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Abstract

We study a family of gradient obstacle problems on a compact Riemannian
manifold.Weprove that the solutions of these free boundary problems are uniformly
semiconcave and, as a consequence, we obtain some fine convergence results for
the solutions and their free boundaries. More precisely, we show that the elastic
and the λ-elastic sets of the solutions Hausdorff converge to the cut locus and the
λ-cut locus of the manifold.

1. Introduction

Let M be a smooth n-dimensional compact Riemannian manifold without
boundary. Let b ∈ M be a fixed point. We denote by db : M → R the distance
function to b, and by Cutb(M) the cut locus, that is the set of points (cut points)
p ∈ M for which there exists a geodesic γ , starting from b and passing through p,
which is length minimizing between b and p, but not after p. The cut locus inherits
much of the topology ofM . This is a deformation retract ofM \{b} and has the same
homotopy type (see for instance [25, Chapter III, Section 4]). Moreover, it is also
related to the global geometry of M , for instance, to the geodesic spectrum (every
close geodesics starting from b crosses Cutb(M)) and the Ambrose’s problem (see
[17]).

The local structure of the cut locus can be very rich and at the same time
complicated, as it seems to be closely related to the regularity of g. A stratification
theorem is available only when the metric g is analytic (see [22] and [5]), while
in general, it is known that Cutb(M) must have an integer Hausdorff dimension
(when g is C∞) that might even become fractional when g is Ck (see [18] and the
references therein). The sensitivity with respect to the regularity of the manifold
(M, g) makes the cut locus difficult to recover by numerical methods involving
discrete structures. A more stable object from this point of view is the so-called λ-
cut locus Cutλb(M), which we introduce in this paper in analogy with the λ-medial
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axis of Chazal and Lieutier, which is a widely studied object in Computational
Geometry (see Section 1.1). We refer to [12] for a detailed account on the impact
of our study to the numerical methods for the computation of the cut locus.

For any λ > 0, the λ-cut locus is defined as

Cutλb(M) :=
{
p ∈ M \ {b} : |∇db(p)|2 � 1 − λ2

d2b (p)

}
, (1.1)

the norm of the generalized gradient |∇db| being defined at every point p ∈ M \{b}
as

|∇db| (p) := max
{
0, sup

v∈Tx M,|v|=1
∂+
v db(p)

}
, (1.2)

where ∂+
v db(p) is the derivative of db in the direction v (see Section 2). The λ-cut

locus approximates the cut locus in the following sense: for every λ > 0, we have
Cutλb(M) ⊂ Cutb(M), while the closure of the union of Cutλb(M) over λ > 0 is
precisely Cutb(M) (see Proposition 2.9). In particular, just like the cut locus, the
λ-cut locus is a non-smooth set, with a potentially very wild structure, even when
M is smooth.

In this paper we study the asymptotic behavior of a family of gradient obstacle
problems on the manifold M and we prove that both Cutb(M) and Cutλb(M) can
be recovered from the solutions of these problems. Moreover, even if our study is
purely theoretical, it leads to a new method for the numerical approximation of the
cut locus and the λ-cut locus on a compact manifold (see Remark 1.2).

For any m > 0, we consider the variational minimization problem

min

{∫
M

|∇u|2 − mu : u ∈ H1(M), |∇u| � 1, u(b) = 0

}
. (1.3)

This problem has a unique minimizer, which we will denote by um . We consider
the sets

Em := {p ∈ M \ {b} : |∇um(p)| < 1},

and Em,λ :=
{
p ∈ M \ {b} : |∇um(p)|2 � 1 − λ2

u2m(p)

}
. (1.4)

Our main result is the following:

Theorem 1.1. (Approximation of Cutb(M) and Cutλb(M)) Let M be a compact
Riemannian manifold of dimension n and let b ∈ M and λ > 0 be fixed. Then,

Em −→
m→+∞ Cutb(M) in the Hausdorff sense. (1.5)

Moreover, for any fixed ε > 0, we have that

sup
p∈Em,λ

d
(
p, Cutλb(M)

) −→
m→+∞ 0, and sup

p∈ Cutλ+ε
b (M)

d(p, Em,λ) −→
m→+∞ 0.(1.6)
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Remark 1.2. (About the numerical computation of the cut locus) We notice that the
direct numerical approximation of the cut locus and the λ-cut locus is difficult and
requires significant computational resources. Conversely, the variational problem
(1.3) consists in minimizing a convex functional under a convex constraint, which
considerably simplifies this task. The numerical approach based on solving (1.3) is
discussed in [12].

In order to prove Theorem 1.1, we have to study the regularity of the solutions
um and the convergence of the sequence (um)m as m → ∞. We gather our main
results about the solutions of (1.3) in the following theorem, and we notice that
Theorem 1.1 is in fact an immediate consequence of the claims (T5) and (T6) of
Theorem 1.3 below (see Section 1.3):

Theorem 1.3. (Regularity and convergence of um) Let M be a compact Riemannian
manifold of dimension n and let b ∈ M be fixed. Then, the following holds:

(T1) Regularity of um. There exists a constant m0 > 0, depending only on the
manifold M, such that for every m > m0, the minimizer um of (1.3) is locally
C1,1 on M \ {b}.

(T2) Properties of Em.For everym ≥ m0, Em is an open subset of M and coincides
with the set {um < db}. Moreover, Em contains Cutb(M) and is at positive
distance from b, that is um = db in a neighborhood of b.

(T3) Monotonicity of um and Em. For every m ≥ m′ ≥ m0, we have um ≥ u′
m.

In particular, Em ⊂ Em′ .
(T4) Semiconcavity of um. For every ρ > 0, there are constants C > 0 and

m1 > 0, depending on ρ and on the manifold M, such that

um is C − semiconcave onM \ Bρ(b), (1.7)

for every m ≥ m1.
(T5) Convergence of um. The sequence um converges uniformly on M to the dis-

tance function db.
(T6) Convergence of the gradients. Let p∞ ∈ M \ {b}. Then

• for every sequence pm → p∞, we have

|∇db|(p∞) ≤ lim inf
m→∞ |∇um |(pm) ; (1.8)

• there exists a sequence pm → p∞ such that

|∇db|(p∞) = lim
m→∞ |∇um |(pm) . (1.9)

Remark 1.4. The semiconcavity of um (T4) and the convergence of the gradients
(T6) are the most technical part of the proof and are precisely the properties that
allow to approximate the λ-cut locus with the sets Em,λ.

Remark 1.5. If we replace the manifold M with a smooth domain � ⊂ R
n and db

with the distance to the boundary of �, the problem (1.3) becomes the classical
elastic-plastic torsion problem, which we discuss in detail in Section 1.1.We notice
that, for this problem, the claims (T1), (T2), (T3) and (T5) are well-known. The
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Fig. 1. A polygonal approximation of a circle, with its medial axis

elastic-plastic torsion problemhas a long history and inspired the study of numerous
problems involvingmore general (even fully nonlinear) operators. The crucial point
in all these problems is that the gradient constraint in (1.3) can be transformed into
an obstacle constraint on the function (see Section 1.1). Until now, this property
was exclusive for the Euclidean setting and for operators depending only on ∇u
and u, but not on the points x ∈ � (in fact, for operators with variable coefficients,
this equivalence is known to be false). A consequence of our analysis is that this
crucial equivalence is not exclusively Euclidean but is a property of the underlying
Riemannian structure of the manifold (see Proposition 1.8).

The rest of the introduction is organized as follows: in Section 1.1 we will discuss
the relation of the λ-cut locus and the problem (1.3) to the λ-medial axis of Chazal-
Lieutier and the classical elastic-plastic torsion problem. In Section 1.2 we will
discuss the key points in the proof of Theorem 1.3 and the plan of the paper.

1.1. Medial axis and λ-medial axis in a domain �

This section is dedicated to the Euclidean counterpart of Theorem 1.1. We go
through the definitions of the medial axis and the λ-medial axis of a domain in
the euclidean space. Then, we discuss the approximation theorem of Caffarelli and
Friedman and its relation to Theorem 1.1. Throughout this section, we will use the
following notation: � is a bounded open set with C2 regular boundary in R

n and
d∂� : � → R is the distance function to the boundary of �,

d∂�(x) := min
{|x − y| : y ∈ ∂�

}
.

1.1.1. Definition of medial axis and λ-medial axis The medial axis M(�) is
defined as the set of points of � with at least two different projections on the
boundary ∂�,

M(�)

:= {
x ∈ � : ∃y, z ∈ ∂�, such that y �= z and d∂�(x) = |x − y| = |x − z| }.

One crucial geometric property of the medial axis M(�) is that it is unstable
with respect to small perturbations of the boundary of �. For instance, the medial
axis of the circle consists of its center only, while the medial axis of a polygonal
approximation (the regularity of the approximating sets can be improved to C∞
by rounding the corners) is the star-shaped set on Fig. 1. We refer to [2] for a
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detailed account on medial axis, stability and computability. This instability makes
computing numerically M(�) quite tricky. Indeed, any numerical approximation
of � (for instance, with polygons) might introduce an artificial (and large) medial
set. In order to deal with this problem, in [11], Chazal and Lieutier defined the so
called λ-medial axis of � by setting, for any λ > 0,

Mλ(�) := {x ∈ � : r(x) � λ}, (1.10)

where r(x) is the radius of the smallest ball containing all the projections of x on
the boundary ∂�, i.e. the set {z ∈ ∂� : |x − z| = d∂�(x)}. It is known that, for λ

small enough, Mλ(�) has the same homotopy type as M(�) (see [11, section 3,
theorem 2]) and that

M(�) =
⋃
λ>0

Mλ(�).

These facts justify the thatMλ(�) is a good approximation ofM(�), for λ small
enough. The crucial difference though is that Mλ(�) is stable with respect to
small variations of �, whereasM(�) is not (we refer to [11, section 4] for precise
statements and proofs). Finally, we notice that the λ-medial axis can be equivalently
defined (see [11, section 2.1]) as

Mλ(�) =
{
x ∈ � : |∇d∂�(x)|2 � 1 − λ2

d2∂�(x)

}
, (1.11)

where ∇d∂� denotes the generalized gradient wherever d∂� is not differentiable.

1.1.2. Approximation of the medial axis Given a constant m > 0 and a domain
�, as above, we consider the following elastic-plastic torsion problem

min

{∫
�

(
|∇v|2 − mv

)
dx : v ∈ H1

0 (�), |∇v| � 1

}
. (1.12)

As in the case of (1.3), the problem (1.12) has a unique minimizer, which we will
denote by vm . Physically speaking, vm represents the stress function of a long bar
of cross section�, twisted with an anglem. The elastic-plastic torsion problem and
the properties of its minimizer vm have been studied by various authors in the 60’s
and 70’s (see for instance [3,4,8,9,14,26,27] and [7]). In particular, in [4], Brezis
and Sibony proved that the gradient constraint in (1.12) can be replaced with an
obstacle-type constraint on the function. Precisely, the minimizer vm of (1.12) is
also the (unique) minimizer of

min

{∫
�

(
|∇v|2 − mv

)
dx : v ∈ H1

0 (�), v � d∂�

}
. (1.13)

Notice that this resultwas later generalized to a broader class of variational problems
with convex constraints on the gradient (see [21,28] and [24]). However, none
of these will apply to our variant of the problem on manifolds, for which the
equivalence of constraints fails in general (see Section Appendix B).
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Finally, using the equivalence of (1.12) and (1.13), Caffarelli and Friedman (see
[6]) proved that the sequence of elastic sets {|∇vm | < 1} Hausdorff converges, as
m → +∞, to the medial axis M(�). To be precise, in [6], it was showed that the
elastic sets converge to the so-called ridgeR(�) which coincides with the closure
ofM(�), when � has a C2 regular boundary. This result from [6] is the euclidean
counterpart of the first part of Theorem 1.1. Nevertheless, the strategies from [4]
and [6] cannot be reproduced on a manifold and do not imply the convergence
of the λ-medial axis. In the proof of our Theorem 1.1, we still aim at replacing
the constraint on the gradient with a constraint on the function, but our approach is
different and allows us to deal with the presence of themanifold and to treat both the
cut locus and the λ-cut locus. In particular, we obtain the following approximation
result for the λ-medial axis:

Theorem 1.6. (Approximation ofMλ(�)) Let� be a bounded open set inRn with
C2 regular boundary. Then, setting

E�
m={

x ∈ � : |∇vm(x)|<1
}
and E�

m,λ =
{
x ∈ � : |∇vm(x)|2 � 1 − λ2

v2m(x)

}
,

we have that, for any fixed ε > 0,

sup
x∈E�

m,λ

d
(
x,Mλ(�)

) −→
m→+∞ 0, and sup

x∈Mλ+ε(�)

d(x, E�
m,λ) −→

m→+∞ 0.

(1.14)

Remark 1.7. We do not exclude that the convergence rates in (1.6) and (1.14) can be
improved; for instance, it is natural to expect that there is a modulus of continuity
f : [0,+∞) → [0,+∞) for which

sup
x∈M f (λ)(�)

d(x, E�
m,λ) −→

m→+∞ 0.

1.2. Proof of Theorem 1.3 and plan of the paper

We consider the variational problem

min

{∫
M

|∇u|2 − mu : u ∈ H1(M), u � db

}
. (1.15)

We can immediately check that (1.15) admits a minimizer and that this minimizer
is unique (this follows by the convexity of the functional and the constraint). We
will denote by udm : M → R (’d’ stands for the ’distance’ constraint) the unique
minimizer of (1.15).
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1.2.1. Part I. Equivalence of (1.3) and (1.15) Our first aim is to show that the
problems (1.3) and (1.15) are equivalent, that is the minimizers um and udm are the
same. Now, since every function which is 1-Lipschitz and is zero in b stands below
the distance function b, it is clear that um can be used to test the optimality of udm ,
that is, we have ∫

M

(|∇udm |2 − mudm
) ≤

∫
M

(|∇um |2 − mum
)
.

Notice that, if we are able to prove that the minimizer udm is 1-Lipschitz, then we
can use udm to test the minimality of um , i.e.∫

M

(|∇udm |2 − mudm
) ≥

∫
M

(|∇um |2 − mum
)
.

This gives that both um and udm are solutions of (1.3) (and also of (1.15)), which
means that they have to coincide. Thus, in order to prove that (1.3) and (1.15) are
equivalent, we have to prove that

|∇udm | ≤ 1 on M. (1.16)

In order to prove this, we proceed as follows:

• First, we prove that udm is C1-regular locally in M \ {b} (see Proposition 3.4).
• Then, from Lemma 3.3 and Lemma 3.1, we deduce that

Cutb(M) ⊂ {udm < db} ⊂ M \ {b}.
In particular, since db is smooth away from {b} and Cutb(M), we get that on
the boundary ∂{udm < db} both the distance function db and the solution udm
are differentiable and have the same gradient, which entails that |∇udm | = 1 on
∂{udm < db}.

• Finally, we use the fact that udm solves the PDE

�udm = m in {udm < db}, |∇udm | = 1 on {udm = db}
to deduce that |∇udm | ≤ 1 also in the set {udm < db}. Now, in the flat (Euclidean)
case, this inequality is an immediate consequence of the fact that |∇udm |2 is
subharmonic. On a general manifold M the situation is more complicated as
the curvature comes into play in the computation of�

(|∇udm |2). For this reason
we are able to prove the bound |∇udm | ≤ 1 on M (and so the equivalence of
the two problems) only in the case when m is large enough. Before we give
the precise statement of this result (see Proposition 1.8), let us emphasize that
this is not a mere technical assumption, but a consequence of the geometry of
the manifold. In fact, in the appendix (Theorem B.1), we give an example of a
2-manifold M for which the bound on the gradient fails when m is small.

The following is the main result of this first part of the paper (the proof is given
in Section 4):
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Proposition 1.8. (Equivalence of (1.3) and (1.15)) Let M be an n-dimensional
compact Riemannian manifold and let the constant K � 0 be a lower bound for
the Ricci curvature

Ric � −K , (1.17)

where Ric denotes the Ricci curvature tensor of M. Then, for every

m � 1

2
max

{√
nK (1 + Kdiam(M)2), nKdiam(M)

}
, (1.18)

we have that∣∣∣∇udm

∣∣∣ = 1 on {db = udm}, and
∣∣∣∇udm

∣∣∣ < 1 in Ed
m := {udm < db}.(1.19)

In particular, for m as in (1.18), we have that udm = um, where um is the minimizer
of (1.3).

Finally, as a corollary of Proposition 1.8, we obtain the first two claims of
Theorem 1.3.

Proof of Theorem 1.3 (T1) and (T2). By Proposition 1.8 we have that um = udm .
From the regularity of udm (Proposition 3.4, Lemma 3.3 and Lemma 3.1), we obtain
(T1) and (T2). �

Moreover, as in the classical case of the elastic-plastic torsion problem (see [6]),
we can now use the structure of (1.15) to obtain information about themonotonicity
of Em and the uniform convergence of um .

Proof of Theorem 1.3 (T3) and (T5). The uniform convergence udm → db on M ,
as m → ∞, is proved in Lemma 5.1. The monotonicity of um and Em , and the
Hausdorff convergence of Em to Cutb(M), now follow from Proposition 5.2. �

1.2.2. Part II: Uniform semiconcavity and convergence of the gradients We
recall that our final objective is to prove the convergence of the sets Em,λ (Theorem
1.1) and E�

m,λ (Theorem 1.6). Now, from the definition of Em,λ, it is clear that
this boils down to proving a convergence result for the gradients |∇um |. On the
other hand, we cannot expect any uniform estimate on the modulus of continuity
of |∇um |; in fact, the sequence um converges (uniformly) to the distance function
db, which is not even differentiable at all points. Thus, we adopt a different strategy
and we prove that the solutions are uniformly semiconcave, where our definition
of semiconcavity is the following:

Definition 1.9. (C-semiconcavity) Given a constant C > 0, a function u is said to
beC-semiconcave on M if and only if for any unit speed geodesic γ : [a, b] → M ,
the function t �→ Ct2 − u(γ (t)) is convex. Moreover,

• we say that u is semiconcave if it is C-semiconcave for some constant C > 0;
• we say that u is locally semiconcave if for any p ∈ M , u is semiconcave in a
neighborhood of p.
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The main result of the paper is Theorem 1.3 (T4), which we prove in Section
6. The key result is Proposition 6.1 and applies to both Theorem 1.3 and Theorem
1.6. Let us briefly give the idea of the proof of this proposition here, directly in the
setting of Theorem 1.3 (T4).
Sketch of the proof of Theorem 1.3 (T4) First, we fix a constant Cd such that the
distance function db is Cd -semiconcave on M \ Bρ(b). Then, for every unit speed
geodesic γ : [a, b] → M , and every λ ∈ [0, 1], we define the function

c(γ, λ)

:= λ(1 − λ)(Cd + 1)(b − a)2

−
(
(1 − λ)um(γ (a)) + λum(γ (b)) − um(γ (λab))

)
,

where λab = (1− λ)a + λb. We will show that the minimum of this function over
all geodesics γ and all λ is positive, which will give that u is (Cd +1)-semiconcave.
First, we show that for any unit speed geodesic γ and λ ∈ (0, 1), we can build a
unit speed geodesic γ̂ : [a, b] → M and λ̂ ∈ (0, 1), such that

c(γ̂ , λ̂, um) � c(γ, λ, um) and γ̂ (a, b) ⊂ Em = {um < db}.
This follows from the semiconcavity of db and the inequality um ≤ db (this is
explained in detail in the proof of Proposition 6.1). Thus, we only need to show the
semiconcavity of um in the non-contact region Em . Since um is smooth in Em , we
need to prove that (see Proposition 2.2)

D2um � (Cd + 1)I d in Em .

In order to prove this inequality, for every p ∈ Em and X ∈ S
n−1(TpM) we

consider an auxiliary function of the form

fε(p, X) := D2um(X, X) + ε
(
C1 |∇um |2 (p) + C2u

2
m(p) − C3um(p)

)
,

and we show that for ε > 0 small enough and m large enough, we have fε �
Cd + 1/2. We suppose that the maximum of fε is achieved for some q ∈ Em

and some Y ∈ S
n−1(TqM) (the case when the minimum is achieved for q ∈ ∂Em

is a consequence of known estimates for the solutions of the obstacle problem
with variable coefficients, see Section 7). Then, we construct, locally around q, a
function of the form

p �→ fε(p, X (p)) where X (p) ∈ S
n−1(TpM),

and we compute its Laplacian in the variable p (notice that in the flat euclidean
case we can simply take the section p �→ X (p) to be constant). Finally, we obtain
that for an appropriate choice of ε and m, the Laplacian of this function has to be
positive, which contradicts the minimality of q and concludes the proof. �

The main part of the proof of Theorem 1.3 (T4) is contained in Proposition 6.1,
which applies to both Theorem1.3 andTheorem1.6. In the proof of Proposition 6.1,
the function c is the Riemannian counterpart of the Korevaar’s convexity function
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(see [19]); in computing the Laplacian of fε(p, X (p)) we use some of Guan’s
second order estimates for Hessian equations in Riemannian manifolds (see [15]).

At this point, the convergenceof the gradients |∇um | (Theorem1.3 (T6)) follows
from the uniform semiconcavity of um by a general argument (we give the proof
of this fact in Section 7). We are now in position to prove Theorem 1.1.

1.3. Proof of Theorem 1.1

The Hausdorff convergence of the elastic sets Em to Cutb(M) is a consequence
of the uniform convergence (Theorem 1.3 (T5)) of the solutions um to the distance
function db, as explained in Proposition 5.2. Let us nowprove the first claim in (1.6).
Suppose by contradiction that there are a constant δ > 0, a sequencemk → ∞ and
a sequence of points pk such that

pk ∈ Emk ,λ and d
(
pk, Cutλb(M)

)
> δ. (1.20)

By the facts that M is compact and that umk coincides with the distance function
db in a neighborhood of b (that does not depend on k), we may suppose that pk
converges to some p∞ ∈ M \ {b}. Now, from the uniform convergence of umk and
Theorem 1.3 (T6), we get that

|∇db|(p∞) ≤ lim inf
k→∞ |∇umk |(pk) ≤ lim

k→∞

(
1 − λ2

u2mk
(pk)

)
= 1 − λ2

d2b (p∞)
,

which means that p∞ ∈ Cutλb(M), in contradiction with (1.20).
Suppose now that the second claim in (1.6) does not hold. Then, there are a

constant δ > 0, a sequence mk → ∞ and a sequence of points pk ∈ M ∈ {b} such
that

pk ∈ Cutλ+ε
b (M) and d

(
pk, Emk ,λ

)
> δ for every k ≥ 0.

Up to extracting a subsequence, we may suppose that pk converges to a point p∞
such that

p∞ ∈ Cutλ+ε
b (M) and d

(
p∞, Emk ,λ

)
>

δ

2
for every k ≥ 0. (1.21)

Now, by Theorem 1.3 (T6), there is a sequence qk → p∞ such that

|∇db|(p∞) = lim
k→∞ |∇umk |(qk).

In particular, since p∞ ∈ Cutλ+ε
b (M), we have that

lim
k→∞

(
|∇umk |(qk) − 1+ λ2

u2mk
(qk)

)
=|∇db|(p∞) − 1 + λ2

d2b (p∞)
≤ −2ελ + ε2

d2b (p∞)
.

Thus, the left-hand side is negative for k large enough and so, we have that
qk ∈ Emk ,λ, which stands in contradiction with (1.21). This concludes the proof of
Theorem 1.1. �
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1.4. Proof of Theorem 1.6

As shown in Section 6, we may apply Proposition 6.1 to get that the functions
vm are uniformly semiconcave on �. It is already known that the solution vm of
(1.12) and (1.13) is locally C1,1 on �. It is also well-known that vm converges
uniformly to d∂� as m → ∞. As a consequence, reasoning as in Section 7, we get
that, for every x∞ ∈ �, the following holds:

• if xm → x∞, then |∇d∂�|(x∞) ≤ lim inf
m→∞ |∇vm |(xm) ;

• there exists a sequence xm → x∞ such that |∇d∂�|(x∞) = lim
m→∞ |∇vm |(xm) .

Now, the conclusion follows as in the proof of Theorem 1.1. �

2. Notation, Definitions and Preliminary Results

2.1. General notation

Wewill denote by g the metric on M . T M denotes the tangent bundle of M and
TpM the tangent space of M at p. By S

n−1(TpM) we will denote the unit sphere
in TpM , that is,

S
n−1(TpM) := {

X ∈ TpM : g(X, X) = 1
}
.

Exp : T M → M is the global exponentialmap,while expp is its restriction to TpM .
Finally, given a function u on M , Du is the differential of u, ∇u is the gradient,
and Dku is the k-th covariant derivative (in particular, by D we denote also the
Riemannian connection on M). Thus, for smooth vector fields X,Y : M → T M ,
we have

g(∇u, X) := Du(X) = DXu = Xu and D2u(X,Y ) = g(DX (∇u),Y ).

Wewill also use the notation |∇u|2 for g(∇u,∇u), and�u for theLaplace-Beltrami
operator on M . We notice that −� is positive, that is, we have the integration by
parts formula ∫

M
g(∇u,∇v) =

∫
M

(−�u)v

for every u, v ∈ C2(M). Unless otherwise specified, all the integrals will be taken
with respect to the volume form associated to the Riemannian metric g. Finally,
we recall that H1(M) denotes the usual space of Sobolev functions on M , which
is the closure of C1(M) with respect to the H1-norm defined as

‖u‖2H1 =
∫
M

|∇u|2 +
∫
M
u2.
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2.2. Semiconcave functions

In this section, we gather some of the main properties of semiconcave functions
on smooth Riemannian manifolds, which we will need in the proof of Theorem 1.3.
Some of these results can be found in [23], in the context of Alexandrov spaces,
while for a more detailed introduction to semiconcave functions in the framework
of euclidean spaces we refer to [10].

Let M be a Riemannian manifold, u : M → R a given function and γ :
[a, b] → M be a curve in M . It is immediate to check that the function

t �→ Ct2 − u(γ (t))

is convex on [a, b] if and only if

(1 − λ)u(γ (a)) + λu(γ (b)) − u(γ (λab))

� Cλ(1 − λ)(b − a)2 for any λ ∈ [0, 1], (2.1)

where here and throughout the paper, we use the notation

λab := (1 − λ)a + λb for any a, b, λ ∈ R. (2.2)

In particular, this means that the function u is C-semiconcave on M if and only
if (2.1) holds for any unit speed geodesic γ : [a, b] → M . Analogously, u is
locally semiconcave if for every p ∈ M there is a geodesic ball Bρ(p) and a
constantCp > 0 such that (2.1) holds (withC = Cp) for every unit speed geodesic
γ : [a, b] → Bρ(p).

Remark 2.1. On a compact Riemannian manifold, semiconcavity and local semi-
concavity are the same.

Proposition 2.2. (Semiconcavity in terms of D2u) Let u : M → R be C2-regular.
Then

D2u � 2C on M if and only if u is C-semiconcave on M.

Proof. Let γ : [a, b] → M be a unit speed geodesic. Then the function t �→
Ct2 − u(γ (t)) is convex if and only if

0 � 2C − d2

dt2
u(γ (t)) = 2C − d

dt
Du(γ̇ (t))

= 2C −
(
D2u(γ̇ (t), γ̇ (t)) + Du(Dγ̇ (t)γ̇ (t))

)
= 2C − D2u

(
γ̇ (t), γ̇ (t)

)
.

The claim follows. �
The semiconcavity can also be read in local coordinates as follows:

Proposition 2.3. (Semiconcavity in local coordinates) Let u : M → R be a locally
Lipschitz function on a Riemannian manifold M. Then, u is locally semiconcave if
and only if for any chart ψ of M, u ◦ ψ−1 is locally semiconcave as a function on
R
n.
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We postpone the proof of this proposition to Appendix A. We next show that we
can define the gradient of a semiconcave function at every point.

Proposition 2.4. (The generalized gradient of a semiconcave function) Let u :
M → R be a locally Lipschitz and semiconcave function. Then, at every point
p ∈ M, u admits a directional derivative ∂+

v u(p) in any direction v ∈ TpM \ {0};
it is defined by

∂+
v u(p) := d

dt
[u(γ (t))]t=0 = lim

t→0+
u(γ (t)) − u(p)

t
,

where γ : [0, 1] → M is any curve such that γ (0) = p and γ̇ (0) = v . Moreover,
the map v �→ ∂+

v u(p) is 1-homogeneous and concave on TpM. Thus, it attains a
unique maximum in the closed unit ball of TpM at a unique vector vp.

Proof. ByProposition 2.3,we can suppose thatM = R
n , p = 0 and that γ (t) = tv.

Then the function w(x) = C |x |2 − u(x) is convex for C large enough and so, the
function t �→ w(γ (t))−w(0)

t is non-decreasing in t , so the limit ∂+
v u(p) = −∂+

v w(0)
exists and is finite. The convexity of the function v �→ ∂+

v w(0) is a consequence
from the convexity of w. The existence of a maximum of v �→ ∂+

v u(p) follows. �
If ∂+

vp
u(p) > 0, then the 1-homogeneity implies that vp has norm one, and we

define

∇u(p) := ∂+
vp
u(p)vp and |∇u(p)| = ∂+

vp
u(p).

If ∂+
vp
u(p) = 0, then we set ∇u(p) = 0. Thus, the norm of ∇u(p) is given by the

following formula:

|∇u(p)| = max
{
0, max

v∈TpM,|v|=1
∂+
v u(p)

}
. (2.3)

2.3. Distance function, cut locus and cut points

Let M be a compact Riemannian manifold, b ∈ M and db : M → R be the
distance function to b. Here we recall the definition and some of the main properties
of the cut locus.

Definition 2.5. (Cut points) Let T > 0 and γ : [0, T ] → M be a unit speed
geodesic such that γ (0) = b, t0 ∈ (0, T ) and p = γ (t0). We say that p is a cut
point of b along γ if γ is length minimizing between b and p, but not after p, i.e
db(γ (t)) = t for t � t0, and db(γ (t)) < t for t > t0.

Definition 2.6. (Cut locus) The cut locus of b in M , Cutb(M), is defined as the set
of all cut points of b.

The following well-known facts about the cut locus can all be found in [25, Chapter
III, Section 4]:
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• Cutb(M) is the closure of the set of points p in M , for which there are at least
two minimizing geodesics connecting b and p;

• the distance function db is smooth outside Cutb(M) ∪ {b} and
|∇db| = 1 in M \

(
Cutb(M) ∪ {b}

)
;

• db is differentiable at p ∈ M if and only if there is a unique minimizing
geodesics between b and p;

• in particular, Cutb(M) ∪ {b} is the closure of the set of points of non differen-
tiability of db;

• the exponential map expb : TbM → M is a diffeomorphism from an open set
of TbM onto M \ Cutb(M);

• Cutb(M) is a deformation retract of M \ {b}. In particular, these two sets
have the same homotopy type, and so Cutb(M) inherits much of the topology
of M (like homology groups, for instance). See [25, Chapter III, Section 4,
Proposition 4.5] for a precise statement.

We next recall that in [20, Proposition 3.4], it was proved that, for any chartψ on
M \ {b}, the function db ◦ψ−1 is locally semiconcave on Rn . Thus, by Proposition
2.3, db is locally semiconcave on M \ {b} in the sense of Definition 1.9. More
precisely, we have

Proposition 2.7. (Semiconcavity of the distance function) Let M be a compact
Riemannian manifold of dimension n and b ∈ M be a given point. Then, for every
ρ > 0, there is a constantC > 0 such that the distance functiondb isC-semiconcave
on M \ Bρ(b).

In particular, by Proposition 2.4, for any point p ∈ M \ {b} and any direction
v ∈ TpM , db admits the directional derivative ∂+

v db(p) and so we can define ∇db
and |∇db| at every point as in (2.3). In Lemma2.8we give a geometric interpretation
of |∇db| (p) in terms of the geodesics connecting p to b. We notice that similar
results holds also in the more general framework of Alexandrov spaces, but with
some additional restrictions on the curvature of the ambient space (see [1, Theorem
4.5.6] and also [1, Lemma 3.2] for the statement in the Riemannian context). We
give the proof directly for the distance function to a compact subset K of M .

Lemma 2.8. (Geometric interpretation of the generalized gradient) Let M be a
smooth Riemannian manifold without boundary, K a compact subset of M, and
dK the distance function to K . Let p be a point of M such that there exist several
minimizing geodesics from p to K . We denote the set of unit speed geodesics from
p to K that are minimizing between p and K by geod(p, K ). For any v ∈ TpM,
we have that

∂+
v dK (p) = min

γ∈geod(p,K )
−γ̇ (0) · v. (2.4)

In particular,

|∇dK | (p) = max{0, max
v∈TpM,|v|=1

min
γ∈geod(p,K )

−γ̇ (0) · v}. (2.5)
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In particular, if γ1 : [0, dK (p)] → M and γ2 : [0, dK (p)] → M are two minimiz-
ing geodesics from p to K , then

|∇dK (p)| ≤
√
1 + γ̇1(0) · γ̇2(0)

2
. (2.6)

Proof. Letγ : [0, dK (p)] → M be ageodesic of geod(p, K ). Leta = γ (dK (p)/2).
As γ is minimizing between p and γ (dK (p)), we have a /∈ Cutp(M), and so p /∈
Cuta(M). In particular, the function da is differentiable at p, and∇da(p) = −γ̇ (0).
Thus, for every t > 0, we have that

dK (expp(tv)) − dK (p)

t
�

da(expp(tv)) + dK (a) − dK (p)

t

= da(expp(tv)) − da(p)

t

Passing to the limit as t → 0, we get

∂+
v dK (p) � min

γ∈geod(p,K )
−γ̇ (0) · v. (2.7)

Now, for every t > 0, let γt ∈ geod(expp(tv), K ). For t small enough, the length
of γt is bounded by dK (p) + 1. By compactness of the set of geodesics of length
bounded by a given constant, there exists a sequence of positive numbers (tn)n�0
that converges to 0, such that γn := γtn converges to a unit speed geodesic γ as
n → +∞. As K is closed, γ is a geodesic from p to K . What is more, we have
that

length(γ ) = lim
n→∞ length(γn) = lim

n→∞ dK (expp(tnv)) = dK (p),

so γ ∈ geod(p, K ). Let R = min{inj(M), dK (p)/2}, where inj(M) is the injec-
tivity radius of M . In particular for any (x, y) such that d(x, y) < R and x �= y,
the distance function d( · , · ) is smooth in a neighborhood of (x, y) in M × M .
For n ∈ N, let bn := γn(R), and b∞ = γ (R). Let U, V ⊂ M be precompact
neighborhoods of p and b∞ respectively such that d( · , · ) is smooth on U × V .
For n big enough, we have expp(tnv) ∈ U and bn ∈ V , and so

dK (p) � dK (bn) + d(bn, p)

= dK (expp(tnv)) − d(bn, expp(tnv)) + d(bn, p)

= dK (expp(tnv)) − ∇2d(bn, p) · v + o(tn), (2.8)

where ∇2 is the gradient with respect to the second variable. We have that

∇2d(bn, p) −→
n→∞ ∇2d(b∞, p) = −γ̇ (0)

because d( · , · ) is smooth on U × V . Thus (2.8) yields

lim inf
n→∞

dK (expp(tnv)) − dK (p)

tn
� −γ̇ (0) · v.
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In particular,

∂+
v dK (p) � min

γ∈geod(p,K )
−γ̇ (0) · v.

With (2.7), this concludes the proof of (2.4). Now, (2.5) follows from (2.4) and the
definition of the generalized gradient (2.3) of semiconcave functions. Finally, in
order to prove (2.6), we consider the vector v that realizes the maximum in (2.5)
and we write it as v = −αγ̇1(0) − βγ̇2(0) + v⊥, where v⊥ is orthogonal to γ̇1(0)
and γ̇2(0). Then, we have that

−v · γ̇1(0) = α + βγ̇1(0) · γ̇2(0) and − v · γ̇2(0) = β + αγ̇1(0) · γ̇2(0).

In particular,

min
γ∈geod(p,K )

−γ̇ (0) · v ≤ 1

2

(
− v · γ̇1(0) − v · γ̇2(0)

)

≤ 1

2
(α + β)

(
1 + γ̇1(0) · γ̇2(0)

)
. (2.9)

Now, using the fact that

α2 + β2 + 2αβγ̇1(0) · γ̇2(0) ≤ ‖v‖2 = 1,

we get that

(α + β)2 ≤ 1 + 2αβ
(
1 − γ̇1(0) · γ̇2(0)

)
≤ 1 + 1

2
(α + β)2

(
1 − γ̇1(0) · γ̇2(0)

)
,

which implies that

(α + β)2 ≤ 2

1 + γ̇1(0) · γ̇2(0)
,

which, together with (2.9), gives (2.6). �
As a consequence of Lemma 2.8 and in particular of (2.6), we obtain the λ-cut

locus approximates the cut locus in the following sense:

Proposition 2.9. Suppose that M is a compact Riemannian manifold, the point
b ∈ M is fixed and that db is the distance function to b. Then, for every λ > 0,
Cutλb(M) ⊂ Cutb(M). Moreover, the cut locus Cutb(M) is the closure of the

union
⋃
λ>0

Cutλb(M).

Proof. The inclusion Cutλb(M) ⊂ Cutb(M) follows from the fact that db is differ-
entiable and |∇db| = 1 outside Cutb(M)∪{b}. In order to prove the second claim,
we fix a point p ∈ Cutb(M). Then, there is a sequence of points pn ∈ Cutb(M)

for each of which there are at least two different minimizing geodesics from pn to
b. Now, from (2.6), we have that pn ∈ Cutλnb (M) for some λn > 0. This concludes
the proof. �
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3. Regularity of udm

This section is dedicated to the C1,1 regularity of the minimizer udm of (1.15).
We recall the following result:

Lemma 3.1. (Regularization of the obstacle, [16]) For any m > 0, there exists a
function d̃b which is smooth on M \ {b}, such that

udm � d̃b � db on M, and d̃b < db on Cutb(M).

In particular, udm is also the solution of the obstacle problem

min

{∫
M

|∇u|2 − mu : u ∈ H1(M), u � d̃b

}
. (3.1)

One could adapt to themanifold framework the regularity theorems for the classical
obstacle problem on a euclidean domain and, with the preceding lemma, deduce
the regularity of udm . Rather than doing that, we will use Lemma 3.1 to reduce our
problem to a classical obstacle problem on a euclidean domain. Let us start with
the following regularity lemma:

Lemma 3.2. (Continuity of umd ) For any m > 0, the function udm is continuous on
M.

Proof. We will reduce our problem to a classical obstacle type variational problem
on an open subset of Rn , by a series of elementary modifications, and apply a
classical W 2,p regularity theorem.

From Lemma 3.1, we know that there exists an open set U ⊂ M and ε > 0
such that

Cutb(M) ⊂ U and udm � db − ε on U.

As a consequence, on the setU , udm verifies the Euler-Lagrange equation of (1.15),
i.e �udm = −2m. In particular, it is C∞ smooth on U . Let � ⊂ M be a smooth
open set such that

Uc ⊂ �, ∂� ⊂ U and Cutb(M) ∩ � = ∅.

As Uc ⊂ �, it suffices to show that udm is continuous on �. As ∂� ⊂ U , udm is
smooth on ∂�, so there exists a smooth function vm on � such that vm = udm on
∂�. Then, one can check that udm is a solution of the variational problem

min

{∫
�

|∇u|2 − mu : u ∈ H1(�), u � db in �, u = vm on ∂�

}
.

As a consequence, udm − vm is a solution of the variational problem

min

{∫
�

|∇v|2 − (m + �vm)v : v ∈ H1
0 (�), v � db − vm in �

}
. (3.2)
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Because we have Cutb(M)∩� = ∅, the exponential map at b is a diffeomorphism
onto �. Let φ : � → �̃ ⊂ R

n be a normal coordinates chart centered at b. Let
g = (gi j ) denotes the metric of M in the coordinates defined by φ, and det g its
determinant.We recall that the Riemannian volumemeasure is given in coordinates
by

√
det g dx . Thus we have that∫

�

(
|∇v|2 − (m + �vm)v

)
=

∫
�̃

(
gi j∂i (v ◦ φ−1)∂ j (v ◦ φ−1)

√
det g

− (
(m + �vm) ◦ φ−1)(v ◦ φ−1)√det g

)
dx,

so (udm − vm) ◦ φ−1 is a minimizer of

min

{∫
�̃

(
gi j

√
det g ∂iw ∂ jw − Fw

)
dx : w ∈ H1

0 (�̃), w � ψ

}
, (3.3)

where we have set ψ := (db − vm) ◦ φ−1 and F := (m + �vm) ◦ φ−1√det g. We
want to apply [29, Theorem 4.32]. For this we need to write the above variational
problem into a variational inequality. Let w be a competitor in (3.3). Writing down
the minimality ofwm := (udm −vm)◦φ−1 against the competitorwm + t (w−wm),
for t ∈ (0, 1) small, we find that

〈Awm, wm − w〉 � 〈F, wm − w〉,
where A is the elliptic operator defined on H1

0 (�̃) by Aw := −∂ j (gi j
√
det g ∂iw).

From there, we can apply [29, Theorem 4.32] to deduce that, for any p < n, if
Aψ ∧ F ∈ L p(�̃), then Awm ∈ L p(�̃). To check that Aψ ∧ F ∈ L p(�̃), it is
enough to check that A(db ◦ φ−1) ∈ L p(�̃). As db is smooth except at b, it is
enough to check that (A(db ◦φ−1))p is integrable at 0. But this is a consequence of
the fact that −�db ◦φ−1 = 1√

det g
A(db ◦φ−1), and Lemma 3.5 below, from which

we deduce that A(db ◦ φ−1)(x) is equivalent to n−1
|x | when x goes to 0. Therefore,

for p < n, (A(db ◦ φ−1))p is integrable at 0, and so Awm ∈ L p(�̃). By elliptic
regularity, this implieswm ∈ W 2,p(�̃), for any p < n. By the Sobolev embeddings,
wm is then continuous on �̃, and so udm is continuous on �. This concludes the
proof. �

We can now define the set Ed
m := {udm < db}, for any m > 0. It is an open

subset of M , on which udm solves the equation �udm = −2m. We can now prove.

Lemma 3.3. For any m > 0, we have udm = db in a neighborhood of b.

Proof. Let us assume that we have constructed a C1 function v on BR(b) for some
R > 0, such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

v � db in BR(b), (3.4)

v = db in Bε(b) for some ε ∈ (0, R), (3.5)

v < 0 in ∂BR(b), (3.6)

�v � −m in BR(b) in the distributional sense. (3.7)
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We will then show that we have udm � v. The construction of v is postponed to the
end of the proof. From Lemma 3.2, we know that the function v−udm is continuous.
Let us first assume that v − udm attains a positive maximum at a point x ∈ BR(b).
We have that

0 < v(x) − udm(x) � db(x) − udm(x),

so x ∈ Ed
m . Moreover, we have udm � 0 since max(udm, 0) is a better competitor

than udm in (1.15), so

v − udm � v < 0 on ∂BR(b),

and so x ∈ BR(b). Hence the function v − udm attains a positive maximum inside
the open set Ed

m ∩ BR(b), but its Laplacian verifies in the distributional sense:

�(v − udm) = �v + m � 0. (3.8)

This yields a contradiction, by the maximum principle. Then, the maximum of
v − udm on BR(b) is non-positive, and we get

udm � v = db in Bε(b),

which concludes the this proof.
Let us now construct the function v that was used above. Let R > 0 be small

enough so that BR(b) is contained in a normal neighborhood of b. In polar coor-
dinates around b, we define v as a radial function. For ε > 0 to be chosen small
enough later, let f : [0, R] → [0,∞) be the C1 function such that⎧⎨

⎩
f (r) = r if r � ε,

f ′′(r) + n − 1

r
f ′(r) = −m

2
if r > ε. (3.9)

If n = 2, the unique C1 solution to this system is given by{
f (r) = r if r � ε,

f (r) = ε + m

8

(
ε2 − r2

)
+

(
ε + m

4
ε2

)
ln(

r

ε
) if r > ε. (3.10)

If n ≥ 3, then the solution is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (r) = r if r � ε,

f (r) = ε + m

4n

(
ε2 − r2

)
+

(
εn−1 + m

2n
εn

) 1

n − 2

(
1

εn−2 − 1

rn−2

)
if r > ε. (3.11)

Then, we set in standard polar coordinates v(x) = f (r) for x ∈ BR(b). For r � ε,
the constraint (3.5) is verified by definition. (For r > ε, we chose f so that �v is
small, but still bigger than −m.)
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Let us show that (3.4) holds. Let us set g(r) := f (r) − r and prove that g � 0.
We have g(r) = 0 for r � ε so it is sufficient to prove that g′(r) � 0 for r � ε.
However, as f verifies (3.9), g verifies

g′′ + n − 1

r
g′ = −m − n − 1

r
for r � ε.

In particular, whenever g′(r) = 0, we have g′′(r) < 0. This implies g′(r) � 0 for
r � ε, and so (3.4) is verified.

Now let us show that (3.7) holds if R has been taken small enough. We use the
following expression of the Laplacian in coordinates:

�v = 1√
det g

∂i

(√
det ggi j∂ jv

)
.

Here g = (gi j ) is the metric of the manifold M , and det g its determinant. We apply
this formula to polar coordinates to find that, on BR(b) \ Bε(b), we have, in the
classical sense,

�v = 1√
det g

∂r
(√

det g f ′(r)
) = f ′′ + ∂r det g

2 det g
f ′

= f ′′ + n − 1

r
f ′ +

(
∂r det g

2 det g
− n − 1

r

)
f ′

= −m

2
+

(
∂r det g

2 det g
− n − 1

r

)
f ′. (3.12)

Note that by applying the Laplacian formula in polar coordinates to the distance
function db(x) = r , we find that

�db = ∂r det g

2 det g
. (3.13)

Because of Lemma 3.5, we also have that

�db(x) = n − 1

r
+ o(1).

With (3.12) and (3.13), this last equation yields, in the classical sense,

�v = −m

2
+ o(1) f ′(r) on BR(b) \ Bε(b). (3.14)

Moreover, it is clear from the following expression that f ′ is bounded on [ε, R],
by a constant independent of R, as long as we choose R � 1:

f ′(r) = −m

n
r +

(
εn−1 + m

n
εn

) 1

rn−1 for ε � r � R.

Hence from (3.14) we see that by taking R small enough (independently of ε), we
can ensure that

�v � −m on BR(b) \ Bε(b).
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But from (3.14), we see that the above is also true on Bε(b) if ε is small enough.
Thus the function v is C1 on BR(b) and verifies �v(x) � −m when x /∈ ∂Bε(b),
hence (3.7) holds. It is also clear from (3.10) and (3.11) that the constraint (3.6) is
verified if ε is taken small enough. This concludes the proof. �

We can now prove the C1,1 regularity of udm .

Proposition 3.4. For any ε > 0, the function udm belongs to C1,1(M \ Bε(b)).

Proof. We reproduce the proof of Lemma 3.2, but we replace the open set � with
�̂ := � \ Bε(b), and the function vm with a function v̂m that is smooth and such
that wm = um on ∂�̂. We know that such a function exists because um is smooth
on ∂Bε(b) for ε small enough, as it can be seen from Lemma 3.3. This way, we can
apply the stronger W 2,∞ regularity result for the obstacle problem [29, Theorem
4.38], since db is smooth on �̂. We get that udm belongs to W 2,∞ = C1,1(�̂). As
udm is smooth on Ed

m and ∂�̂ ⊂ Ed
m , then udm is C1,1 on �̂ ∪ Em = M \ Bε(b). �

We end this section with the following computational lemma, which we used
in the proof of Lemma 3.3.

Lemma 3.5. We have

�db(p) =
p→b

n − 1

db(p)
+ o(1). (3.15)

Proof. We compute �db in normal coordinates centered at b. Let g = (gi j ) be the
metric of M in these coordinates. We have

�db(x) = 1√
det g

∂i

(√
det g gi j∂ j db

)
(x).

In normal coordinates, the metric is euclidean up to order 1 as x goes to 0. So we
have

gi j (x) = δi j + o(x), ∂i

(√
det g gi j

)
(x) = o(1) and

1√
det g

= 1 + o(x).

Moreover, in normal coordinates, we have db(x) = |x |, and so

δi j∂i j db(x) = n − 1

|x | ,

which gives, precisely, (3.15). �
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4. Equivalence of the Two Constraints

Proof of Proposition 1.8. As above, we denote by udm the minimizer of (1.15). In
order to show that udm solves (1.3), it is sufficient to show that udm is an admissible
competitor in (1.3), that is, |udm | ≤ 1 on M . Recall that the function udm isC1 except
at b, by Proposition 3.4.

First, suppose that x �= b is in the contact set Pd
m := {udm = db}. By Lemma

3.1, we have x /∈ Cutb(M), and so the distance function db is differentiable at x . It
is a simple consequence of the constraint udm � db and the equality udm(x) = db(x)
that we have ∇udm(x) = ∇db(x). The desired inequality

∣∣∇udm(x)
∣∣ � 1 follows.

In the non-contact set Ed
m = {udm < db}, the function udm solves the PDE

�udm = −2m. (4.1)

In particular it is smooth, and we may apply the Bochner-Weitzenböck formula

�

(∣∣∣∇udm

∣∣∣2) = 2Ric(∇udm,∇udm) + 2
∣∣∣D2udm

∣∣∣2 + 2(∇�udm,∇udm), (4.2)

where Ric denotes the Ricci curvature tensor on the manifold M and D2udm is the
second covariant derivative of udm . The last term is 0 because of (4.1). As for the
second term, we have that

∣∣∣D2udm

∣∣∣2 � 1

n

(
Trace(D2udm)

)2 = 4
m2

n
, (4.3)

where the last inequality is due to (4.1). As the manifold M is compact, there exists
a constant K > 0 (depending on M only) such that the Ricci curvature is bounded
from below by −K . In the end, (4.2) yields

�

(∣∣∣∇udm

∣∣∣2) + 2K
∣∣∣∇udm

∣∣∣2 � 8

n
m2. (4.4)

Now notice that, by (4.1),

�
(
(udm)2

)
= 2udm�udm + 2

∣∣∣∇udm

∣∣∣2 = −4mudm + 2
∣∣∣∇udm

∣∣∣2 ,

so (4.4) gives

�

(∣∣∣∇udm

∣∣∣2 + K (udm)2
)

= 8

n
m2 − 4Km udm

� 8

n
m2 − 4Km db � 8

n
m2 − 4Km diam(M).

Thus, if m � n
2Kdiam(M), the function

∣∣∇udm
∣∣2 + K (udm)2 is subharmonic in the

non-contact set Ed
m . FromLemma 3.3, we have Ed

m ⊂ M \{b}, andwith Proposition
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3.4, we get that the function
∣∣∇udm

∣∣2 + K (udm)2 is continuous on Ed
m ⊂ M \ {b}.

Therefore we may apply the maximum principle to get∣∣∣∇udm

∣∣∣2 �
∣∣∣∇udm

∣∣∣2 + K (udm)2 � sup
∂Ed

m

(∣∣∣∇udm

∣∣∣2 + K (udm)2
)

= 1 + K sup
∂Ed

m

(udm)2

� 1 + K sup
∂Ed

m

(db)
2 � 1 + Kdiam(M)2

With (4.4), this last inequality gives

�

(∣∣∣∇udm

∣∣∣2) � 8

n
m2 − 2K (1 + Kdiam(M)2)

Thus, whenever the right-hand side is nonnegative, the maximum principle applied

to the function
∣∣∇udm

∣∣2 on the open set Ed
m implies that

∣∣∇udm
∣∣2 < 1 on this set.

This concludes the proof. �

5. Convergence of the Non-contact Set

In this section we show that the non-contact set Ed
m = {udm < db} (which

coincides with Em , for m large enough, as we showed in the previous section)
Hausdorff-converges to Cutb(M).

Lemma 5.1. We have ‖db − udm‖L∞(M) � C

m
, for some positive constant C de-

pending on M only.

Proof. Weonly need to prove the proposition form large enough. Therefore, thanks
to Proposition 1.8, we will assume that m is large enough so that

∣∣∇udm
∣∣ � 1. We

only need to show the estimate on Ed
m since outside this set, udm and db are the same.

We will show that for m large enough, we have that

∀p ∈ Ed
m, ∃p ∈ (Ed

m)c such that d(p, p) < 5n/m. (5.1)

This will conclude the proof since by the 1-Lipschitzianity of udm and db, we then
have that∣∣∣db(p) − udm(p)

∣∣∣ �
∣∣∣db(p) − udm(p)

∣∣∣ + 2d(p, p) = 0 + 2d(p, p) � 10n

m
,

which is what we need. In order to prove (5.1), we argue by contradiction and
assume that B5n/m(p) ⊂ Ed

m . We want to apply the maximum principle to the
function v defined on B5n/m(p) by the formula

v(p) := udm(p) − inf
∂B 5n

m
(p)

udm + m

2n

(
dp(p)

2 −
(
5n

m

)2
)

.

For any p ∈ B5n/m(p), we have �udm(p) = −2m because we have assumed
B5n/m(p) ⊂ Ed

m . To estimate the Laplacian of d2p, we use some normal coordinates
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(xi ) centered at p. In these coordinates, the metric is euclidean up to order 1,
uniformly in p since M is compact, and dp(x) = |x | (see Lemma 3.5). We get that,
for m large enough, independently of p,

∀p ∈ B5n/m(p), �d2p(p) � 2(2n).

All in all, we obtain, on B5n/m(p) ⊂ Ed
m , that

�v � −2m + m

2n
2(2n) = 0,

so we can apply the maximum principle to v to get

v(p) � inf
∂B 5n

m
(p)

v,

i.e.

udm(p) − inf
∂B 5n

m
(p)

udm − m

4n

(
5n

m

)2

� 0. (5.2)

As we have taken m large enough so that
∣∣∇udm

∣∣ � 1, we also have

udm(p) − inf
∂B 5n

m
(p)

udm � 5n

m
<

m

4n

(
5n

m

)2

,

which contradicts the estimate (5.2). This concludes the proof. �
Proposition 5.2. (Monotonicity of udm and Ed

m, and convergence of Ed
m) For any

m > m′ > 0, we have

udm′ ≤ udm ≤ db and Cutb(M) ⊂ Ed
m ⊂ Ed

m′ .

Moreover,

Ed
m −→

m→∞ Cutb(M) in the Hausdorff sense.

Proof. The fact that, for any m > 0, Cutb(M) ⊂ Ed
m , is a direct consequence of

Lemma 3.1. Let us prove the second inclusion. For m > m′ > 0, note that by the
respective minimality of udm and udm′ , we have∫

M

∣∣∣∇ max(udm′ , udm)

∣∣∣2 − m
∫
M
max(udm′ , udm) �

∫
M

∣∣∣∇udm

∣∣∣2 − m
∫
M
udm,

and
∫
M

∣∣∣∇ min(udm′ , udm)

∣∣∣2 − m′
∫
M
min(udm′ , udm) �

∫
M

∣∣∣∇udm′
∣∣∣2 − m′

∫
M
udm′ .

Using the formulas

∇ max(udm′ , udm) = ∇udm′1{ud
m′>udm } + ∇udm1{ud

m′�udm },

∇ min(udm′ , udm) = ∇udm1{ud
m′>udm } + ∇udm′1{ud

m′�udm },
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we obtain ∫
{ud

m′>udm }

(∣∣∣∇udm′
∣∣∣2 −

∣∣∣∇udm

∣∣∣2) � −m
∫

{ud
m′>udm }

(
udm − udm′

)
,

and
∫

{ud
m′>udm }

(∣∣∣∇udm

∣∣∣2 −
∣∣∣∇udm′

∣∣∣2) � −m′
∫

{ud
m′>udm }

(
udm′ − udm

)
.

Summing these two inequalities, we get

0 � (m − m′)
∫

{ud
m′>udm }

(
udm′ − udm

)
,

and so udm � udm′ . In particular, Ed
m ⊂ Ed

m′ .
We are left to show theHausdorff convergence in Ed

m to Cutb(M). Given ε > 0,
let us set

�ε := {
x ∈ M : d(x, Cutb(M)) > ε

}
.

We will show that for m large enough we have Ed
m ⊂ (�2ε)

c, which will conclude
the proof. Let φ : M → R be a function such that φ � db on M , φ = db on �2ε,
φ < db on ∂�ε, and φ is smooth on M except at b. We want to apply the maximum
principle to the function φ − udm on Ed

m ∩ �ε. We have that

�(φ − udm) = �φ + 2m on Ed
m ∩ �ε,

so for m large enough the function φ − udm is subharmonic on Ed
m ∩ �ε. On ∂�ε,

we have φ < db and udm converges uniformly to db asm tends to +∞ (Lemma 5.1)
so φ −udm � 0, form large enough. On ∂Ed

m , we have φ −udm = φ −db � 0. Thus
the maximum principle implies that for m large enough, we have φ − udm � 0 on
Ed
m ∩ �ε. As φ = db on �2ε, we get udm � db on Ed

m ∩ �2ε. Since by definition
we have udm < db on Ed

m , we get E
d
m ⊂ (�2ε)

c, which concludes the proof. �

6. Semiconcavity

This section is dedicated to the semiconcavity of the solutions to the obstacle
problems (1.15) and (1.13). The key result is Proposition 6.1, which applies to both
Theorem 1.3 and Theorem 1.6.

In the case of Theorem 1.6, we have M̊ = � and ∂M = ∂�.

Proposition 6.1. Let M = M̊  ∂M be a smooth compact Riemanniannian mani-
fold, with (possibly empty) boundary ∂M. Suppose that, for some constants L > 0
and C > 0, we are given the following:

(a) a function d : M̊ → R, which is bounded and C-semiconcave on M̊;
(b) a family of functions um : M̊ → R

n, for m > 0, such that:
(b.1) for every m > 0, um ≤ d on M̊;
(b.2) for every m > 0, um is L-Lipschitz on M̊;
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(b.3) on the set Em := {um < d}, um is C∞ smooth and

−�um = 2m in Em ;

(b.4) Em is precompact in M̊;
(b.5) for every η > 0, for every m > 0, there is a neighborhood Nη,m of ∂Em in

M̊ such that

D2um ≤ (C + η) I d in Em ∩ Nη,m .

Then, for every η > 0, there exists m0 > 0 such that

um is (C + η)-semiconcave on M̊, for every m ≥ m0.

Application to Theorem 1.6. In order to apply Proposition 6.1 to Theorem 1.6,
we take M̊ = � and ∂M = ∂�. The function d is the distance function d∂�

to the boundary of �, while um is the solution vm of (1.13) (thus, the Lipschitz
constant from (b.2) is L = 1), which means that the conditions (b.1), (b.2) and
(b.3) are fullfilled. When � is C2 regular, the set M(�) is contained in �. Now,
as the elastic sets {um < d} Hausdorff-converge to M(�) (see [6]) we get that,
for large m, um coincides with d in a neighborhood of ∂�. Thus, (b.4) is fullfilled.
As � is C2, the function d∂� is known to be C-semiconcave in � for some C > 0
(see [10, (iii) of Proposition 2.2.2]), so (a) is fulfilled. Finally, condition (b.5) is a
consequence of [13, Chapter 2, Theorem 3.8]. Thus, there exists a constant C > 0
such that for m big enough, vm is C-semiconcave in �.
Application to Theorem 1.3 (T4). In the case of Theorem 1.3, we take M̊ =
M \ Bρ(x0) and ∂M = ∂Bρ(b), where Bρ(b) is a small geodesic ball centered
at the base point b. The function d is the distance function db to the base point,
while um is the solution of (1.15). The semiconcavity of the distance function d in
M \ Bρ(b)was proved in [20], see Proposition 2.7. By Proposition 1.8, for largem,
the problems (1.15) and (1.3) are equivalent and so we can take L = 1 in (b.2), and
we also have that (b.1) are (b.3) are fullfilled. Next, we notice that by Lemma 3.3
we have that um = d in a neighborhood of b, which proves (b.4) by choosing the
radius ρ small enough. Finally, in Lemma 6.2 we will prove that also the condition
(b.5) is fullfilled.

Proof of Proposition 6.1. First, we notice that by dividing all the functions by L ,
we can assume that L = 1. Let η > 0. As in Definition 1.9, for a, b ∈ R and
λ ∈ (0, 1), we will use the notation

λab := (1 − λ)a + λb.

For any unit speed geodesic γ : [a, b] → M̊ , λ ∈ (0, 1) and v a function on M̊ , let
us define

c(γ, λ, v) := λ(1 − λ)(C + η)(b − a)2

−
(
(1 − λ)v(γ (a)) + λv(γ (b)) − v(γ (λab))

)
.
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Fig. 2. Construction of γ̃ and λ̃

We aim to show that:

inf
γ,λ

c(γ, λ, um) � 0, (6.1)

where the infimum is taken over unit speed geodesics defined over finite intervals.
Let us argue by contradiction and assume that (6.1) does not hold.

Let us show that we may assume that the infimum is actually taken over unit
speed geodesics γ : [a, b] → M̊ such that

γ
(
(a, b)

) ⊂ Em = {um < d}. (6.2)

Letγ : [a, b] → M̊ be aunit speedgeodesic, andλ ∈ (0, 1), such that c(γ, λ, um) <

0. Let us assume that γ does not verify (6.2). We will build a geodesic γ̂ that does
verify (6.2), and λ̂ ∈ (0, 1), such that

c(γ̂ , λ̂, um) < c(γ, λ, um).

First, notice that if γ (λab) /∈ Em , then we have um(γ (λab)) = d(γ (λab)),
um(γ (a)) � d(γ (a)) and um(γ (b)) � d(γ (b)), and so

c(γ, λ, um) � c(γ, λ, d) > 0, (6.3)

where the last inequality comes from the C-semiconcavity of d. This is contradic-
tory, so γ (λab) ∈ Em . As γ does not verify (6.2), there exists t ∈ (0, λab)∪(λab, 1),
such that γ (tab) /∈ Em . Up to reparametrization of γ , we may assume that t ∈
(0, λab). We can define

μ := min {s ∈ (0, λ) : ∀r ∈ (s, λ), γ (rab) ∈ Em} .

We have γ (μab) /∈ Em , and γ ((μab, λab]) ⊂ Em . Figure 2 may help justify
intuitively the following construction. Let λ̃ ∈ (0, 1) be such that

λ̃μabb = λab. (6.4)

Let γ̃ be the unit speed geodesic defined by γ̃ := γ|[μab,b]. Let us set f (t) :=
(C + η)t2 − um(γ (t)). Then

c(γ̃ , λ̃, um) = (1 − λ̃) f (μab) + λ̃ f (b) − f (̃λμabb)

= (1 − λ̃) f (μab) + λ̃ f (b) − f (λab)

= c(γ, λ, um) − (1 − λ) f (a) + (̃λ − λ) f (b) + (1 − λ̃) f (μab).

(6.5)
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Now after some elementary calculations, (6.4) translates into{
1 − λ = (1 − λ̃)(1 − μ),

λ̃ − λ = −(1 − λ̃)μ,

so (6.5) becomes

c(γ̃ , λ̃, um) = c(γ, λ, um) − (1 − λ̃)
(
(1 − μ) f (a) + μ f (b) − f (μab)

)
= c(γ, λ, um) − (1 − λ̃)c(γ, μ, um).

Using the fact that γ (μab) /∈ Em , we deduce, as in (6.3), that

c(γ, μ, um) � c(γ, μ, d) > 0.

This yields

c(γ̃ , λ̃, um) < c(γ, λ, um).

Moreover the unit speed geodesic γ̃ : [μab, b] → M̊ verifies γ̃ ((μab, λ̃μabb]) ⊂
Em . Now, arguing as above, if there exists t ∈ (̃λ, 1) such that γ̃ (tμabb) /∈ Em ,
then we may build two numbers ν ∈ (̃λ, 1) and λ̂ ∈ (0, 1) such that the unit speed
geodesic γ̂ := γ̃|[μab ,νab ] verifies

c(γ̂ , λ̂, um) < c(γ̃ , λ̃, um),

and

γ̂ ((μab, νab)) ⊂ Em .

Now we need to show that

inf
γ,λ

c(γ, λ, um) � 0, (6.6)

where the infimum is taken over unit speed geodesics γ : [a, b] → M̊ such that
γ
(
(a, b)

) ⊂ Em .
By continuity of um , (6.6) is equivalent to simply saying that um is (C + η)-

semiconcave on Em . Therefore, as um is smooth on Em , by Proposition 2.2, we
only need to show the pointwise condition

D2um � (C + η)I d on Em . (6.7)

Now, let C1,C2,C3 > 0 be some constants to be determined later, and ε > 0 to be
chosen small enough later. For p ∈ Em and X ∈ S

n−1(TpM), we define

fε(p, X) := D2um(X, X) + ε
(
C1 |∇um |2 (p) + C2u

2
m(p) − C3um(p)

)
.(6.8)

We will show that for a good choice of constants C1, C2, C3, depending only of M
and |d|L∞ , for any ε > 0 small enough, depending only on M , |d|L∞ and η, we
have for any m large enough,

fε(p, X) � C + 2η

3
for every p ∈ Em and every X ∈ S

n−1(TpM). (6.9)
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This will conclude the proof since, as um is bounded by |d|L∞ and 1-Lipschitz, we
will then get

D2um(X, X) � C + 2η

3
+ εC(M, |d|L∞),

where C(M, |d|L∞) > 0 is a constant depending on M and |d|L∞ only. But this
implies (6.7) if ε has been taken small enough.

Suppose, by contradiction, that

sup
p∈Em

X∈Sn−1(TpM)

fε(p, X) > C + 2η

3
. (6.10)

Let us assume that m is large enough so that D2um ≤ (C + η/3)I d in a neighbor-
hood of ∂Em . In particular, we get that for ε small enough, depending only on M ,
|d|L∞ and η,

fε < C + 2η

3
in a neighborhood of ∂Em .

Thus, by (6.10) and the precompactness of Em , there exist q ∈ Em and Y ∈
S
n−1(TqM) such that

fε(q,Y ) = sup
p∈Em

X∈Sn−1(TpM)

fε(p, X). (6.11)

In the following, CM will denote any constant that depends only on M . Let
us pick some normal coordinates at q such that ∂1(q) = Y . We then extend the
vector Y into a vector field (still denoted by Y ) in a neighborhood of q, by setting
Y := ∂1/ |∂1|. As D∂1(q) = 0,we also have DY (q) = 0.Moreover, as themanifold
M is compact, D2Y (q) is bounded by a constant that depends on M only: we have
that ∣∣∣D2Y (q)

∣∣∣ � CM . (6.12)

We will show that the Laplacian of p �→ fε(p,Y (p)) is positive at q, which
contradicts the maximality of (q,Y (q)) in (6.11). Let us estimate �(D2um(Y,Y ))

at the point q, using the abstract index notation.

�(D2um(Y,Y )) = gabDaDb(D
2
cdumY

cY d)

= gab
(
D4
abcdumY

cY d + D3
acdumDb(Y

cY d)

+D3
bcdumDa(Y

cY d) + D2
cdumD

2
ab(Y

cY d)
)

. (6.13)

We may divide the right-hand side into four terms and estimate them at the point q
individually. The second term is null because it contains Db(Y cY d) = (DbY c)Yd+
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Y cDbY d , and DY = 0. The third term is also null, for the same reason. By (6.12),
we can estimate the fourth term as follows:

gabD2
cdumD

2
ab(Y

cY d) � −CM
∣∣∣D2um

∣∣∣ ≥ −CM

ε
− ε

∣∣∣D2um
∣∣∣2 . (6.14)

It now remains to estimate the first term of (6.13). Using the notation

D[ab] := DaDb − DbDa,

we compute that

DaDbDcDdum = DaD[bc]Ddum + D[ac]DbDdum
+ DcDaD[bd]um + DcD[ad]Dbum + DcDdDaDbum .

By definition of the Riemann tensor we have

DaD[bc]Ddum = Da(Rbced D
eum) = (DaRbced)D

eum + Rbced DaD
eum,

and so ∣∣DaD[bc]Ddum
∣∣ � −CM |∇um | − CM

∣∣∣D2um
∣∣∣ . (6.15)

Likewise, ∣∣DcD[ad]Dbum
∣∣ � −CM |∇um | − CM

∣∣∣D2um
∣∣∣ . (6.16)

To compute the term D[ac]DbDdum , let us pick some coordinates (xi ) and write

DbDdum = D2
i j umdx

i
bdx

j
d . Then, we have that

D[ac]DbDdum

= D[ac](D2
i j umdx

i
bdx

j
d )

= (D[ac]D2
i j um)dxibdx

j
d + D2

i j um(D[ac]dxib)dx
j
d + D2

i j umdx
i
b(D[ac]dx j

d )

= 0 + D2
i j um Raceb(dx

i )edx j
d + D2

i j umdx
i
b Raced(dx

j )e

= RacebD
eDdum + Raced DbD

eum,

and so ∣∣D[ac]DbDdum
∣∣ � −CM

∣∣∣D2um
∣∣∣ . (6.17)

By symmetry of the tensor D2um , we have that

DcDaD[bd]um = 0. (6.18)

Putting (6.15), (6.16), (6.17) and (6.18) together, we find that∣∣∣gabDaDbDcDdum
∣∣∣ � −CM |∇um | − CM

∣∣∣D2um
∣∣∣ −

∣∣∣gabDcDd DaDbum
∣∣∣ .
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In Em , um has constant Laplacian, so

gabDcDd DaDbum = DcDdg
abDaDbum = DcDd�um = 0,

and we get that∣∣∣gabDaDbDcDdum
∣∣∣ � −CM |∇um | − CM

∣∣∣D2um
∣∣∣ .

From this and the fact Y has norm 1, we deduce∣∣∣gabDaDbDcDdumY
cY d

∣∣∣ � −CMε−1 − ε |∇um |2 − ε

∣∣∣D2um
∣∣∣2 .

Combining this equation with (6.13) and (6.14), we obtain at the point q,

�(D2um(Y,Y )) � −CMε−1 − 2ε
∣∣∣D2um

∣∣∣2 − ε |∇um |2 . (6.19)

We recall the Bochner-Weitzenböck formula:

�
( |∇um |2 ) = 2Ric(∇um,∇um) + 2

∣∣∣D2um
∣∣∣2 + 2(∇�um,∇um).

As M is compact, there exists a constant K > 0 such that Ric � −K . Using the
fact that um has constant Laplacian in Em , we get

�
( |∇um |2 )

� 2
∣∣∣D2um

∣∣∣2 − 2K |∇um |2 . (6.20)

Furthermore, using the fact that �um = −2m in Em again, we find

�
(
u2m

) = 2 |∇um |2 − 2mum

� 2 |∇um |2 − 2m |d|L∞ , (6.21)

�um = −2m. (6.22)

Using (6.20), (6.21) and (6.22), we get

�
(
ε |∇um |2 + (K + 1)εu2m − ((K + 1) |d|L∞ + 1)εum

)
� 2ε

∣∣D2um
∣∣2 + ε |∇um |2 + εm.

Setting (C1,C2,C3) = (1, K + 1, ((K + 1) |d|L∞ + 1)), and recalling the
definition of fε (6.8), we obtain, thanks to (6.19),

�( fε(p,Y (p)))p=q � −CMε−1 + εm.

In particular, if m is large enough, depending on M and ε, this contradicts the
maximality of (q,Y (q)) in (6.11).

This concludes the proof of (6.9) and Proposition 6.1. �
In order to apply Proposition 6.1 to problem (1.15), we will need the following

lemma:
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Lemma 6.2. (Bound of D2um near ∂Em) Let um be the solution of (1.3), as in
Theorem 1.3. Let ε > 0 be smaller than the distance from b to Cutb(M). Let
Em := {um < db}. From Proposition 5.2, we know that for m large enough, we
have Em ⊂ M\B(b, ε). LetC > 0 be such that db isC-semiconcave on M\B(b, ε).
Then, for any m large enough, for any η > 0, there is a neighborhoodNη,m of ∂Em

in M \ B(b, ε) such that

D2um ≤ (C + η) I d in Em ∩ Nη,m . (6.23)

Proof. We will use a theorem for obstacle problems on Rn . Let us show that um is
the solution of an obstacle problem on an open subset of Rn . Then, we will apply
[13, Chapter 2, Theorem 3.8] to conclude that (6.23) holds.

The minimality of um in (1.15) implies

− �um − 2m � 0, um � db and (−�um − 2m)(um − db) = 0. (6.24)

Let �̃ be defined as in the proof of Proposition 3.4. Let φ : �̃ → Ũ be a normal
coordinates chart. Writing down (6.24) in these coordinates, we find

Aũm − 2m � 0, ũm � ψ and (Aũm − 2m)(ũm − ψ) = 0,

where A is the Laplacian of M in the coordinates defined by φ, ũm = um ◦ φ−1

and ψ = db ◦ φ−1. This is the form of [13, Chapter 2, equation (3.16)], so we can
apply [13, Chapter 2, Theorem 3.8], to deduce that

∀p ∈ ∂Em,∀X ∈ R
n lim
q→p
q∈Em

D2ũm(φ(q))(X, X) � D2ψ(φ(p))(X, X). (6.25)

Moreover, we have that

D2ũm = D2um ◦ (Dφ−1, Dφ−1) + Dum ◦ D2φ−1,

D2ψ = D2db ◦ (Dφ−1, Dφ−1) + Ddb ◦ D2φ−1,

and Dum = Ddb on ∂Em because um is C1. Thus, (6.25) yields

∀p ∈ ∂Em,∀X ∈ R
n lim
q→p
q∈Em

D2um(q)(Xq , Xq) � D2db(p)(X p, X p),

wherewehave set Xq := Dφ−1(φ(q))X .Asdb isC-semiconcave,withProposition
2.2, we get

∀p ∈ ∂Em,∀X ∈ R
n lim
q→p
q∈Em

D2um(q)(Xq , Xq) � C
∣∣X p

∣∣2 . (6.26)

From there, we deduce that

for q ∈ Em close enough to ∂Em, we have D2um(q) � C + η. (6.27)

Indeed, if not, there exist a sequence (qk) of points of Em whose distance to ∂Em

goes to 0, and a sequence (Xk) of unit vectors of R2 such that for any k ∈ N,

D2um(qk)
(
(Xk)qk , (Xk)qk

)
> C + η. (6.28)



Cut Locus on Compact Manifolds and Uniform Semiconcavity 593

As Em is precompact, up to extracting a subsequence, we can assume that (qk)
converges to a point p ∈ ∂Em , and (Xk) converges to a vector Y ∈ R

n . Because of
(6.26), we have

lim
k→∞ D2um(qk)(Yqk ,Yqk ) � C. (6.29)

Furthermore, we know from Proposition 3.4 that D2um is locally bounded. As
(Xk)qk − Yqk converges to 0 when k goes to ∞, this implies

lim
k→∞ D2um(qk)

(
(Xk)qk , (Xk)qk

) − D2um(qk)(Yqk ,Yqk ) = 0. (6.30)

Inequalities (6.28), (6.29) and (6.30) yield a contradiction. So (6.27) is true. This
concludes the proof. �

7. Convergence of the Gradients

In this section, we show that the uniform semiconcavity of um implies the
convergence of the gradients in the sense of Theorem 1.3 (T6). We notice that
the results from this section also apply to more general sequences of semiconcave
functions.

7.1. Lower semicontinuity

Themain result of this section is Proposition 7.2, which proves the first inequal-
ity in Theorem 1.3 (T6). We start with the following lemma:

Lemma 7.1. Let u : M → R be a C-semiconcave function. Let p, q ∈ M be such
that there exists a geodesic from p to q. Then,

u(q) � u(p) + |∇u(p)| d(p, q) + C

2
d(p, q)2,

where |∇u|(p) is the norm of the generalized gradient, defined in (2.3).

Proof. Let γ : [0, d(p, q)] → M be a geodesic from p to q. Consider the function
f (t) = 1

2Ct2 − u(γ (t)). By the semiconcavity of u, we know that f is convex.
Thus, we have

f (d(p, q)) � f (0) + f ′(0)d(p, q).

On the other hand, setting γ̇ (0) := v ∈ Tp(M), by construction, we have

f (0) = −u(p) , f (d(p, q)) = C

2
d(p, q)2 − u(q) , and f ′(0) = −∂+

v u(p).

Thus, we obtain

u(q) � u(p) + d(p, q)∂+
v u(p) + C

2
d(p, q)2 ≤ u(p) + |∇u(p)| d(p, q) +

C

2
d(p, q)2. �
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Proposition 7.2. Let M be a Riemannian manifold and let C > 0 be a fixed con-
stant. Let uk : M → R be a sequence of C-semiconcave continuous functions that
converges locally uniformly to a continuous function u∞ : M → R. Then, u∞ is
also C-semiconcave, and for any sequence of points pk → p∞ ∈ M, we have

|∇u∞| (p∞) ≤ lim inf
k→∞ |∇uk | (pk). (7.1)

Proof. First, notice that the C-semiconcavity of u∞ is an immediate consequence
of the pointwise convergence and the C-semiconcavity of uk . In particular, the
generalized gradients

∣∣∇umk

∣∣ (pk) and |∇u∞| (p∞) are well-defined by Propo-
sition 2.4. Thus, we only need to prove (7.1). We notice that (7.1) is trivial if
|∇u∞| (p∞) = 0. Thus, we suppose that |∇u∞| (p∞) > 0. In particular, there
are a vector v ∈ S

n−1(Tp∞M) and a unit speed geodesic γ with γ (0) = p∞ and
γ̇ (0) = v such that

|∇u∞(p∞)| = lim
t→0+

u∞(γ (t)) − u∞(p∞)

t
.

In particular, for any ε > 0, we can find q ∈ M such that d(p∞, q) ≤ ε and

|∇u∞(p∞)| � u∞(q) − u∞(p∞)

d(q, p∞)
+ ε.

Then, by the uniform convergence of uk and Lemma 7.1, we get

|∇u∞(p∞)| � lim inf
k→∞

uk(q) − uk(pk)

d(q, pk)
+ ε � lim inf

k→∞ |∇uk(pk)| + C

2
d(q, pk) + ε

≤ lim inf
k→∞ |∇uk(pk)| + (C + 1)ε,

which concludes the proof, as the inequality holds for any ε. �

7.2. Proof of Theorem 1.3 (T6)

The claim (1.8) follows from Proposition 7.2. Thus, we only need to prove
(1.9). First, notice that, if |∇db|(p∞) = 1, then (1.9) follows from (1.8) and the
fact that um is 1-Lipschitz. Let now |∇db|(p∞) < 1. Suppose by contradiction that
there are a subsequence mk −→

k→+∞ +∞ and constants ε > 0 and η0 > 0 such that

|∇db|(p∞) + ε ≤ |∇umk |(p) for every p ∈ Bη0(p∞) and every k ≥ 0.

We now fix η ≤ η0, which will be chosen later in the proof. Let (qt )t�0 be the
curve defined by

q0 = p∞ and
dqt
dt

= ∇umk (qt ).

Let T > 0 be such that for any t ∈ [0, T ], d(qt , p∞) � η, and in particular

|∇db|(p∞) + ε ≤ |∇umk |(qt ) for every t ∈ [0, T ].
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We have

umk (qT ) − umk (p∞) =
∫ T

0

∣∣∇umk (qt )
∣∣2 dt �

∫ T

0

(|∇db|(p∞) + ε
)2 dt

= T
(|∇db|(p∞) + ε

)2
.

As umk is bounded by the diameter of M , this estimate implies that there exists a
finite biggest time T > 0 such that for any t ∈ [0, T ], d(qt , p∞) � η. In particular,
d(p∞, qT ) = η. Let γ be a unit speed minimizing geodesic between p∞ and qT .
By Proposition 2.7, there is a constant Cd > 0 such that db is Cd -semiconcave in
Bη0(p∞). In particular, by Lemma 7.1, we have that

db(qT ) − db(p∞) � |∇db(p∞)| d(p∞, qT ) + Cd(d(p∞, qT ))2 (7.2)

= |∇db(p∞)| η + Cdη
2 . (7.3)

On the other hand,

umk (qT ) − umk (p∞) (7.4)

=
∫ T

0

∣∣∇umk (qt )
∣∣ ∣∣∣∣dqtdt

∣∣∣∣ dt �
∫ T

0

(|∇db|(p∞) + ε
) ∣∣∣∣dqtdt

∣∣∣∣ dt
= (|∇db|(p∞) + ε

) ∫ T

0

∣∣∣∣dqtdt

∣∣∣∣ dt �
(|∇db|(p∞) + ε

)
d(q0, qT )

= (|∇db|(p∞) + ε
)
η. (7.5)

Combining (7.3) and (7.5), we get that

εη−Cdη
2≤

(
umk (qT )−umk (p∞)

)
−

(
db(qT )−db(p∞)

)
≤ 2‖umk − db‖L∞(M).

Now, taking η small enough, we get that

1

2
εη ≤ 2‖umk − db‖L∞(M) for every k ≥ 0,

but this is in contradiction with the uniform convergence of um to db. �
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Appendix A. Appendix About Semiconcavity

In this section we prove that defining local semiconcavity through charts (as in [20]), or
through geodesics, is the same (see Proposition 2.3). We recall the notation λab = (1 −
λ)a+λb, for a, b ∈ R and λ ∈ [0, 1] and we notice that theC-semiconcavity of u : M → R

(in the sense of Definition 1.9) can be rewritten as

λu(γ (a))u(γ (b)) − u(γ (λab)) � Cλ(1 − λ)(b − a)2,

for every unit speed geodesic γ : [a, b] → M and any λ ∈ [0, 1].
In order to prove Proposition 2.3, we need the following lemma,which shows how to estimate
the difference between two geodesics linking a pair of given points, for two different metrics.

Lemma A.1. Let g be a metric on the unit ball B1(0) ⊂ R
n. There exists a constant B > 0

such that for any unit speed geodesic γ : [a, b] → (B1(0), g) and λ ∈ [0, 1], we have∣∣γ (λab) − λγ (a)γ (b)
∣∣ � Bλ(1 − λ)(b − a)2.

Proof. It suffices to prove that the estimate holds forλ � 1
2 , as the caseλ � 1

2 can be deduced
by considering γ̃ : t �→ γ (b−t) instead of γ . A unit speed geodesic γ : [a, b] → (B1(0), g)
satisfies the geodesic equation

γ̈ l + �l
i j γ̇

i γ̇ j = 0,

where �l
i j are the Christoffel symbols of the metric g. As γ is unit speed, the (γ̇ i ) are

bounded, uniformly in γ . Therefore, there exists a constant α > 0 independent of γ such
that |γ̈ | � α. By integration, we find

|γ (t) − γ (a) − γ̇ (a)(t − a)| � α(t − a)2.

Evaluating this expression at b yields

|γ (b) − γ (a) − γ̇ (a)(b − a)| � α(b − a)2.

From these two estimates, we deduce∣∣∣∣γ (t) − γ (a) − γ (b) − γ (a)

b − a
(t − a)

∣∣∣∣ � α(t − a)2 + α(b − a)(t − a).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Taking t = (1 − λ)a + λb in this estimate yields

|γ ((1 − λ)a + λb) − ((1 − λ)γ (a) + λγ (b))|
� αλ(1 + λ)(b − a)2 = α(1 + λ)

1 − λ
λ(1 − λ)(b − a)2.

Taking B := α(1+1/2)
1−1/2 , this proves the desired estimate when λ � 1/2. This concludes the

proof. �

Proof of Proposition 2.3. Let us assume that u is locally semiconcave. Letψ : U → V be a
chart from an open setU ofM to on open set V ofRn , and y ∈ V . Let f := u◦ψ−1.Wewant
to show that f is semiconcave in a neighborhood of y, as a function of Rn . We first observe
that f is locally semiconcave on the manifold (V, ψ�g). Let V ′ ⊂ V be a neighborhood
of y that is geodesically convex for the metric ψ�g, and such that there exists a constant
C > 0 such that f is C-semiconcave on (V ′, ψ�g). Let d denote the distance function on
(V ′, ψ�g). Up to taking V ′ smaller, we may assume that the metric ψ�g is bounded on V ′,
and so there exists a constant β > 0 such that

∀x, y ∈ V ′, d(x, y) � β |x − y| .

Let x, y ∈ V ′ be such that [x, y] ⊂ V ′, and λ ∈ [0, 1]. Let γ : [a, b] → V ′ be a unit speed
geodesic of (V ′, ψ�g) from x to y. By the C-semiconcavity of f on (V ′, ψ�g), we have that

λ f (x) f (y) − f (λxy) = λ f (γ (a)) f (γ (b)) − f (λγ (a)γ (b))

� Cλ(1 − λ)(b − a)2 + f (γ (λab)) − f (λγ (a)γ (b))

� Cλ(1 − λ)(b − a)2 + Lip( f )
∣∣γ (λab) − λγ (a)γ (b)

∣∣ .
Applying Lemma A.1 above, we get a constant B > 0 such that

λ f (x) f (y) − f (λxy) � (C + Lip( f )B)λ(1 − λ)(b − a)2

= (C + Lip( f )B)λ(1 − λ)(d(x, y))2

� (C + Lip( f )B)β2λ(1 − λ) |x − y|2 ,

and so f is semiconcave on V ′, as a function of Rn .
Reciprocally, let us assume that u ◦ ψ−1 is locally semiconcave as a function of Rn for any
chart ψ . Then, we can show that u ◦ψ−1 is locally semiconcave for the metric ψ�g, for any
chart ψ , by using the same technique. From there we deduce that u is locally semiconcave.
This concludes the proof. �

Appendix B. A Counter-Example to the Equivalence of (1.3) and (1.15) for
Small m

Theorem B.1. There exist a surface of revolution M and a parameter m > 0 such that
um �= udm.

Proof of Theorem B.1. Let rθ denote the rotation of R3 of angle θ ∈ [0, 2π) around the
z-axis.
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Fig. 3. The curve γ

Let T := 1010 and r, h : [0, T ] → R be two smooth functions such that

γ : t �→ (r(t), 0, h(t)) is a unit speed curve.

M := {rθ (γ (t)) : (t, θ) ∈ [0, T ] × [0, 2π)]} is a smooth surface,

r(0) = r(T ) = 0,

r � 2,

r([1, 2]) ⊂ [1, 2],
r([3, 4]) ⊂ (0, 10−10),

r([5, T − 1]) ⊂ [1, 2].
This information is pictured in Fig. 3. We chose b = (0, 0, 0) as the base point on M , and
m = 10−10. Let us assume that udm = um and build a better competitor in (1.15) to contradict
the minimality of udm . We will first reduce (1.15) to a one-dimensional problem. Note that
the functional we are minimizing is rotation-invariant. More precisely, for any θ ∈ (0, 2π)

and u ∈ H1(M), we have that∫
M

|∇(u ◦ rθ )|2 − m(u ◦ rθ ) =
∫
M

|∇u|2 − mu. (B.1)

By the uniqueness of the minimizer udm , we deduce that u
d
m is rotation-invariant, i.e. there

exists a function ρm : [0, T ] → R such that for any θ ∈ [0, 2π) and t ∈ [0, T ],
udm(rθ (γ (t))) = ρm(t). Thusudm is aminimizer of (1.15) among rotation-invariant functions.
Let u : M → R be any rotation-invariant function, and ρ : [0, T ] → R be such that for any
θ ∈ [0, 2π), u(rθ (γ (t))) = ρ(t). We will translate the minimization problem (1.15) on u
into a problem on ρ.
First, because M is a surface of revolution, all the geodesics starting from b = (0, 0, 0) have
a constant angle θ . Thus, they are of the form t �→ rθ (γ (t)) for some θ ∈ [0, 2π). These are
actually unit speed geodesics as γ is unit speed. Hence, db(rθ (γ (t))) = t , and the constraint
u � db in (1.15) is equivalent to ρ(t) � t .
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Secondly, we translate the H1 constraint. To this end, let us define some coordinates (t, θ)
on M via the map

φ : (0, T ) × (0, 2π) → M , φ(t, θ) = rθ (γ (t)).

We have that∫
M

|∇u|2 =
∫ 2π

0

∫ T

0
(|∇u|2 ◦ φ)Jφ dt dθ

=
∫ 2π

0

∫ T

0
|∇u|2 (rθ (γ (t)))r(t) dt dθ = 2π

∫ T

0
|∇u|2 (γ (t))r(t) dt, (B.2)

because u is rotation-invariant. Moreover, as u is rotation-invariant, its gradient at the point
γ (t) is parallel to γ ′(t), and so∣∣ρ′(t)

∣∣ = ∣∣∇u(γ (t)) · γ ′(t)
∣∣ = |∇u(γ (t))| ∣∣γ ′(t)

∣∣ = |∇u(γ (t))| .
Hence (B.2) gives ∫

M
|∇u|2 = 2π

∫ T

0
ρ′(t)2r(t) dt

Thus, the constraint u ∈ H1(M) in (1.15) is equivalent to v ∈ H1((0, T ), r(t)dt).
Thirdly, we may compute the functional likewise:∫

M
|∇u|2 − mu = 2π

∫ T

0

(
ρ′(t)2 − mρ(t)

)
r(t)dt.

All in all, as udm is a minimizer in (1.15), ρm is a minimizer of

inf

{∫ T

0

(
ρ′(t)2 − mρ(t)

)
r(t)dt : ρ ∈ H1((0, T ), r(t)dt

)
, ρ(t) � t

}
.

(B.3)

The idea of the rest of the proof is as follows: first, we recall the assumption udm = um ,

which means that
∣∣∣∇udm

∣∣∣ � 1, and so
∣∣ρ′

m
∣∣ � 1. Now, if ρm(4) is close to 4, then ρ′

m(t) is

close to 1 for t � 4, so a competitor v such that ρ′(t) is small for t � 4 will contradict the
minimality of ρm in (B.3). If on the contrary ρm(4) is significantly smaller than 4, then for
t � 4, ρm(t) will be significantly smaller than t , so a competitor ρ such that ρ(t) is closer
to t for t � 4 will contradict the minimality of ρm in (B.3). Because we chose r very small
on the interval [3, 4] (see Fig. 3), we can define a competitor ρ independently on [0, 3] and
[4, T ], without paying much for the behavior of ρ on [3, 4].
Case one: ρm(4) ∈ [3.5, 4]. Let us define a competitor ρ for (B.3):

ρ : [0, T ] → R , ρ(t) =

⎧⎪⎨
⎪⎩
0 if t ∈ [0, 3]
4(t − 3) if t ∈ [3, 4]
ρm(t) + 4 − ρm(4) if t � 4

.

Let us call F(ρ) the functional appearing in (B.3). We have, from the definition of r and ρ,

F(ρ) =
∫ 4

3

(
16 − 4m(t − 3)

)
r(t)dt +

∫ T

4

(
ρ′2
m (t) − mρm(t)

)
r(t)dt

−m(4 − ρm(4))
∫ T

4
r(t)dt

� (16 − 0) · 10−10 +
∫ T

4

(
ρ′2
m (t) − mρm(t)

)
r(t)dt − 0, (B.4)
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so

F(ρ) − F(ρm) � 16 · 10−10 −
∫ 4

0

(
ρ′2
m (t) − mρm(t)

)
r(t) dt

� 16 · 10−10 −
∫ 2

1
ρ′2
m (t)r(t) dt + m

∫ 4

0
ρm(t)r(t) dt

� 16 · 10−10 −
∫ 2

1
ρ′2
m (t)r(t) dt + m

∫ 4

0
2t dt

= 16 · 10−10 −
∫ 2

1
ρ′2
m (t)r(t) dt + 16m. (B.5)

We are left to bound from below the integral term in (B.5). By, Hölder inequality we have
that

∫ 2

1
ρ′
m �

(∫ 2

1

1

r

)1/2 (∫ 2

1
ρ′2
mr

)1/2

,

and so ∫ 2

1
ρ′2
mr � (ρm(2) − ρm(1))2∫ 2

1
1
r

� (ρm(2) − ρm(1))2, (B.6)

by the construction of r . Now we use the fact udm = um , which means that
∣∣∣∇udm

∣∣∣ � 1,

and so
∣∣ρ′

m
∣∣ � 1. With the running assumption ρm(4) � 3.5, this implies ρm(2) � 1.5. As

ρm(1) � 1, we get ρm(2) − ρm(1) � 0.5. Then, (B.6) and (B.5) yield

F(ρ) − F(ρm) � 16 · 10−10 − 0.25 + 16m. (B.7)

Recalling that we have chosen m = 10−10, it contradicts the minimality of ρm in (B.3).
Case two: ρm(4) � 3.5. We use the same competitor ρ as in case one. We even per-
form similar estimates, the only difference being that we don’t estimate the term −m(4 −
ρm(4))

∫
(4,T ) r(t)dt by 0 as in (B.4). Thus (B.5) becomes instead

F(ρ) − F(ρm)

� 16 · 10−10 −
∫ 2

1
ρ′2
m (t)r(t)dt + 16m − m(4 − ρm(4))

∫ T

4
r(t)dt.

� 16 · 10−10 + 16m − 0.5m
∫ T

4
r(t)dt

� 16 · 10−10 + 16m − 0.5m
∫ T−1

5
r(t)dt.

Recalling that we have chosen m = 10−10, T = 1010 and r � 1 between 5 and T − 1, it
contradicts the minimality of ρm in (B.3). This concludes the proof. �
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