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Abstract

We show that for constant rank partial differential operators A whose wave
cones are spanning, generalized Young measures generated by bounded sequences
ofA -freemeasures can be characterized by dualitywithA -quasiconvex integrands
of linear growth. This includes a characterization of the concentration effects in such
sequences that allows us to conclude that, in sharp contrast to the oscillation effects,
the concentration always has A -free structure.

1. Introduction

We investigate the oscillation and concentration effects in weakly∗ converging
sequences of vector measures that satisfy a system of pde constraints on a bounded
open subset of R

n . The pde constraints are given in terms of linear homogeneous
differential operators with constant coefficients on finite dimensional inner product
spaces V, W

A = A (∂) ≡
∑

|α|=k

Aα∂
α, Aα ∈ L (V,W) (1.1)

that we in the main parts of the paper will assume have constant rank,

rank
(
A (ξ)

) = rA for ξ ∈ R
n\{0}, (1.2)

and spanning wave cone,

span
(
�A

) = V, where �A =
⋃

ξ∈Sn−1

kerA (ξ). (1.3)

These conditions are standard in the theory of compensated compactness [18,21,
38,51], as far as nonlinear integral functionals acting on spaces of maps satisfying
linear pde constraints are concerned.
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The purpose of the present paper is threefold.We provide an abstract characteri-
zation in the spirit ofKinderlehrer and Pedregal [27,28] ofA -free generalized
Young measures by duality with A -quasiconvex integrands of linear growth via
Jensen-type inequalities as in [4,12,29,34,45] under the assumptions that the op-
eratorA has constant rank and that its wave cone is spanning. For the terminology
used in the statements below we refer to Section 2. On the other hand, we hope that
our relatively simple approachmight have a revitalizing effect on the literature: also
when restricting our proof to the basic gradient case, the argument is significantly
shorter and more streamlined than the existing ones. This is even so when compar-
ing with proofs in the literature confined to the case without concentration effects
(including [18,28,30,31,48] without concentration effects and [4,6,12,16,34,45]
with concentration effects). We illustrate the utility of our approach with a result
about generation of Young measures by pde constrained maps in cases that include
general differential operatorsA that do not have constant rank nor spanning wave
cone. The third purpose of this paper concerns the concentration effects in an A -
free sequence. It is known that the oscillation effects in the considered case can fail
completely to haveA -free structure [1], [31, Ex. 7.6]. We were therefore surprised
to find that the situation for concentration effects is entirely different since, as we
show, they always haveA -free structure. We recently established this result in the
simpler case of gradient Young measures corresponding to A = curl [32] and our
results here can be seen as a far reaching generalization. Recall that the situation is
very different for sequences converging weakly in Lp, where it is well-known that
for exponents 1 < p < ∞ one may separate concentration and oscillation effects
and show that each haveA -free structure (see [19,28,30,31] for the caseA = curl
and [16,20] for the general case).

In order to make the discussion more precise let us state our main results. As
mentioned already the reader should consult Section 2 for undefined notation.

Proposition 1.1. Let A be a linear homogeneous differential operator of order k
on R

n from V to W as in (1.1). Assume it has constant rank (1.2) and satisfies the
spanning cone condition (1.3). Let�be a bounded open subset of Rn ,v ∈ M (�,V)

and (v j ) a sequence in M (�,V) satisfying v j
∗
⇀ v in M (�,V), A v j → A v

in W−k,p
loc (�,W) for some p > 1 and (v j ) generates ν = (

νx , λ, ν
∞
x

)
. Let λ =

λaL n � + λs be the Lebesgue–Radon–Nikodým decomposition with respect to
L n. Then there exists an L n negligible subset N a of � such that

∫

V

f dνx + λa(x)
∫

SV

f ∞ dν∞x � f
(
νx + λa(x)ν∞x

)
(1.4)

holds for all x ∈ �\N a and all f : V → R that are A -quasiconvex and of linear
growth. Furthermore, if λs = λs/|v|s |v|s + λ∗ is the Lebesgue–Radon–Nikodým
decomposition with respect to |v|s , then

⎧
⎪⎨

⎪⎩

ν∞x = vs

|v|s (x) ∈ �A ∩ SV for |v|s almost all x,

ν∞x = 0 for λ∗ � almost all x .

(1.5)
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The Jensen inequality (1.4) was established byArroyo-Rabasa et al. [5, Thm. 1.6]
under additional assumptions.Moreprecisely they confinedattention toA -quasiconvex
integrands of linear growth that are bounded from below and they also assumed that
A v = 0. While the lower bound on the considered integrands might seem natural
when discussing lower semicontinuity, and admittedly it has been a standard as-
sumption in the literature, it is essential that we allow truly signed integrands here
when we seek conditions that allow us to characterize the possible concentration
effects of a sequence. We prove (1.4) for signed integrands by use of an approxi-
mation result similar to that found in [29, Sect. 6] that concerned the classical case
A = curl. The constraint (1.5) on the centres of mass for the concentration angle
measures is a remarkable result proved in [11]. That our result also applies when
the limit v is notA -free follows from general facts about constant rank differential
operators and more precisely that for such operators and exponents p ∈ (1,∞)

one can prove the closed-range inequality:

inf
ψ∈C∞c (Rn ,V),A ψ=0

∥∥φ − ψ
∥∥

p � cp
∥∥A φ

∥∥
W−k,p (1.6)

holds for all φ ∈ Lp(Rn,V). Note in particular that we take infimum over A -
free C∞

c (Rn,V) fields on the left hand side. This inequality follows if we combine
the local potentials constructed in [42,43] with an inequality due to Murat [38].
Namely, if PA : L2(Rn,V) → L2(Rn,V) denotes orthogonal projection onto the
kernel kerA ≡ {φ ∈ L2(Rn,V) : A φ = 0}, then PA extends by continuity to
Lp(Rn,V) for each p ∈ (1,∞) and

∥∥φ − PA φ
∥∥

p � cp
∥∥A φ

∥∥
W−k,p (1.7)

holds for all φ ∈ Lp(Rn,V). Murat proved this inequality using Fourier multipliers
and the Hörmander–Mihlin theorem when the operatorA has order k = 1, but the
same argument applies to the case of general order k ∈ N. The inequality (1.7)
is also central in the work by Fonseca and Müller [18], where it is adapted
and stated for periodic fields. We remark that it was recently observed in [22] that
validity of (1.7) for a p ∈ (1,∞) in fact is equivalent to the constant rank condition
(1.2) for A . While (1.6) is proved by use of (1.7) it is possible that the former
could hold even if A did not have constant rank. However, as observed in [22],
(1.6) is for p = 2 equivalent to the constant rank condition (1.2), and we believe
this remains true for all exponents in the range p ∈ (1,∞). We present an almost
self-contained, short proof of Proposition 1.1 in Section 4. A brief discussion of
the above inequalities (1.6) and (1.7) can be found in the second half of Section 3.

Observe that (1.5) together with the automatic convexity result of [29] yield the
Jensen inequality

∫

SV

h dν∞x � h
(
ν∞x
)

(1.8)

for all positively 1-homogeneous and �A -convex h : V → R and all x ∈ �\N s ,
where λs(N s) = 0. Here we may in particular take h = f ∞, the upper recession
integrand of any A -quasiconvex integrand f : V → R of linear growth. General
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results about Young measures [3,33,34,46] and the Jensen inequalities (1.4), (1.8)
then imply lower semicontinuity results in a routine manner.

The next result goes in the opposite direction in that it starts with a Jensen
type inequality for a Young measure and then asserts the existence of a generating
sequence of certain A -free fields. We emphasize that we allow exactly the same
differential operatorsA towhichProposition1.1 applies. The result extends [29,34]
from the classical curl-free setting to the setting of differential operators (1.1) and
amounts to a characterization of A -freeness at the level of Young measures in the
spirit of Kinderlehrer and Pedregal [27,28].

Theorem 1.2. Let A be a linear homogeneous differential operator of order k on
R

n from V to W as in (1.1). Assume it has constant rank (1.2) and satisfies the
spanning cone condition (1.3). Then there exists a linear homogeneous differential
operator B of order l � 2krA on R

n from V to V that is annihilated by A and that
has the following property. Let � be an open bounded subset of R

n and assume that
ν = (νx , λ, ν

∞
x

)
is a Young measure on � such that λ(∂�) = 0. Let v ∈ M (�,V)

be its barycentre and let λ = λaL n � + λs be the Lebesgue–Radon–Nikodým
decomposition of λ with respect to L n.

Suppose A v = 0 and that
∫

V

f dνx + λa(x)
∫

SV

f ∞dν∞x � f (νx + λa(x)ν∞x ) for

L n � almost all x (1.9)

holds for all A -quasiconvex f : V → R of linear growth for which one can find
r = r( f ) > 0 such that f (z) = f ∞(z) when |z| > r .

Then there exists a sequence (u j ) of maps in C∞
c (�,V) such that for any

sequence of mollifiers φ j
∗
⇀ δ0 in M (Rn) we have

{(
φ j ∗

(
v �

)+Bu j
)

generates ν

‖u j‖Wl−1,1 → 0

We consider our main new contribution here to be the proof, that is, the construction
of the generating sequence, rather than the actual result itself. This construction has
two steps. We first deal with the case of homogeneous Young measures, and as was
the case in the Kinderlehrer and Pedregal papers [27,28], this step relies on
a Dacorogna type formula for the A -quasiconvex envelope and an abstract argu-
ment based on the Hahn–Banach separation theorem. While this strategy for the
homogeneous measures is well-established we believe our flexible and streamlined
implementation might be of independent interest. In the second step the homoge-
neous Young measures are merged, or inhomogenized, by an approximation and
gluing procedure. Because we treat both oscillation and concentration effects that
in the considered situation necessarily must interact and that cannot be separated,
this procedure is quite delicate. The inhomogenization is themain technical novelty
of this work and is presented in Section 5.3. We emphasize that it is completely
measure theoretic and that it in particular does not rely on any fine structure prop-
erties of A -free measures. The use of these is confined to the homogeneous step
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that is presented in Section 5.2. Thus no understanding of the blow up limits at
singular points ofA -free measures is necessary to perform the approximation and
gluing procedure. This sets our approach apart from those in the literature, including
[4,12,34,45], where the arguments are arguably also more involved. We obtained
the result of Theorem 1.2 corresponding to the case when the barycentre v has no
singular part in [41, Ch. 3]. As we show here, the strategy used there is flexible
enough to also deal with the interaction between the singular parts of the barycentre
and concentration measures, as we implement in Lemmas 5.6 and 5.7. We record
that a similar result is discussed in the recent paper [4]; there, the Helmholtz-type
decomposition from [18] plays a key role, whereas our approach here is more
elementary and has a larger scope, cf. Propositions 1.4 and 7.3. Our use of local po-
tentials as in [42,43] ensures that we may work with compactly supported A -free
test fields.

In Section 6 we will focus on the concentration angle measures in the diffuse
part of the concentration, a subject which has been largely unexplored. We recently
discussed the problem in the basic case of gradient Young measures [32] and our
intention here is to carry the analysis through in the wider framework of constant
rank differential operatorswith spanningwave cone. Recall that as a consequence of
the main results in [11,29], the measures ν∞x are unconstrained for λs almost every
x . Here, we will present a new necessary Jensen-type inequality that ν∞x satisfies
for λaL n almost every x if ν is A -free. In fact, we will show that this inequality,
together with a natural condition on the barycenter, constitute a characterization of
the concentration part of anA -freeYoungmeasure. The latter, stated in Proposition
6.4, is new even for the basic gradient caseA = curl, where it also adds precision to
the result of [32]. As a consequence of this new Jensen-type inequality we establish
the surprising facts that for a λ null set N ⊂ �,

∫

SV
f ∞dν∞x � f ∞(ν̄∞x ) for x ∈ �\N

holds for A -quasiconvex f of linear growth, and that the concentration part of an
A -free measure is A -free, a feature that so far was only believed to be true in the
reflexive case p ∈ (1,∞). We highlight the main result in this direction:

Theorem 1.3. Let A , B be differential operators as in Theorem 1.2, let � be

an open bounded subset of R
n and p ∈ (1, n

n−1 ) an exponent. Assume v j
∗
⇀ v

in M (�,V), A v j → A v in W−k,p
loc (�,W) and that (v j ) generates the Young

measure ν = (νx , λ, ν
∞
x

)
. Then there exists a sequence (u j ) of maps in C∞

c (�,V)

such that for any sequence of mollifiers φ j
∗
⇀ δ0 in M (Rn) we have that

{(
φ j ∗ (v �)+Bu j

)
generates

(
δνx , λ, ν

∞
x

)

‖u j‖Wl−1,1 → 0.

We finish the paper with an abstract result that applies to general differential op-
erators (1.1). The main motivation is to illustrate the flexibility of our method.
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Proposition 1.4. Let A be a linear homogeneous differential operator of order k
on R

n from V to W as in (1.1) (possibly having non-constant rank and a non-
spanning wave cone). Let � be an open bounded subset of R

n and assume that
ν = (

νx , λ, ν
∞
x

)
is a Young measure on �. Let v ∈ M (�,V) be its barycentre,

let v = va + vs and λ = λaL n � + λs be the Lebesgue–Radon–Nikodým
decompositions with respect to L n.

Suppose A v = 0 and that

∫

V

f dνx + λa(x)
∫

SV

f ∞dν∞x � Q f (νx + λa(x)ν∞x )

for L n � almost all x (1.10)

holds for all Lipschitz integrands f : V → R, where

Q f (z) ≡ inf

{∫

X

f (z + φ(x)) dx : φ ∈ C∞
c (X,V) and A φ = 0

}

with X ≡ (− 1
2 ,

1
2

)n
. (1.11)

Then there exists a sequence (v j ) of maps in C∞
c (�,V) with A v j = 0 in � such

that for any sequence of mollifiers φ j
∗
⇀ δ0 in M (Rn) we have

(
φ j ∗

(
va �

)+ v j
)

generates
(
(νx )x∈�, λaL n �, (ν∞x )x∈�a

)
,

where �a ≡ {x ∈ � : λa(x) > 0}. In fact, the A -free fields v j can be realized as
Bψ j , whereψ j are smooth and compactly supported andB is a certain differential
operator constructed from A .

The paper is organized as follows: In Section 2 we recall some properties of
the Kantorovich norm, generalized Young measures, linear partial differential op-
erators, and quasiconvex and directionally convex integrands. In Section 3 we use
results of Hörmander [26] to construct vector potentials for A -free fields in C∞

c
for general differential operators A that do not necessarily satisfy the constant
rank condition. These results generalize and add precision to results of Malgrange.
The second part of Section 3 is devoted to a proof of a Dacorogna type formula
for the A -quasiconvex envelope. In Section 4 we prove the Jensen inequality of
Proposition 1.1 and discuss the spanning cone condition. In Section 5.2 we prove
Theorem 1.2 in the case of homogeneous Young measures, whereas in Section 5.3
we perform the crucial approximation argument. In Section 6 we prove Theo-
rem 1.3 concerning A -freeness of concentration effects and state and prove the
related characterization of the concentration part of an A -free Young measure.
In the final Section 7 we discuss possibilities and challenges beyond the constant
rank condition and briefly sketch the proof of Proposition 1.4 concerning general
differential constraints.
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2. Preliminaries

We use standard notation for measures, distributions and function spaces as
can be found in, for instance, [7,10,17,25,46]. We also follow the convention that
(unimportant) constants can change values within a string of estimates without this
being reflected in our notation. Below we highlight particularly important notation
and adapt background results used in our proofs.

2.1. Basic Notation

Throughout the paper V, W denote finite dimensional vector spaces over R

equipped with an inner product and the associated norm denoted v1 · v2 and
|v| = √

v · v, respectively, where the ambient space will be clear from context. The
distance between two subsets S, T of V is dist(S, T ) ≡ inf

{|s− t | : s ∈ S, t ∈ T
}

(understood as ∞ if one of the sets is empty) and when S = {s} we write
dist(s, T ) ≡ dist({s}, T ). The open ball in V of center x ∈ V and radius r > 0 is
Br (x), the unit sphere in V is SV and we write Br (S) for the r -metric neighbour-
hood of a subset S of V, thus Br (S) ≡ {

v ∈ V : dist(x, S) < r
}
. The closure

of the set S is denoted by S. The space of linear maps T : V → W is denoted by
L (V,W) and equipped with the usual operator norm (again denoted by |T |).

For an open subset� of R
n we denote by C∞

c (�,V) the space of V-valued test
maps on�, namely theC∞mapsφ : � → Vwhose support supp(φ) is compact and
contained in�. The space of V-valued distributions on� is denoted byD ′(�,V).
The Lebesgue space relative to Lebesgue measure L n of (equivalence classes of)
p-integrableV-valuedmaps on� (a bounded open subset ofR

n or the whole ofR
n)

is denoted by Lp(�,V) and its norm by ‖·‖p,� or ‖·‖p when the set� is clear from
context. The Sobolev space ofV-valuedmaps on�whose distributional derivatives
up to order k ∈ N are in Lp is denoted Wk,p(�,V) and endowed with the norm
‖u‖Wk,p ≡ (∑|α|�k ‖∂αu‖p

p
)1/p (where standard multi-index notation is used and

with the usual modification for p = ∞). The subspace Wk,p
0 (�,V) is defined as

the closure of the space of test maps, C∞
c (�,V), in Wk,p(�,V) when p < ∞

(and the weak∗ closure when p = ∞). We usually think of Lp and Wk,p maps in
terms of their precise representatives. Negative order Sobolev spaces are defined by

duality: for k ∈ N and p ∈ (1,∞) we let W−k,p(�,V) ≡ Wk,p′
0 (�,V)∗, where

p′ = p/(p−1). Accordingly theW−k,p norm is the dual norm of theWk,p′ norm:

‖u‖W−k,p ≡ sup
ϕ∈C∞c (�,V),‖ϕ‖

Wk,p′ �1

〈
u, ϕ

〉
.

It is well-known that its elements are those V-valued distributions on � that can
be represented as a sum of distributional derivatives of V-valued Lp maps, and
more precisely as

∑
|α|�k ∂α fα , where each fα ∈ Lp(�,V). The local variants of

these spaces are defined in the usual way. For instance, u ∈ W−k,p
loc (�,V) provided

ρu ∈ W−k,p(Rn,V) for each ρ ∈ C∞
c (�), or, what is the same, if the restriction

of the distribution u|�′ ∈ W−k,p(�′,V) for each �′ � �.
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A bounded V-valued Radon measure on � is a countably additive V-valued
set function defined on the Borel subsets of�. A boundedV-valued Radonmeasure
u on � has a finite total variation and its total variation measure, denoted |u|, is
a bounded positive Radon measure. The space of bounded V-valued Radon mea-
sures on� is denotedM (�,V) and is normed by total variation. It is well-known
that hereby M (�,V) is isometrically isomorphic to the dual space of C0(�,V),
the space of continuous V-valued maps on � that vanish on the boundary ∂�

(at ∞ if � = R
n) equipped with the sup-norm. In addition to weak∗ conver-

gence of a sequence (u j ) of V-valued measures we shall also use 〈·〉-strict con-
vergence on a few occasions: u j → u 〈·〉 strictly on � means here that u j

∗
⇀ u

in C0(�,V)∗ and 〈u j 〉(�) → 〈u〉(�), where 〈u〉 is the total variation measure of
the R ⊕ V-valued measure (L n, u). Recall that 〈z〉 = √

1+ |z|2 and that hereby
〈u〉 = 〈ua〉L n �+ |u|s , where u = uaL n �+ (u/|u|s)|u|s is the Lebesgue–
Radon–Nikodým decompositionwith respect toL n . The Radon–Nikodým deriva-
tive u/|u|s is occasionally also denoted du/d|u|s .

When u is a bounded V-valued Radon measure on� and B is a Borel subset of
�, then the measure u B is defined for all Borel subsets A ofR

n by
(
u B

)
(A) ≡

u(A ∩ B). Hereby u B is again a bounded V-valued Radon measure on R
n .

2.2. Kantorovich Norm

Let (X, dX) be a compact and separable metric space. We recall that C(X)with
the supremum norm is a separable Banach space whose dual can be isometrically
identified with the spaceM (X) of signed bounded Radon measures on X normed
by the total variation. The subspace LIP(X) consisting of all Lipschitz functions
� : X → R is a (non-separable) Banach space under the norm

‖�‖LIP ≡ sup
x∈X

|�(x)| + lip(�), lip(�) ≡ sup
x,y∈X, x �=y

|�(x)−�(y)|
dX(x, y)

.

The Kantorovich norm of a signed bounded Radon measure μ on X is here defined
as

‖μ‖K ≡ sup

{
〈μ,�〉 : � ∈ LIP(X), ‖�‖LIP � 1

}
,

so it is the dual norm of ‖ · ‖LIP restricted to M (X). We shall be interested in its
restriction to the spaceM+(X) of positive bounded Radon measures that becomes
a metric space under the Kantorovich metric dK(μ, ν) = ‖μ− ν‖K. We start with
the useful fact that for μ ∈ M+(X)

‖μ‖K = μ(X). (2.1)

Proof. Since 1X ∈ LIP(X) and ‖1X‖LIP = 1 we clearly have ‖μ‖K � μ(X).
Conversely, if � ∈ LIP(X) with ‖�‖LIP � 1, then in particular maxX |�| � 1 so
using that μ is a positive measure we get

〈μ,�〉 � 〈μ, 1X〉 = μ(X),

hence taking supremum over such � we arrive at the opposite inequality. ��
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As a subset of C(X)∗ the space M+(X) also inherits the weak∗ topology:
{
O ∩M+(X) : O ∈ σ

(
C(X)∗,C(X)

)}
.

Lemma 2.1. On M+(X) the relative weak∗ topology is exactly the topology de-
termined by the Kantorovich metric dK.

Proof. In order to show thatM+(X)∩O is open relative to the Kantorovichmetric
for each weak∗ open O it suffices to show that for each � ∈ C(X) and t ∈ R the
set

{
μ ∈ M+(X) : 〈μ,�〉 < t

}
(2.2)

is open relative to the Kantorovich metric on M+(X). To that end we fix μ0 ∈
M+(X)with 〈μ0,�〉 < t . Next, we employ a standard approximation scheme and
put for each j ∈ N,

� j (x) = sup
{
�(y)− jdX(x, y) : y ∈ X

}
.

Hereby lip(� j ) � j and � j (x) ↘ �(x) pointwise in x ∈ X (hence uniformly by
Dini) as j ↗∞. Select j ∈ N so

〈μ0,� j 〉 < t + 〈μ0,�〉
2

.

If we take any positive r < (t − 〈μ0,�〉)/2 j , then we have for each μ ∈ M+(X)

with ‖μ− μ0‖K < r that

〈μ,�〉 � 〈μ,� j 〉
� 〈μ− μ0,� j 〉 + t + 〈μ0,�〉

2
< r.

It follows that the set defined at (2.2) is open relative to dK.
For the opposite inclusion we fix μ0 ∈ M+(X) and r > 0 and must show

that the open ball
{
μ ∈ M+(X) : ‖μ − μ0‖K < r

}
is weak∗ open relative

to M+(X). To get started we note that by the Arzéla–Ascoli Theorem the set
S = {

� : ‖�‖LIP = 1
}
is totally bounded in C(X). Hence for each δ > 0 we can

find a finite δ-net � in S. Without loss in generality we may assume that 1X ∈ �.
Now put, for a t ∈ R to be specified,

H� =
{
μ ∈ M+(X) : max

�∈�〈μ− μ0,�〉 < t

}

and note that for μ ∈ H� and � ∈ S we have

〈μ− μ0, �〉 = min
�∈�

(
〈μ− μ0,�〉 + 〈μ− μ0, � −�〉

)

< t + (μ(X)+ μ0(X)
)
δ.
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In order to bound the last termwe use that 1X ∈ �. It entails thatμ(X) < t+μ0(X)

and consequently

〈μ− μ0, �〉 < t + (2μ0(X)+ t
)
δ.

We leave it to the reader to check that we may choose

t = r

2
and then any δ ∈

(
0,

r

4μ0(X)+ r

)

to complete the proof. ��

2.3. Linear Partial Differential Operators

We will work with linear homogeneous partial differential operators of order k
on R

n from V to W (two finite-dimensional real inner product spaces):

A = A (∂) ≡
∑

|α|=k

Aα∂
α, (2.3)

where the coefficients are linear maps Aα ∈ L (V,W) for α ∈ N
n
0 with |α| = k.

Its Fourier symbol is

A (ξ) ≡
∑

|α|=k

ξα Aα,

and so for each ξ ∈ R
n we have that A (ξ) ∈ L (V,W). We say that A has

constant rank when rankA (ξ) = rA holds for all ξ ∈ R
n\{0} for some constant

rA ∈ N0. Moreover, it turns out this assumption is equivalent to the existence of a
linear homogeneous differential operator of order l on R

n from V to V, say

B = B(∂) ≡
∑

|β|=l

Bβ∂
β, (2.4)

where Bβ ∈ L (V,V) for β ∈ N
n
0 with |β| = l and the order l � 2krA , such that

we have the exactness relation at the level of Fourier symbols:

kerA (ξ) = imB(ξ) for ξ ∈ R
n\{0}, (2.5)

see [43, Theorem 1] (and also [42] for a precursor). While the existence of such
B is assured by this result, it is not in general unique and we emphasize that our
results apply with any choice of operator B whose Fourier symbol satisfies (2.5).

We also recall the definition of the wave cone of A ,

�A ≡
⋃

ξ∈Sn−1

kerA (ξ).

This is the set of vector amplitudes where the operatorA fails to be elliptic [38,51].
We record the following Leibniz rule for u ∈ D ′(�,V), η ∈ C∞

c (�):

A (ηu) =
∑

|α|�k

1

α!∂
αηA (α)u, (2.6)
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whereA (α) is the differential operator corresponding to theFourier symbolA (α)(ξ) ≡
∂α
ξ A (ξ). Our core object of study will be A -free measures, for which we record
the following structure theorem of De Philippis and Rindler [11], a remarkable
generalization of Alberti’s rank-one theorem [2]:

Theorem 2.2. Let A be a linear homogeneous differential operator of order k on
R

n from V to W as in (1.1). If v ∈ M (�,V) satisfies A v = 0 in the sense of
distributions, then

dv

d|v|s ∈ �A |v|s almost everywhere.

2.4. Young Measures

We follow the approach of [3,14] as implemented in [34]. We start by fixing
some terminology. We refer to any real-valued function defined on V, � × V or
�× V as an integrand. We say the integrand f : �× V → R has linear growth
if there exists a constant c ∈ R such that | f (x, z)| � c

(|z| + 1
)
holds for all

(x, z) ∈ � × V. The space of continuous integrands f : � × V → R of linear
growth is denoted by C1(�× V) and normed by

sup
(x,z)∈�×V

| f (x, z)|
|z| + 1

.

An integrand � ∈ C1(� × V) is an admissible integrand if it admits a regular
recession integrand, meaning that the limit

�∞(x, z) ≡ lim
t→∞

�(x, t z)

t

exists in R uniformly in (x, z) ∈ � × SV. The space of admissible integrands
is denoted by E(�,V). For the proof of existence and representation of Young
measures given in [3,34] it was convenient to transform integrands on � × V to
functions defined on�×BV, where BV denotes the open unit ball in V. Define the
transformation T : C1(�× V) → BC(�× BV) by

(
T�

)
(x, ẑ) ≡ (1− |ẑ|)�

(
x,

ẑ

1− |ẑ|
)

, (x, ẑ) ∈ �× BV.

Here BC(� × BV) is the space of bounded continuous functions, and when it is
equipped with the sup-norm, it follows that T becomes an isometric isomorphism.
We can now rephase the definition of admissible integrand by declaring that a
continuous integrand of linear growth, � : � × V → R, belongs to E(�,V) pre-
cisely if the transformed integrand T� ∈ BUC(� × BV), the space of bounded
and uniformly continuous functions. These are of course exactly the functions on
� × BV that admit a continuous (real-valued) extension to the closure �× BV,
where the extension of T� then is given by �∞ on � × SV. By a slight abuse of
notation we therefore have an isometric isomorphism T : E(�,V) → C(�× BV).
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Its dual transformation is by general results then also an isometric isomorphism
T ∗ : M (�× BV) → E(�,V)∗ providing a convenient identification of the dual
space E(�,V)∗ with M (�× BV), the space of (signed) Radon measures on
�× BV. Well-known compactness results then apply to norm bounded sequences
in E(�,V)∗ that we employ as follows. A bounded V-valued Radon measure
v ∈ M (�,V) is identified with εv ∈ E(�,V)∗ according to the rule

〈εv,�〉E∗,E ≡
∫

�

�(x, va(x))dx

+
∫

�

�∞
(

x,
dvs

d|vs | (x)
)
d|vs |(x) for � ∈ E(�,V),

where |vs | denotes the total variation measure and v = vaL n � + vs is the
Lebesgue–Radon–Nikodým decomposition of the measure v. We refer to εv as an
elementary Young measure and it is clear that hereby v �→ εv is an embedding of

M (�,V) into E(�,V)∗. If (v j ) is a sequence in M (�,V) such that εv j

∗
⇀ ν in

E(�,V)∗, then we write v j
Y→ ν and say that (v j ) generates the Young measure

ν. The Young measure ν will in general not be elementary, but according to [3] (see
also [34] whose notation we follow) its image

(
T ∗)−1

ν belongs to the set

⋂

ϕ∈C(�)

{
m ∈ M+(�× BV) :

∫

�×BV

ϕ(x)
(
1− |ẑ|) dm(x, ẑ) =

∫

�

ϕ dx

}
.(2.7)

This is a weak∗ closed convex subset of M (�× BV), where the relative weak∗
topology is determined by the Kantorovich metric discussed in Section 2.2, so that

the Young measure generation v j
Y→ ν amounts to

‖εv j − ν‖K ≡ ‖(T ∗)−1(
εv j − ν

)‖K → 0.

Lemma 2.3. (Alibert and Bouchitté [3]) Any ν ∈ E(�,V)∗ such that
(
T ∗)−1

ν

belongs to the set (2.7) can be identified uniquely with a triple
(
(νx )x∈�, λ, (ν∞x )x∈�

)
,

where

(1) νx ∈ M+
1 (V) for L n-almost every x ∈ � and x �→ νx is weakly* L n

measurable;
(2) λ ∈ M+(�);
(3) ν∞x ∈ M+

1 (SV) for λ-almost every x ∈ � and x �→ νx is weakly* λ measur-
able;

(4)
∫
�

∫
V
|z|dνx (z)dx < ∞;

and where

〈ν,�〉E∗,E ≡
∫

�

∫

V

�(x, z)dνx (z)dx

+
∫

�

∫

SV

�∞(x, z)dν∞x (z)dλ(x) for � ∈ E(�,V).
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Strictly speaking this is not the statement given in [3], but the proof given there easily
adapts to give it (see [34]). In viewof this resultwewriteν = ((νx )x∈�, λ, (ν∞x )x∈�

)
,

or briefly ν = (νx , λ, ν
∞
x

)
when the set� is clear from context. Following [34] we

say that (νx )x∈� is the oscillation measure, λ is the concentration measure, and
(ν∞x )x∈� is the concentration-angle measure. Note that the conditions (1)–(4)
entail that the centres of mass

νx ≡
∫

V

z dνx (z) and ν∞x ≡
∫

SV

z dν∞x (z)

are well-defined for L n almost all x ∈ � and λ almost all x ∈ �, respectively.
Furthermore, x �→ νx is a map in L1(�,V) and x �→ ν∞x is a λ measurable
map valued in the closed unit ball BV. The barycenter of ν is the V-valued Radon
measure ν ≡ ν·L n �+ν∞· λ.We record that when ν is generated by the sequence

(v j )ofV-valuedRadonmeasures on�, then it follows in particular that v j
∗
⇀ ν �

in M (�,V) since we may test the Young measure generation with the integrands
(x, z) �→ η(x)z · ei , where η ∈ C0(�) and

(
ei
)
is an orthonormal basis for V. We

also have for va
j = v j/L n that va

j → ν· in the biting sense (see [3]) and that the
Young measure ν is elementary, that is, ν = εv for some v ∈ M (�,V), if and
only if v j → v in the 〈·〉-strict sense (see [33,34]). We refer to [3,34,46] for further
discussion and examples.

For later referencewe record the following consequenceof theStone–Weierstrass
theorem:

Lemma 2.4. Suppose that μ ∈ M (�× BV) is such that 〈μ, η ⊗ �〉 = 0 for
all η ∈ LIP(�) and � ∈ LIP(BV). Then μ ≡ 0. Consequently, to identify an
element in E(�,V)∗, it suffices to test only with η ⊗�, where ‖η‖LIP(�) � 1 and
‖T�‖LIP(BV) � 1.

We extend the notion of (upper) recession integrand to general continuous inte-
grands f : V → R of linear growth with the definition

f ∞(z) = lim sup
t→∞
z′→z

f (t z′)
t

(z ∈ V) (2.8)

Hereby f ∞ : V → R is a positively 1-homogeneous integrand of linear growth. It
is Lipschitz when f is, and in that case, the formula simplifies to

f ∞(z) = lim sup
t→∞

f (t z)

t
(z ∈ V).

2.5. Directionally Convex and A -Quasiconvex Integrands

Let � be a balanced cone in V, meaning that tv ∈ � when v ∈ � and t ∈ R.
An integrand f : V → R is �-convex provided that for each z ∈ V and v ∈ � the
univariate function

R � t �→ f (z + tv)
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is convex. We say that the balanced cone � is spanning if span
(
�
) = V. It is

well-known that real-valued �-convex integrands are locally Lipschitz when �

is spanning, see [37, Theorem 4.4.1] (or [10] and [29, Lemma 2.3] for a slightly
more precise bound). We summarize these observations and include an elementary
consequence of the three-slope inequality that can also be found in [29, Lemma 2.5]
in the next result.

Lemma 2.5. Let � be a balanced and spanning cone in V. If f : V → R is �-
convex, then f is locally Lipschitz. Furthermore, if f is also of linear growth, then
f is Lipschitz and for all z ∈ V and w ∈ � we have

f (z + w) � f (z)+ f ∞(w).

For an invertible linear map of R
n , θ ∈ GL(n), we denote by θZ

n the deformed
integer lattice and say that a map v : R

n → V is θZ
n-periodic if v(x +θe j ) = v(x)

holds for all x ∈ R
n and each direction 1 � j � n. Here

(
e j
)n

j=1 is the standard
basis for R

n .

Definition 2.6. Let A be a linear homogeneous differential operator of order k on
R

n from V to W as in (1.1). A continuous integrand f : V → R is said to be
A -quasiconvex at z ∈ V if

f (z) � −
∫

θX

f (z + v(x)) dx

holds for all θ ∈ GL(n) and all v : R
n → V of class C∞ that are θZ

n-periodic,∫
θX

v dx = 0 and A v = 0. Here X denotes the open unit cube (− 1
2 ,

1
2 )

n . The
integrand f is said to be A -quasiconvex if it is so at every point z ∈ V.

Wewill show that for a large class of operatorsA this notion coincides with the one
defined in [18, Def. 3.1] that only requires that the above Jensen inequality holds
when θ is the identity map of R

n . The standard argument based on the Riemann–
Lebesgue lemma (see [37, Proof of Theorem 4.4.2]) shows thatA -quasiconvexity
of f is a necessary condition for the following lower semicontinuity property: if

φ j , φ : X → V are A -free and φ j
∗
⇀ φ in L∞(X,V), then

lim inf
j→∞

∫

X

f (φ j ) dx �
∫

X

f (φ) dx .

The next result is therefore a reformulation of a well-known result due to Tartar:

Lemma 2.7. (Tartar [51]) If q : V → R is a quadratic form, then q is A -
quasiconvex if and only if it is �A -convex.

Corollary 2.8. If f : V → R isA -quasiconvex, then it is also�A -convex. Hence if
span

(
�A

) = V, thenA -quasiconvex integrands are in particular locally Lipschitz.
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Proof. Let
(
ρε

)
ε>0 be a standard smooth mollifier. It is then routine to check that

fε = ρε ∗ f isA -quasiconvex too, and hence for each z ∈ V, by the second order
necessary condition for a minimum, that

∫

X

f ′′ε (z)
(
φ(x), φ(x)

)
dx � 0

holds for all X-periodic φ ∈ C∞(Rn,V) with A φ = 0 and
∫
X
φ dx = 0. The

quadratic form w �→ f ′′ε (z)
(
w,w

)
is therefore by Tartar’s lemma �A -convex,

hence, by arbitrariness of z, fε is �A -convex. Finally we conclude that f is �A -
convex as a pointwise limit of such integrands. ��
We recall that an A -quasiconvex integrand of linear growth, f : V → R, might
not admit a recession integrand in the usual sense of convex analysis (see [39]). In
these situations f ∞ denotes the upper recession integrand that was defined at (2.8).
It is routine to check that f ∞ : V → R hereby is anA -quasiconvex integrand that
is positively 1-homogeneous, meaning that f ∞(t z) = t f ∞(z) holds for all z ∈ V

and t > 0. Finally, we also record a consequence of the main result of [29]:

Lemma 2.9. Let f : V → R be a positively 1-homogeneous and �A -convex inte-
grand, where �A is spanning. Then f is convex at each point of �A .

3. Potential Operators and the A -Quasiconvex Envelope

3.1. Differential Operators and Vector Potentials

Choosing orthonormal bases for V and W we may identify V = R
N and W =

R
M . Hence if R = R[ξ ] denotes the ring of real polynomials in n indeterminates,

then the Fourier symbol A (ξ) = ∑
|α|=k Aαξ

α becomes an M × N matrix with
entries from R that naturally defines an R-linear map between free modules over
R: RN � v(ξ) �→ A (ξ)v(ξ) ∈ RM . Consider its kernel

kerRA (ξ) ≡ {v(ξ) ∈ RN :A (ξ)v(ξ) = 0
}
.

This is clearly a submodule of RN that is graded by the degree. Each v(ξ) ∈
kerRA (ξ) can be written v(ξ) = ∑d

s=0 vs(ξ), where vs(ξ) ∈ RN is a column
vector with s-homogeneous polynomials as entries. Now from 0 = A (ξ)v(ξ) in
RM follows that 0 = A (ξ)v(ξ) holds for all ξ ∈ R

n , and because the entries in
the matrixA (ξ) are k-homogeneous polynomials we getA (ξ)vs(ξ) = 0 for each
s ∈ {0, . . . , d}. In particular we record that

v0 ∈
⋂

|α|=k

kerAα. (3.1)

The corresponding conditions for the higher degree terms in v(ξ) are more involved
and seem less useful at this stage. Instead we note that the module kerRA (ξ)

is generated by column vectors of homogeneous polynomials. By Hilbert’s basis
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theorem R is a Noetherian ring so the module kerRA (ξ) is finitely generated (see
for instance [15, Theorem 1.2 and Proposition 1.4]), say

kerRA (ξ) =
{

L∑

l=1

pl(ξ)bl(ξ): p1(ξ), . . . , pL(ξ) ∈ R

}
,

where any proper subcollection of the generators will not generate kerRA (ξ) and
where each generator bl(ξ) is a column vector of real and homogeneous polynomi-
als. Reordering the generators if necessary we can arrange that bl(ξ) is a column
vector of kl -homogeneous polynomials with k1 � · · · � kL . Define B(ξ) to be
the N × L matrix whose columns are the generators bl(ξ):

B(ξ) ≡
[

b1(ξ) . . . bL(ξ)

]
.

We record that the exactness relation kerRA (ξ) = imRB(ξ) holds in the sense
of R-modules, but that no assertion about pointwise exactness entails from this,
see [43] and [24, Thm. 1.3]. In general we only have that imB(ξ) ⊆ kerA (ξ)

holds for each ξ �= 0. Note that if we have another matrix C (ξ) ∈ RN×K such that
kerRA (ξ) = imRC (ξ) holds, then C (ξ) = B(ξ)X (ξ) for some X (ξ) ∈ RL×K .

We now consider the corresponding differential operators. Corresponding to
B(ξ) we have

Bφ ≡ B(∂)
(
φ1, . . . , φL

)tr =
L∑

l=1

bl(∂)φl (3.2)

We call it a potential operator for A since we may use Fourier transform to see
that ABφ = 0 holds for all C

L -valued tempered distributions φ and hence for
all φ ∈ D ′(�,C

L) by approximation. It is remarkable that B is in fact an exact
potential operator forA on certain classes of distributions, namely flat R-modules,
such as C∞

c , S , E ′; see [47] for a discussion and further references. Here we focus
on C∞

c and sharpen the approach of Hörmander [26, Chapter 7]. Let �, ϕ : C
n → R

be two functions such that
⎧
⎨

⎩

0 < �(ζ ) � 1, �(ξ + ζ ) � 2�(ζ )
for ξ, ζ ∈ C

n satisfying
∣∣Reξ j

∣∣,
∣∣Imξ j

∣∣ � 1 (1 � j � n)
− log � is plurisubharmonic [26, Def. 2.6.1]

(3.3)

and
⎧
⎨

⎩

∣∣ϕ(ξ + ζ )− ϕ(ζ )
∣∣ � c0

for ξ, ζ ∈ C
n satisfying |ξ j | < �(ζ ) (1 � j � n)

ϕ is plurisubharmonic,
(3.4)

where c0 is any positive constant. For such �, ϕ and any m ∈ Z define

ϕm(ξ) ≡ ϕ(ξ)− m log �(ξ)+ m log
(
1+ |ξ |2). (3.5)
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Theorem 3.1. [26, Corollary 7.6.12] Given A (ξ), B(ξ) as above there exists m ∈
Z such that for �, ϕ, ϕm as in (3.3), (3.4), (3.5) and all entire maps � : C

n → C
N

with A (ξ)�(ξ) = 0 on C
n one can find an entire map � : C

n → C
L satisfying

�(ξ) = B(ξ)�(ξ) on C
n and

∫

R2n
|g(ξ)|2e−ϕm (ξ) d(ξ ′, ξ ′′) � c

∫

R2n
| f (ξ)|2e−ϕ(ξ) d(ξ ′, ξ ′′),

where ξ = ξ ′ + iξ ′′ ∈ C
n and c is a constant that only depends on A , B and c0

(the constant from (3.4)).

With this result at our disposal the next goal is to prove existence of rough vector
potentials.

Lemma 3.2. Given differential operators A , B as above. Let φ ∈ C∞
c (Rn,V)

with A φ = 0 and put K = supp(φ)co, the convex hull of the support of φ. Then
there exists ψ ∈ D ′(Rn,R

L) such that supp(ψ) ⊆ K and Bψ = φ.

Proof. The proof relies on Theorem 3.1 and proceeds via a standard application of
the Paley–Wiener–Schwartz theorem (in the form [25, Theorem 7.3.1]). First, the
Fourier–Laplace transform defined as

φ̂(ζ ) ≡
∫

Rn
φ(x)e−iζ ·x dx, ζ ∈ C

n,

where ζ · x ≡ ζ1x1 + · · · + ζn xn (no complex conjugation) is an entire V-valued
map of exponential type. If

HK (ξ) ≡ sup
η∈K

η · ξ, ξ ∈ R
n,

is the support function for the set K , then for each j ∈ N we find according to the
direct part of the Paley–Wiener–Schwartz theorem a constant c j > 0 such that

∣∣φ̂(ζ )
∣∣ � c j

(
1+ |ζ |) j

eHK (Imζ ) (3.6)

holds for all ζ ∈ C
n . We employ Theorem 3.1 with the choices � ≡ 1, ϕ(ζ ) ≡

2HK
(
Im
(
ζ
))

and the Fourier symbols forA ,B. It is clear that hereby (3.3) holds.
Because HK is convex and positively 1-homogeneous also (3.4) holds with c0 =
max‖ξ‖�n∞�1 HK (ξ), and since clearly A (iζ )φ̂(ζ ) = 0 we find accordingly an

entire map � : C
n → C

L such that φ̂(ζ ) = B(iζ )�(ζ ) and

∫

R2n

∣∣�(ζ)
∣∣2 e

−2HK (Im(ζ ))

(
1+ |ζ |2)m d(ζ ′, ζ ′′) � c

∫

R2n

∣∣φ̂(ζ )
∣∣2e−2HK (Im(ζ )) d(ζ ′, ζ ′′)

(3.6)

� c
∫

R2n

c2j
(
1+ |ζ |)2 j

d(ζ ′, ζ ′′) ≡ C1 < ∞
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provided we take j > n. Because � is entire we estimate for a constant c, then
Cauchy–Schwarz and the above bound

∣∣�(ζ)
∣∣ � c

∫

B1(ζ )

∣∣�(ξ)
∣∣ d(ξ ′, ξ ′′)

� c

(∫

B1(ζ )

∣∣�(ξ)
∣∣2 e−2HK (ξ ′′)
(
1+ |ξ |2)m d(ξ ′, ξ ′′)

) 1
2

(∫

B1(ζ )

(
1+ |ξ |2)me2HK (ξ ′′) d(ξ ′, ξ ′′)

) 1
2

� cC
1
2
1

(∫

B1(ζ )

(
1+ |ξ |2)me2HK (ξ ′′) d(ξ ′, ξ ′′)

) 1
2

Here we have for ξ = ξ ′ + iξ ′′ ∈ B1(ζ ),
(
1 + |ξ |2)m � 4m

(
1 + |ζ |2)m and

HK (ξ ′′) � HK (ζ ′′) + cK , where cK = maxη∈K |η| is the Lipschitz constant for
HK . Consequently we have for some new constant c that

∣∣�(ζ)
∣∣ � c

(
1+ |ζ |)meHK (Im(ζ )) (3.7)

holds for all ζ ∈ C
n . But then the Paley–Wiener–Schwartz theorem yields ψ ∈

D ′(Rn,C
L) supported in K of order at most m such that ψ̂ = �, and consequently

that φ = Bψ by Fourier inversion. Finally, since φ and B are real we have that
φ = Bψ = B

(
Reψ

)
, so if necessary we replace ψ by its real part to achieve a

real vector potential ψ ∈ D ′(Rn,R
L). ��

In order to improve the regularity of the vector potential found in Lemma 3.2 we
let

V0 ≡
⋂

|ξ |=1

kerRA (ξ), (3.8)

where we emphasize that the kernel here is of the map A (ξ) : V → W so that
V0 is a subspace of V. Let π : V → V0 be the orthogonal projection. Then π∗ is
the orthogonal projection onto V

⊥
0 , and we can apply the above construction to the

differential operator A π∗ above instead of A . We consider A π∗ as a differential
operator onR

n fromV
⊥
0 toW andwefind hereby a corresponding potential operator

BV0 on R
n from R

L to V
⊥
0 similar to the one in (3.2). This time there is no zero

order part (compare (3.1)) so the orders of the differential operators in the columns
ofBV0 are 1 � k1 � · · · � kL . Put �0 ≡ dimV0 and choose an orthonormal basis
(el) for V0. Define the differential operator B on R

n from R
�0+L to V by

Bψ ≡
L∑

l=1

Blψl +
�0∑

l=1

ψL+l el , (3.9)

where ψ = (ψ1, . . . , ψL , ψL+1, . . . , ψL+�0

)tr . We record that

π∗Bψ = BV0
(
ψ1, . . . , ψL

)tr and πBψ =
�0∑

l=1

ψL+l el (3.10)
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holds for allψ . Next, we consider the submoduleM of R1×N consisting of all row
vectors a(ξ) ∈ R1×N satisfying a(ξ)B(ξ) = 0 in R1×L . As before it follows that
M is finitely generated:

M =
{ J∑

j=1

p j (ξ)a j (ξ) : p1(ξ), . . . , pJ (ξ) ∈ R

}
,

where a j (ξ) ∈ R1×N and the collection of generators is irreducible. Put

Ã (ξ) ≡

⎡

⎢⎢⎣

a1(ξ)
. . . . . .

. . . . . .

aJ (ξ)

⎤

⎥⎥⎦ ∈ R J×N

and note that since A (ξ) annihilates B(ξ) there exists Y (ξ) ∈ RM×J such that
A (ξ) = Y (ξ)Ã (ξ). It is also not difficult to check that kerRA (ξ) = kerRÃ (ξ).
We now let Ã = Ã (∂) be the corresponding differential operator. It is remarkable
that Ã is an exact annihilator for B on C∞:

Theorem 3.3. [26, Theorem 7.6.13] Let B and Ã be as above and let O be an
open convex subset of R

n. Then for φ ∈ C∞(O,R
N ) the equation Bψ = φ on O

admits a solution ψ ∈ C∞(O,R
L+�0) if and only if Ã φ = 0 on O.

We are now ready to state and prove the main result of this subsection.

Theorem 3.4. Let the differential operators A , B be as above. Then for ε > 0
and φ ∈ C∞

c (Rn,V) with A φ = 0 we can find ψ ∈ C∞
c (Rn,R

L+�0) such that
supp(ψ) ⊆ Bε(supp(φ)co) and Bψ = φ.

Proof. First we note that by virtue of Lemma 3.2 we find a compactly supported
� ∈ D ′(Rn,R

L+�0) such that B� = φ. But then we have for a standard smooth
mollifier onR

n ,
(
ρt
)

t>0, thatB(ρt∗�) = ρt∗φ, so by the easy part of Theorem3.3,

ρt∗Ã φ = Ã
(
B(ρt∗�)

) = 0.Consequently, Ã φ = 0 andwefindbyTheorem3.3
a ψ ∈ C∞(Rn,R

L+�0) such that φ = Bψ . According to (3.10),

π∗φ = BV0
(
ψ1, . . . , ψL

)tr and πφ =
�0∑

l=1

ψl+L el .

It follows thatψL+1, . . . , ψL+�0 ∈ C∞
c (Rn)with supports contained in the support

of φ. Put K = supp(φ)co, let t > 0 be a small number that will be specified below,
take η = ρt ∗ 1B2t (K ) and ψ0 ≡

(
ψ1, . . . , ψL

)tr . Observe that η = 1 on Bt (K ) so
that by the Leibniz rule (2.6)

BV0(ηφ0) = π∗φ +
L∑

l=1

∑

0<|α|�kl

1

α!π
∗B(α)

l ψl∂
αη = π∗φ + e,
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say. Here e = 0 on Bt (K ) and on R
n\B3t (K ), so taking κ = ρs ∗ 1B3t+s (K )\Bt−s (K )

for s > 0 small, we have κ = 1 on B3t (K )\Bt (K ) and κ = 0 near K , whereby
another use of Leibniz yields

BV0
(
κηψ0

) = κBV0
(
ηψ
)+

L∑

l=1

∑

0<|α|�kl

1

α!π
∗B(α)

l (ηψ0)∂
ακ = κ

(
π∗φ + e

) = e.

Now ψ ′ ≡ ηψ0 − κηψ0 ∈ C∞
c (Rn,R

L) with supp(ψ ′) ⊆ B3t+s(K ) and

BV0ψ ′ = BV0
(
ηψ0

)−BV0
(
κηψ0

) = φ + e − e = φ.

Consequently, taking 3t + s = ε we can use ψ ′ +∑�0
l=1 ψl+Lel as vector potential

with the asserted properties. ��

3.2. A Dacorogna Type Formula for the Envelope

We recall that for a continuous integrand f : V → R of linear growth its A -
quasiconvex envelope is the extended real-valued integrand

f qc(z) ≡ sup
{
g(z) : g : V → R A -quasiconvex and g � f

}
.

It follows immediately from the definition that either f qc ≡ −∞ or f qc is real-
valued. In the latter case we check that, since A -quasiconvexity implies �A -
convexity by Corollary 2.8, f qc is �A -convex. Since it is bounded from above
by f and f has linear growth a standard argument (see for instance [31]) implies
that f qc has linear growth too. But then it is Lipschitz by Corollary 2.8. It is then
easy to check that f qc isA -quasiconvex. The following result is important for our
approach:

Theorem 3.5. Let A be a differential operator of the form (1.1) that satisfies the
constant rank condition (1.2) and the spanning cone condition (1.3). Let B be a
potential operator as in (2.4) satisfying (2.5). Then for any continuous integrand
f : V → R of linear growth we have for each non-empty, bounded open subset O
of R

n,

f qc(z) = inf

{
−
∫

O
f (z +Bψ(x)) dx :ψ ∈ C∞

c (O,V)

}
(3.11)

for each z ∈ V. It is not excluded that the common value is −∞ here. Furthermore,
for each ε > 0 it suffices to take infimum over potentials ψ satisfying additionally

max
x∈O

∣∣∇ jψ(x)
∣∣ < ε (3.12)

for derivative orders 0 � j < l, where we recall that l is the order of B.

We merely sketch the proof as it is similar to those presented in [10, Theo-
rem 6.9], [27, Appendix] and [42]. We start with the following lemma.
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Lemma 3.6. Assume that B is an operator as in Theorem 3.5. Then for f : V → R

continuous and z ∈ V the quantity

R(z) ≡ inf

{
−
∫

O
f (z +Bψ(x)) dx :ψ ∈ C∞

c (O,V)

}

is independent of the set O within the class of all non-empty, bounded and open
subsets of R

n. Furthermore, the value is unchanged if we only take infimum over
potentialsψ satisfying additionally (3.12). Finally, either R(z) = −∞ for all z ∈ V

or R is real-valued.

We leave it to the reader to check that [10, Step 1 in proof of Theorem 6.9] and
[27, Appendix] still apply in the present context. Next, it is clear that

f qc(z) � R(z) � f (z) (3.13)

holds for all z ∈ V. We may therefore assume that R(z) > −∞ for all z ∈ V as
otherwise there is nothing to prove. Our next step is

Lemma 3.7. Assume that A , B are operators as in Theorem 3.5 and let p ∈
(1,∞). Let φ ∈ Lp(Rn,V) with A φ = 0. Then for any χ ∈ C∞

c (Rn) with χ = 1
near 0 we have φ = (F−1χ) ∗ φ +Bψ , where

ψ = Re

(
F−1(B(iξ)†(1− χ(ξ))φ̂(ξ)

)) ∈ Wl,p(Rn,V).

Here Re(·) denotes the real part taken component-wise, F is the Fourier transform
and B(iξ)† = i−lB(ξ)† is the Moore–Penrose inverse of B(iξ) = ilB(ξ).

Proof. We clearly have

φ = (F−1χ) ∗ φ + (F−1(1− χ)
) ∗ φ

and that both terms on the right-hand side are A -free. For the second term this
means that A (ξ)(1 − χ(ξ))φ̂(ξ) = 0 for all ξ ∈ R

n . To see that it implies that
we have a vector potential we invoke the exactness relation (2.5) and properties
of the Moore–Penrose inverse. First, the exactness relation implies that also the
operatorB has constant rank and so the Moore–Penrose inverseB(ξ)† is C∞ and
−l-homogeneous on R

n\{0} (see [42,43] for an easy proof of this). Now with ψ

as defined above we calculate (in sense of V-valued tempered distributions):

Bψ = Re

(
F−1

(
B(iξ)B(iξ)†(1− χ(ξ))φ̂(ξ)

))

= Re

(
F−1

(
B(ξ)B(ξ)†(1− χ(ξ))φ̂(ξ)

))

= Re

(
F−1

(
projimB(ξ)

(
(1− χ(ξ))φ̂(ξ)

)))

(2.5)= Re
(F−1(1− χ)φ̂

) = (F−1(1− χ)
) ∗ φ,
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as required. Now using that the Wl,p norm is equivalent to the corresponding
one given in terms of Bessel potentials we conclude from the Hörmander–Mihlin
theorem that ψ ∈ Wl,p(Rn,V). Indeed, the function

ξ �→ 〈ξ 〉lB(ξ)†(1− χ(ξ))

is a bounded map of class C∞(Rn,L (V,V)) and so in particular a multiplier of
the required type. ��

The next result is a slight strengthening of the closed range inequality (1.6)
mentioned in the Introduction. It is obtained by combination of Lemma 3.7 and
Murat’s inequality (1.7):

Lemma 3.8. Assume that A , B are operators as in Theorem 3.5. Then for each
p ∈ (1,∞) there exists a constant C p > 0 such that

inf
ψ∈C∞c (Rn ,V)

∥∥φ −Bψ
∥∥

p � C p
∥∥A φ

∥∥
W−k,p

holds for all φ ∈ Lp(Rn,V).

Proof. Let φ ∈ Lp(Rn,V). By Murat’s inequality (1.7) we have ‖φ − PA φ‖p �
cp‖A φ‖W−k,p ,wherePA φ ∈ Lp(Rn,V) isA -free.Let ε > 0.ByuseofLemma3.7
we find u ∈ Wl,p(Rn,V) such that ‖PA φ−Bu‖p < ε. Next for a standard smooth
mollifier ρ j (x) = jnρ( j x)we take j ∈ N so large that ‖PA φ−B(ρ j ∗u)‖p < ε.
Fix such j and put χr = ρ j ∗ 1Br (0). Now by the Leibniz rule (2.6) we have
‖B(ρ j ∗ u) −B(χrρ j ∗ u)‖p → 0 as r → ∞. Hence for large r > 0 we have
with ψ = χrρ j ∗ u ∈ C∞

c (Rn,V) that ‖φ −Bψ‖p < cp‖A φ‖p + ε concluding
the proof. ��

The proof of Theorem 3.5 can now be completed as in [42].

4. Proof of Proposition 1.1

Recall that we are given a linear homogeneous differential operator of order k
on R

n from V to W, two finite-dimensional inner product spaces over R:

A =
∑

|α|=k

Aα∂
α, Aα ∈ L (V,W).

We do not impose any further restrictions on A at this stage. Instead we prefer to
introduce the hypotheses on A in the course of the proof as it will then be clear
why they are natural.

For a bounded open set � in R
n and an exponent p ∈ (1, n

n−1 ) we consider
V-valued measures v j , v ∈ M (�,V) satisfying

{
v j

∗
⇀ v in M (�,V)

A v j → A v in W−k,p
loc (�,W).

(4.1)
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Under the assumption (4.1)1 we can extract a subsequence (not relabelled) such
that

v j
Y→ ν, ν = ((νx ), λ, (ν

∞
x )
)

(4.2)

The task is to find conditions at the level of the Young measure ν in the form of
Jensen type inequalities that reflect the convergence (4.1)2.

4.1. A First Reduction: the Spanning Cone Condition

Recall that the wave cone for A is defined as

�A ≡
⋃

ξ∈Rn\{0}
kerA (ξ), where A (ξ) ≡

∑

|α|=k

Aαξ
α ∈ L (V,W).

Put
{

V1 ≡ span�A , V2 ≡ V
⊥
1 ,

πi : V → Vi the corresponding orthogonal projections.
(4.3)

Observe that the differential operatorA π2 =∑|α|=k Aαπ2∂
α is partially elliptic in

the sense that its wave cone�A π2 = V1. A standard use of the Hörmander–Mihlin
multiplier theorem yields a constant cp > 0 such that

∥∥π2v
∥∥

p � cp
∥∥A π2v

∥∥
W−k,p (4.4)

holds for all v ∈ Lp(Rn,V). The next result relates the actions ofA on a field and
its projection on V2.

Lemma 4.1. Suppose that A is a constant rank operator. Then
∥∥π2v

∥∥
p � cp

∥∥A v
∥∥
W−k,p

for all v ∈ C∞
c (Rn,V).

Proof. We note that for z ∈ V, and ξ ∈ S
n−1

π2z = ��⊥
A

z = �⋂
|ζ |=1 kerA (ζ )⊥ z = �⋂

|ζ |=1 kerA (ζ )⊥�kerA (ξ)⊥ z,

where �P denotes orthogonal projection on the linear space P . Therefore we can
write in Fourier space, for v ∈ C∞

c (Rn,V)

π2v̂(ξ) = π2�kerA (ξ)⊥ v̂(ξ) = π2A
†(ξ)A (ξ)v̂(ξ) = π2A

†
(

ξ

|ξ |
)
Â v(ξ)

|ξ |k

and the multiplier theorem gives the result. Here M† denotes the Moore–Penrose
inverse of a matrix M . The constant rank condition ofA is known to be equivalent
with smoothness of A †(·) on S

n−1 [42]. ��
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We return to the Young measure ν and fix �′ � � with λ(∂�′) = 0. Write

ν �′ = ((νx )x∈�′ , λ �′, (ν∞x )x∈�′
)
.

Choose η ∈ C∞
c (�) satisfying 1�′ � η � 1� and record the convergences

ηv j
∗
⇀ ηv inM (Rn,V),A (ηv j ) → A (ηv) in W−k,p(Rn,W) and (ηv j ) �′ =

v j �′ Y→ ν �′. If
(
ρε

)
ε>0 is a standard smooth mollifier on R

n , then us-
ing a result of Reshetnyak [44] and the definition of Young measure (see for
instance [34] for such arguments) we find a null sequence ε j ↘ 0 such that
(
ρε j ∗

(
ηv j

))|�′
Y→ ν �′. Put ṽ ≡ ηv and ṽ j ≡ ρε j ∗

(
ηv j

)
. By inspection

ṽ j
∗
⇀ ṽ inM (Rn,V),A ṽ j → A ṽ in W−k,p(Rn,W) and in view of Lemma 4.1,

A π2ṽ j → A π2ṽ in W−k,p(Rn,W). In particular, A π2ṽ ∈ W−k,p(Rn,W) and
so from (4.4) infer π2ṽ ∈ Lp(Rn,V). But then another application of (4.4) yields

π2ṽ j → π2ṽ in Lp(Rn,V), and
(
π1ṽ j + π2ṽ

)|�′
Y→ ν �′ follows. Let us sum-

marize the above discussion:

Lemma 4.2. Assume (4.1), (4.2), (4.3). Then π2v ∈ Lp
loc(�,V), π1v j +π2v

Y→ ν,

π1v j
∗
⇀ π1v in M (�,V) and A π1v j → A π1v in W−k,p

loc (�,W). In particular,

π1v j
Yloc→ (

(δ−(π2v)(x) ∗ νx ), λ, (ν
∞
x )
)

and
{
supp(δ−(π2v)(x) ∗ νx ) ⊆ V1 for L n almost everywhere x ∈ �

supp(ν∞x ) ⊆ SV1 for λ almost everywhere x ∈ �.

Here the suffix loc on the Young measure generation should be understood as(
π1v j �′) generates the listed Young measure restricted to �′ for each �′ � �

with λ(∂�′) = 0. In view of this result we can focus on the Young measure
generated by the projected sequence

(
π1v j

)
. To avoid heavy notation we assume

in the sequel that

span(�A ) = V. (4.5)

4.2. The Closed-Range Inequality and Conclusion of Proof

Because A satisfies the constant rank condition (1.2) we infer in particular
from Lemma 3.8 that there is a constant C p > 0 such that for all φ ∈ Lp(Rn,V)

We have

inf
ψ∈C∞c (B1supp(φ),V),A ψ=0

∥∥φ − ψ
∥∥

p � C p
∥∥A φ

∥∥
W−k,p (4.6)

In view of our definition ofA -quasiconvexity the hypothesis is natural because, as
we will see below, it allows us to use the convergence (4.2)2 to relate the fields v j ,
v in a straight forward way to A -free fields and hence use A -quasiconvexity to
establish the Jensen type inequalities for the Young measure ν. Without (4.6) the
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relation to A -free fields will be much weaker and, apart from some special cases
[35,40], any known proof breaks down.

With the hypotheses (4.5), (4.6) in place we return to the arbitrary set �′ � �

with λ(∂�′) = 0 and a cut-off function η ∈ C∞(�) satisfying 1�′ � η � 1�.
As above we find for a standard smooth mollifier

(
ρε

)
ε>0 on R

n a null sequence

ε j ↘ 0 such that for ṽ j ≡ ρε j ∗ (ηv j ) we have ṽ j |�′
Y→ ν �′. Put ṽ ≡ ηv,

w j ≡ ρε j ∗
(
ṽ j
)
and note w j → ṽ 〈·〉-strictly on R

n , ṽ j − w j
∗
⇀ 0 in M (Rn,V)

and A (ṽ j − w j ) → 0 in W−k,p(Rn,W). We first establish (1.5). Find by (4.6)
ψ j ∈ C∞

c (Rn,V) such that A ψ j = 0 and ‖w j − ψ j‖p � cp‖A w j‖W−k,p .
Since especially A ṽ ∈ W−k,p(Rn,W) we have A w j = ρε j ∗ A ṽ → A ṽ in
W−k,p(Rn,W), hence it follows easily that (w j −ψ j ) is Cauchy in Lp(Rn,V), say

w j −ψ j → a in Lp(Rn,V). In particular,w j
∗
⇀ ṽ inM (Rn,V), hence alsoψ j

∗
⇀

ṽ+a inM (Rn,V). But thenA (ṽ+a) = 0 and because ṽs = (ṽ+a)s we infer from
Lemma 2.2 that the polar ṽs/|ṽ|s ∈ �A for |ṽ|s almost everywhere. If we restrict
the measures to �′, then we find v �′ = ṽ �′ = νxL n �′ + ν∞x λ �′, and
thus ν∞x ∈ �A for λs almost every x ∈ �′. After a further Lebesgue decomposition
of λs �′ with respect to |v|s �′ we deduce (1.5) by identification of terms in
the above expression for v �′.

For the proof of (1.4) we require an auxiliary result that we adapt from [29].
An integrand f : V → R is called a special A -quasiconvex integrand if it isA -
quasiconvex, of linear growth and there exists r = r f > 0 such that f (z) = f ∞(z)
holds for all |z| � r . The class of such integrands is denoted by SQ. It is perhaps
not even clear if there are any such integrands at all. But in fact there are plenty of
them as the following approximation result shows.

Lemma 4.3. For each A -quasiconvex integrand f : V → R of linear growth there
exists a sequence ( f j ) from SQ such that

f j (z) � f j+1(z) ↘ f (z) and f ∞j (z) � f ∞j+1(z) ↘ f ∞(z) as j ↗∞
for each z ∈ V.

A proof in the case A = curl acting row-wise on V = R
N×n valued fields can be

found in [29, Lemma 6.3] and we leave it to the interested reader to check that it in
view of Theorem 3.5 also applies to the present more general situation.

Recall the space E(�,V) of admissible integrands defined in Section 2.4 and
that it is a separable Banach space.We define an autonomous version of it by letting

H ≡ { f : 1� ⊗ f ∈ E(�,V)
}

and ‖ f ‖ ≡ sup
z∈V

| f (z)|
1+ |z| .

It is easy to check that H hereby is a separable Banach space (compare also Sec-
tion 5.1), hence we can find a countable family Q of A -quasiconvex integrands
whose closure Q in H is the cone of all A -quasiconvex integrands in H. Let
f ∈ Q. Fix concentric balls Br = Br (x0) � Bs = Bs(x0) � � such that
λ(∂Br ∪ ∂Bs) = 0 and let η ∈ C∞

c (Rn) be chosen so 1Br � η � 1Bs . Next

select as before a null sequence ε j ↘ 0 such that ρε j ∗ (ηv j )|Br

Y→ ν Br .
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Put ṽ j ≡ ρε j ∗ (ηv j ), w j ≡ ρε j ∗ (ηv) and record ṽ j − w j
∗
⇀0 in M (Rn,V),

A (ṽ j − w j ) → 0 in W−k,p(Rn,W) and w j → ηv 〈·〉 strictly on R
n . From (4.6)

we find ψ j ∈ C∞
c (Bs+1,V) such that A ψ j = 0 and ṽ j − w j − ψ j → 0 in

Lp(Rn,V). Put e j ≡ ṽ j − w j − ψ j and note that

ψ j = −e j on R
n\Bs . (4.7)

Considering f − f (0) instead of f we can assume f (0) = 0. By virtue of
Lemma 2.8 the integrand f is Lipschitz, say with Lipschitz constant �. From our
hypotheses

lim sup
j→∞

∫

Bs

f (ṽ j ) dx �
∫

Br

〈νx , f 〉 dx +
∫

Br

〈ν∞x , f ∞〉 dλ

+ �

(∫

Bs\Br

〈νx , | · |〉 dx + λ(Bs\Br )

)
. (4.8)

Let v = vaL n � + vs be the Lebesgue–Radon–Nikodým decomposition with
respect to L n . Then using the Lipschitz continuity of f and ṽ j = w j + ψ j + e j

we estimate:

lim sup
j→∞

∫

Bs

f (ṽ j ) dx � lim sup
j→∞

∫

Bs

f (w j + ψ j ) dx + 0

� lim sup
j→∞

∫

Rn

(
f (va(x0)+ ψ j )− f (va(x0)

)
dx

+L n(Bs) f (va(x0))

− � lim sup
j→∞

(∫

Bs

|w j − va(x0)| dx +
∫

Rn\Bs

|ψ j | dx

)

(4.7)
� L n(Bs) f (va(x0))− �

∫

Bs

|ηva − va(x0)| dx − �|v|s(Bs).

In concert with (4.8) this yields
∫

Br

〈νx , f 〉 dx +
∫

Br

〈ν∞x , f ∞〉 dλ � f (va(x0))L
n(Bs)

− �

∫

Bs

|ηva − va(x0)| dx − �|v|s(Bs)

− �

(∫

Bs\Br

〈νx , | · |〉 dx + λ(Bs\Br )

)
.

Now take η ↘ 1Br and then s ↘ r to get
∫

Br

〈νx , f 〉 dx +
∫

Br

〈ν∞x , f ∞〉 dλ � f (va(x0))L
n(Br )

− �

∫

Br

|va − va(x0)| dx − �|v|s(Br ),
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divide by L n(Br ), take r ↘ 0 and refer to standard differentiation results for
measures (see for instance [17]) to arrive at (1.4) for x0 ∈ �\N f , where N f isL n

negligible. Put N a =⋃ f ∈Q N f and observe that (1.4) holds for allA -quasiconvex
f ∈ H and all x ∈ �\N a . In view of the approximation Lemma 4.3 we may extend
(1.4) for each x ∈ �\N a to all A -quasiconvex integrands of linear growth. The
proof is therefore complete.

5. Proof of Theorem 1.2

Fix a differential operator B as in (2.4) satisfying (2.5). By virtue of the ap-
proximation lemma 4.3 and separability considerations the assumed Jensen-type
inequality (1.9) imply that for some L n negligible set N ⊂ � the Jensen-type
inequality (1.9) holds for all x ∈ �\N and all A -quasiconvex integrands f of
linear growth.

As in [27,28] we start by characterizing the homogeneous Young measures.
Becausewe considerYoungmeasures for oscillation and concentration this requires
some additional care.

5.1. The Functional Set-Up

It is an autonomous version of that used in Section 2.4 for Young measures. Re-
call the space H from Section 4.2 consisting of continuous autonomous integrands
� : V → R of linear growth that admit a regular recession integrand,

�∞(z) = lim
t→∞

�(t z)

t
exists locally uniformly in z ∈ V

and that H is normed by

‖�‖ = sup
z∈V

|�(z)|
1+ |z| .

We recall that � ∈ H precisely when the transformed integrand

ẑ �→ (
1− |ẑ|)�

(
ẑ

1− |ẑ|
)

is bounded and uniformly continuous on the open unit ball BV(0, 1). The mapping
T : H → C(BV) defined by

T�(ẑ) =
{(

1− |ẑ|)�
(

ẑ
1−|ẑ|

)
if |ẑ| < 1

�∞(ẑ) if |ẑ| = 1,

is then easily seen to be an isometric isomorphism.Hence by general results so is the
dual mapping T ∗ : C(BV)

∗ → H
∗. By virtue of the Riesz representation theorem

we may identify the dual space C(BV)
∗ with the spaceM (BV) of bounded signed
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Radon measures on the closed unit ball BV. Hence given � ∈ H
∗ there is a unique

μ ∈ M (BV) such that T ∗μ = �. Consequently we have for � ∈ H,

�(�) = 〈T ∗μ,�〉 =
∫

BV

T� dμ

=
∫

BV(0,1)

(
1− |ẑ|)�

(
ẑ

1− |ẑ|
)

dμ(ẑ)+
∫

SV

�∞ dμ.

If we put S(ẑ) = ẑ
1−|ẑ| for ẑ ∈ BV(0, 1) and

μ0 = S#

[(
1− |ẑ|)μ BV(0, 1)

]
,

μ∞ = μ SV,

then μ0 ∈ M (V) has a total variation measure with finite first moment, that is,
〈|μ0|, | · |〉 < ∞, μ∞ ∈ M (SV), and

�(�) =
∫

V

� dμ0 +
∫

SV

�∞ dμ∞. (5.1)

In view of this representation we identify in the following each � ∈ H
∗ with the

unique pair of measures (μ0, μ∞) as above. We also record that

‖�‖ =
∫

V

(
1+ | · |) d|μ0| + |μ∞|(SV)

and that � � 0 whenμ0 � 0,μ∞ � 0, so that T ∗ is a positive operator. This means
that T ∗ is a homeomorphism of the positive cones,M+(BV) onto (H∗)+ with their
respective relative weak∗ topologies, and consequently, by virtue of Lemma 2.1,
that the relative weak∗ topology on (H∗)+ is determined by the (push-forward)
Kantorovich metric defined as

dK
(
(μ0, μ∞), (ν0, ν∞)

) = ‖(μ0, μ∞)− (ν0, ν∞)‖K

for (μ0, μ∞), (ν0, ν∞) ∈ H
∗, where the (push-forward) Kantorovich norm is

‖(μ0, μ∞)‖K = sup
�∈H, ‖T�‖LIP�1

∣∣∣∣
∫

V

� dμ0 +
∫

SV

�∞ dμ∞
∣∣∣∣ . (5.2)

If v is a bounded V-valued Radon measure on X = (− 1
2 ,

1
2

)n with Lebesgue–
Radon–Nikodým decomposition v = vadx + vs , then we define εv ∈ H

∗ by

εv(�) =
∫

X

�(va(x)) dx +
∫

X

�∞(vs) (� ∈ H). (5.3)
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5.2. The Hahn–Banach Argument

Fix z ∈ V and denote by Y = Yz the set of all pairs (ν0, ν∞) ∈ M+
1 (V) ×

M+(SV) for which we can find a sequence (v j ) in C∞
c (X,V) such that, as j →∞,

‖v j‖Wl−1,1 → 0 and
∫

X

�(z +Bv j (x)) dx →
∫

V

� dν0 +
∫

SV

�∞ dν∞ ∀� ∈ H. (5.4)

Obviously, we can consider Y as a subset of (H∗)+ and we clarify that M+(SV)

denotes the set of positive Radon measures on SV, whereas M
+
1 (V) denotes the

set of probability measures on V. The above convergence condition (5.4) for mem-
bership of Y can therefore also be stated in terms of the Kantorovich metric (5.2),
where it takes the form that ‖εz+Bv j − (ν0, ν∞)‖K → 0 as j →∞.

Remark 5.1. Using a standard exhaustion argument it is not difficult to show that
each ν ∈ Y can be generated by sequenceswith apparentlymuch better convergence
properties: Let ν = (ν0, ν∞) ∈ Y and let ω : [0,∞) → [0,∞) be a sublinear
modulus of continuity (so ω(0) = 0, ω is continuous, increasing, concave and
ω(t)/t → ∞ as t ↘ 0). Then there exists a sequence (ϕ j ) in C∞

c (X,V) so
‖ϕ j‖Wl−1,∞ → 0, ‖ν − εz+Bϕ j ‖K → 0 and

sup
x,y∈X
x �=y

∣∣∇l−1ϕ j (x)−∇l−1ϕ j (y)
∣∣

ω
(|x − y|) → 0.

Lemma 5.2. The family
{
εz+Bu : u ∈ C∞

c (X,V)
}

is a weakly-* dense subset of
Y .

Proof. In view of the definition of Y it suffices to show that εz+Bu ∈ Y for
each u ∈ C∞

c (X,V). But this is a consequence of a standard exhaustion argument
that runs as follows: We extend u to R

n by zero without changing notation and
subdivide each side of X into j ∈ N disjoint congruent open intervals, and consider
the resulting mesh of jn disjoint congruent cubes. We fix an arrangement of these
cubes, say

Xi = xi + j−1
X, i ∈ {1, . . . , jn},

and define

φ j (x) =
jn∑

i=1

j−lu( j (x − xi )).

It is then simple to compute for � ∈ H that
∫

X

�(z +Bu)dx =
∫

X

�(z +Bφ j )dx

‖∇l−1φ j‖L1(X) = j−1‖∇l−1u‖L1(X) → 0 as j →∞.

That also ‖φ j‖Wl−1,1 → 0 follows from Poincaré’s inequality. ��
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Lemma 5.3. The set Y is weakly-∗ closed in H
∗.

Proof. Let μ = (μ0, μ∞) ∈ Y
w∗
. Let {� j } j∈N be a countable and dense subset of

H and put �0 = | · |. Now for each i ∈ N we may select vi ∈ C∞
c (X,V) such that

‖vi‖Wl−1,1 <
1

i
, max

0� j�i

∣∣∣∣
∫

X

� j (z +Bvi ) dx − μ(� j )

∣∣∣∣ <
1

i
. (5.5)

Since�0 = | · | is included above we infer that the sequence (z +Bvi ) is bounded
in L1(X,V) and so, by Banach–Alaoglu’s compactness theorem and separability
of H, each of its subsequences admit a further subsequence (not relabelled) so

∫

X

�(z +Bvi ) dx → �(�) ∀� ∈ H (5.6)

for some � ∈ H
∗ that at this stage of course can depend on the particular sub-

sequence. But the density of {� j } j∈N0 and the identification of H
∗ with pairs of

measures allow us, by virtue of (5.5), to conclude that � = μ and so that (5.6) in
fact holds true for the full sequence. Taken together with (5.5) we have shown that
μ ∈ Y , and the proof is complete. ��
Lemma 5.4. The set Y is convex.

Proof. Let ν0, ν1 ∈ Y , t ∈ (0, 1) and νt = (1− t)ν0+ tν1. In view of Lemmas 5.2
and 5.3 it suffices to show that νt ∈ Y when

ν0 = εz+Bu0 , ν1 = εz+Bu1 and t =
(

p
q

)n
,

where u0, u1 ∈ C∞
c (X,V) and p, q ∈ N are coprime. In fact, we shall show that

νt = εz+Bφ for some φ ∈ C∞
c (X,V). We became aware of this possibility when

reading [49].
In order to see this we subdivide each side of X into q disjoint congruent half-

open intervals, and consider the resulting mesh of qn disjoint congruent cubes. We
fix an arrangement of the cubes, say

Xi = xi + q−1
X, i ∈ {1, . . . , qn},

and define

φ(x) =
pn∑

i=1

q−lu1
(
q(x − xi )

)+
qn∑

i=pn+1

q−lu0
(
q(x − xi )

)
(x ∈ X)

where we extend u0, u1 to R
n\X by 0. Clearly, φ ∈ C∞

c (X,V) and for � ∈ H we
check that εz+Bφ(�) = νt (�), and therefore νt ∈ Y by Lemma 5.2. ��
Lemma 5.5. Let ν = (ν0, ν∞) ∈ M+

1 (V)×M+(SV) and z ∈ V. Then ν ∈ Y if,
and only if, ν0 + ν∞ = z and

∫

V

f dν0 +
∫

SV

f ∞ dν∞ � f (z)

holds for all A -quasiconvex integrands of linear growth.
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Proof. To prove the only if part we fix ν ∈ Y and an A -quasiconvex integrand
f : V → R of linear growth. Select a sequence (u j ) in C∞

c (X,V) such that
‖u j‖Wl−1,1 → 0 and

∫

X

�(z +Bu j ) dx → ν(�)

for each � ∈ H. Thus for � ∈ H with � � f we get by A -quasiconvexity of f
at z that

ν(�) � lim sup
j→∞

∫

X

f (z +Bu j ) dx � f (z).

To obtain the required bound we use the approximation Lemma 4.3 to find A -
quasiconvex integrands � j ∈ H with � j ↘ f and �∞

j ↘ f ∞ pointwise. Note
that

|� j − f | = � j − f � �1 − f � |�1| + | f |,
and similarly |�∞

j − f ∞| � |�∞
1 |+| f ∞|. By Lebesgue’s dominated convergence

theorem, we have
∫

V

f dν0 +
∫

SV

f ∞ dν∞ = lim
j→∞ ν(� j ) � f (z),

which concludes the proof of this implication.
We turn to the if part of the statement. According to Lemmas 5.3 and 5.4, Y is

a weakly∗ closed and convex subset of H
∗, hence by the Hahn–Banach separation

theoremwe canwriteY =⋂ H , wherewe take intersection over all weakly∗ closed
half-spaces H in H

∗ that contain Y . Fix such a half-space H ; it is well-known that
we can find � ∈ H, t ∈ R such that

H = {� ∈ H
∗ : �(�) � t

}
.

Because Y ⊂ H it follows in particular from Lemma 5.2 that εz+Bu ∈ H for all
u ∈ C∞

c (X,V). Consequently, the inequality

t � εz+Bu(�) =
∫

X

�(z +Bu) dx

holds for all u ∈ C∞
c (X,V). But then the relaxation formula Theorem 3.5 yields

t � �qc(z) and it follows that the envelope �qc is real-valued, A -quasiconvex
and of linear growth. Returning to our assumptions on ν with this information we
deduce that

ν(�) �
∫

V

�qc dν0 +
∫

SV

(
�qc)∞ dν∞ � �qc(z) � t,

that is, ν ∈ H . ��
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5.3. Inhomogenization

Let
(
φt
)

t>0 be a standard smooth mollifier on R
n , so obtained by L1 dilation by

t > 0 of a nonnegative C∞ smooth and compactly supported function φ : R
n → R

that integrates to 1: φt (x) = t−nφ(x/t). It is convenient to assume that the support
of φ is the closed unit cube X = [− 1

2 ,
1
2 ]n and that φ is strictly positive on its

interior X. For later reference we put

M ≡ max |∇φ|. (5.7)

We shall also in this subsection use the �n∞-metric on R
n and for convenience of

notation we denote it simply by ‖ · ‖, thus
‖x‖ ≡ ‖x‖�n∞ = max

{|x1|, . . . , |xn|
}

for x = (x1, . . . , xn
) ∈ R

n .

The following result is the key step in our construction. We emphasize that it is
elementary and purely measure theoretic.

Lemma 5.6. Under the assumptions of Theorem 1.2, given ε > 0 we can find
tε > 0 such that for each t ∈ (0, tε] there exists ϕ = ϕt ∈ C∞

c (�,V) with
‖ϕ‖Wl−1,1(�,V) < ε so

∣∣∣∣
∫

�

η(x)�(0)dx +
∫

�

η(x)〈�∞, ν∞x 〉 dλs

−
∫

�

η�
(
φt ∗ (ν∞· λs �)+Bϕ

)
dx

∣∣∣∣ < ε (5.8)

holds uniformly in η : � → R and � : V → R of class H with

‖η‖LIP � 1 and ‖T�‖LIP � 1. (5.9)

In line with what we stated at the start of this subsection we use the �n∞-metric in
the first bound of (5.9):

‖η‖LIP ≡ sup
�

|η| + sup
x,y∈� x �=y

|η(x)− η(y)|
‖x − y‖ .

It is elementary to check that lip(�) � 2lip(T�)+max |T�| � 2‖T�‖LIP.
Proof. Let ε ∈ (0, 1). Apply Luzin’s theorem (see [7, Theorem 3.1.13] for a
statement that applies in the considered generality) to the λs measurable map

� � x �→ (
δ0, ν

∞
x

) ∈ M+
1 (V)×M+(SV) ↪→ (

H
∗)+

to find a compact subset Cs = Cs(ε) ⊂ � such that λs(�\Cs) < ελs(�) and the
map

Cs � x �→ (
δ0, ν

∞
x

) ∈ M+
1 (V)×M+(SV)
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is (uniformly) continuous. The latter can of course be expressed quantitatively in
the sense that we can find a modulus of continuity ωs = ωs

ε : [0,∞) → [0,∞)

such that for all x , y ∈ Cs the inequality
∥∥(δ0, ν∞x

)− (δ0, ν∞y
)∥∥

K � ωs(‖x − y‖) (5.10)

holds. Because λs andL n are mutually singular we can assume thatL n(Cs) = 0
and because λs(∂�) = 0 we can also assume that

� = �ε ≡ inf
{‖x − y‖ : x ∈ Cs, y ∈ ∂�

} ∈ (0, 1). (5.11)

Let d, m ∈ N be two natural numbers whose precise values will be specified in the
course of the proof. Put t = 2−d and for convenience of notation write φ ≡ φt so
that we in particular have

φ(x)

{
> 0 if ‖x‖ < t
= 0 if ‖x‖ � t.

(5.12)

Our first condition on d ∈ N is that it is so large that

2t � � that is d � log2
( 2
�

)
. (5.13)

The collection of (d + m)-th generation dyadic cubes Q ∈ Dd+m in R
n with

dist(Q, ∂�) � t is denoted F . For each Q ∈ F we define

rQ ≡ −
∫

Q
φ ∗ (λs Cs) dx . (5.14)

In view of the choice of mollifier φ we have for cubes Q with rQ > 0 that

dist(Q,Cs) ≡ inf
{‖x − y‖ : x ∈ Q, y ∈ Cs} < t,

and may therefore select xQ ∈ Cs so

dist(Q, xQ) ≡ inf
{‖x − xQ‖ : x ∈ Q

}
< t.

Summarizing, we denote F s ≡ {Q ∈ F : rQ > 0} and have that

∀ Q ∈ F s ∃ xQ ∈ Cs such that sup
x∈Q

‖x − xQ‖ < 2t. (5.15)

We continue the selection process for these cubes and fix Q ∈ F s . Then for
integrands f ∈ H that are A -quasiconvex we get by Lemmas 2.5, 2.2 and 2.9,

f
(
rQν∞xQ

)
� f

(
0
)+ rQ f ∞

(
ν∞xQ

)

� f
(
0
)+ rQ

∫

SV

f ∞ dν∞xQ
.

In connection with the Hahn–Banach Lemma 5.5 this bound allows us to select
ϕQ ∈ C∞

c (Q,V) satisfying ‖ϕQ‖Wl−1,1(Q,V) < ελs(Q) and
∥∥(δ0, ν∞xQ

rQ
)− εrQν∞xQ

+BϕQ

∥∥
K < ε. (5.16)
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We recall that this amounts to (where we realize the elementary Young measure on
Q instead of on X),

sup
‖T�‖LIP�1

∣∣∣∣�(0)+
∫

SV

�∞ dν∞xQ
rQ −−

∫

Q
�
(
rQν∞xQ

+BϕQ) dx

∣∣∣∣ < ε.

If therefore we define

ϕ ≡
∑

Q∈F s

ϕQ,

then clearly

ϕ ∈ C∞
c (�,V), ‖ϕ‖Wl−1,1(�,V) < ελs(�) (5.17)

and we have (5.16) for each Q ∈ F s . The sought-after map is now

ξ s ≡ φ ∗ (ν∞· λs �
)+Bϕ, (5.18)

where we define ϕ ≡ 0 off � so that in particular ξ s ∈ C∞
c (Rn,V). In order to

check that ξ s has the required properties, in addition to (5.17), we fix η : � → R

and � : V → R of class H satisfying (5.9). We start by writing
∫

�

η〈�∞, φ ∗ (ν∞· λs �
)〉 dx =

∫

�

η〈�∞, φ ∗ (ν∞· λs Cs)〉 dx

+E1, (5.19)

where

|E1| �
∫

�

φ ∗ (λs �\Cs) dx � ελs(�).

We emphasize that the integrals in (5.19) should be understood as
∫

�

η〈�∞, φ ∗ (ν∞· λs �
)〉 dx ≡

∫

�

η(x)
∫

�

(
φ(x − y)

∫

SV

�∞ dν∞y
)

dλs(y) dx,

and likewise for the integral on the right-hand side, except that the y-integration is
over the set Cs instead of �. Since for each Q ∈ F with rQ = 0 we have

∫

Q
η〈�∞, φ ∗ (ν∞· λs Cs)〉 dx = 0,

and �\⋃F ⊂ B2t (∂�) we get
∫

�

η〈�∞, φ ∗ (ν∞· λs Cs)〉 dx =
∑

Q∈F s

∫

Q
η〈�∞, φ ∗ (ν∞· λs Cs)〉 dx + E2

=
∑

Q∈F s

(∫

Q
η dx〈�∞, ν∞xQ

〉rQ + EQ
3

)
+ E2,
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where
∣∣E2
∣∣ � λs(Cs ∩ B2t (∂�)

) = 0,

since Cs ∩ B2t (∂�) = ∅ according to (5.11) and (5.13). The local error terms EQ
3

are estimated as follows. First,

∣∣EQ
3

∣∣ �
∣∣∣∣
∫

Q

(
η −−

∫

Q
η
)〈
�∞, φ ∗ (ν∞· λs Cs)〉 dx

∣∣∣∣

+
∣∣∣∣
∫

Q
η

(
−
∫

Q

〈
�∞, φ ∗ (ν∞· λs Cs)〉 dx − 〈�∞, ν∞xQ

〉rQ

)∣∣∣∣

� ‖η‖LIPL n(Q)
1
n max

SV

|�∞|
∫

Q
φ ∗ λs dx

+‖η‖LIP
∫

Q

∫

Cs
φ(x − y)

〈
�∞, ν∞y − ν∞xQ

〉
dλs(y) dx

and invoking (5.9), (5.10) we continue with

∣∣EQ
3

∣∣ � t
∫

Q
φ ∗ λs dx

+
∫

Q

∫

Cs
φ(x − y)ωs(‖y − xQ‖

)
dλs(y) dx

�
(
t + ωs(3t)

) ∫

Q
φ ∗ λs dx,

where the last inequality follows from the triangle inequality and (5.15). Next, for
each Q ∈ F s we get from (5.16) that

�(0)+ 〈�∞, ν∞xQ
〉rQ = −

∫

Q
�(rQν∞xQ

+BϕQ) dx + EQ
4 ,

where |EQ
4 | � ε uniformly in� ∈ H satisfying (5.9). Using the triangle inequality,

(5.9) and (5.16) again we estimate
∣∣∣∣−
∫

Q

(
�
(
rQν∞xQ

+BϕQ)−�(0)
)
dx

∣∣∣∣ � ‖εrQν∞xQ
+BϕQ‖K

< ‖(δ0, ν∞xQ
rQ
)‖K + ε

� 1+ rQ + ε

and consequently,
∫

Q
η dx−

∫

Q
�(rQν∞xQ

+BϕQ) dx =
∫

Q
η�(rQν∞xQ

+BϕQ) dx + EQ
5 ,

where (recall ε < 1 and (5.9))

|EQ
5 | � sup

Q

∣∣∣∣η −−
∫

Q
η

∣∣∣∣
(
1+ rQ + ε

)
L n(Q)

� L n(Q)
1
n

∫

Q

(
2+ φ ∗ λs) dx .
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Finally we turn to
∫

Q
η�(rQν∞xQ

+BϕQ) dx =
∫

Q
η�
(
φ ∗ (ν∞· λs)+BϕQ) dx + EQ

6 .

To estimate the local error term EQ
6 , Q ∈ F s , we start by using (5.9) to get the

bound
∣∣∣∣
∫

Q
η

(
�
(
φ ∗ (ν∞· λs)+BϕQ)−�

(
φ ∗ (ν∞· λs Cs)+BϕQ)

)
dx

∣∣∣∣

�
∫

Q
φ ∗ (λs �\Cs) dx .

Another application of (5.9) yields
∣∣∣∣
∫

Q
η

(
�
(
rQν∞xQ

+BϕQ)−�
(
φ ∗ (ν∞· λs Cs)+BϕQ)

)
dx

∣∣∣∣

�
∫

Q

∣∣rQν∞xQ
− φ ∗ (ν∞· λs Cs)

∣∣ dx .

We estimate the last term as follows:
∫

Q

∣∣rQν∞xQ
− φ ∗ (ν∞· λs Cs)

∣∣ dx

�
∣∣∣∣
∫

Q
φ ∗ ((ν∞xQ

− ν∞· )λs Cs) dx

∣∣∣∣

+
∫

Q

∣∣∣∣−
∫

Q
φ ∗ (ν∞· λs Cs) dx ′ − φ ∗ (ν∞· λs Cs)

∣∣∣∣ dx

�
∫

Q

∫

Cs
φ(x − y)

∣∣ν∞xQ
− ν∞y

∣∣ dλs(y) dx

+
∫

Q

∣∣∣∣−
∫

Q
φ ∗ (ν∞· λs Cs) dx ′ − φ ∗ (ν∞· λs Cs)

∣∣∣∣ dx

(5.16)
� ωs(3t)

∫

Q
φ ∗ λs dx + EQ

7 ,

where the local error terms EQ
7 are the mean oscillations on Q ∈ F s timesL n(Q)

appearing in the penultimate line. Writing out the convolutions we estimate

EQ
7 �

∫

Q
−
∫

Q

∫

Cs

∣∣φ(x ′ − y)− φ(x − y)
∣∣|ν∞y | dλs(y) dx ′ dx

�
√

n
∫

Q
−
∫

Q

∫

Q+tX
‖x ′ − x‖

∫ 1

0
|∇φ(x − y + τ(x ′ − x))| dτ dλs(y) dx ′ dx

We now recall that φ = φt and (5.7), so that we have the pointwise bounds |∇φ| �
t−1M(1X)t , which implies for x, x ′ ∈ Q, y ∈ Q + tX, and τ ∈ [0, 1] that

|∇φ(x − y + τ(x ′ − x))| � t−1M(12X)t (x − y),
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so that

EQ
7 �

√
nM

L n(Q)
1
n

t

∫

Q
(12X)t ∗ λs dx

We now have all the necessary bounds and can start to backtrack through the
estimates to conclude the proof of Lemma 5.6. First we recall that we have t = 2−d

with d ∈ N satisfying (5.13) and that the considered dyadic cubes are of higher
generation Q ∈ Dd+m (so L n(Q) = 2−n(d+m)). With ξ s defined in (5.18) we get
by combination of the above

∫

�

η〈�∞, φ ∗ (ν∞· λs �
)〉 dx =

∫
⋃F s

η�(ξ s) dx + E

where

|E | � ελs(�)+ (t + ωs(3t)
) ∫
⋃F s

φ ∗ λs dx

+2−d−m
∫
⋃F s

(
2+ φ ∗ λs) dx +

∫
⋃F s

φ ∗ (λs �\Cs) dx

+ωs(3t)
∫
⋃F s

φ ∗ λs dx +√
nM2−m

∫
⋃F s

(12X)t ∗ λs dx

�
(
2ε + 2−d + 2ωs(3 · 2−d)+ 2−d−m + cn M2−m

)
λs(�)+ 21−d−mL n(�).

To conclude we add
∫

�\⋃F s
η�(ξ s) dx =

∫

�\⋃F s
η dx �(0)

to both sides, whereby we get
∫

�

η

(
�(0)+ 〈�∞, φ ∗ (ν∞· λs �

)〉
)
dx

=
∫

�

η�(ξ s) dx + E +
∫
⋃F s

η dx �(0). (5.20)

Here we have that
⋃F s ⊂ B2t (Cs) and since Cs is compact withL n(Cs) = 0 we

may find dε, mε ∈ N that in view of (5.9) only depend on ε > 0 so that for d � dε,
m � mε we have that

|E | +
∣∣∣∣∣

∫
⋃F s

η dx�(0)

∣∣∣∣∣ � 3ε
(
L n + λs)(�).

This completes the proof since the left-hand side of (5.20) clearly tends to
∫

�

η dx �(0)+
∫

�

η〈�∞, ν∞x 〉 dλs(x)

uniformly in η, � satisfying (5.9) as d →∞. ��
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We turn to the absolutely continuous part, where the proof is similar though a
little less technical.

Lemma 5.7. Under the assumptions of Theorem 1.2, given ε > 0 we can find
tε > 0 such that for each t ∈ (0, tε] there exists ψ = ψt ∈ C∞

c (�,V) with
‖ψ‖Wl−1,1(�,V) < ε so

∣∣∣∣
∫

�

η(x)
(〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉)dx

−
∫

�

η�
(
φt ∗

(
(ν· + λaν∞· )L n �

)+Bψ
)
dx

∣∣∣∣ < ε (5.21)

holds uniformly in η : � → R and � : V → R of class H with

‖η‖LIP � 1 and ‖T�‖LIP � 1. (5.22)

Proof. Let ε ∈ (0, 1) and put M(x) = 〈νx , 1+|·|〉+λa(x). Apply Luzin’s theorem
to the L n measurable map

� � x �→ (
νx , λ

a(x)ν∞x
) ∈ M+

1 (V)×M+(SV) ≡
(
H
∗)+ (5.23)

to find a compact subset Ca = Ca(ε) ⊂ � such that
∫

�\Ca
M(x) dx < ε. (5.24)

Select a modulus of continuity ωa = ωa
ε : [0,∞) → [0,∞) such that for all x ,

y ∈ Ca the inequality
∥∥(νx , λ

a(x)ν∞x
)− (νy, λ

a(y)ν∞y
)∥∥

K � ωa(‖x − y‖) (5.25)

holds. We consider for a d ∈ N and s ∈ (0, 1) the following family of dyadic cubes
in R

n of side-length t = 2−d ,

Fa =
{

Q ∈ Dd : dist(Q, ∂�) > t, L n(Q ∩ Ca) > sL n(Q)

}
,

where we recall that we work with the �∞ norm on R
n . We will specify conditions

on d ∈ N and s ∈ (0, 1) in the course of the proof. Select xQ ∈ Q ∩ Ca for
each Q ∈ Fa . By Lemma 5.5, we find ψQ ∈ C∞

c (Q,V) with ‖ψQ‖Wl−1,1(Q,V) <

εL n(Q)/L n(�) and
∥∥(νxQ , λ

a(xQ)ν∞xQ

)− ενxQ+λa(xQ)ν∞xQ
+BψQ

∥∥
K < ε. (5.26)

We extend ψQ by 0 ∈ V to R
n\Q and define ψ ≡ ∑

Q∈Fa ψQ . Hereby ψ ∈
C∞

c (�,V) and ‖ψ‖Wl−1,1(�,V) < ε. We then estimate for η, � as in (5.22):
∫

�

η
(〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉) dx =

∑

Q∈Fa

∫

Q
η
(〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉) dx

+E1
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where, by virtue of (5.24) and the Lebesgue differentiation theorem,

|E1| �
∫

�\(⋃Fa)

M(x) dx < ε

for d sufficiently large, say d � d(ε, s). Next,

∑

Q∈Fa

∫

Q
η
(〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉) dx

=
∑

Q∈Fa

−
∫

Q
η

∫

Q

(〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉)dx + E2,

where by (5.22),

|E2| � t
∑

Q∈Fa

∫

Q

∣∣〈�, νx 〉 +λa(x)〈�∞, ν∞x 〉∣∣ dx � t
∫

�

M(x) dx .

Put f (x) = 〈�, νx 〉 + λa(x)〈�∞, ν∞x 〉 and observe that for each Q ∈ Fa ,
∣∣∣∣
∫

Q
f dx −L n(Q) f (xQ)

∣∣∣∣ � 1

s

∫

Q∩Ca

(| f − f (xQ)| + (1− s)| f |) dx +
∫

Q\Ca
| f | dx

and by virtue of (5.22), (5.24) we have | f − f (xQ)| � ωa(t) on Q ∩ Ca , hence
∣∣∣∣
∫

Q
f dx −L n(Q) f (xQ)

∣∣∣∣ � ωa(t)

s
L n(Q)+ 1− s

s

∫

Q
| f | dx +

∫

Q\Ca
| f | dx .

Since by (5.22) we have | f (x)| � M(x) we infer from (5.24) that

∑

Q∈Fa

−
∫

Q
η

∫

Q
f dx =

∑

Q∈Fa

f (xQ)

∫

Q
η + E3,

where

|E3| � ωa(t)

s
L n(�)+ 1− s

s

∫

�

M dx + ε.

We now invoke (5.26) whereby we for each Q ∈ Fa have that

f (xQ) = −
∫

Q
�
(
νxQ + λa(xQ)ν∞xQ

+BψQ
)
dx + EQ

4 ,

where |EQ
4 | � ε. Put va(x) = νx + λa(x)ν∞x . Because �(z) = z · ei satisfies

(5.22) for each i , where (ei ) is an orthonormal basis for V we get from (5.25) that
|va − va(xQ)| � ωa(t) on Q ∩ Ca for each Q ∈ Fa . Consequently,
∫

Q
|va − va(xQ)| dx � ωa(t)

s
L n(Q)+

∫

Q\Ca
|va | dx + 1− s

s

∫

Q
|va | dx
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for each Q ∈ Fa . Using that |va | � M and lip(�) � 2‖T�‖LIP � 2 we find

∑

Q∈Fa

−
∫

Q
η dx

∫

Q
�(va(x Q)+BψQ) dx =

∑

Q∈Fa

−
∫

Q
η dx

∫

Q
�(va +BψQ) dx + E5

and

|E5| � 2
ωa(t)

s
L n(�)+ 2ε + 2

1− s

s

∫

�

M dx .

Using (5.22) and some of the previous estimates again we get

∑

Q∈Fa

−
∫

Q
η dx

∫

Q
�(va +BψQ) dx =

∑

Q∈Fa

∫

Q
η�(va +BψQ) dx + E6,

and

∣∣E6
∣∣ � t

∑

Q∈Fa

∫

Q

∣∣�(va +BψQ)
∣∣ dx

� t
∣∣E5
∣∣+ t

∑

Q∈Fa

∫

Q

∣∣�(va(xQ)+BψQ)
∣∣ dx

(5.26)
� t

∣∣E5
∣∣+ tεL n(�)+ t

∑

Q∈Fa

L n(Q)
(〈|�|, νxQ 〉 + λa(xQ)〈|�|∞, ν∞xQ

〉)

(5.25)
� t

∣∣E5
∣∣+ tεL n(�)+ t

ωa(t)

s
L n(�)+

∫

�\Ca
M dx + 1− s

s

∫

�

M dx .

Finally we have for a standard smooth mollifier
(
φt
)

t>0 that

∫

�

∣∣φt ∗ (va �)− va
∣∣ dx → 0 as t ↘ 0

and so by (5.22),

∫

�

η�(va +Bψ) dx =
∫

�

η�(φt ∗ (va �)+Bψ) dx + E7,

where

∣∣E7
∣∣ � lip�

∫

�

∣∣φt ∗ (va �)− va
∣∣ dx � 2

∫

�

∣∣φt ∗ (va �)− va
∣∣ dx .

Collecting the above estimates we end the proof. ��
We can now conclude the proof of Theorem 1.2 if we combine the Lem-

mas 5.6, 5.7, 2.4 with the following general result.
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Lemma 5.8. Suppose that the sequences (v j ), (w j ) inL1(�,V) generate the Young
measures μ, ν, respectively. Assume that the oscillation measure for μ is trivial,
say μx = δv(x) for some v ∈ L1(�,V), and that the concentration measures for
μ, ν are mutually singular, say � = �μ ∪�ν is a Borel partition with λμ(�ν) =
λν(�μ) = 0. Then the sum sequence (v j + w j ) generates the Young measure κ ,
where the oscillation measure is κx = δv(x) ∗ νx for L n almost everywhere x ∈ �,
the concentration measure is λκ = λμ + λν and the concentration-angle measure
is

κ∞x =
{
μ∞

x for λμ almost everywhere x ∈ �μ

ν∞x for λν almost everywhere x ∈ �ν.

The proof relies on the following decomposition result that is closely related to [17,
Lemma 2.31].

Lemma 5.9. Assume (w j ) is a sequence in L1(�,V) that generates the Young
measure ν = (

(νx ), λ, (ν
∞
x )
)
. Then we can decompose w j = g j + b j , where

(g j ), (b j ) are sequences in L1(�,V) such that (g j ) is equi-integrable, g j
Y→

(
(νx ), 0, n/a

)
and b j

Y→ (
(δ0), λ, (ν

∞
x )
)
. The converse is also true: if (g j ) is equi-

integrable, g j
Y→ (

(νx ), 0, n/a
)

and b j
Y→ (

(δ0), λ, (ν
∞
x )
)
, then g j + b j

Y→ ν.

Proof. It is not difficult to see that we may choose k j ↗∞ such that the truncated
sequence g j ≡ w j1{|w j |�k j } is equi-integrable and generates the Young measure(
(νx ), 0, n/a

)
. Put b j ≡ w j − g j . In order to show that (b j ) generates the Young

measure as asserted we use the integrands η ⊗ �, where η ∈ C(�), � ∈ H with
‖T�‖LIP � 1 (see Lemma 2.4). Now

∫

�

η
(
�(b j )−�(w j )

)
dx =

∫

|w j |�k j

η
(
�(0)−�(g j )

)
dx

+
∫

|w j |>k j

η
(
�(w j )−�(w j )

)
dx

=
∫

�

η
(
�(0)−�(g j )

)
dx

→
∫

�

η
(
�(0)− 〈νx ,�〉

)
dx as j →∞,

hence we get that, as j →∞,
∫

�

η�(b j ) dx →
∫

�

η〈νx ,�〉 dx

+
∫

�

η〈ν∞x ,�∞〉 dλ

+
∫

�

η
(
�(0)− 〈νx ,�〉

)
dx

=
∫

�

η dx �(0)+
∫

�

η〈ν∞x ,�∞〉 dλ.
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This is exactly what we wanted to prove.
The opposite direction is a straightforward subsequence argument: any subse-

quence of (g j + b j ) admits a further subsequence that generates a Young measure.
Using the properties of (g j ), (b j ) it is easily shown that the Young measure in each
instance is ν. We leave the details to the interested reader. ��
Proof of Lemma 5.8. We start by writing w j = g j + b j as in the decomposition
lemma 5.9 and put c j = v j − v. We will show that

b j + c j
Y→ (

(δ0)x∈�, λμ + λν, (κ
∞
x )x∈�

)
, (5.27)

where the concentration-angle measure is defined in Lemma 5.8. Once this is ac-
complished the proof is easily completed using that (v + g j ) is equi-integrable
and the last part of Lemma 5.9. Note that we have, b j + c j → 0 in L n measure,
so the oscillation measure will be trivial. To identify the other parts of the Young
measure (and to show that one is indeed generated) we employ again Lemma 2.4.
Fix η ∈ C(�)with ‖η‖∞ � 1,� ∈ Hwith ‖T�‖LIP � 1 and�(0) = 0. Let ε > 0
and find disjoint compact sets Cμ, Cν ⊂ � and open sets in R

n with Cμ ⊂ Oμ,
Cν ⊂ Oν such that λμ

(
�\Cμ

)+λν

(
�∩ Oμ

)
< ε, λν

(
�\Cν

)+λμ

(
�∩ Oν

)
< ε.

Next, let ρ ∈ C(Rn) be a function satisfying 1Cμ � ρ � 1Oμ . Write

I =
∫

�

η
(
�(b j + c j )−�(b j )−�(c j )

)
dx = II + III,

where

II =
∫

�

ηρ
(
�(b j + c j )−�(b j )−�(c j )

)
dx and III = I − II.

Note that

lim sup
j→∞

∣∣II
∣∣ � lim sup

j→∞
2
∫

�

ρ|b j | dx = 2
∫

�

ρ dλν � 2λν

(
� ∩ Oμ

)
< 2ε,

and similarly,

lim sup
j→∞

∣∣III
∣∣ � lim sup

j→∞
2
∫

�

(1− ρ)|c j | dx � 2λμ

(
�\Cμ

)
< 2ε.

It follows that I → 0 as j →∞, and consequently we have proved (5.27). ��
Remark 5.10. By Lemmas 2.1 and 5.7 we find a sequence (u j ) in C∞

c (�,V) such
that ‖u j‖Wl−1,1 → 0 and for any mollifier φ j ,

φ j ∗
(
(ν· + λaν∞· )L n �

)+Bu j
Y→ (

(νx )x∈�, λaL n �, (ν∞x )x∈�a
)
,

where �a ≡ {
x ∈ � : λa(x) > 0

}
. By properties of Young measures it follows

that Bu j
∗
⇀ 0 inM (�,V) and

φ j ∗
(
λaν∞· L n �

)+Bu j → 0 in the biting sense on �.
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6. Concentration Angle Measures and Proof of Theorem 1.3

The proof relies on the notion of convex deficiency integrand that we intro-
duced and used in [32] and that we will generalize and develop further here. Let
f : V → R be a Lipschitz integrand. We then define its convex deficiency inte-
grand CD f : V → R as

CD f (z) ≡ sup

{
f (w + t z)− f (w)

t
: w ∈ V, t > 0

}
. (6.1)

Note that herebyCD f is Lipschitzwith lip(CD f ) = lip( f ) and that it is the smallest
positively 1-homogeneous integrand such that

f (w + z) � f (w)+ CD f (z) (6.2)

holds for all z, w ∈ V. It might not be immediately clear, but CD f is a convex
integrand:

Lemma 6.1. Let f : V → R be a Lipschitz integrand. Then

CD f (z) = sup

{
f ′(w) · z : f is differentiable at w ∈ V

}

holds for all z ∈ V. Thus CD f is the support function for the essential range of the
derivative f ′.

Remark 6.2. While we shall not make use of this observation here we record that
the compact convex set that CD f is support function for is the set of all Clarke
subgradients of f :
{
z′ ∈ V : z′ is a Clarke subgradient for f

} =
⋂

w∈V

{
z′ ∈ V : z′ · w � CD f (w)

}
.

Proof. Let R(z) denote the integrand on the right-hand side and put d = dimV.
Because f is assumed Lipschitz it follows by Rademacher’s theorem that f is
differentiable H d almost everywhere on V and that the essential range of the
derivative f ′ is compact.

Letw ∈ V be a point of differentiability for f . Then we have for all z ∈ V that

f ′(w) · z = lim
s↘0

f (w + sz)− f (w)

s
� CD f (z),

and so taking the supremum over all such w we arrive at R(z) � CD f (z).
For the opposite inequalitywefix z ∈ V\{0}. By Fubini’s theorem it follows that

forH d−1 almost allw′ ∈ {z}⊥, f is differentiableH 1 almost everywhere onw′+
span{z}. Nowfixw ∈ V such that f is differentiableH 1 almost everywhere onw+
span{z}. By the fundamental theorem of calculus and the assumed differentiability
we have for all t > 0,

f (w + t z)− f (w)

t
=
∫ 1

0

d

ds
f (w + st z) ds =

∫ 1

0
f ′(w + st z) · z ds.
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But the right-hand side is bounded above by R(z) and since the left-hand side is
continuous in w it follows that

f (w + t z)− f (w)

t
� R(z)

holds for all w ∈ V and t > 0, and therefore that CD f (z) � R(z). ��
The choice of terminology for CD f is explained by the following result.

Lemma 6.3. Let f : V → R be a Lipschitz integrand. Then f ∞(z) � CDF (z) for
all z ∈ V with equality when f is convex in the direction of z (or z = 0). Hence in
particular, CD f = f ∞ when f is convex.

Proof. By Lipschitz continuity,

f ∞(z) = lim sup
t→∞

f (t z)− f (0)

t
� CD f (z)

holds for all z ∈ V. It is clear that equality holds when z = 0. Next fix z �= 0 and
assume f is convex in the direction of z, that is, for each fixedw ∈ V the univariate
function t �→ f (t z + w) is convex. Hence for s > 0,

f ∞(z) = sup
t>0

f (t z + w)− f (w)

t
� f (sz + w)− f (w)

s

and so taking supremum over s > 0, w ∈ V, we arrive at f ∞(z) � CD f (z). The
last argument obviously also yields the last assertion of the lemma, namely that
CD f = f ∞ holds when f is convex. ��

We write λ = λaL n � + λs for the Radon–Nikodým decomposition of λ
with respect toL n .

Proof of Theorem 1.3. From Proposition 1.1, we have for someL n negligible set
N a ⊂ � that

F(ν̄x + λa(x)ν̄∞x ) �
∫

V

Fdνx + λa(x)
∫

SV

F∞dν∞x for x ∈ �\N a

for all quasiconvex integrands F of linear growth. Suppose we are at a point x ∈ �

of diffuse concentration meaning that t ≡ λa(x) > 0 (we work with the precise
representative of λa here). Consider for ε > 0 and ξ ∈ V the integrand

fε(z) = F(ξ + εz)− F(ξ)

ε
,

which is itself quasiconvex and f ∞ε = F∞. If ξ is a point of differentiability of F ,
then

lim
ε↘0

fε(z) = F ′(ξ) · z locally uniformly in z.
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Testing the above Jensen-type inequality with fε and passing to the limit ε ↘ 0,
we obtain by routine means

F ′(ξ) · (ν̄x + t ν̄∞x
)

�
∫

V

F ′(ξ) · zdνx (z)+ t
∫

SV

F∞dν∞x

= F ′(ξ) · ν̄x + t
∫

SV

F∞dν∞x ,

which is rearranged as F ′(ξ) · ν̄∞x � 〈F∞, ν∞x 〉M ,C. Taking the supremum over
such ξ on the left hand side, we arrive at the “Jensen” inequality

CDF (ν̄
∞
x ) �

∫

SV

F∞dν∞x for x ∈ �\N a with λa(x) > 0. (6.3)

For x ∈ �\N a with λa(x) > 0 we take z = ν̄x , ξ = λa(x)ν̄∞x in (6.1) to get for F
as above

F(ν̄x + λa(x)ν̄∞x ) � F(ν̄x )+ CDF (ν̄
∞
x )λa(x),

and in combination with (6.3) we get

F
(
ν̄x + λa(x)ν̄∞x

)
� F(ν̄x )+ λa(x)

∫

SV

F∞dν∞x . (6.4)

Clearly this inequality extends to all x ∈ �\N a by declaring that 0 times undefined
is 0. Hence we have obtained Jensen inequalities for all A -quasiconvex F of
linear growth against the Young measure

(
δν̄x , λ

aL n, ν∞x
)
. We can then employ

Lemma 5.7 and find a sequence (ψ j ) in C∞
c (�,V) such that ‖ψ j‖Wl−1,1 → 0 and

for any smooth mollifier φ j on R
n ,

φ j ∗
(
(ν̄· + λa ν̄∞· )L n �

)+Bψ j generates
(
δν̄x , λ

aL n, ν∞x
)

On the other hand, we can use Lemma 5.6 to find a sequence (ϕ j ) in C∞
c (�,V)

such that ‖ϕ j‖Wl−1,1 → 0 and

φ j ∗
(
ν̄∞· λs �

)+Bϕ j generates
(
δ0, λ

s, ν∞x
)
.

Finally, Lemma 5.8 enables us to add the two generating sequences above and
conclude the proof by setting u j = ψ j + ϕ j . ��

The above proof constitutes one direction in the following characterization of
the concentration part of an A -free Young measure.

Proposition 6.4. LetA be an operator (1.1)with constant rank (1.2) and spanning
wave cone (1.3).

Letλ ∈ M+(�)withλ(∂�) = 0and let
(
μx
)

x∈� be aλmeasurable parametrized

family of probability measures μx ∈ M+
1 (SV). Then

(
λ,μx

)
is the concentration

part of an A -free Young measure if, and only if,

(i) A
(
μ·λ

) ∈ A
(
L1(�,V)

)
, and
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(ii) for all f ∈ SQ (special A -quasiconvex integrands, defined in Section 4.2)

CD f (μx ) �
∫

SV

f ∞ dμx for λaL n almost all x ∈ �

holds,

where λ = λaL n + λs is the Lebesgue–Radon–Nikodým decomposition of λ with
respect to L n.

Proof. It remains to prove the if part of the statement. Hence assuming (i), (ii) and
putw = μ·λwe take v ∈ L1(�,V) such thatA v = −A w. Then u ≡ vL n +w ∈
M (�,V) and A u = 0. Put μ = (

δv(x), λ, μx
)
. Then μ is a Young measure with

anA -free barycenter, μ = vL n �+μ·λ = u. Next, if f ∈ SQ, then by (ii) we
have for L n almost all x ∈ � with λa(x) > 0 that

f
(
v(x)+ μxλ

a(x)
)

� f (v(x))+ CD f (μx )λ
a(x)

� f (v(x))+
∫

SV

f ∞ dμxλ
a(x).

Consequently Theorem 1.2 ensures that ν is an A -free Young measure. ��

7. Beyond the Constant Rank Condition

Our paper is concerned with the characterization of weak convergence effects
for (asymptotically) A -free sequences via Jensen inequalities with respect to A -
quasiconvex functions. Throughout, we assumed that the linear differential operator
A has constant rank. In this final section, we discuss the difficulties that emerge in
the absence of the rank condition, prove a generation statement for general operators
that follows from our method, show how it can be used to retrieve the constant rank
case, and define a large class of operators where we conjecture that our method
is sufficient for the claim of Theorem 1.2 to hold (obviously, this class contains
constant rank operators).

7.1. Sharp Differences in the non Constant Rank Case: Perturbations and
Quasiconvexity

In this section, we will highlight three important differences between the con-
stant rank and non constant rank cases. In particular, we will give an example of an
operator A for which

(1) the topology given by convergence v j ⇀ v and A v j → A v is different from
the topology given by v j ⇀ v under A v = 0;

(2) A -quasiconvexity is different if tested with compactly supported or periodic
A -free fields;

(3) the weak convergence effects for (exactly)A -free sequences cannot arise only
from a vector potential operator B.
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As can be seen by reading our paper, none of these three phenomena can occur
under the constant rank assumption.

Regarding (7.1), this has a dramatic impact on the easier implication of our
characterization result, Proposition 1.1. Most known methods to prove Jensen in-
equalities of this flavour, rely on bounds in the spirit of (4.6), which are known
to fail for non constant rank operators, cf. [22]. In fact, lower semicontinuity for
variational integrals under non constant rank constraints were only established in
a few examples, see [35,40].

Here we use the separate convexity operator from [40] to show that without
the rank condition there exist asymptoticallyA -free weak convergence effects that
cannot be achieved by exactly A -free sequences.

To showcase this, suppose we are now in the quadratic case and have

v j ⇀ v in L2(Q,V), A v j → A v in H−k(Q,W), (7.1)

where we consider only Q-periodic vector fields with zero average, Q = (0, 1)n .
We can write a formula for the L2-projections of v j on kerA , independently

of the rank assumption, using Fourier coefficients:

�̂v(ξ) ≡ �kerA (ξ)⊥ v̂(ξ) for 0 �= ξ ∈ Z
n .

In particular, since projections are uniformly bounded by 1 on Euclidean spaces,
this L2-projection is bounded as well. In particular, a continuous Helmholtz de-
composition

v j = ṽ j +�v j

with A ṽ j = 0 survives. The issue, however, is that the compensation condition is
insufficient to control the second term. It was observed in [22, Cor.] that the bound

‖�v‖L2 � c‖A v‖H−k (7.2)

cannot hold, so we can conclude that the second convergence in (7.1) is insufficient
to prove that distL2(v j − v, kerA ) → 0 in the non constant rank case. Here we
give an example to show that this convergence need not hold even considering both
conditions in (7.1).

Example 7.1. LetA (v1, v2) ≡ (∂2v
1, ∂1v

2). There exists a sequencev j ∈ L2(Q,R
2)

such that (7.1) holds with v = 0 but distL2(v j , kerA ) = 1 for all j .

To prove this, let v1j (x) ≡ exp(2π i( j, 1) · x) and v2j ≡ 0. Then clearly v1j
∗
⇀ 0 in

L∞(Q) and

A (ξ)v̂ j (ξ)

|ξ | =
(

ξ2

|ξ | v̂
1
j (ξ), 0

)
, so ‖A v j‖H−1 = 1

|( j, 1)| → 0.

On the other hand, distL2(v j , kerA ) = ‖�v j‖L2 = ‖v j‖L2 = 1. In particular, one
needs a new argument to deal with the terms (�v j ). In the known cases, this was
performed by splitting into a strongly convergent part and a part that was controlled
by directional convexity. It is very unclear how one can proceed in general or even if
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it should always be the case that (7.1) implies Jensen inequalities forA -quasiconvex
f of quadratic growth.

Another sharp difference between the constant and non constant rank cases can
be immediately identified by examining the very definition of A -quasiconvexity.
For the operator A of Example 7.1, it is easy to see that solving

A v = 0

in C∞
c (R2,R

2) yields only the trivial solution and that the periodic solutions are
of the form (v1(x1), v2(x2)). In particular, A -quasiconvexity is then equivalent
with separate convexity and it does not follow by testing with compactly supported
A -free fields. The sufficiency of testing with compactly supported A -free fields
holds true for constant rank operators by [42, Cor. 1] and we used it crucially
when constructing our generating sequence. We will further discuss the meaning
and circumstances of testing the quasiconvexity inequality solely with compactly
supported fields in the next sections; see also [24, Sect. 5] for a comparison of the
notions of compactly supported A -quasiconvexity and periodicA -quasiconvexity.
This clarifies point (7.1).

As for (7.1), we remark that an important consequence of our main results
is the following: if an operator A has constant rank, then all weak convergence
effects ofA -free sequences can be described by a vector potential operatorB. This
phenomenon was first noticed in [42, Prop. 1] and refined in different contexts in
[20,21,23]. Here we show that for operators of non constant rank, vector potentials
cannot describe the solution space:
Proposition 7.2. Let A be as in Example 7.1. Then for any vector space U there
exists no nonzero linear differential operator with constant coefficientsB (possibly
inhomogeneous) on R

2 from U to R
2 such that

{v ∈ C∞(T2,R
2) : A v = 0, v̂(0) = 0} ⊃ {Bu : u ∈ C∞

c ((0, 1)2,U)},
where (0, 1)2 is identified with T2 in an obvious way.
Proof. The functions on the left hand side are of the form (v1(x1), v2(x2)) for
vi ∈ C∞(T1), v̂i (0) = 0. We notice that these maps have a nonlocal structure in
T2, whereas the right hand side is local. Indeed, sinceB cannot be identically zero,
there must exist a map u ∈ C∞

c (Q,U) such that Bu is not zero everywhere, say
Bu(X) �= 0. Here Q ⊂ R

2 is a cube with edges parallel with the axes which we
identify with the torus. If (Bu(x))i = vi (xi ), then without loss of generality, we
can assume that (Bu(X1, x2))1 = (Bu(X))1 �= 0 for all x2. This contradicts the
fact that Bu = 0 in Q\supp (u). ��
Therefore, there are examples of non constant rank operators for which ourmethods
cannot be used. In the remainder of this section, we will focus on identifying what
we believe is the largest class where our method to prove Theorem 1.2 extends.

7.2. X-Quasiconvexity and Generation: the Proof of Proposition 1.4

Wewill now place a very general umbrella on top of our main generation result,
which includes the case of constant rank operators and other cases where our proof
is or can be useful.
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We will consider quasiconvex envelopes with respect to an abstract space X =
X (Rn), which is a linear subspace of C∞

c (Rn,V)which is assumed to be translation
and dilation invariant. We will also write X (�) ≡ {v ∈ X (Rn) : supp (v) ⊂ �}
for open sets � ⊂ R

n .
We state the following generation result, which holds if we assume appropriate

Jensen inequalities at L n almost all points.

Proposition 7.3. Let � be an open bounded subset of R
n and assume that ν =(

νx , λ, ν
∞
x

)
is a Young measure on �. Let v ∈ M (�,V) be its barycentre and let

λ = λaL n � + λs be the Lebesgue–Radon–Nikodým decomposition of λ with
respect to L n.

Suppose that
∫

V

f dνx + λa(x)
∫

SV

f ∞dν∞x � Q X f (νx + λa(x)ν∞x ) for L n � almost all x

holds for all Lipschitz integrands f : V → R, where

Q X f (z) ≡ inf

{∫

X

f (z + φ(x)) dx : φ ∈ X (X)

}
.

Then there exists a sequence (v j ) of maps in X (�) such that for any sequence of

mollifiers φ j
∗
⇀ δ0 in M (Rn) we have

(
φ j ∗

(
va �

)+ v j
)

generates (νx , λ
aL n �, (ν∞x )x∈�a ),

where �a ≡ {x ∈ � : λa(x) > 0}.
Of course, similar results can be stated for the generation of the singular part of a
Young measure, but this is not our aim; likewise for contexts of weak convergence
in Lp, p > 1.1 What we highlight here is the flexibility of our generation proof,
which very precisely links quasiconvexification formulas to generation of weak
convergence effects of sequences from very general classes.

To obtain a proof of Proposition 7.3, the reader should follow the ideas in
Section 5.2 and the proof ofLemma5.7.We remark that theHahn–Banach argument
of Proposition 5.5 only uses the invariance of the space X (Rn). The argument used
to prove Lemma 5.7 does not use any property of this space, just the homogeneous
case of Lemma 5.5 and a purely measure theoretic argument.

This is indeed the power of our main technical advancement: it easily interacts
with both functional analytic and measure theoretic arguments. The only stringent
constraint is the requirement of compact support, which is incompatible with the
operator of Example 7.1, see also the rest of the discussion in Section 7.1.

Despite this restriction, Proposition 7.3 is the backbone of the proof of The-
orem 1.2 and it is also crucial for the proof of Theorem 1.3. In particular, the
limitation of compact support is overcome for constant rank operators by using
[42], a point to which we will return later.

1 See also [20] for the implementation of our method in the case 1 < p < ∞ of constant
rank operators.
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An important example of a space X (Rn) which is new is that of A -free fields,
with arbitrary operators A as in (1.1)

X (�) = {v ∈ C∞
c (Rn,V) : A v = 0}.

In fact, one can even take homogeneous rows in A , of different homogeneities,
which preserves the dilation invariance. In this case, Proposition 7.3 reduces to
Proposition 1.4.

7.3. Sufficiency of Exactness Over Periodic Fields: the Return of Constant Rank

Of course, it may be that the class X (Rn) is very small and the generation result
of Proposition 7.3 is trivial. This is indeed the case when looking at X = kerC∞c A
for A given by Example 7.1: in this case, X = {0}. We would, of course, like to
know which is the class of operatorsA for which the weak convergence effects of
A -free sequences can be described by fields in kerC∞c A . This class is particularly
relevant in view of Malgrange’s result

kerC∞c A = imC∞c B,

which we improve in Theorem 3.4.
It seems that if we require the exact relation above to hold for periodic fields of

null average, that is,

kerC∞# A = imC∞# B, where C∞
# ≡ {v ∈ C∞(Tn) : v̂(0) = 0}, (7.3)

then we have that A -quasiconvexity can be described by fields Bu, with u ∈
C∞

c (Rn,V), similarly to [42, Cor. 1], see also [24, Sect. 5]. This explains how
taking X = kerC∞c A is sufficient to prove our main generation result, Theorem 1.2
in the case when A has constant rank. In that case, the exact relation (7.3) was
established in [42, Lem. 1].

7.4. Speculations Concerning Weak Convergence Effects via Vector Potentials

Though sufficient, the constant rank condition need not be necessary for the
exact relation (7.3). We speculate that this class contains for instance, the linear
part of the formulation of the Euler equations as a differential inclusion from [13],
for which it holds that

kerC∞ A = imC∞B.

Related facts can be found in [50]. In fact, we will finish with a speculation that the
class of operators for which the exact relation (7.3) holds, coincides with the class
of operators with (real) elliptic uncontrollable part, as introduced in [24, Thm. 1.1]
and characterized by means of algebraic geometry in [24, Cor. 4.6]. This guess is
consistent with the fact that (real) constant rank operators were shown to be part of
this class in [24, Thm. 1.1]. There is evidence that to stretch outside the class of con-
stant rank operators one may need tools of nonlinear algebra, such ascommutative
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algebra or, more generally, algebraic geometry. This hope is substantiated by the
recent advances of Sturmfels et al in [8,9,36].
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