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Abstract

We study the front of the solution to the F-KPP equation with randomized non-
linearity. Under suitable assumptions on the randomness including spatial mixing
behavior and boundedness, we show that the front of the solution lags at most
logarithmically in time behind the front of the solution of the corresponding lin-
earized equation, i.e. the parabolic Anderson model. This can be interpreted as a
partial generalization of Bramson’s findings (Bramson in Commun Pure ApplMath
31(5):531–581, 1978) for the homogeneous setting. Partially building on this result
and its derivation, we establish functional central limit theorems for the fronts of
the solutions to both equations.

1. Introduction and Main Results

1.1. The classical F-KPP equation

The F-KPP equation is the initial value problem given by

wt (t, x) = 1

2
wxx (t, x) + w(t, x)(1− w(t, x)), t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,

(1.1)

with initial conditionw0 : R → [0, 1]. Its investigation has a long history,with sem-
inal results dating back to Fisher [13] and Kolmogorov–Petrovskii–Piskunov
[24]. Their research had been motivated by pioneering works in genetics, where the
equation has been used to model a randomly mating diploid population living in a
one-dimensional habitat. Further applications can be found in chemical combustion
theory or flame propagation, see [1,12], as well as [37] and references therein.

In [24] it has been shown that for reasonably general non-linearities (see (SC) at
the beginning of Sect. 1.4 for further details) and initial conditions ofHeaviside type
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w0 = 1(−∞,0], the solution to (1.1) approaches a traveling wave g : R → [0, 1].
I.e., there exists a functionm : [0,∞) → R—generally referred to as the (position
of the) front or breakpoint—such that

w(t, · + m(t)) −→
t→∞ g uniformly.

The limit g is known (see [24, Theorems 14 and 17]) to solve the differential
equation

1

2
g′′(x) +√

2g′(x) + g(x)(1− g(x)) = 0, x ∈ R,

0 < g(x) < 1 for all x ∈ R and g(x) −→
x→∞ 0, g(x) −→

x→−∞ 1,

and it is unique up to spatial translations. In particular, in this case the first order
asymptoticsm(t)/t−→t→∞

√
2 has been derived. A couple of decades later, Bram-

son in his seminal work [8] improved this result by computing the second order cor-
rection up to additive constants. More precisely, he showed that for each ε ∈ (0, 1),
the choice m(t) = mε(t) := sup{x ∈ R : w(t, x) = ε} fulfills

m(t) = √
2t − 3

2
√
2
ln t +O(1) as t →∞. (1.2)

Later on, Bramson [7, Theorem 3 (p. 141)] extended this result to more general
initial conditions; roughly speaking, he required the initial condition w0(x) to have
a sufficiently fast exponential decay for x →∞ and to be non-vanishing for x →
−∞. One of the main tools employed in the proof was the McKean representation
of the solution to (1.1) in terms of expectations of branching Brownian motion, see
[20] and [27]. Another important ingredient was the comparison of the solution of
(1.1) to the solution of its linearized version

ut (t, x) = 1

2
uxx (t, x) + u(t, x), t > 0, x ∈ R,

u(0, x) = w0(x).
(1.3)

Indeed, since m(t) describes the front of the solution where u is small and hence
1−u ≈ 1, the heuristics is thatm(t) is in some sensewell-approximated by the front
of the solution to (1.3). More precisely, for m(t) := sup{x ∈ R : u(t, x) = ε} and
Heaviside-type initial condition w0 = 1(−∞,0], standard Gaussian computations
entail

m(t) = √
2t − 1

2
√
2
ln t +O(1). (1.4)

In combination with (1.2), this results in a respective logarithmic backlog of the
two fronts in the sense that

m(t)− m(t) = 1√
2
ln t +O(1). (1.5)

The main goal of this article is to investigate the effect of introducing a random
potential in the non-linearity of (1.1) as well as in its linearization (1.3), on the
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logarithmic backlog derived in (1.5) (cf. Theorem 1.5). Taking advantage of this
result we will also derive functional central limit theorems for the fronts of the
respective solutions to the randomized equations, see Theorem 1.4 and Corollary
1.6 below, which can be interpreted as analogues to homogeneous-case results (1.4)
and (1.2).

1.2. The randomized F-KPP equation and the parabolic Anderson model

Already in Fisher’s seminal paper [13], where he investigated the setting (1.1)
of homogeneous branching rates, it has been observed that a more realistic model
would be obtained by considering spatially heterogeneous rates of the transforma-
tion of recessive to advantageous alleles. This, alongside a mathematical interest,
is our guiding motivation to consider the setting of random ξ . Replacing the term
w(1 − w) of (1.1) by a more general non-linearity F(w) fulfilling suitable stan-
dard conditions (see (SC) below), and overriding the notation u and w from the
homogeneous setting of the previous section, we then arrive at the equation

wt = 1

2
wxx + ξ(x, ω) · F(w), t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,

(F-KPP)

as well as its linearized version, the parabolic Anderson model

ut = 1

2
uxx + ξ(x, ω) · u, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(PAM)

Here, the stochastic process ξ : R × � → (0,∞) models the random medium;
most of the time we will keep the dependence on � implicit, and write ξ instead
of ξ(·, ω) as is common in probability theory. For the case F(w) = w(1 − w)

and degenerate ξ ≡ 1, these two equations yield the special cases (1.1) and (1.3),
respectively. It has long been known, see e.g. Freidlin [14, Theorem 7.6.1], that
under suitable assumptions there exists v0 > 0, such that the solution w(t, x) to
(F-KPP) converges to 0 (resp. 1), uniformly for all x � vt with v > v0 (resp. for
all x � vt with v < v0), as t tends to infinity. In a similar way, this result can be
shown to hold for the solution to (PAM) with the same v0 as well, showing that the
speeds or velocities of both fronts, the one of the solution to (F-KPP) as well as the
one of the solution to (PAM), coincide. Consequently, as in the homogeneous case,
the question of second order corrections arises naturally.

1.3. Summary of results

In order to address this question and to be able to summarize our results, we
introduce some notation. Let ε ∈ (0, 1) and a > 0. Furthermore,write u = uξ,u0 for
the solution to (PAM) with initial condition u0, and w = wξ,F,w0 for the solution
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to (F-KPP) with initial condition w0. As in the previous section, the fronts of the
respective solutions, denoted by

mξ,u0,a(t) := sup
{
x ∈ R : u(t, x) � a

}
,

mξ,F,w0,ε(t) := sup
{
x ∈ R : w(t, x) � ε

}
,

(1.6)

are of special interest. Since we will from now on focus on the heterogeneous
setting, we override the notation from Sect. 1.1, where it was used to denote the
fronts in the homogeneous case, and define

m(t) := ma(t) := mξ,1(−∞,0],a(t),

m(t) := mε(t) := mξ,F,1(−∞,0],ε(t).
(1.7)

Our findings are motivated by the respective results of (1.4), (1.2), and (1.5) for
the homogeneous case, which provide information about the position of the fronts
of the solutions to the respective equations, and thus their respective backlog as
well. Under suitable assumptions, our results can be summarized verbally in the
following two statements:

(a) There exist a constant C ∈ (0,∞) and a P-a.s. finite random time T (ω) such
that for all t � T (ω),

m(t)− m(t) � C ln t; (1.8)

see Theorem 1.5 below.
(b) After centering and diffusive rescaling, the stochastic processes [0,∞) 	 t →

m(t) and [0,∞) 	 t → m(t) satisfy invariance principles; see Theorem 1.4
and Corollary 1.6 below.

As is shown in the companion article [10, Theorems 2.3 and 2.4], in a certain
sense there is a logarithmic lower bound for m(t)−m(t) corresponding to (1.8) as
well; cf. also Sect. 1.7 below for further discussion.

1.4. Further notation

In order to be able to precisely formulate the previously summarized results,
we have to introduce some further notation. We start with introducing the standard
conditions for the non-linearity, i.e., F in (F-KPP) has to fulfill the following:

F ∈ C1([0, 1]), F(0) = F(1) = 0, F(w) > 0 ∀w ∈ (0, 1),

F ′(0) = 1 = sup
w>0

F(w)w−1, F ′(1) < 0, lim sup
w↓0

1− F ′(w)

w
< ∞; (SC)

see Fig. 1 for an illustration. Note that the last condition in (SC) is essentially
a C1,1-condition on F at 0. Among others, the conditions in (SC) are used to
employ a sandwiching argument for being able to deduce the desired result (1.8)
not only for non-linearities F which have the form of a probability generating
function, see (PROB) below, but also for all F fulfilling (SC). The sandwiching
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Fig. 1. Sketches of functions fulfilling (SC), all of which are dominated by the identity
function

argument is inspired by the proof of [8, Theorem 2], where the author investigates
the homogeneous case ξ ≡ const.

We will now specify the classes of initial conditions under consideration for
both, (F-KPP) and (PAM). For this purpose, we fix δ′ ∈ (0, 1) and C ′ > 1, and
require an initial condition u0 of (PAM) to fulfill

δ′1[−δ′,0] � u0 � C ′1(−∞,0]. (PAM-INI)

Our results also hold for initial conditions that decay sufficiently fast at infinity
and grow towards minus infinity with sufficiently small exponential rate; i.e., the
condition (PAM-INI) can be relaxed to

δ′1[−δ′,0](x) � u0(x) � C ′1(−∞,0] ∨ C ′(e−Cx ∧ e−x/C ) ∀x ∈ R,

where C ∈ (0,∞) is a large enough constant. However, in order to avoid further
technical complications we stick to the above set of initial conditions.

In addition, let us introduce a tail condition for the initial condition of (F-KPP),
which is the same as the one for the case ξ ≡ 1 stated in [7, (1.17)]. For this purpose,
we fix N , N ′ > 0, and require w0 as in (F-KPP) to fulfill

0 � w0 � 1(−∞,0] and
∫

[x−N ,x]
w0(y)dy � δ′ ∀x � −N ′. (KPP-INI)

Denote by S1 the class of functions f : R → [0,∞) which are pointwise limits of
increasing sequences of continuous functions, and let

IPAM := {
u0 ∈ S1 : u0 fulfills (PAM-INI)

}
, IF-KPP :=

{
w0 ∈ S1 : w0 fulfills (KPP-INI)

}
,

which will be the classes of initial conditions under consideration. An emblematic
example which is contained in both, IF-KPP and IPAM, is the function 1(−∞,0] of
Heaviside type.
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Wewill assume ξ = (ξ(x))x∈R to be a stochastic process on a probability space
(�,F ,P) having locally Hölder continuous paths, i.e., there exists α = α(ξ) > 0
such that for every interval I ⊂ R there exists C = C(ξ, I ) > 0, such that

|ξ(x) − ξ(y)| � C |x − y|α ∀x, y ∈ I, (HÖL)

and such that the following conditions are fulfilled:

• ξ is uniformly bounded away from 0 and ∞, i.e., there exist constants 0 <

ei � es < ∞ such that P-a.s.,

ei � ξ(x) � es for all x ∈ R; (BDD)

• ξ is stationary, i.e. for every h ∈ R we have

(ξ(x))x∈R
d= (ξ(x + h))x∈R; (STAT)

• ξ fulfills aψ-mixing condition: LetFx := σ(ξ(z) : z � x) andF y := σ(ξ(z) :
z � y), x, y ∈ R and assume that there is a continuous, non-increasing function
ψ : [0,∞) → [0,∞), such that for all j, k ∈ Z with j � k as well as
X ∈ L1(�,F j ,P) and Y ∈ L1(�,Fk,P) we have

∣∣E
[
X − E[X ] |Fk]∣∣ � E[|X |] · ψ(k − j), (MIX)

∣∣E
[
Y − E[Y ] |F j

]∣∣ � E[|Y |] · ψ(k − j),
∞∑

k=1

ψ(k) < ∞.

Note that (MIX) implies the ergodicity of ξ with respect to the shift operator
θy acting via ξ(·) ◦ θy = ξ(· + y), y ∈ R.

Summarizing, we arrive at the following standing assumptions:

We will assume conditions (HÖL), (BDD), (STAT) and (MIX)

to be fulfilled from now on, if not explicitly mentioned otherwise.
(Standing assumptions)

We will provide here two prototypical examples for a suitable potential ξ sat-
isfying the conditions of (Standing assumptions).

Example 1.1. (a) The Ornstein–Uhlenbeck process (Yx ), x ∈ R, is an important
stochastic process, which has all the nice properties of being stationary, Marko-
vian, and Gaussian. It can be written as

Yx = e−x Be2x , for x ∈ R, where (Bt ), t ∈ [0,∞), is a Brownian motion; (1.9)

see Fig. 2 for a realization. For 0 < ε < M < ∞we now consider the potential
ξ(x) = (ε ∨ Yx ) ∧ M, x ∈ R, and note that it satisfies (BDD) by definition.
It furthermore fulfills (STAT), since the process (Yx ), x ∈ R, is stationary. We
also note that for any γ ∈ (0, 1/2) the local γ -Hölder continuity of (Yx ) follows
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Fig. 2. Realization of the potential ξ(x) = (ε ∨ Yx ) ∧ M with (Yx ), x ∈ R, an Ornstein–
Uhlenbeck process and the choices ε = 0.25 and M = 1.75

from (1.9) in combination with the respective Hölder continuity of Brownian
motion (see [28, Corollary 1.20]); hence, (HÖL) holds true. Property (MIX) is
somewhat harder to establish. One can for instance do so by taking advantage
of the fact that the Ornstein–Uhlenbeck process can also be characterized as
the solution to the stochastic differential equation

dYx = −Yx dx +
√
2 dBx , (1.10)

and then use the fact that the Ornstein–Uhlenbeck process started from a single
point converges to its stationary distribution sufficiently fast (cf. [21, Example
6.8]) as well as the Markov property of the process. The details of the proof are
slightly technical and omitted at this point. See [21,28] for further details on
the Ornstein–Uhlenbeck process.

(b) This example is instructive in the sense that not only does it fulfill these con-
ditions, but at the same time it serves as an example in [10] to demonstrate
that the transition front of the solution to (F-KPP) can grow logarithmically
in time along subsequences in case es

ei > 2; see [10] for further details. We
choose 0 < ei < es < ∞ and let χ : [0,∞) → [0, 1] be a continuous
non-increasing function with χ(x) = 1 for x � 1 and χ(x) = 0 for x � 2, Fur-
thermore, let ω = (ωi )i∈Z be a Poisson point process on R with homogeneous
intensity one. We then define

ξ(x) := ei+ (es− ei) · sup{χ(|x − ωi |) : i ∈ Z}.

Observe that by construction the potential ξ satisfies (HÖL). Furthermore,
ξ(x) ∈ [ei,es] for all x ∈ R, ξ(x) = ei if |x − ωi | > 2 for all i , and
ξ(x) = es if there exists ωi such that |x − ωi | � 1. Also, using the properties
of the Poisson point process, it is not hard to show that ξ fulfills (BDD), (STAT)
and (MIX). See Fig. 3 for an illustration of this potential, which highlights the
fact that the potential has logarithmically in time long stretches where it equals
ei that are adjacent to comparably long stretches where it equals es; cf. [10,
Lemma 5.3] for precise statements.



884 Alexander Drewitz & Lars Schmitz

Fig. 3. Realization of a potential ξ (top red line) emanating as described from a Poisson point
process. This realization exhibits the appearance of long stretches of connected components
in space where it takes the values ei and es, respectively

Since we allow for non-smooth initial conditions in both equations, (F-KPP)
and (PAM), we shortly comment on the notion of solution in this setting. We call
a function w to (F-KPP) a generalized solution to (F-KPP), if it satisfies

w(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs)F(w(t − s, Bs))/w(t − s, Bs)ds

}
w0(Bt )

]
,

∀ (t, x) ∈ [0,∞) × R, (1.11)

where Ex is the corresponding expectation of the probability measure Px , under
which (Bt )t�0 is a standard Brownian motion starting in x ∈ R. This equation can
be interpreted as amild formulationof (F-KPP) andone can show (see e.g. [14, (1.4),
p. 354, and (a), p. 355]) that every classical solution to (F-KPP) also is a generalized
one. Generalized solutions can be shown to exist under weak assumptions, and,
vice versa, in many instances they turn out to be classical solutions indeed, see
Proposition A.9 in Appendix A.

Remark 1.2. Auseful observation is that for initial conditions inIF-KPP, generalized
solutions can be approximated by classical solutions. That is, if (w(n)

0 )n∈N ⊂ IF-KPP
is a sequence of continuous functions which increase pointwise to w0, then by
Corollary A.11 the corresponding sequence of (by Proposition A.9 classical) solu-

tions (w(n))n∈N = (ww
(n)
0 )n∈N to (F-KPP) is also monotone and thus the limit

w(t, x) := limn→∞ w(n)(t, x) exists for all (t, x) ∈ [0,∞) × R. Dominated con-
vergence and the fact that w(n) also is a generalized solution then imply

w(t, x) = lim
n→∞w(n)(t, x) = lim

n→∞ Ex

[

exp

{∫ t

0
ξ(Bs)

F(w(n)(t − s, Bs))

w(n)(t − s, Bs)
ds

}

w
(n)
0 (Bt )

]

= Ex

[
exp

{∫ t

0
ξ(Bs)

F(w(t − s, Bs))

w(t − s, Bs)
ds

}
w0(Bt )

]
.

I.e., w is the generalized solution to (F-KPP) with initial condition w0.

A similar concept can be introduced for the solution to (PAM) as well. That is,
for u0 ∈ IPAM, we call a function

u(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs)ds

}
u0(Bt )

]
, (1.12)

a generalized solution to (PAM). Note that this is an explicit expression of the
solution in terms of a Brownian path, while in (1.11) the solution is only given
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implicitly. Furthermore, if u0 is continuous, then by [21, Remark 4.4.4], there exists
a unique solution u to (PAM)which fulfills u ∈ C1,2((0,∞)×R) and u(0, ·) = u0.
As a consequence of these observations, in the following, we will always consider
generalized solutions.

1.5. The linearized equation

As already mentioned in the first section, we expect that investigating the solu-
tion to (PAM) might also provide some insight into the solution to (F-KPP). There-
fore, starting with the first order of the front as a function of time, it turns out useful
to consider the so-called Lyapunov exponent

(v) := lim
t→∞

1

t
ln u(t, vt). (1.13)

Due to Proposition A.3, the Lyapunov exponent exists P-a.s. for all v ∈ R, is non-
random, and—as a consequence of Corollary 3.10—does not depend on the initial
condition in IPAM under consideration. Furthermore, the function [0,∞) 	 v �→
(v) is concave, tends to −∞ as v → ∞ and (0) = es, where es is defined
in (BDD). (v) describes the asymptotic exponential growth of the solution in the
linear regime with speed v. By Proposition A.3, there exists a unique v0 > 0 such
that

(v0) = 0,

which we will call velocity or speed of the solution to (PAM). Using the properties
of the Lyapunov exponent, we immediately infer the first order asymptotics for m
to P-a.s. satisfy

m(t)

t
−→
t→∞ v0. (1.14)

It will turn out that our methods work if we require v0 to be strictly larger than
some “critical” value vc, defined in Lemma 2.4 (d). Roughly speaking, the condition
v > vc allows for the application of change-of-measure techniques; more precisely,
it allows us to find a suitable additive tilting parameter in the exponent of the
Feynman–Kac representation (1.12), which depends on v and makes the solution
u(t, x) to (PAM) amenable to the investigation by standard tools for values x ≈ vt
and large t . Hence, we will work under the assumption

v0 > vc (VEL)

from now on. As will be shown in Sect. 4.4, this assumption is fulfilled for a rich
class of potentials ξ.

We start with investigating the fluctuations of the function t �→ ln u(t, vt)
around t(v) for values v in a neighborhood of v0, which are interesting in their
own right. To this end, on the spaceC([0,∞)) of continuous functions from [0,∞)

to R, we define the metric

ρ( f, g) :=
∞∑

j=1

2− j ‖ f − g‖ j

1+ ‖ f − g‖ j
, f, g ∈ C([0,∞)), (1.15)
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where we write ‖ f − g‖ j := supx∈[0, j] | f (x)− g(x)|. This makes (C([0,∞)), ρ)

a complete separable metric space.

Theorem 1.3. Let (VEL) be fulfilled, u0 ∈ IPAM, and u = uξ,u0 be the corre-
sponding solution to (PAM). Furthermore, let V ⊂ (vc,∞) be a compact interval
such that v0 ∈ int(V ). Then for each v ∈ V , as n → ∞ the sequence of random
variables (nv)−1/2

(
ln u(n, vn) − n(v)

)
, n ∈ N, converges in P-distribution to

a centered Gaussian random variable with variance σ 2
v ∈ [0,∞), where σ 2

v is
defined in (3.1). If σ 2

v > 0, the sequence of processes

[0,∞) 	 t �→ 1
√
nvσ 2

v

(
ln u(nt, vnt) − nt(v)

)
, n ∈ N,

converges as n → ∞ in P-distribution to a standard Brownian motion in the sense
of weak convergence of measures on C([0,∞)) endowed with the metric ρ from
(1.15).

Note that in the above one should replace [0,∞) by (0,∞) for u0 such that [0,∞) 	
t �→ u(t, vt) is not continuous in 0 (the latter might e.g. be the case for u0 of
Heaviside type). In combination with perturbation estimates for u, we will use
this result in order to infer an invariance principle for the front of the solution to
(PAM). Note that since the function t �→ mt may be discontinuous, we consider
convergence in the Skorohod space D([0,∞)) in the following result; details on
the latter can for example be found in [11].

Theorem 1.4. Let (VEL) be fulfilled, u0 ∈ IPAM and a > 0. Then for n → ∞,

the sequence n−1/2
(
mξ,u0,a(n) − v0n

)
, n ∈ N, converges in P-distribution to a

centered Gaussian random variable with variance σ̃ 2
v0

∈ [0,∞), where σ̃ 2
v0

is
defined in (3.58). If σ̃ 2

v0
> 0, the sequence of processes

[0,∞) 	 t �→ mξ,u0,a(nt) − v0nt√
nσ̃ 2

v0

, n ∈ N,

converges as n → ∞ in P-distribution to a standard Brownian motion in the
Skorohod space D([0,∞)).

We underline that in the above theorems the case σ 2
v = 0 (resp. σ̃ 2

v0
= 0) is

allowed and leads to a degenerate limit of the corresponding sequences. This can
be excluded, e.g. if the finite-dimensional projections of the stochastic process
ξ = (ξ(x))x∈R are associated (see e.g. [32] or [31] for definitions and results). In
this case the covariances in (3.1) are nonnegative and σ 2

v > 0 follows. Nolen [29,
Proposition 2.1] provides an example of a potential, which is generated by an i.i.d.
sequence of random variables and thus associated.
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1.6. The non-linear equation

Coming back to the original equation of interest, it is natural to ask whether
we can obtain results for (F-KPP), which are in some sense counterparts to those
derived in latter section for (PAM). For the solution to (F-KPP) it is known (see e.g.
[14, §7.6]) that the first order of the position of the front is linear as well and moves
with the same velocity as the front of (PAM). Indeed, by Freidlin [14, Theorem
7.6.1] we have that P-a.s.,

m(t)

t
−→
t→∞ v0.

As mentioned in Sect. 1.2, the next result, which is one of the main results of the
paper, states that there is an at most logarithmic distance of the fronts of (F-KPP)
and (PAM).

Theorem 1.5. Let (VEL) be fulfilled. Then for each F fulfilling (SC) there exists a
constant C1 > 0 such that the following holds: For all a > 0, ε ∈ (0, 1), u0 ∈ IPAM
andw0 ∈ IF-KPP, there exists a non-random C = C(ε, a, u0, w0) > 0 and a P-a.s.
finite random time T = T (ξ, ε, a, u0, w0) � 0, such that

−C � mξ,u0,a(t)− mξ,F,w0,ε(t) � C1 ln t + C ∀t � T . (1.16)

Moreover for w0 = u0 and a � ε, the left inequality in (1.16) can be replaced by
0 � mξ,u0,a(t)− mξ,F,w0,ε(t) for all t � 0.

Furthermore, combining Theorems 1.4 and 1.5, we can deduce an invariance
principle for the front of (F-KPP) as well.

Corollary 1.6. Let (VEL) be fulfilled as well as F fulfill (SC), w0 ∈ IF-KPP and
ε ∈ (0, 1). Then as n → ∞, the sequence n−1/2

(
mξ,F,w0,ε(n) − v0n

)
, n ∈ N,

converges in P-distribution to a centered Gaussian random variable with variance
σ̃ 2

v0
∈ [0,∞), where σ̃ 2

v0
is defined in (3.58). If σ̃ 2

v0
> 0, the sequence of processes

[0,∞) 	 t �→ mξ,F,w0,ε(nt) − v0nt√
nσ̃ 2

v0

, n ∈ N,

converges as n → ∞ in P-distribution to a standard Brownian motion in the
Skorohod space D([0,∞)).

1.7. Discussion and previous results

As already alluded to above, in the homogeneous case (1.1) of constant potential
the front has been well-understood by now. This is indeed the case to a much
wider extent than illustrated in the Introduction, see e.g. [6] and references therein
for further details. Also the heterogeneous setting (F-KPP) of random potential
and the properties of its solution have been investigated. Specifically, under fairly
general assumptions, the existence and characterization of the propagation speed
(i.e., the linear order limt→∞m(t)/t of the position of the front) have been derived
by Freidlin and Gärtner, see e.g. [15] as well as [14, Chapter VII], using large
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deviation principles. Incidentally, the Feynman–Kac formula (see Proposition 2.3
below), which characterizes the solution to the linearization (PAM), has also played
an important role in the derivation.

Second order corrections for the position have been investigated by Nolen
[29]. Also making the detour along (PAM), he examines (F-KPP) for a potential ξ
under similar assumptions, but requires the (random) initial conditions to satisfy

C1(ξ)gξ,γ (x) � w0(x, ξ) � C2(ξ)gξ,γ (x) ∀ x > 0. (1.17)

Here, C1(ξ) and C2(ξ) are positive random variables, and g = gξ,γ is a solution to

g′′(x) + (ξ(x) − γ )g(x) = 0, x > 0,

for γ > γ , for a certain γ > 0. For technical reasons, he additionally requires
γ < γ ∗, i.e., the initial conditionw0(x)must not decay too fast as x tends to infinity.
The technical assumption (1.17) thus entails being in the supercritical regimewhich
corresponds to waves that move faster than the minimal speed. As his main result,
Nolen obtains a (functional) central limit theorem form(t) in this case also, see [29,
Theorem 1.4]. In this lingo, our set of initial conditions corresponds to the critical
regime, and Corollary 1.6 (for the critical regime) also suggests that the randomness
in Nolen’s central limit theorem is already coming from the environment, and does
not necessarily require the randomness of the initial condition.

Furthermore, in [30] a corresponding invariance principle for the front has
been derived in the case where the non-linearity in (F-KPP) is either ignition type
or bistable.

In [18], on the other hand, for the case of periodic instead of random ξ, the
authors have investigated the respective logarithmic correction, corresponding to
(1.2) in the homogeneous setting; here, the authors have been able to characterize
the constant in front of the logarithmic correction as a certain minimizer.

In ourmainTheorem1.5,we establish a corresponding logarithmic upper bound
for the difference (1.5), also in the setting of a random environment. However, our
methods are currently too coarse for identifying a sharp prefactor. Nevertheless,
it is a natural question whether the logarithmic upper bound we derive captures
the correct order at least. And indeed, in some sense, a partial positive answer to
this questions is provided in the companion article [10]. There, the authors show
that there exist an increasing sequence (tn) of times with tn ∈ (0,∞) such that

limn→∞ tn = ∞ and a sequence (xn) of reals such that m
1
2 (tn)− xn � c ln tn such

that for all n ∈ N one has

w(tn, xn) <
1

2
and (by definition) u(tn,m

1
2 (tn)) = 1

2
; (1.18)

see the discussion around [10, (2.11)] for further details.
As explained above, there is a profound connection between the PDEs we con-

sider and branching Brownian motion, which is more involved than in the setting
of constant ξ. Indeed, related results for branching random walk in random envi-
ronment (BRWRE) have been recently derived in [9]. In this source the authors
analyze the distribution of the maximal particle of a branching random walk in
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random environment, which itself is closely related to a discrete-space version of
(F-KPP). In particular, a corresponding logarithmic upper bound on the distance of
the expected position of the maximal particle and the median of the distribution of
the maximal particle is given. Furthermore, an invariance principle for the median
of the position of the maximal particle of BRWRE is derived. It is therefore no
surprise that, on the one hand, principal techniques we employ in this paper are
generalizations and adaptations of respective discrete space analogues from [9].
On the other hand, we work under weaker independence assumptions and softer
requirements on the non-linearity which we only require to be contained in (SC).

Recall that directly before Theorem 1.3 we have introduced our assumption
(VEL), which reads v0 > vc; from a technical point of view, this will be necessary
for our change of measure argument to work. It is not hard to show that for a rich
class of potentials, this condition is satisfied indeed, cf. Sect. 4.4. What is more,
however, in Proposition 4.10 below we also obtain a more profound understand-
ing of the scope of the methods employed. I.e., there exist potentials ξ fulfilling
(Standing assumptions), but such that v0 < vc holds true. Therefore, it remains
an open and interesting question to understand the behavior of the solutions to the
above partial differential equations in case condition (VEL) is not fulfilled.

1.8. Strategy of the proof

Our proofs will be essentially based on techniques from probability theory. One
of the principal tools for our investigations is given by the probabilistic represen-
tation of solutions to the partial differential equations (PAM) and (F-KPP) through
branching Brownian motion in the random (branching) environment ξ ; the details
will be discussed in Sect. 2.1. Further key roles in the proofs of Theorems 1.3 and
1.4 are played by the tilting of probability measures, concentration estimates, as
well as perturbation estimates for the solution to (PAM). In the proof of Theorem
1.5 in particular, a modified second moment method will be fundamental. We now
provide some further details on the proofs of the main results.

Proof of Theorem 1.3 Considering the initial condition u0 = 1(−∞,0] for the
sake of exposition, the Feynman–Kac formula (1.12) supplies us with

u(t, vt) = Evt

[
exp

{∫ t

0
ξ(Bs)ds

}
1(−∞,0](Bt )

]
, (1.19)

where v > 0 stands for velocity. While in probabilistic terms, this expression
can be interpreted as the expected number of particles of a branching Brownian
motion—starting in vt and with branching rate ξ—to the left of the origin at time
t , we will, after normalization, rather interpret it as a Brownian motion in the
random potential ξ. In this vein, if v > vc, then the expectation in (1.19) can be
investigated by a random change of measure which depends on the potential ξ , cf.
Sect. 2.2, in particular Lemma 2.4. Under this perturbed probability measure, the
typical behavior of the Brownian motion in the random potential ξ (which then has
a drift towards the left) started in vt is to arrive in 0 approximately at time t. Since
furthermore the first hitting time of the origin by this Brownian motion is in fact
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concentrated around t (the respective results can be found in Sect. 3.2), one can
take advantage of a resulting renewal structure via independent—but not identically
distributed—random variables, which is formulated in terms of empirical Legendre
transforms. For a suitably centered and rescaled version of these, one can then show
a functional central limit theorem by the use of martingale methods, see Proposition
3.1. Again using Proposition 3.5, one can then infer the desired functional central
limit theorem stated in Theorem 1.3; the details are implemented in Sect. 3.3.

Proof of Theorem 1.4 The proof of this result boils down to understanding the
behavior of the position of the front m(t) of the solution to (PAM) in dependence
on the time t. As already observed in (1.14), to first order it is not hard to observe
that the position of the front of the wave is given by v0t. Hence, the challenge is
to establish the normally distributed second order correction (in functional form).
For the purpose of the proof, we can take advantage of the understanding obtained
along the proof of Theorem 1.3. More precisely, using perturbation estimates for
the solution to (PAM) in time and space which are derived in Sects. 3.4 and 3.5,
the functional central limit theorem for the suitably centered and rescaled version
of the sequence [0,∞) 	 t �→ ln u(nt, vnt), n ∈ N, obtained in Theorem 1.3 can
be transferred to the functional central limit theorem for the suitably centered and
rescaled version of [0,∞) 	 t �→ m(nt), n ∈ N, which is the content of Theorem
1.4; see Sect. 3.7 for further details.

Proof of Theorem 1.5 A key difficulty in the proofs stems from the fact that
the accuracy up to which we want to understand the behavior of the solutions is
logarithmic in time, and hence much smaller than the typical fluctuations of the
fronts of the solutions to (PAM) and (F-KPP).

In probabilistic terms, the solution w(t, x) of (F-KPP) with initial condition
w(0, ·) = 1(−∞,0] corresponds to the probability that the leftmost particle of the
branching Brownian motion in the random environment ξ is to the left of the origin
at time t . As a consequence, proving that the implications of Theorem 1.5 are
fulfilled therefore amounts to showing that if one starts at most logarithmically to
the left ofm(t), the probability of actually seeing a particle to the left of or equal to
the origin at time t, is bounded frombelow by ε. In order to do so, we take advantage
of a second moment method, see (4.3), to obtain a lower bound on the probability
to observe a particle in the branching Brownian motion in the random environment
ξ to the left of the origin at time t.As in the homogeneous setting, such an approach
is set to fail when considering all particles in the process; indeed, in this case the
second moments would be prohibitively large in comparison to the square of the
first moment. Hence, one has to restrict to so-called “leading particles” known from
branching Brownian motion in homogeneous branching potential. This notion has
to be adapted here in a careful manner so as to cater for the necessities of our
random branching potential ξ. As in the homogeneous case, the remaining steps
then boil down to finding good upper bounds for the second moment of leading
particles (see Lemma 4.4 in Sect. 4.2) as well as a good lower bound on the first
moment of leading particles, cf. Lemma 4.1 in Sect. 4.1; the latter is the harder part



Invariance principles and Log-distance of F-KPP fronts in a random medium 891

in our context. These findings then constitute the main steps in proving Theorem
1.5, the implementation of which is found in Sect. 4.3.

1.9. Notational conventions

We will frequently use sums of real-indexed quantities Ax , x ∈ R. In this case,
we write

x∑

i=1

Ai :=
�x�∑

i=1

Ai + Ax , x ∈ [0,∞)\N0,

where
∑0

i=1 := 0. This notion remains consistent if we also allow for additive
constants b ∈ R, i.e.

x∑

i=1

(Ai + b) =
�x�∑

i=1

Ai + Ax + bx, x ∈ [0,∞).

Finally, we set

y∑

i=x+1

Ai :=
{∑y

i=1 Ai −∑x
i=1 Ai , x � y,

∑x
i=1 Ai −∑y

i=1 Ai , x > y,
x, y ∈ [0,∞).

A prime example is the quantity Ax = ln Ex
[
e
∫ H�x�−1
0 (ξ(Bs )−es)ds

]
, where Hy :=

inf{t � 0 : Bt = y}. Indeed, by the strong Markov property we have

ln Ex
[
e
∫ H0
0 (ξ(Bs )−es)ds

] =∑�x�
i=1 Ai + Ax for all x ∈ [0,∞) \ N0.

Furthermore, we will often use positive finite constants c1, c2, . . . in the proofs.
This numbering is consistent within any of the proofs, and it is reset after each proof.
On the other hand,C1,C2, . . .will be used to denote positive finite constants that are
fixed throughout the article, and they will oftentimes depend on each other. Other
constants like c,C, ε, δ etc. in the proofs are used to compare certain quantities and
are also reset after each proof.

The structure of this article is as follows. In Sect. 2 we will introduce vari-
ous tools which play a seminal role in our investigations. In particular, these com-
prise the connections between the partial differential equations under consideration
and branching processes, change of measure techniques, as well as concentration
inequalities. Taking advantage of these results and further exact large deviation
estimates, Sect. 3 first leads to a proof of Theorem 1.3. After developing perturba-
tion results in space and time for the solution to (PAM), Theorem 1.3 will play a
crucial role for the proof of Theorem 1.4 as well. The main goal of Sect. 4 then is
to show Theorem 1.5, i.e., that the front of the solution to the non-linear equation
(F-KPP) lags at most logarithmically in time behind the front of the solution to the
linear equation (PAM).
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2. Some Technical Tools

In this section we will introduce some further tools that will be helpful in the
proof of the main results.

2.1. Connection to branching processes

We define a branching Brownian motion in random environment (BBMRE) as
follows: Conditionally on the realization of ξ and for fixed x ∈ R, consider an
initial particle starting at a point x and moving as a standard Brownian motion
(Bt )t�0 on R. While at site y, the particle dies at rate ξ(y). More precisely, for an
exponentially distributed random variable S with parameter one, independent of
everything else, the first particle dies at time inf

{
t � 0 : S <

∫ t
0 ξ(Bs)ds

}
. When

the initial particle dies, it gives birth to k new particles with probability pk , k ∈ N

[see (PROB) below for the precise assumptions on the pk]. The new particle(s)
start their evolution at the site where their parent particle had died, and they evolve
independently of everything else and according to the same stochastic behavior as
their parent. Note that on the one hand we assume p0 = 0, so genealogies do not
die out at any finite time. On the other hand, we allow p1 > 0, i.e., it is possible to
die and give birth to one descendant. This implies that a particle at site y branches
into more than one particle with rate ξ(y)(1 − p1). We denote the corresponding
probability measure by Pξ

x and write Eξ
x for the respective expectation. By N (t)

we denote the set of particles alive at time t . For ν ∈ N (t) we let (Xν
s )s∈[0,t] be

the spatial trajectory of the genealogy of ancestral particles of ν up to time t . For a
Borel set A ⊂ R and y ∈ R we define

N (t, A) := {
ν ∈ N (t) : Xν

t ∈ A
}

and N�(t, y) := |N (t, (−∞, y])|, (2.1)

i.e., the set of particles which are in A at time t , and the number of particles to the
left of y at time t.

Let us now introduce a set of functions, formulated in terms of the probability
generating function of the sequence (pk)k∈N as above. More precisely, assume
(pk)k∈N and F = F (pk )k∈N to fulfill

pk ∈ [0, 1] ∀k ∈ N,

∞∑

k=1

pk = 1,
∞∑

k=1

kpk = 2, m2 :=
∞∑

k=1

k2 pk < ∞;
(PROB)

F(u) = 1− u −
∞∑

k=1

pk(1− u)k, u ∈ [0, 1].

Note that such F always fulfills (SC), is smooth and strictly concave on (0, 1). Note
that the assumption

∑∞
k=1 kpk = 2. A fundamental result is the connection of the

solution to (F-KPP) and the expected number of particles of the branching process.
This is sometimes referred to as the McKean representation. The respective result
in the homogeneous setting can be found in [20] as well as [27].
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Proposition 2.1. Let w0 ∈ IF-KPP, ξ satisfy (HÖL), and F fulfill (PROB). Then
P-a.s. the solution to (F-KPP) is given by

w(t, x) = 1− Eξ
x

⎡

⎣
∏

ν∈N (t)

(
1− w0

(
Xν
t

))
⎤

⎦ , (t, x) ∈ [0,∞) × R. (McKean)

For the proof see Sect. A.5.

Remark 2.2. We will frequently use the application of the latter result to functions
w0 = 1(−∞,0], resulting in

w(t, x) = 1− Eξ
x

⎡

⎣
∏

ν∈N (t)

1(0,∞)

(
Xν
t

)
⎤

⎦ = 1− Pξ
x

(
Xν
t > 0 ∀ν ∈ N (t)

) = Pξ
x

(
N�(t, 0) � 1

)
.

Furthermore, we will need the so-called many-to-few lemma, which breaks
down the moments of the branching process to a functional of the Brownian paths.
For our purposes, it suffices to state it up to second moments (many-to-one and
many-to-two formula).

Proposition 2.3. Let (pk)k∈N fulfill (PROB) and let ϕ1, ϕ2 : [0,∞) → [−∞,∞]
be càdlàg functions satisfying ϕ1 � ϕ2. Then the first and second moments of the
number of particles in N (t) whose genealogy stays between ϕ1 and ϕ2 in the time
interval [0, t] are given by

Eξ
x

[∣∣ν ∈ N (t) : ϕ1(s) � Xν
s � ϕ2(s) ∀s ∈ [0, t]∣∣

]
(FK-1)

= Ex

[
exp

{ ∫ t

0
ξ(Br )dr

}
;ϕ1(s) � Bs � ϕ2(s) ∀s ∈ [0, t]

]

and

Eξ
x

[∣∣ν ∈ N (t) : ϕ1(s) � Xν
s � ϕ2(s) ∀s ∈ [0, t]∣∣2

]
(FK-2)

= Ex

[
exp

{ ∫ t

0
ξ(Br )dr

}
;ϕ1(s) � Bs � ϕ2(s) ∀s ∈ [0, t]

]

+ (m2 − 2)
∫ t

0
Ex

[
exp

{ ∫ s

0
ξ(Br )dr

}
ξ(Bs)1{ϕ1(r)�Br�ϕ2(r) ∀0�r�s}

×
(
Ey

[
exp

{ ∫ t−s

0
ξ(Br )dr

}
1{ϕ1(r+s)�Br�ϕ2(r+s) ∀0�r�t−s}

])2

|y=Bs

]
ds,

respectively.

The proof of the first identity follows from [19, Section 4.1]. The second identity
can be shown by using [19, Lemma 1], conditioning on the first splitting of the
so-called “spines”, similarly to the proof of [16, (2.6)] for n = 2 there. Indeed,
one has to consider branching Brownian motion instead of branching random walk
and replace binary branching by general branching. Then the expectation of the
quantity in display [16, (2.15)] turns into the second summand in (FK-2), because
the first splitting rate of the two “spine particles” at site y is (m2 − 2)ξ(y).
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As a consequence of Proposition 2.3, the solution to (PAM) can be expressed
by a functional of the branching process, i.e. we have that the solution to (PAM) is
given by

u(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs)ds

}
u0(Bt )

]
= Eξ

x

⎡

⎣
∑

ν∈N (t)

u0(X
ν
t )

⎤

⎦ .

As a special case for u0 = 1(−∞,0], this turns into

u(t, x) = Eξ
x

[
N�(t, 0)

] = Ex

[
exp

{ ∫ t

0
ξ(Bs)ds

}
; Bt � 0

]
. (2.2)

2.2. Change of measure

As a consequence of, among others, the previous display, it will be important
to obtain a profound understanding of Brownian motion in the potential ξ. For this
purpose, we introduce a change of measure whichmakes it typical for the Brownian
motion in the Feynman–Kac formula started at tv, some v �= 0, to be close to the
origin at time t. This perturbed Brownian motion in the random potential ξ will
then be amenable to an investigation through a certain regeneration structure, as
we will show in Sect. 3. More precisely, let (ξ(x))x∈R be as in (BDD) and define
the shifted potential

ζ := ξ − es.

Then P-a.s.,
ζ(x) ∈ [−(es− ei), 0] ∀x ∈ R. (2.3)

We will oftentimes write

Hy := inf
{
t � 0 : Bt = y

}
, y ∈ R, and τi := Hi−1 − Hi , i ∈ Z, (2.4)

for the first hitting times and their pairwise differences. The above shift of ξ gives
rise to a change of measure which will play a crucial role in the following. For
x, y ∈ R as well as η � 0 define the probability measures Pζ,η

x,y via

Pζ,η
x,y (A) := 1

Z ζ,η
x,y

Ex

[
exp

{ ∫ Hx−y

0

(
ζ(Bs) + η

)
ds
}
; A
]
, A ∈ σ

(
Bt∧Hx−y : t � 0

)
,

(2.5)

with normalizing constant

Z ζ,η
x,y := Ex

[
exp

{ ∫ Hx−y

0

(
ζ(Bs) + η

)
ds
}]

∈ (0,∞),

where Px and Ex , x ∈ R, are defined below (1.12). For A ∈ σ
(
Bt∧Hx−y : t � 0

)
,

using the strong Markov property at time Hx−y , we infer that P
ζ,η
x,y (A) = Pζ,η

x,y′(A)
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for all y′ � y. Thus, by the classical Kolmogorov’s extension theorem (see e.g.
[36, Theorem 2.4.3]),
(
Pζ,η
x,y

)
y�0 can be extended to a unique probability measure Pζ,η

x on σ
(
Bt : t � 0

)
.

(2.6)
We write Eζ,η

x for the corresponding expectation and introduce the logarithmic
moment generating functions

Lζ
x (η) := ln Ex

[
exp

{ ∫ H�x�−1

0

(
ζ(Bs) + η

)
ds
}]

, x > 0, (2.7)

L
ζ

x (η) := 1

x

x∑

i=1

Lζ
i (η) = 1

x
ln Ex

[
exp

{ ∫ H0

0
(ζ(Bs) + η)ds

}]
, x > 0,

where we recall the notation introduced in Sect. 1.9, and where the last equality is
due to the strong Markov property. In addition, set

L(η) := E
[
Lζ
1(η)

]
. (2.8)

Due to (2.3), for any η � 0 the quantities above are well-defined, and it is easy to
check that in this case and under (BDD), the expressions defined in (2.7)–(2.8) are
finite. We have the following useful properties.

Lemma 2.4. (a) The function (−∞, 0) 	 η �→ L(η) is infinitely differentiable and
its derivative L ′(η) is positive and monotonically strictly increasing.

(b) We have P-a.s. that

lim
x→∞ L

ζ

x (η) = L(η) for all η � 0. (2.9)

(c) L ′(η) ↓ 0 as η ↓ −∞
(d) For every v > vc := 1

L ′(0−)
, where 1

+∞ := 0 and where we call vc critical
velocity, there exists a

unique solution η(v) < 0 to the equation L ′(η(v)) = 1

v
. (2.10)

η(v) can be characterized as the unique maximizer to (−∞, 0] 	 η �→ η
v
−

L(η), i.e.

sup
η�0

(η

v
− L(η)

)
= η(v)

v
− L

(
η(v)

)
. (2.11)

The function (vc,∞) 	 v �→ η(v) is continuously differentiable and strictly
decreasing.

Proof of Lemma 2.4. (a) This follows from Lemma A.1.

(b) By [14, Theorem 7.5.1], for every η � 0 we get P-a.s. that limx→∞ L
ζ

x (η) =
E
[
Lζ
1(η) |F ζ

inv

]
, where F ζ

inv is the σ -algebra of all P-invariant sets. Due to our
standing assumptions, the family ζ(x), x ∈ R, ismixing and thus ergodic. Thus,
F ζ
inv is P-trivial, i.e., E

[
Lζ
1(η) |F ζ

inv

] = L(η). By continuity of the functions

L
ζ

x and L , the statement follows.
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(c) We note that L is strictly increasing and strictly convex on (−∞, 0) by (a), and
that

L(η) � E

[
ln E1

[
e−(es−ei−η)H0

]] = −√2(es− ei− η) for all η � 0,

where the equality is due to [4, (2.0.1), p. 204]. Thus, we infer that its derivative
L ′(η) must tend to 0 as η →−∞.

(d) Using that 1/vc > 1/v (where 1
0 := +∞) and the fact that L ′ is strictly

increasing and continuous with L ′(η) ↓ 0 for η ↓ −∞, we can find a unique
η(v) < 0 such that L ′(η(v)) = 1/v, giving (2.10). Display (2.11) is a direct
consequence of (2.10) and standard properties of the Legendre transformations
of strictly convex functions. In order to show the remaining part, we observe
that since L ′ is strictly increasing and smooth on (−∞, 0), it has a strictly
increasing inverse function (L ′)−1, which is differentiable on (0, 1/vc). By
(2.10), for v > vc we have η(v) = (L ′)−1(1/v). Hence, using the formula for
the derivative of the inverse function we get that

η′(v) = − 1

v2
· 1

L ′′(η(v))
.

Since the right-hand side of the latter display is continuous in v and negative,
we can conclude.

We use the standard notation L∗ : R → (−∞,∞] to denote the Legendre trans-
formation

v �→ sup
η�0

(
ηv − L(η)

)

of L . Lemma 2.4 entails that

L∗(1/v) = η(v)

v
− L

(
η(v)

)
. (2.12)

In the next part of this section, we are interested in the existence and the properties
of a suitable tilting parameter η

ζ
x (v) such that

Eζ,η
ζ
x (v)

x

[
H0
] = x

v
, x > 0, v > 0, (2.13)

holds true (setting η
ζ
x (v) := 0 if no such parameter exists). For η

ζ
x (v) fulfilling

(2.13) we observe that under Pζ,η
ζ
x (v)

x , the Brownian motion is tilted to have time-
averaged velocity v until it reaches the origin. More precisely, in Lemma 2.5 we
will show that for suitable v and x large enough, a tilting parameter as postulated
in (2.13) actually exists. Furthermore, we will show that the random parameter
η

ζ
x (v) concentrates around the deterministic quantity η(v) defined in (2.10). The

last result is a perturbation estimate for η
ζ
x (v) in x, cf. Lemma 2.7.
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2.3. Concentration inequalities

We have the following result regarding the existence, negativity, and concen-
tration properties of the postulated parameter η

ζ
x (v).

Lemma 2.5. (a) For every v > vc there exists a finite random variableN = N (v)

such that for all x � N the solution η
ζ
x (v) < 0 to (2.13) exists.

(b) For each q ∈ N and each compact interval V ⊂ (vc,∞), there exists C2 :=
C2(V, q) ∈ (0,∞) such that

P

(

sup
v∈V

sup
x∈[n,n+1)

|ηζ
x (v) − η(v)| � C2

√
ln n

n

)

� C2n
−q for all n ∈ N.

(2.14)

Proof. We recall that due to Lemma A.1, the tilting parameter η
ζ
x (v) can alterna-

tively be characterized as the unique solution η
ζ
x (v) ∈ (−∞, 0) to

(
L

ζ

x

)′
(ηζ

x (v)) = 1

v
, (2.15)

if the solution exists, and η
ζ
x (v) = 0 otherwise. We start with noting that Part (a)

directly follows from Part (b). Indeed, let An , n ∈ N, be the event in the probability
on the left-hand side of (2.14). Then

∑
n P(An) < ∞ for q � 2. By the first

Borel–Cantelli lemma, P-a.s. only finitely many of the An occur. In combination
with the fact that η(v) < 0, cf. (2.10), this implies that P-a.s., the value of η

ζ
x (v)

can only vanish for x > 0 small enough. In particular, we deduce the existence of
a P-a.s. finite random variable N as postulated.

Hence, it remains to show (2.14). For this purpose, in the following lemma we
investigate the fluctuations of the functions throughwhich the parameters η

ζ
x (v) and

η(v) are implicitly defined; wewill then infer the desired bounds on the fluctuations
of the parameters themselves through perturbation estimates for these functions.

Lemma 2.6. For every compact interval � ⊂ (−∞, 0) and each q ∈ N, there
exists a constant C3 = C3(�, q) ∈ (0,∞) such that

P

(

sup
η∈�

sup
x∈[n,n+1)

∣∣∣
(
L

ζ

x

)′
(η) − L ′(η)

∣∣∣ � C3

√
ln n

n

)

� C3n
−q for all n ∈ N.

(2.16)

In order not to hinder the flow of reading, we postpone the proof of this auxiliary
result to the end of the proof of Lemma 2.5 and finish the proof of Lemma 2.5 (b)
first. Let q ∈ N and V ⊂ (vc,∞) be a compact interval. By Lemma A.1, for each
compact � ⊂ (−∞, 0) we have P-a.s.,

C−1
18 � inf

η∈� L ′′(η) � sup
η∈�

L ′′(η) � C18,

C−1
18 � inf

x�1
inf
η∈�

(
L

ζ

x

)′′
(η) � sup

x�1
sup
η∈�

(
L

ζ

x

)′′
(η) � C18.

(2.17)
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Therefore, and because the function V 	 v �→ η(v) is strictly decreasing by
Lemma 2.4, it is possible to find N = N (V ) ∈ N and a compact interval � =
�(N , V ) ⊂ (−∞, 0), where for notational convenience we write

V = [v∗, v∗] and � = [η∗, η∗], (2.18)

such that, using standard calculus for sets,
(
η(V ) − C3C18

√
ln n/n

) ∪ (η(V ) + C3C18
√
ln n/n

) ⊂ � for all n � N .

Let n � N and assume that the complement of the event on the left-hand side of
(2.16),

sup
η∈�

sup
x∈[n,n+1)

∣∣(L
ζ

x

)′
(η) − L ′(η)

∣∣ < C3

√
ln n

n
, (2.19)

occurs. On this event, for all v ∈ V and all x ∈ [n, n + 1),

(
L

ζ

x

)′(
η(v) − C3C18

√
ln n/n

)
� 1

v
�
(
L

ζ

x

)′(
η(v) + C3C18

√
ln n/n

)
(2.20)

and thus, due to the strict monotonicity of (L
ζ

x )
′ as well as its continuity implied

by (2.17), there exists a unique η
ζ
x (v) ∈ � such that

(
L

ζ

x

)′
(η

ζ
x (v)) = 1/v. Due to

(2.20), still assuming (2.19), we have

sup
v∈V

sup
x∈[n,n+1)

|η(v) − ηζ
x (v)| � C3C18

√
ln n

n
.

Thus, for n � N , choosingC2 > C3C18, the probability in (2.14) is upper bounded
by the right-hand side of (2.16), which finishes the proof. ��

It remains to prove Lemma 2.6.

Proof of Lemma 2.6. Applying the strong Markov property at time H�x�, we get

x
(
L

ζ

x

)′
(η) = Eζ,η

x (H0) = Eζ,η
x

[
H�x�

]+ Eζ,η
�x�
[
H0
] = Eζ,η

x

[
H�x�

]+ �x�(Lζ

�x�
)′
(η).

Furthermore, 0 � Eζ,η
x
[
H�x�

] = (
Lζ
x
)′
(η) � C18 by (A.1) and Lemma A.1(b), and

thus also 0 �
(
L

ζ

x

)′
(η) = 1

x

∑x
i=1

(
Lζ
i

)′
(η) � C18 for all x � 1 and all η ∈ �,

P-a.s. As a consequence, we get that for all x � 1,

∣∣(L
ζ

x

)′
(η)− L ′(η)

∣∣ �
∣∣(L

ζ

�x�
)′
(η)− L ′(η)

∣∣+ 2C18

�x� .

It is therefore enough to prove

P

(

sup
η∈�

∣∣∣
(
L

ζ

n

)′
(η) − L ′(η)

∣∣∣ � C3

√
ln n

n

)

� C3n
−q for all n ∈ N. (2.21)

For each η ∈ �, the sequence ((Lζ
i )

′(η) − L ′(η))i∈Z is a family of stationary,
centered and bounded random variables. Furthermore, they fulfill the exponential
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mixing condition (A.11) due toLemmaA.2.Due toσ((Lζ
i )

′(η) : i � k) ⊂ σ(ξ(x) :
x � k− 1) and (MIX), setting Yi := (Lζ

i )
′(η)− L ′(η), the left-hand side in (A.15)

is bounded from above by some constant c2 > 0, uniformly for every i . Then
settingmi := c1, condition (A.15) is fulfilled and we can apply the Hoeffding-type
inequality from Corollary A.5 to infer the existence of c2 > 0 such that

P

(∣∣∣
(
L

ζ

n

)′
(η) − L ′(η)

∣∣∣ � c2

√
ln n

n

)

� c2n
−q−1 for all η ∈ � and all n ∈ N.

Let�n := (�∩ 1
nZ)∪{η∗, η∗}, recalling the notation of (2.18). Because |�∩ 1

nZ| �
n · diam(�) + 1, taking advantage of the previous display we infer

P

(

sup
η∈�n

∣∣∣
(
L

ζ

n

)′
(η)− L ′(η)

∣∣∣ � c2

√
ln n

n

)

� |�n | · sup
η∈�n

P

(∣∣∣
(
L

ζ

n

)′
(η)− L ′(η)

∣∣∣ � c2

√
ln n

n

)

� c3(�)n−q , for all n ∈ N.

By Lemma A.1(b), we have P-a.s. that supn supη∈�
∣∣(L

ζ

n(η)
)′′∣∣ ∨ ∣∣L ′′(η)

∣∣ � C18.
Thus, the mean value theorem entails that

sup
η∈�

∣∣(L
ζ

n

)′
(η) − L ′(η)

∣∣ � sup
η∈�n

∣∣(L
ζ

n

)′
(η)− L ′(η)

∣∣+ 2C18

n
,

and thus we find C3 > 0 such that (2.21) and hence (2.16) hold true.

In what comes below, many results will implicitly depend on the choice of the
compact intervals V and �, which have already occurred before. Thus, in order to
avoid ambiguity and due to assumption (VEL), we will now

fix arbitrary compact intervals V ⊂ (vc,∞) and � = �(V ) ⊂ (−∞, 0) such that

v0 ∈ int(V ) and η(V ) ⊂ int(�).
(2.22)

Furthermore, due to Lemma 2.5, there exists a P-a.s. finite random variable N1 =
N1(ξ,C2(V, 2)) such that

Hx := Hx (V ) := {
ηζ
x (v) ∈ � for all v ∈ V

}
occurs for all x � N1. (2.23)

We write

(
L

ζ

x

)∗(1
v

)
= sup

η<0

(η

v
− L

ζ

x (η)
)
= η

ζ
x (v)

v
− L

ζ

x (η
ζ
x (v)), x � 1,

for the Legendre transformation of the weighted averages. We also recall that
η

ζ
x (v) = 0 if there is no solution η

ζ
x (v) ∈ � to (2.15); note that this can only

happen on Hc
x .

In order to show an invariance principle for the Legendre transformation (L
ζ

x )
∗

in the following section, we now derive a perturbation result on the tilting parameter
η

ζ
x (v) in x .
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Lemma 2.7. There exists a constant C4 > 0 such that P-a.s., for all x ∈ (0,∞)

large enough, uniformly in v ∈ V and 0 � h � x,

∣∣ηζ
x (v) − η

ζ
x+h(v)

∣∣ � C4
h

x
. (2.24)

Proof. By Lemma 2.5 we can choose x large enough such that η
ζ
y(v) ∈ � for all

y � x and all v ∈ V . For h = 0, the statement is obvious. For 0 < h � x , it
suffices to show that there exists c1 > 0 such that

sup
η∈�

∣∣(L
ζ

x+h

)′
(η) − (Lζ

x

)′
(η)
∣∣ � c1

h

x
. (2.25)

Indeed, using (2.15) we can write

(
L

ζ

x+h

)′(
η

ζ
x+h(v)

)− (Lζ

x

)′(
η

ζ
x+h(v)

) = (
L

ζ

x

)′(
ηζ
x (v)

)− (Lζ

x

)′(
η

ζ
x+h(v)

)

= (
L

ζ

x

)′′
(̃η)
(
ηζ
x (v) − η

ζ
x+h(v)

)

for some η̃ ∈ � between η
ζ
x (v) and η

ζ
x+h(v). By the second display in (2.17) we

know that P-a.s. infη∈�,x�1(L
ζ

x

)′′
(η) � C−1

18 . Using this, inequality (2.24) is a
direct consequence of (2.25) with C4 := c1C18. To prove (2.25), recall that for all
η ∈ �, x � 1, and 0 < h � x, by the strong Markov property applied at time Hx ,

(
L

ζ

x+h

)′
(η)− (Lζ

x

)′
(η) = 1

x + h

(
Eζ,η
x+h

[
Hx
]+ Eζ,η

x [H0]
)− 1

x
Eζ,η
x [H0]

= − h

x + h

(
L

ζ

x

)′
(η)+ h

x + h

1

h
Eζ,η
x+h[Hx ].

Finally, recall that by Lemma A.1 there exists C18 = C18(�) > 0 such that

P-a.s. we have supη∈�,x>0

∣∣(L
ζ

x

)′
(η)
∣∣ � C18. By exactly the same argument used

for the proof of the latter inequality [see proof of (A.1)], one can show that also
supη∈�,x,h>0

∣∣ 1
h E

ζ,η
x+h[Hx ]

∣∣ � C18 holds P-a.s. with the same constant C18. (2.25)
now follows choosing c1 := 2C18.

3. Functional Central Limit Theorems, Large Deviations and Perturbation
Results for the PAM

The principal objective of this section is to establish our first main results,
i.e. the functional central limit theorems stated in Theorems 1.3 and 1.4. In order
to prepare for this, we start with proving a functional central limit theorem for
a suitably centered and rescaled version of the empirical Legendre transforms in
Proposition 3.1 of Sect. 3.1. In Sect. 3.2 we then show how this limit theorem can be
transferred to an auxiliary quantity Y≈

v , see Proposition 3.5. In combination with
concentration results (referred to as exact large deviations in probability theory)
also obtained in Proposition 3.5, we can then deduce that the auxiliary quantity Y≈

v

provides a good description of the (Feynman–Kac representation of the) solution to



Invariance principles and Log-distance of F-KPP fronts in a random medium 901

(PAM), see Corollary 3.8 also. In Sect. 3.3 we can then put these findings together
to prove Theorem 1.3.

We next obtain perturbation results for the solution to (PAM) in Sects. 3.4
and 3.5. In Sect. 3.7, using the approximation results established in Sect. 3.6 in
combination with Theorem 1.3, we can then transfer the latter functional central
limit theorem to a functional central limit theorem for the position of the front of
the solution to (PAM), hence completing the proof of Theorem 1.4.

3.1. A first functional central limit theorem

We start with a functional central limit theorem for a centered and rescaled
version of the empirical Legendre transforms.

For this purpose let

V ζ,v
x (η) := η

v
− Lζ

x (η), x ∈ R,

σ 2
v := VarP

(
V ζ,v
1 (η(v))

)+ 2
∞∑

i=2

CovP
(
V ζ,v
1 (η(v)), V ζ,v

i (η(v)
)
, σv :=

√
σ 2

v , v ∈ V .

(3.1)

We start with observing that σ 2
v ∈ [0,∞) for all v ∈ V . Indeed, (L̃i )i∈N, where

L̃i := Lζ
i (η(v)) − E[Lζ

i (η(v))], is a sequence of bounded (see Lemma A.1),
centered and mixing (see Lemma A.2) random variables, giving

∞∑

i=1

∣∣CovP
(
V ζ,v
1 (η(v)), V ζ,v

i (η(v))
)∣∣ =

∞∑

i=1

∣∣E
[
L̃1 L̃i

]∣∣ =
∞∑

i=1

∣∣E
[
L̃iE[L̃1 |F i−1]]∣∣ < ∞,

(3.2)

where the last inequality is due to uniform boundedness of L̃i in i , (A.9) and the
summability criterion in (MIX). Thus, σ 2

v is well-defined and finite. Furthermore,
the non-negativity σ 2

v � 0 is due to (3.2) and [34, Lemma 1.1].
We now introduce the process W v

x (t) of empirical Legendre transformations

W v
x (t) := t

√
x
((

L
ζ

xt

)∗
(1/v) − L∗(1/v)

)
, t, x > 0, v ∈ V, (3.3)

set W v
0 (t) = W v

x (0) = 0 for t, x > 0, v ∈ V , and obtain a first functional central
limit theorem for it.

Proposition 3.1. For every v ∈ V , W v
n (1) converges in P-distribution to a centered

Gaussian random variable with variance σ 2
v � 0. If σ 2

v > 0, the sequence of
processes

[0,∞) 	 t �→ 1

σv

W v
n (t), n ∈ N,

converges in P-distribution to a standard Brownian motion in the sense of weak
convergence of measures on C([0,∞)), endowed with the topology induced by the
metric ρ from (1.15).
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Proof. It is sufficient to show the claim if (W v
n (t))t∈[0,∞) is replaced by (W v

n (t) ·
1Hnt )t∈[0,∞), n ∈ N, withHnt as defined in (2.23), since the P-probability ofHnt

tends to 1 for n →∞ by Lemma 2.5. In the notation of (3.1), setting

Sζ,v
x (η) :=

x∑

i=1

V ζ,v
i (η), x ∈ R, (3.4)

on Hnt we have

(
L

ζ

nt

)∗(1
v

)
= η

ζ
nt (v)

v
− L

ζ

nt

(
η

ζ
nt (v)

) = 1

nt

nt∑

i=1

V ζ,v
i

(
η

ζ
nt (v)

) = 1

nt
Sζ,v
nt
(
η

ζ
nt (v)

)
.

Thus, we can rewrite the relevant term as a sum of three differences

nt
((

L
ζ

nt

)∗
(1/v) − L∗(1/v)

)
=
(
Sζ,v
nt
(
η

ζ
nt (v)

)− Sζ,v
nt (η(v))

)

+
(
Sζ,v
nt (η(v)) − E

[
Sζ,v
nt (η(v))

])

+
(
E
[
Sζ,v
nt (η(v))

]− nt L∗(1/v)
)
,

(3.5)

where we note that the third summand vanishes. Indeed, we have

E
[
Sζ,v
nt (η(v))

] = nt
(η(v)

v
− E[Lζ

1(η(v))]
)
= nt L∗(1/v),

where the last equality is due to (2.11) and the definition of the Legendre transform.
The proof is completed by the use of Lemmas 3.3 and 3.2 below, which show that
the second summand of (3.5) exhibits the postulated diffusive behavior whereas
the first summand is negligible in that scaling.

Lemma 3.2. For every v ∈ V and t > 0, the sequence of random variables
1√
n

(
Sζ,v
nt (η(v)) − E

[
Sζ,v
nt (η(v))

])
, n ∈ N, converges in P-distribution to a cen-

tered Gaussian random variable with variance σ 2
v � 0. If σ 2

v > 0, the sequence of
processes

[0,∞) 	 t �→ 1

σv

√
n

(
Sζ,v
nt (η(v)) − E

[
Sζ,v
nt (η(v))

])
, n ∈ N,

converges in P-distribution to a standard Brownian motion in the sense of weak
convergence of measures on C([0,∞)), endowed with the topology induced by the
metric ρ from (1.15).

Proof. Let L̃i := Lζ
i (η(v)) − E[Lζ

i (η(v))], Ṽi := V ζ
i (η(v)) − E[V ζ

i (η(v))] and
M ∈ N. Further set L̃(M)

i := ∑iM
j=1+(i−1)M L̃ j . Then (L̃(M)

i )i∈Z is a sequence
of centered, stationary and (by Lemma A.1) bounded random variables. To show
the central limit theorem on C([0, M]), we will use the method of martingale
approximation from [17], which is summarized as a theorem by Nolen in [29,
Section 2.3] and turns out to be applicable in our situation. That is, we have to
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make sure that condition [29, (2.36)] is fulfilled. Indeed, replacing F j in (A.13) by
Fk and noting that quantity A in (A.13) is Fk-measurable we get

∞∑

k=1

∣∣L̃(M)
0 − E

[
L̃(M)
0 |Fk

]∣∣ � c1

∞∑

k=1

e−k/c1 < ∞,

giving the convergence of the first series in [29, (2.36)]. Furthermore, using that
L̃(M)
k is F (k−1)M -measurable and bounded, also recalling (MIX), we get

∞∑

k=1

∣∣E
[
L̃(M)
k |F0

]∣∣ �
∞∑

k=1

ψ(k − 1)E
[∣∣L̃(M)

0

∣∣] < ∞.

Because the series in (3.1) is absolutely convergent, by [34, Lemma 1.1] and [29,
(2.37)]wehave limn→∞ 1

nE
[(∑n

k=1 L̃
(M)
k

)2] = M ·limn→∞ 1
MnE

[(∑Mn
k=1 L̃k

)2] =
M · σ 2

v ∈ [0,∞). Furthermore, if σ 2
v > 0, [29, Theorem 2.1] entails that the

sequence of processes

[0, 1] 	 t �→ X (M)
n (t) := 1

σv

√
nM

⎛

⎝
�nt�∑

k=1

L̃(M)
k + (nt − �nt�)L̃(M)

�nt�+1

⎞

⎠ , n ∈ N,

converges in P-distribution to a standard Brownian motion (Bt )t∈[0,1] in the sense
of weak convergence of measures on C([0, 1]) with the topology induced by the
uniform metric. Then by definition, the above convergence also holds true for
(Ṽi )i�1 instead of (L̃i )i�1. Furthermore, we have the uniform bound

sup
t∈[0,M],n∈N

∣∣∣∣∣∣
Sζ,v
nt (η(v)) −

⎛

⎝
�nt/M�M∑

i=1

V ζ,v
i + (nt − �nt/M�M)

M+�nt/M�M∑

i=1+�nt/M�M
V ζ,v
i

⎞

⎠

∣∣∣∣∣∣
� c2 P-a.s.

Consequently, the sequence [0, M] 	 t �→ 1
σv
√
n

(
Sζ,v
nt (η(v))−E

[
Sζ,v
nt (η(v))

])

has the same weak limit as
(√

M · X (M)
n (t/M)

)
t∈[0,M], n ∈ N, which converges

to
(√

M · B(t/M)
)
t∈[0,M] and the latter process is a standard Brownian motion

on [0, M]. Because M ∈ N was arbitrary, Whitt [38, Theorem 5] gives weak
convergence on C([0,∞)).

To show that the first summand in (3.5) is asymptotically negligible, we use the
following result.

Lemma 3.3. There exists a constant C5 ∈ (0,∞) such that for every v ∈ V and
M > 0,

lim sup
n→∞

1

ln n
sup

0�t�M

∣∣∣Sζ,v
nt (η

ζ
nt (v)) − Sζ,v

nt (η(v))

∣∣∣ � C5 P-a.s.
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Proof. There exists a P-a.s. finite time N1(ω), defined before (2.23), such that for
all x � N1 and all v ∈ V we have η

ζ
x (v) ∈ �. Furthermore, by Lemma A.1,

Sζ,v
x is infinitely differentiable on (−∞, 0), so for all x � N1 there exists η̃

ζ
x (v) ∈

[η(v) ∧ η
ζ
x (v), η(v) ∨ η

ζ
x (v)] such that

Sζ,v
x (η(v)) = Sζ,v

x

(
ηζ
x (v)

)+ (Sζ,v
x

)′(
ηζ
x (v)

)(
η(v) − ηζ

x (v)
)

+
(
Sζ,v
x
)′′(

η̃
ζ
x (v)

)

2

(
η(v) − ηζ

x (v)
)2

.

Due to (2.15), (Sζ,v
x )′(ηζ

x (v)) = 0 and by Lemma A.1 we have supη∈�
supx�1

∣∣(Sζ,v
x )′′(η)

∣∣/x � c1. By (2.14) and the first Borel–Cantelli lemma, there
exists a finite random variable N2 � N1 such that for x � N2 the complementary
event on the left-hand side of (2.14) occurs, hence

sup
x�N1

(
ηζ
x (v) − η(v)

)2 x

ln x
� C2

2 (V, 2)

and thus

sup
x�N1

1

ln x

∣∣Sζ,v
x

(
ηζ
x (v)

)− Sζ,v
x (η(v))

∣∣ � C5 (3.6)

with C5 := c1C2
2 (V,2)
2 . Finally, we have

sup
0�t�M

∣∣∣Sζ,v
nt
(
η

ζ
nt (v)

)− Sζ,v
nt (η(v))

∣∣∣ � sup
0�x�N1

∣∣∣Sζ,v
x

(
ηζ
x (v)

)− Sζ,v
x (η(v))

∣∣∣

+ sup
N1/n�t�M

∣∣∣Sζ,v
nt
(
η

ζ
nt (v)

)− Sζ,v
nt (η(v))

∣∣∣

� 2N1c2 + C5 lnM + C5 ln n,

where in the last inequality we used that P-a.s., every summand in the definition of
Sζ,η
n is uniformly bounded by c2. The P-a.s. finiteness of N1 gives the claim.

As a by-product of the proof above we get an approximation result of W v
x be a

centered stationary sequence.

Corollary 3.4. For every v ∈ V and all t such that vt � N1, we have

∣∣∣
√

vtW v
vt (1) −

vt∑

i=1

(
L(η(v)) − Lζ

i (η(v))
)∣∣∣ � C5 ln v + C5 ln t.

Proof. By the definition of W v
x (t) and Sζ,v

x (η) from (3.3) and (3.4), as well as the
definition in (2.12) for the corresponding Legendre transformations, we have

√
vtW v

vt (1) = vt
((

L
ζ

vt

)∗
(1/v)− L∗(1/v)

)
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= vt
(η

ζ
vt (v)

v
− Lvt

(
η

ζ
vt (v)

)− η(v)

v
+ L(η(v))

)

= Sζ,v
vt
(
η

ζ
vt (v)

)−
vt∑

i=1

(
η(v)

v
− Lζ

i (η(v))

)
+

vt∑

i=1

(
L(η(v)) − Lζ

i (η(v))
)

= Sζ,v
vt
(
η

ζ
vt (v)

)− Sζ,v
vt
(
η(v)

)+
vt∑

i=1

(
L(η(v)) − Lζ

i (η(v))
)
.

Then we can conclude using (3.6).

3.2. An exact large deviation result for auxiliary processes

The main result of this subsection is Proposition 3.5, where we show—cf.
(3.10)—that the probability for the perturbed Brownian motion in shifted potential
to hit the origin at time x/v for the first time exhibits certain concentration prop-
erties. These concentration properties then allow us to investigate Y≈

v instead of
Yv, see (3.7) and (3.9) below. The virtue of Y≈

v is that we will be able to employ
Proposition 3.1 to deduce a functional central limit theorem for the process induced
by it, see also (3.22) below. This again will be beneficial since Y≈

v provides a good
description of the (Feynman–Kac representation of the) solution to (PAM), see
Corollary 3.8 below.

For x � 0 and v > 0 we introduce

Y≈
v (x) := Ex

[
e
∫ H0
0 ζ(Bs )ds; H0 ∈

[ x
v
− K ,

x

v

]]
,

Y>
v (x) := Ex

[
e
∫ H0
0 ζ(Bs )ds; H0 <

x

v
− K

]
, and

Yv(x) := Ex

[
e
∫ H0
0 ζ(Bs )ds; H0 � x

v

]
= Y≈

v (x) + Y>
v (x),

(3.7)

where K > 0 is a constant, defined in (3.17) below. For v ∈ V and x � 1 we define
the random quantity

σ ζ
x (v) :=

⎧
⎪⎨

⎪⎩

∣∣ηζ
x (v)

∣∣
√
Varζ,η

ζ
x (v)

x (H0), on Hx ,

sup
η∈�

|η|
√
Var

ζ,supη∈�
x (H0), on Hc

x .

Furthermore, by Lemma A.1, there exists some C18 > 1 such that Varζ,η
x (H0) =

x
(
L

ζ

x

)′′
(η) ∈ [xC−1

18 , xC18] for all x � 1. Thus, there is some constant C6 =
C6(�) > 1 such that

C−1
6

√
x � σ ζ

x (v) � C6
√
x for all v ∈ V, x � 1, on Hx . (3.8)

We now prove the following result.
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Proposition 3.5. Let V be as in (2.22), σv defined by (3.1) and W v
x (t) as in (3.3),

v ∈ V , and K > 0 be such that (3.17) holds. Then there exists a constant C7 ∈
(1,∞), such that for all v ∈ V and all x � 1, on Hx we have

σ ζ
x (v)Y>

v (x) exp
{
xL∗(1/v) +√

xW v
x (1)

} ∈
[
C−1
7 ,C7

]
. (3.9)

Furthermore, for all v ∈ V and all x � 1, on Hx we have

Y≈
v (x)

Y>
v (x)

∈ [C−1
7 ,C7

]
, (3.10)

and the sequence n−1/2
(
ln Y≈

v (n) − nL∗(1/v)
)
, n ∈ N, converges to a centered

Gaussian random variable with variance σ 2
v ∈ [0,∞), where σ 2

v is defined in (3.1).
If furthermore σ 2

v > 0, then the sequence of processes

[0,∞) 	 t �→ 1

σv

√
n

(
ln Y≈

v (nt)+ nt L∗(1/v)
)
, n ∈ N, (3.11)

converges in P-distribution to standard Brownian motion in C([0,∞)).

Proof. We start with proving (3.9) and for this purpose let x � 1 such that H�x�
occurs. Write η := η

ζ
x (v) and σ := σ

ζ
x (v), and recall the notation introduced in

(2.4), i.e. τi = Hi − Hi−1, i = 1, . . . , �x� − 1, and set τx := H�x�−1 − Hx ,

x ∈ R\Z, (which is consistent with the definition in (2.4) for x integer) to define
τ̂i := τ̂

(x)
i := τi − Eζ,η

x [τi ]. Then
∑x

i=1 E
ζ,η
x [τi ] = Eζ,η

x [H0] = x
v
. We now

rewrite

Y≈
v (x) = Ex

[

e
∫ H0
0 (ζ(Bs )+η)ds exp

{

−η

x∑

i=1

τ̂i

}

;
x∑

i=1

τ̂i ∈ [−K , 0]

]

exp
{
−x

η

v

}

= Eζ,η
x

[

exp

{

−σ
η

σ

x∑

i=1

τ̂i

}

; η

σ

x∑

i=1

τ̂i ∈
[
0,− Kη

σ

]]

exp
{
−x

(η

v
− L

ζ

x (η)
)}

.

(3.12)

Analogously, we get

Y>
v (x) = Eζ,η

x

[

exp

{

−σ
η

σ

x∑

i=1

τ̂i

}

; η

σ

x∑

i=1

τ̂i > −Kη

σ

]

exp
{
−x

(η

v
− L

ζ

x (η)
)}

.

We define μ
ζ,v
x as the distribution of η

σ

∑x
i=1 τ̂i under P

ζ,η
x . Then

Y≈
v (x) = e−x( η

v
−L

ζ
x (η))

∫ −Kη
σ

0
e−σ y dμζ,v

x (y) (3.13)

and

Y>
v (x) = e−x( η

v
−L

ζ
x (η))

∫ ∞
−Kη

σ

e−σ y dμζ,v
x (y). (3.14)
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Using Lemma 3.6 below, the integrals on the right-hand side of (3.13) and (3.14),
multiplied by σ , are bounded from below and above by positive constants. Display
(3.9) now follows by the definition of W v

x , and (3.10) is a direct consequence of
(3.13)–(3.16). The last two statements, are a consequence of (3.9), (3.10),W v

nt (1) =
1√
t
W v

n (t) and Proposition 3.1.

To complete the previous proof, it remains to prove the following.

Lemma 3.6. Under the conditions ofProposition3.5, there exists a constantC8 > 1
such that for all v ∈ V and x � 1, on Hx ,

σ ζ
x (v)

∫ −Kη
ζ
x (v)/σ

ζ
x (v)

0
e−σ

ζ
x (v)ydμζ,v

x (y) ∈ [C−1
8 ,C8] (3.15)

and

σ ζ
x (v)

∫ ∞

−Kη
ζ
x (v)/σ

ζ
x (v)

e−σ
ζ
x (v)ydμζ,v

x (y) ∈ [C−1
8 ,C8], (3.16)

with μ
ζ,v
x as in the proof of Proposition 3.5.

Proof. We write n := �x� and recall that under Pζ,η
x , the sequence(√

n η
ζ
x (v)

σ
ζ
x (v)

τ̂i

)

i=1,...,�x�,x is a sequence of independent, centered random variables.

Thus, onHx we obtain

1

n

x∑

i=1

Varζ,η
x

(√
n

η
ζ
x (v)

σ
ζ
x (v)

τ̂i

)
=
(

η
ζ
x (v)

σ
ζ
x (v)

)2

Varζ,η
x

( x∑

i=1

τ̂i

)
=
(

η
ζ
x (v)

σ
ζ
x (v)

)2

Varζ,η
x (H0) = 1.

Additionally, the τ̂i , i ∈ N, have uniform exponential moments. Thus, the condi-
tions of [3, Theorem 13.3] are fulfilled and an application of [3, (13.43)] yields

sup
C

∣∣μζ,v
x (C)− �(C)

∣∣ � c1n
−1/2,

where the supremum is taken over all Borel-measurable convex subsets of R, �

denotes the standard Gaussian measure on R and c1 only depends on the uniform
bound of the exponential moments of the τ̂i , i ∈ N. Without loss of generality, we
will assume c1 > 4. Then, due to (3.8), by denoting C := [

0,−Kη
ζ
x (v)/σ

ζ
x (v)

]
we

can choose K > 0 large enough, so that

�(C) � 2c−1
1 n−1/2 for all n ∈ N and v ∈ V . (3.17)

We thus get

c−1
1 n−1/2 � �(C) − ∣∣μζ,v

x (C)− �(C)
∣∣ � μζ,v

x (C)

�
∣∣μζ,v

x (C)− �(C)
∣∣+�(C) � c2(K ) · n−1/2. (3.18)
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Because the integrand in (3.15) is bounded away from 0 and infinity on the respec-
tive interval of integration (uniformly in n ∈ N), (3.15) is a direct consequence of
(3.8) and (3.18). For (3.16), we split the integral into a sum:

∫ ∞

−Kη
ζ
x (v)/σ

ζ
x (v)

e−σ
ζ
x (v)ydμζ,v

x (y) =
∞∑

k=1

∫ −(k+1)Kη
ζ
x (v)/σ

ζ
x (v)

−kKη
ζ
x (v)/σ

ζ
x (v)

e−σ
ζ
x (v)ydμζ,v

x (y)

�
∞∑

k=1

μζ,v
x

(

−Kη
ζ
x (v)

σ
ζ
x (v)

[k, k + 1]

)

e−k·K |ηζ
x (v)| � c2n

−1/2
∞∑

k=1

e−k·K |η∗| � C8n
−1/2,

where we recall the notation from (2.18). The lower bound in (3.16) can be obtained
by noting that

∫ ∞

−Kη
ζ
x (v)/σ

ζ
x (v)

e−σ
ζ
x (v)ydμζ,v

x (y) �
∫ −2Kη

ζ
x (v)/σ

ζ
x (v)

−Kη
ζ
x (v)/σ

ζ
x (v)

e−σ
ζ
x (v)ydμζ,v

x (y)

� e2Kη
ζ
x (v)μζ,v

x

([−Kηζ
x (v)/σ ζ

x (v),−2Kηζ
x (v)/σ ζ

x (v)]).

Analogously to (3.18), choosing C8 large enough, the last expression is bounded
from below by C−1

8 n−1/2. Combining this with (3.8), we finally arrive at (3.16).

We are now in the position to prove the following result.

Lemma 3.7. Under the conditions of Proposition 3.5, for each δ > 0 there exists
a constant C9 = C9(δ) ∈ (1,∞) such that for all v ∈ V , t > 0, on Hvt we have

C−1
9 Y≈

v (vt) � Evt

[
e
∫ t
0 ζ(Bs )ds; Bt ∈ [−δ, 0]

]
� Evt

[
e
∫ t
0 ζ(Bs )ds; Bt � 0

]
� C9Y

≈
v (vt).

(3.19)

Proof. The second inequality is obvious. Since {Bt � 0} ⊂ {H0 � t} and

ζ � 0, we get Evt
[
e
∫ t
0 ζ(Bs )ds; Bt � 0

]
� Yv(vt) � (1 + C7)Y≈

v (vt) by
Proposition 3.5 and thus the last inequality in (3.19) is obtained. Therefore, it
remains to show the first inequality. For this purpose, define the random function
p(s) := E0

[
e
∫ s
0 ζ(Br )dr ; Bs ∈ [−δ, 0]] which almost surely is bounded from below

by a deterministic constant c1(K , δ) > 0 for all s ∈ [0, K ]. Using the strong
Markov property at H0, we finally get

Y≈
v (vt) = Evt

[
e
∫ H0
0 ζ(Br )dr ; H0 ∈ [t − K , t]

]

� c1(K , δ)−1Evt

[
e
∫ H0
0 ζ(Br )dr p(t − s)|s=H0; H0 ∈ [t − K , t]

]

� c1(K , δ)−1Evt

[
e
∫ H0
0 ζ(Br )dr p(t − s)|s=H0

]

= c1(K , δ)−1Evt

[
e
∫ t
0 ζ(Br )dr ; Bt ∈ [−δ, 0]

]
.

and the claim follows by choosing C9 := c1(K , δ) ∨ (1+ C7).
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Plugging the relation ξ(x) = ζ(x) + es, x ∈ R, into Lemma 3.7 immediately
supplies us with the following corollary.

Corollary 3.8. Let C9 be as in Lemma 3.7. Then for all v ∈ V , t > 0, on Hvt we
have

C−1
9 ees·t Y≈

v (vt) � Evt

[
e
∫ t
0 ξ(Bs )ds; Bt � 0

]
� C9e

es·t Y≈
v (vt).

Using the Feynman–Kac formula (1.12), Lemma 3.7 also directly entails the fol-
lowing result; recall that uu0 denotes the solution to (PAM) with initial condition
u0 ∈ IPAM.

Corollary 3.9. Let C9 = C9(δ) be as in Lemma 3.7. Then for all v ∈ V , t > 0, on
Hvt we have

u1[−δ,0](t, vt) � u1(−∞,0](t, vt) � C2
9 · u1[−δ,0](t, vt).

The previous results are fundamental for proving perturbation statements in the
next section, which themselves will allow us to analyze path probabilities of the
branching process.

3.3. Proof of Theorem 1.3

The previous findings already enable us to prove our first main result.

Proof of Theorem 1.3. Wefirst assume σ 2
v > 0 and consider the case u0 = 1(−∞,0]

to show the second part of the claim, i.e. that the sequence of processes

[0,∞) 	 t �→ 1
√
nvσ 2

v

(
ln u(nt, vnt) − nt(v)

)
, n ∈ N, (3.20)

converges in P-distribution to standard Brownian motion. Because [0,∞) 	 t �→
ln u(t, vt) might be discontinuous only 0 (in which case we replace [0, ∞) by (0,
∞) in (3.20)), we cover both cases (continuous and discontinuous in 0) in a unified
setting by showing the invariance principle for a sequence of auxiliary processes
(Xv

n(t))t�0, n ∈ N, where for every n ∈ N and t � 1
n , the term Xv

n(t) is the same
as in (3.20), whereas for t ∈ [0, 1/n] the term ln u(nt, vnt) in (3.20) is replaced
by (1− nt) ln u(0, 0)+ nt ln u(1, v), making (Xv

n(t))t�0 continuous. Because the
difference of the processes in (3.20) and (Xv

n(t))t�0 converges uniformly to zero
as n →∞, convergence of the processes in (3.20) to a standard Brownian motion
is equivalent to the convergence of the processes (Xv

n(t))t�0, n ∈ N, to a standard
Brownian motion in C([0,∞)) (or C((0,∞)) in case of a discontinuity in 0) with
topology induced by the metric ρ from (1.15).

By Proposition 3.5 and Corollary 3.8, onHnvt (recall the notation from (2.23))
we have

− lnC7 � ln σ
ζ
nvt (v) + ln Y≈

v (nvt) + nvt L∗(1/v) +√
nvtW v

vnt (1) � lnC7, and

− lnC9 � ln u(nt, vnt) − es · nt − ln Y≈
v (vnt) � lnC9.

(3.21)
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Recall that a sequence of processes t �→ An(t), n ∈ N, converges in P-
distribution to standard Brownian motion if and only if for each c > 0 the sequence
t �→ c−1An(c2t), n ∈ N, converges in P-distribution to a standard Brownian
motion. Applying this to (3.11), the sequence of processes

[0,∞) 	 t �→ 1
√
nvσ 2

v

(
ln Y≈

v (vnt) + vnt L∗(1/v)
)
, n ∈ N, (3.22)

converges in P-distribution to a standard Brownian motion. Further, by the second
line in (3.21),

− lnC9 �
(
ln u(nt, vnt)− nt (es− vL∗(1/v))

)− ( ln Y≈
v (vnt)+ vnt L∗(1/v)

)
� lnC9

holds. Consequently, if we can prove that

(v) = es− vL∗(1/v) ∀v ∈ V, (3.23)

the claim follows from (3.22). To prove (3.23), we set n = 1 in (3.21) and note that
W v

vt (1)√
t

−→
t→∞ 0 P-a.s. for all v ∈ V , because Wn(1) converges in P-distribution to

a centered normally distributed random variable by Proposition 3.1. Using (3.25),
(3.21) and (3.8), we get (3.23).

It remains to show the claim for arbitrary u0 ∈ IPAM. Recall that there exist
δ′ ∈ (0, 1) and C ′ > 1, such that δ′1[−δ′,0](x) � u0(x) � C ′1(−∞,0](x) for all
x ∈ R. Therefore, using Corollary 3.9 we have

δ′C−2
9 u1(−∞,0](t, vt) � uu0(t, vt) � C ′u1(−∞,0](t, vt), (3.24)

where we used that the solution to (PAM) is linear in its initial condition. Thus,
the convergence of (3.20) for arbitrary initial condition u0 ∈ IPAM follows from
the convergence with initial condition 1(−∞,0]. This gives the second part of The-
orem 1.3.

It remains to show that (nv)−1/2
(
ln u(n, vn) − n(v)

)
converges in P-

distribution to a Gaussian random variable. For u0 = 1(−∞,0], this is a direct
consequence of (3.21) for t = 1, (3.23) and the second part of Proposition 3.5. For
general u0, the claim follows from (3.24).

In view of Corollary 3.9, Proposition A.3 and (3.23), the Lyapunov exponent
, defined in (1.13), determines the exponential decay (growth, resp.) for solutions
to (PAM) for arbitrary initial conditions u0 ∈ IPAM (and not only for those with
compact support).

Corollary 3.10. For all v � 0 and all u0 ∈ IPAM we have that P-a.s.,

(v) = lim
t→∞

1

t
ln uu0(t, vt). (3.25)

Furthermore,  is linear on [0, vc] and strictly concave on (vc,∞), and the con-
vergence in (3.25) holds uniformly on any compact interval K ⊂ [0,∞).
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Proof. Note that by Proposition A.3, δ′1[−δ′,0] � u0 � C ′1(−∞,0] and Corol-
lary 3.9 we have that (3.25) holds for all v ∈ V and all compact V ⊂ (vc,∞),

so (3.25) is true for all v > vc. The strict concavity of  on (vc,∞) follows
from the strict convexity of L∗(1/v), which in turn follows from the strict con-
vexity of L and standard properties of the Legendre transformation. If vc = 0,
the proof is complete due to limt→∞ 1

t ln u
δ′1[−δ′,0] = (0) = es by Proposi-

tion A.3 and uu0 � eest for all u0 ∈ IPAM. Thus, let us assume vc > 0 from
now on. First observe that L∗(1/v) tends to L∗(1/vc) = −L(0) as v ↓ vc. Indeed,
due to Lemma 2.4 (d), for each v > vc there exists a unique η(v) ∈ (−∞, 0),
characterized via L ′

(
η(v)

) = 1
v
, such that L∗(1/v) = η(v)

v
− L(η(v)). Further-

more, (vc,∞) 	 v �→ η(v) is continuously differentiable and strictly decreasing,
bounded from above by 0. In addition, (−∞, 0) 	 η �→ L ′(η) is smooth and
strictly monotone and tends to L ′(0−) as η ↑ 0. As a consequence, we get that
η(v) ↑ 0 as v ↓ vc and thus L∗(1/v) → L∗(1/vc) as v ↓ vc. Therefore, we deduce
that (v) = es − vL∗(1/v) for all v ∈ [vc,∞). Furthermore, due to (BDD), for
all u0 ∈ IPAM we have

uu0(t, vt) � C ′eest Evt
[
e
∫ t
0 ζ(Bs )ds; Bt � 0

]
� C ′eest Evt

[
e
∫ H0
0 ζ(Bs )ds; H0 � t

]

� C ′ exp
{
t
(
es+ vLvt (0)

)}
.

(3.26)
Using Lemma 2.4 (b), taking logarithms, and dividing by t , we get that the (due to
Proposition A.3) concave function  is bounded from above by the linear function
[0,∞) 	 v �→ es − vL(0) = es + vL∗(1/vc) and coincides with this function
at v = 0 as well as v = vc, and hence on the whole interval [0, vc]. Using (3.26)
again, we infer (3.25) for all v � 0 and u0 ∈ IPAM.

To show that the convergence is uniformon every compact interval K ⊂ [0,∞),
for ε > 0 arbitrary we consider εZ := {kε : k ∈ Z}, and for y ∈ R set �y�ε :=
sup{x ∈ εZ : x � y}. Then the convergence is uniform on K ∩ εZ. A fortiori, for
t large enough, uniformly in y ∈ K ,

u(t, t�y�ε) � et ((�y�ε)−ε).

Lemma A.8 then entails that

inf
z∈[t�y�ε−1,t�y�ε+1] u(t + 1, z) � 1

C19
u(t, t�y�ε) � 1

C19
et ((�y�ε)−ε). (3.27)

Furthermore, using 0 � y − �y�ε � ε, we have

Pyt (Bεt ∈ [t�y�ε − 1, t�y�ε + 1]) �
√

2

πεt
inf

x∈[t�y�ε−1,t�y�ε+1] e
− (x−yt)2

2εt

�
√

2

π
· exp

{
− (εt + 1)2

2εt
− ln(εt)

2

}
.

(3.28)
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Using the Feynman–Kac formula in the equality, the Markov property at time εt,
and (BDD) in the first inequality, we infer that

u(t + 1+ εt, yt) = Eyt
[
e
∫ t+1+εt
0 ξ(Bs )dsu0(Bt+1+εt )

]

� eeiεt · Pyt (Bεt ∈ [t�y�ε − 1, t�y�ε + 1]) · inf
z∈[t�y�ε−1,t�y�ε+1] u(t + 1, z)

� c1 exp
{
t
(
(�y�ε)+ (ei− 3/2)ε − 1

t
− 1

2εt2
− ln(εt)

2t

)}
,

(3.29)

where in the last inequality we used (3.27) and (3.28). Setting t ′ := t + 1+ εt and
y′ := t ′

t y, we get

1

t ′
ln u(t ′, t ′y) − (y) = t

t ′
(1
t
ln u(t ′, t y′) −(�y′�ε)

)
+ t

t ′
(�y′�ε) −(y).

Since (3.29) holds uniformly for all y ∈ K , we infer that

inf
y∈K

( 1
t ′
ln u(t ′, t ′y) −(y)

)
� t

t ′
( ln c1

t
+ (ei− 3/2)ε − 1

t
− 1

2εt2
− ln(εt)

2t

)

− sup
y∈K

∣∣∣
t

t ′
(�y′�ε) − (y)

∣∣∣.

Since  is concave and finite, it is uniformly continuous on compact intervals. As
a consequence, since ε > 0 was chosen arbitrarily, we deduce the lower bound

lim inf
t→∞ inf

y∈K

(1
t
ln u(t, t y) −(y)

)
� 0. (3.30)

To derive the matching upper bound, we assume that the convergence does not hold
uniformly on K . Then, due to (3.30), there exist α > 0 and sequences (tn)n∈N ⊂
[0,∞) and (yn)n∈N ⊂ K such that tn →∞ and

1

tn
ln u(tn, tn yn) −(yn) � α ∀n ∈ N. (3.31)

Retreating to a suitable subsequence, we can assume yn−→n→∞y ∈ K . For n such
that |yn − y| � ε, we have, similarly to (3.28),

Py(tn+1+εtn)
(
Bεtn ∈ [tn yn − 1, tn yn + 1]) �

√
2

πεtn
inf

x∈[tn yn−1,tn yn+1] e
− (x−y(tn+1+εtn ))2

2εtn

�
√

2

πεtn
exp

{
− (1+ y)2

2εtn
(tnε + 1)2

}
.

Therefore, taking advantage of (3.27) again and using an argument as in the deriva-
tion of (3.29), we infer that

u(tn + 1+ εtn, (tn + 1+ εtn)y) � c1 · u(tn, tn yn) ·
√

1

εtn
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exp
{
εeitn − (1+ y)2

2εtn
(tnε + 1)2

}
(3.32)

for all n such that |yn− y| � ε. Now recall that yn−→n→∞y, that is continuous,
as well as 1

t ln u(t, t y)−→t→∞(y). Therefore, first taking logarithms, dividing
by tn , and then taking n → ∞, the left-hand side in (3.32) converges to (1 +
ε)(y). Contrarily, by (3.31), the limit of the right-hand side is bounded from

below by (y)+ α + εei− (1+y)2

2 ε. Choosing ε > 0 small enough, this leads to
a contradiction. As a consequence, we deduce the uniform convergence on K .

3.4. Time perturbation

In the next step we prove perturbation results, i.e., the time and space pertur-
bation Lemmas 3.11 and 3.12. These statements will be useful when comparing
the expected number of particles of the BBMRE which are slightly slower or faster
than the ones with given velocity. As usual, u = uu0 denotes the solution to (PAM)
with initial condition u0 ∈ IPAM.

Lemma 3.11. (a) Let u0 ∈ IPAM and let ε : (0,∞) → (0,∞) be a function
such that ε(t) → 0 and tε(t) → ∞ as t → ∞. Then there exists C10 =
C10((ε(t))t�0, u0) such that P-a.s., for all t large enough,

sup
(v,h)∈Et

∣∣∣ ln
(uu0(t + h, vt)

uu0(t, vt)

)
−h(es−η(v))

∣∣∣ � C10+C10|h|
(√

ln t

t
+ |h|

t

)

,

(3.33)

where Et :=
{
(v, h) : v ∈ V, |h| � tε(t), vt

t+h ∈ V
}
.

(b) For all ε > 0 and u0 ∈ IPAM there exists a constant C11 > 1 and a P-a.s. finite
random variable T1 such that for all t � T1, uniformly in 0 � h � t1−ε, v ∈ V
and vt

t+h ∈ V,

C−1
11 e

h/C11uu0(t, vt) � uu0(t + h, vt) � C11e
C11huu0(t, vt). (3.34)

Proof. (a) Note that it suffices to show the claim for u0 = 1(−∞,0]. Indeed, for all
u0 ∈ IPAM we have δ′1[−δ′,0] � u0 � C ′1(−∞,0]. Using Corollary 3.9, we infer
that for all u0 ∈ IPAM, all v ∈ V, and all t large enough

δ′C−2
9 u1(−∞,0](t, vt) � uu0(t, vt) � C ′u1(−∞,0](t, vt).

where uu0 denotes the solution to (PAM) with initial condition u0.
by the same argument as at the end of the proof of Theorem 1.3, the solutions to

(PAM) for different initial conditions u0 ∈ IPAM differ at most by a multiplicative
constant. Let t be large enough such thatHvt occurs for all v ∈ V , which is possible
by (2.23). Letting (v, h) ∈ Et and writing v′ := vt

t+h ∈ V, we infer that

u1(−∞,0](t + h, vt)

u1(−∞,0](t, vt)
=

Evt

[
e
∫ t+h
0 ξ(Bs )ds; Bt+h � 0

]

Evt

[
e
∫ t
0 ξ(Bs )ds; Bt � 0

]
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= ees·h
Evt

[
e
∫ t+h
0 ζ(Bs )ds; Bt+h � 0

]

Evt

[
e
∫ t
0 ζ(Bs )ds; Bt � 0

] . (3.35)

Using Lemma 3.7, on Hvt , the last fraction divided by
Y≈

v′ (vt)
Y≈

v (vt) is bounded away
from 0 and infinity for all t large enough. As in the derivation of (3.12), the term
Y≈

v′ (vt)
Y≈

v (vt) can be written as

E
ζ,η

ζ
vt (v

′)
vt

[
exp

{
− η

ζ
vt (v

′)
∑vt

i=1 τ̂i

}
;∑vt

i=1 τ̂i ∈
[
− K , 0

]]

E
ζ,η

ζ
vt (v)

vt

[
exp

{
− η

ζ
vt (v)

∑vt
i=1 τ̃i

}
;∑vt

i=1 τ̃i ∈
[
− K , 0

]]

×
exp

{
− vt

(
η

ζ
vt (v

′)
v′ − L

ζ

vt (η
ζ
vt (v

′))
)}

exp
{
− vt

(
η

ζ
vt (v)

v
− L

ζ

vt (η
ζ
vt (v))

)} , (3.36)

where τ̂i = τi−E
ζ,η

ζ
vt (v

′)
vt [τi ] and τ̃i := τi−E

ζ,η
ζ
vt (v)

vt [τi ]. But now, since v′ ∈ V, as
in the proof of Proposition 3.5, the first fraction of the previous display is bounded
from below and above by positive constants, for all t large enough. Indeed, setting
x = vt in (3.13), the denominator in (3.36) equals the integral in (3.13) and,
replacing v by v′ in (3.13), the numerator equals the integral in (3.13). The claim
then follows due to Lemma 3.6 and using (3.8). Therefore, taking logarithms in
(3.35) and recalling the definition of Sζ,v

vt (η) in (3.4), according to the previous
considerations it suffices to show that the logarithm of the second fraction in (3.36)
plus η(v) · h, i.e.
(
Sζ,v
vt
(
η

ζ
vt (v)

)− Sζ,v
vt
(
η

ζ
vt (v

′)
))+ (Sζ,v

vt
(
η

ζ
vt (v

′)
)− Sζ,v′

vt
(
η

ζ
vt (v

′)
))+ η(v) · h,

(3.37)

satisfies bound on the right-hand side of (3.33), uniformly in (v, h) ∈ Et . Recall
that 1

v′ = 1
v

(
1+ h

t

)
, thus the second summand in (3.37) is−h ·ηζ

vt (v
′). The triangle

inequality entails

|ηζ
vt (v

′) − η(v)| � |ηζ
vt (v

′) − η(v′)| + |η(v′)− η(v)|, (3.38)

and so by Lemma 2.5, uniformly for v′ ∈ V and t large enough, the first term on the

right-hand side of (3.38) can be upper bounded byC2

√
ln vt
vt ,P-a.s. Furthermore, by

Lemma 2.4(d) we know that η is continuously differentiable and strictly decreasing,
having uniform positive bounds of the derivative on every bounded subinterval of
(vc,∞). Hence, η(·) is Lipschitz continuous on V and we therefore get that the
second summand in (3.38) can be upper bounded by c1|v − v′| = c1v

|h|
|t+h| =

c1v
|h|
t · t

|t+h| � c2
|h|
t , uniformly for all v, v′ ∈ V and all t large enough, where the

last inequality is due to |h|/t � ε(t) → 0. Therefore, the absolute value of the sum

of the second and third summand in (3.37) is upper bounded byC10|h|
(√ ln t

t + |h|
t

)

with C10 := c2 ∨ C2.
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It remains to show that the first summand in (3.37) tends to 0 as t tends to∞.
We write

Sζ,v
vt
(
η

ζ
vt (v

′)
) = Sζ,v

vt
(
η

ζ
vt (v)

)+ (ηζ
vt (v

′) − η
ζ
vt (v)

)(
Sζ,v
vt
)′(

η
ζ
vt (v)

)

+ 1

2

(
η

ζ
vt (v

′) − η
ζ
vt (v)

)2(
Sζ,v
vt
)′′

(̃η)

for some η̃ ∈ [ηζ
vt (v

′) ∧ η
ζ
vt (v), η

ζ
vt (v

′) ∨ η
ζ
vt (v)]. Recall that Sζ,v

vt (η) = vt
( η

v
−

L
ζ

vt (η)
)
and by definition

(
L

ζ

vt

)′(
η

ζ
vt (v)

) = 1
v
. Thus,

(
Sζ,v
vt
)′
(η

ζ
vt (v)) = 0. Further-

more,
(
Sζ,v
vt
)′′

(η) = −vt
(
L

ζ

vt

)′′
(η) and the function

(
L

ζ

vt

)′′ is uniformly bounded
away from 0 and infinity by Lemma A.1 on V . As a consquence, by the character-
izing equation (2.15) and the implicit function theorem, onHvt , the function η

ζ
vt (·)

is differentiable with uniformly bounded first derivative, i.e.

∣∣ηζ
vt (v

′) − η
ζ
vt (v)

∣∣ � c3|v′ − v| � c3v
|h|

t (1− ε(t))
. (3.39)

Thus, onHvt , the first summand in (3.37) can be bounded by c4 · t · h2

t2
= c4 · h2

t ,

uniformly in (v, h) ∈ Et , for all t large enough. This implies (a).

(b) The first part of the proof is similar to that of (a); indeed, dividing by
uu0(t, vt) and taking logarithms in (3.34), one arrives at (3.37) again. The second
part then consists of showing that (3.37) is lower and upper bounded by two strictly
increasing linear functions for all 0 < h � t1−ε. Following the same computations
as in the proof of (a), for v ∈ V , and h > 0 such that v′ ∈ V , we have up to some
additive constant, which is independent of h, that

ln
uu0(t + h, vt)

uu0(t, vt)
� ct

vt

2
(v − v′)2 − η

ζ
vt (v

′) · h + es · h,

where ct is a function which for t large enough is positive and bounded away from
0 and infinity. Because η

ζ
vt (v

′) < 0 is negative as well as bounded away from 0 and
minus infinity, the second expression in the previous display is bounded from below
by h/C11 and bounded from above by C11 · h, some constant C11 large enough, for
our choice of parameters, and hence we can conclude.

3.5. Space perturbation

While in the previous subsection we have been investigating the effects of time
perturbations of u and related quantities, here we will consider space perturbations.
As before, let uu0 denotes the solution to (PAM) with initial condition u0 ∈ IPAM.

Lemma 3.12. Let ε(t) be a positive function such that ε(t) → 0 and tε(t)
ln t →∞ as

t →∞. Then for all ε > 0 there exists C(ε) > 0 such that P-a.s., for all u0 ∈ IPAM
we have
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(a)

lim sup
t→∞

sup

{∣∣∣∣
1

h
ln

(
u(t, vt + h)

u(t, vt)

)
− L

(
η(v)

)
∣∣∣∣ : (v, h) ∈ Et

}
� ε,

(3.40)

where Et :=
{
(v, h) : v, v + h

t ∈ V, C(ε) ln t � |h| � tε(t)
}
.

(b) Let ε(t) be a positive function such that ε(t) → 0. Then there exists a constant
C12 < ∞ and a P-a.s. finite random variable T2 such that for all t � T2,
uniformly in 0 � h � tε(t), v ∈ V , v + h

t ∈ V and u0 ∈ IPAM we have

C−1
12 e

−C12h · u(t, vt) � u(t, vt + h) � C12e
−h/C12 · u(t, vt). (3.41)

The proof of Lemma 3.12 can be found in the companion article [10]; indeed, it
is central to the results of [10] and we hence prefer not to duplicate it here due to
space constraints.

3.6. Approximation results

In this section we mainly show how moment generating functions can be used
in order to approximate quantities related to the solution to (PAM) and expectations
of BBMRE. As usual, for u0 ∈ IPAM let uu0 be the solution to (PAM) with initial
condition u0.

Lemma 3.13. There exists a constant C13 > 0 and a P-a.s. finite random variable
T3 such that for all u0 ∈ IPAM and t � T3,

∣∣∣ ln uu0(t, v0t)−
v0t∑

i=1

(
Lζ
i (η(v0)) − L(η(v0))

)∣∣∣ � C13 ln t. (3.42)

Proof. By (3.23) and (v0) = 0, we have L∗(1/v0) = es
v0
. Also, by (PAM-INI)

and the monotonicity of the solution to (PAM) in its initial condition, we have
uδ′1[−δ′,0] � uu0 � uC

′1(−∞,0] . Thus, on the one hand, by the many-to-few lemma
(Proposition 2.3) and Lemma 3.7, for all u0 ∈ IPAM and t such that v0t � N1,
where N1 was defined in (2.23), we have

∣∣ln uu0(t, v0t)−
(
ln Y≈

v0
(v0t)+ v0t L

∗(1/v0)
)∣∣ � ln(C9/δ

′).

On the other hand, due to Proposition 3.5 and Corollary 3.4, there exists a finite
random variable N , such that for all t � N we have

∣∣∣ ln Y≈
v0

(v0t) + v0t L
∗(1/v0) + ln σ

ζ
v0t (v0) −

v0t∑

i=1

(
Lζ
i (η(v0)) − L(η(v0))

)∣∣∣

� lnC7 + C5 ln v0 + C5 ln t.

Finally, by (3.8), | ln σ
ζ
v0t (v0)− 1

2 ln t | � lnC6 + 1
2 | ln v0| for all t such that v0t �

N1. Combining this with the previous two displays, inequality (3.42) follows with
T3 := (N ∨N1)/v0 and C13 suitable.
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We introduce the so-called breakpoint inverse

T u0,a
x := inf

{
t � 0 : uu0(t, x) � a

}
, x ∈ R, a ∈ [0,∞), u0 ∈ IPAM, (3.43)

and abbreviate
T (a)
x := T

1(−∞,0],a
x . (3.44)

Next, we state an important approximation result for T u0,a
x , x � 0, in terms of the

centered logarithmic moment generating functions.

Lemma 3.14. There exists a constant C14 < ∞ and a P-a.s. finite random variable
C1 = C1(a, u0), a > 0, u0 ∈ IPAM, such that for all x � 1,

∣∣∣T u0,a
x − 1

v0L(η(v0))

x∑

i=1

Lζ
i (η(v0))

∣∣∣ � C1 + C14 ln x . (3.45)

Additionally, for each u0 ∈ IPAM and a > 0,

lim
x→∞

T u0,a
x

x
= 1

v0
P-a.s. (3.46)

Proof. We set t = x/v0 and let

ht := 1

v0L(η(v0))

v0t∑

i=1

(
L(η(v0) − Lζ

i (η(v0))
)
.

Wefirst note that due to LemmaA.2, the family (L(η(v0))−Lζ
i (η(v0)))i∈Z satisfies

the assumptions of Corollary A.5 with all mi equal to some large enough finite
constant and thus

∑
n P(|hn| � C

√
n ln n) < ∞ for some C > 1 large enough.

The first Borel-Cantelli lemma then readily supplies uswith |hn| < C
√
n ln n P-a.s.

for all n large enough. To control non-integer t , we recall

ht − h�t� = 1

v0L(η(v0))

(
v0(t − �t�)L(η(v0)) − ln Ev0t

[
e
∫ Hv0�t�
0 (ζ(Bs)+η(v0))ds

])

and hence P-a.s. that |ht − h�t�| � 1+
√
2(es−ei−η(v0))

|L(η(v0))| by (BDD) and [4, (2.0.1),
p. 204], thus giving

|ht | < c1
√
t ln t P-a.s. for all t large enough. (3.47)

To show the desired inequality, we note that (3.45) is equivalent to
∣∣T u0,a

v0t − (t − ht )
∣∣ � C1 + C14 ln(v0t). (3.48)

For proving the latter, observe that it is sufficient to show that we can choose
C14 > 0 as well as a P-a.s. finite random variable T , such that

uδ′1[−δ′,0](t − ht + C14 ln t, v0t) � a and

u1(−∞,0](t − ht − C14 ln t, v0t) <
a

2C ′ , ∀t � T .
(3.49)
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with δ′,C ′ from (PAM-INI). Indeed, due to (PAM-INI), the first inequality in (3.49)

implies T u0,a
v0t � T

δ′1[−δ′,0],a
v0t � t − ht + C14 ln t for t � T . To use the sec-

ond inequality, first note that T u0,a
v0t � T

C ′1(−∞,0],a
v0t = T

1(−∞,0],a/C ′
v0t . Then, using

u1(−∞,0](s, x) = Eξ
x
[
N�(s, 0)

]
and Lemma A.6, (3.49) implies T

1(−∞,0],a/C ′
v0t �

t − ht −C14 ln t for all t � T . For t < T on the other hand, we can use that P-a.s.,
the family T u0,a

v0t , t < T , as well as the Lζ
i (η(v0)) are uniformly bounded, allowing

us to upper bound the remaining cases of (3.48) by some finite random variable C1.
Thus, in order to show (3.49), note that for α ∈ R and uniformly in u0 ∈ IPAM

we have that

ln uu0 (t − ht + α ln t, v0t)

= ln
(uu0 (t − ht + α ln t, v0t)

uu0 (t, v0t)

)
+

v0t∑

i=1

(
Lζ
i (η(v0))− L(η(v0))

)+ at

= (−ht + α ln t)(es− η(v0))+ v0L(η(v0))ht + b(α, t) = α(es− η(v0)) ln t + b(α, t),

for some error terms at and b(α, t) fulfilling |at | � C13 ln t and

|b(α, t)| � C13 ln t + C10 + C10 · |α ln t − ht | ·
(√

ln t

t
+ |α ln t − ht |

t

)

for all t large enough. Indeed, the first equality is due to Lemma 3.13, the second
due to the time perturbation Lemma 3.11, the last one due to the identity es −
η(v0) = v0L(η(v0)). Then due to |ht | � c1

√
t ln t for large t [cf. (3.47)], choosing

C14 = α > 2C10·C2

es−η(v0)
the latter term tends to infinity, supplying us with (3.49).

To complete the proof, equation (3.46) is a direct consequence of (3.45) and
(2.9).

Recall the definition mu0,a = mξ,u0,a from (1.6).

Corollary 3.15. For all u0 ∈ IPAM and a > 0 we have

mu0,a(t)

t
−→
t→∞ v0 P-a.s. (3.50)

Proof. For an upper bound, we have lim supt→∞
mu0,a(t)

t = lim supt→∞
mu0,a(t)
T
u0,a

mu0,a (t)

T
u0,a

mu0,a (t)
t � v0, where the last inequality is due to T u0,a

mu0,a(t) � t and (3.46). To
get a lower bound, we can use the properties of the Lyapunov exponent from
Proposition A.3, giving lim inf t→∞ mu0,a(t)

t � v for all v ∈ (0, v0), and we can
conclude.

Lemma 3.16. For every a > 0 there exists a constant C15 = C15(a) > 0 and a
P-a.s. finite random variable T4 = T4(a) such that for all u0 ∈ IPAM and t � T4,

t − C15 � T u0,a
mu0,a(t) � t. (3.51)
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Proof. By definition, the inequality T u0,a
mu0,a(t) � t follows directly. To show t −

C15 � T u0,a
mu0,a(t), recall that due to (3.50) we can use time perturbation. Indeed,

by defining C15 := C11 ln
(
C11 · 3C ′/a

)
with C ′ from (PAM-INI) and C11 from

Lemma 3.11(b), for all t large enough

u1(−∞,0](t − C15,m
u0,a(t)) � C11e

−C15/C11uu0(t,mu0,a(t)) <
a

2C ′

and thus, recalling u1(−∞,0](s, x) = Eξ
x
[
N�(s, 0)

]
and Lemma A.6, we get the

lower bound T u0,a
mu0,a(t) � T

C ′1(−∞,0],a
mu0,a(t) = T

1(−∞,0],a/C ′
mu0,a(t) � t − C15 for all t large

enough and we can conclude.

Recall definition (3.44) for T (a)
x .

Corollary 3.17. There exists K ∈ (1,∞) such that P-a.s., for all a > 0 and for all
x large enough

sup
|y|�1

T (a)
x+y − K � T (a)

x � inf
|y|�1

T (a)
x+y + K . (3.52)

Proof. We set K := 1+ C11
(
ln(2C11C12) + C12

)
. Then due to (3.46), P-a.s. for

all x large enough we have

x + y′

T (a)

x+y′′ ± K
∈ V ∀ y′, y′′ ∈ [−1, 1].

This allows us to apply the inequalities (3.34) and (3.41) for u0 = 1(−∞,0]. Indeed,
for all |y| � 1,

u(T (a)
x+y − K , x) � C12e

C12u
(
T (a)
x+y − K , x + y

)

� C12e
C12C11e

−(K−1)/C11u
(
T (a)
x+y − 1, x + y

)
<

a

2
,

where the first inequality is due to (3.41), the second one due to (3.34) and the
last one uses u(T (a)

x+y − 1, x + y) < a. By Lemma A.6 we get u(t, x) < a for all

t � T (a)
x+y − K and thus the left-hand side in (3.52). Analogously, first applying

(3.41) and then (3.34), we have

u
(
T (a)
x+y + K , x

)
� C−1

12 e
−C12u

(
T (a)
x+y + K , x + y

)
� C−1

12 e
−C12C−1

11 e
K/C11u

(
T (a)
x+y, x + y

)
� a

for all |y| � 1, giving the right-hand side of (3.52).

Corollary 3.18. Let ma(t) = mξ,1(−∞,0],a(t), a > 0, be defined in (1.6). Then for
all 0 < ε � M there exists C = C(ε, M) such that P-a.s. for all t large enough

0 � mε(t)− mM (t) � C.

Proof. The first inequality is clear. By Corollary 3.15, we can use the second
inequality from Lemma 3.12(b) and get the claim by defining C := C12 ln

(
C12 ·

M/ε
)
with C12 from Lemma 3.12(b) to get u1(−∞,0](t,mε(t) − C) � M and thus

mM (t) � mε(t)− C for all t large enough.
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3.7. Proof of Theorem 1.4

Using the preparatory results from the previous sections, it is now possible
to obtain an invariance principle for the front of the solution to (PAM). Roughly
speaking, up to some error which can be controlled by the results from the previous
sections, we have m(t) ≈ ln u(t, v0t) and can then use the invariance principle
from Theorem 1.3 to conclude.

Proof of Theorem 1.4. Let u0 ∈ IPAM, a > 0 and abbreviate u = uu0 and m :=
mu0,a . We first assume σ 2

v0
> 0. Then we have to show that the sequence of

processes

[0,∞) 	 t �→ m(nt)− v0nt√
nσ̃ 2

v0

, n ∈ N, (3.53)

where σ̃ 2
v0

> 0 is given in (3.58) below, converges in P-distribution to standard
Brownian motion in the Skorohod space D([0,∞)). Notice that [0,∞) 	 t �→
m(t) might not be càdlàg only in 0. To avoid this issue, the above convergence is
defined as convergence of the sequence of processes in (3.53) where in a slight
abuse we redefine m(t) ≡ 0 for t such that m(t) � 0, making it càdlàg.

Due to the limiting behavior and the continuity of x �→ u(t, x) for t > 0, the
value r(t) := m(t)− v0t is the largest solution to

ln u(t, v0t + r(t)) = − ln 2.

We define

L(t, h) := ln
u(t, v0t + h)

u(t, v0t)
, t > 0, h ∈ R,

U (t) := − ln u(t, v0t)− ln 2 = L(t, r(t)), t � 0,

let
δ ∈ (0, |L(η(v0))|

)

and ε(t) be a positive function such that ε(t) → 0 and ε(t)t1/2 → ∞. Then by
Lemma 3.12, there is C(ε) > 0 such that for t large enough and all h ∈ R fulfilling
C(ε) ln t � |h| � ε(t)t and v0 + h

t ∈ V we have

−(|L(η(v0))| + δ
)
h � L(t, h) � −(|L(η(v0))| − δ

)
h. (3.54)

Now, multiplying (3.45) by v0, replacing x by m(t) in (3.45) and recalling that
t − C15 � Tm(t) � t by Lemma 3.16, we get

∣∣∣(m(t)−v0t)− 1

L(η(v0))

m(t)∑

i=1

(
Lζ
i (η(v0))−L(η(v0))

)∣∣∣ � v0C1+C15+v0C14 ln(m(t))

(3.55)
for all t large enough. Next, recall that m(t)

t → v0 by Corollary 3.15 and that the

standardized sum 1√
n

∑nt
i=1

(
Lζ
i (η(v0)) − L(η(v0))

)
converges in distribution to

a non-degenerate Gaussian random variable by Lemma 3.2. As a consequence, in
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combination with (3.55), we infer that |r(t)| = |m(t) − v0t | ∈ [C(ε) ln t, ε(t)t]
with probability tending to 1 as t tends to infinity. This and (3.54) implies

r(t) ∈
[ U (t)

|L(η(v0))| ∓ δ
,

U (t)

|L(η(v0))| ± δ

]
, (3.56)

with probability tending to 1 as t tends to ∞, where the upper sign is chosen if
U (t) > 0 and the lower sign if U (t) < 0. If σ 2

v0
> 0, due to (v0) = 0 and

Theorem 1.3, the sequence of processes

[0,∞) 	 t �→ 1
√
nv0σ 2

v0

U (nt), n ∈ N, (3.57)

converges in P-distribution to standard Brownian motion. Because (3.56) holds for
all δ > 0 small enough, Theorem 1.4 is a direct consequence of the convergence in
distribution of (3.57) by choosing

σ̃v0 :=
√

σ 2
v0

v0

|L(η(v0))| , (3.58)

where σ 2
v0
is defined in (3.1). This gives the second part of Theorem 1.4. If σ 2

v0
= 0,

we can proceed analogously and the first part of Theorem 1.4 follows from the first
part of Theorem 1.3 and (3.56).

4. Log-Distance of the Fronts of the Solutions to PAM and F-KPP

We finally prove our last main result, Theorem 1.5. In Sects. 4.1 and 4.2, we
will assume that u0 = w0 = 1(−∞,0]. Indeed, using a comparison argument in the
proof of Theorem 1.5, it will turn out that this is actually sufficient for or purposes.
Let us emphasize again that the tools we employ are inherently probabilistic. As a
consequence, and for notational convenience, we will mostly formulate the respec-
tive results in terms of the BBMRE in what follows below; the correspondence to
the results in PDE terms is immediate from (2.2) and Remark 2.2.

In the case u0 = w0 = 1(−∞,0], using Markov’s inequality we infer

Pξ
x

(
N�(t, 0) � 1

)
� Eξ

x

[
N�(t, 0)

]

and thus m(t) � m(t) for all t � 0, which establishes the first inequality in (1.16).
The rest of this section will be dedicated to deriving the second inequality in (1.16),
i.e., that the front of the randomized F-KPP equation lags behind the front of the
solution of the parabolic Anderson model at most logarithmically. We introduce
some notation and, recalling the notation Xν introduced before (2.1), start with
considering certain “well-behaved” particles

NL,a
s,u,t :=

∣∣{ν ∈ N (s) : Xν
s � 0, H ν

k � u − T (a)
k − 5χ1(m

a(t)) ∀k ∈ {1, . . . , �ma(t)�}}∣∣,
a > 0, s, t, u � 0;

(4.1)
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here, H ν
k := inf{t � 0 : Xν

t = k}, the random variables T (a)
k have been defined in

(3.44), and we set

χb(x) := C1 + b(1+ K + C15)+ C14(ln x ∨ 1), x ∈ (0,∞), b ∈ R, (4.2)

whereC1 andC14 have been defined inLemma3.14, K is taken fromCorollary 3.17,
the constant C15 from Lemma 3.16. We abbreviate NL

t := NL
t,t,t and call the parti-

cles contributing to NL
t leading particles at time t . Cauchy-Schwarz immediately

gives

Pξ
x

(
N�(t, 0) � 1

)
� Pξ

x

(
NL
t � 1

)
�

Eξ
x
[
NL
t

]2

Eξ
x
[(
NL
t
)2] . (4.3)

The next two sections are dedicated to deriving an upper bound for the denominator
and a lower bound for the numerator of the right-hand side, both for x in a neigh-
borhood of m(t). These bounds will then form a key part in the proof of Theorem
1.5 in Sect. 4.3, together with a so-called amplification argument.

4.1. First moment of leading particles

The biggest chunk of this section will consist of proving the following first
moment bound on the number of leading particles. Recall the notation ma(t) from
(1.7).

Lemma 4.1. For all a > 0 there exists γ1 = γ1(a) ∈ (0,∞) such that P-a.s., for
all t large enough

inf
x∈[ma(t)−1,ma(t)+1]

Eξ
x

[
NL,a
t
]

� t−γ1 .

Proof. Let a > 0. To simplify notation, we will omit the index a > 0 in the
quantities involved and write NL

s,u,t := NL,a
s,u,t , T

(a)
x := Tx , ma(t) := m(t) from

now on.
Let Au,t := {Hk � u − Tk − 5χ1(m(t)) ∀k ∈ {1, . . . , �m(t)�}}, let K be such

that (3.17) holds and set t := T�m(t)�. We obtain for all t large enough that

inf
x∈[m(t)−1,m(t)+1]E

ξ
x

[
NL
t

]
�

infx∈[m(t)−1,m(t)+1] Eξ
x
[
NL
t

]

2Eξ

�m(t)�
[
N�(t, 0)

] � c

2

Eξ

�m(t)�
[
NL
t−1,t,t+1

]

Eξ

�m(t)�
[
N� (t, 0

)]

= c

2

E�m(t)�
[
e
∫ t−1
0 ξ(Bs )ds; Bt−1 � 0, At+1,t

]

E�m(t)�
[
e
∫ t
0 ξ(Bs )ds; Bt � 0

]

� c1
E�m(t)�

[
e
∫ t−1
0 ζ(Bs )ds; Bt−1 � 0, At+1,t

]

E�m(t)�
[
e
∫ t
0 ζ(Bs )ds; Bt � 0

] ;

(4.4)

here, the first inequality follows from the definition of T�m(t)�, the second inequal-
ity is due to Lemma A.7, the equality follows using Proposition 2.3 and the last
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inequality is due to ξ = ζ + es, as well as (3.52) which gives t = T�m(t)� �
Tm(t) + K � t + K . The numerator can be bounded from below by

E�m(t)�
[
e
∫ t−1
0 ζ(Bs )ds ; H0 ∈ [t − 3K − C15, t − 1], Bt−1 � 0, At+1,t

]

� E�m(t)�
[
e
∫ H0
0 ζ(Bs )ds E0

[
e
∫ r
0 ζ(Bs )ds; Bt−1−r � 0

]∣∣∣
r=t−1−H0

; H0 ∈ [t − 3K − C15, t − 1], At+1,t

]

� c2E�m(t)�
[
e
∫ H0
0 ζ(Bs )ds ; H0 ∈ [t − 3K − C15, t − 1], At+1,t

]
,

where the second inequality is due to ζ � −(es − ei) and P0(Bs � 0) � 1/2
for all s � 0. Now using the inclusion {Bt � 0} ⊂ {H0 � t} in combination

with ζ � 0, we infer E�m(t)�
[
e
∫ t
0 ζ(Bs )ds; Bt � 0

]
� E�m(t)�

[
e
∫ H0
0 ζ(Bs )ds; H0 � t

]
.

Thus, recalling η(v0) < 0 and (2.5), we can continue to lower bound (4.4) via

inf
x∈[m(t)−1,m(t)+1]E

ξ
x

[
NL
t

]
� c3

E
ζ,η(v0)�m(t)�

[
e−η(v0)H0 ; H0 ∈ [t − 3K − C15, t − 1], At+1,t

]

E
ζ,η(v0)�m(t)�

[
e−η(v0)H0 ; H0 � t

]

� c4
P

ζ,η(v0)�m(t)�
(
H0 ∈ [t − 3K − C15, t − 1], Hk � t + 1− Tk − 5χ1(m(t)), ∀1 � k � �m(t)�

)

P
ζ,η(v0)�m(t)�

(
H0 � t

)

� c4P
ζ,η(v0)�m(t)�

(
H0 ∈ [t − 2K , t − K − 1], Hk � t − Tk − 5χ0(m(t)), ∀1 � k � �m(t)�

)
,

where the last inequality is due to t � Tm(t) � t − K and t � Tm(t) − C15 − K
[by (3.52) and (3.51)]. Now as we recall that �m(t)�

t → v0, abbreviating η = η(v0),
n := �m(t)� and thus t = Tn , we see that in order to finish the proof, it suffices to
show that there exists γ ∈ (0,∞) such that P-a.s., for all n ∈ N large enough,

Pζ,η
n

(
H0 ∈ [Tn−2K , Tn−K−1], Hk � Tn−Tk−5χ0(n) ∀k ∈ {1, . . . , n} ) � n−γ .

(4.5)
Using the notation

Ĥ (n)
k := Hk − Eζ,η

n [Hk] as well as R(n)
k := Tn − Tk − Eζ,η

n [Hk] , (4.6)

the probability in (4.5) can be rewritten as

Pζ,η
n

(
Ĥ (n)
0 ∈ [R(n)

0 − 2K , R(n)
0 − K − 1], Ĥ (n)

k � R(n)
k − 5χ0(n) ∀k ∈ {1, . . . , n} ).

(4.7)

In order to facilitate computations, we approximate the sequence (R(n)
k ) by a sta-

tionary one, setting

ρi := Lζ
i (η)

v0L(η)
− (Lζ

i )
′(η) = 1

v0L(η)

(
Lζ
i (η)− L(η)

)− (Eζ,η
n [τi−1] − E[Eζ,η

n [τi−1]]
)
and

(4.8)

R̂(n)
k :=

n∑

i=k+1

ρi , k < n, (4.9)
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where τi−1 = Hi−1 − Hi , and in the equality we used Eζ,η
n [τi−1] = (Lζ

i )
′(η) and

E[Eζ,η
n [Hk]] = n−k

v0
. Applying inequality (3.45) from Lemma 3.14 and using the

identity E[Eζ,η
n [Hk]] = n−k

v0
, we get that P-a.s.,

∣∣R(n)
k − R̂(n)

k

∣∣ � 2 (C1 + C14 ln n) for all n ∈ N and each k ∈ {0, . . . , n}.
(4.10)

From now on we will write χ := χ0. Then by (4.10), the probability in (4.7) can
be lower bounded by

Pζ,η
n

(
Ĥ (n)
0 ∈ [R(n)

0 − 2K , R(n)
0 − K − 1]; Ĥ (n)

k � R̂(n)
k − 3χ(n) ∀k ∈ {1, . . . , n} ).

(4.11)

Now, for every n, enlarging the underlying probability space if necessary, we intro-
duce two processes (B(i,n)

t )t�0, i = 1, 2, which are independent from everything
else and Brownian motions under Pn , starting in n, and, without further formal
definition, we tacitly assume in the following that the tilting of the probability mea-
sure Pζ,η

n of our original Brownian motion also applies to (B(i,n)
t )t�0, i = 1, 2, in

the obvious way. For i = 1, 2, let H (i,n)
k := inf{t � 0 : B(i,n)

t = k}, k ∈ Z, be

the corresponding hitting times, Ĥ (i,n)
k := H (i,n)

k − Eζ,η
n [H (i,n)

k ] and let �n be a
random variable which, under Pn , is uniformly distributed on {1, . . . , n − 1} and
independent of everything else. We define

β
(i,n)
k := Ĥ (i,n)

k − R̂(n)
k , k = n − 1, n − 2, . . . , i = 1, 2,

β
(n)
k :=

{
β

(1,n)
k , �n � k < n,

β
(1,n)
�n

+ (β(2,n)
k − β

(2,n)
�n

)
, k < �n .

The ξ -adaptedness of the process (R̂(n)
k )k<n implies that the processes (β

(i,n)
k )k<n ,

i = 1, 2, are Pζ,η
n -independent and have the same distribution as (β

(n)
k )k<n . We

can therefore rewrite (4.11) as

Pζ,η
n

(
β

(n)
k � −3χ(n) ∀k ∈ {1, . . . , n} , β(n)

0 ∈ In
)

, (4.12)

where In :=
[
R(n)
0 − R̂(n)

0 − 2K , R(n)
0 − R̂(n)

0 − K − 1
]
. Due to (4.10) we have that

P-a.s. for all n large enough, R(n)
0 − R̂(n)

0 − 2K � −3χ(n), i.e.

In ⊂ [−3χ(n),∞). (4.13)

For each k ∈ {0, . . . , n} we introduce
β

(1,n)

k := β
(1,n)
n−1−k − β

(1,n)
n−1 , β

(2,n)

k := β
(2,n)
k − β

(2,n)
0 ,

and note that
β

(n)
0 = β

(1,n)

n−1−�n
− β

(2,n)

�n
+ β

(1,n)
n−1 . (4.14)

An illustration of the various processes introduced above is given in Fig. 4 below.
Now the key to bound the probability in (4.12) is the following lemma.
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Lemma 4.2. (a) There exists γ ′ < ∞ such that P-a.s. for all n large enough,

Pζ,η
n

(
β

(1,n)

k � 0 ∀0 � k � n, β
(1,n)

n � n1/4
)

� n−γ ′
, and

Pζ,η
n

(
β

(2,n)

k � 0 ∀0 � k � n, β
(2,n)

n � n1/4
)

� n−γ ′
.

(b) There exists C(γ ′) > 0 such that P-a.s. for all n large enough,

Pζ,η
n

(
max

1�k�n,i∈{1,2}
∣∣β(i,n)

k − β
(i,n)
k−1

∣∣ � C(γ ′) ln n
)

� 1− n−3γ ′
. (4.15)

(c) Let δ ∈ (0, 1). There exists c > 0 such that for all x � 1 and all n ∈ Z,

Pζ,η
n

(
β

(1,n)
n−1 ∈ [x, x + δ]) � cδe−x/c.

Before proving Lemma 4.2 we will finish the current proof in order not to interrupt
the Reader. To this end let

Jn := sup
{
k ∈ {1, . . . , n − 1} : In − β

(1,n)

n−k+1 + β
(2,n)

k ⊂ [0, 2C(γ ′) ln n]},
where as always sup∅ := −∞. We have

{
β

(n)
k � −3χ(n) ∀0 � k � n − 1, β

(n)
0 ∈ In

}

⊃
({

β
(1,n)

k � 0 ∀0 � k � n, β
(1,n)

n � n1/4
} ∩ { max

1�k�n

∣∣β(1,n)

k − β
(1,n)

k−1

∣∣ � C(γ ′) ln n
}

∩ {β(2,n)

k � 0 ∀0 � k � n, β
(2,n)

n � n1/4
} ∩ { max

1�k�n

∣∣β(2,n)

k − β
(2,n)

k−1

∣∣ � C(γ ′) ln n
}

∩ {β(1,n)
n−1 ∈ In − β

(1,n)

n−1−�n
+ β

(2,n)

�n

} ∩ {�n = Jn}
)
. (4.16)

Indeed, due to (4.14), the fifth event on the right-hand side of (4.16) entails that
β

(n)
0 ∈ In must hold. On the last two events on the right-hand side of (4.16) we

have β
(1,n)
n−1 � 0 and thus the first event on the right-hand side of (4.16) implies

that β(n)
k is non-negative for k � �n . The third event then implies monotonicity at

times k < �n . Since In ⊂ [−3χ(n),∞) due to (4.13), this gives the first condition
on the left-hand side of (4.16). Now the first and third event on the right hand-
side of (4.16) are independent under Pζ,η

n and their probabilities are bounded from
below by n−γ ′

due to Lemma 4.2(a). Thus, as a consequence of Lemma 4.2(b), for
n large enough the probability of the first four events is bounded from below by
n−2γ ′ − n−3γ ′

. Furthermore, the first four events imply that Jn ∈ {1, . . . , n − 1}.
Thus, due to Lemma 4.2, conditionally on the occurrence of the first four events, the
probability of the last two events on the right-hand side in (4.16) can be bounded
from below by cn−1e−C(γ ′) ln n/c � n−γ ′′

for n large enough. The proof of (4.5)
and thus of Lemma 4.1 is completed by the choice γ1 > 2γ ′ + γ ′′.

Proof of Lemma 4.2. (b) Because H (1,n)
k −H (1,n)

k−1
d= τk−1 under P

ζ,η
n , by recalling

E
[
Eζ,η
n [τk]

] = 1
n and the definition of R̂(n)

k from (4.8), we have β
(1,n)
k − β

(1,n)
k−1 =
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Fig. 4. Illustration of (4.16)

τk−1 − Lζ
k (η)

v0L(η)
. Now Lζ

k (η) is P-a.s. bounded by Lemma A.1. Furthermore, for all
θ such that |θ | � |η∗| (where � = [η∗, η∗]), we have

0 � Eζ,η
n

[
eθτk−1

] = Eζ,η
k

[
eθτk−1

]
�
(
Ek
[
e(−es+ei+η∗)Hk−1

])−1 = e
√
2(es−ei+|η∗|) < ∞,

where the last equation is due to [4, (2.0.1), p. 204]. I.e., τk has uniform exponential
moments under Pζ,η

n and thus (4.15) follows by a union bound in combination with
the exponential Chebyshev inequality.

(c)We haveβ
(1,n)
n−1 = H (1,n)

n−1 −Eζ,η
n [H (1,n)

n−1 ]− R̂(n)
n−1 = H (1,n)

n−1 −Eζ,η
n [τn−1]−ρn ,

thus recalling definition (4.8), the event in (c) is equivalent to {H (1,n)
n−1 ∈ [x, x +

δ] + Lζ
n (η)

v0L(η)
}. Because Lζ

n (η)
v0L(η)

is uniformly bounded and non-negative, it suffices to

check that for every C > 0, there exists c > 0 such that inf y∈[0,C] Pζ,η
n (H (1,n)

n−1 ∈
[x + y, x + y + δ]) � cδe−x/c for all x � 1. Indeed, recalling (2.5), we can lower
bound

Pζ,η
n

(
H (1,n)
n−1 ∈ [x + y, x + y + δ]) � En

[
e−(es−ei−η∗)Hn−1 ; H (1,n)

n−1 ∈ [x + y, x + y + δ]]

� e−(es−ei−η∗)(x+y+δ)Pn
(
H (1,n)
n−1 ∈ [x + y, x + y + δ]) � δe−(es−ei−η∗)(x+y+δ)

√
2π(x + y + δ)3

e−
1

2(x+y) ,

where the last inequality is due to [4, (2.0.2), p. 204]. Now since the latter term can
be lower bounded by cδe−x/c, uniformly in y ∈ [0,C], the claim follows.

(a) We will prove the second inequality, and explain the modifications that
are necessary to show the first one at the end of the proof. For later reference it
will serve our purposes to exclude some potentially bad behavior of the process
(R̂(n)

k − R̂(n)
k−1)k . To do so, we take advantage of the next claim, the proof of which

we provide after concluding the proof of Lemma 4.2.

Claim 4.3. For each n ∈ Z, the sequence (ρi )i∈Z consists of P-centered and P-
stationary random variables, and the family (ρi )i∈Z is bounded P-a.s. In addition,
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ρi is F i−1-adapted and there exists C16 > 0 such that P-a.s., for all k, n ∈ Z,
k < n, we have

∣∣E
[
ρn−k |Fn]∣∣ � C16 ·

(
ψ(k/2)+ e−k/C16

)
. (4.17)

Furthermore, there exists σ ∈ [0,∞) such that n−1/2∑n
l=1 ρl and n−1/2∑n

l=1 ρ−l
converge in P-distribution to σ X as n → ∞, where X ∼ N (0, 1) is a standard
Normal random variable.

Nowdue to (4.17), (ρi )i∈Z fulfills the conditions ofCorollaryA.5.As a consequence

we deduce that for k ∈ N and x � 0 we have P
(∑k

l=1 ρl � x
)

� c1e
− x2

c1k , which,
using stationarity, can be extended to the maximal inequality (e.g. by [22, Theorem
1])

P

(

max
0�k�y

(
R̂(n)
r+k − R̂(n)

r

)
� x

)

= P

(

max
0�k�y

k∑

l=0

ρl � x

)

� c2e
− x2

c2 y ∀r, y ∈ Z, x � 0.

(4.18)

Furthermore, recalling (4.6), (4.8) and (4.9), the increments of the process (β
(2,n)

k )k
can be written as

β
(2,n)

k − β
(2,n)

k−1 = (
Hk − Hk−1 − Eζ,η

n [Hk − Hk−1]
)−

(
n∑

i=k+1

ρi −
n∑

i=k

ρi

)

= (− τk−1 + (Lζ
k )

′(η)
)−

(
− Lζ

k (η)

v0L(η)
+ (Lζ

k )
′(η)

)
= Lζ

k (η)

v0L(η)
− τk−1.

Now P-a.s., by Lemma A.1(b), the last fraction in the previous display is positive
and uniformly bounded away from zero and infinity, whereas under Pζ,η

n , τk−1 is an
absolutely continuous random variable with positive density on (0,∞). Therefore,
for the constant

a := 1

4
sup
k∈Z

ess infξ
(
β

(2,n)

k − β
(2,n)

k−1

)
,

we have ess infk,n∈Z: k�n, ξ Pζ,η
n (β

(n)

k − β
(n)

k−1 � 2a) � δ for some universal

constant δ ∈ (0, 1). We now split the environment into ξ( j) := (ξ(l))l� j and

ξ( j) := (ξ(l))l< j and set t0 = t−1 := 0 as well as ti := 2i for i � 1. Furthermore,

we introduce two constants: c > 0, which is defined in (4.31) below, and C > 0,
which is independent of c and will be chosen large enough such that the sums in
(4.21) and (4.35) below are finite. For i � 1, we define the random variables

Z (n)
i := ess inf

ξ(ti+1)

inf
x�at1/2i−1

Pζ,η
n

(
β

(2,n)

ti � at1/2i , β
(2,n)

k � t1/4i ∀k ∈ {ti−1, . . . , ti }
∣∣ β(2,n)

ti−1
= x

)

= ess inf
ξ(ti+1)

Pζ,η
n

(
β

(2,n)

ti � at1/2i , β
(2,n)

k � t1/4i ∀k ∈ {ti−1, . . . , ti }
∣∣ β(2,n)

ti−1
= at1/2i−1

)
,

(4.19)

where ess inf
ξ(x)

means taking the essential infimum with respect to ξ(x), and where

the second equality is due to the monotonicity of the first probability in (4.19) as a
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function in x . Thus, as a random variable, Z (n)
i is measurable with respect to Fti+1 .

Now sinceβ
(2,n)

k isFk-measurable, we have that Z (n)
i is (F ti−1∩Fti+1)-measurable.

Setting i(n) := ln2
(�(C ln n

)2�), we further define
Y (n) := Pζ,η

n

(
β

(2,n)

k � 0 ∀�C ln n� � k � ti(n), β
(2,n)

ti(n)
� a�C ln n�

∣∣∣ β
(2,n)

�C ln n� = 2a�C ln n�
)
.

Writing j (n) := �log2(n)�, due to the Markov property of the process β
(2,n)

under
Pζ,η
n , we have P-almost surely that for all n large enough,

Pζ,η
n

(
β

(2,n)

n � n1/4, β
(2,n)

k � 0 ∀k � n
)

�
�C ln n�∏

k=1

Pζ,η
n

(
β

(2,n)

k − β
(2,n)

k−1 � 2a
) · Y (n) ·

j (n)∏

i=i(n)+1

Z (n)
i

� δ�C ln n� · Y (n) · exp
⎧
⎨

⎩

j (n)∑

i=i(n)+1

ln Z (n)
i 1

B(n)
i

⎫
⎬

⎭
, (4.20)

where the event

B(n)
i :=

{

max
r∈[ti−1,ti ], 0�k� 5

2 at
1/2
i /c

(
R̂r+k − R̂r

)
< at1/2i−1/16

}

occurs P-almost surely for all i ∈ [i(n), j (n)] and all n large enough. Indeed, by
(4.18) we have

∑

n

j (n)∑

i=i(n)

P
((
B(n)
i

)c) �
∑

n

j (n)∑

i=i(n)

ti−1P

(

max
0�k� 5

2 at
1/2
i /c

(
R̂k − R̂0

)
� at1/2i−1/16

)

� c3
∑

n

n
j (n)∑

i=i(n)

e−a2ct1/2i−1/c3 � c4
∑

n

n log2(n)e−a2C ln n/c4 < ∞,

(4.21)

where the last inequality holds true for C large enough. Thus, the Borel-Cantelli
lemma implies that P-a.s., for all n large enough the events B(n)

i occur for all
i ∈ [i(n), j (n)]. Furthermore, it is possible to show that P-almost surely, for all n
large enough we have Y (n) � n−γ ′′

. We postpone a proof of this fact, because it
uses the same arguments as the following paragraph and we will describe necessary
adaptations afterwards, cf. below (4.35). Thus, for the time being it remains to show
that there exists c̃ > 0 such that P-almost surely, for all n large enough,

j (n)∑

i=i(n)

ln
(
Z (n)
i

)
1
B(n)
i

� −c̃ · j (n). (4.22)

The second inequality in Lemma 4.2(a) then follows from (4.20) with γ ′ >

C ln(1/δ) + γ ′′ + c̃/ ln(2).
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In order to establish (4.22), it is enough to show that there exist c′′, θ > 0,
independent of c̃, such that for all i large enough,

sup
n

E

[
e
−θ ln(Z (n)

i )1
B(n)
i

]
� c′′. (4.23)

Indeed, if (4.23) holds, setting Z̃ (n)
i := ln(Z (n)

i )1
B(n)
i
, by Markov’s inequality we

have

P

⎛

⎝
j (n)∑

i=i(n)

Z̃ (n)
i < −c̃ · j (n)

⎞

⎠ � P

⎛

⎜
⎝

3∑

k=0

� j (n)
4 �−1∑

i=�i(n)/4�
Z̃ (n)
4i+k < −c̃ · j (n)

⎞

⎟
⎠

�
3∑

k=0

P

⎛

⎜
⎝

� j (n)
4 �−1∑

i=�i(n)/4�
Z̃ (n)
4i+k < −c̃ · j (n)/4

⎞

⎟
⎠ � 4e−θ c̃· j (n)/4 max

k=1,...,4
E

[
e−θ

∑� j (n)
4 �−1

i=�i(n)/4� Z̃
(n)
4i+k

]
.

We will only estimate the above expectation for the case k = 0; the cases k ∈
{1, 2, 3} can be estimated similarly. Now Z̃ (n)

4i is F t4i−1 -measurable, hence, also
recalling t4i−1 − t4i−2 = 24i−2, by (MIX) we have

E
[
e−θ Z̃ (n)

4i |Ft4i−2

]
�
(
1+ ψ(24i−2)

)
E
[
e−θ Z̃ (n)

4i
]
.

Since furthermore Z̃ (n)
4(i−1) isF t4i−2 -measurable, we obtain via iterated conditioning

that

E

[
e−θ

∑� j (n)
4 �

i=�i(n)/4� Z̃
(n)
4i

]
= E

[
E
[ · · ·E[E[e−θ

∑� j (n)
4 �

i=�i(n)/4� Z̃
(n)
4i |Ft4 j (n)−2

] |Ft4 j (n)−6

] · · · |Ft2

]]

�
� j (n)

4 �∏

i=�i(n)/4�

(
1+ ψ(24i−2)

)
E
[
e−θ Z̃ (n)

4i
]

� (c6c
′′) j (n),

for some c6 > 0 and n large enough. Choosing c̃ large enough, by a Borel-Cantelli
argument similar to the proof of Lemma 2.5, inequality (4.22) would follow.

Thus, in order to show (4.23), note that because

Z (n)
i = Z (n)

i (ξ(·)) = Z (n−k)
i (ξ(· + k))

d= Z (n−k)
i (ξ(·)) = Z (n−k)

i , (4.24)

we can drop the supremum in (4.23). In the following, we first choose i large enough
(and from then on fixed) such that several estimates in the remaining part of the
proof hold, and afterwards we adapt n = n(i) to ensure 0 � i � �log2(n)�. For
simplicity, we write Zi := Z (n)

i , βk := β
(2,n)

k , Ĥk := Hk − Eζ,η
n [Hk], R̂k := R̂(n)

k
and define

ρ
( j)
k := ess sup

ξ( j)

ρk, R
( j)
k :=

k∑

l=0

ρ
( j)
l , 0 � k � j.
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Furthermore, Thus,ρ( j)
k isF j -measurable and R

( j)
k+l−R

( j)
k is (Fk∩F j )-measurable

for all l � 0. Let MR := ess sup ρ0 and L := at1/2i , and note that the latter choice
corresponds to diffusive scaling. Then we define

r0 := ti−1, m := L

16MR
, s0 :=

(
inf
{
k � r0 : R

(k+m)

k − R
(k+m)

r0 � L/8
}− 1

) ∧ ti ,

(4.25)
and for j � 1 let

r j := s j−1 +
⌈ L

8MR

⌉
,

s j :=
(
inf
{
k � r j : R(k+m)

k − R
(k+m)

r j � L/8
}− 1

) ∧ (r j + (ti − ti−1)
)
.

(4.26)

Heuristically, s j is the first time after which the process R (and thus R̂) increases at
least by the amount L/8 after time r j . Such large increments of R̂ are potentially
troublesome, since as a consequence, the process β might decrease too much and
cause the event in the definition of Zi to have too small probability. In order to
cater for this inconvenience, we start noting that by definition, s j − r j is bounded
by ti − ti−1 and Fs j+m-measurable, and r j+1− (s j +m) � m. Thus, by condition
(MIX), for every non-negative measurable function f we notice for later reference
that

E[ f (s j − r j ) |Fr j+1 ] �
(
1+ ψ(m)

)
E[ f (s j − r j )]. (4.27)

Next, we define

G j :=
{

inf
r j�k�s j

(Ĥk − Ĥr j ) � −L/8, βs j � 2L

}

, G′
j :=

{

inf
s j�k�r j+1

(Ĥk − Ĥs j ) � −L/8

}

,

J := inf
{
j : s j − r j = ti − ti−1

} ∧ inf{ j : s j � ti }, as well as G :=
J⋂

j=0

G j ∩
J−1⋂

j=0

G′
j ,

and claim that
Zi � Pζ,η

n

(
G | βti−1 = at1/2i−1

)
. (4.28)

Indeed, on [r0, s0], the process R (and thus also R̂) increases by at most L/8, and
the process Ĥ decreases by at most L/8 on G0. Moreover, for j � 1, on [s j−1, r j ],
the process R̂ increases by at most L/8, and Ĥ decreases by at most L/8 on G′

j .

Finally, on [r j , s j ], the process R (and thus R̂) increases by at most L/8, and
on G j , Ĥ decreases by at most L/8 and βs j � 2L . All in all, conditioning on

βti−1 = at1/2i−1 = L/
√
2 � L/2, we have βk � L/4 � t1/4i for k ∈ [r0, s0] and

βk � L for all k ∈ [s0, sJ ]. Since by definition, sJ � ti , we get βti � L = at1/2i ,
implying (4.28).

Furthermore, we can continue to lower bound

Pζ,η
n

(G | βti−1 = at1/2i−1

)
� Pζ,η

n

(
G0 | βr0 = L/

√
2
) J−1∏

j=0

Pζ,η
n

(
G′
j

) J∏

j=1

Pζ,η
n

(G j | βr j = 2L
)
.

(4.29)
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To see this, successively condition on βr j � 2L , j = 1, . . . , J, and use the

Markov property of the process Ĥ as well as the fact that x �→ Pζ,η
n
(
G j |βr j = x

)

is increasing. Then use the fact that under Pζ,η
n , the event G′

j is independent of βr j

by the independence of the increments of Ĥ , j = 0, . . . , J − 1.

In order to lower bound (4.29), observe that under Pζ,η
n , the sequence (Ĥk+1−

Ĥk)k�r j consists of independent and centered random variables, whose Pζ,η
n -

moment generating function is finite in a neighborhood of zero. Thus, the central
limit theorem entails that for i large enoughwe have Pζ,η

n (G′
j ) � 1/2 for all relevant

choices of j. Moreover,

Pζ,η
n

(
G j | βr j = 2L

)
� Pζ,η

n

(
Ĥs j − Ĥr j � 5L/2, inf

r j�k�s j
(Ĥk − Ĥr j ) � −L/8

)
.

We see that both events are nondecreasing in the (independent) increments of Ĥ .
By Harris’ inequality ([5, Theorem 2.15]) we get

Pζ,η
n

(
Ĥs j − Ĥr j � 5L/2, inf

r j�k�s j
(Ĥk − Ĥr j ) � −L/8

)

� Pζ,η
n

(
Ĥs j − Ĥr j � 5L/2

) · Pζ,η
n

(

inf
r j�k�s j

(Ĥk − Ĥr j ) � −L/8

)

.

Recalling s j−r j � ti−ti−1 = L2

2a2
, aGaussian scalingyields Pζ,η

n

(
infr j�k�s j (Ĥk−

Ĥr j ) � −L/8
)

� c7 > 0. To bound the first factor, we recall that by (A.10) and

(A.12), we have P-a.s.

0 � ρ
(r j+k+m)

r j+l − ρr j+l � c8(ψ(m/2)+ e−m/c8) for all l � k � ti/2.

Because m = L
16MR

and ti/2 = L2

2a2
, due to (MIX) we finally get for all i (and thus

L) large enough (due toψ(x) · x → 0 (x →∞), which itself is due to summability
of ψ(k)), that

0 �
(
R

(r j+k+m)

r j+k − R
(r j+k+m)

r j

)
− (R̂r j+k − R̂r j

) =
k∑

l=1

(
ρ

(r j+k+m)

r j+l − ρr j+l
)

� c8L
2(ψ(L/16MR) + e−L/c8) � L/16 for all k ∈

{
0, . . . ,

L2

2a2

}
.

(4.30)

By s j−r j � ti−ti−1 = L2

2a2
and (4.26), we see that s j−r j � L/16 for all i large

enough. Recall that under Pζ,η
n , the sequence Ĥs j− Ĥr j is a sumof independent cen-

tered random variables, whose moment generating function is uniformly bounded
in a neighborhood of the origin. Then by [39, (2)], we can apply [39, Theorem 4] in
the following manner: Let c′ > 0 be as in [39, Theorem 4] and in the notation of the
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latter theorem we choose k = s j − r j , α = ess infζ,k<n E
ζ,η
n [(Ĥk − Ĥk−1)

2] > 0,
M = |η|/2, u1 = . . . = uk = 1 and

c := c′ · |η|
2

· α (4.31)

Then a lower Bernstein-type inequality from [39, Theorem 4] gives that on B(n)
i

we have

Pζ,η
n

(
Ĥs j − Ĥr j � 5L/2

)
� c9e

− L2
c9(s j−r j ) . (4.32)

Note that the condition in B(n)
i makes [39, Theorem 4] applicable by ensuring

’enough’ summands s j − r j and is the main reason we have to introduce the sets

B(n)
i . We will write c = c7 ∧ c9 from now on. Using (4.28) in combination with

the lower bounds for the factors of (4.29) just derived, the term in (4.23) can be
bounded from above by

E
[
e−θ ln(Zi )

]
� c10E

[
exp

{
θ J ln(2/c)+ θ

J∑

j=0

L2

c(s j − r j )

}]

� c10

∞∑

k=0

E

[(2
c

)θk
exp

{
θ

L2

c(sk − rk)
1sk−rk=ti−ti−1 + θ

k−1∑

j=0

L2

c(s j − r j )
1s j−r j<ti−ti−1

}]

� c10

∞∑

k=0

(2
c

)θk(
1+ ψ(m)

)k
e

2θL2
cti−1 ·

k−1∏

j=0

E

[
exp

{ θL2

c(s j − r j )

}
1s j−r j<ti /2

]
, (4.33)

wherewe recallm from (4.26), and the last inequality is due to (4.27) in combination
with ti − ti−1 = ti/2. For the latter expectation we have

E

[
exp

{ θL2

c(s j − r j )

}
1s j−r j<ti /2

]
=
∫ ∞

0
P

(
e

θL2
c(s j−r j )1s j−r j<ti /2 � x

)
dx

� e
2θL2
cti P

(
s j − r j < ti/2

)
+
∫ ∞

e
2θL2
cti

P

(
e

θL2
c(s j−r j ) � x

)
dx . (4.34)

Substituting x = e
θL2
cy , the second summand can be written as

∫ ti /2

0

θL2

cy2
e

θL2
cy P

(
s j − r j � y

)
dy.

In order to obtain an upper bound, we start with the probability inside the integral
and get

P
(
s j − r j � y

) = P

(

max
1�k�y

k∑

l=1

ρ
(r j+k+m)

r j+l � L/8

)

� P

(

max
1�k�y

k∑

l=1

ρr j+l � L/16

)

� c11e
− L2

c11 y , ∀ y ∈ [0, ti/2];

here, the first inequality is due to (4.30) and the last inequality due to (4.18).
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Putting these bounds together, the second summand in (4.34) can be bounded
from above by

∫ ti /2

0

θL2

cy2
e

θL2
cy c10e

− L2
yc10 dy = c11

∫ ti /2

0

θL2

cy2
e

L2
cy (θ−c12)dy � c13

∫ 1/2a2

0

θ

z2
e

1
cz (θ−c12)dz

� c14θ
∫ ∞

0
e

x(θ−c11)

c dx .

Now the latter term can be made arbitrarily close to zero by choosing θ > 0 small
enough. Furthermore, again choosing θ > 0 small enough, the first term in (4.34)
is strictly smaller than one by the central limit theorem from Claim 4.3. Thus,
θ > 0 can be chosen small enough such that for all i large enough, the sum on the
right-hand side in (4.33) converges, with a finite upper bound independent of i .

To show Y (n) � n−γ ′′
, we adapt the strategy in the proof of (4.22), i.e. set

L := 2aC ln n, r0 = �C ln n� and J := inf{ j : s j � �(C ln n)2�} and keep the
other definitions as in (4.25) and (4.26). Then by the same argument below display
(4.23), Y (n) � n−γ ′′

for some suitable γ ′′ > 0 follows if E[e−θY (n)] � c for some
constant c > 0, some small θ > 0 and all n large enough. But this follows (as in
the argument leading to the definition of B(n)

i ), if the process (R̂k − R̂k−1)k does
not decrease too fast, see the Borel–Cantelli argument below display (4.32), which
itself is a consequence of

∑

n

(C ln n)2 · P
(

sup
0�k�L/8c

(
R̂k − R̂0

)
� L

8

)

� c15
∑

n

(C ln n)2e−aC ln n/c15 < ∞.

(4.35)

This completes the proof of the second inequality in Lemma 4.2 (a).
We will now explain how to adapt the latter arguments for the proof of the first

inequality in (a). We define βk = β
(1,n)

k − β
(1,n)

n−1 . In the definition of Z
(n)
i , we have

to take the essential infimum over ξ(n − ti−2) and have to replace the subscripts k
of βk by n − k, i.e. “running backwards” from n. Thus, Z (n)

i is (Fn−ti ∩Fn−ti−2)-
measurable. It is then enough to consider the case n = 0 due to the argument in
(4.24). Writing Zi := Z (0)

i , βk := β
(0)
k , Ĥk := Hk − Eζ,η

0 [Hk], R̂k := R̂(0)
k and

defining

ρ
( j)
k := ess sup

ξ( j)

ρk, R
( j)
k :=

0∑

l=k+1

ρ
( j)
l , k < 0, k ∈ Z,

we have to adapt the definitions of r j and s j by the expressions

r0 := −ti−1, s0 :=
(
sup

{
k � r0 : R̂k − R̂r0 � L/8

}+ 1
) ∨ (−ti ),

r j := s j−1 −
⌈ L

8MR

⌉
, s′j := s j−1 − L

16MR
, j � 1,

s j :=
(
sup

{
k � r j : R(s′j )

k − R
(s′j )
r j � L/8

}+ 1
) ∨ (r j − (ti − ti−1)

)
, j � 1,

J := inf{ j : s j − r j = −ti } ∨ sup{ j : s j � −ti }.
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The remaining part of the proof essentially follows the same steps as for the second
inequality in (a).

Proof of Claim 4.3. Boundedness, stationarity and adaptedness are direct con-
sequences of the corresponding properties of the sequences (Lζ

i (η))i∈Z and

((Lζ
i )

′(η))i∈Z and Lemma A.1. Display (4.17) is due to Lemma A.2. To show
that the central limit theorem, we note that the sequence (ρi )i∈Z fulfills the same
conditions as the sequence (L̃i )i∈Z in the proof of Lemma 3.2

4.2. Second moment of leading particles

Recall the notation NL
t from below (4.2) and that of m(t) from (1.7). For the

second moment of the leading particles we now prove the following upper bound.

Lemma 4.4. For every function F fulfilling (PROB) and for every a > 0, there
exists γ2 = γ2(F, a) < ∞ such that P-a.s., for all t large enough,

sup
x∈[ma(t)−1,ma(t)+1]

Eξ
x

[(
NL,a
t
)2] � tγ2 . (4.36)

Proof. We omit the superscript a in the quantities involved and use the same abbre-
viations as in the beginning of the proof of Lemma 4.1.

We want to show (4.36) with the help of the second-moment formula (FK-2).
To this end, define the function ϕ

ξ
t : [0, t] → Z ∪ {−∞},

ϕt (s) := ϕ
ξ
t (s) := �m(t)� ∧ sup

{
k ∈ Z : s ∈ [t − Tk+1 − 5χ1(m(t)), t − Tk − 5χ1(m(t))

)}
,

where sup ∅ := −∞ and χ1 has been defined in (4.2). Due to Tk = 0 for all k � 0
[recall the notation Tk from (3.43) and (3.44)], we have 1 � ϕt (0) � �m(t)�.
Furthermore, ϕt (t) = −∞, because Tk � 0 and χ

ξ
1 (m(t)) � 0. To apply (FK-2),

the following upper bound will prove useful.

Claim 4.5. We have

NL
t �

∣∣{ν ∈ N (t) : Xν
t � 0, Xν

s > ϕt (s) ∀s ∈ [0, t]
}∣∣ (4.37)

and P-a.s. for all t large enough, the function [0, t] 	 s �→ ϕt (s) is a non-
increasing, càdlàg step function.

In order not to hinder the flow of reading, we postpone the proof of the latter claim
to the end of the proof of Lemma 4.4 (Figs. 5 and 6).

By the Feynman–Kac formula (cf. Proposition 2.3) and (4.37), we have

Eξ
x

[
(NL

t )2
]

� Eξ
x

[
NL
t

]
+ (m2 − 2)

∫ t

0
Ex

[
e
∫ s
0 ξ(Br )drξ(Bs)1{Br�ϕt (r) ∀r∈[0,s]}

×
(
Ey

[
e
∫ t−s
0 ξ(Br )dr1{Br�ϕt (r+s) ∀r∈[0,t−s]},Bt−s�0

])2

|y=Bs

]
ds.

(4.38)
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Fig. 5. Illustration of ϕt , which is the red line. We denote at (k) := t − Tk − 5χξ (m(t)).
Note that the sequence (at (k))k∈Z does not have to be monotone and thus the interval
[at (k + 1), at (k)) might be empty. In this case the graph of ϕt jumps at least two steps at
time s = at (k)

For the first summand we have

sup
x∈[m(t)−1,m(t)+1]

Eξ
x

[
NL
t

]
� sup

x∈[m(t)−1,m(t)+1]
Eξ
x

[
N�(t, 0)

]
� c1E

ξ

m(t)+1

[
N�(t, 0)

]
� c1

2
,

(4.39)

where the first inequality is due to the first inequality in (3.41) and the last one due
to the definition of m(t). Recall that the Markov property provides us with

Ex

[
e
∫ s
0 ξ(Br )dr Ey

[
e
∫ t−s
0 ξ(Br )dr1{Bt−s�0}

]
|y=Bs

]
= Eξ

x [N�(t, 0)].

Using ξ � es and the two previous displays, the second summand in (4.38) can
thus be bounded from above by

es · (m2 − 2) sup
x∈[m(t)−1,m(t)+1]

Eξ
x [N�(t, 0)] ·

∫ t

0
sup

y�ϕt (s)
Ey
[
e
∫ t−s
0 ξ(Br )dr ; Bt−s � 0

]
ds

� es(m2 − 2)c1
2

∫ t

0
sup

y�ϕt (s)
Eξ
y[N�(t − s, 0)]ds.

(4.40)

It thus suffices to upper bound supy�ϕt (s) E
ξ
y[N�(t − s, 0)] by a polynomial in

t. We treat different areas for s and y separately and we will need an additional
claim, the proof of which will be provided after this proof. It guarantees that the
assumptions of the time perturbation Lemma 3.11 are satisfied in our setting.

Claim 4.6. There exists C̃1 ∈ (0,∞) such that P-a.s. for all t large enough and all
y � C̃1χ1(m(t)) we have y

Ty−1 ,
y

Ty+K+5χ1(m(t))
∈ V , where V is defined in (2.22).

Furthermore, there exists C̃2 = C̃2(C̃1) ∈ (0,∞) such that P-a.s. for all t large
enough and all s ∈ [0, t − C̃2χ1(m(t))) we have ϕt (s) � C̃1χ1(m(t)).

Wechoose γ ′ > 5C11C14. Then, recalling the definition ofχ1 from (4.2) and thatP-
a.s. m(t)

t → v0 by Corollary 3.15, for t large enough, the statements from Claim 4.6
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Fig. 6. Leading particles and the different areas in the proof of Lemma 4.4

hold true, we have C11eC11(K+1+5χ1(m(t))) � tγ
′
and also T�y�+1 � Ty + K for all

y � C̃1χ1(m(t)) by Corollary 3.17.
(1) Let s ∈ [

0, t − C̃2χ1 (m(t))
)
and y � ϕt (s). Then by Claim 4.6,

y � C̃1χ1 (m(t)) and thus y
Ty−1 ,

y
Ty+K+5χ1(m(t))

∈ V . By definition of ϕt we

have s � t − T�y�+1 − 5χ1 (m(t)) and thus Ty + K + 5χ1 (m(t)) � T�y�+1 +
5χ1 (m(t)) � t − s. Thus, by Lemma A.6, we infer that Eξ

y

[
N�(t − s, 0)

]
�

2Eξ
y

[
N� (Ty + K + 5χ1 (m(t)) , 0

)]
, and then the second inequality in (3.34)

entails that for all t large enough,

sup
0�s<t−C̃2χ1(m(t))

y�ϕt (s)

Eξ
y [N�(t − s, 0)] � 2C11e

C11(K+1+5χ1(m(t))) sup
y∈R

Eξ
y

[
N�((Ty − 1) ∨ 0, 0)

]
� tγ

′
.

(4.41)

(2) The remaining part of the domain above the graph of ϕt not controlled by (1) is
a subset of

{
(s, y) ∈ [0, t] × R : t − C̃2χ1 (m(t)) � s � t

}
.

Recalling the definition of χ1 from (4.2) and that P-a.s., m(t)
t → v0 by Corol-

lary 3.15, choosing γ ′′ > esC̃2C14, on the the above domain we get that P-a.s.,
for all t large enough,

Eξ
y

[
N� (t − s, 0)

]
� 2Eξ

y

[
N�(C̃2χ1 (m(t)) , 0

)]
� 2eesC̃2χ1(m(t)) � tγ

′′
.

(4.42)

To conclude the proof, defining γ2 := 1 ∨ γ ′ ∨ γ ′′ + 1, inequalities (4.39),

(4.40) and the estimates (4.41) and (4.42) for the term Eξ
y

[
N�(t − s, 0)

]
entail

the statement of Lemma 4.4. ��
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Proof of Claim 4.5. Let at (k) := t − Tk − 5χξ
1 (m(t)) and recall the definition of

NL
t :

NL
t = ∣∣{ν ∈ N (t) : Xν

t � 0, H ν
k � at (k) ∀ k ∈ {1, . . . , �m(t)�}}∣∣ .

To prove (4.37), note that H ν
k � at (k) if and only if Xν

s > k for all s < at (k). But
the property Xν

s > k for all s ∈ [0, at (k)) and all k ∈ {1, . . . , �m(t)�} implies that
Xν
s > sup{k ∈ Z : s ∈ [at (k + 1), at (k))} ∧ �m(t)� = ϕt (s) for all s ∈ [0, t] and

thus (4.37) is shown. The property of ϕt being a càdlàg step-function is a direct
consequence of the use of left-closed, right-open intervals in the definition of ϕt .
It remains to show that s �→ ϕt (s) is non-increasing. For this purpose, let us first
prove by induction in k = �m(t)�, �m(t)� − 1, . . . that for all t large enough and
all k � m(t),

[0, at (k − 1)) ⊂
�m(t)�⋃

l=k

[at (l), at (l − 1)) (4.43)

holds. By Corollary 3.17 and Lemma 3.16, there exist K ,C15 > 0 such that t −
T�m(t)�−1 � t − Tm(t) + K � C15 + K and thus at (�m(t)�) � 0 for all t large
enough. Assume now that (4.43) holds for some k � m(t). Then

[0, at (k − 2)) ⊂ [0, at (k − 1)) ∪ [at (k − 1), at (k − 2)) ⊂
�m(t)�⋃

l=k−1

[at (l), at (l − 1)),

where the last inclusion is due to induction hypothesis. Thus, we have shown (4.43).
Now let 0 � s1 � s2. Assume there exists k2 such that s2 ∈ [at (k2), at (k2 − 1)).
Then by (4.43), there exists k1 ∈ Z with k2 � k1 � �m(t)�, such that s1 ∈
[at (k1), at (k1 − 1)). By definition we get ϕt (s1) � ϕt (s2). If no such k2 exists,
then ϕt (s2) = −∞ � ϕt (s1).

Proof of Claim 4.6. We write V = [v∗, v∗]. Since P-a.s. we have y
Ty

→ v0 ∈
int(V ) by (3.46), it follows that y

Ty−1 ,
y
Ty

∈ V for all y large enough. Among others,

there exists ε = ε(v∗, v∗, v0) > 0 andN ′(ξ) such that v∗(1+ε) � y
Ty

� (1−ε)v∗

for all y � N ′. Choosing C̃1 > 5v∗
ε
, this implies 1 � Ty+K+5χ1(m(t))

Ty
� 1+ ε for

all y � C̃1 · χ1 (m(t)) and all t large enough. Thus, we get

v∗ � y

Ty
· Ty

Ty + K + 5χ1 (m(t))
� v∗ for all y � C̃1χ1(m(t)) and all t large enough.

This gives the first part of the Claim 4.6. For the second part, recall that Ty � 1
v
y

for all y � N ′. Furthermore, by the definition of ϕt we have ϕt (s) � �y� + 1
for all s ∈ [0, t − T�y� − 5χ1 (m(t))

)
. Choosing y := �C̃15χ1 (m(t))� and C̃2 >

C̃1
v
+ 1, this implies that for t large enough we get ϕt (s) � C̃15χ1 (m(t)) for all

s ∈ [0, t − C̃25χ1(m(t))
)
.
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4.3. Proof of Theorem 1.5

Recall m(t) = sup{x ∈ R : u(t, x) � 1/2} and m(t) = sup{x ∈ R : w(t, x) �
1/2}, where u and v are the solutions to (PAM) and w to (F-KPP), respectively. We
start with an amplification result.

Lemma 4.7. For every (pk)k∈N fulfilling (PROB) there existsC17 = C17((pk)) > 1
and t0 > 0 such that P-a.s., for all t � t0,

sup
x∈R

Pξ
x

(
N (t, [x − 1, x + 1]) � Ct

17

)
� C−t

17 .

Proof. For the proof it is enough to show the claim for binary branching with rate
ξ(x) ≡ ei′ := ei(1− p1) (which is the rate of first branching into more than one
particle) by a straightforward coupling argument. Due to the spatial homogeneity
of ei′ it is enough to show

Pei′
0

(
N (t, [−1, 1]) � Ct

17

)
� C−t

17

for all t � t0, where Pei
′

0 is the probability measure under which the branching
Brownian motion starts with one particle in 0 and has constant branching rate
ei′ > 0. Then for every ε > 0 there exists δ = δ(ε) > 0 such that

Pei
′

0

(|N (t/3, [−ε, ε])|| � δt
)

� 1− e−δt (4.44)

for all t large enough. Indeed, the probability that the initial particle does not leave
the interval [−εt/2, εt/2] before time t/3 is at least 1 − e−c1ε2t . If this happens,
the particle produces more than tei′/4 offsprings with probability 1−e−c2t before
time t/3, while each of these offsprings does not leave the interval [−εt, εt] before
time t/3 with probability at least 1− e−c1ε2t/2. Combining these observations and
choosing δ(ε) > 0 small enough provides us with (4.44). For a particle ν ∈ N (t/3)
let Dν(t/3+ s) be the set of offsprings of ν in the interval [Xν

t/3 − 1, Xν
t/3 + 1] at

time t/3 + s, s � 0. We will show the existence of some p > 0 and c > 1 such
that

Pei
′

0

(|Dν(t/3+ s)| � cs
)

� p (4.45)

for all s large enough. To obtain (4.45), let r > 0 be such that

inf
y∈[−1,+1]E

ei′
y

[
N (r, [−1,+1])] =: μ > 1,

(the feasibility of such a choice of r is a direct consequence of the Feynman–Kac
formula). For ν ∈ Dε(t/3) consider the following process underPei′

0 , conditionally
on Xν

t/3:

• the process starts with one particle at position Xν
t/3;• between times r(n − 1) and rn, n ∈ N, the process evolves as a branching

Brownian motion with branching rate ei′;
• at times rn, n ∈ N, particles outside of the interval

[
Xν
t/3 − 1, Xν

t/3 + 1
]
are

killed.
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Using the Markov property, one readily observe that the number of particles of the
latter process stochastically dominates the number of particles of a Galton-Watson
process (Ln)n∈N which starts with one particle and whose offspring distribution
has expectation μ. Then by [2, Theorem 1, section I.5], the Galton-Watson process
has positive probability to survive, i.e. P(Ln > 0 ∀n ∈ N) =: p1 > 0. Conditioned
on survival, there exists c > 1 such that

P
(
Lk � ck | Ln > 0 ∀n ∈ N

)
� 1

2
for all k ∈ N.

One can see that for every ν ∈ N (t/3), inequality (4.45) holds true with the choice
p := p1/2 for all s ∈ r ·N. By a straightforward comparison argument, this extends
to all s � 0. Therefore, we can now apply (4.44) and (4.45) in order to deduce

Pei′
0

(
N (2t/3, [−εt, εt]) � ct

)
� 1− ec

′(ε)t . (4.46)

Furthermore, we have

Pεt
(
Xt/3 ∈ [−1, 1]) � c3t

−1/2e−3ε2t/2 �
(1+ c

2

)−t/3
,

for all t large enough ε > 0 small enough and c > 1 suitable, where for the last
inequality we used that ε does not depend on c. The latter inequality and a large
deviation statement then gives for all t � t4 � t3

Pei
′

0

(
N (t, [−1, 1]) � 1

2
ct
(1+ c

2

)−t/3 ∣∣ N (2t/3, [−εt, εt]) � ct
)

� 1− e−c4t .

(4.47)
Thus, for t � t0, where t0 is chosen large enough, by (4.46) and (4.47), in combi-
nation with c > 1, we infer the desired result.

With the help of Lemmas 4.1, 4.4, and 4.7, it is now possible to state a crucial
result for the proof of Theorem 1.5.

Proposition 4.8. For every q > 0, F satisfying (PROB) and a > 0, there exist a
constant C1 = C1(q, F) ∈ (0,∞), a P-a.s. finite C = C(t) = C(t, q, F, ξ) > 0
and a P-a.s. finite random variable T5 = T5(a, q, F, ξ) such that for all t � T5,
we have C(t) � C1 and

Pξ

ma(t)−C ln t

(
N�(t, 0) �= ∅

)
� 1− 2t−q .

Proof. For simplicity, we write m(t) := ma(t). Without loss of generality, it is
enough to show the claim for all q > 2(γ1+γ2), where γ1 = γ1(a) and γ2 = γ2(a)

are defined in Lemmas 4.1 and 4.4, respectively. Let further C17 and t0 be as in
Lemma 4.7, and c1 be such that for r := c1 ln t we have C

−r
17 = t−q .

We claim that there exist C1,C(t) and T5 as above such that m(t − r) =
m(t) − C(t) ln t , C(t) � C1 and the conclusions of Lemmas 4.1 and 4.4 hold
for all t � T5. Indeed, writing u(t, x) = Eξ

x [N�(t, 0)], by the time and space
perturbation Lemmas 3.11 and 3.12, defining c2 := C11 ∨ C12, we deduce that

u(t − r,m(t)− C1 ln t) � c−1
2 eC1 ln t/c2u(t − r,m(t)) � c−2

2 eC1 ln t/c2−r/c2u(t,m(t)) � a,

(4.48)
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where for the last inequality we choose C1 and T5 = T5(ε) large enough such that
the last inequality holds for all t � T5. As a consequence, we infer

m(t − r) � m(t)− C1 ln t. (4.49)

By (3.34), we also get u(t,m(t − r)) � C−1
11 e

r/C11u(t − r,m(t − r)) � a for all t
large enough, i.e.

m(t − r) � m(t).

Thus, combining the two previous displays, we can find C(t) � C1 such that
m(t−r) = m(t)−C(t) ln t . Now let x := m(t)−C(t) ln t = m(t−r). Conditioning
on whether until time r there are more or less than Cr

17 particles in [x − 1, x + 1],
we get for all t � T5,

Pξ
x

(
N�(t, 0) � 1

)
� 1− Pξ

x

(
N (r, [x − 1, x + 1]) � Cr

17

)

− sup
y∈[x−1,x+1]

(
Pξ
y

(
N�(t − r, 0) = 0

) )Cr
17

� 1− C−r
17 − sup

y∈[x−1,x+1]

(
Pξ
y

(
NL,a
t−r = 0

))Cr
17

,

using Lemma 4.7 in the last inequality. Now using Cauchy–Schwarz as in (4.3), in
combination with Lemmas 4.1 and 4.4, we infer

sup
y∈[x−1,x+1]

(
Pξ
y

(
NL,a
t−r = 0

))Cr
17 �

(
1− t−2γ1−γ2

)tq
� t−q ,

wherewe adapt T5 = T5(a, q, ξ, q) such that the last inequality holds for all t � T5.

Proof of Theorem 1.5. (1)We first prove the result under the additional assumption
that F fulfills (PROB). Letwξ,F,w0 be the solution to (F-KPP) with initial condition
w0 ∈ IF-KPP, so in particular 0 � w0 � 1(−∞,0]. Because F fulfills (PROB), by
(McKean) and the Markov property we infer

wξ,F,w0(t, x) = Eξ
x

[
1−

∏

ν∈N (t)

(
1− w0

(
Xν
t

))]

� Eξ
x

[
1−

∏

ν∈N (t)

(
1− w0

(
Xν
t

)); N�(t − s, 0) � 1
]

� Pξ
x

(
N�(t − s, 0) � 1

) · inf
y�0

wei,F,w0(s, y), (4.50)

where w = wei,F,w0 solves the homogeneous equation wt = 1
2wxx + ei · F(w)

with initial condition w(0, ·) = w0. Then we have w1,F,w̃0 = wei,F,w0( t
ei , x√

ei
)

with w̃0(x) := w0(x/
√
ei). Because wei,F,w0(0, x) = 0 for x > 0, conditions

[7, (8.1) and (1.17)] are fulfilled. Together with (KPP-INI) and [7, Theorem 3,
p. 141], w1,F,w̃0 (and thus also wei,F,w0 ) is a traveling wave solution, i.e., there
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exist mei(t) = √
2eit + o(t) and some g fulfilling limx→−∞ g(x) = 1 and

limx→∞ g(x) = 0 such that

sup
y

∣∣wei,F,w0(t, y + mei(t))− g(y)
∣∣→ 0, t →∞. (4.51)

Now let ε ∈ (0, 1) and choose δ > 0 such that ε
1−δ

∈ (0, 1). Then by (4.51) we get

inf
y�0

wei,F,w0(s, y) = inf
y�−mei(s)

wei,F,w0(s, y + mei(s))

� 1− δ for all s � s0(F, w0, δ,ei),

which, together with (4.50), gives

mξ,F,w0,ε(t) � mξ,F,1(−∞,0], ε
1−δ (t − s0) for all t � s0(F, w0, δ,ei). (4.52)

The inequality

mξ,F,1(−∞,0], ε
1−δ (t − s0)� mξ,1(−∞,0], ε

1−δ (t − s0) − C1 ln(t), for all t � T1(ξ, F, ε, δ),

follows from Proposition 4.8. By Corollary 3.18, for C ′ > 1 from (PAM-INI) we
get

mξ,1(−∞,0], ε
1−δ (t − s0) � mξ,1(−∞,0], ε

C ′ (t − s0) − c1(ε, δ,C
′)

� mξ,1(−∞,0], ε
C (t) − c2(ε, δ,C

′, s0) for all t � T2(ξ, ε, δ),

where the second inequality can be obtained similarly to the argument in (4.48)
and (4.49). Combining the above inequalities, we arrive at

mξ,F,w0,ε(t) � mξ,1(−∞,0], ε
C ′ (t) − C1 ln(t)− c3

= mξ,C ′1(−∞,0],ε(t)− C1 ln(t)− c3 for all t � T3(ξ).

Now by (PAM-INI) every u0 ∈ IPAM is upper bounded by the function C ′1(−∞,0],
and sincewe havemξ,1(−∞,0],ε(t) � mξ,F,w0,ε(t) for all ε ∈ (0, 1) andw0 ∈ IF-KPP,
this finishes the proof for F fulfilling (PROB).

(2) Now let F fulfill (SC) and w0 be continuous. By a sandwiching argument,
it suffices to show that there exists some function G fulfilling (PROB), such that
F(w) � G(w) for all w ∈ [0, 1]. Indeed, by Corollary A.11 the solutions wF and
wG to

wF
t − 1

2
wF
xx − ξ(x)F(wF ) = 0 = wG

t − 1

2
wG
xx − ξ(x)G(wG)

(which are classical by Proposition 2.1) fulfill wF � wG . As a consequence, we
infer that mξ,F,w0,ε(t) � mξ,G,w0,ε(t) � mξ,w0,ε(t) − C1 ln(t), where the second
inequality is due to step (1). The claim for arbitrary w0 ∈ IF-KPP is then true
by an approximation argument of w0 by continuous functions, that is if F �
G, by Remark 1.2 we have ww0,F � ww0,G and consequently mξ,w0,F,ε(t) �
mξ,w0,G,ε(t) for all t � 0 and we can conclude.
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It remains to show that for every F fulfilling (SC) there exists G fulfilling
(PROB) such that F(x) � G(x) for all x ∈ [0, 1]. To do so, recall that (SC)
implies that there exists M ∈ N such that

1− F ′(x) � M

2
x and F(1− x) � xM−1 for all x ∈ [0, M−1]. (4.53)

Define Gn(x) := 1−x
n

(
1 − (1 − x)n

)
, x ∈ [0, 1], n ∈ N. Then each Gn, n ∈ N,

satisfies (PROB) with p1 = 1− n−1 and pn+1 = n−1, and our goal is to show that
Gn � F for all x ∈ [0, 1] and all n large enough.

We start with noting that Gn+1 � Gn as functions on x ∈ [0, 1], for all n ∈ N,

and that Gn ↓ 0 uniformly as n tends to infinity. Thus, since F is continuous and
F > 0 on (0, 1) due to (SC), we only have to take care of the neighborhoods of
0 and 1. From (4.53) we immediately get GM (x) � (1 − x)M−1 � F(x) for all
x ∈ [1 − M−1, 1]. To infer the desired inequality for x ∈ [0, 1 − M−1], Taylor
expansion yields

(1− x)M � 1− Mx +
(
M

2

)
x2 −

(
M

3

)
x3.

Then for M large enough and for all x ∈ [0, M−1] we get

GM (x) � (1− x)
(
x − M − 1

2
x2 + (M − 1)(M − 2)

6
x3
)

� x − M

3
x2

� x − M

4
x2 =

∫ x

0
(1− Mt/2)dt �

∫ x

0
F ′(t)dt = F(x),

where the last inequality is due to (4.53) again. This finishes the proof.

4.4. Remarks on vc and v0

By the same argument as in [9, Lemma A.4], one can show that a rich class
of potentials ξ satisfies (VEL), i.e. the inequality vc < v0. It is natural to ask if
vc < v0 is always fulfilled in our setting or not; i.e., do there exist potentials which
satisfy (Standing assumptions) but not the inequality vc < v0?

In order to answer this question, we will take advantage of the following result.

Claim 4.9.
v0 = inf

η�0

η − es

L(η)
. (4.54)

Proof. As shown in [14, p. 514ff.], the function

I : (0,∞) 	 y �→ sup
η�−es

(
yη − L(η + es)

)

is strictly decreasing, finite, convex, fulfills limy↓0 I (y) = +∞ and limy↑∞ I (y) =
−∞, there exists a unique v∗ > 0 such that I (1/v∗) = 0, and one has

v∗ = inf
η�0

η − es

L(η)
.
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We now show v∗ = v0. For this purpose, let w and u be solutions to (F-KPP) and
(PAM), respectively, both with initial condition 1[−1,0]. Then w � u and thus by
[14, Lemma 7.6.3] and Proposition A.3 we have for all v > v∗ that P-a.s.,

(v) = lim
t→∞

1

t
ln u(t, vt) � lim inf

t→∞
1

t
lnw(t, vt) � −v I (1/v).

Since  and I are continuous, passing to the limit v ↓ v∗ we deduce that (v∗) �
−v∗ I (1/v∗) = 0. Furthermore,(v) < 0 for all v > v0 and thus we infer v0 � v∗.

To get the converse inequality, we use that for all v > 0 and all η � 0 we have

u(t, vt) = Evt
[
e
∫ t
0 (ζ(Bs )+es)ds; Bt ∈ [−1, 0]] = Evt

[
e
∫ t
0 (ζ(Bs )+es)ds; Bt ∈ [−1, 0], H0 � t

]

� e(es−η)t Evt
[
e
∫ H0
0 (ζ(Bs )+η)ds].

In combination with (2.9) this yields that for all v > 0,

(v) = lim
t→∞

1

t
ln u(t, vt) � inf

η�0

(
(es− η) + vL(η)

)

= −v sup
η�−es

(η
v
− L(η + es)

) = −v I (1/v).

But then (v∗) � −v∗ I (1/v∗) = 0 and thus we must have v∗ � v0.

We now formulate our main result on the relation between v0 and vc. It implies
that our results do not apply for all potentials fulfilling (BDD), (STAT) and (MIX).

Proposition 4.10. There exist potentials ξ fulfilling (BDD), (STAT) and (MIX),
and such that vc > v0; i.e., condition (VEL) is violated.

Proof. Recalling (4.54), the definition vc = 1
L ′(0−)

from Lemma 2.4(d), it is suffi-
cient to show L(0)+ es · L ′(0−) < 0, which means

E

[
ln E1

[
e
∫ H0
0 ζ(Bs )ds

]]
+ es · E

[ E1

[
H0e

∫ H0
0 ζ(Bs )ds

]

E1

[
e
∫ H0
0 ζ(Bs )ds

]
]

< 0. (4.55)

To establish the latter, let ω̃ be a one-dimensional Poisson point process with inten-
sity one. In a slight abuse of notation, ω̃ = (ω̃i )i can be seen as a mapping from
� into the set of all locally finite point configurations; i.e., ω̃ = (ω̃i )i can be inter-
preted as a random set of countablymany points inR, satisfying |{i : ω̃i ∈ B}| < ∞
for every bounded Borel set and ω̃i �= ω̃ j for all i �= j . See [33] for further details.
Now denote by ω = (ωi )i be the point process that is obtained from ω̃ by delet-
ing simultaneously all points in ω̃ which have distance 1 or less to their nearest
neighbor in ω̃. (see [26, p. 47] for details). Let ϕ(x) be a mollifier with support
[−1/2, 1/2], non-decreasing for x � 0, non-increasing for x � 0 with ϕ(0) = 1
and let ϕ(ε)(x) := ϕ(x/ε), ε > 0. Finally, for ε ∈ (0, 1) and a > 0, define the
potential ζ(x) = ζ (ε,a)(x) := −a + a

∑
i ϕ

(ε)(x − ωi ). One can easily check that
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ζ is the corresponding shifted potential as in (2.3) of some ξ fulfilling (BDD),
(STAT) and (MIX), i.e. a = es − ei. We will choose a > ln 2, ei ∈ (0, a

8 ) and
ε(a) > 0 suitably at the end of the proof. Let us now consider both summands in
(4.55) separately.

(1) We observe that P-a.s., ζ (ε,a) ↓ −a as ε ↓ 0 for all x ∈ R, as well as by [4,
(2.0.1), p. 204]

−√2a = ln E1
[
e−aH0

]
� ln E1

[
e
∫ H0
0 ζ (ε,a)(Bs )ds

]
� 0

for all ε ∈ (0, 1). Thus, by dominated convergence, for all a > 0 there exists
ε1 = ε1(a) > 0, such that

E

[
ln E1

[
e
∫ H0
0 ζ (ε1,a)(Bs )ds

]]
� −3

4

√
2a. (4.56)

(2) To bound the second summand in (4.55), we lower bound its denominator
by

E1
[
e
∫ H0
0 ζ(Bs )ds

]
� E1

[
e−aH0

] = e−
√
2a . (4.57)

For the numerator, define J to be the set of possible point configurations of the
process (ωi )i . Let us first check that for all a > 0 there exists ε = ε(a) > 0, such
that

sup
(ωi )i∈J

E1
[
H0e

∫ H0
0 (−a+a

∑
i ϕ(ε)(Bs−ωi ))ds] < ∞. (4.58)

Indeed, letting gε,(ωi )i (x) :=∑
i ϕ

(ε)(x − ωi ), we have

E1
[
H0e

∫ H0
0 (−a+a·gε,(ωi )i (Bs ))ds

] =
∞∑

n=0

E1
[
H0e

∫ H0
0 (−a+a·gε,(ωi )i (Bs ))ds; H0 ∈ [n, n + 1)

]

�
∞∑

n=0

(n + 1)E1
[
e
∫ n
0 (−a+a·gε,(ωi )i (Bs ))ds

]
.

(4.59)

Note that by the property of all point configurations in J to have points with mutual
distance at least one, we have

sup
(ωi )i∈J

sup
x∈R

Ex

[
a
∫ 1

0
gε,(ωi )i (Bs)ds

]
� a

∫ 1

0
E0
[
1Aε (Bs)

]
ds � 1

2

for all ε(a) > 0 small enough, where Aε :=⋃
i∈Z[−ε/2+ i, ε/2+ i]. Using Kas-

minskii’s lemma (cf. e.g. [35,Lemma1.2.1])we infer supx∈R Ex
[
ea
∫ 1
0 gε,(ωi )i (Bs )ds

]
�

2. An (n − 1)-fold application of the Markov property at times 1, . . . , n − 1 sup-

plies us with supx∈R Ex
[
ea
∫ n
0 gε,(ωi )i (Bs )ds

]
� 2n for all n ∈ N and all (ωi )i ∈ J.

Plugging this into (4.59) we infer

sup
(ωi )i∈J

E1

[
H0e

∫ H0
0 (−a+a·gε,(ωi )i (Bs ))ds

]
�

∞∑

n=0

(n + 1)e−na2n,
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so the right-hand side in (4.59) is finite, and (4.58) holds true for all a > ln 2 and
ε(a) small enough as well. Since gε,(ωi )i decreases P-a.s. to 0 monotonically as
ε ↓ 0, we infer

lim
ε↓0 E

[
E1
[
H0e

∫ H0
0 ζ (ε,a)(Bs )ds

]] = E1
[
H0e

−aH0
]

= − d

da
E1
[
e−aH0

] = − d

da

(
e−

√
2a) = 1√

2a
e−

√
2a, (4.60)

using [4, (2.0.1), p. 204] in the third equality. Thus, combining (4.57) and (4.60)
we infer that there exists ε2(a) > 0 such that the second summand on the left-
hand side of (4.55) is upper bounded by es · 4/3√

2a
= (a + ei) · 4/3√

2a
. Using this

in combination with (4.56), we infer that for all a > ln 2 [which is sufficient for
(4.58)] and ε ∈ (0, ε1(a)∧ ε2(a)), choosing ei ∈ (0, a

8 ), we get that the left-hand

side in (4.55) is upper bounded by − 3
4

√
2a + (a + ei) · 4/3√

2a
< 0.
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A.1. Properties of the logarithmic moment generating functions

Lemma A.1. We recall that Pζ,η
x has been defined in (2.6).
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(a) L , Lζ
x , and L

ζ
x , for x ∈ R, [see (2.7) to (2.8) for their definitions] are infinitely differ-

entiable on (−∞, 0). Furthermore, for all η < 0 we have

(
Lζ
x
)′

(η) =
Ex

[
e
∫ H�x�−1
0 (ζ(Br )+η)dr H�x�−1

]

Ex

[
e
∫ H�x�−1
0 (ζ(Br )+η)dr

] = Eζ,η
x [τ�x�−1], x ∈ R, (A.1)

(
L

ζ
x
)′

(η) = 1

x
Eζ,η
x
[
H0
]
, x > 0, (A.2)

L ′(η) = E

⎡

⎣ E1
[
e
∫ H0
0 (ζ(Br )+η)dr H0

]

E1
[
e
∫ H0
0 (ζ(Br )+η)dr ]

⎤

⎦ = E
[
Eζ,η
1 [H0]

]
, (A.3)

and

(
Lζ
x

)′′
(η) = Ex

[
e
∫ H�x�−1
0 (ζ(Br )+η)dr H2�x�−1

]

Ex
[
e
∫ H�x�−1
0 (ζ(Br )+η)dr

] −
(
Ex
[
e
∫ H�x�−1
0 (ζ(Br )+η)dr H�x�−1

]

Ex
[
e
∫ H�x�−1
0 (ζ(Br )+η)dr

]

)2

= Eζ,η
x

[
τ 2�x�−1

]− (Eζ,η
x [τ�x�−1]

)2 = Varζ,η
x (τ�x�−1) > 0, x ∈ R, (A.4)

(
L

ζ

x

)′′
(η) = 1

x
Varζ,η

x (H0), x > 0, (A.5)

L ′′(η) = E

[
E1
[
e
∫ H0
0 (ζ(Br )+η)dr H2

0

]

E1
[
e
∫ H0
0 (ζ(Br )+η)dr

] −
(
E1
[
e
∫ H0
0 (ζ(Br )+η)dr H0

]

E1
[
e
∫ H0
0 (ζ(Br )+η)dr

]

)2]

= E

[
Eζ,η
1 [H2

0 ] −
(
Eζ,η
1 [H0]

)2] = E
[
Varζ,η

1 (H0)
]

> 0. (A.6)

(b) For each compact interval � ⊂ (−∞, 0) there exists a constant C18 = C18(�) > 0,
such that the following inequalities hold P-a.s.:

− C18 � inf
η∈�,x�1

{
Lζ
�x�(η), L

ζ

x (η), L(η)
}

� sup
η∈�,x�1

{
Lζ
�x�(η), L

ζ

x (η), L(η)
}

� −C−1
18 ,

C−1
18 � inf

η∈�,x�1

{
(Lζ

�x�)
′(η), (L

ζ

x )
′(η), L ′(η)

}
� sup

η∈�,x�1

{
(Lζ

�x�)
′(η), (L

ζ

x )
′(η), L ′(η)

}
� C18,

C−1
18 � inf

η∈�,x�1

{
(Lζ

�x�)
′′(η), (L

ζ

x )
′′(η), L ′′(η)

}
� sup

η∈�,x�1

{
(Lζ

�x�)
′′(η), (L

ζ

x )
′′(η), L ′′(η)

}
� C18.

Proof. (a) Due to the convexity of the exponential function we have
∣∣ ehx−1

h

∣∣ � xehx ∨ 1

for all x � 0 and h ∈ R. If we choose h0 := |η|
2 , then since ζ � 0, we have that for all

|h| � h0, ∣∣∣
1

h
e
∫ Hy
0 (ζ(Br )+η)dr (ehHy − 1

)∣∣∣ � eηHy/2(Hy ∨ 1). (A.7)

Due to HyeηHy � 1
|η| for all Hy � 0 and η < 0, as well as limh→0

ehHy−1
h = HyehHy for

all Hy � 0, dominated convergence yields for all η < 0 that

d

dη
Ex

[
e
∫ H�x�−1
0 (ζ(Br )+η)dr

]
= Ex

[
e
∫ H�x�−1
0 (ζ(Br )+η)dr H�x�−1

]
. (A.8)

Then (A.1) is a consequence of the chain rule and the fact that the expectation on the left-
hand side in (A.8) is positive. Then (A.2) follows from linearity of the derivative. To show
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(A.3), we have to apply dominated convergence once more. This time, we additionally need
that the expectation on the left-hand side in (A.8) for x = 1 is strictly bounded from below

by the constant E1[e−(es−ei−η)H0 ] = e−
√
2(es−ei−η) > 0 due to (BDD) and [4, (2.0.1),

p. 204]. Using the mean value theorem and (A.7) entail the existence of c1 > 0 such that

sup
|h|�|η|/2

∣∣∣
1

h

(
Lζ
1(η+h)−Lζ

1(η)
)∣∣∣ � sup

|h|�|η|/2

(
Lζ
1

)′
(η+h) � c1E1

[
eηH0/2(H0∨1)

]
� c1

( 2

|η| ∨1
)
.

Using (A.1) for x = 1 and dominated convergence, we arrive at (A.3).
By induction and similar arguments as above, it follows that for all n ∈ N, the function

(−∞, 0) 	 η �→ Ex
[
(Hy)

ne
∫ Hy
0 (ζ(Br )+η)dr ] is positive P-a.s. and differentiable. Due to

(BDD), one can interchange expectation and differentiation in η, yielding (A.4) and (A.5).
The first equality in (A.6) is then again a consequence of dominated convergence. The strict
inequalities in (A.4) and (A.6) are due to the fact that under P1, and thus also P-a.s. under

Pζ,η
1 , the random variable H0 is non-degenerate.

To show (b), observe that the function ζ �→ Ex
[
e
∫ H�x�−1
0 (ζ(Bs )+η)ds] is nondecreasing.

Consequently, using the notation � = [η∗, η∗], we have

−∞ < e−
√
2(es−ei+|η∗|) � Ex

[
e(ei−es+η∗)H�x�−1

]
� inf

η∈� ess infζ Ex
[
e
∫ H�x�−1
0 (ζ(Bs )+η)ds]

� sup
η∈�

ess supζ Ex
[
e
∫ H�x�−1
0 (ζ(Bs )+η)ds] � Ex

[
eη∗H�x�−1

] = e(x−�x�+1)
√
2|η∗|,

where we used [4, (2.0.1), p. 204] for the second inequality and last equality. Due to the
inequality e−xy x � 2

y e
−xy/2 for all x � 0 and y > 0, these estimates can be used to

derive similar bounds for Ex
[
e
∫ H�x�−1
0 (ζ(Br )+η)dr Hk�x�−1

]
, k = 1, 2. Thus, estimating the

numerator and the denominator of the corresponding expressions in (A.1) to (A.6), we can
conclude.

A.2. Exponential mixing

Lemma A.2. Let Fk be as defined in (MIX), i.e. Fk = σ(ξ(x) : x � k), and let � ⊂
(−∞, 0) be a compact interval. Then there exists a constant C� > 0 such that P-a.s., for
all i, j ∈ Z with i < j , and all η ∈ �,

∣∣E
[
Lζ
i (η)|F j ]− L(η)

∣∣ � C� ·
(
ψ
( j − i

2

)
+ e−( j−i)/C�

)
, (A.9)

0 �
(
ess supξ(k):k� j L

ζ
i (η)

)
− Lζ

i (η) � C� ·
(
ψ
( j − i

2

)
+ e−( j−i)/C�

)
, (A.10)

as well as

∣∣∣E
[
(Lζ

i )′(η)|F j ]− L ′(η)

∣∣∣ � C� ·
(
ψ
( j − i

2

)
+ e−( j−i)/C�

)
, (A.11)

0 �
(
ess supξ(k):k� j

(
Lζ
i

)′
(η)
)
− (Lζ

i

)′
(η) � C� ·

(
ψ
( j − i

2

)
+ e−( j−i)/C�

)
.

(A.12)
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Proof. By translation invariance, it is enough to prove (A.9) for i = 0 and j � 2 (the

case j = 1 follows immediately from the uniform boundedness of Lζ
0 and L on � due to

Lemma A.1). To show (A.9), let η ∈ � and write Lζ
0(η) = ln(A + B) with

A = A(η) := E0

⎡

⎣e
∫ H−1
0 (ζ(Bs )+η)ds; sup

0�s�H−1

Bs < � j/2�
⎤

⎦

and

B = B(η) := E0

⎡

⎣e
∫ H−1
0 (ζ(Bs)+η)ds; sup

0�s�H−1

Bs � � j/2�
⎤

⎦ .

Then A � E0[eH−1η] � c�,1 < 1, and, using (2.3), at the same time we have

A � E0
[
e−(es−ei+|η|)H−1 ; sup

0�s�H−1

Bs < � j/2�
]

� c�,2 > 0 for all j � 2.

To bound B, we condition on H−1 to happen before or after time j and use the reflection
principle for Brownian motion and the tail estimate from [6, Lemma 1.1] to infer for all
j � 2

0 � B � P0

(

sup
0�s� j

Bs � � j/2�
)

+ eη j = 2P0(Bj � � j/2�) + eη j � 2e− j (1/8∧|η|).

As ln(1+ x) � x, the above implies that for all j � 2

ln(A) � Lζ
0(η) = ln(A)+ ln

(
1+ B

A

)
� ln(A)+ c�,3e

− j/c�,3 .

Since Lζ
0 is continuous on �, the latter display P-a.s. holds uniformly for all η ∈ �. Now

ln(A) is F� j/2�-measurable and bounded, so by (MIX)

sup
η∈�

∣∣∣E[Lζ
0(η)|F j ] − L(η)

∣∣∣ � sup
η∈�

∣∣∣E[ln(A)− E[ln(A)]|F j ]
∣∣∣+ 2c�,3e

− j/c�,3

� C� · (ψ( j/2)+ e− j/C�). (A.13)

The proof of (A.11) is similar. Indeed, using the same notation we have (Lζ
0)′ = A′

A+B +
B′

A+B . Then by A+B � c�,2 and e
ηH−1H−1 � 2

|η|eηH−1/2, we can use above calculation to

conclude that B′
A+B decays exponentially to 0 as j → ∞. Further, A′

A − BA′
A(A+B)

= A′
A+B �

A′
A , F� j/2�-measurability of A′

A and above estimates give a similar bound as in (A.13) for

(Lζ
0)′(η) and L ′(η) instead of (Lζ

0)(η) and L(η). Finally, (A.10) and (A.12) follow by the
same arguments as (A.9) and (A.11).

A.3. Properties of the Lyapunov exponent

Proposition A.3. Assume (BDD) and (STAT) and let u(x,δ) be a solution to (PAM) with
initial condition 1[x−δ,x+δ]. Then the limit (v) := limt→∞ 1

t ln u
(x,δ)(t, vt), v ∈ R,

exists P-a.s., is non-random and independent of x ∈ R and δ > 0. The function [0,∞) 	
v �→ (v) is concave, (0) = es and limv→∞ (v)

v = −∞. In particular, there exists a
unique v0 > 0 such that (v0) = 0.
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Proof. Let x = 0, λ ∈ (0, 1) and v1, v2 ∈ R, and set v := λv1 + (1 − λ)v2 and A :=
[(1−λ)v2t−δ, (1−λ)v2t+δ]. By (1.12), the solution to (PAM), admits the Feynman–Kac

representation u(x,δ)(t, vt) = Evt
[
e
∫ t
0 ξ(Bs )ds; Bt ∈ [x − δ, x + δ]]. Then by the Markov

property, for all y ∈ [vt − δ, vt + δ] we have
ln Ey

[
e
∫ t
0 ξ(Bs )ds; Bt ∈ [−δ, δ]

]
� ln Ey

[
e
∫ λt
0 ξ(Bs )ds; Bλt ∈ A

]

+ inf
z∈A ln Ez

[
e
∫ (1−λ)t
0 ξ(Bs )ds; B(1−λ)t ∈ [−δ, δ]

]
.

(A.14)
Defining μδ

s,t (v) := inf y∈[vt−δ,vt+δ] ln Ey
[
e
∫ t−s
0 ξ(Br )dr ; Bt−s ∈ [vs− δ, vs + δ]], s < t ,

by the same argument as in the last display one can see that μδ
s,t (v) � μδ

s,u(v) + μδ
u,t (v)

for all s < u < t . Furthermore for the h-lateral shift θh on ξ (i.e. ξ(·) ◦ θh = ξ(· + h)) we
have μδ

s,t (v) ◦ θh = μδ

s+ h
v
,t+ h

v

(v) for every h ∈ R, all v �= 0 and s < t , and by (BDD) and

a simple Gaussian computation there exists Kδ,v ∈ (0,∞) such that μδ
0,t (v) � −Kδ,v · t

for all t � 1. By (BDD) we also have μδ
0,t (v) � es · t and thus μδ

0,t (v) ∈ L1 for all

t > 0. Thus, Kingman’s subadditive ergodic theorem [23] implies that the limit δ(v) :=
limt→∞ 1

t μ
δ
0,t (v) exists P-a.s. Furthermore, by (MIX), ξ is mixing and thus ergodic, so the

δ(v) is non-random. By standard estimates, the limit is independent of δ > 0 and x ∈ R.
To show the concavity of v �→ (v), for v1, v2 � 0 and dividing by t , the left-hand side of
(A.14) converges P-a.s. to(λv1+ (1−λ)v2), while the second term on the right-hand side
of (A.14) converges P-a.s. to (1− λ)(v2). Dividing by t and using (STAT), the first term
on the right-hand side of (A.14) converges in distribution to the constant λ(v1), proving
the concavity of v �→ (v).
By [14, Theorem 7.5.2] we have limt→∞ 1

t ln u
1(−δ,δ) (t, 0) = es, independent of δ >

0, giving (0) = es. Due to (BDD) and a standard Gaussian computation we have
limv→∞ (v)

v = −∞. This, together with(0) = es > 0 and the concavity of v �→ (v),
implies the existence of a unique v0 > 0, such that (v0) = 0.

A.4. A Hoeffding-type inequality for dependent random variables

Lemma A.4. ([34, Theorem2.4])Let (Xi )i∈Z be a sequence of real-valued bounded random
variables, F̃i := σ(X j : j � i), Sn := ∑n

i=1 Xi , and let (m1, . . . ,mn) be an n-tuple of
positive reals such that for all i ∈ {1, . . . , n},

sup
j∈{i,i+1,...,n}

⎛

⎝‖X2
i ‖∞ + 2‖Xi

j∑

k=i+1

E[Xk |F̃i ]‖∞
⎞

⎠ � mi ,

with the convention
∑i

k=i+1 E[Xk |F̃i ] = 0. Then for every x > 0,

P
(|Sn | � x

)
�
√
e exp

{
−x2/(2m1 + · · · + 2mn)

}
.

Rearranging the quantities in the above result, we arrive at the following corollary which we
primarily pronounce explicitly since its formulation tailor-made for our purposes.

Corollary A.5. Let (Yi )i∈Z be a sequence of real-valued bounded random variables, F̃k :=
σ(Y j : j � k), and let (m1, . . . ,mn) be an n-tuple of positive real numbers such that for
all i ∈ {1, . . . , n},

sup
j∈{1,...,i}

⎛

⎝‖Y 2
i ‖∞ + 2

∥∥∥Yi
i−1∑

k= j

E[Yk |F̃ i ]
∥∥∥∞

⎞

⎠ � mi , (A.15)
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with the convention
∑i−1

k=i E[Yk |F̃ i ] = 0. Then for every x > 0,

P

⎛

⎝
∣∣∣

n∑

i=1

Yi
∣∣∣ � x

⎞

⎠ �
√
e exp

{
−x2/(2m1 + · · · + 2mn)

}
.

Recall that uu0 denotes the solution to (PAM) with initial condition u0.

Lemma A.6. For all x ∈ R and 0 � s � t we have u1(−∞,0](s, x) � 2u1(−∞,0](t, x).

Proof. By the Feynman–Kac formula, ξ � 0 and the Markov property at time s we have

u1(−∞,0](t, x) = Ex

[
e
∫ t
0 ξ(Br )dr ; Bt � 0

]
� Ex

[
e
∫ s
0 ξ(Br )dr ; Bs � 0, Bt � 0

]

� E
ξ
x

[
N�(s, 0)

]
P0(Bt−s � 0) = 1

2
u1(−∞,0](s, x).

Lemma A.7. Let NL
s,u,t be as in (4.1). Then there exists c > 0 such that P-a.s.

Eξ
x
[
NL
t,t,t

]
� cEξ

�x�
[
NL
t−1,t+1,t

]
for all t � 1 and x � 1.

Proof. Write Ay,z,t :=
{
Hk + y � z + t − Tk − 5χ1(m(t)) ∀k ∈ {1, . . . , �m(t)�}} and

p(r) := inf y�0 Py(Br � 0) = 1
2 . Then by the Feynman–Kac formula

Eξ
x

[
NL
t,t,t

] = Ex
[
e
∫ t
0 ξ(Bs )ds; Bt � 0, A0,0,t

]

� Ex

[
e
∫ t−1+H�x�
H�x� ξ(Bs )ds; Bt � 0, Bt−1+H�x� � 0, AH�x�,1,t , H�x� � 1

]

� Ex

[
E�x�

[
e
∫ t−1
0 ξ(Bs )ds × inf

r∈[0,1] p(r); Bt−1 � 0, A0,1,t
]; H�x� � 1

]

� 1

2
Px (H�x� � 1)E�x�

[
e
∫ t−1
0 ξ(Bs )ds; Bt−1 � 0, A0,1,t

]
= cEξ

�x�
[
NL
t−1,t+1,t

]
,

with c := 1
2 Px (H�x� � 1).

The next result is an inequality of Harnack-type flavor for the solution to (PAM).

Lemma A.8. There exists a constant C19 ∈ (0,∞) such that P-a.s. for all y ∈ R, t � 1
and all u0 ∈ IPAM we have

uu0 (t, y) � C19 inf
x∈[y−1,y+1] u

u0 (t + 1, x). (A.16)

Proof. For x ∈ R and t > 0 let ft,x be the probability density of a Brownian motion at time
t , starting in x . Let us first show that for all y, z ∈ R we have

f1,y(z) �
√
2/e inf

x∈[y−1,y+1] f2,x (z). (A.17)

Indeed, using ft,y(z) = 1√
2π t

e−
(z−y)2

2t , (A.17) follows from

inf
x∈[y−1,y+1]

{
2(z − y)2 − (z − x)2

} =
{
2(z − y)2 − (z − y + 1)2 = (z − y − 1)2 − 2, y < z,

2(z − y)2 − (z − y − 1)2 = (z − y + 1)2 − 2, y � z,

� −2.
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The Feynman–Kac formula in combination with the Markov property applied at time 1 now
supplies us with

uu0 (t, y) = Ey
[
e
∫ t
0 ξ(Br )dr u0(Bt )

]
� ees

∫

R

f1,y(z)Ez
[
e
∫ t−1
0 ξ(Br )dr u0(Bt−1)

]
dz

� ees
√
2/e inf

x∈[y−1,y+1]

∫

R

f2,x (z)Ez
[
e
∫ t−1
0 ξ(Br )dr u0(Bt−1)

]
dz

� ees
√
2/e inf

x∈[y−1,y+1] u
u0 (t + 1, x),

where in the second inequality we used (A.17). Then (A.16) follows choosing C19 =
ees

√
2/e.

A.5. Proof of the McKean representation

Proof of Proposition 2.1. We start with considering w0 continuous and w0(x) ∈ [0, 1] for
all x ∈ R. Define u := 1 − w and u0 := 1 − w0. Then by [21, Remark 4.4.4] (providing
the existence of a C1,2-solution to (PAM)) and [21, Corollary 4.4.5] (Feynman–Kac rep-

resentation), the function u(1)(t, x) = Ex
[
e−

∫ t
0 ξ(Br )dr u0(Bt )

]
is a classical solution to

u(1)
t (t, x) = 1

2�u(1)(t, x) − ξ(x)u(1)(t, x) and we have u(1)(0, x) = u0(x). Furthermore,
by the same argument, for all s < t and k ∈ N fixed, the function

u(2)(t, x; s, k) := Ex

[
ξ(Bt−s)e

− ∫ t−s
0 ξ(Br )dr u(s, Bt−s)

k
]

is a classical solution to u(2)
t (t, x; s, k) = 1

2�u(2)(t, x; s, k) − ξ(x)u(2)(t, x; s, k). By
dominated convergence, taking advantage of the uniform continuity of the first and second
order derivatives, for every fixed t ′ � t , we can interchange limits to obtain the identities

∑

k

pk

∫ t ′

0

∂

∂t
u(2)(t, x; s, k)ds = ∂

∂t

∑

k

pk

∫ t ′

0
u(2)(t, x; s, k)ds,

∑

k

pk

∫ t ′

0

(
1

2
� − ξ(x)

)
u(2)(t, x; s, k)ds =

(
1

2
�− ξ(x)

)∑

k

pk

∫ t ′

0
u(2)(t, x; s, k)ds.

(A.18)

Conditioning on the first splitting time of the initial particle and on the number of children
that are born, we have

u(t, x) = Ex
[
e−

∫ t
0 ξ(Br )dr u0(Bt )

]+
∑

k

pk

∫ t

0
Ex

[
ξ(Bs)e

− ∫ s0 ξ(Bs )u(t − s, Bs)
k
]
ds

= u(1)(t, x) +
∑

k

pk

∫ t

0
Ex

[
ξ(Bt−s)e

− ∫ t−s
0 ξ(Br )dr u(s, Bt−s)

k
]
ds,

where we used the Markov property of the process (Bt )t�0. We deduce that for h �= 0,

1

h

(
u(t + h, x) − u(t, x)

) = 1

h

(
u(1)(t + h, x) − u(1)(t, x)

)

+
∑

k

pk Ex

[ 1
h

∫ t+h

t
ξ(Bt+h−s)e

− ∫ t+h−s
0 ξ(Br )dr u(s, Bt+h−s)

kds
]

+
∑

k

pk

∫ t

0

1

h

(
u(2)(t + h, x; s, k)− u(2)(t, x; s, k))ds.
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Invoking once again the arguments from the beginning of the proof, as h tends to zero, the
first summand converges to 1

2�u(1)(t, x) − ξ(x)u(1)(t, x) and by dominated convergence,

the second summand converges to ξ(x)
∑

k pku(t, x)k . For the third term, we mention

that the integrand is uniformly bounded since u(2)
t is continuous. Again, due to dominated

convergence and (A.18), the latter term converges to
(
1

2
�− ξ(x)

)∑

k

pk

∫ t

0
u(2)(t, x; s, k)ds.

All in all, combining these observations we arrive at

ut (t, x) = u(1)
t (t, x) + ξ(x)

∑

k

pku(t, x)k +
(
1

2
�− ξ(x)

)∑

k

pk

∫ t

0
u(2)(t, x; s, k)ds

=
(
1

2
�− ξ(x)

)
u(t, x) + ξ(x)

∑

k

pku(t, x)k ,

which is equivalent w being a solution to (F-KPP). Thus we have shown the claim for
continuous w0. By Remark 1.2, for w0 ∈ IF-KPP the result follows by approximation.

A.6. Existence and monotonicity of solutions

We start with an existence result for generalized and also classical solutions.

Proposition A.9. ([14, Theorem 7.4.1]) Let w0 be measurable, non-negative and bounded,
and let F fulfill (SC). Then P-a.s. there exists a unique, bounded generalized solution w ∈
C
(
(0,∞) × R

)
to (F-KPP), which satisfies 0 � w(t, x) � 1 ∨ supx w0(x) for all (t, x) ∈

[0,∞)× R. If additionally w0 is continuous and x �→ ξ(x, ω) is Hölder continuous for P-
a.a.ω ∈ �, then P-a.s. the generalized solutionw is a classical one, i.e.w ∈ C1,2((0,∞)×
R
) ∩ C

([0,∞)× R
)
and w solves (F-KPP).

For the next lemma, we introduce the differential operator

(LGw)(t, x) := wt (t, x)− 1

2
wxx (t, x)− G(x, w(t, x)),

where G is uniformly Lipschitz-continuous in w, i.e., there exists a constant α > 0, such
that

|G(x, u)− G(x, v)| � α|u − v| ∀ x, u, v ∈ R. (A.19)
The next lemma is in the spirit of [1, Proposition 2.1].

Lemma A.10. Let T > 0, Q := (0, T ) × R and G be such that (A.19) holds. Let w(1)

and w(2) be non-negative and bounded functions on Q, such that for i ∈ {1, 2}, w
(i)
x and

w
(i)
xx are continuous on Q, and such that w(i)

t exists in Q. If LGw(1) � LGw(2) on Q and
0 � w(1)(0, x) � w(2)(0, x) for all x ∈ R, then also w(1) � w(2) on Q.

Proof. From the assumptions we infer that

w
(2)
t (t, x) − w

(1)
t (t, x) � 1

2

(
w(2)
xx (t, x) − w(1)

xx (t, x)
)+ G

(
x, w(2)(t, x)

)− G
(
x, w(1)(t, x)

)
.

Then, recalling (A.19) and letting

v(t, x) := e−2αt (w(2)(t, x)− w(1)(t, x)
)
,
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we get

vt (t, x) − 1

2
vxx (t, x) � −2αv(t, x)+ e−2αt(G

(
x, w(2)(t, x)

)− G
(
x, w(1)(t, x)

))

�
(− 2− sgn(v(t, x))

)
α · v(t, x).

Now the the first factor on the right-hand side is negative and bounded. Applying the maxi-
mum principle [25, Theorem 8.1.4] to−v then implies that v � 0 on Q andwe can conclude.

As an important application we get that the solution w to LGw = 0 is monotone in G and
in the initial condition.

Corollary A.11. Let T > 0, Q := (0, T ) × R, and let G1 and G2 fulfill G1 � G2 on
R × [0,∞). Furthermore, assume that G2 satisfies (A.19). In addition, let w(1) and w(2)

be non-negative and bounded functions on Q, such that for i ∈ {1, 2}, w
(i)
x and w

(i)
xx are

continuous on Q and w
(i)
t exist on Q. If LG1w

(1) = LG2w
(2) and w(1)(0, ·) � w(2)(0, ·)

on x ∈ R, then we have w(1) � w(2) on Q.

Proof. Since the functionw(2) is non-negative, we haveLG2w
(2) = LG1w

(1) � LG2w
(1).

Then by Lemma A.10, we have w(1)(t, x) � w(2)(t, x) for all (t, x) ∈ Q.

Corollary A.12. Let G fulfill (A.19) and G(x, 0) = G(x, 1) = 0 for all x ∈ R. Let w be
a solution to LGw = 0 with 0 � w(0, x) � 1. Then 0 � w(t, x) � 1 for all (t, x) ∈
[0,∞)× R.

Proof. The functions w(1)(t, x) = 0 and w(2)(t, x) = 1 are solutions toLw(1) = Lw(2) =
0 and w(1)(0, x) � w(0, x) � w(2)(0, x). The claim then follows from Lemma A.10.
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