with ε denoting the average
distance between the balls, the problem homogenize to the same limiting equation.
Our main contribution is a construction of the Bogovskiı̆ operator, uniformly in ε,
without any assumptions on the minimal distance between the balls.

1. Introduction

The goal of this paper is to analyze the effective behavior of a compressible
viscous fluid in randomly perforated domains. We consider a bounded domain
D ⊂ R

3 which for ε > 0 is perforated by random balls Bεαri (εzi ) with α > 3,
and show that weak solutions to the Navier–Stokes equations in these perforated
domains converge as ε → 0 to aweak solution to the same equation in D. Compared
to the previous results, mostly restricted to the periodic arrangement of the holes
[9,15,28] or at least assuming minimal distance between the holes being ε [30], we
do not require any such assumptions on the minimal distance between the holes.

As in the previous works on this topic, the key step in the proof of the ho-
mogenization result is the construction of the Bogovskiı̆ operator (inverse of the
divergence), bounded independently of ε. This operator is then used in a classical
way to construct a test function, hence providing uniform estimates on the density
and velocity of the fluid.

The question of how small perforations in the domain influence the original
equation has a long history. In the case of a perforation byperiodically arranged balls
in d dimensions, Cioranescu and Murat [7] (see also [8,25]) studied effective
behavior of the Poisson equation with zero Dirichlet boundary conditions on the
balls. Denoting the distance between balls by ε and assuming the radii scale like
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d−2 , they identified an additional Brinkman term (“A strange term coming from
nowhere”) in the limiting equation.

Heuristically, the homogeneous boundary conditions on the perforation push
the solution u towards 0, with the strength related to the size of holes. Focusing
on the case d = 3, holes of size εα , α > 3 are too tiny to make any difference. If
the balls are larger than ε3 (hence push u stronger to 0), solutions converge to 0 as
ε → 0, and only a rescaling by some negative power of ε may lead to a reasonable
limiting problem.

For the incompressible stationary Stokes and Navier–Stokes equations with
periodic distribution of holes, Allaire [3,4] gave a full description to all cases
α > 1 and all dimensions d ≥ 2. More precisely, for d = 3 if α ∈ (1, 3), which
corresponds to the supercritical case of large particles, he obtained Darcy’s law;
for the critical case α = 3, an additional friction term occurs and gives rise to
Brinkman’s law. The subcritical case α > 3 corresponding to small particles leads
to the same system of Stokes and Navier–Stokes equations. The case α = 1 was
studied in [2] for the steady incompressible Stokes system.

The results on the effective behavior of compressible fluids in perforated do-
mains are much more recent.Masmoudi [31,32] considered compressible Navier–
Stokes equations in the domain perforated by periodic balls with α = 1, and
obtained in the limit Darcy’s law. This result was later generalized by Feireisl et
al. [16] also to the case of the full Navier–Stokes–Fourier system, which besides
density and velocity of the fluid takes also into account the fluid temperature. In
the case of slightly smaller balls with 1 < α < 3, assuming simultaneous rescal-
ing of the pressure (Low-Mach number limit) to avoid the need to study the “cell
problem” with unknown density, Höfer et al. [23] showed convergence of the
rescaled solution to Darcy’s law. Finally, for tiny balls with α > 3 (the subcritical
case) Feireisl and Lu [15] considered stationary Navier–Stokes equations and
showed convergence to the same equations in the domain without holes. This result
was later improved to the case of more general adiabatic exponent in the pressure
[9] as well as to the time-dependent case [30]. In all these works the perforation
is assumed to be periodic, or at least the minimal distance between the holes is
comparable with ε.

In this work we also consider only the subcritical case α > 3, but with random
arrangement of holes instead of the periodic one. Unless one additionally assumes
that the holes in the random case may not lie close to each other, the key argument
in the previous works, the Bogovkiı̆ operator, can not be constructed as before.
Instead, we show that while the holes can be close to each other, there exists a fixed
number N such that there are at most N balls clustered together. Since N is fixed,
the construction of the Bogovkiı̆ operator can be done.

Our inspirationhow to approach the case of randomlyperforateddomains comes
from a recent work of Giunti, Höfer, and Velázquez. In [22], they considered a
Poisson equation in a domain perforated by random balls of critical size, thus
obtaining the Brinkman law in the limit. The main challenge is to understand
possible clustering of the holes and control the capacity of those. In subsequent
works, they also considered the incompressible Stokes problem [20,21] as well
as convergence to the Darcy’s model in the supercritical situation [19]. Compared
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to these works our situation is simpler, since in the subcritical situation we can
prove a deterministic upper bound on the size of clusters. Let us also mention that
previously Beliaev and Kozlov [5] also considered homogenization of Stokes
equations in a supercritically perforated domain.

A different, though quite related, setting is of the flow of a colloidal suspension,
that is, of a fluid mixed with moving obstacles. This question traces back to one
part of Einstein’s PhD thesis [13], where he formally derives effective viscosity of
such suspension, assuming low-volume fraction of the obstacles. With the recent
progress in the field of stochastic homogenization, this question was rigorously
approached by several groups, first under the assumption of uniform separation of
balls [12,33] and very recently under less restrictive assumptions [11,18].

2. Setting and the Main Results

In this section we define the perforated domain, formulate the Navier–Stokes
equations governing the fluid motion, and state the main results. We consider D ⊂
R
3 being a bounded domain with a C2-boundary. To simplify the probabilistic

argument we farther assume the domain D is star-shaped with respect to the origin,
that is, for any x ∈ D the segment {λx : λ ∈ [0, 1]} ⊂ D.

We model the perforation of D using the Poisson point process, though the
arguments can be easily generalized to a larger class of point processes. For an in-
tensity parameter λ > 0, the Poisson point process is defined as a random collection
of points � = {z j } in R3 characterized by the following two properties:

– for any two measurable and disjoint sets S1, S2 ⊂ R
3, the random sets S1 ∩�

and S2 ∩� are independent;

– for any measurable set S ⊂ R
3 and k ∈ N holds. P(N (S) = k) = (λ|S|)k e−λ|S|

k!
Here N (S) = #(S ∩ �) counts the number of points z j ∈ S and |S| denotes
measure of S. In addition to the random locations of the balls, modeled by the
above Poisson point process, we also assume the balls have random size. For that,
let R = {ri } ⊂ [0,∞) be another random process of independent identically
distributed random variables with finite mth moment, that is,

E(rm
i ) < ∞ for some m > 0,

and which are independent of �. In other words, to each point z j ∈ � (center
of a ball) we associate also a radius of the ball r j ∈ [0,∞). The exact range of
m we can work with will be specified in Theorem 1 below. The random process
(�,R) on R

3×R+ is called marked Poisson point process, and can be viewed as
a random variable ω ∈ � �→ (�(ω),R(ω)), defined on an abstract probability
space (�,F ,P).

To define the perforated domain Dε, for α > 2 and ε > 0 we set

�ε(D) :=
{

z ∈ � ∩ 1

ε
D : dist(εz, ∂ D) > ε

}
, Dε := D \

⋃
z j∈�ε(D)

Bεαr j (εz j ). (1)
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To simplify the exposition and to avoid the need to analyze behavior near the
boundary, we only removed those balls from D which are not too close to the
boundary ∂ D. This is also a common assumption in the periodic situation, see, for
example, [15, relation (1.3)]. The domain D being star-shaped implies that �ε(D)

are monotonically increasing as ε → 0.
Our main result is the following existence result for a uniformly bounded Bo-

govskiı̆ operator:

Theorem 1. Let α > 2, D ⊂ R
3 be a bounded star-shaped domain with respect

to the origin with C2-boundary, and (�,R) = ({z j }, {r j }) be a marked Poisson
point process with intensity λ > 0. We assume the radii r j � 0 fulfil E(rm

j ) < ∞
for some m > 3/(α − 2). Then for all 1 < q < 3 which fulfil

α − 3

m
>

3

3− q
, (2)

there exists a random almost surely positive ε0 = ε0(ω) such that for 0 < ε ≤ ε0
there exists a bounded linear operator

Bε : Lq(Dε)/R→ W 1,q
0 (Dε;R3)

with Dε defined in (1), such that for all f ∈ Lq(Dε) with
∫

Dε
f = 0

div(Bε( f )) = f in Dε, ‖Bε( f )‖
W 1,q

0 (Dε)
≤ C ‖ f ‖Lq (Dε),

where the constant C > 0 is independent of ω and ε.

In other words, Theorem 1 provides a solution u to the equation div u = f in
Dε with u|∂ Dε = 0 such that ‖∇u‖Lq (Dε) � ‖u‖

W 1,q
0 (Dε)

� C‖ f ‖Lq (Dε).

As an application for this result we show homogenization of compressible
Navier–Stokes equations in perforated domains Dε . For ε > 0, the unknowndensity
	ε and velocity uε of a viscous compressible fluid are described by

∂t	ε + div(	εuε) = 0 in (0, T )× Dε,

∂t (	εuε)+ div(	εuε ⊗ uε)+∇ p(	ε) = div S(∇uε)+ 	εf + g in (0, T )× Dε,

uε = 0 on (0, T )× ∂ Dε,

(3)

where S denotes the Newtonian viscous stress tensor of the form

S(∇u) = μ

(
∇u+ ∇Tu− 2

3
div (u)I

)
+ η div (u)I, μ > 0, η � 0,

p(	) = a	γ denotes the pressure with a > 0 and the adiabatic exponent γ �
1, and f and g are external forces, which are for simplicity assumed to satisfy
‖f‖L∞((0,T )×R

3;R 3) + ‖g‖L∞((0,T )×R
3;R 3) � C . We also fix the total mass∫

Dε
	ε(0, ·) = m > 0 independently of ε > 0, and supplement the equations

with the initial conditions for 	ε and 	εuε.
While the existence of classical solutions to (3) is known only in some special

cases, the existence theory for weak solutions is quite developed [14,27,34]. In
particular, for fixed ε > 0 the domain Dε is smooth enough to grant existence
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of global weak solutions. The key point here is to overcome the lack of uniform
estimates in ε on the smoothness of Dε, in particular to obtain uniform bounds on
the solution, which in this setting are usually obtained using a bounded Bogovkiı̆
operator. More precisely, Theorem 1 together with a simple existence result for
the cut-off function (see Lemma 4) are the only points in the arguments [9,15,30],
where the information on the structure of the perforation in Dε is being used.

In the following we state one of the implications of Theorem 1, the correspond-
ing precise formulation as well as the definition of the finite energy weak solutions
in the case of periodic perforation being [30, Definition 1.3, Theorem 1.6]:

Theorem 2. Assume α > 3. Let D ⊂ R
3 be a bounded star-shaped domain with

respect to the origin with C2-boundary and let (�,R) = ({z j }, {r j }) be a marked
Poisson point process with intensity λ > 0, and r j � 0 with E(r M

j ) < ∞, M =
max{3, m}, where m > 3/(α − 3). Furthermore let

m > 0, γ > 6.

For 0 < ε < 1 let [	ε,uε] be a family of finite energy weak solutions for the no-slip
compressible Navier–Stokes equations (3) in (0, T )×Dε, with Dε as in (1). Assume
that the initial conditions

	ε(0, ·) = 	ε,0 and (	εuε)(0, ·) = qε,0

satisfy

	ε,0 ∈ Lγ (Dε), qε,0 = 0 whenever 	ε,0 = 0,

∥∥∥∥ |qε,0|2
	ε,0

∥∥∥∥
L1(Dε)

≤ C,

	̃ε,0 ⇀ 	0 weakly in Lγ (D), q̃ε,0 ⇀ q0 weakly in L
2γ

γ+1 (D),

where C > 0 is independent of ε. Then for almost every ω ∈ � there exists
ε0 = ε0(ω) > 0 such that

sup
ε∈(0,ε0)

(‖	ε‖L∞(0,T ;Lγ (Dε)) + ‖	ε‖
L

5γ
3 −1

((0,T )×Dε)
+ ‖uε‖L2(0,T ;W 1,2

0 (Dε))
) ≤ C

and, up to a subsequence, the zero extensions satisfy

	̃ε
∗
⇀ 	 in L∞(0, T ; Lγ (D)), ũε ⇀ u in L2(0, T ;W 1,2

0 (D)),

where the limit [	,u] is a renormalized finite energy weak solution to the problem
(3) in the limit domain D provided γ−6

2γ−3
(
α − 3

m

)
> 3.

The restriction M ≥ 3 ismade in order to construct suitable cut-off functions, as
will be clear from the proof of Lemma 4 later on. Using Theorem 1 and Lemma 4,
which are the only two spots in the proof where the structure of the perforation
plays any role, the proof of Theorem 2 follows verbatim as in [30]. To manifest
how Theorem 1 and Lemma 4 are actually applied, in Sect. 6 we will formulate a
similar (but simpler) homogenization statement for the stationary case and sketch
its proof.



14 Page 6 of 29 Arch. Rational Mech. Anal. (2023) 247:14

2.1. Notation

Through the whole paper, we use the following notation:

– (�,F ,P) is the probability space associated to themarkedpoint process (�,R).
– L p

0 (D) := { f ∈ L p(D) : ∫D f = 0}
– |S| denotes the Lebesgue measure of a measurable set S ⊂ R

3.
– For a function f with domain of definition D or Dε, we denote by f̃ the zero
extension to R3, that is, we define

f̃ = f in D or Dε, f̃ = 0 in R
3 \D or R \Dε.

– Boxes are sets of the form Ax × Ay × Az , where Ax , Ay, Az ⊂ R are intervals.
– For a factor λ > 0 and a set M ⊂ R

d we define λM := {λx : x ∈ M}.
– For two sets M, N ⊂ R

3, we set dist(M, N ) = inf
x∈M,y∈N

|x − y|, where
|x | is the usual Euclidean norm, and dist∞(M, N ) = inf

x∈M,y∈N
‖x − y‖∞ =

inf
x∈M,y∈N

max
1≤i≤3 |xi − yi |.

– We write a � b whenever there is a constant C > 0 that does not depend on
ε, a, and b such that a ≤ C b. The constant C might change its value whenever
it occurs.

Moreover, if no ambiguity occurs, we denote the function spaces as in the scalar
case even if the functions are vector- ormatrix-valued, for example,wewrite L p(D)

instead of L p(D;R3).
Organization of the Paper: The rest of this paper is organized as follows. In

the next section we formulate the probabilistic statements (Theorem 3 and Proposi-
tion 1) as well as the analytical framework (Lemma 2) needed for the construction
of the Bogovskiı̆ operator (Theorem 1). The proofs of these results are content of
Sect. 4 (probabilistic part) and Sect. 5 (analytical part). The last section is devoted
to a quick sketch of the homogenization result.

3. Ingredients for the Proof of Theorem 1

The proof of Theorem 1 consists of two parts: stochastic and analytical. The
stochastic result, Theorem 3, states that for small enough (depending on ω ∈ �)
ε > 0 the balls with radii εαr j are disjoint and actually little bit separated. The
previous construction of the uniformly boundedBogovkiı̆ operator in the L2-setting
requires a boundary layer of size third root of the radius of the balls without hitting
other balls—this is where the condition α � 3 enters. Since in a generic random
arrangement of balls the balls are not that much separated, we relax this assumption
by replacing one ball with finitely many balls. More precisely, we show that there
exists a deterministic number N = N (α) such that we can group balls into clusters
of size at most N so that the clusters stay separated from each other.
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Theorem 3. Let α > 2 and λ > 0 be the intensity of a marked Poisson point
process (�,R) = ({z j }, {r j }) with r j � 0 and E(rm

j ) < ∞, where m > 0 satisfies

m >
3

α − 2
.

Let 0 < δ < α− 1− 3
m , κ ∈ (max(1, δ), α− 1− 3

m ), and τ � 1. Then there exists
a random variable ε0, which is almost surely positive, satisfying the following:

1. For every 0 < ε ≤ ε0 it holds that

max
zi∈�ε(D)

τεαri ≤ ε1+κ ,

and for every zi , z j ∈ �ε(D), zi �= z j ,

Bτε1+κ (εzi ) ∩ Bτε1+κ (εz j ) = ∅.

2. Let

N := N (δ) := 8

(
1+

⌈
1

δ

⌉ )
. (4)

Then for each 0 < ε � ε0, there are finitely many open boxes {I ε
i } ⊂ D

satisfying that
(a) the boxes I ε

i cover the balls, that is, for any z ∈ �ε(D) we have Bε1+κ (εz) ⊂⋃
i I ε

i ;
(b) any box I ε

i contains at most N points from ε�ε(D);
(c) balls are well inside the box: for εz ∈ I ε

i ∩ ε�ε(D) holds dist(Bε1+κ (εz),
∂ I ε

i ) ≥ 1
16N ε1+δ;

(d) any two distinct boxes I ε
i and I ε

j are well separated: dist∞(I ε
i , I ε

j ) �
1
4N ε1+δ;

(e) the shortest side of I ε
i is at least 1

2N ε1+δ while the longest side is at most
ε1+δ .

The proof of the second part of Theorem 3 uses that for 0 < ε � ε0 any cube
with side length ε1+δ contains at most N points from the Poisson point process.
This can hold only if δ > 0, since the number of points in a cube of size ε1+0
is Poisson distributed, that is, any number of points appears there with small but
positive probability.

Proposition 1. Let d ≥ 1, δ > 0 be fixed, and let {z j } ⊂ R
d be points generated by

a Poisson point process of intensity λ > 0. In addition, let D ⊂ R
d be a bounded

star-shaped domain. Then there exists a deterministic constant N (δ, d) ∈ N and
a random variable ε0(ω, λ, D), which is almost surely positive, such that for all
0 < ε ≤ ε0 and any x ∈ R

d the cube x + [0, ε1+δ]d contains at most N points
from D ∩ ε�.
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To construct the Bogovskiı̆ operator Bε in Dε from Theorem 1 we use local
Bogovskiı̆ operators for each box I ε

i to modify the Bogovskiı̆ operator in D. Instead
of making explicit construction in each box I ε

i , we invoke a general result on the
existence of Bogovskiı̆ operator [1] for a class of domains (so-called John domains)
and show that each box I ε

i minus the balls is a John domain—for this the outcomes
of Theorem 3 will be crucial. In particular, we need that there are at most N balls
in one box, the balls are not close to each other and they are tiny, compared to the
size of the box.

Definition 1. For a constant c > 0, a domainU ⊂ R
d is said to be a c-John domain

if there exists a point x0 ∈ U such that for any point x ∈ U there is a rectifiable
path � : [0, �] → U which is parametrized by arc length with

�(0) = x, �(�) = x0, ∀t ∈ [0, �] : |�(t)− x | ≤ c dist(�(t), ∂U ).

The following lemma states that any I ε
i is a c-John domain:

Lemma 2. Under the assumptions of Theorem 3 for fixed

0 < δ <
α − 2− 3

m

2
, (5)

let 0 < ε � ε0. Then, for every box I ε
i constructed in Theorem 3, the domain

U := I ε
i \

⋃
z j∈ε−1 I ε

i ∩�ε(D)

Bεαr j (εz j ) (6)

is a c-John domain with c = c(N ), where N is defined in (4).
In particular, for any 1 < q < ∞ there exists a uniformly bounded Bogovkiı̆

operator BU : Lq
0(U ) → W 1,q

0 (U ), that is, there exists a constant C, independent
of ε, such that for any f ∈ Lq

0(U )

div(BU ( f )) = f, ||BU ( f )||
W 1,q

0 (U )
≤ C || f ||Lq

0 (U ).

4. The Probabilistic Results

The goal of this section is to prove the stochastic part of the result, Theorem 3,
second part of which is based on Proposition 1 about the distribution of the random
points, modeled by the Poisson point process. Fixing δ > 0, this proposition states
that for ε small enough, for any cube of side length ε1+δ inside a fixed domain D
there are at most N = N (δ, d) of the rescaled points εz in the cube. The heuristic
explanation of this is as follows: assuming we only need to consider a disjoint set
of cubes and fixing ε > 0, the number of cubes in D which we have to consider
scales like 1

ε(1+δ)d . At the same time, the probability of one cube of side length

ε1+δ having more than N points scales in the case of the Poisson point process

like ( ε(1+δ)d

εd )N = εδNd . Hence, choosing N large enough so that 1
ε(1+δ)d εδNd � 1

should lead to the result.



Arch. Rational Mech. Anal. (2023) 247:14 Page 9 of 29 14

Proof of Proposition 1. We start with a special case, which will be later used to
prove the general case.
Claim: There exists N1 ∈ N and an almost surely positive random variable ε0(ω)

such that for any dyadic ε = 2−l smaller than ε0, any half-closed cube Qε,z =
ε1+δz + [0, ε1+δ)d , z ∈ Z

d , contains at most N1 points from ε
2�(ω) ∩ D.

If rescaled up by a factor 2 the claim says that in a cube with side length (2ε)1+δ

there are at most N1 points, and we are considering points (more precisely cubes)
inside 2D instead of D only. The reason for this choice will be clear later in the
proof.

For l ∈ N and ε = 2−l , we define

Bl := {ω ∈ � : one of the dyadic cubes Q2−l ,z contains

at least N1 points from 2−l−1� ∩ D}.
In order to proof the claim, it is enough to show

∑
l≥0 P(Bl) < ∞ and apply the

Borel–Cantelli lemma. Recall that for any measurable bounded set S ⊂ R
d , we

denote by N (S) = #(S ∩�) the number of random points in S. First, by rescaling,
we see that

Bl = {ω ∈ � : there exists a dyadic cube Q2−l ,z such that N (2l+1(Q2−l ,z ∩ D)) ≥ N1}.

Since we can cover D with at most C |D| (2l)d cubes Q2−l ,z and due to the station-
arity of the process �, we estimate

P(Bl ) ≤ C(D) 2ld
P
(
N (2l+1Q2−l ,0) ≥ N1

) = C(D) 2ld
P
(
N (2l+1 · 2−l(1+δ)[0, 1)d ) ≥ N1

)
≤ C(D, N1) 2

ld · 2(1−lδ)N1d = C(D, N1) 2
ld(1−N1δ),

(7)

where in the last inequality we used that the points in � are Poisson-distributed,
that is,

P(N (S) = n) = e−λ|S| (λ|S|)n

n!
for any n ∈ N, and that for any x > 0 we have that

e−x
∑
k≥n

xk

k! =
xn

n! e−x
∑
k≥0

xkn!
(n + k)! ≤

xn

n! e−x
∑
k≥0

xk

k! =
xn

n! . (8)

Choosing now N1 = 1 + � 1
δ
� in (7), we have P(Bl) ≤ C 2−ql for some q > 0,

meaning that
∑

l≥0 P(Bl) ≤ ∑
l≥0 2−ql < ∞. The Borel–Cantelli lemma now

implies that

P
(
lim sup

l→∞
Bl

) = 0,

meaning that almost surely there is an ε0(ω) > 0 such that for all 0 < εl = 2−l ≤
ε0, any cube Q2−l ,z contains not more than N1 points from ε

2� ∩ D, thus proving
the claim.
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To show the general case, for ω ∈ �we consider ε0(ω) coming from the claim.
Without loss of generality we assume ε0 = 2−l0 for some l0 ∈ N (otherwise replace
ε0 with the largest smaller power of 2). To finish the proof we need to show that for
any 0 < ε � ε0, any cube Qε = x +[0, ε1+δ]d , x ∈ R

d , contains at most N points
from D ∩ ε�(ω). Let 0 < ε < ε0 and Qε = x + [0, ε1+δ]d be chosen arbitrary,
and let N := 2d N1. Let l � l0 be the unique l such that 2−(l+1) � ε < 2−l .

Observe that for λ > 0 we have #(Qε ∩ ε�) = #(λQε ∩ λε�), where λQε =
{λx : x ∈ Qε}, which together with that star-shapedness of D yields, for λ =
2−(l+1)

ε
∈ (0, 1], that

#(Qε ∩ ε� ∩ D) = #(λQε ∩ λε� ∩ λD) � #(λQε ∩ 2−(l+1)� ∩ D).

We now cover λQε with (at most) 2d cubes Q2−l ,z . Observe that even if λQε

is closed and Q2−l ,z are only half-closed, the covering is possible since λε =
2−(l+1) < 2−l . In particular, the claim implies that any Q2−l ,z contains at most N1

points from 2−l

2 �∩ D, thus implying that λQε, being covered by at most 2d cubes
Q2−l ,z , contains at most 2d N1 points from 2−(l+1)� ∩ D. This together with the
last display implies #(Qε ∩ ε� ∩ D) � 2d N1 = N , thus concluding the proof of
the proposition.

The first part of Theorem 3 is based on the following Strong Law of Large
Numbers, a proof of which can be found in [22, Lemma 6.1] (see also [26, Theorem
8.14]):

Lemma 3. Let d ≥ 1 and (�,R) = ({z j }, {r j }) be a marked Poisson point process
with intensity λ > 0. Assume that the marks {r j } are non-negative independent
identically distributed random variables independent of � such that E(rm

j ) < ∞
for some m > 0. Then, for every bounded set S ⊂ R

d which is star-shaped with
respect to the origin, we have, almost surely,

lim
ε→0

εd N (ε−1S) = λ|S|, lim
ε→0

εd
∑

z j∈ε−1S

rm
j = λE(rm)|S|.

Remark 4. Assuming the boundary of the set S from the previous lemma is not too
large, the same argument also shows

lim
ε→0

εd
∑

z j∈�ε(S)

rm
j = λE(rm)|S|. (9)

In particular, it is enough that S has as D a C2-boundary.

Using this remark as well as Proposition 1, we can prove Theorem 3.

Proof of Theorem 3. Part (1): We start with the first part of the theorem, which
actually holds for any dimension d ≥ 1, α > 2, m > d

α−2 , and κ ∈ (1, α−1− d
m ).

Using (9) and the choice of κ , we have, for almost all ω that

lim sup
ε→0

ε
d
m max

zi∈�ε(D)
ri ≤ lim sup

ε→0
ε

d
m

( ∑
zi∈�ε(D)

rm
i

) 1
m ≤ [λE(rm)|D|] 1

m .
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This implies for ε > 0 small enough that

max
zi∈�ε(D)

τεαri � 2τεα− d
m [λE (rm)|D|] 1

m � ε1+κ , (10)

with the last inequality coming from α − d
m > κ + 1, and therefore being true for

ε possibly even smaller.
To show two balls do not intersect we consider an event

Aε
τ := {ω ∈ � : there are 2 intersecting balls in {Bτε1+κ (εz)}z∈�ε(D)},

and it is enough to show that

P

( ⋂
ε0>0

⋃
ε≤ε0

Aε
τ

)
= 0. (11)

We reduce this to the case of dyadic ε, by showing that

P

( ⋂
l0≥1

⋃
l≥l0

Aεl
τ̄

)
= 0, (12)

where εl = 2−l and τ̄ = 21+κτ .
Indeed, let l ∈ N be such that εl+1 ≤ ε < εl . Now suppose zi , z j ∈ �ε(D),

zi �= z j such that

Bτε1+κ (εzi ) ∩ Bτε1+κ (εz j ) �= ∅.
Then

εl+1|zi − z j | ≤ ε|zi − z j | ≤ 2τε1+κ ≤ 2τε1+κ
l = 2τ(2εl+1)1+κ = 2 · 21+κτε1+κ

l+1 ,

which means that

B21+κ τε1+κ
l+1

(εl+1zi ) ∩ B21+κ τε1+κ
l+1

(εl+1z j ) �= ∅.
The domain D being star-shaped implies monotonicity of �ε(D) in ε, in particular
�ε(D) ⊂ �εl+1(D), which combined with the previous display yields

Aε
τ ⊂ Aεl+1

τ̄ ,

thus showing that (12) implies (11).
It remains to show (12). Let ε > 0 and τ � 1 be fixed. Observe that if for

zi , z j ∈ �ε(D) we have Bτε1+κ (εzi )∩ Bτε1+κ (εz j ) �= ∅, then ε|zi − z j | ≤ 2τε1+κ

and after simplifying |zi − z j | ≤ 2τεκ . In other words,

Aε
τ ⊂ {ω ∈ � : ∃x ∈ 1

ε
D : #(�ε(D) ∩ B2τεκ (x)) ≥ 2}. (13)

Recall that for S ⊂ R
d , we denote by N (S) = #(S ∩ �) the random variable

providing the number of points of the processwhich lie inside S. Let us also note that
the points are distributed according to a Poisson distribution with intensity λ > 0.
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We now recall a basic estimate from [20, Proof of Lemma 6.1]: For 0 < η < 1,
define the set of cubes with side length η centered at the grid ηZd by

Qη := {y + [−η/2, η/2]d : y ∈ ηZd}.
Since it is not true that any ball of radius η

4 is contained in one of these cubes, we
need to add (finitely many) shifted copies of Qη. For that let Sη be the vertices of
the cube [0, η/2]d , that is,

Sη = {z = (z1, . . . , zd) ∈ R
d : zk ∈ {0, η/2} for k = 1, . . . , d}.

Observe that for any x ∈ R
d , there exist z ∈ Sη and a cube Q ∈ Qη such that

B η
4
(x) ⊂ z + Q, which immediately implies

P(∃x ∈ 1

ε
D : N (B η

4
(x)) � 2)

� P(∃Q ∈ Qη, z ∈ Sη : (z + Q) ∩ 1

ε
D �= ∅, N (z + Q) � 2).

Since Sη has 2d elements and the number of cubes Q ∈ Qη that intersect ε−1D
is bounded by C(D)(εη)−d , we use the distribution of Poisson point process to
conclude that

P(∃x ∈ 1

ε
D : N (B η

4
(x)) � 2) �

∑
z∈Sη

∑
Q

P(N (z + Q) � 2)

� 2dC(D)(εη)−de−ληd
∞∑

k=2

(ληd)k

k!
� C(D)2d(εη)−d(ληd)2,

where the last inequality follows from (8). Letting ηε := 8τεκ , this together with
(13) and the fact that #(�ε(D) ∩ S) ≤ N (S) for any S ⊂ R

d , yields

P(Aε
τ ) ≤ C(ε1+κ)−dε2dκ = Cεd(κ−1).

To show (12) we take a sum over l with ε = εl = 2−l , which using κ > 1 can be
estimated as

∞∑
l=0

P(Aεl
τ̄ ) ≤ C

∞∑
l=0

2−ld(κ−1) < ∞,

and (12) follows from direct application of the Borel–Cantelli lemma.
Part (2): We now turn to the second part of the theorem, that is, the construction
of boxes I ε

i . Fixing ε, the first step is to construct a finite collection I = { Ĩi } of
auxiliary boxes such that

– these boxes cover the points, that is,
⋃

i Ĩi ⊃ ε�ε(D),
– dist∞( Ĩi , Ĩ j ) � 1

2N ε1+δ ,

– s( Ĩi ) � ε1+δ , where s(I ) of a box I denotes the size of its longest side,
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– each box Ĩi satisfies | Ĩi ∩ ε�ε(D)| � N .

Here the crucial condition is the second one, that is, that the boxes are well-
separated. Let l = 1

2N ε1+δ . We will grow the boxes Ĩ from the collection I step by
step, starting with cubes of side length l. At every moment of this growth process,
every box Ĩ ∈ I will satisfy the following conditions:

i. Ĩ = [axl, bxl)×[ayl, byl)×[azl, bzl) for some ax , bx , ay, by, az, bz ∈ Z, that
is, each box is a union of many small cubes;

ii. for eacha ∈ [ax , bx )∩Zholds [al, (a+1)l)×[ayl, byl)×[azl, bzl)∩ε�ε(D) �=
∅, and similarly for y and z, that is, in every slice there is some point from
ε�ε(D);

iii. #( Ĩ ∩ ε�ε(D)) � N .

At the beginning, let I consist of all cubes [axl, (ax + 1)l)×[ayl, (ay + 1)l)×
[azl, (az + 1)l) which have a point from ε�ε(D) in it. Since D is bounded, I
consists of finitely many boxes (cubes). We then repeat the following procedure:

If there exist two different boxes Ĩ , J̃ ∈ I such that dist( Ĩ , J̃ ) = 0, we fix them
and merge them together. That means, we remove Ĩ = [axl, bxl) × [ayl, byl) ×
[azl, bzl) and J̃ = [a′x l, b′x l)× [a′yl, b′yl)× [a′zl, b′zl) from I and add

K̃ = [Axl, Bxl)× [Ayl, Byl)× [Azl, Bzl)

:= [(ax ∧ a′x )l, (bx ∨ b′x )l)× [(ay ∧ a′y)l, (by ∨ b′y)l)× [(az ∧ a′z)l, (bz ∨ b′z)l)

to I instead. Here∧ and∨ stand as usual for minimum andmaximum, respectively.
First, observe that (i) trivially follows from the definition of K̃ . Next, to verify

that K̃ satisfies (ii), let us fix i ∈ {x, y, z}, and observe that dist( Ĩ , J̃ ) = 0 implies
[ai , bi ] ∩ [a′i , b′i ] �= ∅. Hence, for any a ∈ [min(ai , a′i ),max(bi , b′i )) either a ∈
[ai , bi ), in which case (ii) for Ĩ implies (ii) for K̃ , or a ∈ [a′i , b′i ), in which case (ii)
for J̃ implies (ii) for K̃ .

It remains to argue that K̃ satisfies also (iii). Since Ĩ satisfies both (ii) and (iii),
in particular to each a ∈ [ai , bi ) ∩ Z there is assigned at least one point from
ε�ε(D) and there are at most N such points, it follows that [ai l, bi l) has length at
most Nl. The same argument applies verbatim to J̃ , and so the union of [ai l, bi l)
and [a′i l, b′i l) has length at most 2Nl. Hence, each side of K̃ has length at most
s(K̃ ) ≤ 2Nl = 2N 1

2N ε1+δ = ε1+δ . In addition K̃ satisfies (i), and so there exists

a (closed) cube QK̃ with side length ε1+δ such that K̃ ⊂ QK̃ . By Proposition 1,
the number of points in QK̃ is at most N , which implies the same for K̃ , that is,

#(K̃ ∩ ε�ε(D)) � #(QK̃ ∩ ε�ε(D)) � N ,

which shows (iii) for K̃ ; moreover, since K̃ also fulfils (ii), this shows that K̃ has
length at most s(K̃ ) ≤ Nl.

Since the collection I was finite at the beginning, and in each iteration we
decrease the number of boxes in I by one (we remove Ĩ and J̃ and add K̃ ), this
process has to terminate. In particular, at the end I consists of boxes which have
positive distance from each other, since otherwise the process would not terminate
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at this point. Since all boxes in I satisfy (i), this in particular implies that this
positive distance has to be at least l = 1

2N ε1+δ . Moreover, since each box has side
length at most Nl = 1

2ε
1+δ , and each point in ε�ε(D) is at least distance ε to ∂ D,

we see that each box (and actually also its small neighborhood) lies inside D.
Using boxes from I we define boxes I ε

i : for each auxiliary box Ĩi ∈ I set
I ε
i := {x ∈ R

3 : dist∞(x, Ĩi ) � 1
8N ε1+δ}, and it remains to show that {I ε

i }
satisfy (2a)–(2e). First, by the assumption κ > δ, and so for small enough ε we
have ε1+κ � 1

16N ε1+δ . Therefore, by the triangle inequality we have for any εz ∈ Ĩi

that dist∞(Bε1+κ (εz), ∂ I ε
i ) � 1

8N ε1+δ−ε1+κ � 1
16N ε1+δ , thus (2a) and (2c) hold.

Since by the construction the auxiliary boxes satisfy dist∞( Ĩi , Ĩ j ) � 1
2N ε1+δ , and

all the points from ε�ε(D) are inside these boxes, we see that I ε
i \ Ĩi contains no

point from ε�ε(D). Therefore (iii) for Ĩi ∈ I implies (2b) for I ε
i . Finally, (2d)

trivially follows from the definition of I ε
i and the separation of elements in I in

form of dist∞( Ĩi , Ĩ j ) � 1
2N ε1+δ , and (2e) uses that I ε

i consist in each direction of
at least one cube and of at most N of them.

5. Proofs of Lemma 2 and Theorem 1

Before proving that a box from which we remove finitely many small well-
separated balls is a John domain, let us recall how John domains are defined.

For a constant c > 0, a domain U ⊂ R
d is said to be a c-John domain if there

exists a point x0 ∈ U such that for any point x ∈ U there is a rectifiable path
� : [0, �] → U which is parametrized by arc length with

�(0) = x, �(�) = x0, ∀t ∈ [0, �] : |�(t)− x | ≤ c dist(�(t), ∂U ). (14)

John domains may have fractal boundaries or internal cusps, whereas external
cusps are forbidden. For instance, the interior of Koch’s snowflake as well as any
convex domain are John domains. In the case of bounded domains, there are several
equivalent definitions of John domains, see [37, Section 2.17]. We state the follow-
ing characterisation, which is used in [10, Section 3.1]: A bounded domain U is a
c-John domain in the sense of Definition 1 if and only if there is a c1(c) > 0 and
a point x0 ∈ U such that any point x ∈ U can be connected to x0 by a rectifiable
path � : [0, �] → U which is parametrized by arc length and⋃

t∈[0,�]
B

(
�(t), t/c1

) ⊂ U.

One way how to prove Lemma 2 is inductively by showing, that under some
assumption on a ball one can remove it from a John domainwhile changing the John
constant of the domain by at most a fixed factor—for that we would need to modify
arcs which run close to (or through) this removed ball while estimating how much
does this change the situation. For a similar argument with small balls replaced
with points, see [24, Theorem 1.4]. Assuming this, since we have to remove at
most N balls and at the beginning the domain is rectangle with proportional sides,
in particular a John domain, this would lead to the conclusion.

Instead of this we provide a direct constructing argument.
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Proof of Lemma 2. To start, we use Theorem 3, part (1), twice: once with κ =
κ1 := 1 + δ and second time with κ = κ2 := α − 1 − 3

m − δ. Observe that both
values of κ arewithin the admissible range (max(1, δ), α−1− 3

m ), and therefore the
theorem yields the following: there exists an almost surely positive ε0(ω), obtained
as the smaller of the two ε0, such that, for 0 < ε � ε0, it holds that

max
z j∈�ε(D)

εαr j � ε1+κ2 and |εz j − εzk | � 2ε1+κ1 for any z j , zk ∈ �ε(D). (15)

Assume we have 0 < ε � ε0 small enough and recall that we want to show
that

U := I ε
i \

⋃
k

Bk

is a c(N )−John domain in the sense of Definition 1, where {Bk}k = {Bεαrk (εzk) :
εzk ∈ I ε

i }. For brevity we set I := I ε
i = p + (−l1/2, l1/2) × (−l2/2, l2/2) ×

(−l3/2, l3/2) ⊂ R
3, where p is the center and li are the side lengths of I . Since

(14) is scale-invariant,we can assume l1 � l2 � l3. The set

L := {x ∈ I : dist∞(x, ∂ I ) = 1

32N
ε1+δ}

will serve as a “highway” in the setU , and for the specific point x0 fromDefinition 1
we choose x0 := p+ (0, 0, l3/2− 1

32N ε1+δ). We also denote the ring around L by
G := {x ∈ I : dist∞(x, L) < 1

32N ε1+δ}.
To show that U is a John domain, for each X ∈ U we need to construct a path

from X to x0 along which | · −X | � c dist (·, ∂U ). The idea is first to go from X
to L , and then run along L to x0. Observe that for points x ∈ L the condition is
easy to satisfy: for each x ∈ L we have dist(x, ∂U ) = dist(x, ∂G) = 1

32N ε1+δ and

|x − X | � diam (U ) ≤ √
3 l1, and so using (2e) to see l1 � C(N )ε1+δ we get that

|x − X | � c(N ) dist (x, ∂U ) as required.
It remains to describe the path from X to L . For points X ∈ G this is straight-

forward (see Fig. 1a): we just choose the shortest path from X to L and observe
that any point x on that path satisfies dist (x, ∂U ) � dist (x, ∂G) ≥ 3−1/2|X − x |.
The

√
3 is optimal as can be seen from points in corners.

In the rest of the proof we deal with the points from the “interior” U \ G. For
X ∈ U \G we need to construct a path from X to L , while not going too close near
the balls Bk . We will use two important properties of these balls: the size of the
balls is much smaller than their mutual distance (see (15)), and there are at most
N of them. We fix X ∈ U\G and show that we can actually use a straight line
to connect X with L . Along this line we should be able to move a growing ball
without hitting {Bk}, what is equivalent to an existence of a cone with an opening
c(N ) which avoids all the balls. For that let S be a unit sphere centered at X , and
let P denote the orthogonal projection on S. Farther, let P := P(

⋃
k Bk) denote

the projection of balls on S. Observe that if we find a disc on S of fixed radius
(depending on N ) which does not overlap with P , then we are done since such disc
corresponds to a cone at X avoiding the balls Bk (see Fig. 1b).
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Fig. 1. a The point X ∈ G, first connected to x1 ∈ L (red) and then to x0 while not leaving
L (blue). b The projections (blue) of the balls B1 and Bk onto the sphere S with midpoint
X . The cone C illustrated by the red area hits none of the balls and serves as the “outgoing”
sector from X to L

Hence, we reduced our task to a problem of finding a not too small disc in S\P ,
with P being a union of at most N discs with some additional properties. First, it
can happen that X lies very close to one of the balls, so that the projection of this
particular ball on S covers (almost) half of the sphere S. For this reasonw.l.o.g. let B1
denote the ball whose center is closest to X , which we treat separately: let S′ ⊂ S
be a half-sphere with the pole being exactly opposite to the center of P(B1), in
particular P(B1) and S′ are disjoint. Since B1 was the closest ball to X , it follows
from the second estimate in (15) that X is at least ε1+κ1 away from centers of the
remaining balls Bk, k � 2. On the other hand, the first relation in (15) bounds the
radii of these balls with ε1+κ2 . Therefore, the projections of these remaining balls
are discs of radius at most C ε1+κ2

ε1+κ1
= Cεκ2−κ1 . Since κ2−κ1 = α−2− 3

m −2δ > 0
by the choice of δ in (5), we see that for ε small these (at most N−1) projections are
tiny discs (almost points). We can now find a radius r = r(N ) with the following
property: there exist N discs D1, . . . , DN of radius r in S′ such that the distance
between any two discs is at least r as well. One option is to arrange them along the
boundary of S′ with necessary spacing between them, thus achieving r ∼ N−1.
Provided now ε is small enough so that the radii of P(Bk), which are bounded by
Cεκ2−κ1 , are smaller than r , we are done: there are N discs D1, . . . , DN and at
most N − 1 projections P(Bk) where each projection can touch at most one Dk ,
so that one disc will not overlap with any of the projections P(Bk), thus defining
the cone we are searching for.

This solution to the last question is naturally far from optimal (in r ): consider a
well-studied question of finding an optimal cover of a sphere (more precisely half
of it) with N identical discs of smallest radius. If 	 denotes the smallest such radius,
then for any configuration of N − 1 points in S′ there exists a disc in S′ of radius
	 which avoids them, thus also providing a solution to our problem [36].

Since the perforated boxes U from Lemma 2 are uniform John domains, in
particular we have a Bogovkiı̆ operator on each U , Theorem 1 can be proved along
the lines of the proof in [9]. First, using a Bogovskiı̆ operator on the whole D we
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obtain a function uwith the correct divergence, but which naturally does not vanish
on the holes. To achieve that, we modify u in each box I ε

i . More precisely, near
∂ I ε

i in a boundary layer of size 1
16N ε1+δ we change u to its average value over

this layer, and then inside the box (where also the balls are removed) cut off this
constant function near each hole over a scale εα . Since by this modification we also
change the divergence of the function, we employ Bogovskiı̆’s operator both on
each box as well as near each hole to fix the divergence.

Proof of Theorem 1. Let us recall definition of Dε = D\⋃
z j∈�ε(D) Bεαr j (εz j )

(see (1)). To prove the theorem we construct a linear operator of Bogovskiı̆ type,
bounded independently of ε:

Bε : Lq
0(Dε) → W 1,q

0 (Dε),

satisfying

divBε( f ) = f in Dε, ||Bε( f )||
W 1,q

0 (Dε)
≤ C || f ||Lq

0 (Dε)
. (16)

To this end, we will first use a Bogovskiı̆ operator on the whole domain D and
then correct this function first to its mean value over a large scale and then to zero
near each hole without changing the divergence. We will give some remarks on this
procedure after the proof.

For 1 < q < ∞ and f ∈ Lq
0(Dε)we denote by f̃ ∈ Lq

0(D) its zero extension in
the holes. Using classical Bogovskiı̆’s operator in Lipschitz domain D [17, Chapter
3], the norm of which depends on the Lipschitz character of D, we can find a
function u = BD( f̃ ) ∈ W 1,q

0 (D) satisfying

div u = f̃ in D, ‖u‖
W 1,q

0 (D)
≤ C ‖ f̃ ‖Lq

0 (D) = C ‖ f ‖Lq
0 (Dε)

,

with C = C(D, q).
Since α − 3/m > 2, by applying Theorem 3 we find for every ε > 0 small

enough a finite collection of boxes I ε
i such that for any point z j ∈ �ε(D) there is

i such that

Bεαr j (εz j ) ⊂ B2εαr j (εz j ) ⊂ Bε1+κ (εz j ) ⊂ I ε,in
i ,

where

I ε,in
i := {x ∈ I ε

i : dist∞(x, ∂ I ε
i ) � 1

16N
ε1+δ}.

For any box I ε
i and any ball Bεαr j (εz j ), consider the following corresponding

cut-off functions:

χε,i ∈ C∞
c (I ε

i ), χε,i �I ε,in
i
= 1, ‖∇χε,i‖L∞(D) � ε−(1+δ), (17)

ζε, j ∈ C∞
c

(
B2εαr j (εz j )

)
, ζε, j �Bεαr j

(εz j )= 1, ‖∇ζε, j‖L∞(B2εαr j
(εz j )) � 1

r j
ε−α.

(18)
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Furthermore, we denote the mean value of u over a measurable set S ⊂ R
3 by

〈u〉S := 1

|S|
∫

S
u,

and set that

Aε
i := I ε

i \ I ε,in
i = {x ∈ I ε

i : dist∞(x, ∂ I ε
i ) <

1

16N
ε1+δ},

bε,i (u) := χε,i (u− 〈u〉Aε
i
) ∈ W 1,q

0 (I ε
i ),

βε, j (u) := ζε, j 〈u〉Aε
i
∈ W 1,q

0

(
B2εαr j (εz j )

)
,

where, as before, i and j are related through εz j ∈ I ε
i .

Since all the lengths in the set Aε
i are proportional to ε1+δ (with the proportion-

ality depending on N ), Poincaré’s inequality implies

‖u− 〈u〉Aε
i
‖Lq (Aε

i )
� ε1+δ ‖∇u‖Lq (Aε

i )
,

and by (17) we get that

‖∇bε,i (u)‖Lq (Aε
i )
≤ ‖χε,i∇(u− 〈u〉Aε

i
)‖Lq (Aε

i )
+ ‖∇χε(u− 〈u〉Aε

i
)‖Lq (Aε

i )

� ‖∇(u− 〈u〉Aε
i
)‖Lq (Aε

i )
+ ε−(1+δ) ‖u− 〈u〉Aε

i
‖Lq (Aε

i )

� ‖∇u‖Lq (Aε
i )

.

(19)

Similarly, by (18) and Jensen’s inequality, we get that

‖∇βε, j (u)‖Lq (B2εαr j
(εz j )) = ‖∇ζε, j · 〈u〉Aε

i
‖Lq (B2εαr j

(εz j ))

� r
3
q −1
j ε

(
3
q −1

)
α |〈u〉Aε

i
| � r

3
q −1
j ε

(
3
q −1

)
α |Aε

i |−
1
q ‖u‖Lq (Aε

i )

� r
3
q −1
j ε

(
3
q −1

)
α− 3(1+δ)

q ‖u‖Lq (Aε
i )

.

(20)

Since Bεαr j (εz j ) ⊂ D, we have r j ≤ ε1+κ2−α = ε−( 3
m +δ) by (15) and the choice

of κ2 = α − 1− 3
m − δ. This yields

r
3
q −1
j ε

(
3
q −1

)
α− 3(1+δ)

q ≤ ε
( 3q −1)(α− 3

m−δ)− 3
q (1+δ)

.

Thus, for all 1 < q < 3 which satisfy (2), we can choose δ such that

0 < δ ≤ (3− q)(α − 3
m )− 3

6− q
(21)

to get uniform bounds on ‖βε, j (u)‖Lq (B2εαr j
(εz j )).
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Since βε,i as well as bε, j do not have vanishing divergence, we need to correct
them using Bogovkiı̆ operators on perforations of B2εαr j (εz j ) and I ε

i , respectively.
In the first case one can construct the Bogovkiı̆ operator

B̃ε, j : Lq
0

(
B2εαr j (εz j ) \ Bεαr j (εz j )

) → W 1,q
0

(
B2εαr j (εz j ) \ Bεαr j (εz j )

)
(22)

as in [17, Chapter III and Theorem III.3.1], which mimics the original proof
from Bogovskiı̆ in [6]. Alternatively, one can also construct it by observing that
B2εαr j (εz j )\Bεαr j (εz j ) is a uniform John domain independent of ε and z j and use
[10, Theorem 3.8 and Theorem 5.2]. In the second situation, the existence of the
Bogovskiı̆ operator Bε,i for the set I ε

i \
⋃

εz j∈I ε
i

Bεαr j (εz j ) is content of Lemma 2,
provided we choose δ from (21) possibly even smaller to satisfy also (5). We are
now ready to define the restriction operator from D to Dε via

Rε(u) :=u −
∑

z j∈�ε(D)

(βε, j (u)− B̃ε, j (div βε, j (u)))−
∑

i

(bε,i (u)−Bε,i (div bε,i (u))),

where the last sum runs over all boxes I ε
i and the functions were extended by 0

outside their domain of definition. This definition is essentially the same as in [9];
note that we just replaced their operators BEε,n by our operators Bε,i . Repeating the
arguments shown in [9, Section 3], by (19), (20) and the fact that the boxes I ε

i are

disjoint, we see that Rε(u) ∈ W 1,q
0 (Dε) is well defined and satisfies

div Rε(u) = f in Dε, ‖Rε(u)‖
W 1,q

0 (Dε)

≤ C

(
ε
( 3q −1)(α− 3

m −δ)− 3
q (1+δ) + 1

)
‖u‖

W 1,q
0 (D)

, (23)

where the constant C > 0 is independent of ε > 0. Note that due to the choice of
δ, the exponent of ε on the right hand-site is non-negative, so we may bound Rε

uniformly with respect to ε. For f ∈ Lq
0(Dε) we define

Bε( f ) := (Rε ◦ BD)( f̃ ),

and observe that we get the desired operator, namely Bε( f ) ∈ W 1,q
0 (Dε),

divBε( f ) = f in Dε, and ‖Bε( f )‖
W 1,q

0 (Dε)
≤ C ‖ f ‖Lq (Dε).

This finishes the proof of Theorem 1.

Remark 5. As holes are well separated, one might think that the construction of
the Bogovskiı̆ operator is possible in just two steps: first in the whole domain and
second with a cut-off argument near each hole. This construction would follow the
one from [3] and its Lq -generalization in [29, Section 5]. However, following their
proof, one recognizes that we would get a worse exponent of ε: the term 3

q (1+ δ)

would change to 3
q (2 + δ). This is due to the fact that in our case, we do not have

that the holes have mutual distance of order ε but rather (more than) ε2+δ due to
the random distribution of centers.



14 Page 20 of 29 Arch. Rational Mech. Anal. (2023) 247:14

Remark 6. We note that the ε-dependence in (23) seems not to be optimal but
“close to optimal” in the sense of capacity (see also [29, Remark 2.4]): Recall that
for 1 < q < ∞ and S ⊂ R

d , the q-capacity is defined as

Capq(S) = inf{‖ f ‖q
W 1,q (Rd )

: f ∈ W 1,q(Rd), S ⊂ { f ≥ 1}}.
We will here focus on the case d = 3. For a ball of radius r > 0, it is known that
for any 1 < q < 3 there exists a constant C = C(q) > 0 such that

Capq(Br (0)) = Cr3−q .

Since the capacity is an outer measure, the fact that (for ε > 0 small enough) the
balls are well separated and the expected number of holes inside D is of order ε−3,
together with (10) and the choice of κ2 = α − 1− 3

m − δ we have that

Capq

( ⋃
zi∈�ε(D)

Bri ε
α (εzi )

)
≤

∑
z∈�ε(D)

Capq(Bri ε
α (εzi ))

≤ Cε−3
(

max
zi∈�ε(D)

riε
α
)3−q ≤ Cε(1+κ2)(3−q)−3 = Cε(3−q)(α− 3

m−δ)−3.
(24)

We see that the essential quantity (3−q)(α− 3
m − δ)− 3 arising here is almost the

same as in (23). A possible explanation for the connection between the capacity es-
timates and the estimate for the Bogovskiı̆ operator is as follows. Let u ∈ W 1,q

0 (Dε)

and ϕ ∈ C∞
c (Rd) with ϕ = 1 in D. Then ϕ(1− u) is an admissible function in the

definition of the q-capacity for the union of all holes, that is,

ϕ(1− u) ∈ W 1,q(Rd), ϕ(1− u) = 1 on
⋃

zi∈�ε(D)

Bri ε
α (εzi ).

Direct calculations yield

‖ϕ(1− u)‖W 1,q (Rd ) ≤ C(ϕ) (1+ ‖u‖W 1,q (Dε)
),

as well as

C(ϕ) (1+ ‖u‖q
W 1,q (Dε)

) ≥ ‖ϕ(1− u)‖q
W 1,q (Rd )

≥ Capq

( ⋃
zi∈�ε(D)

Bri ε
α (εzi )

)
.

If α is large and the radii ri are almost constant, meaning that the holes inside D
should be very well separated, one might expect that the inequality (24) is close to
an equality, yielding

‖u‖q
W 1,q (Dε)

≥ Cε(3−q)(α− 3
m −δ)−3.

For the Bogovskiı̆ operator obtained in Theorem 1, we have Bε( f ) ∈ W 1,q
0 (Dε),

so the optimal general estimate on ‖u‖W 1,q (Dε)
may be of size ε

( 3q −1)(α− 3
m −δ)− 3

q .

The suboptimal factor ε
− 3

q (1+δ) in (23) is due to the fact our construction does not
enable us to have a better estimate on ∇βε, j (u) in (20).



Arch. Rational Mech. Anal. (2023) 247:14 Page 21 of 29 14

6. Application to the Navier–Stokes Equations

In this section, wewill show the homogenization result for Navier–Stokes equa-
tions in a randomly perforated domain in the subcritical case α > 3. The proof of
such result in the case of periodically arranged holes was developed in a series of
works [9,15,30], and can be split in two parts. First, using Bogovskiı̆’s operator we
construct a good test function for the momentum equation, which leads to uniform
in ε estimates on the density as well as the velocity, subsequently providing the
compactness. To identify the limiting “effective” equation, we need to construct a
suitable cut-off function in order to compare the limiting equation with the equation
in Dε. Since the rest of the proof does not refer in any way to location or structure
of the holes, in particular it applies verbatim in our context, for that remaining part
of the proof we only sketch the main steps. To shorten the exposition we sketch the
argument only in the stationary case, following [15]. An analogous homogenization
result holds also in the time-dependent setting, and for stationary Navier–Stokes–
Fourier equations—see the statements and the proofs of [30, Theorem 1.6] and [35,
Theorem 2], respectively.

6.1. Test Functions

Before we formulate and show the homogenization result, we prove a modifi-
cation of [30, Lemma 2.1] in the random setting as the last ingredient in the proof
of Theorem 2, which makes a reference to the randomness in the structure of the
holes.

Lemma 4. Let α > 2, D ⊂ R
3 be a bounded C2 star-shaped domain with 0 ∈ D,

and (�,R) = ({zi }, {ri }) be a marked Poisson point process with intensity λ > 0
and ri � 0 with E(r M

i ) < ∞ for M = max{3, m}, where m > 3/(α − 2). Then
for any 1 < r < 3 such that (3 − r)α − 3 > 0 and for almost every ω there
exist a positive ε0(ω) and a family of functions {gε}ε>0 ⊂ W 1,r (D) such that, for
0 < ε ≤ ε0,

gε = 0 in
⋃

z j∈�ε(D)

Bεαr j (εz j ), gε → 1 in W 1,r (D) as ε → 0, (25)

and there is a constant C > 0 such that

‖gε − 1‖W 1,r (D) � Cεσ with σ := ((3− r)α − 3)/r. (26)

Proof. By M > 3/(α − 2) and Theorem 3, all the balls {B2εαr j (εz j )}z j∈�ε(D) are
disjoint. Thus, there exist functions gε ∈ C∞(D) such that

0 ≤ gε ≤ 1, gε = 0 in
⋃

z j∈�ε(D)

Bεαr j (εz j ), gε = 1 in D \
⋃

z j∈�ε(D)

B2εαr j (εz j ),

‖∇gε‖L∞(B2εαr j
(εz j )) ≤ C(εαr j )

−1 for all z j ∈ �ε(D),
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where the constant C > 0 is independent of ε and r j . Moreover, since M ≥ 3, (9)
yields lim

ε→0
ε3

∑
z j∈�ε(D) r3j = C , thus implying that

∣∣∣∣
⋃

z j∈�ε(D)

B2εαr j (εz j )

∣∣∣∣ � |B2|ε3α
∑

z j∈�ε(D)

r3j � Cε3(α−1) (27)

for ε > 0 small enough. This, together with direct calculation, yields that, for any
1 < r < 3,

‖1− gε‖Lr (D) ≤ Cε
3(α−1)

r , ‖∇gε‖Lr (D) ≤ Cε
(3−r)α−3

r ,

which finally leads to

‖1− gε‖W 1,r (D) = ‖1− gε‖Lr (D) + ‖∇gε‖Lr (D) ≤ Cεσ .

� 

6.2. The Navier–Stokes Equations, Weak Solutions, and the Convergence Result

For ε > 0, in the domain Dε as in (1) we consider the stationary Navier–Stokes
equations for compressible viscous fluids

div(	εuε) = 0 in Dε, (28)

div(	εuε ⊗ uε)+∇ p(	ε) = div S(∇uε)+ 	εf + g in Dε, (29)

uε = 0 on ∂ Dε, (30)

where S denotes the Newtonian viscous stress tensor of the form

S(∇u) = μ

(
∇u+ ∇Tu− 2

3
div (u)I

)
+ η div (u)I, μ > 0, η � 0,

p(	) = a	γ denotes the pressure with a > 0 and the adiabatic exponent γ � 1,
and f and g are external forces satisfying ‖f‖L∞(R 3;R 3)+‖g‖L∞(R 3;R 3) � C . We
also fix the total mass ∫

Dε

	ε = m > 0

independently of ε > 0.

Definition 2. We call a couple [	,u] a renormalized finite energy weak solution to
equations (28)–(30) if

	 ≥ 0 almost everywhere in Dε,

∫
Dε

	 = m, 	 ∈ L2γ (Dε), u ∈ W 1,2
0 (Dε);

∫
Dε

p(	) div ϕ + 	u⊗ u : ∇ϕ − S(∇u) : ∇ϕ + (	f + g) · ϕ = 0
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for all all test functions ϕ ∈ C∞
c (Dε;R3), the energy inequality∫

Dε

S(∇u) : ∇u ≤
∫

Dε

(	f + g) · u (31)

holds, and the zero extension [	̃, ũ] satisfies, in D′(R3), that

div(	̃ũ) = 0, div(b(	̃)ũ)+ (	̃b′(	̃)− b(	̃)) div ũ = 0

for any b ∈ C([0,∞)) ∩ C1((0,∞)) such that there are constants

c > 0, λ0 < 1, −1 < λ1 ≤ γ − 1

with

b′(s) ≤ cs−λ0 for s ∈ (0, 1], b′(s) ≤ csλ1 for s ∈ [1,∞).

As announced above we show how to apply our results only in the stationary
case. For that let us first formulate the actual result as follows:

Theorem 7. Assume α > 3. Let D ⊂ R
3 be a bounded star-shaped domain with

respect to the origin with C2-boundary and let (�,R) = ({z j }, {r j }) be a marked
Poisson point process with intensity λ > 0, and r j � 0 with E(r M

j ) < ∞, M =
max{3, m}, m > 3/(α − 3). Furthermore, let

m > 0, γ > 3.

Then, for almost every ω ∈ �, there exists ε0 = ε0(ω) > 0, such that the following
holds: For 0 < ε < 1 let Dε be as in (1) and let [	ε,uε] be a family of renormalized
finite energy weak solutions to (28)–(30). Then there is a constant C > 0, which is
independent of ε, such that

sup
ε∈(0,ε0)

‖	̃ε‖L2γ (D) + ‖ũε‖W 1,2
0 (D)

≤ C,

and, up to a subsequence,

	̃ε ⇀ 	 in L2γ (D), ũε ⇀ u in W 1,2
0 (D),

where the limit [	,u] is a renormalized finite energy weak solution to the problem
(28)–(30) in the limit domain D.

Remark 8. The condition M > 3/(α − 3) on the size of radii of the perforations is
not just needed for technical purposes, but it is in a sense an optimal assumption.
Indeed, one can show that in the casem = 3/(α−3), for almost every realization of
points and radii there is a sequence of ε → 0 such that for each such ε the rescaled
radius εαr j of the largest ball in D is of size ε3, that is, r j ∼ ε3−α . While one large
ball of size ε3 does not necessarily mean that the system should behave as in the
critical case (which is expected to lead to a law of Brinkman type), nevertheless
the presence of such large ball might change some of the properties of the system.
Moreover, in the case m < 3/(α − 3), the size of the largest ball would scale like
εν with ν < 3, and there might be many balls of size at least ε3.



14 Page 24 of 29 Arch. Rational Mech. Anal. (2023) 247:14

Sketch of the proof of Theorem 7. Wewant to give uniform bounds for the velocity
uε and the density 	ε arising in the Navier–Stokes equations (28)–(30). First, by
the energy inequality (31), Korn’s and Hölder’s inequality, we have that

‖∇uε‖2L2(Dε)
� ‖f‖L∞(Dε)‖	ε‖

L
6
5 (Dε)

‖uε‖L6(Dε)
+ ‖g‖L∞(Dε)‖uε‖L6(Dε)

.

Since uε ∈ W 1,2
0 (Dε), we can use Poincaré’s inequality and Sobolev embedding

to obtain ‖uε‖L6(Dε)
� ‖∇uε‖L2(Dε)

, which combined with the previous display
yields

‖∇uε‖L2(Dε)
+ ‖uε‖L6(Dε)

� ‖f‖L∞(Dε)‖	ε‖
L

6
5 (Dε)

+ ‖g‖L∞(Dε)

� ‖	ε‖
L

6
5 (Dε)

+ 1.
(32)

We define a test function

ϕ := Bε

(
	γ

ε − 〈	γ
ε 〉Dε

)
,

where 〈	γ
ε 〉Dε := |Dε|−1

∫
Dε

	
γ
ε is the mean value of 	

γ
ε over the domain Dε

and Bε is the Bogovskiı̆ operator constructed in Theorem 1. We remark that ϕ is
well-defined due to the fact 	

γ
ε ∈ L2(Dε). By the properties of Bε, we obtain

div ϕ = 	
γ
ε − 〈	γ

ε 〉Dε in Dε and

‖ϕ‖W 1,2
0 (Dε)

� ‖	γ
ε ‖L2(Dε)

+ ‖	γ
ε ‖L1(Dε)

� ‖	ε‖γ

L2γ (Dε)
.

Testing (29) with ϕ yields

∫
Dε

p(	ε)	
γ
ε =

4∑
j=1

I j ,

where the integrals I j are defined as

I1 :=
∫

Dε

p(	ε)〈	γ
ε 〉Dε , I2 :=

∫
Dε

μ∇u : ∇ϕ +
(

μ

3
+ η

)
div uε div ϕ,

I3 := −
∫

Dε

	εuε ⊗ uε : ∇ϕ, I4 := −
∫

Dε

(	εf + g) · ϕ.

By interpolation of Lebesgue spaces, we estimate I1 by

|I1| ≤ 1

|Dε| ‖	ε‖2γLγ (Dε)
≤ 1

|Dε|
(
‖	ε‖θ1

L1(Dε)
‖	ε‖1−θ1

L2γ (Dε)

)2γ

� ‖	ε‖2γ (1−θ1)

L2γ (Dε)
,

where θ1 ∈ (0, 1) is determined by

1

γ
= θ1

1
+ 1− θ1

2γ
.

The estimates for the remaining integrals are the same as in [15], so we refer
to [15, page 386] for details. Finally, we obtain ‖	ε‖2γL2γ (Dε)

� 1 + ‖	ε‖2γ (1−β)

L2γ (Dε)
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for some β > 0, which yields ‖	ε‖L2γ (Dε)
≤ C . In view of (32), we also have

‖uε‖W 1,2
0 (Dε)

≤ C , where the constant C > 0 does not depend on ε. This completes

the proof for the uniform bounds.
In the following we want to identify the limiting equations. First, using the fact

that [	ε,uε] is a renormalized weak solution in Dε we get that the zero extensions
of 	ε and uε solve

div(	̃εũε) = 0, div(b(	̃ε)ũε)+ (	̃εb′(	̃ε)− b(	̃ε)) div ũε = 0 in D′,

where b ∈ C([0,∞)) ∩ C1((0,∞)) is as in Definition 2.
Considering the momentum equation in the whole domain, we get an error Fε

on the right-hand side of the equation. Since the balls are tiny (α > 3), this friction
term is in the limit negligible. More precisely, the zero prolongations of the density
and velocity satisfy

∇ p(	̃ε)+ div(	̃εũε ⊗ ũε)− div S(∇ũε) = 	̃εf + g + Fε, (33)

where Fε is a distribution satisfying for all ϕ ∈ C∞
c (D)

|〈Fε, ϕ〉D′,D| � εσ ‖ϕ‖Lr (D) + ε
3(α−1)σ0
2(2+σ0) ‖∇ϕ‖L2+σ0 (D)

with

σ := α − 3

4
, r := 12(α − 1)

α − 3
, σ0 ∈ (0,∞).

To show this, we will use the cut-off function gε from Lemma 4. For any test
function ϕ ∈ C∞

c (D), we test the momentum equation in Dε with gεϕ to get:
∫

D
	̃εũε ⊗ ũε : ∇ϕ + p(	̃ε) div ϕ − S(∇ũε) : ∇ϕ + (	̃εf + g) · ϕ dx

= Iε +
∫

D
	̃εũε ⊗ ũε : ∇(gεϕ)+ p(	̃ε) div(gεϕ)− S(∇ũε) : ∇(gεϕ)

+ (	̃εf + g) · (gεϕ) dx

= Iε,

where we used that gεϕ ∈ C∞
c (D) is an appropriate test function, and the term Iε

is given by

Iε :=
4∑

j=1
Iε, j :=

∫
D

	̃εũε ⊗ ũε : (1− gε)∇ϕ − 	̃εũε ⊗ ũε : (∇gε ⊗ ϕ) dx

+
∫

D
p(	̃ε)(1− gε) div ϕ − p(	̃ε)∇gε · ϕ dx

+
∫

D
−S(∇ũε) : (1− gε)∇ϕ + S(∇ũε) : (∇gε ⊗ ϕ) dx

+
∫

D
(	̃εf + g) · (1− gε)ϕ dx .



14 Page 26 of 29 Arch. Rational Mech. Anal. (2023) 247:14

Using the bounds on the cut-off function gε, we combine the previous estimates
on the density and velocity to prove (33) (for details see [15, Proof of Proposition
2.2]).

By the uniform estimates on 	ε and uε, we get a subsequence (not relabeled)
such that

	̃ε ⇀ 	 in L2γ (D), ũε ⇀ u in W 1,2
0 (D).

By compact Sobolev embedding, this yields

ũε → u strongly in Lq(D) for all 1 ≤ q < 6,

	̃εũε ⇀ 	u weakly in Lq(D) for any 1 < q <
6γ

γ + 3
,

	̃εũε ⊗ ũε ⇀ 	u⊗ u weakly in Lq(D) for all 1 < q <
6γ

2γ + 3
.

Letting ε → 0 in equations (28) and (29), we get the following equations inD′(D):

div(	u) = 0,

div(	u⊗ u)+ p(	) = div S(∇u)+ 	f + g.

Here p(	) is the weak limit of p(	̃ε) in L2(D). Moreover, the couple [	, u] satisfies
the renormalized equations. To finish the proof of Theorem 2, we have to prove
that p(	) = p(	), arguing as in [15, Section 2.4.2].
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