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Abstract

Wegive sharp conditions for the large timeasymptotic simplificationof aggregation-
diffusion equations with linear diffusion. As soon as the interaction potential is
bounded and its first and second derivatives decay fast enough at infinity, then the
linear diffusion overcomes its effect, either attractive or repulsive, for large times
independently of the initial data, and solutions behave like the fundamental solu-
tion of the heat equation with some rate. The potential W (x) ∼ log |x | for |x | � 1
appears as the natural limiting case when the intermediate asymptotics change. In
order to obtain such a result, we produce uniform-in-time estimates in a suitable
rescaled change of variables for the entropy, the second moment, Sobolev norms
and the Cα regularity with a novel approach for this family of equations using
modulus of continuity techniques.

1. Introduction

In this work, we analyse the long time asymptotics for probability density
solutions to the general aggregation-diffusion equation of the form

∂ρ

∂t
= �ρ + ∇ · (ρ∇W ∗ ρ), (P)

withW : Rn → R being the interaction potential which is assumed to be symmetric
W (x) = W (−x). The assumption of unit mass is not restrictive up to a change
of variables due to the (formal) conservation of mass. This work is devoted to
identify sharp conditions on the interaction potential W such that the intermediate
asymptotic behaviour of the solutions to (P) is given by the heat kernel,

K (t, x) = (2t)−
n
2 G

(
x√
2t

)
, where G(y) = (2π)−

n
2 e− |y|2

2 .
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More precisely, our goal is to find the best possible conditions on W such that

‖ρ(t, ·) − K (t, ·)‖L1 → 0, as t → ∞, (1.1)

and if possible, recover the optimal decay rates of the heat equation. Aggregation-
diffusion equations of the form (P) with linear or nonlinear diffusion are ubiquitous
in the literature due to the large number of applications in mathematical biology
and mathematical physics, we refer to [16] and the references therein for a recent
survey of related results. In the case of linear diffusion, (P) is usually referred as
the McKean–Vlasov equation associated to a nonlinear SDE process via the mean
field limit [12,27].

The asymptotic simplification of (P) can be understood as the case in which
the long-time asymptotics of McKean–Vlasov equations is dominated by the linear
diffusion term leading to self-similar diffusive behavior for large times. Notice that
this result is not true for instance for singular attractive potentials as the Keller–
Segel model for chemotaxis or its variants in the diffusion dominated regime [7,9,
15,18,19] or for McKean–Vlasov equations where the potentials may lead to phase
transitions as in [3,40]. In these cases, there are non-trivial stationary states of the
equation (P) that attract the long-time dynamics for certain initial data.

Therefore, finding the sharpest conditions onW such that the asymptotic simpli-
fication occurs is a challenging question. Notice that even for bounded interaction
potentials W , the mere time decay of L p norms, 1 < p � ∞, was not known for
general initial data. We also extend previous results of [14] in which strong integra-
bility assumptions onW and∇W were imposed, as well as smallness conditions on
ρ0. In [28] the authors study the case n = 1 with ∇W ∈ L1 showing (1.1) without
rate for general initial datum.

There is a long literature devoted to the intermediate asymptotics of convection-
diffusion equations. Results for the heat equation (W = 0) can be recovered directly
from theheat kernel representation (see, e.g. [41]).Better decay rates canbededuced
by cancellation of higher order moments, as presented in [24]. In [2] the authors
introduce entropy dissipation arguments through the logarithmic Sobolev inequality
that work for a large array of diffusion problems (see also [39]). In [1] this method
is applied to the heat equation, to recover improved decay rates. This technique was
also used in [4] to recover similar results for (P) to recover decay rates, even when
the linear diffusion �ρ is replaced by the nonlinear diffusion �A(ρ). In [25] the
authors study the case where the convection is of the type a · ∇(|u|q−1u).

As mentioned above, when W has certain growth at infinity there is no decay,
and, in fact, ρ(t) converges to an stationary solution which can be recovered by
minimisation of free-energy functional (see [17]). The key example, as we will
discuss below, is W (x) = χ ln |x | (χ > 0), known as the Keller–Segel problem in
n = 2. In [8] the authors discuss the case where χ is smaller than a critical value,
and prove there exists an asymptotic profile different from the Gaussian. This result
also holds for any other n (see [6]). A variation of this problem is studied [36] also
for small χ . When χ is larger than the critical value, solutions may produce a Dirac
delta in finite time.

To analyse the intermediate asymptotics of (P), one classicallyworks in rescaled
variables [2,21,39]. Following the parabolic scaling of the heat kernel, we introduce
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the new variables τ := log
√
2t + 1 and y := x√

2t+1
, and consider a rescaled

density ρ̃ given by

ρ̃(τ, y) = enτ ρ
(
1
2 (e

2τ − 1), eτ y
)
. (1.2)

The first key element is the existence of a PDE for ρ̃. It was shown in [14] that we
can write

∂ρ̃

∂τ
= �y ρ̃ + ∇y · (yρ̃) + ∇y · (ρ̃∇y(W̃ ∗ ρ̃)), where W̃ (τ, y) := W (eτ y).

(1.3)

Notice that, even though ‖W̃ (τ, ·)‖L1 = e−nτ‖W‖L1 is decaying in τ if W ∈
L1(Rn), the norms of ∇W̃ ,�W̃ can exponentially grow in L p(Rn) depending
on n and p. We still expect, under some assumptions, this last term to vanish
asymptotically to recover the steady-state of the usual Fokker–Planck equation.
However, one cannot directly use classical energy estimates to prove uniform-in-
time L p bounds of ρ̃ without any additional smallness assumptions on W or ρ0.

First,we obtain a result of global existence and instant regularisation by standard
techniques. We then introduce a new estimate on the variational structure of the
equation to prove uniform-in-time bounds of natural quantities for the problem
such as the second moment, the energy and the entropy. As a consequence, we also
show uniform-in-time propagation of the L2, H1 and Cα norms.

Theorem 1.1. Let W ∈ W1,∞(Rn) and ρ0 ∈ L1+(Rn) with unit mass. Then,
there exists a unique mild solution of (P) such that ρ ∈ C([0,∞); L1+(Rn)) ∩
C((0,+∞);Wk,p(Rn)) for all p ∈ [1,∞], k ∈ R with ρ(t) also of unit mass for
t � 0. Assume, furthermore, W (x) = W (−x) and the initial datum has bounded
second order moment and entropy

∫
Rn

|x |2ρ0(x) dx < ∞,

∫
Rn

ρ0 log ρ0 < ∞. (1.4)

Then the rescaled density ρ̃ satisfies

sup
τ�0

∫
Rn

|y|2ρ̃(τ, y) dy < ∞, sup
τ�0

∫
Rn

ρ̃(τ, y)| log ρ̃(τ, y)| dy < ∞.

Moreover,

1. If ∇W ∈ Ln(Rn) then

sup
τ�1

‖ρ̃(τ, ·)‖H1 < ∞.

2. If n � 2, ∇W ∈ Ln(Rn) and �W ∈ L
n
2 (Rn) then

sup
τ�1

‖ρ̃(τ, ·)‖Cα < ∞, ∀α ∈ (0, 1).
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The well-posedness and instant regularisation parts of the proof of Theorem
1.1 is based on the study of the Duhamel formula for

∂u

∂t
− �u = ∇ · F. (PF )

Existence and uniqueness are proven by a fixed-point argument. Regularity is
achieved by a bootstrap argument in fractional Sobolev spaces. The details are
presented in Sect. 2. To this end, we develop a new Young inequality for fractional
spaces that we present in “Appendix A”.

In order to recover the propagation of regularity, we take advantage of a second
key fact: a sharp decay of the free energy, that leads to a uniform-in-time entropy
bound in rescaled variables (1.2). This is the objective of Sect. 3. More precisely,
since W (x) = W (−x), problem (P) is the 2-Wassertein flow associated to the free
energy

E(t) = E[ρ(t)] =
∫
Rn

(
ρ log ρ + 1

2
ρ(W ∗ ρ)

)
dx =

∫
Rn

ρ log(ρe
1
2W∗ρ) dx .

(1.5)

When W ∈ L∞(Rn), we prove the sharp decay of the energy E[ρ] in Lemma 3.1.
Thus implies that

E(t) � −n

2
ln t + C(n, ‖W‖L∞),

which tends to −∞ with the same rate − n
2 ln t as for the heat equation. We next

show that there is a suitable free-energy-like quantity that is bounded below in
rescaled variables (1.2), and hence we will be able to estimate the second moment.
Through the second moment and the free energy, we are able to show uniform-in-
time equi-integrability in the form

sup
τ�0

∫
Rn

ρ̃| log ρ̃| dy < ∞. (1.6)

The uniform-in-time propagation of regularity is analysed in Sect. 4, where (1.6) is
used in a crucial way. For the uniform-in-time bounds of the H1 norm we apply a
standard energy estimate. For the propagation of the Cα norm we apply a modulus
of continuity argument, which to our knowledge is new for (P) but has been applied
successfully for other equations (see, e.g., [30,31]).

Equipped with all these uniform-in-time estimates, we can finally characterise,
in Sect. 5, the intermediate asymptotics of the solutions of (P).

Theorem 1.2. Let W ∈ W1,∞(Rn) ∩ L1(Rn) such that W (x) = W (−x), ∇W ∈
Ln(Rn) and, if n � 2, also that �W ∈ L

n
2 (Rn). Assume that ρ0 ∈ L1+(Rn) is such

that it satisfies (1.4). Then we have

‖ρ(t, ·) − K (t, ·)‖L1 �

⎧⎪⎨
⎪⎩
Ct− 1

4 if n = 1,

Ct− 1
2 (1 + log(1 + 2t))

1
2 if n = 2,

Ct− 1
2 if n � 3.
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This result is obtained by a classical entropy-entropy dissipation argument.
Following the idea in [2,14,21,39], we measure the distance between the rescaled
version of the solution ρ̃ and the Gaussian in the L1 relative entropy defined by

E1(ρ̃‖G) =
∫
Rn

ρ̃ log
ρ̃

G
dy =

∫
Rn

ρ̃ log ρ̃ + 1

2

∫
Rn

|y|2ρ̃ dy + n

2
log(2π).

(1.7)

As in the case of the heat equation, this functional can be differentiated in τ .
We apply the logarithmic Sobolev and Csiszar–Kullback inequalities to reduce
ourselves to estimate the remainder terms with respect the classical heat equation
due to W̃ . We also discuss the L2 relative entropy and the related L2 intermediate
asymptotics (see Sect. 5.2).

For n � 3 the decay rate coincides with that of the heat equation under our
assumptions, and hence it seems sharp as a generic rate. Notice that it is a simple
computation that

‖K (t, · + a) − K (t, ·)‖L1 ∼ t−
1
2 .

Better decay rates for the heat equation can be obtained by correctly matching
higher moments, as shown in [24] (see also the survey [41] for a clear explanation).
For n � 2, we do not expect better rates with our technique, as explained in Sect.
5.1. It is an open problem to improve these rates in n = 1, 2 possibly under stronger
assumptions on W . One reason the results in dimension n � 2 are not as sharp as
for n � 3 is that the limit caseW (x) = ± log |x | gets more singular in the Sobolev
scale as the dimension gets smaller.

We also answer in Sect. 5 the question on minimal assumptions onW such that
the asymptotic simplification of the system happens with arbitrarily slow rate.

Theorem 1.3. Let n � 2, W ∈ W1,∞(Rn) such that W (x) = W (−x), ∇W ∈
Ln−ε(Rn), �W ∈ L

n
2 (Rn) (and also �W ∈ L

n
2−ε(Rn) if n � 3) for some ε > 0,

and that ρ0 ∈ L1+(Rn) is such that it satisfies (1.4). Then ‖ρ(t, ·)−K (t, ·)‖L1 → 0
as t → ∞.

This theorem also works for n = 1 under suitable assumptions onW (see Theorem
5.4). Lastly, let us discuss the assumptions ∇W ∈ Ln (and �W ∈ L

n
2 if n � 2).

A borderline case outside these assumptions is the key example alluded above,
W (x) = χ ln |x |. The rescaling leads to W̃ = χ ln |y| + χτ , so ∇W̃ does not
evolve in time. It is easy to see that any solution of

ln ρ̃ + |y|2
2

+ χ ln | · | ∗ ρ̃ = C,

for some constant C , is a stationary solution for the Fokker–Planck equation (1.3)
with∇W̃ = ∇W , and so the corresponding ρ in original variables is of self-similar
formwith profile ρ̃. The existence and uniqueness of these self-similar solutions for
subcritical values of χ was proven in [6,9] by variational methods, moreover they
are the intermediate asymptotics for subcriticalχ . This explains to some extent how
the hypotheses onW are almost sharp for the asymptotic simplification towards the
heat kernel profile.
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2. Well-Posedness and Regularity

Wemake use of the classical approach using Duhamel’s formula to obtain sharp
well-posedness global in time results, under the assumptions specified below on
the potential W (see similar results in [14]). In this section, we use a sub-index t to
denote the time variable. Using the variation of constants formula we can re-write
the problem (P) as a fixed-point problem of the form

ρt = Gt ∗ ρ0 +
∫ t

0
Gt−s ∗ ∇ · (ρs∇(W ∗ ρs)) ds,

or, equivalently, moving derivatives in the convolution

ρt = Gt ∗ ρ0 +
∫ t

0
(∇Gt−s) ∗ (ρs∇(W ∗ ρs)) ds. (2.1)

For two vector fields F and F , we denote the component-wise convolution F ∗F =∑n
i=1 Fi ∗ Fi . The corresponding formula for (PF ) is

u(t; F) = Gt ∗ ρ0 +
∫ t

0
(∇Gt−s) ∗ F(s) ds. (2.2)

Below we collect several estimates for the solution u in (2.2).
L1 estimates for u(t; F). Let us start by obtaining direct basic L1 estimates for
u(t; F). We begin by recalling some properties of the heat kernel Gt . Clearly
‖Gt‖L1 = 1. For integer derivatives∫

Rn
|DkGt |p dx = (2t)−

np+kp
2

∫
Rn

|DkG( x√
2t

)|p dx

= (2t)
n−(n+k)p

2

∫
Rn

|DkG(y)|p dy.

Then, ‖DkGt‖L p is integrable in time for t near zero as long as p < n
n+k−2 . A

similar scaling holds in the range of fractional Sobolev spaces Ws,p (defined in
“Appendix A”) by applying the classical computations presented in “Appendix
A.1”. In particular,

‖Gt‖Ws,p � Ct
n
2p − n+s

2 .

With these estimates, we can directly recover L1 estimates for u(t; F) by using
Young’s inequality

‖u(t; F)‖L1 � ‖ρ0‖L1 +
∫ t

0

n∑
i=1

∥∥∥∥∂Gt−s

∂xi

∥∥∥∥
L1

‖Fi (s)‖L1 ds

� ‖ρ0‖L1 + C
n∑

i=1

sup
s∈[0,t]

‖Fi (s)‖L1

∫ t

0
(t − s)−

1
2 ds

� ‖ρ0‖L1 + Ct
1
2

n∑
i=1

sup
s∈[0,t]

‖Fi (s)‖L1 .

(2.3)
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Continuous dependence with respect to F . Similarly, we can also state a result
of continuous dependence with respect to F

‖u(t; F) − u(t; F)‖L1 =
∥∥∥∥
∫ t

0
(∇Gt−s) ∗ (F(s) − F(s)) ds

∥∥∥∥
L1

� C
∫ t

0
(t − s)−

1
2 ds

n∑
i=1

sup
s∈[0,t]

‖Fi (s) − Fi (s)‖L1

� Ct
1
2

n∑
i=1

sup
s∈[0,t]

‖Fi (s) − Fi (s)‖L1 .

Computing the supremum, we recover

sup
t∈[0,T ]

‖u(t; F) − u(t; F)‖L1 � CT
1
2 sup
t∈[0,T ]

‖F(s) − F(s)‖L1 . (2.4)

Modulus of continuity in timeWe claim that, if F has a modulus of continuity in
C([0, T ]; L1(Rn)), it is preserved for u(t; F). We already know that, for t > s,

‖Gt ∗ ρ0 − Gs ∗ ρ0‖L1 = ‖Gs ∗ (Gt−s ∗ ρ0 − ρ0)‖L1

� ‖Gt−s ∗ ρ0 − ρ0‖L1 =: ωG(t − s; ρ0).

This last element is a modulus of continuity, by the classical result of strong con-
vergence of convolutions. For the continuity of the second term in (2.2), we can
write

∫ t

0
(∇Gt−τ ) ∗ F(τ ) dτ −

∫ s

0
(∇Gs−τ ) ∗ F(τ ) dτ

=
∫ t

0
(∇Gt−τ ) ∗ F(τ ) dτ −

∫ t

t−s
(∇Gt−τ ) ∗ F(τ − (t − s)) dτ

=
∫ t−s

0
(∇Gt−τ ) ∗ F(τ ) dτ +

∫ t

t−s
(∇Gt−τ ) ∗

(
F(τ ) − F(τ − (t − s))

)
dτ.

On the one hand, we can compute that

∥∥∥∥
∫ t−s

0
(∇Gt−τ ) ∗ F(τ ) dτ

∥∥∥∥
L1

� C
n∑

i=1

sup
τ∈[0,T ]

‖Fi (τ )‖L1

∫ t−s

0
(t − τ)−

1
2 dτ

= C
(√

t − √
s
) n∑

i=1

sup
τ∈[0,T ]

‖Fi (τ )‖L1 � C
√
t − s.
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On the other hand, letting ωF,T be the modulus of continuity of F on [0, T ] to L1

we have that∥∥∥∥
∫ t

t−s
(∇Gt−τ ) ∗

(
F(τ ) − F(τ − (t − s))

)
dτ

∥∥∥∥
L1

� C
∫ t

t−s
(t − τ)−

1
2

n∑
i=1

‖Fi (τ ) − Fi (τ − (t − s))‖L1 dτ

� CωF,T (t − s)
∫ t

t−s
(t − τ)−

1
2 dτ = CωF,T (t − s)

√
s.

Hence, Duhamel’s formula preserves the continuity, in the sense that

‖u(t) − u(s)‖L1 � C
(
ωG(t − s; ρ0) + √

t − s + √
TωF,T (t − s)

)
. (2.5)

L p estimates foru(t; F). The final result that we need is about the regularisation
between L p spaces. Following a similar procedure as above, we can write

‖∇Gt−s ∗ F(s)‖L p � C‖∇Gt−s‖L p‖F(s)‖L1 � C‖F(s)‖L1(t − s)
n
2p − n+1

2 ,

where (t − s)
n
2p − n+1

2 is locally integrable in t if p < n
n−1 . Thus

F ∈ C([0, T ]; L1) ⇒ u(·; F) ∈ C([δ, T ]; L p), p < n
n−1 .

Analogously, we have

‖∇Gt−s ∗ F(s)‖Lr � C‖∇Gt−s‖L p‖F(s)‖Lq

� C‖F(s)‖Lq (t − s)
n
2p − n+1

2 for
1

r
= 1

q
+ 1

p
− 1.

Thus for q ∈ (1, n) we have

F ∈ C([0, T ]; L1) ∩ C([δ, T ]; Lq ) ⇒ u(·; F) ∈ C([2δ, T ]; Lr ), r <
nq

n − q
.

(2.6)

Now we can obtain our first result of existence and uniqueness for (P), gener-
alising the results of [14], and fitting our current purpose.

Theorem 2.1. (Local in timewell-posedness) Given ρ0 ∈ L1+(Rn) and∇W ∈ L∞
there exists a unique solution ρ(t) in C([0, T ]; L1(Rn)) for some T > 0 of (P) in
the sense that it satisfies (2.1). The solution has a maximal existence time T ∗. If
T ∗ < ∞, then

lim
t→(T ∗)−

‖ρ(t)‖L1 = +∞. (2.7)

Furthermore, let ρ and ρ solutions of (2.1) corresponding to initial data ρ0 and ρ0
respectively. We have that

sup
t∈[0,T ]

‖ρt − ρt‖L1 � C(T )‖ρ0 − ρ0‖L1 .
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Proof. We apply Banach’s fixed-point theorem in X = C([0, T ]; Y ), where Y =
{ρ ∈ L1(Rn) : ‖ρ‖L1 � ‖ρ0‖L1 + 1}, to the solutions of ut − �u = ∇ · F and
F = ρ∇W ∗ ρ. Hence, we define an operator F through the right-hand side of
(2.1), i.e.

F[ρ](t) = u(t; ρ∇W ∗ ρ). (2.8)

We first point out that, by Young’s convolution inequality

‖ρ(∇W ∗ ρ) − ρ(∇W ∗ ρ)‖L1

� ‖ρ(∇W ∗ ρ) − ρ(∇W ∗ ρ)‖L1 + ‖ρ(∇W ∗ ρ) − ρ(∇W ∗ ρ)‖L1

� ‖ρ‖L1‖∇W ∗ (ρ − ρ)‖L∞ + ‖ρ − ρ‖L1‖∇(W ∗ ρ)‖L∞

� ‖ρ‖L1‖∇W‖L∞‖ρ − ρ‖L1 + ‖ρ − ρ‖L1‖∇W‖L∞ ∗ ‖ρ‖L1

� (‖ρ‖L1 + ‖ρ‖L1)‖∇W‖L∞‖ρ − ρ‖L1 .

(2.9)

This means, on the one hand that it does not reduce the modulus of continuity in
time of ρ, since

‖ρ(t)(∇W ∗ ρ(t)) − ρ(s)(∇W ∗ ρ(s))‖L1

� (‖ρ(t)‖L1 + ‖ρ(s)‖L1)‖∇W‖L∞‖ρ(t) − ρ(s)‖L1 .
(2.10)

We check that F : X → X by joining (2.10) with (2.5) and (2.3) for T small
enough. Let us now show that F is contractive for T small enough. Pick ρ, ρ ∈ X .
Due to (2.9) and (2.4)

‖F[ρ] − F[ρ]‖X � CT
1
2 ‖ρ∇W ∗ ρ − ρ∇W ∗ ρ‖X

� C(‖ρ‖X + ‖ρ‖X )T
1
2 ‖∇W‖L∞‖ρ − ρ‖X .

We can select T > 0 small so that there is a contraction. Lastly, let us show the
continuous dependence. With a similar argument as above we obtain that

‖ρt − ρt‖L1 � ‖ρ0 − ρ0‖L1 + CT
1
2 ‖∇W‖L∞ sup

s∈[0,T ]
‖ρs − ρs‖L1 .

Hence, for T small enough that CT
1
2 ‖∇W‖L∞ < 1,

sup
t∈[0,T ]

‖ρt − ρt‖L1 � 1

1 − C‖∇W‖L∞T
1
2

‖ρ0 − ρ0‖L1 .

Since C does not depend on ρ, this argument can be applied iteratively to deduce
the result. ��

A similar argument provides continuous dependence on∇W . The next theorem
is our main result in this section. We will apply a bootstrap argument to show the
solution ρ in Theorem 2.1 is in C((0, T ∗);Ws,p(Rn)) during its existence for any
s > 0 and p ∈ [1,∞), and in fact we have T ∗ = ∞, i.e. the solution is global in
time. Once the regularity in space is shown, we immediately obtain the regularity
of ρ in time by passing it through the equation (P), thus ρ is a classical solution of
(P).
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Theorem 2.2. (Global in time solutions and instant regularisation) Let W ∈ W1,∞
(Rn). Then the solution constructed in Theorem 2.1 is defined for all T > 0 and it
satisfies

ρ(t) � 0,
∫
Rn

ρ(t) =
∫
Rn

ρ0,

and, ρ ∈ C((0, T ];Wk,p(Rn)), for any k ∈ N and p ∈ [1,∞]. Furthermore, ρ

is a classical solution defined for all t > 0. In fact, if in addition ρ0 ∈ Ws,p(Rn),
then ρ ∈ C([0, T ];Ws,p(Rn)) for any s � 0 and p ∈ [1,∞].

Before presenting the proof, let us first introduce some preliminaries. The proof
of the regularity result is based on an iteration argument in fractional Sobolev spaces
Ws,p, whose definition and basic properties can be found in “Appendix A”. The
reason to use fractional spaces is that our iterative scheme does not seem to be able
to jump between ρ ∈ C((0, T ∗), L∞) and u(·; ρ(∇W ∗ ρ)) ∈ C((0, T ∗),W1,1),
but we can gain fractional regularities to bridge the integer gap.

In each step of the iteration, assuming that ρ ∈ C((0, T ];Ws,p) for certain
s � 0, p ∈ [1,∞), we aim to use the formula (2.2) to upgrade the regularity
to a higher order. This will be done by controlling the fractional Sobolev norm of
∇Gt−s ∗F(s), where F(s) = ρ(s)(∇W ∗ρ(s)). The following two key ingredients
will be used in this estimate:

1. To obtain estimates on fractional Sobolev norms of a convolution, we need
a Young’s inequality between fractional Sobolev spaces. We could not locate
such a result in the literature, so we provide a proof in Theorem A.1, which
might be of independent interest.

2. In order to control the fractional Sobolev norms of F(s) = ρ(s)(∇W ∗ ρ(s))
itself, we need a product estimate in fractional Sobolev spaces. An estimate of
this kind was obtained by Brezis and Mironescu [13]:

‖ f g‖Wθs,p � C(‖ f ‖L∞‖g‖Wθs,p + ‖g‖Lr ‖ f ‖θ
Ws,σ ‖ f ‖1−θ

L∞ ), (2.11)

where p, r, σ ∈ (1,∞), s ∈ (0,∞), θ ∈ (0, 1) are such that 1
r + θ

σ
= 1

p .

However, a delicate issue is that we only assume ∇W ∈ L∞ in this section,
thus ∇W ∗ ρ(s) can only belong to L∞-based spaces (such as Cs = Ws,∞).
In particular, it is impossible to show it belongs to Ws,p for any p < ∞. For
this reason, we could not apply (2.11) since it requires p, σ < ∞.
In the following lemma, we derive a product estimate for the fractional Sobolev
normof f gwhere f ∈ Ws,p and g ∈ Cs . It canbe seen as aminor generalisation
of (2.11) with t = ∞, and we give a short direct proof.

Lemma 2.3. Let p ∈ [1,∞), s, θ ∈ [0, 1). If f ∈ Cs and g ∈ W θs,p, then
f g ∈ W θs,p, and we have the estimate

[ f g]Wθs,p � C(p, s, θ)(‖ f ‖L∞[g]Wθs,p + ‖g‖L p‖ f ‖Cs ) (2.12)

where ‖ f ‖Cs = [ f ]Cs + ‖ f ‖L∞ .
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Proof. If s = 0 or θ = 0, clearly ‖ f g‖L p � ‖ f ‖L∞‖g‖L p . For s, θ ∈ (0, 1), we
write∫
Rn

∫
Rn

| f (x)g(x) − f (y)g(y)|p
|x − y|n+θsp

� C(p)
∫
Rn

∫
Rn

| f (y)|p|g(x) − g(y)|p
|x − y|n+θsp

+ C(p)
∫
Rn

∫
Rn

| f (x) − f (y)|p|g(x)|p
|x − y|n+θsp

� C(p)‖ f ‖p
L∞[g]p

W θs,p + C(p)
∫
Rn

|g(x)|p
(∫

{|y−x |<1}
[ f ]pCs |x − y|sp
|x − y|n+θsp

dy

+
∫

{|y−x |�1}
2p‖ f ‖p

L∞
|x − y|n+θsp

dy

)
dx .

Since
∫
|y|<1 |y|−n+(1−θ)sp dy,

∫
|y|�1 |y|−n−θsp dy < C(p, s, θ) we conclude the

result. ��
We now have all the machinery needed for the proof of the main result of this
section.

Proof of Theorem 2.2. Iterating in (2.6) and using Young’s inequality, we get ρ ∈
C((0, T ∗); L p(Rn)) for any p ∈ [1,∞). To recover higher regularity we pass
through fractional Sobolev spaces. We begin by proving some further regularity
estimates for u(t; F). Applying Theorem A.1, we have that

‖∇Gt−τ ∗ F(s)‖Wγ,r � C‖∇Gt−τ‖Wα,p‖F(s)‖Wβ,q

� C‖F(s)‖Wβ,q (t − τ)
n
2p − n+1+α

2

whereγ = α+β. The time term is integrable if 1 � p < n
n+α−1 .Hence, necessarily

α < 1, and we deduce that

F ∈ C([0, T ]; L1(Rn)) ∩ C([δ, T ];Wβ,q (Rn)) ⇒ u(·; F) ∈ C([δ, T ];Wγ,r (Rn)),

where α < 1, 1 � p < n
n+α−1 , 1

r + 1 = 1
p + 1

q , γ = α + β.

(2.13)

Applying (2.13) with β = 0, p = 1, α ∈ (0, 1), q = r ∈ [1,∞) we recover that
ρ ∈ C((0, T ∗);Wα,q(Rn)).

Let us reinterpret (2.12) for f = ∂
∂xi

(W ∗ ρ) and g = ρ. For s, θ ∈ (0, 1),
applying Lemma 2.3, we have that

[
ρ ∂W

∂xi
∗ ρ
]
Wθs,p

� C
(∥∥∥ ∂W

∂xi
∗ ρ

∥∥∥
L∞ [ρ]Wθs,p + ‖ρ‖L p‖ ∂W

∂xi
∗ ρ‖Cs

)

� C
(∥∥∥ ∂W

∂xi

∥∥∥
L∞ [ρ]Wθs,p + ‖ρ‖L p‖ρ‖Ws,1‖ ∂W

∂xi
‖L∞

)
.
(2.14)

Using the standard Young inequality
∥∥∥ρ ∂W

∂xi
∗ ρ

∥∥∥
L p

� ‖ρ‖L p

∥∥∥ ∂W
∂xi

∗ ρ

∥∥∥
L∞ � ‖ρ‖L p ‖ρ‖L1

∥∥∥ ∂W
∂xi

∥∥∥
L∞ . (2.15)
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Then, we have that

F = ρ∇W ∗ ρ ∈ C([δ, T ],Ws,p(Rn)), ∀s ∈ (0, 1), p ∈ [1,∞).

This allows us to show, applying again (2.13), that ρ ∈ C((0, T ∗);W 2s,p(Rn)) for
s ∈ (0, 1) and p ∈ [1,∞). We can repeat the argument for s ∈ (1, 2) by noticing
that ∂

∂x j
(ρ ∂W

∂xi
∗ ρ) = ∂ρ

∂x j
∂W
∂xi

∗ ρ + ρ ∂W
∂xi

∗ ∂ρ
∂x j

, and the reasoning above works
in each element. Similar formulas hold for higher derivatives of F , and hence the
argument can be extended to any s > 0. Once we have space regularity, through
(P) time regularity follows.

It remains to show that the solution is global in time. Towards this end, we
will show that ρ−(·, t) ≡ 0 for all t ∈ [0, T ∗). For a smooth and convex function
j : R → R, we can write

d

dt

∫
Rn

j (ρ(x, t)) dx = −
∫
Rn

j ′′(ρ(t))
(
|∇ρ(t)|2 + ρ∇ρ · ∇(W ∗ ρ)

)
dx

�
∫
Rn

(∫ ρ(x,t)

0
j ′′(s)s ds

)
�(W ∗ ρ)(x) dx . (2.16)

Let us approximate the convex (but non-smooth) function j (s) = max{−s, 0} by a
sequence of smooth convex functions { jε}ε>0, where j ′ε = j ′ in [−ε, 0]c (so j ′′ε ≡ 0
in [−ε, 0]c) and satisfies 0 � j ′′ε � 2ε−1 in [−ε, 0]. Hence Jε(s) := ∫ s0 j ′′ε (σ )σ dσ
satisfies |Jε(s)| � |s| for all 0 < ε < 1, and limε→0+ Jε(s) = 0 for all s. Since
�(W ∗ ρ) ∈ L∞(Rn) for t > 0, sending ε → 0+ and applying the dominated
convergence theorem to the right hand side of (2.16) gives ρ−(·, t) ≡ 0 during its
existence. Hence, ‖ρ(t)‖L1 = ‖ρ0‖L1 for all t ∈ [0, T ∗), and due to the blow-up
criteria (2.7) we know there is no blow-up in finite time, that is, T ∗ = +∞.

When ρ0 ∈ L1(Rn) ∩ Ws,p(Rn), we want to extend the regularity to ρ ∈
C([0, T ]; L1(Rn) ∩ Ws,p(Rn)). The first step is to notice that (2.13) works also
for δ = 0. Since (2.14) and (2.15) are point-wise in t , they hold up to t = 0. And
thus the result is proven. ��

3. Sharp Decay of the Free Energy and the Entropy

First, we give the sharp decay rate of the free energy functional in original
variables E(t) given by (1.5) for a bounded interaction potential W . From now on,
we will always assume that the interaction potential W is even without specifying
it.

Lemma 3.1. Assume W ∈ W1,∞(Rn), and ρ0 ∈ L1+(Rn) satisfy
∫
Rn ρ0 dx =

1 and E[ρ0] < ∞, as introduced in (1.5). Then there exists a constant c > 0
depending on ‖W‖L∞ and n, such that

E[ρ(t)] � −n

2
log
(
ct + e− 2

n E[ρ0]
)

for all t � 0. (3.1)
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Proof. For the length of the proof, let us denote E(t) := E[ρ(t)]. Taking the time
derivative of E(t), we have

dE

dt
= −

∫
Rn

ρ

∣∣∣∣∇ δE

δu

∣∣∣∣
2

dx = −
∫
Rn

ρ |∇ (log ρ + W ∗ ρ)|2 dx

= −
∫
Rn

ρ

∣∣∣∇ log
(
ρeW∗ρ

)∣∣∣2 dx .
If we define the auxiliary function u(x, t) as u := ρeW∗ρ, the above becomes

dE

dt
= −

∫
Rn

ue−W∗ρ |∇ (log u)|2 dx = −4
∫
Rn

e−W∗ρ
∣∣∇√

u
∣∣2 dx, (3.2)

where the last identity follows from the fact that u|∇ log u|2 = 4|∇√
u|2. For

bounded W , we have ‖W ∗ ρ(t)‖L∞ � ‖W‖L∞‖ρ(t)‖L1 � ‖W‖L∞ , where we
used that ‖ρ(t)‖L1 = ‖ρ0‖L1 = 1. Applying this to (3.2) yields

dE

dt
� −4e−‖W‖L∞

∫
Rn

|∇√
u|2 dx . (3.3)

In the rest of the proof,we aim toobtain a lower boundon the integral
∫
Rn |∇√

u|2 dx
in terms of E itself. Recall that E can be written as

E =
∫
Rn

log
(
ρe

W∗ρ
2

)
ρ(x) dx = 1

p

∫
Rn

log
((

ρe
W∗ρ
2

)p)
ρ(x) dx,

where p > 1 will be determined momentarily. Applying Jensen’s inequality gives

E � 1

p
log

(∫
Rn

(
ρe

W∗ρ
2

)p
ρ dx

)
= 1

p
log

(∫
Rn

u p+1e(− p
2 −1)W∗ρ dx

)

� 1

p
log

(
e(1+ p

2 )‖W‖L∞
∫
Rn

u p+1 dx

)
. (3.4)

From now on, let us fix p := 2
n . For such p, the Gagliardo-Nirenberg inequality

gives that

∫
Rn

u p+1 dx � C(n)

(∫
Rn

|∇√
u|2 dx

)(∫
Rn

u dx

) 2
n

� C(n)e
2
n ‖W‖L∞

∫
Rn

|∇√
u|2 dx .

Combining this with (3.3) and (3.4), we have

E � n

2
log

(
C(n)e(1+ 3

n )‖W‖L∞
∫
Rn

|∇√
u|2 dx

)

� n

2
log

(
−1

4
C(n)e(2+ 3

n )‖W‖L∞ dE

dt

)
.
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This means

dE

dt
� −c(n, ‖W‖L∞)e

2
n E(t),

where c(n, ‖W‖L∞) = 4C(n)−1e−(2+ 3
n )‖W‖L∞ . Solving this differential inequality

yields the inequality (3.1), finishing the proof. ��
We now focus on using these estimates to obtain uniformspsinspstimebounds-

fortherescaledequation (1.3). Following [21], we perform a time-dependent rescal-
ing with the new time and spatial variables being

τ = log λ(t), y = λ−1(t)x, (3.5)

where λ(t) = √
2t + 1. Let the rescaled density ρ̃(τ, y) be related to ρ(t, x) by

ρ̃(τ, y) = λ(t)nρ(t, x), (3.6)

or, equivalently,

ρ̃(τ, y) = enτ ρ

(
e2τ − 1

2
, eτ y

)
.

Note that ρ(0, ·) = ρ̃(0, ·) and the L1 norm of ρ̃(τ, ·) is preserved under the
rescaling. In addition, if ρ(t, x) satisfies the heat equation ∂tρ = �xρ, it is well-
known (see [21] for example) that ρ̃(τ, y) satisfies the Fokker–Planck equation
∂τ ρ̃ = �y ρ̃ + ∇y · (ρ̃y).

Next let us derive the equation satisfied by ρ̃ when ρ solves (P). Compared to
the heat equation, ∂τ ρ̃ has an additional term e(n+2)τ∇x · (ρ∇x (W ∗ ρ))(t, x), and
it suffices to express it in terms of the new variables τ, y as well as ρ̃. Using the
definition of τ, y and ρ̃, the convolution (W ∗ ρ)(t, x) can be expressed as

(W ∗ ρ)(t, x) =
∫
Rn

W (x − x ′)ρ(t, x ′) dx ′ =
∫
Rn

W
(
λ(t)(y − y′)

)
ρ(t, x ′)λn(t) dy′

=
∫
Rn

W
(
eτ (y − y′)

)
ρ̃(τ, y′) dy′ =: (W̃ ∗ ρ̃)(τ, y),

(3.7)

using the change of variables y′ := λ−1(t)x ′ and (3.6), where W̃ (τ, y) := W (eτ y).
As a result, the additional term in ∂τ ρ̃ can be written as

e(n+2)τ∇x · (ρ∇x (W ∗ ρ))(t, x) = ∇y · (ρ̃∇y(W̃ ∗ ρ̃))(τ, y),

where we used that ∇y = eτ∇x , as well as (3.6) and (3.7). Finally this leads to the
equation for ρ̃ in rescaled variables:

∂ρ̃

∂τ
= �y ρ̃ + ∇y · (yρ̃) + ∇y · (ρ̃∇y(W̃ ∗ ρ̃)).
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Remark 3.2. In the rescaledvariables, even though W̃ (τ, ·) = W (eτ ·) is τ -dependent,
its L∞ norm remains uniformly bounded as long as W ∈ L∞, and one can easily
check that

‖W̃ (τ, ·)‖L∞ = ‖W‖L∞ for all τ � 0.

However, the Wm,q norm of W̃ (τ, ·) can be exponentially growing/decaying in τ ,
depending on the values of m and q. More precisely, for any multi-index α and
q � 1, we have∫

Rn
|DαW̃ (τ, y)|q dy = e(|α|q−n)τ

∫
Rn

|DαW (x)|q dx,
which leads to

‖DαW̃ (τ, ·)‖Lq = e(|α|− n
q )τ‖DαW‖Lq . (3.8)

As a result, ifW ∈ Wm,q withm � n/q, then ‖W̃ (τ, ·)‖Wm,q is uniformly bounded
above for all τ � 0. Furthermore, if m < n/q then ‖W̃ (τ, ·)‖Wm,q decays to zero
as τ → ∞. The same kind of estimates holds for fractional Sobolev norms (see
“Appendix A.1”).

The next step is to establish uniform-in-time bounds for the free energy, the sec-
ond moment and, as a consequence, the entropy in rescaled variables. Throughout
the rest of this paper, we will focus on the analysis of the rescaled equation (1.3).
For notational simplicity, we will suppress the y subscript from ∇y and �y . Also,
all the time and spatial variables below related to ρ̃ will be the rescaled variables,
unless specified otherwise. For example, “taking the time derivative” stands for
taking the τ -derivative; and when y appears below in ρ̃(τ, y), it will stand for the
rescaled spatial variable rather than the original one.

Let us point out that one of the main difficulties to study the rescaled equation
(1.3) is the lack of a monotone-decreasing free energy functional. If W̃ were known
to be independent of τ , it is well-known that there would be a natural free energy
functional F̃(τ ) associated to (1.3), given by

F̃(τ ) :=
∫
Rn

(
ρ̃ log ρ̃ + ρ̃

|y|2
2

+ 1

2
ρ̃(W̃ (τ, ·) ∗ ρ̃)

)
dy. (3.9)

But, since W̃ (τ, ·) = W (eτ ·) is τ -dependent, F̃(τ ) is not necessarily decreasing in
time. In fact, taking the time derivative of F̃(τ ) yields

d

dτ
F̃(τ ) = −

∫
Rn

ρ̃

∣∣∣∣∇
(
log ρ̃ + 1

2
|y|2 + W̃ ∗ ρ̃

)∣∣∣∣
2

dy + 1

2

∫
Rn

ρ̃

(
∂W̃

∂τ
∗ ρ̃

)
dy,

where ∂W̃
∂τ

(τ, y) = ∂
∂τ

[W (eτ y)] = eτ y · ∇W (eτ y) = y · ∇W̃ (τ, y). Plugging this
into the above yields

d

dτ
F̃(τ ) = −

∫
Rn

ρ̃

∣∣∣∣∇
(
log ρ̃ + |y|2

2
+ W̃ ∗ ρ̃

)∣∣∣∣
2

dy

+1

2

∫∫
Rn×Rn

ρ̃(y)ρ̃(z)(y − z) · ∇W̃ (τ, y − z) dy dz, (3.10)
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where the right hand side is not necessarily negative due to the additional double
integral.

Instead of looking for a monotone free energy for the rescaled equation, let us
consider a new free energy functional

Ẽ(τ ) :=
∫
Rn

(
ρ̃ log ρ̃ + 1

2
ρ̃(W̃ (τ, ·) ∗ ρ̃)

)
dy. (3.11)

Even though this functional is not monotone in τ , as we will show below, it has a
natural relation with the free energy E(t) = E[ρ(t)] defined in (1.5) in the original
variable, and the sharp rate of decay of E(t) that we established in Lemma 3.1
implies a uniform-in-τ bound of Ẽ(τ ).

Lemma 3.3. Assume W ∈ W1,∞(Rn), and ρ0 ∈ L1+(Rn) satisfy
∫
Rn ρ0 dx = 1

and E[ρ0] < ∞. The energy functionals E(t) in (1.5) and Ẽ(τ ) in (3.11) satisfy
that

E(t) = Ẽ(τ ) − nτ for all τ � 0, (3.12)

where t and τ are related by (3.5). As a consequence, Lemma 3.1 implies that

Ẽ(τ ) � C(‖W‖L∞ , n, E[ρ0]) for all τ � 0. (3.13)

Proof. Let us write the original energy E(t) = ∫
Rn

(
ρ log ρ + 1

2ρ(W ∗ ρ)
)
dx in

terms of ρ̃. For the entropy term, using (3.5) and (3.6) we have∫
Rn

ρ(x, t) log ρ(x, t) dx =
∫
Rn

λ−n(t)ρ̃(τ, y) log(λ−n(t)ρ̃(τ, y))λn(t) dy

=
∫
Rn

ρ̃(τ, y) log ρ̃(τ, y) dy − nτ,

where in the last step we used that τ = log λ(t) as well as
∫
Rn ρ̃(τ, y) dy = 1. As

for the interaction energy, using (3.5) and (3.6) together with (3.7), we have∫
Rn

ρ(t, x)(W ∗ ρ)(t, x) dx =
∫
Rn

λ−n(t)ρ̃(τ, y)(W̃ ∗ ρ̃)(τ, y)λn(t) dy

=
∫
Rn

ρ̃(τ, y)(W̃ ∗ ρ̃)(τ, y) dy.

Combining the above two identities together yields (3.12). Using (3.12) and the
inequality (3.1) for E(t) we have, recalling τ = log

√
2t + 1,

Ẽ(τ ) = E(t) + n log
√
2t + 1 � n

2
log

(
2t + 1

c(‖W‖L∞ , n)t + e− 2
n E[ρ0]

)

� C(‖W‖L∞ , n, E[ρ0]) for all τ � 0,

where the last inequality follows from the fact that for all t � 0, the fraction in
the second line is uniformly bounded above by some constant only depending on
‖W‖L∞ , n and E[ρ0]. This finishes the proof of (3.13). ��
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Remark 3.4. For W ∈ L∞, since the interaction energy satisfies

1

2

∣∣∣∣
∫
Rn

ρ̃(W̃ ∗ ρ̃) dy

∣∣∣∣ � 1

2
‖W̃‖L∞‖ρ̃‖2L1 = 1

2
‖W‖L∞ for all τ � 0,

the bound (3.13) on Ẽ immediately implies that the entropy for the rescaled equation
is uniformly bounded above:

∫
Rn

ρ̃(τ, y) log ρ̃(τ, y) dy � Ẽ(τ ) + 1
2

∣∣∫
Rn ρ̃(W̃ ∗ ρ̃) dy

∣∣
� C(‖W‖L∞ , n, E[ρ0]) for all τ � 0. (3.14)

Let us now prove a uniform-in-time bound of the second moment in rescaled
variables. In (3.14), we have obtained a uniform-in-time bound of the entropy∫

ρ̃(τ, y) log ρ̃(τ, y)dy. In order to upgrade it into a uniform-in-time L log L norm
of ρ̃, we need some uniform-in-time tightness of ρ̃(τ, ·). Our next goal is to obtain
a uniform-in-time bound of the second moment of ρ̃(τ, ·), given by

N2(τ ) := N2[ρ̃(τ )] =
∫
Rn

|y|2ρ̃(τ, y) dy.

A natural starting point is to track the evolution of N2(τ ) in time. Taking its
time derivative and integrating by parts in space, we deduce that

d

dτ
N2(τ ) = −

∫
Rn

2y · (∇ρ̃ + ρ̃y + ρ̃∇(W̃ ∗ ρ̃)) dy

= 2n − 2N2(τ ) − 2
∫∫

Rn×Rn
ρ̃(y)ρ̃(z)y · ∇W̃ (y − z) dy dz

= 2n − 2N2(τ ) −
∫∫

Rn×Rn
ρ̃(y)ρ̃(z)(y − z) · ∇W̃ (y − z) dy dz,

(3.15)

where the last identity is obtained by exchanging y and z in the integrand and taking
average with the original integral.

Note that if W is attractive (i.e. W is radially increasing), we have that x ·
∇W (x) � 0 for all x , and the same is true for the rescaled potential W̃ (τ, ·).
This leads to the differential inequality d

dτ N2(τ ) � 2n − 2N2(τ ), which yields a
uniform-in-time upper bound ofN2(τ ). However, this argument fails for a general
bounded potential W that is not necessarily attractive.

To overcome this difficulty, instead of tracking the time derivative of N2(τ )

itself, the idea is to take a linear combination with the functional F̃(τ ) in (3.9), so
that the double integral involving ∇W̃ will be cancelled in their time derivatives.
The result is as follows:

Theorem 3.5. Let W ∈ W1,∞(Rn), and assume ρ0 ∈ L1+(Rn)with
∫
Rn ρ0 dx = 1,

E[ρ0] < ∞, and N2[ρ0] < ∞. Then we have

N2(τ ) = N2[ρ̃(τ )] � C(N2[ρ0], ‖W‖L∞ , n, E[ρ0]). (3.16)
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Proof. Let F̃(τ ) be defined as in (3.9), and recall that its time derivative is given by
(3.10). Comparing (3.10) with (3.15), we observe that for the linear combination
F̃(τ ) + 1

2N2(τ ), the double-integrals in their time derivative exactly cancel each
other. More precisely, we have

d

dτ

(
F̃(τ ) + 1

2
N2(τ )

)
= −

∫
Rn

ρ̃

∣∣∣∣∇
(
log ρ̃ + |y|2

2
+ W̃ ∗ ρ̃

)∣∣∣∣
2

dy + n

− N2(τ ) � n − N2(τ ).

Recall that F̃(τ ) = Ẽ(τ ) + 1
2N2(τ ), and Ẽ(τ ) has a uniform-in-time upper bound

due to (3.13). Therefore

d

dτ
(Ẽ(τ ) + N2(τ )) � n − N2(τ ) = n + Ẽ(τ ) − (Ẽ(τ ) + N2(τ )

)
� n + sup

σ�0
Ẽ(σ ) − (Ẽ(τ ) + N2(τ )

)
.

Multiplying by eτ and integrating, we have that

Ẽ(τ ) + N2(τ ) � e−τ (Ẽ(0) + N2(0)) + (1 − e−τ )

(
n + sup

σ�0
Ẽ(σ )

)

� C(N2[ρ0], ‖W‖L∞ , n, E[ρ0]) (3.17)

for all τ � 0, where in the second inequality we used (3.13) and the fact that
Ẽ(0) = E[ρ0].

Note that this inequality does not yield an upper bound forN2(τ ) yet, since we
do not know whether Ẽ is bounded below. Now we write Ẽ(τ ) +N2(τ ) back into
F̃(τ ) + 1

2N2(τ ), and use the crucial fact that F̃ is bounded below by a constant
only depending on n and ‖W‖L∞ , since

F̃(τ ) =
∫
Rn

(
ρ̃ log ρ̃ + ρ̃

|y|2
2

+ 1

2
ρ̃(W̃ ∗ ρ̃)

)
dy

�
∫
Rn

(
ρ̃ log ρ̃ + ρ̃

|y|2
2

)
dy − 1

2
‖W‖L∞

� −C(n) − 1

2
‖W‖L∞ ,

where the integral in the second inequality is the free energy of the Fokker–Planck
equation, which is minimised at the Gaussian profile. Combining the lower bound
of F̃(τ ) with the upper bound of F̃(τ ) + 1

2N2(τ ) in (3.17), we finish the proof of
(3.16). ��

Finally, we obtain a uniform bound in L log L in rescaled variables. Joining
(3.14) and (3.16) we recover a uniform-in-time bound of

∫
Rn ρ̃(τ )| log ρ̃(τ )| by

classical techniques [7,10] (we give a general result in Lemma B.1 which may be
of independent interest).
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Corollary 3.6. If W ∈ W1,∞(Rn), then the solution of (1.3) satisfies
∫
Rn

ρ̃(τ )| log ρ̃(τ )| � C(n, ‖W‖L∞ , E[ρ0],N2[ρ0]), ∀τ ∈ [0,∞).

(3.18)

4. Propagation of Regularity for the Rescaled Density ρ̃

4.1. Uniform-in-Time Bounds of L2 and H1 Norms

Theorem 4.1. Let n � 1, W ∈ W1,∞(Rn) and ∇W ∈ Ln(Rn). Assume ρ0 ∈
L1+(Rn) with

∫
Rn ρ0 dx = 1. Let ρ(x, t) be the solution constructed in Theorem

2.1 with initial data ρ0. Then the rescaled density ρ̃(τ, y) defined in (3.5)–(3.6)
satisfies the following:

1. If ρ0 ∈ L2(Rn) with N2[ρ0] < ∞, then ρ̃ ∈ L∞(0,∞; L2(Rn)) with the
estimate

‖ρ̃(τ )‖L2 � C(n, ‖W‖L∞ , ‖∇W‖Ln , ‖ρ0‖L2 ,N2[ρ0]) for all τ � 0.

(4.1)

2. If ρ0 ∈ H1(Rn) with N2[ρ0] < ∞, then ρ̃ ∈ L∞(0,∞; H1(Rn)) with the
estimate

‖ρ̃(τ )‖H1 � C(n, ‖W‖L∞ , ‖∇W‖Ln , ‖ρ0‖H1 ,N2[ρ0]) for all τ � 0.

(4.2)

With this result, by compactness we can easily prove that

Corollary 4.2. If W ∈ L∞(Rn) and ∇W ∈ Ln for ρ0 ∈ L2(Rn) (resp. H1(Rn))
with N2[ρ0] < ∞, there exists a mild solution of (P) that satisfies the estimates
above.

Proof of Theorem 4.1. By the instant regularisation result in Theorem 2.2 and the
relation between ρ and ρ̃, we know that ρ̃ ∈ C1((0, T ]; H2(Rn)), even if we do
not have an estimate of ‖ρ(t)‖H2 . To obtain uniform-in-time estimates on the L2

norm of ρ̃, we will track the L2 norm evolution of ρ̃k := (ρ̃ − k)+, where k > 1
is a constant to be determined later. To begin with, we list some properties of ρ̃k .
Step 1. Relation between ρ̃k = (ρ̃ − k)+ and ρ̃. Due to (3.18) we have, for any
k > 1 and τ � 0, that

‖ρ̃k(τ )‖L1 �
∫

{ρ̃>k}
ρ̃ � 1

log k

∫
{ρ̃>k}

ρ̃ log ρ̃ � 1

log k

∫
Rn

ρ̃| log ρ̃| � C0

log k
.

(4.3)

where C0 = C(n, ‖W‖L∞ , E[ρ0],N2[ρ0]). Note that since ‖ρ0‖L1 = 1, E[ρ0]
can be bounded above using ‖ρ0‖L2 and ‖W‖L∞ .
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Next we state an inequality relating the L p norm of ρ̃k(τ, ·) and ρ̃(τ, ·) (be-
low the τ dependence is compressed for notational simplicity). Since ρ̃ = ρ̃k +
min{ρ̃, k}, combining the triangle inequality on the L p normwithHölder’s inequal-
ity gives

‖ρ̃‖L p � ‖ρ̃k‖L p + ‖min{ρ̃, k}‖L p � ‖ρ̃k‖L p + k
p−1
p for p ∈ [1,∞),

(4.4)

where the second inequality follows from‖min{ρ̃, k}‖L∞ � k and‖min{ρ̃, k}‖L1 �
‖ρ0‖L1 = 1. For p = ∞ we simply use the fact that

‖ρ̃‖L∞ � ‖ρ̃k‖L∞ + k. (4.5)

Hence, if ρ̃k ∈ L∞(0, T ; L2(Rn)), then so is ρ̃.
Step 2. Evolution of L2 norm of ρ̃k . We compute

1

2

d

dτ

∫
Rn

ρ̃2
k = −

∫
Rn

∇ρ̃k · (∇ρ̃ + ρ̃∇(W̃ ∗ ρ̃) + ρ̃y) dy

= −‖∇ρ̃k‖2L2 −
∫
Rn

∇ρ̃k · (ρ̃∇(W̃ ∗ ρ̃)) dy
︸ ︷︷ ︸

=:J1

−
∫
Rn

ρ̃∇ρ̃k · y dy
︸ ︷︷ ︸

=:J2

.

(4.6)

We first deal with the more complicated term J1. We have

|J1| � ‖∇ρ̃k‖L2‖ρ̃‖L2‖∇(W̃ ∗ ρ̃)‖L∞ � ‖∇ρ̃k‖L2‖ρ̃‖L2‖∇W‖Ln‖ρ̃‖
L

n
n−1

,

where in the second step we used that ‖∇W̃‖Ln = ‖∇W‖Ln , which is due to (3.8).
Note that the above computation holds for all n � 1, where for n = 1 we use the
notation n

n−1 = ∞. Applying (4.5) (or (4.5) for if n = 1) and using k � 1, we
recover

|J1| � ‖∇ρ̃k‖L2‖∇W‖Ln
(‖ρ̃k‖L2 + k

) (‖ρ̃k‖
L

n
n−1

+ k
)

. (4.7)

The Gagliardo-Nirenberg inequality yields

‖ρ̃k‖L2 � C(n)‖∇ρ̃k‖
n

n+2

L2 ‖ρ̃k‖
2

n+2

L1

‖ρ̃k‖
L

n
n−1

� C(n)‖∇ρ̃k‖
2

n+2

L2 ‖ρ̃k‖
n

n+2

L1 , (4.8)

and plugging these two inequalities into (4.7) gives

|J1| � C(n)‖∇W‖Ln‖ρ̃k‖L1‖∇ρ̃k‖2L2

+ C(n, k)‖∇W‖Ln

(
‖ρ̃k‖

2
n+2

L1 ‖∇ρ̃k‖1+
n

n+2

L2 + ‖ρ̃k‖
n

n+2

L1 ‖∇ρ̃k‖1+
2

n+2

L2 + ‖∇ρ̃k‖L2

)
.
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By applying Young’s inequality for products to each element in the second term
we recover that for any 0 < δ < 1,

|J1| � C(n)‖∇W‖Ln

(
‖ρ̃k‖L1 + ‖ρ̃k‖

2
n+1

L1 + ‖ρ̃k‖
2n
n+4

L1 + δ
)
‖∇ρ̃k‖2L2

+C(n, k)‖∇W‖Ln δ−1.

We now deal with the term J2. This can be computed explicitly as

J2 =
∫

{ρ̃>k}
ρ̃∇ρ̃k · y dy =

∫
{ρ̃>k}

(ρ̃k + k)∇ρ̃k · y dy

= 1

2

∫
Rn

∇(ρ̃2
k ) · y dy + k

∫
Rn

∇ρ̃k · y dy

= −n

2

∫
Rn

ρ̃2
k dy − nk

∫
Rn

ρ̃k dy.

Using (4.8) as well as the fact that ‖ρ̃k‖L1 � 1, we have

|J2| � C(n)‖∇ρ̃k‖
2n
n+2

L2 ‖ρ̃k‖
4

n+2

L1 + nk � C(n)‖∇ρ̃k‖2L2‖ρ̃k‖
4
n
L1 + C(n, k).

Plugging the J1 and J2 estimates into (4.6), we have that for any 0 < δ < 1 and
k � 1,

d

dτ

∫
Rn

ρ̃2
k � −

(
2 − C(n, ‖∇W‖Ln )

(
‖ρ̃k‖L1 + ‖ρ̃k‖

2
n+1

L1 + ‖ρ̃k‖
2n
n+4

L1

+ ‖ρ̃k‖
4
n
L1 + δ

))
‖∇ρ̃k‖2L2 + C(n, k)(δ−1‖∇W‖Ln + 1).

Due to (4.3), ‖ρ̃k‖L1 can be made arbitrarily small for large k. Thus we can find
a sufficiently large k = k(n, E[ρ0],N2[ρ0], ‖W‖L∞) and a sufficiently small δ =
δ(n, ‖∇W‖Ln ), such that for such δ and k,

d

dτ

∫
Rn

ρ̃2
k � −‖∇ρ̃k‖2L2 + C(n, k, ‖∇W‖Ln )

� −c(n)‖ρ̃k‖
2(n+2)

n
L2 + C(n, k, ‖∇W‖Ln ),

where the second inequality follows from (4.8) and the fact that ‖ρ̃k‖L1 � 1.
Therefore, X (τ ) := ‖ρ̃k(τ )‖2

L2 satisfies the differential inequality

Ẋ � −c1X
n+2
n + C2

with c1 = c(n) and C2 = C(n, k, ‖∇W‖Ln ), thus X (τ ) is decreasing whenever
X � (C2/c1)

n
n+2 . In other words, X (τ ) has the upper bound X (τ ) � max{X (0),

(C2/c1)
n

n+2 }. This means that
∫
Rn

ρ̃k(τ )2 � C(n, ‖W‖L∞ , ‖∇W‖Ln , ‖ρ0‖L2 ,N2[ρ0]),
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where we used that E[ρ0] can be bounded above using ‖ρ0‖L2 and ‖W‖L∞ .
Through (4.5), we obtain a uniform-in-time bound of ‖ρ̃(τ )‖L2 , finishing the proof
of (4.1).
Step 3. Uniform-in-time H1 bound. In the rest of the proof we aim to check
(4.2), where it suffices to control the time-evolution of ‖∇ρ̃(τ )‖2

L2 . Taking its time
derivative gives

1

2

d

dτ

∫
Rn

|∇ρ̃|2 = −
∫
Rn

�ρ̃(�ρ̃ + ∇ρ̃ · ∇(W̃ ∗ ρ̃)

+ρ̃�(W̃ ∗ ρ̃) + ∇ · (ρ̃y)) =: −‖�ρ̃‖2L2 −
3∑

i=1

Ji . (4.9)

For J1 := ∫
Rn �ρ̃∇ρ̃ · ∇(W̃ ∗ ρ̃), using the fact that ‖∇W‖Ln = ‖∇W̃‖Ln , we

have

|J1| � ‖�ρ̃‖L2‖∇ρ̃‖L2‖∇W‖Ln‖ρ̃‖
L

n
n−1

.

Applying the Gagliardo-Nirenberg inequalities (see, e.g., [33])

‖∇ρ̃‖L2 � ‖�ρ̃‖
1
2
L2‖ρ̃‖

1
2
L2 and ‖ρ̃‖

L
n

n−1
� C(n)‖�ρ̃‖

2
n+4

L2 ‖ρ̃‖
n+2
n+4

L1 ,

where we recall the well-known fact that ‖D2ρ̃‖L2 � C(n)‖�ρ̃‖L2 , the inequality
for J1 becomes

|J1| � C(n)‖∇W‖Ln‖ρ̃‖
1
2
L2‖�ρ̃‖1+

1
2+ 2

n+4

L2 ,

where we also use that ‖ρ̃‖L1 = 1. Note that the power of ‖�ρ̃‖L2 on the right
hand side is strictly less than 2. Likewise, J2 := ∫

Rn (�ρ̃)ρ̃�(W̃ ∗ ρ̃) satisfies

|J2| � ‖�ρ̃‖L2‖ρ̃‖L2‖�(W̃ ∗ ρ̃)‖L∞ .

The last term on the right hand side can be controlled as

‖�(W̃ ∗ ρ̃)‖L∞ �
n∑

i=1

∥∥∥∥∂W̃

∂xi
∗ ∂ρ̃

∂xi

∥∥∥∥
L∞

�
n∑

i=1

∥∥∥∥∂W̃

∂xi

∥∥∥∥
Ln

∥∥∥∥ ∂ρ̃

∂xi

∥∥∥∥
L

n
n−1

� C(n)‖∇W‖Ln‖�ρ̃‖
4

n+4

L2 ‖ρ̃‖
n

n+4

L1 ,

where the second inequality follows from the Gagliardo-Nirenberg inequality

‖∇ρ̃‖
L

n
n−1

� C(n)‖�ρ̃‖
4

n+4

L2 ‖ρ̃‖
n

n+4

L1 .

Thus

|J2| � C(n)‖∇W‖Ln‖ρ̃‖L2‖�ρ̃‖1+
4

n+4

L2 ,
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and again the power of ‖�ρ̃‖L2 is less than 2. Finally, the term J3 := ∫
Rn �ρ̃∇ ·

(ρ̃y) dy can be explicitly computed as

J3 =
n∑

i=1

∫
Rn

∂2ρ̃

∂x2i

∂

∂xi
(ρ̃xi ) +

∑
i �= j

∫
Rn

∂2ρ̃

∂x2j

∂

∂xi
(ρ̃xi )

=
n∑

i=1

1

2

∫
Rn

∂

∂xi

(
∂ρ̃

∂xi

)2

xi −
n∑

i=1

∫
Rn

(
∂ρ̃

∂xi

)2

+
∑
i �= j

∫
Rn

∂2ρ̃

∂xi∂x j

∂ρ̃

∂x j
xi

=
(
−1 − n

2

) ∫
Rn

|∇ρ̃|2 dy,

thus

|J3| � C(n)‖∇ρ̃‖2L2 � C(n)‖�ρ̃‖L2‖ρ̃‖L2 .

Since in the estimates for J1, . . . , J3, the powers of ‖�ρ̃‖L2 are all strictly lower
than 2, plugging the estimates into (4.9) and applying Young’s inequality for prod-
ucts gives

d

dt

∫
Rn

|∇ρ̃|2 � −1

2
‖�ρ̃‖2L2 + C(n, ‖∇W‖Ln , ‖ρ̃(τ )‖L2)

� −C(n)‖∇ρ̃‖
2(n+4)
n+2

L2 ‖ρ̃0‖− 4
n+2

L1 + C(n, ‖∇W‖Ln , ‖ρ̃(τ )‖L2).

Since we already have the uniform-in-time bound of ‖ρ̃(τ )‖L2 in Step 2, the above
differential inequality yields the uniform-in-time H1 bound (4.2). ��
Remark 4.3. We expect that the propagation of Hk regularity for any integer k > 1
follows from a similar procedure as Step 3, although the computation becomes
more involved. We leave the computation to interested readers.

4.2. Uniform-in-Time Bounds of Cα Norm

In this subsection, we aim to derive the propagation of regularity via an alterna-
tive approach. Instead of tracking the evolution of some integral-based quantities
such as the L2 or H1 norm, which has been done in a vast amount of literature, we
will track the evolution of point-wise quantities such as the modulus of continuity.
In the context of nonlocal PDEs, such idea has been successfully used by Kiselev–
Nazarov–Volberg [31] to establish the global-wellposedness for the SQG equation
with critical dissipation.

Our approach is similar to [31]: in order to show that ρ̃ has a certain modulus
of continuity for all times, we will carefully look at the first “breakthrough” time
τ0 where the modulus of continuity is about to be violated, and aim to derive a
contradiction. While [31] constructed a piecewise modulus of continuity to treat
the criticality of SQG equation, for our application to (1.3) it turns out the simple
Hölder continuity would work.
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Throughout this paper, for any f : Rn → R, we denote its Hölder seminorm
[ f ]Cα and Hölder norm ‖ f ‖Cα as follows:

[ f ]Cα := sup
x �=y

| f (x) − f (y)|
|x − y|α , ‖ f ‖Cα := ‖ f ‖L∞ + [ f ]Cα .

Theorem 4.4. Let W ∈ W1,∞(Rn), α ∈ (0, 1), ρ ∈ C+([0, T );Cα(Rn)) be a
classical solution of (P) and assume

(a) n � 2, and W satisfies ‖W‖L∞ � CW , ‖∇W‖Ln � CW and ‖�W‖
L

n
2

� CW .

(b) ρ0 ∈ L1+(Rn) satisfies that
∫

ρ0 = 1, N [ρ0] < ∞, and ‖ρ0‖Cα < ∞.

Then, the rescaled density ρ̃(τ, y) defined in (3.5)–(3.6) is Cα Hölder continuous
uniformly in time, in the sense that

‖ρ̃(τ )‖Cα � K (CW , α, n,N2[ρ0], ‖ρ0‖Cα ) for all τ � 0. (4.10)

Before presenting the proof, let us first state and prove a simple lemma that will
be useful in the proof. It shows that if a function has a bounded Cα seminorm, as
well as an L log L bound, it must have an L∞ bound.

Lemma 4.5. For any function f : Rn → R and α ∈ (0, 1), if [ f ]Cα � K for some
K > 1 and

∫
Rn f | log f | � C0, then we have

‖ f ‖L∞ � C(n, α,C0)K
n

n+α (log K )−
α

n+α . (4.11)

Proof. Let A := ‖ f ‖L∞ , and it suffices to obtain an upper bound of A when
A > 2. Take any x0 ∈ R

n such that f (x0) � 3
4 A. Using the modulus of continuity

[ f ]Cα � K , we have that f (x) � 3A
4 − K |x − x0|α for all x ∈ R

n , thus

f (x) � A

2
for all |x − x0| � r0 = ( A

4K

) 1
α .

Combining this with the bound
∫

f | log f | � C0 and the fact that A
2 > 1, we have

C0 �
∫
Rn

f | log f | dx �
∫
B(x0,r0)

f | log f | dx � ωn
( A
4K

) n
α A

2 log A
2 ,

where ωn is the volume of a unit ball in Rn . This inequality can be rewritten as

( A
2

) n+α
α log

(( A
2

) n+α
α

)
� C(n, α)C0K

n
α . (4.12)

Setting a := (A/2)
(n+α)

α and b := C1K
n
α , where C1 := max{C(n, α)C0, 1}, the

above inequality implies that a log a � b. To bound a, it suffices to estimate the
solution ā to the equation ā log ā = b for b > 0. (Note that the function a log a is
increasing for a > 1, thus 1 � a < ā.) Since log ā � ā for ā > 1, we have that
b = ā log ā � ā2, hence log ā � 1

2 log b. This leads to

a < ā = ā log ā

log ā
= b

log ā
� 2

b

log b
.
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Plugging the definition of a and b into above, we have

(
A

2

) n+α
α

� 2
C1K

n
α

log(C1K
n
α )

� 2α

n
C1

K
n
α

log K
,

where in the second inequality we use the fact that C1 = max{C(n, α)C0, 1} � 1.
Solving this inequality yields (4.11) and finishes the proof. ��
Remark 4.6. Note that if we replace the L log L bound

∫
f | log f | � C0 in Lemma

4.5 by an L1 bound ‖ f ‖L1 � C0 instead, then an estimate very similar to (4.11)
would still hold, except that we would lose the (log K )−

α
n+α factor. As we will see

soon, this negative power of log K plays an essential role in the proof of Theorem
4.4.

Proof of Theorem 4.4. By continuous dependence in L1 of the initial data, with-
out loss of generality we can assume that ρ0 ∈ W2,∞(Rn), and hence ρ ∈
C([0, T ];W2,∞(Rn)) with ∂ρ/∂t ∈ C([0, T ] × R

n) for any T > 0. Note that
these regularity properties are also inherited by ρ̃, since it is a (smooth) rescaling
of ρ given by (3.5)–(3.6). Once (4.10) is proved forW2,∞ initial data (note that the
bound K is independent of ‖ρ0‖W2,∞), the L1 continuous dependence on initial
data in Theorem 2.1 allow us to approximate a Cα initial data and pass to the limit.

Recall that ρ̃ solves the rescaled equation (1.3), and Corollary 3.6 give a
uniform-in-time L log L bound of ρ̃, namely

∫
Rn

ρ̃(τ )| log ρ̃(τ )| � C0(n, ‖W‖L∞ , E[ρ0],N2[ρ0]). (4.13)

Using (1.3) and the bound (4.13), our goal is to show that [ρ̃(τ )]Cα � K for all
τ � 0, where K > ‖ρ0‖Cα is a sufficiently large constant to be determined later,
which depends on n, α,CW ,C0 and ‖ρ0‖Cα . Once this is shown, combining it with
(4.13) and applying Lemma 4.5 yields the L∞ bound of ρ, finishing the proof.

Towards a contradiction, assume that [ρ̃(τ )]Cα � K is not satisfied for all
τ � 0. Let us set

ω(r) := Krα for r � 0,

and define τ0 as the first time such that the modulus of continuity ω is about to be
violated, i.e.,

τ0 := inf{τ � 0 : there exist y1 �= y2 such that |ρ̃(τ, y1) − ρ̃(τ, y2)| > ω(|y1 − y2|)}.

Note that τ0 > 0 since ‖ρ0‖Cα < K and ρ̃ ∈ C([0, T ];Cα) for any T > 0.
Assuming τ0 < ∞, let us take a closer look at ρ̃ at the “breakthrough” time τ0 and
derive various estimates on ρ̃(τ0) in the next 4 steps, and we will finally obtain a
contradiction at the end of Step 4.
Step 1. We claim that

|ρ̃(τ0, y1) − ρ̃(τ0, y2)| � ω(|y1 − y2|) for all y1, y2 ∈ R
n, (4.14)
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and there exist z1, z2 ∈ R
n such that z1 �= z2, and

ρ̃(τ0, z1) − ρ̃(τ0, z2) = ω(|z1 − z2|) (4.15)
∂ρ̃

∂τ
(τ0, z1) − ∂ρ̃

∂τ
(τ0, z2) � 0. (4.16)

Indeed, by definition of τ0, (4.14) holds when τ0 is replaced by any τ < τ0,
thus (4.14) also holds at τ0 due to the continuity of ρ̃ in time. Also by definition
of τ0, there exists a sequence (τk, y

(k)
1 , y(k)

2 ) of points such that τk ∈ (τ0, τ0 + 1),
τk ↘ τ0, and

ω(|y(k)
1 − y(k)

2 |) < ρ̃(τk, y
(k)
1 ) − ρ̃(τk, y

(k)
2 )

� ‖∇ρ̃(τk, ·)‖L∞|y(k)
1 − y(k)

2 | � C̃1|y(k)
1 − y(k)

2 |, (4.17)

where C̃1 := supk ‖∇ρ̃(τk, ·)‖L∞ < ∞ since ρ̃ ∈ C([0, τ0 + 1];W2,∞). Using
that ω(r) = Krα , the above inequality becomes

|y(k)
1 − y(k)

2 | � (KC̃−1
1 )

1
1−α > 0, (4.18)

so y(k)
1 − y(k)

2 �→ 0. On the other hand, using ρ̃ � 0 we have that

ω(|y(k)
1 − y(k)

2 |) < ρ̃(τk, y
(k)
1 ) − ρ̃(τk, y

(k)
2 ) � ‖ρ̃(τk, ·)‖L∞ � C̃2,

where C̃2 := supk ‖ρ̃(τk, ·)‖L∞ < ∞ again due to ρ̃ ∈ C([0, τ0+1];W2,∞). This
leads to the estimate

|y(k)
1 − y(k)

2 | �
(
C̃2K

−1
) 1

α
, (4.19)

meaning that y(k)
1 and y(k)

2 cannot be too far apart either.

To obtain a convergent subsequence of (y(k)
1 , y(k)

2 ), we need to show that the
sequence is uniformlybounded in k. Towards this end, recall that the secondmoment
N2[ρ̃] is known to be bounded by Theorem 3.5, and we will use this to show that
{y(k)

1 } are uniformly bounded. First note that ρ̃(τk, y
(k)
1 ) is uniformly positive since

ρ̃(τk, y
(k)
1 ) > ω(|y(k)

1 − y(k)
2 |) � K (KC̃−1

1 )
α

1−α =: c0 > 0,

where the second inequality follows from (4.18). As a result, by definition of C̃1 =
supk ‖∇ρ̃(τk, ·)‖L∞ , we have, using the mean value theorem, that

ρ̃(τk, y) � c0
2

for all y ∈ B
(
y(k)
1 ,

c0

2C̃1

)
.

Combining this with the uniform bound of the second moment in Theorem 3.5
provides an upper bound of |y(k)

1 | independent of k. Notice that
∫
Rn

|y|2ρ(τk, y) dy � c0
2

min
B(y(k)

1 ,
c0
2C̃1

)

|y|2.
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Thus |y(k)
2 | are also uniformly bounded due to (4.19). Hence, there exists a conver-

gent subsequence of (y(k)
1 , y(k)

2 ), and let its limit be z1 and z2. Note that z1 �= z2 due
to (4.18). Using the first inequality in (4.17) and passing to the limit, we have that
ρ̃(τ0, z1) − ρ̃(τ0, z2) � ω(|z1 − z2|), and combining it with (4.14) yields (4.15).

Finally, to show (4.16), recall that for any h ∈ (0, τ0) we know that ρ̃(τ0 −h, ·)
has modulus of continuity ω. Combining this with (4.15) gives that

ρ̃(τ0, z1) − ρ̃(τ0 − h, z1)

h
− ρ̃(τ0, z2) − ρ̃(τ0 − h, z2)

h

� ω(|z1 − z2|) − ω(|z1 − z2|)
h

= 0.

Passing to the limit as h → 0+ finishes the proof of (4.16).
Step 2. Set r0 := |z1 − z2| and assume WLOG that z1 − z2 = r0e1. In this step we
aim to prove the following:

∇ρ̃(τ0, z1) = ω′(r0)e1 = ∇ρ̃(τ0, z2), (4.20)

∂11ρ̃(τ0, z1) � ω′′(r0), ∂11ρ̃(τ0, z2) � −ω′′(r0), (4.21)

∂i i ρ̃(τ0, z1) − ∂i i ρ̃(τ0, z2) � 0 for i = 2, . . . , n. (4.22)

To show (4.20) and (4.21), define

g(y) := ρ̃(τ0, z2) + ω(|y − z2|).
Since in step 1 we showed that ρ̃(τ0, ·) has modulus of continuity ω achieved at z1
and z2, it implies that g(y) � ρ̃(τ0, y) for all y ∈ R

n , with equality achieved at
y = z1. This yields ∇ρ̃(τ0, z1) = ∇g(z1) and ∂11ρ̃(τ0, z1) � ∂11g(z1). A parallel
argument can be applied similarly to (τ0, z2), which finishes the proof of (4.20)
and (4.21). Finally, to show (4.22), define

h(v) := ρ̃(τ0, z1 + v) − ρ̃(τ0, z2 + v).

Again, the fact that ρ̃(τ0, ·) has modulus of continuity ω achieved at z1 and z2 gives
that h(v) � ω(|z1 − z2|) for all v ∈ R

n , and it achieves its maximum at v = 0.
Thus we recover the estimate (4.22) for i = 2, . . . , n. Notice that this is valid also
for i = 1, but in (4.21) we have better quantitative information.
Step 3. Let us estimate A := ‖ρ(τ0, ·)‖L∞ and r0 := |z1− z2| in terms of K , which
will be helpful for us to obtain a contradiction later. Namely, we will prove that

A := ‖ρ(τ0, ·)‖L∞ � C1K
n

n+α (log K )−
α

n+α . (4.23)

r0 � C2K
− 1

n+α (log K )−
1

n+α . (4.24)

where C1,C2 > 0 depend only on C0, n, α.
Estimate (4.23) directly follows from Lemma 4.5, where we also used (4.13).

Since ρ̃(τ0, z1) = ω(r0) + ρ̃(τ0, z2) � ω(r0) + 0 = Krα
0 we have that r0 �

A
1
α K− 1

α . Combining this with (4.23) yields (4.24).
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Step 4. In this step, we will show that

∂ρ̃

∂τ
(τ0, z1) − ∂ρ̃

∂τ
(τ0, z2) < 0

if K is sufficiently large (depending on C0, n, α,CW ), which would lead to a direct
contradiction with (4.16). Since ρ̃ satisfies the rescaled equation (1.3), ∂ρ̃

∂τ
(τ0, z1)−

∂ρ̃
∂τ

(τ0, z2) can be written as T1 + T2 + T3 + T4, where the four terms are defined
below. Our claim is that they satisfy the inequalities

T1 := �ρ̃(τ0, z1) − �ρ̃(τ0, z2) � −C3K
n+2
n+α (log K )

2−α
n+α , (4.25)

T2 := ∇ · (yρ̃)(τ0, z1) − ∇ · (yρ̃)(τ0, z2) � C4K
n

n+α (log K )−
α

n+α , (4.26)

T3 := (∇ρ̃ · ∇(W̃ ∗ ρ̃))(τ0, z1) − (∇ρ̃ · ∇(W̃ ∗ ρ̃))(τ0, z2) � C5K
n+2
n+α (log K )

−nα+n−α
n(n+α) ,

(4.27)

T4 := ρ̃�(W̃ ∗ ρ̃)(τ0, z1) − ρ̃�(W̃ ∗ ρ̃)(τ0, z2) � C6K
n+2
n+α (log K )

− α(n+2)
n(n+α) , (4.28)

where C3,C4 > 0 depend only on C0, n, α and C5,C6 > 0 depend only on
C0, n, α,CW .

To recover (4.25), note that (4.21)-(4.22) yields that T1 � 2ω′′(r0) = 2α(α −
1)Krα−2

0 , which is negative since α ∈ (0, 1). Combining this with (4.24) gives

T1 � 2α(α − 1)Krα−2
0 � −C3K

(
K− 1

n+α (log K )−
1

n+α

)α−2

� −C3K
n+2
n+α (log K )

2−α
n+α .

For (4.26), we apply (4.20) and (4.24) to get

T2 = ∇ρ̃(τ0, z1) · (z1 − z2) + n(ρ̃(τ0, z1) − ρ̃(τ0, z2))

= ω′(r0)r0 + nω(r0) = (α + n)Krα
0 � C4K

n
n+α (log K )−

α
n+α .

To compute (4.27) we use (4.20) to deduce

T3 � 2ω′(r0)‖∇W̃ ∗ ρ̃‖L∞ .

We can then apply Young’s convolution inequality to obtain

‖∇W̃ ∗ ρ̃(τ0)‖L∞ � ‖∇W̃‖Ln‖ρ̃(τ0)‖
L

n
n−1

� CW‖ρ̃(τ0)‖
n−1
n

L1 ‖ρ̃(τ0)‖
1
n
L∞

� CW A
1
n . (4.29)

This lead to the bound

T3 � CWω′(r0)A
1
n = C(α,CW )Krα−1

0 A
1
n

and we conclude (4.27) by using (4.23) and (4.24).
To compute (4.28) we proceed similarly

T4 � 2‖ρ̃(τ0)‖L∞‖�(W̃ ∗ ρ̃)(τ0)‖L∞ � 2A‖�W̃‖
L

n
2
‖ρ̃(τ0)‖

L
n

n−2

� 2A1+ 2
n ‖�W‖

L
n
2
‖ρ̃(τ0)‖

n−2
n

L1 � CA1+ 2
n ,

(4.30)
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and plugging (4.23) into this inequality yields (4.28).
Finally, comparing the powers in T1, . . . , T4, note that |T1| (coming from �ρ̃)

has the fastest growth as K → ∞, since it has a larger power of log K compared to
thepowers ofT3, T4.Bychoosing K large enoughwehave thatT1+T2+T3+T4 < 0.
This is a contradiction with (4.16). ��
Remark 4.7. Note that in step 4, the “good contribution from diffusion” T1 (4.25)
and the “bad contribution from aggregation” T3 and T4 (4.27)–(4.28) carry exactly
the same power of K , although they have different powers of log K . This subtle
difference in the logarithm powers is the key for us to show that T1 dominates
T3 and T4 for K � 1. In this sense, the a priori L log L bound in Corollary 3.6
is playing a crucial role since it contributes the logarithm term in Lemma 4.5.
Also, the assumptions on ‖∇W‖Ln and ‖�W‖Ln/2 are sharp in the sense that if the
assumptions were to be made in L p spaces with any lower p, it would result in a
higher power of K in (4.27) and (4.28), and the proof would not go through since
T1 would not dominate T3 and T4 for K � 1.

5. Convergence to the Gaussian

In this section we focus on obtaining the asymptotic behaviour based on the
uniform estimates in the previous two sections. We first concentrate on the L1

relative entropy approach as introduced in the linear Fokker–Planck equation in
[2,39] based on the crucial use of the logarithmic Sobolev inequality. As usual
the L2 relative entropy strategy can also be applied similarly, replacing the log-
Sobolev by Poincaré’s inequality with respect to the Gaussian measure (see [2]).
For an elementary presentation in this direction we send the reader to [41].

5.1. L1 Relative Entropy

Going back to the notion of L1 relative entropy given by (1.7), we can can
compute the time derivative as

d

dτ
E1(ρ̃‖G) =

∫
Rn

(
log ρ̃ + 1 + 1

2
|y|2
)

ρ̃t

= −
∫
Rn

∇
(
log ρ̃ + 1

2
|y|2
)

· (∇ρ̃ + ρ̃y + ρ̃∇W̃ ∗ ρ̃)

=: −I1(ρ̃‖G) − J1 − J2,

where I1 is the relative Fisher information

I1(ρ̃‖G) =
∫
Rn

ρ̃ |∇ log ρ̃ + y|2 dy =
∫
Rn

ρ̃

∣∣∣∣∇ log
ρ̃

G

∣∣∣∣
2

dy,

and J1 and J2 are given by

J1 :=
∫
Rn

ρ̃y · ∇W̃ ∗ ρ̃ and J2 :=
∫
Rn

∇ρ̃ · ∇W̃ ∗ ρ̃ = −
∫
Rn

ρ̃�W̃ ∗ ρ̃.
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Remark 5.1. For the heat equation i.e.W = W̃ = 0, the abovebecomes d
dτ E1(ρ̃‖G)

= −I1[ρ̃‖G].From the logarithmic Sobolev inequality (see [26]), it is classical that,
when W = 0 we have

E1(ρ̃‖G) � 1

2
I1(ρ̃‖G). (5.1)

From which Ė1 � −2E1 and we recover the exponential decay E1(ρ̃‖G) �
E1(ρ̃0‖G)e−2τ .

Remark 5.2. Applying the Csiszar–Kullback inequality [2,22,32], since 1 + 2t =
e2τ , we have

E1(ρ̃‖G) � C(1 + τ)βe−ατ ⇒ ‖ρ −U‖L1

= ‖ρ̃ − G‖L1 � 2
√
E1(ρ̃‖G) � C(1 + ln(1 + 2t))

β
2 t−

α
4 .

(5.2)

where U (t, x) = K
(
t + 1

2 , x
)
. Using the standard decay of the heat equation for

even initial data with bounded second moment, we know that ‖U (t) − K (t)‖L1 �
Ct−1 (see [24]). This means that, as long as α < 1, we can always replaceU by K
as an intermediate asymptotics profile preserving the rate. Notice also that one can
get the convergence in 2-Wasserstein distance by using Talagrand inequality (see,
e.g., [20,37]). It is a challenging problem to decide whether the Fisher information
I1(ρ̃‖G) also decays to 0 as τ → ∞ with an explicit rate.

To prove our convergence results, we will show that |Ji | � Cie−αi τ for some
αi > 0 under certain assumption on W . Once this is shown, using the logarithmic
Sobolev inequality, we recover

d

dτ
E1(ρ̃‖G) � −2E1(ρ̃‖G) + C1e

−α1τ + C2e
−α2τ . (5.3)

Solving the differential inequality, we conclude that

E1(ρ̃‖G) � e−2τ E1(ρ̃0‖G) + C1Fα1(τ ) + C2Fα2(τ ),

where Fα(τ ) = e−2τ
∫ τ

0
e(2−α)s ds �

⎧⎪⎨
⎪⎩

1
α−2e

−2τ α > 2,

τe−2τ α = 2,
1

2−α
e−ατ α < 2.

(5.4)

With this approach, it remains to obtain the best possible rate of decay in J1 and

J2. In (3.8), one can easily check that ‖DαW̃ (τ )‖Lq = e(|α|− n
q )τ‖DαW‖Lq has the

fastest decay when α is the smallest (i.e. 0) and q is the lowest (i.e. 1). Therefore,
the best possible decay of J1 and J2 is obtained by moving all derivatives away
from W̃ , and only let ‖W̃ (τ )‖L1 appear in the estimate (note that it requires ‖W‖L1

be finite). Since ‖W̃ (τ )‖L1 = e−nτ‖W‖L1 , J1 and J2 also decay with this rate (the
detailed proof will be done in Theorem 5.3). Plugging this into the inequality (5.4)
for E1, we get the decays: E1 � e−τ if n = 1, τe−2τ if n = 2, and e−2τ if n � 3.



Arch. Rational Mech. Anal. (2023) 247:11 Page 31 of 45 11

It is a challenging open problem to prove or disprove if these decay rates are sharp
in dimensions n = 1, 2 under the assumptions of Theorem 5.3.

In the next two theorems, we will use two different ways to prove the decay
of E1 under different assumptions of W . We first prove Theorem 5.3 assuming
W ∈ L1, which leads to the best possible rate of decay using the argument in the
previous paragraph. However, the assumptionW ∈ L1 is a bit too restrictive, since
it requiresW to have fast decay at infinity. We then prove Theorem 5.4 with weaker
assumptions on W , where W is allowed to have arbitrarily slow power-law decay
such as W (|x |) ∼ |x |−ε for |x | � 1 for any ε > 0. This is done at the expense of a
slower convergence rate; in Remark 5.5 we will explain why it is natural to expect
slower convergence when W has slower decay at infinity.

Theorem 5.3. Let n � 1. Assume W ∈ W1,∞(Rn) ∩ L1(Rn) with ∇W ∈ Ln(Rn).
If n � 2, further assume that �W ∈ L

n
2 (Rn). Suppose ρ0 ∈ L1+(Rn) with∫

Rn ρ0 dx = 1, E[ρ0] < ∞, and N2[ρ0] < ∞. Let ρ(x, t) be the solution con-
structed in Theorem 2.1 with initial data ρ0. Then the rescaled density ρ̃(τ, y)
defined in (3.5)–(3.6) satisfies

E1(ρ̃‖G) �

⎧⎪⎨
⎪⎩
Ce−τ n = 1,

C(1 + τ)e−2τ n = 2,

Ce−2τ n � 3,

where C < ∞ depends on ρ0 and W. In addition, |N2[ρ̃(τ )] − n| also has expo-
nential decay in τ , with the same upper bound as in E1.

Proof. From the instantaneous regularisation result in Theorem 2.2, the solution ρ̃

of (1.3) is inC((0,∞),Wk,p(Rn)) for any k � 0 and p ∈ [1,∞]. In particular, we
have ρ̃(1, ·) ∈ H1(Rn)∩Cα(Rn) for any α ∈ (0, 1). Applying the uniform-in-time
propagation of H1 regularity proved in Theorem 4.1 with τ = 1 being the initial
time yields that

sup
τ�1

‖ρ̃(τ )‖H1 < C(n, ‖W‖L∞ , ‖∇W‖Ln , ‖ρ̃(1)‖H1 ,N2[ρ̃(1)]) < ∞ for n � 1.

(5.5)

In other words, we can also say that C depends on ρ0 andW in a quite non-explicit
manner.

For n = 1, combining the Gagliardo-Nirenberg inequality ‖ρ̃‖L∞ � ‖∇ρ̃‖
2
3
L2

‖ρ̃‖
1
3
L1 with (5.5) directly yields that supτ�1 ‖ρ̃(τ )‖L∞ < C .

For n � 2, note that H1(Rn) is not embedded in L∞(Rn). To show that
supτ�1 ‖ρ̃(τ )‖L∞ < C for n � 2, one way is to obtain uniform-in-time propaga-

tion of the Hk regularity, which we will not prove here (see Remark 4.3). Instead,
let us apply the uniform-in-time propagation of Cα regularity in Theorem 4.4 with
τ = 1 being the initial time. It yields that for any α ∈ (0, 1),

sup
τ�1

‖ρ̃(τ )‖Cα < C(n, α, ‖W‖L∞ , ‖∇W‖Ln , ‖�W‖
L

n
2
‖ρ̃(1)‖Cα ,

N2[ρ̃(1)]) < ∞ for n � 2,
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which directly yields that supτ�1 ‖ρ̃(τ )‖L∞ < C for n � 2. We point out that so

far we have not used W ∈ L1(Rn).
Now that we have obtained the uniform-in-time bounds (for all τ > 1) of the

L∞ and H1 norms of ρ̃ for all n � 1, we will use these to prove the decay with
J1 and J2 with the optimal rate when W ∈ L1(Rn). For J1, using Hölder’s and
Young’s inequalities we have

|J1| �
(∫

|ρ̃|2|y|2
) 1

2 ‖∇W̃ ∗ ρ̃‖L2 � ‖ρ̃‖
1
2
L∞N2[ρ̃] 12 ‖∇W̃ ∗ ρ̃‖L2

� ‖ρ̃‖
1
2
L∞N2[ρ̃] 12 ‖W̃‖L1‖∇ρ̃‖L2 � Ce−nτ ,

(5.6)

where in the last inequality we use the uniform-in-time bound on N2[ρ̃(τ )] in
Theorem 3.5, as well as the fact that ‖W̃‖L1 = ‖W‖L1e−nτ from (3.8). Likewise
we can estimate J2 as

|J2| � ‖∇ρ̃‖L2‖∇W̃ ∗ ρ̃‖L2 � ‖∇ρ̃‖2L2‖W̃‖L1 � Ce−nτ . (5.7)

Plugging these estimates on J1 and J2 into (5.3), we obtain (5.4) with α1 = α2 = n,
finishing the proof for E1(ρ̃‖G).

Finally, note that the convergence of |N2(τ )−n| immediately follows from the
above estimates for J1. In fact, from (3.15) we have

d

dτ
(N2 − n) = −2(N2 − n) − 2J1,

and solving this differential equation gives

N2(τ ) − n = e−2(τ−1)(N2(1) − n) − 2e−2τ
∫ τ

1
e2τ

′
J1(τ

′) dτ ′.

Using (5.11) into the right hand side gives the exponential decaying bound of
|N2[ρ̃] − n|, finishing the proof. ��
Theorem 5.4. Let n � 1. Assume W ∈ W1,∞(Rn) satisfies ∇W ∈ Ln(Rn). If n �
2, further assume that �W ∈ L

n
2 (Rn). Suppose ρ0 ∈ L1+(Rn) with

∫
Rn ρ0 dx = 1,

E[ρ0] < ∞, andN2[ρ0] < ∞. Let ρ(x, t) be the solution constructed in Theorem
2.1 with initial data ρ0. Then the rescaled density ρ̃(τ, y) satisfies the following:

(a) For n = 1, if in addition we assume that (−�)
1
2−εW ∈ L1(R) for some

ε ∈ (0, 1
2 ), then for all τ � 1 we have that

E1(ρ̃‖G) � C
(
e−2τ + ‖(−�)

1
2−εW‖L1F2ε(τ )

)
� Ce−2ετ

(5.8)

|N2[ρ̃] − n| � Ce−2ετ ,

where C < ∞ depends on ρ0 and W.
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(b) For n = 2, if in addition we assume that ∇W ∈ L p1(R2) for some p1 ∈ [1, 2),
then for all τ � 1 we have that

E1(ρ̃‖G) � C
(
e−2τ + ‖∇W‖L p1 F 2

p1
−1(τ )

)
� Ce

( 2
p1

−1)τ
(5.9)

|N2[ρ̃] − n| � Ce
( 2
p1

−1)τ
,

where C < ∞ depends on ρ0 and W.
(c) For n � 3, if in addition we assume that ∇W ∈ L p1(Rn) and �W ∈ L p2(Rn)

for some p1 ∈ [1, n) and p2 ∈ [1, n
2 ), then for all τ � 1 we have that

E1(ρ̃‖G) � C
(
e−2τ + ‖∇W‖L p1 F n

p1
−1(τ ) + ‖�W‖L p2 F n

p2
−2(τ )

)
,

(5.10)

|N2[ρ̃] − n| � C
(
e−2τ + ‖∇W‖L p1 F n

p1
−1(τ )

)
,

where C < ∞ depends on ρ0 and W.

In particular, for n � 2 if W ∈ W1,∞(Rn), ∇W ∈ Ln−ε(Rn), �W ∈ L
n
2 (Rn)

(and also �W ∈ L
n
2−ε(Rn) if n � 3) for some ε > 0, and ρ0 satisfies the above

assumptions, then the rescaled solution ρ̃ satisfies E1(ρ̃‖G) → 0 andN2[ρ̃] → n
as τ → ∞.

Proof of Theorem 5.4. To begin with, note that the same argument as in the first
half of the proof of Theorem 5.3 gives

sup
τ>1

‖ρ̃(τ )‖L∞ � C and sup
τ>1

‖ρ̃(τ )‖H1 � C,

where the constant C again depends on ρ0 and W in a quite non-explicit manner.
Note that we only need W ∈ W1,∞(Rn), ∇W ∈ Ln(Rn), and �W ∈ L

n
2 (Rn) (for

n � 2) to get these bounds; in particular they do not rely on the extra assumptions
in parts (a,b,c).

Next wewill prove part (a) by obtaining decay estimates for J1 and J2 for τ > 1,

under the additional assumption that (−�)
1
2−εW ∈ L1(R) for some ε ∈ (0, 1

2 ).
We start with controlling J1 as in the first line of (5.11), which yields |J1| �
C‖∇W̃ ∗ ρ̃‖L2 , thus

|J1| � C‖∇W̃ ∗ ρ̃‖L2 � C‖(−�)
1
2−εW̃‖L1‖(−�)ερ̃‖L2

� C‖(−�)
1
2−εW‖L1e−2ετ , (5.11)

where in the last inequality we used (3.8), and that supτ>1 ‖ρ̃(τ )‖H1 � C . For J2,
we have

|J2| � ‖∇ρ̃‖L2‖∇W̃ ∗ ρ̃‖L2 � C‖(−�)
1
2−εW‖L1e−2ετ ,
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where we used the J1 estimate to control ‖∇W̃ ∗ ρ̃‖L2 , and we also used that
supτ>1 ‖ρ̃(τ )‖H1 � C . Plugging these into (5.3) gives (5.8). The decay estimate
for |N2[ρ̃] − n| follows in the same way as the last paragraph of the proof of
Theorem 5.3.

We now move on to part (b), under the assumption that ∇W ∈ L p1(Rn) for
some p1 ∈ [1, 2). Again, using that |J1| � C‖∇W̃ ∗ ρ̃‖L2 , for p1 ∈ [1, 2)we have

|J1| � C‖∇W̃ ∗ ρ̃‖L2 � C‖∇W̃‖L p1 ‖ρ̃‖Lq1 � C‖∇W‖L p1 e
(1− n

p1
)τ

. (5.12)

For J2, taking q1 = 2p1
3p1−2 ∈ (1, 2] we have

|J2| � ‖∇ρ̃‖L2‖∇W̃ ∗ ρ̃‖L2 � ‖∇ρ̃‖L2‖∇W̃‖L p1 ‖ρ̃‖Lq1 � C‖∇W‖L p1 e
(1− n

p1
)τ

,

which has the same decay rate as the J1 estimate. Plugging these into (5.3) gives
(5.9). Again, the decay estimate for |N2[ρ̃]−n| follows in the same way as the last
paragraph of the proof of Theorem 5.3.

To prove part (c), we start with the J1 estimate. If p1 ∈ [1, 2), the estimate
(5.12) still holds. And if p1 � 2, we control J1 as

|J1| � ‖ρ̃y‖Lq1 ‖∇W̃ ∗ ρ̃‖L p1 � ‖ρ̃‖
1
2

L
p1

p1−2
N2[ρ̃] 12 ‖∇W̃‖L p1 ‖ρ̃‖L1

� C‖∇W‖L p1 e
(1− n

p1
)τ

, (5.13)

which gives the same decay rate as (5.12). For J2 we apply the usual Young in-
equality

|J2| � ‖ρ̃‖L1‖�(W̃ ∗ ρ̃)‖L∞ � C‖�W̃‖L p2 � C‖�W‖L p2 e
(2− n

p2
)τ

.

Plugging these into (5.3) gives (5.10). Again, the decay estimate for |N2[ρ̃] − n|
follows in the same way as above.

Once we finish part (b,c), the last statement in the theorem follows as a direct
consequence, since these assumptions of W are covered by part (b) for n = 2, and
part (c) for n � 3. This finishes the proof. ��

The proof of Theorem 1.2 follows directly from from (5.4) and (5.2) (using the
Csiszar–Kullback inequality and the change of variables in (1.2).

Remark 5.5. Note that the assumptions in Theorem 5.4 allowsW to have arbitrarily
slow power-law decay at infinity, which is much less restrictive than the W ∈
L1(Rn) assumption in Theorem 5.3. To see this, let W ∈ C∞(Rn) be a smooth
potential with W = −|x |−ε in B(0, 1)c for some 0 < ε � 1. For n = 1, the

definition of fractional Laplacian gives (−�)
1
2−δW ∼ −|x |−ε+2δ−1 for |x | >

1, thus (−�)
1
2−δW ∈ L1(R) for δ ∈ (0, ε

2 ), which satisfies the assumptions in
Theorem 5.4(a). For n � 2, one can easily check that ∇W ∈ L p1(Rn) for all
p1 > n

1+ε
and �W ∈ L p2(Rn) for all p2 > n

2+ε
, thus there exists p1 ∈ ( n

1+ε
, n)

(and p2 ∈ ( n
2+ε

, n
2 ) if n � 3) that satisfy the assumptions in Theorem 5.4(b,c).

Applying Theorem 5.4 gives E1(ρ̃‖G) → 0 for any ε > 0, although the decay rate
goes to 0 as ε → 0.
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From the above example, the assumptions on W in Theorem 5.4 is sharp in the

sense that W = log |x | is the ε → 0 limit of Wε = −|x |−ε+1
ε

, but for such W (even
if we modify it to be smooth near the origin) it is well-known that the steady state
for the rescaled equation (1.3) is different from the Gaussian, thus E1(ρ̃‖G) has no
decay as τ → ∞. For this reason, as p1 and p2 approach n and n

2 respectively in
Theorem 5.4, it is natural to expect that the convergence becomes arbitrarily slow.

5.2. L2 Relative Entropy

We also look at the convergence of the L2 relative entropy under different
assumptions on the interaction potential. In order to study the L2 convergence, we
define the L2 relative entropy as

E2(ρ̃‖G) =
∫
Rn

|ρ̃ − G|2 G−1 dy =
∫
Rn

∣∣∣∣ ρ̃G − 1

∣∣∣∣
2

G dy.

Recall that G solves the stationary Fokker–Planck equation. In fact, notice that
we can rewrite (1.3) as

∂ρ̃

∂τ
= ∇ ·

(
G∇ ρ̃

G
+ ρ̃∇W̃ ∗ ρ

)
.

It is natural that ρ̃/G will provide good estimates. In fact, it well-known that the
space L2(G−1 dy) is natural because it makes the Fokker–Planck operator self-
adjoint. Notice that that G−1 � (2π)

n
2 > 0 so the L2(G−1 dy) convergence is

stronger than the usual L2.

Theorem 5.6. Let n � 2. Let ρ̃ be a classical solution of (1.3) for τ � 1 such that

sup
τ�1

‖ρ̃‖L∞ < +∞

and ∇W ∈ L1(Rn). Then,

E2(ρ̃‖G) �
{
Ce−2τ n � 3,

C(1 + τ)2e−2τ n = 2.

as τ → +∞. In particular, if W satisfies W ∈ W1,∞(Rn) with ∇W ∈ L1(Rn)

and ρ0 ∈ L1+(Rn) satisfies
∫
Rn ρ0 dx = 1, E[ρ0] < ∞, and N2[ρ0] < ∞, then

the solution constructed in Theorem 2.1 is such that E2(ρ̃‖G) → 0 with the above
rates.

Remark 5.7. Notice that in this setting we do not use the uniform-in-time bound of
N2[ρ̃], nor integrability of D2W .
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Proof of Theorem 5.6. We have

1

2

d

dτ

∫
Rn

∣∣∣∣ ρ̃G − 1

∣∣∣∣
2

G dy = −
∫
Rn

∇ ρ̃

G
·
(
G∇ ρ̃

G
+ ρ̃∇W̃ ∗ ρ

)
dy

= −
∫
Rn

∣∣∣∣∇ ρ̃

G

∣∣∣∣
2

G dy +
∫
Rn

ρ̃∇ ρ̃

G
· ∇W̃ ∗ ρ dy.

We point out that

E2(ρ̃‖G) =
∫
Rn

∣∣∣∣ ρ̃√
G

− √
G

∣∣∣∣
2

dy =
∫
Rn

∣∣∣∣ ρ̃√
G

∣∣∣∣
2

dy − 1.

We now write∣∣∣∣
∫
Rn

ρ̃∇ ρ̃

G
· ∇W̃ ∗ ρ dy

∣∣∣∣ �
∫
Rn

ρ̃√
G

√
G

∣∣∣∣∇ ρ̃

G

∣∣∣∣
∣∣∇W̃ ∗ ρ

∣∣ dy
�
∥∥∥∥ ρ̃√

G

∥∥∥∥
L2

∥∥∥∥
√
G∇ ρ̃

G

∥∥∥∥
L2

‖∇W̃ ∗ ρ̃‖L∞

= (E2(ρ̃‖G) + 1)
1
2

∥∥∥∥
√
G∇ ρ̃

G

∥∥∥∥
L2

‖∇W̃‖L1‖ρ̃‖L∞ .

Hence

1

2

d

dτ
E2(ρ̃‖G) � −

∫
Rn

∣∣∣∣∇ ρ̃

G

∣∣∣∣
2

G dy + (E2(ρ̃‖G) + 1)
1
2

∥∥∥∥
√
G∇ ρ̃

G

∥∥∥∥
L2

‖∇W̃‖L1‖ρ̃‖L∞ .

(5.14)

The last term converges to zero for all n > 1, because of the scaling ‖∇W̃‖L1 �
e(1−n)τ‖∇W‖L1 . Let us define w = ρ̃

G . In the rescaled heat equation, this converts
the Fokker–Planck into the Ornstein-Uhlenbeck semigroup.We recall the Gaussian
Poincaré inequality

∫
Rn

|w − 1|2 G dy =
∫
Rn

|w|2G dy −
(∫

Rn
wG dy

)2

�
∫
Rn

|∇w|2G dy ,

(5.15)

noticing that G and ρ̃ = wG have mass equal to 1. To simplify the notations, let

u(τ ) := E2(ρ̃‖G), v(τ ) :=
∫
Rn

∣∣∣∣∇ ρ̃

G

∣∣∣∣
2

G dy,

and under these notations (5.15) becomes 0 � u � v. We can also rewrite (5.14)
in these new notations as

d

dτ
u � −2v + Ce(1−n)τ (u + 1)

1
2 v

1
2 .

Let τ0 > 1 be such that Ce(1−n)τ0 < 1, and we claim that supτ�τ0
u(τ ) �

max{1, u(τ0)}. In fact, if u(τ ) � 1 for some τ � τ0, using the facts thatCe(1−n)τ <
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1 and 0 � u � v, we have du
dτ � −2v + (u + 1)

1
2 v

1
2 � −2v + √

2v < 0, proving
the claim. Using this estimate, we have that

d

dτ
u � −2v + Ce(1−n)τ v

1
2 for all τ > τ0.

If n = 2, we isolate the v
1
2 in the above last term and use Young’s inequality to

obtain the following for τ > τ0:

d

dτ
u � −(2 − 1

1 + τ

)
v + Ce−2τ (1 + τ).

Applying the inequality 0 � u � v to the right hand side, and multiplying both

sides of the inequality by the obvious integrating factor A(τ ) = e2τ
1+τ

, we have

d

dτ
(Au) � C ⇒ u(τ ) � CA(τ )−1(1 + τ) � C(1 + τ)2e−2τ .

If n � 3, we proceed slightly differently in isolating v using Young’s inequality
again

d

dτ
u � −(2 − e−τ )v + Ce(3−2n)τ .

Using the corresponding integrating factor A(τ ) = e2τ+e−τ
we obtain

d

dτ
(Au) � Ce(5−2n)τ ⇒ u(τ ) � CA(τ )−1 � Ce−2τ .

This completes the proof. ��
Remark 5.8. We point out that the L2 norm of ρ − U decays faster than that of ρ

itself. Using the change of variables (1.2), we can translate the result above to∫
Rn

|ρ −U |2 dx = (2t + 1)−
n
2

∫
Rn

|ρ̃ − G|2 dy

�
{
Ct− n

2−1 n � 3,

Ct− n
2−1(1 + log(1 + 2t))2 n = 2.

On the other hand, the L2 decay of ρ itself is only∫
Rn

ρ2 dx = (2t + 1)−
n
2

∫
Rn

ρ̃2 dy ∼ Ct−
n
2 .
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A. Some Comments on Fractional Sobolev Spaces

We recall the definition of the Sobolev-Slobodecki semi-norm for s ∈ (0, 1) below. For
p ∈ [1, ∞), let us define

[ f ]Ws,p =
(
s(1 − s)

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp dx dy

) 1
p

,

and for p = ∞ let

[ f ]Ws,∞ = sup
x �=y

| f (x) − f (y)|
|x − y|s .

For s ∈ (k, k + 1) we define

[u]pWs,p = sup
|α|=k

[Dαu]Ws−k,p .

The complete norm is constructed via

‖u‖pWs,p = ‖u‖pW�s�,p + [u]pWs,p .

A discussion on these norms can be found in [11,23]. When s /∈ N the Sobolev-Slobodecki
spaces also coincide with the Besov spaces Bs

p,p(R
n) = Ws,p(Rn).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A.1. Scaling of Fractional Sobolev Norm

It is a direct computation that, if s ∈ (0, 1)

[ f (λ·)]pWs,p = s(1 − s)
∫
Rn

∫
Rn

| f (λx) − f (λy)|p
|x − y|n+sp dx dy

= s(1 − s)
∫
Rn

∫
Rn

| f (x) − f (y)|p
| xλ − y

λ |n+sp
λ−2n dx dy

= λsp−n[ f ]pWs,p .

Hence, for s ∈ (0, 1), we have that

[ f (λ·)]Ws,p = λ
s− n

p [ f ]Ws,p .

Therefore, still for s ∈ (0, 1), we conclude that

[Dα( f (λ·))]Ws,p = [λ|α|(Dα f )(λ·)]Ws,p = λ
|α|+s− n

p [Dα f ]Ws,p .

A.2. A Result for Fractional Laplacians

The fractional Laplacian is defined through the Fourier transform as the operator of symbol
|ξ |2s

(−�)su(x) = F−1[|ξ |2sF [u](ξ)].
Due to the properties of the convolution

−�( f ∗ g) = [(−�)1−s f ] ∗ [(−�)s g].
Through the standard Young inequality we have that

‖�( f ∗ g)‖Lr � ‖(−�)1−s f ‖L p‖(−�)s g‖Lq , s ∈ (0, 1), 1 + 1

r
= 1

p
+ 1

q
.

(A.1)

Furthermore, it is known (see [38, Proposition 2.1.7 and Proposition 2.1.8]) that

‖(−�)s f ‖Cε � C‖ f ‖C2s+ε , (A.2)

whenever ε, 2s + ε /∈ N.

A.3. A Result in Norms

Theorem A.1. Let s0, s1 � 0, and p0, p1 ∈ [1, ∞]. Then, there exists C such that

‖ f ∗ g‖Ws0+s1,p � C‖ f ‖Ws0,p0 ‖g‖Ws1,p1 , 1
p + 1 = 1

p0
+ 1

p1
. (A.3)

We will use K -interpolation. We introduce some definitions and results that can be found in
[5, Chapter 5].
K -interpolation Given X0, X1 we say they are compatible spaces if they can be embedded
into a common Hausdorff topological space Z . We define, for p ∈ [1, ∞)

|||u|||θ,p;X0,X1 :=
(∫ +∞

0

(
K (t, u; X0, X1)

tθ

)p dt

t

) 1
p
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and

|||u|||θ,∞;X0,X1 = sup
t>0

t−θ K (t, u; X0, X1),

where

K (t, u; X0, X1) = inf
{‖u0‖X0 + t‖u1‖X1 : u = u0 + u1, ui ∈ Xi

}
. (A.4)

We define

(X0, X1)θ,p = {u ∈ X0 + X1 : |||u|||θ,p;X0,X1 < ∞}.
Operators in interpolation spaces The key result we will use is that if for compatible
pairs (X0, X1) and (Y0, Y1) and an operator T : Xi → Yi for both i = 0, 1 we have that
T : (X0, X1)K ;p,θ → (Y0, Y1)K ;p,θ and we have

sup
u �=0

|||Tu|||θ,p;Y0,Y1
|||u|||θ,p;X0,X1

�
(
sup
u �=0

‖Tu‖Y0
‖u‖X0

)1−θ (
sup
u �=0

‖Tu‖Y1
‖u‖X1

)θ

This is proved in [5, Theorem 1.12, Chap 5].
Embedding We will also use the embedding formula [5, Proposition 1.10, Chap 5], which
says that

(X0, X1)θ,q ⊂ (X0, X1)θ,r , θ ∈ (0, 1), 1 � q � r � ∞.

Hence, there exists Cr (θ, q, r, X0, X1) such that

|||u|||θ,r;X0,X1 � Ci (θ, q, r, X0, X1)|||u|||θ,q;X0,X1 , θ ∈ (0, 1), 1 � q � r � ∞.

(A.5)

Interpolation reiteration An important result [5, Theorem 2.4, Chap 5] states that taking
interpolation of interpolations is, in itself, and interpolation of the original spaces. Let 0 �
θ0 < θ � 1 and q, q0, q1 ∈ [1, ∞]

(
(X0, X1)θ0,q0 , (X0, X1)θ1,q1

)
θ,q

= (X0, X1)θ ′,q , θ ′ = (1 − θ)θ0 + θθ1.

(A.6)

Interpolation of Sobolev spaces According to [5, Theorem 4.17, Chap 5], if s0 �= s1,
θ ∈ (0, 1) and p, q ∈ [1, ∞] we have

(Ws0,p(Rn),Ws1,p(Rn))θ,q = B p
sθ ,q (Rn).

Here and below sθ = (1 − θ)s0 + θs1. In particular, we obtain that

(Ws0,p(Rn),Ws1,p(Rn))θ,p = Wsθ ,p(Rn), s0 �= s1, θ ∈ (0, 1), p ∈ [1,∞], sθ /∈ N.

This can be computed from the interpolation between (L p,Wk,p) and the reiteration formula
(A.6). To be precise, this means that

1

Ce(p, s0, s1, θ)
‖u‖Wsθ ,p �|||u|||θ,p;Ws0,p,Ws1,p � Ce(p, s0, s1, θ)‖u‖Wsθ ,p ,

θ ∈ (0, 1), s0 �= s1, sθ /∈ N, p ∈ [1,∞].
(A.7)
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Proof of TheoremA.1. Step 1. s0 = k0, s1 = k1 ∈ N. Due to the standardYoung inequality,
we know that

‖ f ∗ g‖L p � ‖ f ‖L p0 ‖g‖L p1 .

Applying the result for derivatives, let us write s = k = k0 + k1 and α = α0 + α1

[ f ∗ g]Wk,p = sup
|α|=k

∥∥Dα( f ∗ g)
∥∥
L p � sup

|α|=k
‖Dα0 f ‖L p0

∥∥Dα1g
∥∥
L p1

= [ f ]Wk0,p0 [g]Wk1,p1 .

Thus, we have as expected that

‖ f ∗ g‖Wk,p � ‖ f ‖Wk0,p0 ‖g‖Wk1,p1 .

Step 2. s0 = 0, 0 < s1 /∈ N. We define the map T f : g �→ f ∗ g. If s1 < k1 ∈ N and
s1 = (1 − θ)0 + θk1, then

‖T f g‖L p

‖g‖L p1
� ‖ f ‖L p0 , and

‖T f g‖Wk1,p

‖g‖Wk1,p1

� ‖ f ‖L p0 .

By interpolation, we get
∣∣∣∣∣∣T f g

∣∣∣∣∣∣
θ,p;L p,Wk1,p

|||g|||θ,p;L p1 ,Wk1,p1

� ‖ f ‖L p0

Notice that the interpolation for g iswith p, and not p1 aswewould like.Using the embedding
formula (A.5) since p � p1 we have

||| f ∗ g|||θ,p;L p,Wk1,p � Cr (θ, p1, p, L
p,Wk1,p)‖ f ‖L p0 |||g|||θ,p1;L p1 ,Wk1,p1 .

Using (A.7) we deduce the result, multiplying the constant Ce to our right-hand side.
Step 3. s0 ∈ N, 0 < s1 /∈ N. We proceed as in Step 1, followed by Step 2.
Step 4. s0, s1 /∈ N. Now we must interpolate in f . For g fixed we define Tg : f �→ f ∗ g.
Let s0 < k0 ∈ N and θ such that s0 = (1 − θ)0 + θk0. By Steps 2 and 3 we have that

‖Tg f ‖Ws1,p

‖ f ‖L p0
� C‖g‖Ws1,p1 , and

‖Tg f ‖Wk0+s1,p

‖ f ‖Wk0,p0

� C‖g‖Ws1,p1 .

Hence, by interpolation we obtain that
∣∣∣∣∣∣Tg f ∣∣∣∣∣∣θ,p;Ws1,p,Wk0+s1,p

||| f |||θ,p;L p0 ,Wk0,p0

� C‖g‖Ws1,p1 .

We apply again the embedding (A.5) and (A.7) to conclude the result. ��

B. Relating ρ log ρ and the Second Moment

We provide a general result relating moment-type bounds and the integrability of F(ρ) with
the integrability of |F(ρ)|. This is very useful to obtain equi-integrability results. In the case
of F(s) = s log s and the second moment, this is very classical (see, e.g. [7,10]). For the
proof we will use symmetrisation techniques (see [29,35].

Lemma B.1. Let F : R → R continuous be such that:
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1. For some ρ1, ρ2 > 0 |F | is non-decreasing in [0, ρ1], F � 0 in [ρ2,+∞)

2. There exists g non-decreasing and locally integrable such that ρ ∈ L1(Rn),

Ng[ρ] =
∫
Rn

g(|x |)ρ(x) < ∞ and define G(s) =
∫ s

0
g(r)rn−1 dr.

Then, there exists C0, r0 depending only on ρ1, ρ2 and ‖ρ‖L1 such that

∫
Rn

|F(ρ)| �
∫
Rn

F(ρ) + C0

(
sup

ρ1<s<ρ2

|F(s)| +
∫
|x |>r0

∣∣∣∣F
( Ng[ρ]

|Sn−1|G(|x |)
)∣∣∣∣
)

.

Proof. We decompose the F into its positive and negative parts F = F+ −F−.We consider
ρ∗ the decreasing rearrangement of ρ. We have that

∫
Rn

F±(ρ) =
∫
Rn

F±(ρ∗), Ng[ρ∗] =
∫

g(|x |)ρ∗ �
∫

g(|x |)ρ = Ng[ρ].

First, let us estimate
∫
F−(ρ). Since ρ∗ is decreasing, we can apply Lieb’s trick (see [34])

to show that

Ng[ρ] �
∫
Rn

g(|x |)ρ∗ � |Sn−1|
∫ |x |
0

g(r)ρ∗rn−1 dr � |Sn−1|ρ∗(x)G(|x |),

where |Sn−1| is the measure of the (n − 1)-dim sphere. Thus, we have that

ρ∗(x) � Ng[ρ]
|Sn−1|G(|x |) .

Since ρ∗ is decreasing and tends to 0 there exists r1, r2 > 0 such that {ρ∗ > ρi } = Bri .
Notice that ∫

Rn
ρ =

∫
Rn

ρ∗ �
∫
ρ∗>ρi

ρ∗ � ρi |{ρ∗ > ρi }| = ρi |B1|rni .

Thus, we can estimate

ri �
( ∫

Rn ρ

ρi |B1|
) 1

n

.

We take

r0 = max

⎧⎨
⎩
( ∫

Rn ρ

ρ1|B1|
) 1

n

,

( ∫
Rn ρ

ρ2|B1|
) 1

n

⎫⎬
⎭ .

We have that∫
Rn

F−(ρ∗) =
∫
|x |>r2

F−(ρ∗) �
∫
|x |>r2

|F(ρ∗)|

�
∫
r2<|x |<r0

|F(ρ∗)| +
∫
|x |>r0

|F(ρ∗)|

� |Br0 \ Br2 | sup
r2<|x |<r0

|F(ρ∗)| +
∫
|x |>r0

∣∣∣∣F
(

Ng[ρ]
|Sn−1|G(|x |)

)∣∣∣∣ .
Since F+ = F + F− we have that |F | = F + 2F− and this proves the result. ��
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