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Abstract

We study the behavior of solutions to the incompressible 2d Euler equations
near two canonical shear flows with critical points, the Kolmogorov and Poiseuille
flows, with consequences for the associated Navier–Stokes problems. We exhibit
a large family of new, non-trivial stationary states that are arbitrarily close to the
Kolmogorov flow on the square torus T

2 in analytic regularity. This situation con-
trasts strongly with the setting of some monotone shear flows, such as the Couette
flow: there the linearized problem exhibits an “inviscid damping” mechanism that
leads to relaxation of perturbations of the base flows back to nearby shear flows.
Our results show that such a simple description of the long-time behavior is not
possible for solutions near the Kolmogorov flow onT

2. Our construction of the new
stationary states builds on a degeneracy in the global structure of the Kolmogorov
flow on T

2, and we also show a lack of correspondence between the linearized
description of the set of steady states and its true nonlinear structure. Both the
Kolmogorov flow on a rectangular torus and the Poiseuille flow in a channel are
very different. We show that the only stationary states near them must indeed be
shears, even in relatively low regularity. In addition, we show that this behavior is
mirrored closely in the related Navier–Stokes settings: the linearized problems near
the Poiseuille and Kolmogorov flows both exhibit an enhanced rate of dissipation.
Previous work by us and others shows that this effect survives in the full, nonlinear
problem near the Poiseuille flow and near the Kolmogorov flow on rectangular tori,
provided that the perturbations lie below a certain threshold. However, we show
here that the corresponding result cannot hold near the Kolmogorov flow on T

2.

1. Introduction

Solutions to the incompressible Euler equations are notoriously difficult to un-
derstand: they exhibit few conserved quantities that are useful for the study of
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asymptotic stability, lack of compactness, chaotic behavior, and many other math-
ematical challenges. Towards gaining a deeper qualitative understanding of their
long time dynamics, it is natural to first investigate possible “end state” configura-
tions, such as stationary states or time-periodic solutions. Such structures can play
a central role in the evolution of a flow, and can even become dominant aspects of
it. Moreover, in some such settings there are clear links to associated dynamics in
the Navier–Stokes equations.

This work is devoted to such questions in the setting of the 2d Euler (ν = 0) or
Navier–Stokes (ν > 0) equations{

∂tU + (U · ∇)U + ∇P = ν�U,

∇ ·U = 0.
(1.1)

For a domain D ⊂ R
2 with suitable boundary conditions, these equations

describe a flow through its velocity field U = (U1,U2) : D × R → R
2, with

P : D→ R being the internal pressure and ν ≥ 0 the kinematic viscosity (inversely
proportional to the Reynolds number). In two dimensions it is advantageous towork
instead with the scalar vorticity � := ∂xU2 − ∂yU1 : D ×R→ R, which satisfies{

∂t�+U · ∇� = ν��,

U = ∇⊥�, �� = �,
(1.2)

and fromwhich the so-called stream function� : D×R→ R and the (divergence-
free) velocity field U of the flow can be recovered as described in (1.2). In this
work we will be dealing chiefly with bounded, rectangular domains with (partially)
periodic or Dirichlet boundary conditions, such as the square torusT

2, a rectangular
torusT

2
δ := [0, 2πδ]×[0, 2π ], δ > 0 with δ �∈ N, or a channelT× I , where I ⊂ R

is an interval.
While these problems are globally well-posed for sufficiently regular initial

data, the long time behavior of their solutions is very hard to understand, especially
in the case of the Euler equations.
Stationary States. A particularly important class of solutions to the Euler equa-
tions (1.2) (with ν = 0) is given by stationary states, i.e. time-independent flow
configurations. Their stream functions satisfy the equation

∇⊥� · ∇�� = 0,

which holds in particular for solutions of the equation �� = F(�), for some
F ∈ C1. Two canonical solutions of this type are shear flows,1 where � depends
on only one of the two spatial variables, and eigenfunctions of the Laplacian.

Since the foundational investigations of Kelvin [25] and Reynolds [34] in
the 1880’s, shear flows have been important in both fluid dynamics theory and
applications, and are commonlyviewedas the natural state of afluid in non-turbulent

1 In a broader context and for more general geometries, such flows are also referred to as
laminar flows.
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situations. On the other hand, eigenfunctions of the Laplacian are of interest, since
the first non-trivial eigenfunctions maximize ‖U‖L2 for fixed ‖�‖L2 , which gives a
natural stabilitymechanism.Due to the additional presenceof viscosity, all solutions
to the 2d Navier–Stokes equations (1.2) (with ν > 0) are damped and eventually
tend to zero.However, aswe shall see later, in some cases there are close connections
between stationary states of the Euler equations and certain special solutions of the
Navier–Stokes equations.

A fundamental question in all these settings is howsolutions near such stationary
states behave, and in particular whether they are stable in a suitable sense, which
has to be very carefully defined. Historically and until now, a natural starting point
has been the investigation of “modal stability”, i.e. the stability properties of the
linearization near a given stationary state. This has uncovered two crucial effects
due to vorticity mixing: in the Euler equations, so-called inviscid damping is a
mechanism that leads to damping of a component of the velocity [4], whereas in
the Navier–Stokes equations enhanced dissipation produces an effective relaxation
rate that is much faster than the natural diffusive one [12,13]. These questions have
received a lot of attention recently and have seen an enormous amount of progress, in
particular for the case of shear flows [3,14,19,22,27,35–37] and vortices [18,26]. In
this context, the classic example is that of theCouette flowU∗(y) = (y, 0) onT×R,
which solves both Euler andNavier–Stokes equations, andwas already investigated
by Kelvin [25]. The linearized problem near U∗ can be solved explicitly, and
demonstrates clearly the mixing effects mentioned above—see also the review
paper [4] and references therein.

The associated nonlinear problems, however, are substantially harder. In the
inviscid case (ν = 0), nonlinear asymptotic stability remained unresolved until
the groundbreaking work of Bedrossian and Masmoudi [5] for the Couette flow.
They established that sufficiently regular and small perturbations converge strongly
in L2 (of velocity) to a shear flow near U∗ as t →∞. As was shown in [15], the
Gevrey regularity here is a crucial ingredient of the proof. The work [5] has led to
many subsequent results. The only nonlinear results on the 2d Euler equations that
we are aware of are [23,24,30], where the method of [5] is extended (in a highly
non-trivial way) to handle the case of monotone shear flows on T × [a, b]. When
ν > 0 experimental predictions and simulations for the Navier–Stokes equations
near U∗ were confirmed mathematically: it was shown that there exists a certain
threshold for the size of the initial data, below which enhanced dissipation also
holds in the nonlinear viscous problem near U∗ [6,7,9], provided the Reynolds
number is large enough.

In the present work we venture into unexplored directions where the natural
analogues and generalizations of the aforementioned results do not hold. In fact,
we show that the basic picture of viewing the nonlinear problem as a suitable
perturbation of the corresponding linear setting can break down.

1.1. Main results

The mixing mechanism upon which the above works are based, discovered
first by Orr [33], relies heavily on the monotonicity of the base profile U∗. Once
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one leaves the realm of monotonic flows, two canonical flows come to mind: the
Kolmogorov and Poiseuille flows UK and UP , respectively, given by

UK (y) = (sin(y), 0), (x, y) ∈ T
2 or (x, y) ∈ T

2
δ ,

UP (y) = (y2, 0), (x, y) ∈ T× I,

where I ⊂ R is an interval. Both are stationary solutions to the Euler equations,
and UP also solves the full Navier–Stokes equations, whereas UK evolves as a
so-called bar state Ubar (t, y) := e−νtUK (y) when ν > 0.

In comparison with the Couette flow, they are both locally degenerate in the
sense that they have a critical point. While the two share this similarity, it turns out
thatUK onT

2 also has a sort of global degeneracy. This is closely tied to the setting
of the square torus T

2 (rather than a rectangular torus T
2
δ ) and, as we show in our

main results below, makes for a crucial difference: while the behavior of solutions
nearUP onT× I orUK onT

2
δ may have similarities to that near the Couette flow as

in [28], the situation nearUK on the square torusT
2 is entirely different. In concrete

terms, the degeneracy of the global structure ofUK onT
2 implies that the linearized

operator LK near UK has a “large” kernel, which includes not only shears (as is
natural for linearized operators near shear flows), but also two eigenfunctions of
the Laplacian. This is a well-known fact, but still allows for linear inviscid damping
and linear enhanced dissipation results [22,35,36], which demonstrate these effects
in a precise, quantified fashion away from the kernel of LK . However, the present
work shows that these effects do not persist in the nonlinear problem. Going further,
we will see below that the nonlinear structure is not accurately represented by the
linear approximation, not even locally and not even to first order.
In the Euler equations. Building on the global degeneracy of UK on T

2, we
construct a large family of new stationary states of analytic regularity, that are
arbitrarily close toUK and do not lie in the kernel of the linearized operator LK :=
sin(y)(1 + �−1)∂x . In particular, these are not simply shears (of which there are
certainly many analytic ones arbitrarily close to UK ), and we thus refer to them as
“non-trivial”.

Our result constructs the corresponding stream functions as perturbations of the
stream function cos(y) of the Kolmogorov flow UK .

Theorem 1. (Stationary states near Kolmogorov) There exists ε0 > 0 such that for
any 0 < ε ≤ ε0 there exist analytic functions �ε ∈ Cω(T2) and Fε ∈ Cω(R)

satisfying

��ε = Fε(�ε) (1.3)

and

‖cos(y)−�ε‖Cω(T2) = O(ε),

with

〈�ε, cos(x) cos(4y)〉 = −ε2
π2

128
+ O(ε3).2 (1.4)
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This shows that, arbitrarily close to the Kolmogorov flow, there are families
of non-trivial (i.e. not in the kernel of LK ), non-shear and stationary solutions
Uε := ∇⊥�ε : T2 → R

2 of the incompressible Euler equations.

This is all the more remarkable, since as initial data in the linearized, inviscid
problem, these solutions would experience the inviscid damping effect as in [36],
but are in fact simply stationary for the full Euler equations! Since moreover our
stationary states are analytic, this shows that the linear inviscid damping results of
[36] cannot be extended in a perturbative spirit to the nonlinear setting, nomatter the
regularity. This is in striking contrast with the case of the Couette flow [28]: there,
similar stationary structures can only exist at low regularity (H7/2 for the stream
function) and as discussed earlier, nonlinear inviscid damping holds at sufficiently
high regularity.

About the proof of Theorem 1 (full details in Section 2). Our constructionbuilds per-
turbatively on the fact that the stream function �K := cos(y) of the Kolmogorov
flow UK satisfies

��K = FK (�K ), FK (z) = −z. (1.5)

To find a larger class of solutions to (1.3), we make the ansatz

�ε = �K + εψ, Fε = FK + ε f,

which yields a nonlinear elliptic equation for ψ (with f to be determined as well)

�ψ + ψ = f (�K + εψ). (1.6)

Notice that here a crucial difference with previous works [10,11] is that the
operator�+1 on the left hand side of (1.6) is not invertible. This global degeneracy
thus leads to somecomplications, but also allowsus to introduce here viaψ elements
of the kernel kerLK . Via the nonlinear interaction, this produces a plethora of
different modes, and in particular allows for a construction of �ε such that the
resulting flow is not inside the kernel of the linearization LK .

At a more technical level, our proof constructs in tandem both the solution
ψ and the nonlinearity f via a contraction argument. This is first done for ψ ∈
H2(T2), and it turns out that a simple choice for f works well: that of an odd, real
quintic polynomial (the coefficients of which are part of the contraction argument).3

Given the relatively explicit nature of our construction, one can then easily find an
expansion of �ε, from which (1.4) follows directly.

Finally, the analytic regularity can be deduced from (1.6) via an elliptic regu-
larity argument, which we detail in Section 2.3. This also yields uniform in ε > 0
analytic Gevrey-1 norm bounds. ��

2 for the precise Gevrey-1 regularity statement see Proposition 2.5
3 Other choices of f are certainly possible, and one sees easily that in factwemay construct

many different families of solutions to (1.3)—see also Remark 2.2 in Section 2.
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Remark 1.1. 1. As this proof shows, a relatively simple form of Fε as an odd,
quintic polynomial suffices. Moreover, one can easily modify our arguments to
show that many families (�ε)ε as in Theorem 1 exist—see also Remark 2.2 in
Section 2 below.

2. Theorem 1 also implies the existence of stationary states near the Kolmogorov
flow on general toriT2

N := [0, 2πN ]×[0, 2π ], N ∈ N, with integer side length
ratio, since we may simply embed N copies of T

2 in such a torus T
2
N .

From the discussion so far one may be tempted to conjecture that one could find
stationary states of the 2d Euler equations on T

2 near Kolmogorov, which depart
in any direction in the kernel of the linearization LK . In fact, one would naturally
conjecture that generically the set of stationary states near a given stationary state
ψ∗ can be locally described by the linearization nearψ∗. As we show in Proposition
2.15 in Section 2.6, under suitable non-degeneracy conditions on ψ∗ this is indeed
the correct picture. However, here we establish that the Kolmogorov flow on T

2

is also degenerate from this perspective: we show in Section 2.4 that there are
elements of kerLK which cannot arise as projections of stationary states near UK

on T
2.

Theorem 2. There exists an infinite-dimensional subspace Y ⊂ kerLK such that
if� : T2 → R satisfies that ‖�+ cos(y)‖H6 is sufficiently small and its projection
PK (� + cos(y)) onto kerLK satisfies PK (� + cos(y)) ∈ Y , then � cannot be a
stationary solution to the 2d Euler equations on T

2.

Highlighting the role of the global (versus local) degeneracy, we show that a
similar construction of stationary states as in our Theorem 1 is not possible near the
Kolmogorov flow on a rectangular torus or near the Poiseuille flow in a channel. In
fact, we show that all nearby stationary states must simply be shear flows, even in
relatively low regularity H3 and H5+, respectively.

Theorem 3. (Rigidity near Kolmogorov on a rectangular torus) Consider the sta-
tionary solution UK (x, y) = (sin(y), 0) on T

2
δ , δ > 0 with δ �∈ N, of the Euler

equations (1.1). There exists ε0 > 0 (depending on δ) such that if U : T2
δ → R

2 is
a further stationary solution to the Euler equations with

‖U −UK ‖H3 ≤ ε0,

then U = U (y) is necessarily a shear flow.

Note that this rigidity does not only hold in the range 0 < δ < 1, but extends
even for tori T

2
δ with δ > 1, as long as δ �∈ N. This is remarkable, as in those

settings the Kolmogorov flow has been proven to be linearly unstable [16,17,32].

About the proof of Theorem 3 (full details in Section 2.5). Our proof builds on the
fact that (in contrast to the setting on T

2) the linearization LK near UK on T
2
δ

only has shears in its kernel. From this we derive a coercivity estimate for nearby
solutions, that allows them to only be shears, provided they are sufficiently close
to UK . ��
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In the setting of the Poiseuille flow, we demonstrate the stronger result that even
any nearby travelling wave solution must simply be a shear flow.

Theorem 4. (Rigidity near Poiseuille) Let s > 5, and consider the 2d Euler equa-
tions on T× [−1, 1]

∂tU +U · ∇U + ∇P = 0, ∇ ·U = 0, U2(x,±1) = 0. (1.7)

There exists ε0 > 0 such that if U (x − ct, y), with c ∈ R, is any traveling wave
solution to (1.7) that satisfies

‖�+ 2y‖Hs ≤ ε0, where U = ∇⊥�, �� = �, (1.8)

then it follows that U ≡ (U1, 0), that is, U is necessarily a shear flow.

About the proof of Theorem 4 (full details in Section 4). Theproof of this result re-
lies on a strong coercivity estimate for linearized operators around shears that are
themselves close to the Poiseuille flow in the Euler equations. This further illumi-
nates the contrast with the setting of the Kolmogorov flow, where no such estimate
for the linearized operator LK is available on T

2. Combining this coercivity bound
with the equations satisfied near UP , we then obtain a contradiction if U is both
non-shear and close to UP , as in the statement of Theorem 4. ��

In the Navier–Stokes equations. The above behavior is closely mirrored in the
related Navier–Stokes settings: the linearized problems near the Poiseuille flow and
the bar states (connected to the Kolmogorov flow) both exhibit an enhanced rate of
dissipation [14,35,36]. Already early experiments of Reynolds on pipe flows [34]
showed that such effects cannot be expected to occur in the nonlinear setting in
general. Instead, one may hope to establish the existence of a nonlinear stability
threshold depending on characteristic quantities of the flow (the so-called Reynolds
number, here inversely proportional to the kinematic viscosity ν > 0): for initial
data below the threshold, the nonlinear problem can be treated perturbatively and
linear effects persist, whereas above it turbulent motion and instabilities may occur.
And indeed, results of this type have been first demonstrated for monotone shear
flows, with subsequent refinements on the precise size of the threshold [7,9,29,31]

Our previous work [14] proved the existence of such a threshold near the
Poiseuille flow in the Navier–Stokes equations, while for the bar states on rect-
angular tori T

2
δ with 0 < δ < 1 this was shown in [36]. In stark contrast to these

results, we show here that the corresponding result cannot hold for the bar states
on T

2.
To make this precise, let us define the space D := (kerLK )⊥ and denote by

PD the associated orthogonal projection onto D. In vorticity formulation, the lin-
earization of the Navier–Stokes equations near the bar states �bar = −e−νt cos(y)
is then given by

∂t f + e−νtLK f = ν� f. (1.9)
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The results of [22,35,36] show that the enhanced dissipation in this linearized
setting can be quantitatively captured by the statement that solutions f (t) to (1.9)
satisfy

‖PD f (t)‖L2 � e−c1ν1/2t ‖PD f (0)‖L2 , ∀t ≤ τ

ν
,

where c1 > 0 is some universal constant and τ > 0 is arbitrary.
Our next result demonstrates that there cannot be any threshold below which

this L2 decay also holds in the nonlinear Navier–Stokes problem near the bar states
on T

2, since there exist initial data arbitrarily close to those of the bar states that
do not decay before the diffusive time scale O(ν−1) is reached.

Theorem 5. For any ν > 0 there exists 0 < ε0 � ν with the following property: let
0 < ε ≤ ε0 and let �ε = ��ε be the vorticity associated to the stationary Euler
flow of Theorem 1, thus satisfying ‖�ε −�bar (t = 0)‖L2 = O(ε). Then PD�ε is
not dissipated at an enhanced rate: i.e. the solution �ν of the initial value problem{

∂t�
ν +U ν · ∇�ν = ν��ν,

�ν(0) = �ε,

on T
2 satisfies for all t ∈ [ 12ν , 1

ν
] the lower bound

∥∥PD�ν(t)
∥∥
L2 � e−νt ‖PD�ε‖L2 .

About the proof of Theorem 5 (full details in Section 3). To prove this we use the
stationary states of the Euler equations constructed in Theorem 1. We combine this
here with the fact that the Navier–Stokes evolution preserves shears and uni-modal
flows. The result is that one can still move away from the Kolmogorov flow in an
almost stationary fashion, even in the Navier–Stokes equation. ��

We remark here once more the crucial role played by the global degeneracy of
UK on the square torus. This can be broken by considering UK on a rectangular
torus, as has been done in [36]. In that setting, the kernel of the linearization LK

trivializes to include only shear flows again, and enhanced dissipation can be shown
to hold not only linearly, but also below a threshold in the nonlinear problem.

1.2. Perspectives

While our results provide a striking look at the rich dynamics of solutions to
2d Euler and Navier–Stokes equations even near relatively simple, stationary flow
configurations, they also open the door tomany further questions.Webriefly discuss
here two areas that seem of particular relevance to us.
Local structure of 2d stationary Euler flows. Given a stationary solution of the
2d Euler equations, a natural and difficult question is whether one can describe
all 2d Euler stationary states near it. For some shear flows, it is possible to show



Arch. Rational Mech. Anal. (2023) 247:12 Page 9 of 37 12

that all sufficiently smooth4 stationary states nearby are shear flows (this was done
for the Couette flow in [28], while our Theorems 3 resp. 4 demonstrate it for the
Kolmogorov flow on rectangular tori resp. the Poiseuille flow). In [10], set on
general domains homeomorphic to an annulus, the authors establish a one-to-one
correspondence between stationary states near a base "non-degenerate" state and
their distribution function (similar to the case of the Couette flow); in the recent
work [11] certain Liouville-type theorems are established (in the spirit of [20,21]),
which show that suitable steady solutions with no stagnation points occupying a
two-dimensional periodic channel must have certain structural symmetries.

This picture ismanifestly false for theKolmogorovflowonT
2, since in any regu-

larity class, any neighborhood of the Kolmogorov flow contains a four-dimensional
set of solutions to�ψ = −ψ . A natural question is whether these are the only “ex-
tra” solutions near the Kolmogorov flow. Our construction in Theorem 1 shows that
there are other solutions and that the local structure of the set of 2d Euler stationary
states near Kolmogorov is much richer: While we find one non-trivial “branch” of
solutions leaving Kolmogorov in a certain direction, we also show that there can-
not be any “branches” in certain other directions (see Theorem 2 resp. Proposition
2.13). In particular, the set of stationary states is not simply a graph over the kernel
of the linearization, not even locally, not in even in analytic regularity. It seems
highly non-trivial to characterize all these branches since there is balance between
freedom and rigidity. A characterization of the full set of stationary solutions near
the Kolmogorov flow on T

2 is thus an outstanding open problem.
Bar states and dipoles in 2d Navier–Stokes. Besides the bar state �bar (t, y) =
−e−νt cos(y), the Navier–Stokes equations on T

2
δ admit another explicit solution

given by

�dip(t, y) = −e−νt cos(y)− e−
ν

δ2
t cos(x/δ), δ ∈ (0, 1],

known as dipole state. Even at the linearized level, the questions of stability and
enhanced dissipation properties of �dip remain unsolved, in both the square and
rectangular torus cases. An interesting analysis in this direction has been carried out
in [1], following the work [2]. In particular, evidence was provided there to show
that—for dynamics before the diffusive timescale ν−1—�dip is a (local) attractor
in the square torus case δ = 1, while for δ < 1, �bar is the asymptotic end state
configuration, at least for small perturbations. While the latter statement on the
nonlinear stability of �bar was proven rigorously in [36], the case of the square
torus is completely open. Our result, however, points strongly in the direction of
confirming the predictions of [1]. In particular, Theorem 5 shows that �bar is not
a local attractor for nearby perturbations on T

2.

1.3. Plan of the article

Section 2 lies at the heart of this article, and begins by establishing Theorem
1. First we construct nontrivial stationary states near UK on T

2 using a two-step

4 We note that even in the comparatively simple case of the Couette flow,without sufficient
regularity there are nearby stationary, non-shear flows [28].
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contraction mapping argument in H2. Second, we show that these stationary states
can be taken to be arbitrarily close to UK in the analytic norm in Section 2.3. In
Section 2.4, we demonstrate Proposition 2, showing that not every linearly neutral
direction gives rise to a nonlinear steady state near UK . Section 2.5 then gives the
proof of rigidity on rectangular tori (Theorem 3): all stationary states near UK on
T
2
δ are shears when δ > 0 is not an integer. In Section 2.6 we then demonstrate

that under suitable non-degeneracy assumptions, the linear approximation near a
stationary state represents the local structure of nearby stationary states.

Section 3 is devoted to the Navier–Stokes equations, showing that no nonlinear
enhanced dissipation result can hold near the bar state Ubar on T

2 (Theorem 5).
Finally, we prove the rigidity result Theorem 4 for traveling waves near the

Poiseuille flow UP in Section 4.

2. Stationary States near Kolmogorov flow

In this section we investigate the existence of stationary states near the Kol-
mogorov flow UK = (sin(y), 0) on square or rectangular tori. To begin, we note
that any nearby shear is trivially a stationary solution as well. In the specific set-
ting of the square torus T

2, one verifies directly that in addition, flows of the form
cos(y)+ a cos(x)+ b sin(x) are stationary, provided a, b ∈ R small enough. This
already hints at the global degeneracy of this particular problem.

To understand the difficulties involved in finding a larger class of non-trivial
stationary states near the Kolmogorov flow on T

2, let us try to (formally) search
for a solution of the 2d Euler equations of the form

�ε = − cos(y)+
∞∑
j=1

ε jω j (x, y),

with ε a small parameter and vorticity �ε non-shear and not just a solution of
��ε = −�ε. By stationarity, the perturbation ωε :=∑∞

j=1 ε jω j has to satisfy the
linearized equation

LKωε = −uε · ∇ωε, uε = ∇⊥�−1ωε, LK = sin(y)(1+�−1)∂x ,

or equivalently,

LKωk = −
k−1∑
j=1

u j · ∇ωk− j , u j = ∇⊥�−1ω j . (2.1)

We can therefore hope to solve for ωk given ω1, · · · , ωk−1. Of course, this method
is unlikely to work directly since there is a clear loss of derivatives in this process.
However, there are even more fundamental problems: the global degeneracy of
UK on T

2 is witnessed by the fact that the operator LK is not invertible (we have
kerLK = {cos(x), sin(x)} ∪ { f ∈ L2 : ∂x f ≡ 0}), and the solvability conditions
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for an equation of the form LK f = g are complicated. In particular, we would
need to know that, at each step, the function

1

sin(y)

k−1∑
j=1

u j · ∇ωk− j

is smooth, mean-free in x only, and orthogonal to sin(x) and cos(x).
When k = 1, we see that ω1 = G(y) + a sin(x) + b cos(x), and we are free

to choose a, b ∈ R and G ∈ C1(T) is mean-free. On the one hand, any non-trivial
choice ofG, a, bwill produce, through the nonlinearity, non-shear modes inω2. On
the other hand, the solvability of (2.1) needs to be preserved, reducing drastically
the degrees of freedom. Although it is not clear a priori whether this formal process
can even be continued for all k, using the freedom of choice of ωk at each step
one can show the existence of non-shear formal power series solutions. The loss of
derivatives in this process, however, makes it very difficult to rigorously show that
the series converges even to an L2 solution.

To get around the derivative loss, we choose to construct stationary solutions
through the semilinear equation (1.3) instead, branching away from the respective
equation (1.5) that the Kolmogorov flow satisfies.

This culminates in Theorem 1, which is established in Sections 2.1-2.3. We
proceed as follows: First we prove the corresponding statement for stream functions
in H2(T2) in Proposition 2.1 below. Lemma 2.9 in Section 2.2 then demonstrates
that these stream functions are indeed non-trivial in the sense that they do not lie
in the kernel kerLK . Via an elliptic regularity type argument our stationary states
can subsequently be upgraded to have analytic regularity—see Proposition 2.5 as
well as Lemma 2.11 and Corollary 2.10 in Section 2.3.

Following this, we establish some obstructions to a natural generalization of
Proposition 2.13 of Section 2.4, as well as a rigidity Theorem 3 for rectangular tori
in Section 2.5. Now let us state the results that combine to give Theorem 1.

Proposition 2.1. There exists ε0 > 0 such that for any 0 < ε ≤ ε0 there exist
functions �ε ∈ H2(T2) and Fε : R→ R satisfying

��ε = Fε(�ε) (2.2)

and

‖cos(y)−�ε‖H2(T2) = O(ε), (2.3)

with

〈�ε, cos(x) cos(4y)〉 = −ε2
π2

128
+ O(ε3). (2.4)

Here the functions Fε can be chosen to be polynomials of degree five.

Remark 2.2. We comment on a few extra details.
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1. More precisely, �ε can be computed to have the expansion

�ε = cos(y)+ ε [cos(x)+ c0 cos(3y)− c1 cos(5y)]

+ ε2
[
−c2 cos(x) cos(4y)− 1

32
b1 cos(3y)− c3 cos(7y)+ c4 cos(9y)

]
+ O(ε3),

as is shown in Lemma 2.9 (where also c0, . . . , c4, b1 are given).
2. Furthermore, one can easily modify our arguments to show that many such

families (�ε)ε exist. Indeed, one way to see this is simply to modify our con-
struction of the functions Fε by adding polynomials with coefficients of order
ε2.

In order to give the precise analyticity statement, we introduce the following
space of analytic functions:

Definition 2.3. For λ > 0 we denote by Gλ(T2) the Gevrey-1 space, defined as the
Banach space of L2 functions, whose norm

‖ f ‖Gλ := ‖eλ|D| f ‖L2 =
∥∥∥eλ|k| f̂ (k)

∥∥∥
�2(k)

< +∞

is finite.

Clearly, functions in Gλ(T2) are analytic, with radius of analyticity λ.

Remark 2.4. By definition of the Sobolev space norms ‖ f ‖Ḣm = ‖ |k|m f̂ (k)‖�2(k)
we have that

‖ f ‖Gλ ≤
∑
m≥0

λm

m! ‖ f ‖Ḣm ,

so that the Gλ norm can be controlled by a suitable growth rate of Sobolev norms.

Proposition 2.5. The functions �ε constructed in Proposition 2.1 are in fact an-
alytic, i.e. �ε ∈ Cω(T2), and there exists λ > 0 and a constant M > 0, both
independent of ε > 0, such that they satisfy

‖cos(y)−�ε‖Gλ(T2) ≤ M · ε.

2.1. Proof of Proposition 2.1

We give the proof of Proposition 2.1 in the following subsections: First we
discuss the setup of the basic construction in Section 2.1.1, which then leads to a
contraction argument (Section 2.1.2), proving (2.2). After this we can work with
the explicit expansion of our functions to establish (2.3), i.e. the presence of modes,
which guarantees that the associated flows do not lie in the kernel of the linearization
LK .
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2.1.1. Setup Our goal is to find stream functions �ε : T
2 → R, for ε > 0

sufficiently small, that satisfy

��ε = Fε(�ε), (2.5)

and are “close” to the Kolmogorov flow �K : T2 → R, (x, y) �→ cos(y). Since
this flow itself satisfies (2.5) with FK : R→ R, z �→ −z, we make the ansatz

�ε = �K + εψ, Fε = FK + ε f,

for perturbations ψ : T
2 → R and f : R → R which are to be determined.

Plugging this into (2.5), we obtain that ( f, ψ) need to satisfy�ψ+ψ = f (cos(y)+
εψ). Since cos(x) ∈ ker(� + 1), we may replace ψ by cos(x) + ψ , which gives
us the following equation to be solved:

�ψ + ψ = f (cos(y)+ ε cos(x)+ εψ), with ψ ⊥ ker(�+ 1). (2.6)

Taking f as a quintic polynomial (with coefficients A, B ∈ R to be determined as
functionals of ψ and ε > 0)

f (A, B; s) = As + Bs3 + 1

5
s5,

we obtain

�ψ + ψ = A cos(y)+ B cos3(y)+ 1

5
cos5(y)

+ εψ
(
A + 3B cos2(y)+ cos4(y)

)
+ ε cos(x)

(
A + 3B cos2(y)+ cos4(y)

)
+ R(B, ψ, ε; x, y),

(2.7)

with

R(B, ψ, ε; x, y) = ε2(ψ + cos(x))2
(
3B cos(y)+ 2 cos3(y)

)
+ ε3(ψ + cos(x))3

(
B + 2 cos2(y)

)
+ ε4(ψ + cos(x))4 cos(y)+ ε5

5
(ψ + cos(x))5.

For simplicity we assume further that ψ is an even function in both x and y (sepa-
rately). Therefore, a necessary compatibility condition in order for (2.7) to have a
solution is that

〈 f (A, B; cos(y)+ ε cos(x)+ εψ), cos(x)〉
= 〈 f (A, B; cos(y)+ ε cos(x)+ εψ), cos(y)〉 = 0.
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These equations can be viewed as restrictions for the two coefficients A = A(ψ; ε)
and B = B(ψ; ε): Plugging in (2.7) and using that

∫
T
cos4(y)dy = 3π

4 and∫
T
cos6(y)dy = 5π

8 , we arrive at the two conditions

(A(ψ; ε), B(ψ; ε)) · V1 = −1

8
− ε

3B(ψ; ε)
2π2 〈ψ, cos3(y)〉

− ε
1

2π2 〈ψ, cos5(y)〉 − 1

2π2 〈R, cos(y)〉, (2.8)

(A(ψ; ε), B(ψ; ε)) · V2 = −3

8

[
1+ 4

3π2 〈ψ, cos4(y) cos(x)〉
]
− 1

2π2ε
〈R, cos(x)〉,

(2.9)

where

V1 :=
(
1,

3

4

)
, V2 :=

(
1,

3

2

[
1+ 1

π2 〈ψ, cos2(y) cos(x)〉
])

.

Observe that if
∣∣〈ψ, cos2(y) cos(x)〉∣∣ is sufficiently small, the vectors V1 and V2 are

not parallel. Together with the prior remarks, this motivates our definition of the
function space X we will work in as

X :=
{
ψ ∈ H2 : ψ(−x, y) = ψ(x,−y) = ψ(x, y), ψ ⊥ cos(y), cos(x),∣∣∣〈ψ, cos2(y) cos(x)〉

∣∣∣+ ∣∣∣〈ψ, cos4(y) cos(x)〉
∣∣∣ ≤ 1

100
, ‖ψ‖H2 ≤ 10

}
.

Lemma 2.6. There exists ε1 > 0 such that ifψ ∈ X, for 0 ≤ ε ≤ ε1 the above rela-
tions (2.8), (2.9) inductively define (a j (ψ)) j≥0, (b j (ψ)) j≥0 ⊂ R with the property
that

A(ψ; ε) :=
∑
j≥0

a j (ψ)ε j , B(ψ; ε) :=
∑
j≥0

b j (ψ)ε j (2.10)

are well-defined, uniformly bounded for ψ ∈ X, and satisfy both (2.8) and (2.9).
Moreover, the maps

ψ �→ a j (ψ), ψ �→ b j (ψ), j ≥ 0,

are Lipschitz continuous on L2 with constants L j ≤ L j for some L > 0, and the
maps

ψ �→ a0(ψ), ψ �→ b0(ψ),

are Lipschitz continuous on Ḣ2 (and thus also H2) with constant L̃0 ≤ 1
4π .
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Proof. Subtracting (2.8) from(2.9)weobtain the following closed form for B(ψ; ε):

[
3

4
+ 3

2π2 〈ψ, cos2(y) cos(x)〉
]
B(ψ; ε)

= −
[
1

4
+ 1

2π2 〈ψ, cos4(y) cos(x)〉
]

+ 1

2π2

[
−1

ε
〈R, cos(x)〉 + 3εB(ψ; ε)〈ψ, cos3(y)〉 + ε〈ψ, cos5(y)〉

]

+ 1

2π2 〈R, cos(y)〉.

(2.11)

Inserting here the expansion (2.10) for B(ψ; ε) and comparing coefficients (in
ε) shows that b j (ψ) can be inductively defined from {bk(ψ)} j−3≤k≤ j−1. In fact,
the map {bk(ψ)} j−3≤k≤ j−1 �→ b j (ψ) is a linear map with coefficients that are
uniformly bounded in ψ ∈ X . Hence for M sufficiently large we have∣∣b j (ψ)

∣∣ ≤ M j ,

and the series expansion for B(ψ; ε) converges for 0 ≤ ε < M−1. The same holds
for A(ψ, ε), since we can now simply use (2.8) to find its expansion, e.g., we have
that

a0(ψ) = −3

4
b0(ψ)− 1

8
, (2.12)

and similarly for a j (ψ), j ≥ 1, which can be inductively defined from B(ψ; ε)
and {ak(ψ)} j−3≤k≤ j−1.

It remains to prove the claimed Lipschitz property. For j ≥ 1 this follows
directly from the recursive construction of the coefficients. Regarding j = 0, we
observe that by (2.11) we have that

b0(ψ) = B(ψ; 0) = −1+ 2
π2 〈ψ, cos4(y) cos(x)〉

3+ 6
π2 〈ψ, cos2(y) cos(x)〉 =:

n(ψ)

d(ψ)
. (2.13)

Towards finding the Ḣ2 Lipschitz constants, we note that since ψ ∈ X , it holds
that

〈ψ, cos4(y) cos(x)〉 =
〈
ψ,

(
1

8
cos(4y)+ 1

2
cos(2y)

)
cos(x)

〉
,

〈ψ, cos2(y) cos(x)〉 =
〈
ψ,

1

2
cos(2y) cos(x)

〉
.

Consequently we obtain

|n(ψ1)− n(ψ2)| ≤ 2

π2
‖ψ1 − ψ2‖Ḣ2

∥∥∥∥
(
1

8
cos(4y)+ 1

2
cos(2y)

)
cos(x)

∥∥∥∥
Ḣ−2



12 Page 16 of 37 Arch. Rational Mech. Anal. (2023) 247:12

and

|d(ψ1)− d(ψ2)| ≤ 6

π2
‖ψ1 − ψ2‖Ḣ2

∥∥∥∥12 cos(2y) cos(x)

∥∥∥∥
Ḣ−2

.5

Now we compute that

∥∥∥∥
(
1

8
cos(4y)+ 1

2
cos(2y)

)
cos(x)

∥∥∥∥
Ḣ−2
= π

[
17−2 1

82
+ 5−2 1

22

]1/2

≤ π

9

and ∥∥∥∥12 cos(2y) cos(x)

∥∥∥∥
Ḣ−2
= π

10
.

The Ḣ2 (and thus also H2) Lipschitz constant of b0 is thus bounded by

1

3− 6
100π2

2

π2

π

9
+

(
1

3− 6
100π2

)2 (
1+ 1

50π2

)
6

π2

π

10
≤ 1

4π
.

In view of (2.12) this bound also holds for the Lipschitz constant of a0. ��
We conclude this section with some direct properties of the function f thus

constructed.

Lemma 2.7. Let ψ,ψ j ∈ X, j ∈ {1, 2}, and construct A(ψ; ε), B(ψ; ε) as in
Lemma 2.6. Then we have for ε > 0 sufficiently small that

|A(ψ; ε)| , |B(ψ; ε)| ≤ 1, (2.14)

|A(ψ1; ε)− A(ψ2; ε)| , |B(ψ1; ε)− B(ψ2; ε)| ≤ 1

3π
‖ψ1 − ψ2‖Ḣ2 , (2.15)

and

‖R(B(ψ; ε), ψ, ε; ·, ·)‖L2 � ε2, (2.16)

‖R(B(ψ1; ε), ψ1, ε; ·, ·)− R(B(ψ2; ε), ψ2, ε; ·, ·)‖L2 � ε2 ‖ψ1 − ψ2‖L2 .

(2.17)

Proof. The bounds (2.14) follow directly from the power series construction of
A and B. The estimate (2.15) follows from the expansion (2.10) and the bounds
for the Lipschitz constants of the zero order terms a0(ψ), b0(ψ) in Lemma 2.6.
Similarly, (2.16) and (2.17) follow directly from construction. ��

5 We recall that Ḣn denotes the standard homogeneous Sobolev space of order n ∈ Z

on the torus T
2, defined through the norm ‖ϕ‖Ḣn = 2π

(∑
k∈Z2 |k|2n |ϕ̂(k)|2

)1/2
, with

Fourier coefficients ϕ̂(k) = (2π)−2
∫
T2 ϕ(z)e−ik·zdz.
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2.1.2. Contraction Argument We will now construct solutions of (2.7) as con-
tractions in X . To this end, define

Kε : X → H2,

ψ �→
[
(x, y) �→ (1+�)−1 f (A(ψ; ε), B(ψ, ε); cos(y)+ ε cos(x)+ εψ)

]
,

where A(ψ; ε) and B(ψ; ε) are constructed as in Lemma 2.6

Proposition 2.8. For ε > 0 small enough, Kε defines a contraction on (X, ‖·‖H2).

Proof. Let 0 < ε < ε1, so that by Lemma 2.6 the coefficients A(ψ; ε) and B(ψ; ε)
are well-defined.

First we show that Kε maps X into itself. By construction it is clear that if ψ

is even in x and y (separately), then so is Kε(ψ). Due to the smoothing property
of (� + 1) and the fact that H2 forms an algebra, it suffices to prove H2 → L2

bounds on

K̃ε : ψ �→ f (A(ψ; ε), B(ψ, ε); cos(y)+ ε cos(x)+ εψ).

Since

| f (A(ψ; ε), B(ψ; ε); cos(y)+ ε cos(x)+ εψ)| ≤ 1+ Cε |ψ |5

we find

‖ f (A(ψ; ε), B(ψ; ε); cos(y)+ ε cos(x)+ εψ)‖L2 ≤ 10,

so that

‖Kε(ψ)‖H2 ≤ ∥∥K̃ε(ψ)
∥∥
L2 ≤ 10.

Moreover, one computes directly that∣∣∣〈Kε(ψ), cos2(y) cos(x)〉
∣∣∣+ ∣∣∣〈Kε(ψ), cos4(y) cos(x)〉

∣∣∣ � ε,

and thus for ε small enough Kε(X) ⊂ X .
To show that Kε defines a contraction, let ψ j ∈ X , j ∈ {1, 2}, and define

G j = cos(y)+ ε cos(x)+ εψ j , with
∥∥G j

∥∥
L2 ≤ 2.

Then

K̃ε(ψ1)− K̃ε(ψ2) = f (A(ψ1; ε), Bε(ψ1);G1))− f (A(ψ2; ε), B(ψ2; ε);G2))

= (A(ψ1; ε)− A(ψ2; ε))G1 + εA(ψ2; ε)(ψ1 − ψ2)

+ (B(ψ1; ε)− B(ψ2; ε))G3
1

+ εB(ψ2; ε)(ψ1 − ψ2)
[
G2

1 + G1G2 + G2
2

]
+ ε

5
(ψ1 − ψ2)

[
G4

1 + G3
1G2 + G2

1G
2
2 + G1G

3
2 + G4

2

]
.
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Up to terms of order ε we then have to bound

∥∥∥(a0(ψ1)− a0(ψ2)) cos(y)+ (b0(ψ1)− b0(ψ2)) cos
3(y)

∥∥∥
L2

≤ 1

4π

[
‖cos(y)‖L2 +

∥∥∥cos3(y)∥∥∥
L2

]
‖ψ1 − ψ2‖Ḣ2

=
√
2

4

[
1+

√
5

8

]
‖ψ1 − ψ2‖Ḣ2

<
2

3
‖ψ1 − ψ2‖Ḣ2 ≤ 2

3
‖ψ1 − ψ2‖H2 ,

thanks to Lemma 2.6. This shows that

‖Kε(ψ1)− Kε(ψ2)‖H2 ≤ ∥∥K̃ε(ψ1)− K̃ε(ψ2)
∥∥
L2

≤
(
2

3
+ O(ε)

)
‖ψ1 − ψ2‖H2 ,

and for ε > 0 sufficiently small we thus obtain a contraction. ��

2.2. Non-triviality of the stationary modes

Now for given ε > 0, let ψε ∈ X be the fixed point of Kε in X , well-defined by
virtue ofProposition2.8.Weconclude the proof ofProposition2.1 bydemonstrating
that ψε has nontrivial x modes, in the sense that the associated flows are not in the
kernel of the linearization LK .

Lemma 2.9. For sufficiently small ε > 0 as in Proposition 2.8, let ψε be the fixed
point of Kε. Then ψε has the expansion

ψε = c0 cos(3y)− c1 cos(5y)

+ ε

[
−c2 cos(x) cos(4y)− 1

32
b1 cos(3y)− c3 cos(7y)+ c4 cos(9y)

]
+ O(ε2),

(2.18)

with coefficients that can be explicitly computed as (c0, c1, c2, c3, c4) = ( 1
384 ,

1
1920 ,

1
128 ,− c0

768 ,
c1

1280 ) and b1 = − 7
7680 .

In particular, from (2.18) we directly have that

〈ψε, cos(kx) cos(ly)〉 =
{
−ε π2

128 + O(ε2), (k, l) = (1, 4),

O(ε2), else, with k �= 0, l �= 3, 5,

from which (2.4) follows: it suffices to recall that �ε = cos(y)+ ε cos(x)+ εψε.
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Proof of Lemma 2.9. We recall that for a given ε > 0, by construction the function
ψε satisfies the identity (2.7), which we expand and restate here for convenience:

�ψε + ψε = cos(y)

[
A + 3

4
B + 1

8

]
+ cos(3y)

[
1

4
B + 1

16

]
+ cos(5y)

[
1

80

]

+ ε(ψε + cos(x))

[(
A + 3

2
B + 3

8

)
+ cos(2y)

(
3

2
B + 1

2

)
+ cos(4y)

1

8

]
+ O(ε2).

(2.19)

Here the coefficients A = A(ψε; ε), B = B(ψε; ε) are fixed and given explicitly
by solving the system (2.8), (2.9).

Via the relation

〈(1+�)ψε, cos(kx) cos(ly)〉 = (1− k2 − l2)〈ψε, cos(kx) cos(ly)〉, (2.20)

we may thus successively determine an expansion of ψε by testing (2.19) with
cos(kx) cos(ly).

Since by (2.12) and (2.13) we have a0(ψε) = 1
8 + O(ε) and b0(ψε) = − 1

3 +
O(ε) with a0(ψε)+ 3

4b0(ψε)+ 1
8 = 0, this yields

�ψε + ψε = − 1

48
cos(3y)+ 1

80
cos(5y)

+ ε(ψε|ε=0 + cos(x))
1

8
cos(4y)+ ε cos(y)

[
a1 + 3

4
b1

]

+ ε cos(3y)

[
1

4
b1

]
+ O(ε2),

(2.21)

where a1, b1 can be computed explicitly through the equations (2.8), (2.9). Hence
from (2.20) it follows that ψε|ε=0 = c0 cos(3y) − c1 cos(5y) with c0 = 1

384 and
c1 = 1

1920 . Reinserting this into the second line of (2.21) and computing the terms
of order ε then yields the claim (2.18). ��

2.3. Proof of Proposition 2.5: elliptic regularity

In this section we prove Proposition 2.5. Since �ε − cos(y) = ε cos(x)+ εψε,
it is enough to show that in fact our fixed pointψε ∈ Cω(T2) is an analytic function
with uniform in ε bounded Gevrey-1 norm. This is the content of the following
corollary.

Corollary 2.10. For ε > 0 sufficiently small as in Proposition 2.8, letψε ∈ H2(T2)

be the fixed point of Kε. Then we have that ψε ∈ Cω(T2) and there exist constants
λ > 0 and M > 0, both independent of ε > 0, such that

‖ψε‖Gλ ≤ M.
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The key point here is that ψε satisfies the equation (2.6), which is an elliptic,
semilinear equation with analytic coefficients that are fixed once ε > 0 is given.
Our Corollary 2.10 is then a direct consequence of the following slightly more
general lemma regarding “elliptic regularity”:

Lemma 2.11. Let L be a linear, constant coefficient partial differential operator,
for which there exists a constant CL > 0 such that for f ∈ L2, f �∈ kerL , it
holds that

CL ‖L f ‖L2 ≥ ‖ f ‖Ḣ2 , (2.22)

and let ak ∈ Cω(T2), 0 ≤ k ≤ n, be analytic functions, with Ca > 0 such that for
all � ∈ N0

‖ak‖H� ≤ (Ca)
� · �!, 0 ≤ k ≤ n. (2.23)

If ϕ ∈ H2(T2) solves the semilinear partial differential equation

L ϕ =
n∑

k=0
akϕ

k, (2.24)

then ϕ ∈ Cω(T2), and there exist constants λ > 0 and C∗ > 0, depending only on
Ca and CL , such that

‖ϕ‖Gλ ≤ 2C∗.

Remark 2.12. 1. As the proof shows, it suffices to impose the requirement (2.22)
on the solution of (2.24), rather than on a general f ∈ L2. Moreover, one
may allow L to have variable coefficients, provided suitable commutativity
properties with derivatives hold.

2. By tracking the constants in the proof of Lemma 2.11 one sees that the radius
of analyticity λ can be chosen to be of order O(C−1a ).

3. While the analytic regularity of solutions to general semilinear elliptic equations
with analytic nonlinearity seems to be a classical result (see for example [8,
page 136]), we were not able to find a modern proof of this that also gives norm
estimates for the solutions. We thus give the full result and proof.

We shownext how this implies the claimed analyticity of the stationary solutions
ψε with uniform in ε Gevrey bounds.

Proof of Corollary 2.10. Fix ε > 0 as in the statement of Proposition 2.5. By
construction (2.6), ψε satisfies ψε �∈ ker(1 + �) and solves an equation of the
form

(�+ 1)ψε = p(cos(y)+ ε cos(x)+ εψε).

Here, p : z �→ Az + Bz3 + 1
5 z

5 is a real polynomial with fixed coefficients
A = A(ψε; ε), B = B(ψε; ε) ∈ [−1, 1] that are bounded uniformly in ε > 0 (for
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ε sufficiently small)—see Lemma 2.7. Expanding p as a polynomial in ψε we thus
obtain uniformly bounded cmn ∈ R, 1 ≤ m, n ≤ 5, such that

(�+ 1) ψε =
5∑

k=0

( ∑
m+n=5−k

cmn cos(y)
mεn cos(x)n

)
· ψk

ε .

This is of the form (2.24), and the conditions of Corollary (2.10) are satisfied,
uniformly in ε: We have ̂(�+ 1)ϕ(k) = (−k2+1)ϕ̂(k), hence for ϕ �∈ ker(�+1)
there holds ‖(�+ 1)ϕ‖L2 ≥ C1 ‖ϕ‖Ḣ2 for some C1 > 0, and there exists C2 > 0
such that for any � ∈ N0 it holds that∥∥∥∥∥∥

∑
m+n=5−k

cmn cos(y)
mεn cos(x)n

∥∥∥∥∥∥
H�

≤ C�
2, 0 ≤ k ≤ 5.

Hence we may apply the result of Lemma 2.11 to obtain the claim. ��
Finally, we conclude this section by giving the proof of Lemma 2.11.

Proof of Lemma 2.11. For simplicity of notation let us abbreviate the nonlinearity
in (2.24) asN (ϕ). Furthermore we will writeC0 > 0 for the constant in the algebra
property

‖ f g‖H2 ≤ C0 ‖ f ‖H2 ‖g‖H2 (2.25)

of H2.
We show by induction that there exist constants R > 0, C∗ > 0, such that for

any multiindex α = (α1, α2) ∈ N
2
0 we have that

‖∂αϕ‖H2 ≤ C∗
R|α| · α!

(α1 + 1)2(α2 + 1)2
. (2.26)

For |α| = 0 this is simply the statement that ϕ ∈ H2(T2). Note that by assumption
(2.23) we may assume that the corresponding statement with constant 2Ca holds
for ak :

‖∂αak‖H2 ≤ (2Ca)
|α| · α!

(α1 + 1)2(α2 + 1)2
, 0 ≤ k ≤ n. (2.27)

We thus assume in what follows that R ≥ 2Cα .
If |α| ≤ 2, using the assumptions (2.22) and (2.23) as well as the algebra

property (2.25), we can estimate∥∥∂αϕ
∥∥
Ḣ2 ≤ CL

∥∥∂αL ϕ
∥∥
L2

≤ CL ‖N (ϕ)‖H2 ≤ 4Cn−1
0 C∗CL · ((C2

a · 2!)n + ‖ϕ‖nH2)

≤ R|α| · α!
9

,

for R > 0 chosen large enough.
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Now assume that (2.26) holds for all |β| ≤ �, for some � ≥ 3. Let β =
(β1, β2) ∈ N

2
0 with |β| = � + 1. Then we have that for any γ ≤ β with |γ | =

|β| − 2 = �− 1, there holds

‖∂βϕ‖Ḣ2 ≤ CL ‖∂βL ϕ‖L2 ≤ CL ‖∂βN (ϕ)‖L2 ≤ CL

∥∥∂γN (ϕ)
∥∥
H2 .

Since by (2.26) and (2.27) both ak andϕ satisfy the same kind of bounds, to estimate
∂γN (ϕ) in H2 it suffices to bound monomials

∥∥∂γ (ϕk)
∥∥
H2 , 0 ≤ k ≤ n. Writing

γ = (γx , γy), we expand this to deduce that

∥∥∥∂γ (ϕk)

∥∥∥
H2
=

∥∥∥∂
γx
x ∂

γy
y (ϕk)

∥∥∥
H2

≤ C0

∑
i1≤γx ,

i ′1≤γy

(
γx

i1

)(
γy

i ′1

) ∥∥∥∂
γx−i1
x ∂

γy−i ′1
y ϕ

∥∥∥
H2

∥∥∥∂ i1x ∂
i ′1
y (ϕk−1)

∥∥∥
H2

≤ Ck
0

∑
i1≤γx ,

i ′1≤γy

(
γx

i1

)(
γy

i ′1

) ∥∥∥∂
γx−i1
x ∂

γy−i ′1
y ϕ

∥∥∥
H2

∑
i2≤i1,
i ′2≤i ′1

(
i1
i2

)(
i ′1
i ′2

) ∥∥∥∂ i1−i2x ∂
i ′1−i ′2
y ϕ

∥∥∥
H2

. . .

. . .
∑

ik−1≤ik ,
i ′k−1≤i ′k

(
ik−1
ik

)(
i ′k−1
i ′k

) ∥∥∥∥∂
ik−1−ik
x ∂

i ′k−1−i ′k
y ϕ

∥∥∥∥
H2

∥∥∥∂ ikx ∂
i ′k
y ϕ

∥∥∥
H2

.

(2.28)

Now we note that for any N ∈ N we have that

N∑
m=0

1

(1+ m)2(1+ (N − m))2
≤ 1

(1+ � N2 �)2
� N2 �∑
m=0

1

(1+ m)2

+ 1

(1+ � N2 �)2
N∑
� N2 �

1

(1+ (N − m))2

≤ 8

(1+ N )2
· π

2

6
≤ 15

(1+ N )2
,

so that appealing to the inductive hypothesis (2.26) we estimate that

∑
ik−1≤ik ,
i ′k−1≤i ′k

(
ik−1
ik

)(
i ′k−1
i ′k

) ∥∥∥∥∂
ik−1−ik
x ∂

i ′k−1−i ′k
y ϕ

∥∥∥∥
H2

∥∥∥∂ ikx ∂
i ′k
y ϕ

∥∥∥
H2

≤ C2∗Rik−1Ri ′k−1 ik−1! i ′k−1!
∑

ik−1≤ik

1

(1+ ik−1)2(1+ (ik − ik−1))2
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∑
i ′k−1≤i ′k

1

(1+ i ′k−1)2(1+ (i ′k − i ′k−1))2

≤ (15C∗)2 · Rik−1Ri ′k−1 ik−1! i ′k−1! ·
1

1+ (ik−1)2
1

1+ (i ′k−1)2
.

We iterate this in (2.28) to deduce that∥∥∥∂γ (ϕk)

∥∥∥
H2
≤ Ck

0 · (15C∗)2k ·
Rγx γx !

(1+ γx )2

Rγyγy !
(1+ γy)2

≤ 4Cn
0 · (15C∗)2n

R|γ | · β!
(1+ β1)2(1+ β2)2

≤ 1

nCL
· R|β| · β!
(1+ β1)2(1+ β2)2

,

where we used that |γ | + 2 = |α| and chose R ≥ 2C
n
2
0 · (15C∗)n · (nCL )

1
2 large

enough. This yields the induction claim (2.26) upon summation:

‖∂βϕ‖Ḣ2 ≤ CL

∥∥∂γN (ϕ)
∥∥
H2 ≤ nCL sup

0≤k≤n
‖∂γ (ϕk)‖H2

≤ R|β| · β!
(1+ β1)2(1+ β2)2

.

Now the conclusion follows swiftly: From (2.26) we deduce that

‖ϕ‖Ḣ k ≤ k · sup
|α|=k−2

∥∥∂αϕ
∥∥
H2 ≤ C∗ · Rk · k!,

so that, for 0 < λ < 1
2R , we have that

‖ϕ‖Gλ ≤ C∗
∞∑
k=0

λk

k! ‖ϕ‖Ḣ k ≤ C∗
∞∑
k=0

(λR)k ≤ 2C∗.

This concludes the proof. ��

2.4. Obstructions on the square torus

Here we shed light on a piece in the puzzle towards understanding the local set
of steady states around the Kolmogorov flow on T

2. As mentioned already at the
beginning of Section 2, any nearby shear is trivially a stationary solution as well,
as are flows of the form cos(y)+ a cos(x)+ b sin(x) for a, b ∈ R small enough.

In view of our previous results, it would thus be tempting to conjecture that the
set of steady states can be locally identified in some sense with the kernel ofLK (as
in the case of shear flows, and for a class of non-degenerate stationary states—see
Proposition 2.15). That is, one could imagine that if one wanted to depart from
Kolmogorov towards another stationary state, it should be possible to do so in the
direction of any linearly neutral state. However, the following proposition shows
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that this is not the case: there are neutral directions that immediately take one
outside the set of stationary states. To make this precise, let us denote by PK the
orthogonal projection onto kerLK , and recall that

LK = sin(y)(1+�−1)∂x .

Proposition 2.13. If for some � ∈ N, � ≥ 2,

PK (�∗ + cos(y))

‖PK (�∗ + cos(y))‖L2
= 1

2π
(sin(�y)+ cos(x)),

then there exists ε0 > 0 small so that if ‖�∗ + cos(y)‖H6 = ε < ε0, then �∗ is
not a stationary solution to the 2d Euler equations.

Remark 2.14. The coefficients of sin(�y) and cos(x) are not actually important in
the proof, so as a result we obtain Theorem 2 from the introduction. As will be seen
from the proof, the heuristic condition onPK (�∗+cos(y)) is that its self-interaction
not lie in the range ofLK . It seems that non-existence can be established in general
under this condition, but note that lying in the range of LK is not a sufficient
condition for existence.

Proof. Without loss of generality we treat the case � = 2. By assumption, we can
write

ω∗ := �∗ + cos(y) = a(sin(2y)+ cos(x))+ ω̃(x, y),

where a ∈ R \ {0} and ω̃ ∈ ker(LK )⊥ (i.e. ω̃ is orthogonal to all functions of y
only, as well as to sin(x) and cos(x)). By assumption, we also know that

|a|2 + ‖ω̃‖2H6 ≤ ε2.

Now assume toward a contradiction that �∗ is a stationary solution to the 2d
Euler equations. Then we have that −LK ω̃ = −LKω∗ = u∗ · ∇ω∗, where u∗ =
∇⊥�−1ω∗, and we compute this as

−LK ω̃ = u∗ · ∇ω∗ =
[
a

( 1
2 cos(2y)
sin(x)

)
+ ũ

]
·
[
a

(− sin(x)
2 cos(2y)

)
+∇ω̃

]

= 3

2
a2 sin(x) cos(2y)+ a

( 1
2 cos(2y)
sin(x)

)
· ∇ω̃

+ ũ · a
(− sin(x)
2 cos(2y)

)
+ ũ · ∇ω̃.

(2.29)

Here ũ = ∇⊥�−1ω̃, which is average-free. From an integration by parts, we obtain
the identity ∫

∂y (sin(y) f ) cos(y) f = 1

2

∫
f 2, (2.30)
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which gives that
∥∥∂y(sin(y) f )

∥∥
L2 ≥ 1

2 ‖ f ‖L2 , with which it follows that

‖ω̃‖L2 ≤ 2 ‖LK ω̃‖H1 = 2 ‖u∗ · ∇ω∗‖H1 ≤ Ca2 + C |a| ‖ω̃‖H2 + C ‖ω̃‖2H2

≤ Ca2 + C |a| ‖ω̃‖1/2
L2 ‖ω̃‖1/2H4 + C ‖ω̃‖L2 ‖ω̃‖H4

≤ Ca2 + Cε ‖ω̃‖L2 ,

where C > 0 is a universal constant. Hence for ε > 0 sufficiently small we have
that

‖ω̃‖L2 ≤ Ca2,

implying that

‖ω̃‖2H3 ≤ C ‖ω̃‖L2 ‖ω̃‖H6 ≤ Ca2ε. (2.31)

On the other hand, evaluating (2.29) at the point (x, y) = (π/2, 0), we use (2.31)
to find the bound

0 ≥ 3

2
a2 − aC ‖ω̃‖W 1,∞ − ‖ω̃‖2W 1,∞ ≥ 3

2
a2 − Ca2ε1/2 − Ca2ε.

For ε > 0 sufficiently small this implies that a = 0, which is a contradiction. ��

2.5. Rigidity on rectangular tori

In this section we further highlight the role of the domain geometry in creating
the global degeneracy we exploited in Theorem 1 to construct non-trivial stationary
states near theKolmogorovflow.Wenowshow that this result is indeed special to the
square torus T

2: we demonstrate that on rectangular tori T
2
δ = [0, 2πδ] × [0, 2π ]

with δ > 0 and δ �∈ N (and periodic boundary conditions), all stationary, sufficiently
regular 2d Euler flows near the Kolmogorov flow UK = (sin(y), 0) are purely
shears. This is the content of our Theorem 3, restated here for convenience.

Theorem. (Rigidity on rectangular tori)Consider the stationary solutionUK (x, y) =
(sin(y), 0)onT

2
δ , δ > 0with δ �∈ N, of theEuler equations (1.1). There exists ε0 > 0

(depending on δ) such that if U : T2
δ → R

2 is a further stationary solution to the
Euler equations with

‖U −UK ‖H3 ≤ ε0, (2.32)

then U = U (y) is a shear flow.

We observe that this rigidity is also witnessed at the level of the linearized
operator LK : Since on T

2
δ there exists cδ > 0 such that∥∥∥(1+�−1δ )∂x f

∥∥∥
L2
≥ cδ ‖∂x f ‖L2 , (2.33)

the kernel kerLK consists only of shears in y, a fact we rely on for our proof of
this result.
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Proof of Theorem 3. We define u := U −UK , and let ω be the associated vorticity
ω = ∂xu2 − ∂yu1, which has zero average on T

2
δ and satisfies ‖ω‖H2 � ε0 by

assumption (2.32). Since U is a stationary Euler solution, we have that ω satisfies
the equation

LKω + u · ∇ω = 0.

Writing �δ for the Laplacian on T
2
δ , we have that LK = sin(y)(1 +�−1δ )∂x , and

thus ∫
∂y

(
sin(y)(1+�−1δ )∂xω

)
cos(y)(1+�−1δ )∂xω

= −
∫

∂y(u · ∇ω) cos(y)(1+�−1δ )∂xω.

Together with the identity (2.30) and the assumption (2.33), it then follows that for
some universal constant C > 0 we have that

2cδ ‖∂xω‖2L2 ≤ 2
∥∥∥(1+�−1δ ) ∂xω

∥∥∥2
L2
≤

∣∣∣∣
∫

∂y(u · ∇ω) cos(y)(1+�−1δ )∂xω

∣∣∣∣
≤ ∥∥∂yu1

∥∥
L∞ ‖∂xω‖2L2 +

∥∥∂yu2
∥∥
L4

∥∥∂yω
∥∥
L4 ‖∂xω‖L2

+ ‖u2‖L∞
∥∥∂yyω

∥∥
L2 ‖∂xω‖L2 +

∣∣∣∣
∫

u1∂xyω cos(y)(1+�−1δ )∂xω

∣∣∣∣
≤ C ‖∂xω‖2L2 ‖ω‖H2 ,

(2.34)

where we used that ‖u2‖L∞ =
∥∥∥∂x�

−1
δ ω

∥∥∥
L∞

� ‖∂xω‖L2 since ω is average free,

and that by integration by parts it holds that∣∣∣∣
∫

u1∂xyω cos(y)(1+�−1δ )∂xω

∣∣∣∣ ≤ ‖∂xω‖2L2

[∥∥∂yu1
∥∥
L∞ + 2 ‖u1‖L∞

]
.

In conclusion, if we assume that ε0 < 2cδ
C , equation (2.34) can only hold if ∂xω = 0,

i.e. if ω (and thus also U ) is a pure shear flow. ��

2.6. Local structure near non-degenerate stationary states

Herewe show that under suitable non-degeneracy assumptions, the linear struc-
ture near a stationary state does in fact locally correspond to the structure of the set
of nearby stationary states. In view of Theorems 1 and 2, this further highlights the
degenerate nature of the Kolmogorov flow on T

2.
Let ψ∗ be a smooth stationary state of the 2d Euler equations satisfying for a

given F ∈ C2(R) that

�ψ∗ = F(ψ∗).

The linearization L∗ near ψ∗ is then given by the operator

L∗ := ∇⊥ψ∗ · ∇[�− F ′(ψ∗)]
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on stream functions.
Here the domain D ⊂ R

2 on which this is set should be assumed sufficiently
smooth and bounded (e.g. a torus or channel), but does not play an important role
and will thus be suppressed from the notation.

Proposition 2.15. Assume that. Then

(a) the operator

A := �− F ′(ψ∗) : H2 ∩ H1
0 → L2

is continuously invertible;
(b) the stream functionψ∗ is non-degenerate in the sense that there exist ε0, c∗ > 0

and m∗ ∈ N, so that if ‖ϕ‖Hm∗ ≤ ε0, we have that∥∥∥∇⊥(ψ∗ + ϕ) · ∇ f
∥∥∥
H1
≥ c∗

∥∥ P�= f
∥∥
L2 ,

whereP�= is the projection to the orthogonal complement (ker L0)
⊥ of the kernel

of the operator L0 := ∇⊥ψ∗ · ∇.
Then there exist δ,m > 0 and a continuous bijection T∗ : U0 → BHm

(ψ∗, δ) ∩ S
from an Hm neighborhoodU0 of 0 in kerL∗ to the steady solutionsS in a ball in Hm

around ψ∗ with radius δ, i.e. locally, to each element in kerL∗ there corresponds
a stationary state of the Euler equations near ψ∗.

For a given element g ∈ kerL∗, the role of assumption (a) is to guarantee the
existence of stationary states that project to (the direction of) g, whereas (b) assures
(locally) the uniqueness of such a state.

Remark 2.16. The assumptions in Proposition 2.15 are not sharp, and its conclusion
(and in particular the mapping properties of T∗) could be strengthened with further
details. However, it seems that a unified picture is still not available, so we chose to
provide a slightly more general argument in favor of technical details for specific
cases. What is clear, however, is that such a mapping T∗ does not exist when ψ∗ is
the Kolmogorov flow on T

2.
We note the following points:

1. Assumption (a) is similar to a non-degeneracy condition in [10], akin to an
“Arnold type” stability as described in e.g. [11]. It is not strictly necessary
for the existence of stationary states, as witnessed by the Kolmogorov flow on
rectangular tori T2

δ : there A is not invertible, its kernel only includes shears in y
and each such shear clearly corresponds to a nearby stationary state. However,
our Theorem 3 still guarantees that for stream functions in H5 there are no
other, non-shear stationary states nearby.

2. The estimate we assume in (b) is a general, weaker version of the coercivity
estimateswe proved for theKolmogorov flow onT

2
δ and near the Poiseuille flow

(see the usage of (2.33) and (4.4), respectively). While with a stronger estimate
stronger conclusions could conceivably be drawn (such as the non-existence
of travelling waves near the Poiseuille flow, included in our Theorem 4), this
suffices to give a first picture of the local set of stationary states.
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3. In general, a version of (b) holds if ∇ψ∗ vanishes at most linearly at stagnation
points, which is generically the case.

Proof of Proposition 2.15. With L0 = ∇⊥ψ∗ · ∇ we recall that the linearization
near ψ∗ is given by L∗ = L0A, and denoting by P0 the orthogonal projection onto
kerL0 we have that P�= = Id − P0. Now we observe that P∗ := A−1P0A is a
projection onto kerL∗.

For δ2 > 0 to be determined, let g ∈ BkerL∗(0, δ2). Under our assumption (a) it
is classical to derive the existence of a stationary stateψg such that

∥∥ψ∗ − ψg
∥∥
H2 �

δ2 and P∗ψg = g, where P∗ denotes the projection onto kerL∗. (For example, this
may be done following a contraction argument parallel to the one in Section 2,
without the extra complications of kernel elements of A.)

It thus suffices to show that there exists δ1 > 0 such that ifψ1, ψ2 ∈ BHm
(ψ∗, δ1)

are stationary states with P∗(ψ1−ψ∗) = P∗(ψ2−ψ∗), then ψ1 = ψ2. To this end,
let us write for j ∈ {1, 2}

ψ j := ψ∗ + ϕ0 + ϕ j , ϕ0 := P∗(ψ j − ψ∗),
ϕ j = (Id− P∗)(ψ j − ψ∗) = A−1P�=A(ψ j − ψ∗).

Then since ψ j are stationary, it follows that

∇⊥ψ j · ∇�ψ j = 0

⇔ ∇⊥(ψ∗ + ϕ0 + ϕ j ) · ∇�(ϕ0 + ϕ j )+∇⊥(ϕ0 + ϕ j ) · ∇�ψ∗ = 0.

Taking the difference between the equations for j = 1 and j = 2 yields

∇⊥(ψ∗ + ϕ0 + ϕ2) · ∇�(ϕ1 − ϕ2)+∇⊥(ϕ1 − ϕ2) · ∇�(ψ∗ + ϕ0 + ϕ1) = 0.

Next we use that ∇⊥ f · ∇�ψ∗ = −F ′(ψ∗)∇⊥ψ∗ · ∇ f = −∇⊥ψ∗ · ∇(F ′(ψ∗) f )
to deduce that

∇⊥(ψ∗ + ϕ0 + ϕ2) · ∇A(ϕ1 − ϕ2) = −∇⊥(ϕ0 + ϕ2) · ∇(F ′(ψ∗)(ϕ1 − ϕ2))

−∇⊥(ϕ1 − ϕ2) · ∇�(ϕ0 + ϕ1).

Since A has a continuous inverse by assumption (a), together with assumption (b)
applied to f = A(ϕ1−ϕ2) = P�=A(ψ1−ψ2) (so that in particularP�=A(ϕ1−ϕ2) =
A(ϕ1 − ϕ2)) it then follows that

c∗ ‖ϕ1 − ϕ2‖H2 = c∗
∥∥∥A−1P�=A(ψ1 − ψ2)

∥∥∥
H2
≤ c∗C

∥∥P�=A(ψ1 − ψ2)
∥∥
L2

= c∗C ‖A(ϕ1 − ϕ2)‖L2

≤ C
∥∥∥∇⊥(ϕ0 + ϕ2) · ∇(F ′(ψ∗)(ϕ1 − ϕ2))+∇⊥(ϕ1 − ϕ2) · ∇�(ϕ0 + ϕ1)

∥∥∥
Ḣ1

≤ Cδ1 ‖ϕ1 − ϕ2‖H2 .

Hence we conclude that ϕ1 = ϕ2 provided δ1 > 0 is sufficiently small. ��
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3. No Threshold for Enhanced Dissipation Near Bar States on T
2

We now turn to the closely related question of the dynamical behavior of so-
lutions to the Navier–Stokes equations near a bar state �bar (t, y) = e−νt cos(y).
One verifies directly that �bar (t, y) satisfies the two dimensional Navier–Stokes
equations (1.2) on T

2.
Now consider a solution f (t) of the linearized equation near a bar state,

∂t f + e−νtLK f = ν� f. (3.1)

One sees directly that the projection of f onto kerLK = {cos(x), sin(x)} ∪ { f ∈
L2 : ∂x f ≡ 0} simply obeys a heat equation, so no decay beyond the natural
time scale O(ν−1) can hold. However, once one projects away from kerLK to
D := (kerLK )⊥, (inviscid) advection and diffusion conspire to create an enhanced
rate of dissipation [22,35,36], such that solutions f to (3.1) satisfy

‖PD f (t)‖L2 � e−c1ν1/2t ‖PD f (0)‖L2 , ∀t ≤ τ

ν
,

where c1 > 0 is some universal constant and τ > 0 is arbitrary.
However, as discussed in the introduction, our Theorem 5 demonstrates that

there cannot be any threshold belowwhich such L2 decay also holds in the nonlinear
Navier–Stokes problem near the bar states on T

2.6 This follows from the fact that
there exist initial data�ε, arbitrarily close to those of the bar states, that do not lead
to decay before the diffusive time scale O(ν−1) is reached. Our proof establishes
this as follows:

3.1. Proof of Theorem 5

Let �ε be a stationary stream function for the Euler equations as in Theorem
1 (or Proposition 2.1). Recall from Lemma 2.9 that with g(y) := c0 cos(3y) −
c1 cos(5y) and φε ∈ H2(T2) it can then be written as

�ε = cos(y)+ ε cos(x)+ εg(y)+ ε2φε(x, y),

with moreover
∫
T2 �ε = 0 (as follows directly from construction as a solution to

(1.3)). One computes directly that

Uε = ∇⊥�ε =
(
sin(y)− εg′(y)
−ε sin(x)

)
+ O(ε2),

�ε = − cos(y)− ε cos(x)+ εg′′(y)+ O(ε2).

Dropping for simplicity of notation the subscript ε, we define now the heat flow
�h of �ε as

�h(t) := eνt��, Uh(t) := eνt�U,

6 However, it is still possible that there exist a nonlinear “center manifold” in L2, the
distance from which decays at an enhanced rate.
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which solves ∂t�
h = ν��h . For future use we note that also∥∥∥Uh · ∇�h

∥∥∥
L2
≤ C1e

−2νtε2.

Next we compare this with the solution of the Navier–Stokes equations starting at
�ε: let �ν solve

∂t�
ν +U ν · ∇�ν = ν��ν, �ν(0) = �ε. (3.2)

The difference �ν −�h then solves

∂t (�
ν −�h)+U ν · ∇�ν = ν�(�ν −�h),

and we note that
∫
T2 �ν −�h = 0. A standard energy estimate then gives

1

2

d

dt

∥∥∥�ν −�h
∥∥∥2
L2
+ ν

∥∥∥∇(�ν −�h)

∥∥∥2
L2
=

∣∣∣〈U ν · ∇�ν,�ν −�h〉L2

∣∣∣ .

Since

〈U ν · ∇�ν,�ν −�h〉 = 〈(U ν −Uh) · ∇�h,�ν −�h〉
+〈Uh · ∇�h,�ν −�h〉

and since �ν −�h is mean-free we have∣∣∣〈U ν · ∇�ν,�ν −�h〉L2

∣∣∣ ≤ ∥∥∥∇�h
∥∥∥
L∞

∥∥∥�ν −�h
∥∥∥2
L2

+Ce−2νtε2
∥∥∥�ν −�h

∥∥∥
L2

.

By Grönwall’s Lemma it thus follows that

∥∥∥�ν(t)−�h(t)
∥∥∥
L2
≤ C1tε

2 exp

(∫ t

0

∥∥∥∇�h(s)
∥∥∥
L∞

ds

)
≤ C1tε

2 exp (t ‖∇�ε‖L∞) .

Since there exists C2 > 0 such that for all ε > 0 one has ‖∇�ε‖ ≤ C2, we may

choose ε0 = νe−
C2
ν

100C1
, which implies that for t ∈ [0, 1

ν
] we have that

∥∥∥�ν(t)−�h(t)
∥∥∥
L2
≤ ε

100
.

Expanding now the equation (3.2) for�ν in powers of ε up to first order shows that
for t ∈ [0, 1

ν
] we have that

�ν = −α(t)e−νt cos(y)− εβ(t)e−νt cos(x)− 9c0εγ (t)e−9νt cos(3y)
+ 25c1εδ(t)e

−25νt cos(5y)
+ ε2H(t, x, y),
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with a remainder H ∈ C1
t H

2
x,y([0, 1

ν
] × T

2) and for differentiable maps α :
[0, 1

ν
] → [1− ε

100 , 1+ ε
100 ] and β, γ, δ : [0, 1

ν
] → [ 99100 ,

101
100 ]. More precisely, this

argument in fact shows that α′ = β ′ = γ ′ = δ′ = 0, i.e. α = β = γ = δ = 1.
Expanding at order ε2, we see that for some Ki �= 0, 1 ≤ i ≤ 2, we have that

PD
[
d2

dε2
|ε=0(U ν · ∇�ν)

]
= K1e

−10νt sin(x) sin(3y)+ K2e
−26νt sin(x) sin(5y)

+PD(sin(y) · H). (3.3)

Note now that in the last term, the only way to create a mode sin(x) sin(3y) or
sin(x) sin(5y) is by having cos(y) (the zero order part of �ν) interact with an
element of PDH . Assuming that enhanced dissipation happens, however, we have
that ‖PDH(t)‖L2 � ε for t ∈ [ 12ν , 1

ν
], so that on this time interval in fact we can

conclude from (3.3) that〈
PD

[
d2

dε2
|ε=0(U ν · ∇�ν)

]
, sin(x) sin(3y)

〉
= π2K1e

−10νt ,
〈
PD

[
d2

dε2
|ε=0(U ν · ∇�ν)

]
, sin(x) sin(5y)

〉
= π2K2e

−26νt .

However, this contradicts the assumption of enhanced dissipation of PD�ν , and
thus concludes the proof of Theorem 5.

4. Rigidity Near Poiseuille Flow

In this section we prove Theorem 4, which asserts that the only (sufficiently
regular) traveling wave solutions near the Poiseuille flow are in fact shears. The
idea is as follows: First we split a given traveling wave into a shear and non-shear
part. By assumption, the shear part is close to the Poiseuille flow, and we show in
Proposition 4.1 that—as a consequence of the uniform convexity—the linearized
operator near it satisfies a strong coercivity estimate. This can then be employed to
show that if the regularity is sufficiently high (H5+), then the non-shear part has to
vanish.

The following result gives the announced strong coercivity estimate for the
linearized operator

LV := V (y)∂x − V ′′(y)�−1∂x , (4.1)

around a shear flow (V (y), 0) near Poiseuille flow UP = (y2, 0).

Proposition 4.1. There exist constants c1, ε1 > 0 with the following property: let
ψ ∈ H3 be such that ∫

T

ψ(x, y)dx = 0. (4.2)

If ε ∈ (0, ε1) and V ∈ W 5,∞([−1, 1]) is such that∥∥V ′ − 2y
∥∥
W 4,∞ < ε, (4.3)
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then

‖LVω‖Ḣ1 ≥ c1
‖∂x∇ψ‖2L2 +

∥∥V ′∂xω∥∥2
L2

‖ω‖Ḣ1
. (4.4)

Proof. Since the linear operator LV decouples in the x-frequency, we expand ω

(and ψ) as a Fourier series in the x variable, namely

ω(t, x, y) =
∑
�∈Z

a�(t, y)e
i�x , a�(t, y) = 1

2π

∫
T

ω(t, x, y)e−i�xdx .

For k ∈ N0 we set

ωk(t, x, y) :=
∑
|�|=k

ak(t, y)e
i�x .

Thanks to (4.2), we may express ω = ∑
k∈N ωk(t, x, y) as a sum of real-valued

functions ωk that are localized in x-frequency on a single band ±k, k ∈ N.
Define now

AV (ω) := 〈V ′∂xLVω, ∂yω〉 + 〈V ′∂yLVω, ∂xω〉. (4.5)

Recalling thatψ satisfies homogeneous Dirichlet boundary conditions in y, a direct
computation shows that

AV (ω) = k2
[‖V ′ω‖2L2 + 〈V ′′V ′ψ, ∂yω〉 − 〈V ′′V ′∂yψ,ω〉 − 〈V ′′′V ′ψ,ω〉]

= k2
[‖V ′ω‖2L2 + 〈V ′′V ′ψ, ∂y�ψ〉 − 〈V ′′V ′∂yψ,�ψ〉 − 〈V ′′′V ′ψ,�ψ〉]

= k2
[‖V ′ω‖2L2 − 〈(V ′′V ′)′ψ, ∂yyψ〉 + 〈(V ′′V ′)′∂yψ, ∂yψ〉 − 〈V ′′′V ′ψ,�ψ〉]

= k2
[‖V ′ω‖2L2 + 〈(V ′′V ′)′′ψ, ∂yψ〉 + 2〈(V ′′V ′)′∂yψ, ∂yψ〉

+ 〈(V ′′′V ′)′ψ, ∂yψ〉 + 〈V ′′′V ′∇ψ,∇ψ〉]
= k2

[
‖V ′ω‖2L2 + 2‖V ′′∂yψ‖2L2 − 1

2

〈[
(V ′′V ′)′′′ + (V ′′′V ′)′′ − 2k2V ′′′V ′

]
ψ,ψ

〉
+ 3〈V ′′′V ′∂yψ, ∂yψ〉

]
.

Using (4.3), we have that in particular V ′′ ≥ 1. Therefore, since k2 ≥ 1, for some
c2 ≥ 1 we find that

AV (ω) ≥ k2
[
‖V ′ω‖2L2 + 2‖∂yψ‖2L2 − c2εk

2‖ψ‖2L2 − c2ε‖∂yψ‖2L2

]
. (4.6)

Now observe that

〈∂xyψ, V ′∂xω〉 = 〈∂xyψ, V ′∂xyyψ〉 + 〈∂xyψ, V ′∂xxxψ〉
= −1

2
〈V ′′∂xyψ, ∂xyψ〉 + 1

2
〈V ′′∂xxψ, ∂xxψ〉

so that

〈V ′′∂xxψ, ∂xxψ〉 − 〈V ′′∂xyψ, ∂xyψ〉 = 2〈∂xyψ, V ′∂xω〉
≤ ‖∂xyψ‖2 + ‖V ′∂xω‖2.
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Since 1 ≤ V ′′ ≤ 3, it follows that

‖∂xxψ‖2L2 ≤ 4‖∂xyψ‖2 + ‖V ′∂xω‖2, (4.7)

or, equivalently,

k2‖ψ‖2L2 ≤ 4‖∂yψ‖2 + ‖V ′ω‖2,
In particular, from (4.6) we deduce that

AV (ω) ≥ k2
[
(1− c2ε)‖V ′ω‖2L2 + (2− 5c2ε)‖∂yψ‖2L2

]
.

Taking ε < ε1 ≤ 1/(5c2) implies the lower bound

AV (ω) ≥ 1

2

[
‖V ′∂xω‖2L2 + ‖∂xyψ‖2L2

]
.

A further use of (4.7) then gives that

AV (ω) ≥ 1

16

[
‖V ′∂xω‖2L2 + ‖∂x∇ψ‖2L2

]
. (4.8)

On the other hand, from the definition of AV (ω) in (4.5), we have the upper bound

AV (ω) � ‖∂xLVω‖L2‖∂yω‖L2 + ‖∂yLVω‖L2‖∂xω‖L2 � ‖LVω‖Ḣ1‖ω‖Ḣ1 .

(4.9)

Putting together (4.8) and (4.9), we obtain (4.4) and we conclude the proof of the
proposition. ��

4.1. Proof of Theorem 4

Let us now consider a general traveling wave solution to the 2d Euler equations.
Such a solution is necessarily of the form

U (x − ct, y) =
(
U1(x − ct, y)
U2(x − ct, y)

)
,

for some c ∈ R, and satisfies

(U1 − c)∂x�+U2∂y� = 0, U = ∇⊥�, �� = �. (4.10)

We consider now its deviation from the Poiseuille flow, defining ψ̃ as

ψ̃(x, y) := �(x, y)−�P (y), ψ(x, y) := ψ̃(x, y)−
∫
T

ψ̃(x, y)dx,(4.11)

and notice that ∫
T

ψ(x, y)dx = 0. (4.12)
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Accordingly, we set

u = ∇⊥ψ, ω = ∇⊥ · u, ũ = ∇⊥ψ̃, ω̃ = ∇⊥ · ũ.

From this we consider the shear part (V (y), 0), where

V (y) := y2 − c − ∂y

∫
T

ψ̃(x, y)dx, V ′(y) = 2y −
∫
T

ω̃(x, y)dx .

In light of the smallness assumption (1.8), we obtain in particular that

‖ω‖Ḣ5 ≤ 2ε0. (4.13)

From the equation (4.10) for the traveling wave and the definition of the linearized
operator LV in (4.1), it follows that

LVω = −u · ∇ω, where LVω = V ∂xω − V ′′∂xψ.

Moreover, by virtue of the assumption (1.8) of proximity of the traveling wave to
the Poiseuille flow, V satisfies (4.3) for ε0 ≤ ε1 as given by Proposition 4.1. Hence
Proposition 4.1 implies that

‖∂xψ‖2Ḣ1 ≤ 1

c1
‖ω‖Ḣ1‖LVω‖Ḣ1 = 1

c1
‖ω‖Ḣ1‖u · ∇ω‖Ḣ1 .

By interpolation, standard estimates and (4.12) we have that

‖u · ∇ω‖Ḣ1 � ‖∇u‖L∞‖ω‖Ḣ1 + ‖u‖L∞‖ω‖Ḣ2

� ‖∇u‖1/2
L2 ‖∇u‖1/2Ḣ2 ‖ω‖Ḣ1 + ‖u‖1/2L2 ‖u‖1/2Ḣ2 ‖ω‖Ḣ2

� ‖ψ‖2/3
Ḣ1 ‖ψ‖4/3Ḣ4 + ‖ψ‖2/3Ḣ1 ‖ψ‖4/3Ḣ4

� ‖∂xψ‖2/3Ḣ1 ‖ψ‖4/3Ḣ4 .

Therefore it follows that

‖∂xψ‖2Ḣ1 � ‖ω‖Ḣ1‖∂xψ‖2/3Ḣ1 ‖ψ‖4/3Ḣ4 � ‖ψ‖Ḣ3‖∂xψ‖2/3Ḣ1 ‖ψ‖4/3Ḣ4

� ‖∂xψ‖Ḣ1‖ψ‖2Ḣ4 . (4.14)

Finally, we interpolate once more and use that ψ has zero x-average to deduce that

‖ψ‖Ḣ4 � ‖ψ‖1/2
Ḣ1 ‖ψ‖1/2Ḣ7 � ‖∂xψ‖1/2Ḣ1 ‖ω‖1/2Ḣ5 .

Combined with (4.14), this shows that there exists a constant c3 ≥ 1 such that

‖∂xψ‖Ḣ1 ≤ c3‖∂xψ‖Ḣ1‖ω‖Ḣ5 .

In view of (4.13), if we choose ε0 = min{1/(2c3), ε1}, the only way the above
inequality is satisfied is if ∂xψ ≡ 0, that is, ψ ≡ 0. In this case, from the relations
(4.11) we obtain that� is only a function of y, and therefore the associated velocity
is a pure shear. The proof of Theorem 4 is complete.
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