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Abstract

We consider the physically relevant fully compressible setting of the Rayleigh–
Bénard problem of a fluid confined between two parallel plates, heated from the
bottom, and subjected to gravitational force. Under suitable restrictions imposed on
the constitutive relations we show that this open system is dissipative in the sense
of Levinson, meaning there exists a bounded absorbing set for any global-in-time
weak solution. In addition, global-in-time trajectories are asymptotically compact
in suitable topologies and the system possesses a global compact trajectory attractor
A. The standard technique of Krylov and Bogolyubov then yields the existence of
an invariant measure—a stationary statistical solution sitting onA. In addition, the
Birkhoff–Khinchin ergodic theorem provides convergence of ergodic averages of
solutions belonging to A a.s. with respect to the invariant measure.

1. Introduction

The Rayleigh–Bénard problem concerns the motion of a fluid confined between
two parallel planes, where the temperature of the bottom plane is maintained at the
level �B, while the top plane has the ambient temperature �U, typically �U �
�B. The only volume force is due to gravitation acting in the downward vertical
direction. The fluid mass density � = �(t, x), the temperature ϑ(t, x), and the
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velocity u = u(t, x) obey the standard system of equations of continuum fluid
mechanics

∂t� + divx (�u) = 0, (1.1)

∂t (�u) + divx (�u ⊗ u) + ∇x p(�, ϑ) = divxS + �∇x G, (1.2)

∂t (�e(�, ϑ)) + divx (�e(�, ϑ)u) + ∇xq = S : Dxu − p(�, ϑ)divxu, (1.3)

where we have denoted

the pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p = p(�, ϑ),

the (specific) internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .e = e(�, ϑ),

the viscous stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S,

the gravitational potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G = −gx3,

the heat flux .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .q

the symmetric part of the velocity gradient . . . . . . . . . . .Dxu = 1
2

(∇xu + ∇ t
xu
)
.

For the sake of simplicity, we consider the periodic boundary conditions with
respect to the horizontal variables.Accordingly, the fluid domain� can be identified
with

� = T
2 × (0, 1), (1.4)

whereT2 is the two-dimensional flat torus. If the boundary planes are impermeable
and the viscous fluid sticks to them, the relevant boundary conditions read as

u|x3=0 = u|x3=1 = 0, (1.5)

ϑ |x3=0 = �B, ϑ |x3=1 = �U. (1.6)

We suppose that the fluid is Newtonian, with the viscous stress

S(ϑ,Dxu) = μ(ϑ)

(
∇xu + ∇ t

xu − 2

3
divxuI

)
+ η(ϑ)divxuI. (1.7)

The heat flux is given by Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ, (1.8)

where κ is the conductivity. The field equations (1.1)–(1.3), endowed with the con-
stitutive relations (1.7), (1.8), will be referred to as Navier–Stokes–Fourier system.
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The behaviour of the fluid under the boundary conditions (1.5), (1.6) with a
sufficiently large difference between the top and bottom temperatures is a prominent
example of turbulence, see for example Davidson [13]. There is a large amount
of mathematical literature devoted to the asymptotic behaviour of solutions to the
Rayleigh–Bénard problem in the simplified incompressible framework, where the
system (1.1)–(1.3) is replaced by the Oberbeck–Boussinesq approximation, see
Constantin et al. [11], Foias et al. [22], Cao et al. [8] and the references
therein. Recently, the problem motivated a series of studies by Otto et al. [10,
30,34] concerning the associated scaling laws.

Much less seems to be known in the original and physically relevant framework
of compressible and heat conducting fluids. Here, the rigorous analysis is hampered
by the following notoriously known difficulties:

• Navier–Stokes–Fourier system endowed with the boundary conditions (1.5),
(1.6) is an open system in the regime far from equilibrium. Unfortunately, the
existence of global-in-time smooth solutions is known only in the case of closed
systems approaching the equilibrium solution in the long run, seeMatsumura
and Nishida [28,29], or Valli and ZajĄczkowski [36].

• The available theory of weak solutions developed in [16] (see also the alter-
native approach by Bresch and Desjardins [6] and Bresch and Jabin [7])
applies to conservative or periodic boundary conditions pertinent to the closed
systems.Note that the dynamics of theNavier–Stokes–Fourier systemwith con-
servative boundary conditions is nowadays well understood, see [20]. Indeed,
in accordance with the celebrated statement of Clausius:

“Die Energie der Welt ist konstant. Die Entropie der Welt strebt einem Maximum
zu”

Rudolf Clausius, Poggendorff’s Annals of Physics 1865 (125), 400;
any global-in-time weak solution of the Navier–Stokes–Fourier system with con-
servative boundary conditions and driven by a conservative volume force tends to
an equilibrium, see for example [18,20] orNovotný and Pokorný [31],Novotný
and Straškraba [32,33]. Here, conservative means that the system is thermally
insulated, the boundary conditions (1.6) being replaced by

q · n = q3 = 0 on ∂�.

• The weak solutions are not (known to be) uniquely determined by the ini-
tial/boundary data.

Recently, the theory of weak solutions has been extended to non-zero in/out flux
boundary conditions in [17], and, finally, to general Dirichlet boundary conditions
in [9]. In particular, the theory of weak solutions proposed in [9] yields a suitable
platform to attack the Rayleigh–Bénard problem (1.5), (1.6). As pointed out above,
the weak solutions are not known to be uniquely determined by the initial/boundary
data. Accordingly, we follow the approach advocated by Sell [35] andMálek and
NeČas [27] replacing the standard phase space by the space of trajectories.

The principal objective of the paper is to establish the following two basic
results:
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• Levinson dissipativity or bounded absorbing set. Any global-in-time weak so-
lution to the Navier–Stokes–Fourier system endowed with the boundary con-
ditions (1.5), (1.6) enters eventually a bounded absorbing set. In comparison
with [15], we relax the hypothesis of the hard sphere pressure and consider
the physically relevant equation of state of a general monoatomic gas with the
effect of radiation proposed in [16].

• Asymptotic compactness. Similarly to [21, Chapter 4, Theorem 4.2], we show
that any bounded family of global solutions is precompact in a suitable topology
of the trajectory space,whereas any of its accumulation points represents aweak
solution of the same problem.

Using the above results, we establish the existence of a compact trajectory
attractor, an invariant measure and the existence of stationary statistical solutions
generated by bounded trajectories. Finally, we also discuss the existence of the
ergodic averages in the spirit of [14].

As pointed out, the key point of the analysis is the Levinson dissipativity or the
existence of a universal bounded absorbing set for the “monoatomic” equation of
state introduced in [16, Chapters 1,2]. This is rather surprising as this constitutive
equation can be seen as a temperature dependent counterpart of the isentropic
pressure law p(�) ≈ �γ , with γ = 5

3 . Note that for the isentropic model, the
existence of a bounded absorbing set is known only if γ > 5

3 , see [19], whereas
the limit case γ = 5

3 requires smallness of the total mass of the fluid, see Wang
and Wang [37]. Moreover, uniform boundedness of global trajectories for the
Navier–Stokes–Fourier system is a delicate issue. As is known, see [20,21], the
energy of all global-in-time solutions tends to infinity with growing time as soon
as the system is energetically closed and driven by a non-conservative volume
force.

Similarly to the incompressibleNavier–Stokes systemwith conservative bound-
ary conditions studied by Málek and NeČas [27] and Sell [35], the large time
asymptotic behaviour of solutions to the Rayleigh–Bénard problem is captured by
the set of entire trajectories A defined for all t ∈ R and with uniformly bounded
total energy and mass. We show that the set A is (i) non-empty, (ii) time shift
invariant, and (iii) compact if endowed by a suitable metrics. The standard Krylov–
Bogolyubov technique then yields the existence of an invariant measure supported
inA—a stationary statistical solution of the Rayleigh–Bénard problem. Moreover,
the standard Birkhoff–Khinchin ergodic theorems yields the convergence of the
ergodic averages a.s. with respect to the invariant measure. Uniqueness of the in-
variant measure for solutions with the same total mass remains an outstanding open
problem.

The results obtained could be also used to establish the existence of the standard
attractor in the spirit of the work of Sell [35] or Málek and NeČas [27] for the
incompressible fluid flows.
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The paper is organized as follows. In Section 2, we recall the principal constitu-
tive hypotheses and introduce the concept of weak solution. The main results—the
existence of a bounded absorbing set and asymptotic compactness of global-in-time
solutions—are stated in Section 3. In Section 4, we show the existence of a bounded
absorbing set in terms of the total energy. The implications of the main results on
the long-time behavior of the system are discussed in Section 5.

2. Principal hypotheses, weak solutions

Following [9] we introduce the concept of weak solution to the Navier–Stokes–
Fourier system based on the combination of the balance equations for the entropy
and the ballistic energy

Eϑ̃ (�, ϑ,u) = E(�, ϑ,u) − ϑ̃�s(�, ϑ), E(�, ϑ,u) = 1

2
�|u|2 + �e(�, ϑ),

where s is the entropy related to the other thermodynamic functions through Gibbs’
equation

ϑ Ds(�, ϑ) = De(�, ϑ) + pD

(
1

�

)
, (2.1)

and ϑ̃ is an arbitrary continuously differentiable function of (t, x) satisfying

ϑ̃ > 0, ϑ̃ |x3=0 = �B, ϑ̃ |x3=1 = �U. (2.2)

For the sake of simplicity, we suppose that �B, �U are positive constants. A
generalization of the results of the present paper to the space or even time dependent
boundary temperatures is possible with obvious modifications in the proofs.

2.1. Weak solution

Aswe are interested in the long time behaviour of solutions, the specific value of
the initial data is irrelevant. We therefore consider solutions of the Navier–Stokes–
Fourier system defined on the open time interval (T,∞), T ∈ R.
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Definition 2.1. We say that (�, ϑ,u) is a weak solution of the Navier–Stokes–
Fourier system (1.1)–(1.3), (1.7), (1.8), with the boundary conditions (1.5), (1.6)
defined on the time interval (T,∞) if the following holds:

• The solution belongs to the following regularity class:

� ∈ L∞
loc(T,∞; Lγ (�)) for some γ > 1,

u ∈ L2
loc(T,∞; W 1,2

0 (�; R3)),

ϑβ/2, log(ϑ) ∈ L2
loc(T,∞; W 1,2(�) for some β � 2,

(ϑ − ϑB) ∈ L2
loc(T,∞; W 1,2

0 (�)). (2.3)

• The equation of continuity (1.1) along with its renormalization are satisfied
in the sense of distributions, specifically,
∫ ∞

T

∫

�

[
�∂tϕ + �u · ∇xϕ

]
dx dt = 0, (2.4)

∫ ∞

T

∫

�

[
b(�)∂tϕ + b(�)u · ∇xϕ +

(
b(�) − b′(�)�

)
divxuϕ

]
dx dt = 0

(2.5)

for any ϕ ∈ C1
c ((T,∞) × �), and any b ∈ C1(R), b′ ∈ Cc(R).

• Themomentum equation (1.2) is satisfied in the sense of distributions,
∫ ∞

T

∫

�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ + pdivxϕ

]
dx dt

=
∫ ∞

T

∫

�

[
S : ∇xϕ − �∇x G · ϕ

]
dx dt, (2.6)

for any ϕ ∈ C1
c ((T,∞) × �; R3).

• The internal energy equation (1.3) is replaced by the entropy inequality

−
∫ ∞

T

∫

�

[
�s∂tϕ + �su · ∇xϕ + q

ϑ
· ∇xϕ

]
dx dt

�
∫ ∞

T

∫

�

ϕ

ϑ

[
S : Dxu − q · ∇xϑ

ϑ

]
dx dt (2.7)

for any ϕ ∈ C1
c ((T,∞) × �), ϕ � 0; and the ballistic energy balance,

−
∫ ∞

T
∂tψ

∫

�

[
1

2
�|u|2 + �e − ϑ̃�s

]
dx dt

+
∫ ∞

T
ψ

∫

�

ϑ̃

ϑ

[
S : Dxu − q · ∇xϑ

ϑ

]
dx dt

�
∫ ∞

T
ψ

∫

�

[
�u · ∇x G − �su · ∇x ϑ̃ − q

ϑ
· ∇x ϑ̃

]
dx (2.8)

for any ψ ∈ C1
c (T ;∞), ψ � 0, and any ϑ̃ ∈ C1([T ;∞) × �),

ϑ̃ > 0, ϑ̃ |x3=0 = �B, ϑ̃ |x3=1 = �U.
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The existence of global-in-time weak solutions under the constitutive restric-
tions specified in the forthcoming section was proved in [9, Theorem 4.2]. In ad-
dition, the weak solutions comply with the weak–strong uniqueness principle and
coincide with strong solutions as soon as they are smooth.

2.2. Constitutive relations

Following [16, Chapters 1,2] we consider the equation of state

p(�, ϑ) = pm(�, ϑ) + prad(ϑ),

where pm is the pressure of a general monoatomic gas,

pm(�, ϑ) = 2

3
�em(�, ϑ), (2.9)

enhanced by the radiation pressure

prad(ϑ) = a

3
ϑ4, a > 0.

Accordingly, the internal energy reads

e(�, ϑ) = em(�, ϑ) + erad(�, ϑ), erad(�, ϑ) = a

�
ϑ4.

To identify the specific form of pm we successively employ several physical
principles, see [16, Chapter 1] for details.

• Gibbs’ relation together with (2.9) yield

pm(�, ϑ) = ϑ
5
2 P

(
�

ϑ
3
2

)

for a certain P ∈ C1[0,∞). Consequently,

p(�, ϑ) = ϑ
5
2 P

(
�

ϑ
3
2

)
+ a

3
ϑ4, e(�, ϑ) = 3

2

ϑ
5
2

�
P

(
�

ϑ
3
2

)
+ a

�
ϑ4,

a > 0. (2.10)

• Hypothesis of thermodynamics stability, cf. Bechtel et al. [1], expressed in
terms of P , reads

P(0) = 0, P ′(Z) > 0 for Z � 0, 0 <
5
3 P(Z)−P ′(Z)Z

Z � c for Z > 0.

(2.11)
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In particular, the function Z �→ P(Z)/Z
5
3 is decreasing, and we suppose

lim
Z→∞

P(Z)

Z
5
3

= p∞ > 0. (2.12)

• In accordance with Gibbs’ relation (2.1), the associated entropy takes the form

s(�, ϑ) = S
(

�

ϑ
3
2

)
+ 4a

3

ϑ3

�
, (2.13)

where

S ′(Z) = −3

2

5
3 P(Z) − P ′(Z)Z

Z2 < 0. (2.14)

In addition, the Third law of thermodynamics, cf. Belgiorno [2,3], requires
the entropy to vanish as soon as the abolute temperature approaches zero,

lim
Z→∞S(Z) = 0. (2.15)

Note that (2.11)–(2.15) imply

0 � �S
(

�

ϑ
3
2

)
� c

(
1 + � log+(�) + � log+(ϑ)

)
. (2.16)

As for the transport coefficients, we suppose that they are continuously differen-
tiable functions satisfying

0 < μ(1 + ϑ) � μ(ϑ), |μ′(ϑ)| � μ,

0 � η(ϑ) � η(1 + ϑ),

0 < κ(1 + ϑβ) � κ(ϑ) � κ(1 + ϑβ). (2.17)

The existence theory developed in [9] requires that

β > 6. (2.18)

The state equation specified above, together with the fact that the transport
coefficients depend on the temperature, are pertinent to models of gaseous stars
discussed by Bormann [4,5].

3. Main results

Our main result states that the Navier–Stokes–Fourier system in the Rayleigh–
Bénard regime (1.5), (1.6) admits a bounded absorbing set.
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Theorem 3.1. (Bounded absorbing set) Let �B, �U be two strictly positive
constants. Let the pressure p, the internal energy e, and the entropy s satisfy
the hypotheses (2.10)–(2.15). Let the transport coefficients μ, η, and κ satisfy
(2.17), (2.18).

Then there exists a constant E∞ that depends only on �B, �U and the
total mass of the fluid

M =
∫

�

� dx,

such that for any global-in-time weak solution (�, ϑ,u) defined on a time
interval (T,∞), we have

ess lim sup
t→∞

∫

�

E(�, ϑ,u)(t, ·) dx � E∞. (3.1)

If, moreover,

ess lim sup
t→T +

∫

�

E(�, ϑ,u)(t, ·) dx � E0 < ∞,

then the convergence is uniform in E0. Specifically, for any ε > 0, there exists
a time T (ε, E0) such that

ess sup
t>T (ε,E0)

∫

�

E(�, ϑ,u)(t, ·) dx � E∞ + ε. (3.2)

Remark 3.2. The same result can be shown for a general bounded domain with an
arbitrary (nonconstant) profile of the boundary temperature and a general potential
volume force g = ∇x G, G = G(x). In particular, the problem posed in the inclined
layer studied for example by Daniels et al. [12] can be included.

Remark 3.3. Of course the quantity E∞ depends also on the specific choice of the
transport coefficients as well as the form of the constitutive relations p = p(�, ϑ),
e = e(�, ϑ), s = s(�, ϑ)

The existence of a bounded absorbing set for the isentropic (p = a�γ ) Navier–
Stokes system with the no-slip boundary conditions was established in [19] under
the condition γ > 5

3 , see also Wang and Wang [37]. For similar results related
to the conservative boundary conditions see [18] and the monograph [21]. The
existence of a bounded absorbing set for the Navier–Stokes–Fourier system with
general Dirichlet boundary conditions was shown in [15] under rather restrictive
assumption postulating a hard sphere equation of state for the pressure. Note that
this considerably simplifies the analysis as uniform bounds on the fluid density are
a priori available. It is exactly this missing piece of information that makes the
analysis of the present paper much more delicate.

The second result concerns the asymptotic compactness of bounded trajectories.
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Theorem 3.4. (Asymptotic compactness)Under the hypotheses of Theorem3.1,
let (�n, ϑn,un)∞n=1 be a sequence of weak solutions to the Navier–Stokes–
Fourier system in the sense of Definition 2.1 on the time intervals

(Tn,∞), Tn � −∞, Tn → −∞ as n → ∞,

such that

ess lim sup
t→Tn+

∫

�

E(�n, ϑn,un)(t, ·) dx � E0,
∫

�

�n dx = M > 0,

uniformly for n → ∞.
Then there is a subsequence (not relabelled) such that

�n → � in Cweak([−N , N ]; L
5
3 (�)) ∩ C([−N , N ]; L1(�)),

ϑn → ϑ in Lq((−N , N ); L4(�)) for any 1 � q < ∞,

un → u weakly in L2((−N , N ); W 1,2(�; R3)) (3.3)

for any N > 0, where the limit (�, ϑ,u) is an entire weak solution of the
Navier–Stokes–Fourier system defined for t ∈ R and satisfying

∫

�

E(�, ϑ,u)(t, ·) dx � E∞ for a.a. t ∈ R. (3.4)

The heart of the paper is the proof of Theorem 3.1. Once the uniform bounds
on the energy are established, the proof of Theorem 3.4 reduces to showing com-
pactness of a sequence of bounded solutions. To certain extent, this is similar to
the existence proof, where the only essential issue is the strong (almost everywhere
pointwise) convergence of the densities in (3.3). Unlike in the existence proof,
compactness of the densities at an appropriate “initial” time is not available here.
Fortunately, this problem is nowadays well understood and we refer the reader to
[14, Section 3, Theorem 3.1] for a detailed proof.

The next section is devoted to the proof of Theorem 3.1. In view of the hypothe-
ses (2.10), (2.12),

p(�, ϑ) ≈ �
5
3 + ϑ4.

As already pointed out, the exponent γ = 5
3 is critical in the simplified isentropic

case. To handle this problem we use the fact that (i) the gravitational force acting
on the fluid is of potential type, and (ii) the entropy satisfies the Third law of
thermodynamics, notably (2.15).

4. Dissipativity

Our goal is to prove Theorem 3.1. Suppose that we are given a global-in-time
solution (�, ϑ,u) defined on a time interval (T,∞). The proof of asymptotic bound-
edness leans on several estimates that follow from the basic physical conservation
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laws. Here and hereafter, we fix ϑ̃ to be the unique solution of the Dirichlet problem

�x ϑ̃ = 0 in �, ϑ̃ |x3=0 = �B, ϑ̃ |x3=1 = �U. (4.1)

As �B, �U are constant, we easily compute

ϑ̃ = ϑ̃(x3) = �B + x3 (�U − �B) .

Obviously, the same ansatz can be used in the case of general x−dependent bound-
ary data.

4.1. Mass conservation

It follows from the equation of continuity (2.4) that the total mass of the fluid
is a constant of motion,

M =
∫

�

�(t, ·) dx for any t > T . (4.2)

In addition, as the volume force is potential, we can write
∫

�

�u · ∇x G dx = d

dt

∫

�

�G dx, G = −x3.

Consequently, the ballistic energy balance (2.8) takes the form

d

dt

∫

�

[
1

2
�|u|2 + �e − ϑ̃�s − �G

]
dx +

∫

�

ϑ̃

ϑ

[
S : Dxu − q · ∇xϑ

ϑ

]
dx

� −
∫

�

[
�su · ∇x ϑ̃ + q

ϑ
· ∇x ϑ̃

]
dx in D′(T,∞). (4.3)

It is worth-noting that the same argument applies for a general Lipschitz potential
G = G(x).

4.2. Coercivity of the dissipative term

It follows from the hypotheses (2.17) and Korn–Poincaré inequality that
∫

�

ϑ̃

ϑ

(
S(ϑ,Dxu) : Dxu − q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx

� c inf{�U,�B}
(
‖u‖2W 1,2(�;R3)

+ ‖∇xϑ
β
2 ‖2L2(�;R3)

+ ‖∇x log(ϑ)‖2L2(�;R3)

)
.

Consequently, adding theboundary integrals to the left-hand side andusingPoincaré
inequality, we get

(
‖u‖2W 1,2(�;R3)

+ ‖ϑ β
2 ‖2W 1,2(�)

+ ‖ log(ϑ)‖2W 1,2(�)

)

� c(�U,�B)

[

1 +
∫

�

ϑ̃

ϑ

(
S(ϑ,Dxu) : Dxu − q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx

]

(4.4)
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4.3. Energy estimates

To simplify the ballistic energy inequality (4.3), we first realize, by virtue of
(4.1),
∫

�

q(ϑ,∇xϑ)

ϑ
· ∇x ϑ̃ dx = −

∫

�

κ(ϑ)

ϑ
∇xϑ · ∇x ϑ̃ dx =

∫

∂�

K(ϑ̃)∇x ϑ̃ dσx ,

where

K′(ϑ) = κ(ϑ).

Consequently, the ballistic energy inequality (4.3) reduces to

d

dt

∫

�

(
1

2
�|u|2 + �e − ϑ̃�s − �G

)
dx

+
∫

�

ϑ̃

ϑ

(
S(ϑ,Dxu) : Dxu − q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx

� −
∫

�

[
�su · ∇x ϑ̃

]
dx + c(�U,�B), (4.5)

holding in the sense of distributions.

4.4. Entropy estimates

In accordance with hypothesis (2.13),

∫

�

�su · ∇ϑ̃ dx =
∫

�

�S
(

�

ϑ
3
2

)
u · ∇x ϑ̃ dx + 4a

3

∫

�

ϑ3u · ∇ϑ̃ dx . (4.6)

To estimate further these terms we observe that by virtue of monotonicity of S, that
is (2.14), for �

ϑ
3
2

� r

�S
(

�

ϑ
3
2

)
� �S(r) (4.7)

and (2.15) provides that
S(r) → 0 as r → ∞. (4.8)

If

�

ϑ
3
2

< r, which implies that � < rϑ
3
2 ,

we get, by virtue of (2.16),

0 � �S
(

�

ϑ
3
2

)
� c

(
1 + rϑ

3
2

[
log+(rϑ

3
2 ) + log+(ϑ)

])
. (4.9)
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Thus we may estimate the first term of the right-hand side of (4.6) as follows

∫

�

�S
(

�

ϑ
3
2

)
u · ∇x ϑ̃ dx

=
∫

�

1{
�

ϑ
3
2

�r

}�S
(

�

ϑ
3
2

)
u · ∇x ϑ̃ dx +

∫

�

1{
�

ϑ
3
2

<r

}�S
(

�

ϑ
3
2

)
u · ∇x ϑ̃ dx

� c2(�U,�B)S(r)

∫

�

�|u| dx + c3(�U,�B)

∫

�

(
1 + rϑ

3
2

[
log+(rϑ

3
2 ) + log+(ϑ)

])
|u| dx . (4.10)

Moreover,

∫

�

rϑ
3
2

[
log+(rϑ

3
2 ) + log+(ϑ)

]
|u| dx

� c

(∫

�

r log+(r)ϑ
3
2 |u| dx +

∫

�

[rϑ
3
2 log+(ϑ)|u| dx

)

� cr log+(r)

(∫

�

ϑ
3
2 ·4 dx

)1/4 (∫

�

|u|2 dx

)1/2

+ cr

(∫

�

ϑ2·4 dx

)1/4 (∫

�

|u|2 dx

)1/2

� cr4 log4(r) + c3(‖ϑ3‖2L2(�)
+ ‖ϑ4‖2L2(�)

+ ‖u‖2L2(�;R3)
), (4.11)

where the constant c3 may be chosen small enough, dependent on�U and�B, such
that the corresponding terms will be absorbed by the left-hand side of the entropy
estimate. We treat the second term of the right-hand side of (4.6) accordingly. As
β > 6 in hypothesis (2.17), we may combine (4.4) with (4.5)–(4.11) to obtain

d

dt

∫

�

(
1

2
�|u|2 + �e − ϑ̃�s − �G

)
dx

+ c1(�U,�B)
(
‖u‖2W 1,2(�;R3)

+ ‖ϑ β
2 ‖2W 1,2(�)

+ ‖ log(ϑ)‖2W 1,2(�)

)

� c2(�U,�B)S(r)

∫

�

�|u| dx + �(�U,�B, r), (4.12)

holding in the sense of distributions for any value of the parameter r > 0 where
c1 > 0 and c2 > 0. The exact form of the function �(r) may be concluded
from (4.12). Notice that �(r) → ∞ if r → ∞, however for a fixed r the value of
�(r) is finite.

The main problem to conclude is the fact that forcing term
∫
�

�|u| dx on the
right-hand side is not directly controlled by the dissipation on the left-hand side.
To this end, we need the so-called pressure estimates which we recall in the next
section.
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4.5. Pressure estimates

To continue, we recall the inverse of the divergence known as Bogovskii oper-
ator:

B : Lq
0(�) ≡

{
f ∈ Lq(�)

∣
∣
∣
∫

�

f dx = 0

}
→ W 1,q

0 (�, Rd), 1 < q < ∞,

divxB[ f ] = f,

‖B[ f ]‖
W 1,q

0 (�,Rd )
� c‖ f ‖Lq

0 (�),

‖B[divxg]‖Lr (�) � c‖g‖Lr (�), 1 < r < ∞ whenever g · n|∂� = 0. (4.13)

see for example Galdi [25, Chapter 3] or Geißert et al. [26].
Now, the test function

ϕ(t, x) = B
[

b(�) − 1

|�|
∫

�

b(�) dx

]

in the momentum equation yields
∫ τ+1

τ

∫

�

p(�, ϑ)b(�) dx dt =
∫ τ+1

τ

1

|�|
(∫

�

b(�) dx

)(∫

�

p(�, ϑ) dx

)
dt

−
∫ τ+1

τ

∫

�

�(u ⊗ u) : ∇xB
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx dt

+
∫ τ+1

τ

∫

�

S(ϑ,Dxu) : ∇xB
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx dt

−
∫ τ+1

τ

∫

�

�∇x G · B
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx dt

+
[∫

�

�u · B
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx

]t=τ+1

t=τ

−
∫ τ+1

τ

∫

�

�u · ∂tB
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx dt. (4.14)

In addition, as � satisfies the renormalized equation of continuity, we obtain
∫ τ+1

τ

∫

�

�u · ∂tB
[

b(�) − 1

|�|
∫

�

b(�) dx

]
dx dt

= −
∫ τ+1

τ

∫

�

�u · B[divx (b(�)u] dx dt

+
∫ τ+1

τ

∫

�

�u · B [
(b(�) − b′(�)�)divxu

− 1

|�|
∫

�

(b(�) − b′(�)�)divxu dx

]
dt. (4.15)

The unit length of the time interval has been chosen just for simplicity.
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4.6. Uniform bounds

In view of the structural restrictions imposed through hypotheses (2.11), (2.13)
and (2.16), for any λ > 1 there exist two constants c1(λ, data), c2(λ, data) such
that

c1(λ, data) + 1

λ
E(�, ϑ,u) � Eϑ̃ (�, ϑ,u) − �G � λE(�, ϑ,u) + c2(λ, data).

(4.16)
Here and hereafter the term data refers only to the boundary data �U ,�B , but not
to the initial data. The following result is crucial for showing the existence of a
bounded absorbing set.

Lemma 4.1. Suppose that
∫

�

[
Eϑ̃ (τ, ·) − �(τ, ·)G]

dx −
∫

�

[
Eϑ̃ (τ + 1, ·) − �(τ + 1, ·)G]

dx � K .

(4.17)
Then there exists L = L(K , M, data) such that

ess sup
τ�t�τ+1

∫

�

E(t, ·) dx � L . (4.18)

Remark 4.2. Strictly speaking, the pointwise values of the ballistic energy ap-
pearing in (4.17) are defined only for a.a. τ ∈ (T ;∞). However, thanks to the
inequality (4.12), we may identify Eϑ̃ with its, say, càglàd representative defined
for any τ > T .

The rest of this subsection is devoted to the proof of Lemma 4.1. If (4.17) holds,
it follows from (4.12) that

∫ τ+1

τ

(
‖u‖2W 1,2(�;R3)

+ ‖ϑ β
2 ‖W 1,2(�) + ‖ log(ϑ)‖2W 1,2(�)

)
dt

� c(data, K )

(
1 + S(r)

∫ τ+1

τ

∫

�

�|u| dx dt

)
+ �(data, K , r). (4.19)

4.6.1. Pressure estimates revisited At this stage, we use the pressure estimates
(4.14), with

b(�) = �α, α > 0.

In view of the hypotheses (2.10), (2.12) imposed on the equation of state, we have

c1
(
�

5
3 + ϑ4

)
� p(�, ϑ) � c2

(
�

5
3 + ϑ4 + 1

)
, c1, c2 > 0. (4.20)

Moreover, as the total mass is constant via (4.2), the smoothing properties of B
stated in (4.13) imply

∣∣∣∣B
[
�α − 1

|�|
∫

�

�α dx

]∣∣∣∣ � c(M) as soon as α <
1

3
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to provide that W 1, 1
α (�) ⊂ L∞(�). Thus inequality (4.14) gives rise to

∫ τ+1

τ

∫

�

�
5
3+α dx dt � c(M)

(
1 +

∫ τ+1

τ

∫

�

ϑ4 dx dt

−
∫ τ+1

τ

∫

�

�(u ⊗ u) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

+
∫ τ+1

τ

∫

�

S(ϑ,Dxu) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

+
[∫

�

�u · B
[
�α − 1

|�|
∫

�

�α dx

]
dx

]t=τ+1

t=τ

−
∫ τ+1

τ

∫

�

�u · ∂tB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

)
. (4.21)

Next, using again the smoothing properties (4.13) of B we get

∣∣
∣∣

∫ τ+1

τ

∫

�

�(u ⊗ u) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

∣∣
∣∣

�
∫ τ+1

τ

‖�‖Lγ (�)‖u‖2L6(�;R3)
‖�α‖Lq (�) dt

� sup
t∈(τ,τ+1)

‖�‖Lγ (�)

∫ τ+T

τ

‖u‖2W 1,2(�;R3)
sup

t∈(τ,τ+1)
‖�α‖Lq (�) dt, (4.22)

where

q = 3γ

2γ − 3
> 1 provided γ >

3

2
.

Thus setting

γ = 5

3
, α = 2γ − 3

3γ
= 1

15
<

1

3
, (4.23)

we may use the total mass conservation (4.2) to conclude

∣∣
∣∣

∫ τ+1

τ

∫

�

�(u ⊗ u) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

∣∣
∣∣

� c(M) sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt, (4.24)

Similarly, going back to (4.15) we have

∣∣
∣∣

∫ τ+1

τ

∫

�

�u · B[divx (�
αu)] dx

∣∣
∣∣

�
∫ τ+1

0
‖�‖Lγ (�)‖u‖L6(�;R3)‖�αu‖Lq (�;R3) dt,
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where

1

γ
+ 1

6
+ 1

q
= 1.

Moreover,

‖�αu‖Lq (�;R3) � ‖u‖L6(�;R3)‖�α‖L p(�),where
1

q
= 1

6
+ 1

p
;

whence
∣∣∣∣

∫ τ+1

τ

∫

�

�u · B[divx (�
αu)] dx

∣∣∣∣

� c(M) sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt (4.25)

as soon as (4.23) holds.
Finally,

∣∣∣∣

∫ τ+1

τ

∫

�

�u · B
[
�αdivxu − 1

|�|
∫

�

�αdivxu dx

]
dx dt

∣∣∣∣

�
∫ τ+1

τ

‖�‖Lγ (�)‖u‖L6(�;R3)

∥∥∥∥B
[
�αdivxu − 1

|�|
∫

�

�αdivxu dx

]∥∥∥∥
Lq (�;R3)

dt,

where

1

γ
+ 1

6
+ 1

q
= 1.

Furthermore,
∥∥
∥∥B

[
�αdivxu − 1

|�|
∫

�

�αdivxu dx

]∥∥
∥∥

Lq (�;R3)

<∼ ‖�αdivxu‖Lr (�;R3), q = 3r

3 − r
,

and

‖�αdivxu‖Lr (�;R3) � ‖u‖W 1,2(�;R3)‖�α‖L p(�), with
1

2
+ 1

p
= 1

r
.

Consequently, condition (4.23) yields

∣∣∣
∣

∫ τ+1

τ

∫

�

�u · B
[
�αdivxu − 1

|�|
∫

�

�αdivxu dx

]
dx dt

∣∣∣
∣

� c(M) sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt. (4.26)
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Summing up the previous inequalities and going back to (4.21), we get
∫ τ+1

τ

∫

�

�
5
3+α dx dt � c(M)

(
1 +

∫ τ+1

τ

∫

�

ϑ4 dx dt

+ sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt

+
∫ τ+T

τ

∫

�

S(ϑ,Dxu) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx dt

+
[∫

�

�u · B
[
�α − 1

|�|
∫

�

�α dx

]
dx

]t=τ+1

t=τ

)

, α = 1

15
. (4.27)

Now,
∫

�

S(ϑ,Dxu) : ∇xB
[
�α − 1

|�|
∫

�

�α dx

]
dx

� (1 + ‖ϑ‖L4(�))‖u‖W 1,2(�;R3)

∥
∥∥∥∇xB

[
�α − 1

|�|
∫

�

�α dx

]∥∥∥∥
L4(�;R3)

� c(M)(1 + ‖ϑ‖L4(�))‖u‖W 1,2(�;R3).

We therefore conclude
∫ τ+1

τ

∫

�

�
5
3+α dx dt � c(M)

[
1 +

∫ τ+1

τ

∫

�

ϑ4 dx dt

+
(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt

+ sup
t∈(τ,τ+1)

∫

�

�|u| dx

]

, α = 1

15
. (4.28)

4.6.2. Proof of Lemma 4.1 Now, in accordance with (4.19),
∫ τ+1

τ

∫

�

ϑ4 dx � c(data)

(
1 +

∫ τ+1

τ

‖ϑ β
2 ‖2W 1,2(�)

dt

)

� c(data, K )

(
1 + S(r)

∫ τ+1

τ

∫

�

�|u| dx dt

)
+ �(data, K , r),

where we may fix r = 1. Consequently, inequality (4.28) reduces to

∫ τ+1

τ

∫

�

�
5
3+α dx dt � c(K , M, data)

[(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt

+ sup
t∈(τ,τ+1)

∫

�

�|u| dx + 1

]

, α = 1

15
. (4.29)
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Next, it follows from the hypotheses (4.17), (4.19), and (4.12) that

sup
t∈(τ,τ+1)

∫

�

E(t, ·) dx � c(data)

(
1 +

∫ τ+1

τ

E(s, ·)ds

)
. (4.30)

Moreover, relation (4.19) yields

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
� c(data, K )S(r)

∫ τ+1

τ

∫

�

�|u| dx dt + �(data, K , r),

where, by Hölder’s inequality and Sobolev embedding theorem,

∫

�

�|u| dx � ‖√�‖L2(�)‖√�‖L3(�)‖u‖L6(�;R3) � c
√

M‖√�‖L3(�)‖u‖W 1,2(�;R3).

Thus we may infer that

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
� c(data, K , M)S(r)

∫ τ+1

τ

‖�‖
L

3
2 (�)

+ �(data, K , r).

(4.31)
Finally, using (4.31) we may estimate the kinetic energy,

∫ τ+1

τ

∫

�

�|u|2 dx dt � sup
t∈(τ,τ+1)

‖�‖
L

3
2 (�)

∫ τ+1

τ

‖u‖2L6(�;R3)
dt

� c sup
t∈(τ,τ+1)

‖�‖
L

3
2 (�)

∫ τ+1

τ

‖u‖2W 1,2(�;R3)
dt

� �(data, K , r) sup
t∈(τ,τ+1)

‖�‖
L

3
2 (�)

+ c(data, K , M)S(r) sup
t∈(τ,τ+1)

‖�‖
L

3
2 (�)

∫ τ+1

τ

‖�‖
L

3
2 (�)

dt,

Now, by interpolation,

‖�‖
L

3
2 (�)

� ‖�‖
5
6

L
5
3 (�)

‖�‖
1
6
L1(�)

;

whence

∫ τ+1

τ

∫

�

�|u|2 dx � �(data, K , M, r) sup
t∈(τ,τ+1)

‖�‖
5
6

L
5
3 (�)

+ c(data, K , M)S(r) sup
t∈(τ,τ+1)

‖�‖
5
6

L
5
3 (�)

∫ τ+1

τ

‖�‖
5
6

L
5
3 (�)

dt. (4.32)
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Going back to (4.29) and using (4.31) we get

∫ τ+1

τ

∫

�

�
5
3+α dx dt � �(K , M, data, r)

[(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)

dt

+ c(K , M, data)S(r)

(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)∫ τ+1

τ

‖�‖
L

3
2 (�)

dt

+ sup
t∈(τ,τ+1)

∫

�

�|u| dx + 1

]

� �(K , M, data, r)

[(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)

dt

+ c(K , M, data)S(r)

(

1 + sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

)∫ τ+1

τ

‖�‖
5
6

L
5
3 (�)

dt

+ sup
t∈(τ,τ+1)

∫

�

�|u| dx + 1

]

, α = 1

15
. (4.33)

Now, interpolating L1 and L
5
3+α , we get

∫ τ+1

τ

∫

�

�
5
3 dx dt � c(M)

(∫ τ+1

τ

∫

�

�
5
3+α dx dt

) 10
11

provided α = 1

15
.

Gathering the available bounds we conclude that

sup
t∈(τ,τ+1)

∫

�

E(t, ·) dx � c(data)

(
1 +

∫ τ+1

τ

E(s, ·)ds

)

� c(data)

(
1 +

∫ τ+1

τ

(
‖u‖2W 1,2(�;R3)

+ ‖ϑ β
2 ‖W 1,2(�) + ‖ log(ϑ)‖2W 1,2(�)

)
dt

)

+ c(data)

(∫ τ+1

τ

∫

�

�|u|2 dx dt +
∫ τ+1

τ

∫

�

�
5
3 dx dt

)

� �(data, K , r)

⎡

⎣1 +
(

sup
t∈(τ,τ+1)

∫

�

E dx dt

)λ
⎤

⎦

+ c(data, K , M)S(r) sup
t∈(τ,τ+1)

∫

�

E dx dt (4.34)

for certain 0 < λ < 1. Consequently, choosing r = r(data, K , M) large enough,
the desired conclusion follows since S(r) → 0 as r → ∞.

We have proved Lemma 4.1.
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4.7. Bounded absorbing sets

The existence of a bounded absorbing set follows easily from Lemma 4.1.
Indeed consider a global-in-time solution as in Theorem 3.1 satisfying

ess lim sup
t→T +

∫

�

E(�, ϑ,u)(t, ·) dx � E0.

Consider K = 1 in Lemma 4.1. In view of (4.16), there exists τ = τ(E0) such that
(4.18) holds, specifically,

ess sup
τ�t�τ+1

∫

�

E(t, ·) dx � L(1, M, data). (4.35)

Indeed assuming the contrary, we would obtain a sequence T , T + 1, . . . , T + n
such that

E �
∫

�

[
Eϑ(T + n, ·) − �(T + n, ·)G]

dx

�
∫

�

[
Eϑ(T + (n − 1), ·) − �(T + (n − 1), ·)G]

dx − 1

� · · ·
∫

�

[
Eϑ(T + (n − 1), ·) − �(T + (n − 1), ·)G]

dx − n � c(E0, data) − n,

where the lower bound E depends solely on the data.We conclude that, necessarily,

n � c(E0, data) − E .

Repeating the same argument with E0 replaced by L given by (4.35) we deduce that
there exists H = H(L) such that any time interval (s, s + H), s � τ(E0) contains
τ such that (4.35) holds. Finally, in view of inequality (4.12), the energy is growing
at most exponentially and we may choose

E∞ = c(L , M, data)(1 + exp H(L))

for a sufficiently large constant c(L , M, data). We have proved Theorem 3.1. As
pointed out in Section 3, Theorem3.1 yields Theorem3.4 via the existing arguments
presented for example in [14].

5. Applications, long-time behavior

We finish the paper by discussing the impact of Theorems 3.1, 3.4 on the long
time behavior of solutions to the Rayleigh–Bénard problem in the framework of
compressible viscous and heat conducting fluids.
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5.1. Trajectory space

We start by introducing a suitable trajectory space T . In view of the framework
of Theorems 3.1, 3.4, the “natural” trajectory space should be based on the stan-
dard phase variables (�, ϑ,u). Unfortunately, neither ϑ nor u admit well defined
instantaneous values at any time t ∈ R. It is therefore more convenient to consider
the conservative entropy variables (�, S,m), with

momentum m = �u, and total entropy S = �s(�, ϑ).

On the one hand, the state variables (�, S,m) are uniquely determined by (�, ϑ,u).
On the other hand, knowing (�, S,m) we first obtain ϑ as ϑ �→ s(�, ϑ) is a
strictly increasing function. The velocity u is a priori not well defined on the
hypothetical vacuum zone, however, it can be recovered in terms of (�, ϑ,m) from
the momentum equation (2.6).

The phase variables (�, S,m) admit well defined instantaneous values under-
stood in the weak sense. Specifically, it follows from the weak formulation (2.4),
(2.6), (2.7) that the one sided limits

〈�(τ−, ·);φ〉 ≡ lim
δ→0+

1

δ

∫ τ

τ−δ

∫

�

�(t, ·)φ dx dt, 〈�(τ+, ·);φ〉

≡ lim
δ→0+

1

δ

∫ τ+δ

τ

∫

�

�(t, ·)φ dx dt

〈m(τ−, ·);ϕ〉 ≡ lim
δ→0+

1

δ

∫ τ

τ−δ

∫

�

m(t, ·) · ϕ dx dt, 〈m(τ+, ·);ϕ〉

≡ lim
δ→0+

1

δ

∫ τ+δ

τ

∫

�

m(t, ·) · ϕ dx dt,

〈S(τ−, ·);φ〉 ≡ lim
δ→0+

1

δ

∫ τ

τ−δ

∫

�

�s(t, ·)φ dx dt, 〈S(τ+, ·);φ〉

≡ lim
δ→0+

1

δ

∫ τ+δ

τ

∫

�

�s(t, ·)φ dx dt

exist for any τ ∈ R and any φ ∈ C1
c (�), ϕ ∈ C1

c (�; R3). In addition,

〈�(τ−, ·);φ〉 = 〈�(τ+, ·);φ〉, and τ �→ 〈�(τ, ·);φ〉 ∈ BC(R),

〈m(τ−, ·);ϕ〉 = 〈m(τ+, ·);ϕ〉, and τ �→ 〈m(τ, ·);ϕ〉 ∈ BC(R),

and

〈S(τ−, ·);φ〉 � 〈S(τ+, ·);φ〉 whenever φ � 0,

and τ �→ 〈S(τ−, ·);φ〉 = hφ(τ ) + gφ(τ ), gφ ∈ Cloc(R),

hφ non-decreasing càglàd. (5.1)

The trajectory space can be therefore identified with “weakly càglàd” and
bounded functions defined on R. To this end, consider the Hilbert space

W k,2
0 (�), k >

3

2
so that W k,2

0 ↪→ C(�)
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with an orthonormal basis of smooth functions {φn}∞n=1. Similarly, we consider the

same space of vector valued functions W 1,2
0 (�; R3) with a basis {ϕn}∞n=1. Finally,

we define a metrics

dT
[
(�1, S1,m1); (�2, S2,m2)

]

=
∞∑

n=1

1

2n

∫ ∞

−∞
exp

(
−t2

)
G
(
‖〈�1 − �2;φn〉‖C[−t,t]

)
dt

+
∞∑

n=1

1

2n

∫ ∞

−∞
exp

(
−t2

)
G
(
‖〈m1 − m2;ϕn〉‖C([−t,t];R3)

)
dt

=
∞∑

n=1

1

2n

∫ ∞

−∞
exp

(
−t2

)
G

([
〈S1;φn〉; 〈S2;φn〉

]

D[−t,t]

)
dt, (5.2)

where

G(Z) = Z

1 + Z

and D[−t, t] denotes the Skorokhod space of càglàd functions defined on [−t, t]
with the associated complete metrics [·; ·]D[−t,t], see for example Whitt [38].

The trajectory space is defined as

T = ∪∞
L=1TL ,

where

TL =
{
(�, S,m)

∣∣
∣ � ∈ L∞(R; W −k,2(�)), 〈�;φn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R

‖�(t, ·)‖W−k,2(�) � L ,

m ∈ L∞(R; W −k,2(�; R3)), 〈m;ϕn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R

‖m(t, ·)‖W−k,2(�;R3) � L ,

S ∈ L∞(R; W −k,2(�)), 〈S;φn〉 càglàd in R, n = 1, 2, . . . ,

sup
t∈R

‖S(t, ·)‖W−k,2(�) � L
}
.

Note that the trajectory space is larger then the set of entire solutions to the Navier–
Stokes–Fourier system and consists of time dependent functionals ranging in the
space of distributions on �.

Each set TL endowed with the metrics dT is a Polish space. We define inductive
topology on T :

(�n, Sn,mn) → (�, S,m) in T
⇔ (i) there exists L such that (�n, Sn,mn) ∈ TL for all n = 1, 2, . . .

(ii) dT
[
(�n, Sn,mn); (�, S,m)

] → 0.
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Our choice of the topology of the trajectory space may seem a bit awkward at the
first glance but accommodates the instantaneous convergence of the state variables.
Alternatively, a weaker L p topology can be used being equivalent on the attractor
A to dT .

5.2. Attractor

As the weak solutions are not (known to be) uniquely determined by the ini-
tial/boundary data, we adopt the approach of Sell [35] andMálek andNeČas [27]
replacing the standard phase space by the trajectory space T . Here and hereafter,
we always assume that the principal hypotheses of Theorem 3.1 concerning the
constitutive relations are satisfied. Moreover, we fix the total mass of the fluid,

∫

�

�(t, ·) dx = M > 0. (5.3)

Accordingly, the set A,

A =
{
(�, S,m)

∣∣
∣ (�, S,m) a weak solution of the Navier–Stokes–Fourier system

in the sense of Definition 2.1 on the time interval t ∈ R

and sup
t∈R

∫

�

E (�, S,m) (t, ·) dx < ∞
}
, (5.4)

is a natural candidate to be global attractor in the trajectory space T . As shown in
Theorem 3.1,

sup
t∈R

∫

�

E (�, S,m) (t, ·) dx � E∞ < ∞. (5.5)

Indeed, in accordance with the definition of the set A, there exists E0 such that

∫

�

E (�, S,m) (T, ·) dx � E0

for any T ∈ R. Thus (5.5) follows from Theorem 3.1, specifically (3.2). In partic-
ular, A ⊂ TL ⊂ T for a sufficiently large L .

Lemma 5.1. Under the hypotheses of Theorem 3.1, the set A is

• non-empty;
• time-shift invariant,

(�, S,m) ∈ A ⇒ (�, S,m)(· + T ) ∈ A for any T ∈ R;

• compact in the metric topology (TL , dT ) for a sufficiently large L.



Arch. Rational Mech. Anal. (2023) 247:9 Page 25 of 31 9

Proof. As shown in [9, Theorem 4.2], the Navier–Stokes–Fourier system with the
boundary conditions (1.5), (1.6) admits a global-in-time weak solution (�, ϑ,u)

on the time interval [0,∞) for any initial data with finite energy. It follows from
Theorem 3.4 that there exists a sequence of times Tn → ∞ such that ((�, ϑ,u)(·+
Tn))∞n=1 converge to a weak solution (�̃, ϑ̃, ũ) of the same problem defined for all
t ∈ R with globally bounded energy. Obviously,

(�, S,m) = (�̃, �̃s(�̃, ϑ̃), �̃ũ) ∈ A.

Moreover, as the underlying system is autonomous, the setA is time-shift invariant.
Compactness of the setA follows again from Theorem 3.4, where we consider

Tn = −∞. As pointed out, A ⊂ TL , where the latter is a metric space; whence
compactness is equivalent to sequential compactness. At the level of the density,
convergence in the metric dT follows from (3.3). Moreover, since the momenta �u
satisfy equation (2.6), they are precompact in the topology of the space

Cweak,loc(R; L
5
4 (�; R3)),

which implies compactness in themomentumcomponent ofTL with the dT metrics.
Thus it remains to show compactness at the level of the total entropy S. First

observe that

τ �→
∫

�

S(τ, ·)φ dx −
∫ τ

0

∫

�

�s(�, ϑ)u · ∇xφ dx dt +
∫ τ

0

∫

�

κ(ϑ)

ϑ
· ∇xφ dx dt

is a non-decreasing function of τ for any test function φ ∈ C1
c (�), φ � 0. In view

of boundedness of the total energy, the family

τ �→
∫ τ

0

∫

�

�s(�, ϑ)u · ∇xφ dx dt +
∫ τ

0

∫

�

κ(ϑ)

ϑ
· ∇xφ dx dt

is precompact in Cloc(R); whence precompactness of S in dT reduces to precom-
pactness of a non-decreasing (in time) sequence of functions

τ �→ 〈S̃n;φ〉 ≡ ∫
�

Sn(τ, ·)φ dx − ∫ τ

0

∫
�

�ns(�n, ϑn)un · ∇xφ dx dt

+ ∫ τ

0

∫
�

κ(ϑn)
ϑn

· ∇xφ dx dt

with respect to themetrics d of the Skorokhod space D[−N , N ] of càglàd functions
defined on compact time intervals [−N , N ]. To this end, we recall the criterion due
toWhitt [38, Chapter 12, Corollary 12.5.1].
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Let

hn : [−N , N ] → R

be a sequence of monotone functions.

Then

d[hn; h] → 0 as n → ∞ for some h ∈ D[−N , N ]

if and only if

hn(t) → h(t) for all t belonging to a dense set in [−N , N ]
including the end points − N and N .

Now, as Sn are the total entropies generated by a family of uniformly bounded
weak solutions of the Navier–Stokes–Fourier system, we have

〈S̃n(τ, ·);φ〉 → 〈S̃(τ, ·);φ〉
≡
∫

�

S(τ, ·)φ dx −
∫ τ

0

∫

�

�s(�, ϑ)u · ∇xφ dx dt

+
∫ τ

0

∫

�

κ(ϑ)

ϑ
· ∇xφ dx dt

for a.a. τ ∈ R at least for a suitable subsequence, where (�, S = �s(�, ϑ),m =
�u) ∈ A, is another entire solution of the same problem. In particular,

〈S̃n(τ, ·);φ〉 → 〈S̃(τ, ·);φ〉 for a dense set of times for any compact interval

[−N , N ],

whence, in accordance with the above convergence criterion,

〈S̃n(τ, ·);φ〉 → 〈S̃(τ, ·);φ〉 in D[−N , N ] for a.a. N > 0,

yielding the desired conclusion

〈Sn(τ, ·);φ〉 → 〈S(τ, ·);φ〉 in D[−N , N ] for a.a. N > 0.

��

In accordance with Theorems 3.1, 3.4, and Lemma 5.1, we may state our main
result concerning the existence of a trajectory attractor for the Rayleigh–Bénard
problem.
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Theorem 5.2. (Trajectory attractor) Let M > 0, E0 be given. Let F[M, E0]
be a family of weak solutions to the Rayleigh–Bénard problem for the Navier–
Stokes–Fourier system on the time interval (0,∞) satisfying

∫

�

� dx = M, ess lim sup
τ→0+

∫

�

E(�, S,m)(τ, ·) dx � E0.

We identify the setF[M, E0] with a subset of the trajectory space T extending

�(τ, ·) = lim
t→0+ �(t, ·), m(τ, ·) = lim

t→0+m(t, ·), 0 � S(τ, ·)
� lim

t→0+ S(t, ·) for τ < 0,

where the limits are understood in the weak (distributional) sense.
Then for any ε > 0, there exists a time T (ε) such that

dT [(�, S,m)(· + T );A] < ε for any (�, S,m) ∈ F[M, E0] and any T > T (ε).

5.3. Stationary statistical solutions

Following the ideas of the preceding section we are ready to identify statistical
solutions with shift invariant probability measures on T , which are supported by
solutions to the Navier–Stokes–Fourier system. In accordance with Theorem 5.2,
these shift invariant probabilitymeasures supported by the global trajectory attractor
A.

The construction of a bounded invariant measure is the same as in [14], note that
a similar approach in the incompressible setting was used by Foias et al. [23,24].
Given a trajectory (�, S,m) ∈ T we consider a probability measure

VT ≡ 1

T

∫ T

0
δ(�,S,m)(·+t) dt,

where δ denotes the Dirac mass. Obviously, VT is a probability measure. If, in
addition,

(�, S,m) ∈ A,

then VT ∈ P(A), where P(A) denotes the set of all probablity measures on a
compact Polish space A. In particular, the family

{VT }T �0 is tight.

By Prokhorov theorem, there is a sequence Tn → ∞ such that

VTn → V narowly in P(A).
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Finally, exactly as in [14, Section 5.1], wemay show that themeasureV is time-shift
invariant, meaning

V[B(· + T )] = V[B] for any Borel set B ⊂ T . (5.6)

A Borel probability measure V ∈ P(A) enjoying the property (5.6) is called statis-
tical stationary solution of the Rayleigh–Bénard problem for the Navier–Stokes–
Fourier system.

Finally, observe that the above construction may be restricted to any shift-
invariant subset U ⊂ A.

Theorem 5.3. Let U ⊂ A be a non-empty time-shift invariant set, meaning

(�, S,m) ∈ U ⇒ (�, S,m)(· + T ) ∈ U for any T ∈ R.

Then there exists a stationary statistical solution V supported by U:

• V is a Borel probability measure, V ∈ P(U);
• suppV ⊂ U , where the closure of a U is a compact invariant set;
• V is shift invariant, that is,V[B] = V[B(· + T )] for any Borel setB ⊂ T

and any T ∈ R.

5.4. Convergence of ergodic means

We conclude this section by a direct application of Birkhoff–Khinchin ergodic
theorem. Similarly to [14, Section 5], we may consider the state space

H = W −k,2(�) × W −k,2(�) × W −k,2(�; R3).

Let V ∈ P(T ) be a statistical stationary solution, and thus a Borel probability
measure. Consider a probability basis (T ,B[T ],V)where T is the trajectory space
and B[T ] is the family of Borel sets. Given a trajectory (�, S,m) ∈ T and τ ∈ R
we may consider the associated canonical process

(�, S,m) × τ �→ (�, S,m)(τ, ·) ∈ H.

As V is shift invariant, the above process is a stationary process with respect to
the probability basis (T ,B[T ],V) defined for τ ∈ R, with càglàd paths ranging
in H .

Exactly as in [14, Theorem 6.4, Section 6] we can establish the following result.
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Theorem 5.4. (Convergence of ergodic averages) LetV be a stationary statis-
tical solution and (�, S,m) the associated stationary process. Let F : H → R
be a Borel measurable function such that

∫

T
|F(�(0, ·), S(0, ·),m(0, ·)| dV < ∞.

Then there exists a measurable function F,

F : (T ,V) → R

such that

1

T

∫ T

0
F(�(t, ·), S(t, ·),m(t, ·)) dt → F as T → ∞

V−a.s. and in L1(T ,V).
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