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Abstract

In this work we address the question of the existence of nonradial domains
inside a nonconvex cone for which a mixed boundary overdetermined problem
admits a solution. Our approach is variational, and consists in proving the existence
of nonradial minimizers, under a volume constraint, of the associated torsional
energy functional. In particular we give a condition on the domain D on the sphere
spanning the conewhich ensures that the spherical sector is not aminimizer. Similar
results are obtained for the relative isoperimetric problem in nonconvex cones.

1. Introduction

In this paper we study an overdetermined problem for domains in a cone. This
topic shares similarities with the question of characterising constantmean curvature
hypersurfaces inside a cone (see [22,23]) and hencewith the isoperimetric problem.
Thus we will also show some results for it.

Let D be a smooth domain on the unit sphere S
N−1 and let �D be the cone

spanned by D, namely

�D := {x ∈ R
N ; x = sq, q ∈ D, s ∈ (0,+∞)}. (1.1)

For a domain � ⊂ �D we set

�� := ∂� ∩ �D, �1,� := ∂� ∩ ∂�D,

and assume thatHN−1(�1,�) > 0,whereHN−1(·)denotes the (N−1)-dimensional
Hausdorff measure. The set �� is usually called the relative (to �D) boundary of
�.
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We consider the overdetermined mixed boundary value problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u = 1 in �,

u = 0 on ��,
∂u
∂ν

= 0 on �1,� \ {0},
∂u
∂ν

= −c < 0 on ��

(1.2)

for a constant c > 0, where ν is the exterior unit normal. If �� is not smooth then
the constant normal derivative condition is understood to hold on the regular part
of ��.

The overdetermined problem (1.2) arises naturally in the study of critical points
of a relative torsional energy of subdomains of the cone�D subject to a fixed volume
contraint. Indeed, for any domain �, as in (1.2), let us consider the torsion problem
with mixed boundary conditions

⎧
⎪⎨

⎪⎩

−�u = 1 in�,

u = 0 on ��,
∂u
∂ν

= 0 on �1,� \ {0}.
(1.3)

It is easy to see that (1.3) has a unique weak solution u� in the Sobolev space
H1
0 (�;�D) (see Sect. 6 or [9]), which is obtained by minimizing the functional

J (v) := 1

2

∫

�

|∇v|2 dx −
∫

�

v dx . (1.4)

We then define the value

E(�;�D) := J (u�) = −1

2

∫

�

|∇u�|2 dx = −1

2

∫

�

u� dx, (1.5)

and we call it the torsional energy of � in �D . Note that the second and third
equality in (1.5) hold since u� is a weak solution of (1.3). By definition, the domain-
dependent functional � �→ E(�;�D) represents a relative version of the classical
torsional energy functional usually defined using the solution of the analogous
Dirichlet problem.

Using domain derivative techniques, as for other similar problems in shape-
optimization theory it can be proved that the critical points of the functional
E(�;�D) with respect to volume-preserving deformations which leave the cone
invariant, correspond to domains � for which ∂u�

∂ν
is constant on ��, i.e. u� sat-

isfies the overdetermined problem (1.2) (see [23, Proposition 4.3] if �� is smooth
and u� has some Sobolev regularity, or Proposition 7.4 in the present paper in the
nonsmooth case).

In this paper we intend to study the existence and the properties of domains
for which a solution of (1.2) exists. It is easy to see that for any spherical sector
�D,R := BR ∩ �D , where BR = BR(0) is the ball with radius R > 0 centered at
the origin (which is the vertex of the cone), the radial function

u(x) = N 2c2 − |x |2
2N

(1.6)
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is a solution of (1.2) for� = �D,R . Therefore the question is whether the spherical
sectors �D,R are the only domains for which (1.2) admits a solution. In the case of
convex cones the answer was provided in [22], obtaining the following result (see
[22, Theorem 1.1]):

Theorem 1.1. If �D is convex, �� is smooth and u is a classical solution of (1.2)
such that u ∈ W 1,∞(�) ∩ W 2,2(�), then

� = �D ∩ BR(P0),

where BR(P0) is the ball centered at P0 with radius R = Nc, and either P0 = 0,
i.e. � = �D,R, or P0 ∈ ∂�D and � is a half-ball lying on a flat part of ∂�D.

Hence, if�D is a convex cone, not flat anywhere, then the radial domains�D,R are
the only domains admitting solutions of (1.2). Let us observe that the assumption
u ∈ W 1,∞(�) ∩ W 2,2(�) can be seen as a “gluing condition". Indeed it is au-
tomatically satisfied whenever �� and ∂�D intersect orthogonally (see [22, Sect.
6]).

In the context of the variational formulation of problem (1.2) described above,
the result of Theorem 1.1 gives a characterization of the smooth critical points
of E(�;�D), restricted to the class of subdomains of fixed volume, in the case
of convex cones. In particular any local minimizer of E(�;�D) with a volume
constraint is a spherical sector. Actually, using symmetrization methods in cones
[19,24] it can be proved (see [23]) that this holds in a more general class of cones
which are the ones having an isoperimetric property.

In contrast, the case of nonconvex cones is largely unexplored, which is the
main motivation of the present paper. The variational formulation of the overdeter-
mined problem suggests that to look for nonradial domains for which there exists
a solution of (1.2) is equivalent to look for nonradial critical points of E(�;�D)

under a volume constraint. In particular, if there are cones for which a minimizer
of E(�;�D) (fixing the volume) exists and if we are able to show that it is not
the spherical sector then we achieve our goal. This is the content of our first main
result.

Let us denote by λ1(D) the first nontrivial eigenvalue of the Laplace-Beltrami
operator −�SN−1 on D with zero Neumann boundary condition.

Theorem 1.2. If D is a smooth domain of SN−1 such that

λ1(D) < N − 1 and HN−1(D) < HN−1(S
N−1+ ), (1.7)

where S
N−1+ is a half unit sphere, then there exists a bounded domain �∗ which

is a minimizer for E(�;�D) with a fixed volume, but �∗ is not a spherical sector
�D,R, for R > 0.

Moreover there exists a critical dimension d∗ which can be either 5, 6 or 7,
such that for the relative boundary ��∗ it holds that

(i) ��∗ is smooth if N < d∗;
(ii) ��∗ can have countable isolated singularities if N = d∗;
(iii) ��∗ can have a singular set of dimension N − d∗, if N > d∗.



1008 Alessandro Iacopetti, Filomena Pacella & Tobias Weth

In addition on the regular part of��∗ the normal derivative ∂u�∗
∂ν

is constant, where
u�∗ is the torsion function of �∗.
The condition λ1(D) < N − 1 in (1.7) is the one which ensures that a spherical
sector �D,R cannot be a local minimizer for E(�;�D) among the class of smooth
subdomains of�D with fixed volume, because it implies that it is not a stable critical
point with respect to volume-preserving deformations (see Theorem 5.1). To prove
this, we restrict the torsional energy functional to the class of strictly star-shaped
sets � in �D with fixed volume c > 0, and we show the instability of the spherical
sector �D,R with |�D,R | = c within this class. The reason to consider strictly
star-shaped domains is that the relative boundary �� of a strictly star-shaped set is
a radial graph of a function ϕ on D. This allows to study E(�;�D) as a functional
on ϕ ∈ C2(D).

On the other hand, the condition HN−1(D) < HN−1(S
N−1+ ) is the one which

allows to prove the existence of a minimizer for E(�;�D) (see Theorem 6.8 and
Corollary 6.9). In theAppendix we give examples of domains D on SN−1 satisfying
both conditions in (1.7).

Let us observe that, since �D is not bounded, the existence of a minimizer
for E(�;�D) is not obvious. To prove Theorem 1.2 we use the concentration-
compactness principle ofP.L.Lions (see [17]). Itwasfirst used in shape-optimization
Dirichlet problems in [6]. Having mixed boundary conditions, we cannot make use
of the same proof as in [6]. We also stress that, as the cone �D is not convex and
since we do not have any information on the contact angle between �D and ��∗ ,
some care is needed to prove that the normal derivative ∂u�∗

∂ν
of the torsion func-

tion u�∗ is constant on the regular part of ��∗ (see Proposition 7.4). Finally, the
regularity statements follow from the results of [11,15] and [27].

As announced we also consider the isoperimetric problem in the cone to get a
analogous nonradiality result using the same strategy.

The isoperimetric problem in the cone consists in minimizing the relative
perimeter P(E;�D) among all possibile finite relative perimeter sets E contained
in the cone �D , with a fixed volume. It was proved in [18], and later in [10,13,25],
that if �D is a convex cone then the only minimizer of P(E;�D) with a fixed
volume are the spherical sectors �D,R . This holds also in “almost" convex cones
as shown in [2] (see also [23]). If the cone is not convex, a counterexample is given
in [18].

Here we show that under the same conditions (1.7), a minimizer of P(E;�D),
exists, but is not the spherical sector �D,R . Thus we have

Theorem 1.3. If D is a smooth domain of SN−1 such that (1.7) holds then there
exists a bounded set of finite perimeter E∗ inside �D which minimizes P(E;�D)

for any fixed volume and E∗ is not a spherical sector �D,R, R > 0. Moreover for
the relative boundary �E∗ it holds that

(i) �E∗ can have a closed singular set �̃E∗ of Hausdorff dimension less than or
equal to N − 7;

(ii) �E∗ \ �̃E∗ is a smooth embedded hypersurface with constant mean curvature;

(iii) if x ∈ �E∗ \ �̃E∗ ∩ ∂�D then �E∗ \ �̃E∗ is a smooth CMC embedded hyper-
surface with boundary in a neighborhood of x and meets ∂�D orthogonally.
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As for Theorem 1.2, the condition λ1(D) < N − 1 is the one which ensures that
�D,R cannot be a local minimizer (see Theorem 8.3) and to prove this we again
work in the class of smooth star-shaped sets. Instead the existence follows by results
obtained in [25], while the regularity of minimizers derives from classical results
for isoperimetric problems.

As a consequence of Theorem1.3we get that whenever (1.7) holds there exists a
CMC hypersurface in the cone, namely �E∗ , intersecting ∂�D orthogonally, which
is not a spherical cap centered at the vertex of the cone. It is important to notice
that �E∗ cannot be a smooth radial graph. Indeed, by [22, Theorem 1.3] and [23,
Theorem 1.1], we know that if �E∗ was a CMC radial graph intersecting ∂�D

orthogonally then E∗ would be a spherical sector �D,R , and this holds in any cone
without requiring convexity hypotheses. It would be very interesting to understand
what kind of CMC hypersurface �E∗ could be.

Finallyweobserve that, fromour results and [18,Theorem1.1] (or [22, Theorem
1.1]), we easily recover the inequality λ1(D) � N −1 whenever D is convex. This
was proved in [12, Theorem 4.3] (see also [1, Theorem 4.1]).

The paper is organized as follows: in Sect. 2 we provide some geometric pre-
liminaries. In Sect. 3 we study the torsional energy functional E(�;�D) on strictly
star-shaped domains in the cone, while in Sect. 4 we derive the formulas for the first
and second variations of E(�;�D) when the volume is fixed. In Sect. 5 we prove
that the first condition in (1.7) allows to prove that the spherical sector is not a local
minimizer for E(�;�D). The long Sect. 6 is devoted to study the question of the
existence ofminimizers of E(�;�D)with a volume constraint. Their properties are
described in Sect. 7 where the proof of Theorem 1.2 is deduced. Finally in Sect. 8
we study the isoperimetric problem and prove Theorem 1.3. In the Appendix we
give examples of nonconvex domains satisying the condition (1.7).

2. Some Preliminaries

In this sectionwe fix some notation andwe collect, for the reader’s convenience,
some definitions and known facts from Riemannian Geometry that will be used
throughout the paper.

Given a smooth manifold M , we denote by TpM the tangent space at p ∈ M ,
by T (M) the space of tangent vector fields on M and by T M the tangent bundle.

We denote by 〈., 〉 or · the standard scalar product in RN , by | · | the Euclidean
norm, and by ∇0 the flat connection of RN . In the special case M = D, where
D ⊂ S

N−1 is a domain of the unit sphere in R
N , we denote by ∇ the induced

Levi-Civita connection on D,namely

∇XY := (∇0
XY )�, for anyX,Y ∈ T (D),

where � : TRN → T D is the orthogonal projection. If we further assume that
D is a proper and smooth domain of SN−1 it will be always understood that D is
considered as a submanifoldwith boundary, equippedwith the inducedRiemannian
metric.
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If ϕ : D → R is a smooth function, we adopt, respectively, the notations dϕ,
∇ϕ, to indicate the differential and the gradient of ϕ, which is the only vector field
on D such that

dϕ[X ] = 〈X,∇ϕ〉, for any X ∈ T (D).

Wewill also use sometimes the notation∇SN−1ϕ instead of∇ϕ tomake a distinction
with respect to the usual gradient of real valued functions defined in open subsets
of RN . The second covariant derivative of ϕ is defined as

∇X,Yϕ := ∇X∇Yϕ − ∇∇XYϕ, for any X,Y ∈ T (D), (2.1)

and the Hessian of ϕ, denoted by ∇2ϕ or by D2ϕ, is the symmetric 2-tensor given
by

∇2ϕ (X,Y ) := ∇X,Yϕ, for any X,Y ∈ T (D).

The Laplacian of ϕ, denoted by�ϕ, is the trace of the Hessian. Again, when there is
a chance of confusion with the standard Laplacian we will use the notation�SN−1ϕ

instead of �ϕ.
Let {e1, . . . , eN−1} be a local orthonormal frame field for D. For any i, j ∈

{1, . . . , N − 1} we define the connection form ωi j as

ωi j (X) := 〈∇Xe j , ei 〉, X ∈ T (D). (2.2)

We recall that the connection forms are skew symmetric and in terms of the ωi j ’s
we can write

∇ei e j =
N−1∑

k=1

ωk j (ei )ek . (2.3)

We denote by ϕi the covariant derivative ∇ei ϕ, and we recall that, by definition,
∇ei ϕ = dϕ[ei ]. It is easy to check that the gradient of ϕ can be written as

∇ϕ =
N−1∑

i=1

ϕi ei .

Finally, taking X = ei , Y = e j in (2.1) and using (2.2) we have

∇ei ,e j ϕ = ∇ei ϕ j −
N−1∑

k=1

ωk j (ei )ϕk . (2.4)

From now on we will use the notation ϕi j to denote ∇ei ,e j ϕ. In particular the

Laplacian of ϕ can be written as �ϕ = ∑N−1
i=1 ϕi i .

Now we consider the special case of radial graphs.

Definition 2.1. Let D ⊂ S
N−1 be a domain and let ϕ ∈ C2(D). We denote by �ϕ

the associated radial graph to ϕ, namely

�ϕ := {x ∈ R
N ; x = eϕ(q)q, q ∈ D}.
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Clearly �ϕ is a (N − 1)-dimensional manifold (of class C2). We consider the map
Y : D → �ϕ defined by

Y(q) := eϕ(q)q, q ∈ D. (2.5)

For any fixed q ∈ D, let γi : (−δ, δ) → D, γi = γi (t) be a curve contained in D
and such that γi (0) = q, γ ′

i (0) = ei (q), for i = 1, . . . , N − 1. Since

d(Y ◦ γi )

dt

∣
∣
∣
∣
t=0

= eϕ(ϕi q + ei ) (2.6)

then a local basis for TY(q)�ϕ is given by

Ei (q) = eϕ(ei + ϕi q), i = 1, . . . , N − 1,

and the components of the induced metric are

gi j = 〈Ei , E j 〉 = e2ϕ(〈ei , e j 〉 + ϕiϕ j 〈q, q〉) = e2ϕ(δi j + ϕiϕ j ).

We denote by ν(Y(q)) the exterior unit normal at Y(q) ∈ �ϕ . It is easy to check
that

ν(Y(q)) = q −∑N−1
i=1 ϕi ei

(1 + |∇ϕ|2)1/2 = q − ∇ϕ

(1 + |∇ϕ|2)1/2 . (2.7)

In addition by direct computation we see that the coefficients of the second funda-
mental form are

IIi j = eϕ
(
δi j + ϕiϕ j − ϕi j

)

(1 + |∇ϕ|2)1/2 ,

for any i, j = 1, . . . , N − 1 (see [20] or [4] for more details).
Finally, since the mean curvature at Y(q) ∈ �ϕ is given by

NH(Y(q)) =
N−1∑

i, j=1

gi j IIi j ,

where (gi j ) is the inverse matrix of (gi j ), namely

gi j = e−2ϕ
(

δi j − ϕiϕ j

1 + |∇ϕ|2
)

, (2.8)

then, by a straightforward computation we see that ϕ must satisfy the following
equation

N−1∑

i, j=1

(
(1 + |∇ϕ|2)δi j − ϕiϕ j )

)
ϕi j = (N − 1)(1 + |∇ϕ|2)

−(N − 1)eϕ(1 + |∇ϕ|2)3/2H(Y(q)). (2.9)

Writing (2.9) in divergence form we obtain the well known equation for radial
graphs of prescribed mean curvature (see [20] or [26])

−divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

+ N − 1
√
1 + |∇ϕ|2 = (N − 1)eϕH(eϕq) in D. (2.10)
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3. Torsional Energy for Domains in Cones

In this section we define and study the torsional energy for smooth domains in
cones and then we focus on the class of strictly star-shaped domains.

Let D be a smooth proper domain of SN−1 and let �D be the cone spanned by
D. For a bounded domain � ⊂ �D we set:

�� := ∂� ⊂ �D, �1,� := ∂� ∩ ∂�D,

and assume that HN−1(�1,�) > 0 and that �� is a smooth (N − 1)-dimensional
manifold whose boundary ∂�� = ∂�1,� ⊂ ∂�D \ {0} is a smooth (N − 2)-
dimensional manifold. The set �� is often called the relative (to �D) boundary of
�.

We consider the following mixed boundary value problem:
⎧
⎪⎨

⎪⎩

−�u = 1 in �,

u = 0 on ��,
∂u
∂ν

= 0 on �1,� \ {0}.
(3.1)

It is easy to see that (3.1) admits a unique weak solution u� in the space H1
0 (� ∪

�1,�) which is the Sobolev space of functions in H1(�) whose trace vanishes on
��. Indeed u� is the only minimizer of the functional

J (v) := 1

2

∫

�

|∇v|2 dx −
∫

�

v dx

in the space H1
0 (� ∪ �1,�) and we remark that u� > 0 a.e. in �, by the maximum

principle (we refer to [22,23] for more details).
Usually, the function u� is called torsion function of � and its energy J (u�)

represents the torsional energy of the domain �. This allows to consider the func-
tional

E(�;�D) = J (u�)

which is defined on the domains contained in �D .
From the weak formulation of (3.1) we have

∫

�

|∇u�|2 dx =
∫

�

u� dx,

which implies that

E(�;�D) = −1

2

∫

�

|∇u�|2 dx = −1

2

∫

�

u� dx . (3.2)

Now we focus on the special case when � is strictly star-shaped with respect to the
origin which is the vertex of the cone �D . Thus we consider the relative boundary
�� as the radial graph in �D of a function ϕ ∈ C2(D,R) as defined in Sect. 2.
Therefore we denote � by �ϕ which can be described as:

�ϕ := {x ∈ �D; x = sq, 0 < s < eϕ(q), q ∈ D}. (3.3)
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We restrict the torsional energy functional E to this class of domains and we denote
it by E , i.e. we set

E (ϕ) := E(�ϕ;�D).

We observe that E is a functional defined onC2(D,R) and we compute its first and
second derivatives. To this aim we point out that taking variations of ϕ inC2(D,R)

corresponds to taking variations of �ϕ in the class of strictly star-shaped domains
(of class C2).

Let us set for simplicity

�ϕ := ��ϕ , �1,ϕ := �1,�ϕ .

If v ∈ C2(D,R) and t ∈ (−δ, δ), where δ > 0 is a fixed number, we consider
the domain variations �ϕ+tv ⊂ �D , t ∈ (−δ, δ). Let ξ : (−δ, δ) × �D → �D be
the map defined by

ξ(t, x) = e
tv
(

x
|x |
)

x .

It is elementary to check that, for a fixed t ∈ (−δ, δ) the restriction

ξ |�ϕ (t, ·) : �ϕ → �ϕ+tv (3.4)

is a diffeomorphism whose inverse
(
ξ |�ϕ

)−1 : �ϕ+tv → �ϕ is given by

(
ξ |�ϕ

)−1
(x) = e−tv( x

|x | )x = ξ(−t, x).

Moreover by definition we have ξ(t, x) ∈ ∂�D \ {0} for all (t, x) ∈ (−δ, δ) ×
∂�D \ {0}. In particular ξ is the flow associated to the vector field V on �D given
by

V (x) := v

(
x

|x |
)

x, (3.5)

since ξ(0, x) = x and dξ
dt (t, x) = e

tv
(

x
|x |
)

v
(

x
|x |
)
x = V (ξ(t, x)), and (�ϕ+tv)t∈(−δ,δ)

is a deformation of �ϕ associated to the vector field V (see [16, Definition 1.1]).
We now compute the derivative of E with respect to a variation v ∈ C2(D,R).

Lemma 3.1. Let ϕ ∈ C2(D,R) and assume that u�ϕ ∈ W 1,∞(�ϕ) ∩ W 2,2(�ϕ).

Then, for any v ∈ C2(D,R), it holds that

E ′(ϕ)[v] = −1

2

∫

D
eNϕ v

(
∂u�ϕ

∂ν

(
eϕq

)
)2

dσ,

where dσ is the (N − 1)-dimensional area element of SN−1.
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Proof. Let ϕ ∈ C2(D,R) as in the statement and let v ∈ C2(D,R). By definition
we have

E (ϕ + tv) = E(�ϕ+tv;�D) = −1

2

∫

�ϕ+tv

u�ϕ+tv dx, (3.6)

where u�ϕ+tv is the only (positive) weak solution to

⎧
⎪⎨

⎪⎩

−�u = 1 in �ϕ+tv,

u = 0 on �ϕ+tv,
∂u
∂ν

= 0 on �1,ϕ+tv \ {0}.
(3.7)

Writing (3.6) in polar coordinates we obtain that

E (ϕ + tv) = −1

2

∫

D

∫ eϕ+tv

0
ρN−1u�ϕ+tv (ρq) dρdσ.

Let �̂ : (−δ, δ) → H1
0 (�ϕ ∪ �1,ϕ) be the map defined by

�̂(t) := ût ,

where ût := u�ϕ+tv ◦ ξ(t, ·)|�ϕ ∈ H1
0 (�ϕ ∪ �1,ϕ), ξ |�ϕ (t, ·) : �ϕ → �ϕ+tv is the

diffeomorphism given by (3.4). From the proof of [23, Proposition 4.3] we know
that �̂ is differentiable and thus we infer that u�ϕ+tv is differentiable with respect
to t . Hence, by the Leibniz integral rule for differentiation of integral functions we
get that

d

dt
(E (ϕ + tv)) = −1

2

∫

D
e(N−1)(ϕ+tv)eϕ+tvv u�ϕ+tv (e

ϕ+tvq) dσ

−1

2

∫

D

∫ eϕ+tv

0
ρN−1 d

dt

(
u�ϕ+tv

)
(ρq) dρdσ.

In view of (3.7) we have u�ϕ+tv (e
ϕ+tvq) = 0 on D for any t ∈ (−δ, δ). In particular

computing at t = 0 we have

E ′(ϕ)[v] = d

dt
(E (ϕ + tv))|t=0 = − 1

2

∫

D

∫ eϕ(q)

0
ρN−1 d

dt

(
u�ϕ+tv

)∣
∣
t=0 (ρq) dρdσ

= − 1

2

∫

�ϕ

d

dt

(
u�ϕ+tv

)∣
∣
t=0 dx .

(3.8)

Setting u′ := d
dt

(
u�ϕ+tv

)∣
∣
t=0 and arguing as in the proof of [23, Proposition 4.3],

where the assumption u�ϕ ∈ W 1,∞(�ϕ) ∩ W 2,2(�ϕ) is used, we infer that u′ ∈
H1
0 (�ϕ ∪ �1,ϕ) satisfies

⎧
⎪⎨

⎪⎩

−�u′ = 0 in �ϕ,

u′ = − ∂u�ϕ

∂ν
〈V, ν〉 on �ϕ,

∂u′
∂ν

= 0 on �1,ϕ \ {0}.
(3.9)
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In particular, in view of (3.5) and since �ϕ is a radial graph we have ν(x) =
x
|x | −∇

SN−1ϕ
(

x
|x |
)

√

1+|∇
SN−1ϕ

(
x
|x |
)
|2
, for any x ∈ �ϕ (see (2.7)), and thus

〈V, ν〉 = |x |
√

1 +
∣
∣
∣∇SN−1ϕ

(
x
|x |
)∣
∣
∣
2
v

(
x

|x |
)

on �ϕ. (3.10)

Rewriting (3.8) in terms of u′, applying Green’s second identity (which holds also
in conic domains, since it is a consequence of the divergence theorem, see e.g. [22,
Lemma 2.1]) and taking into account (3.1) (with � = �ϕ), (3.9) and (3.10) we get
that

E ′(ϕ)[v] = −1

2

∫

�ϕ

u′ dx .

= 1

2

∫

�ϕ

u′�u�ϕ dx − 1

2

∫

�ϕ

�u′
︸︷︷︸
=0

u�ϕ dx

= 1

2

∫

�ϕ

u′ ∂u�ϕ

∂ν
dσ�ϕ + 1

2

∫

�1,ϕ\{0}
u′ ∂u�ϕ

∂ν︸ ︷︷ ︸
=0

dσ�1,ϕ\{0}

= −1

2

∫

�ϕ

(
∂u�ϕ

∂ν
(x)

)2 |x |
√

1 +
∣
∣
∣∇SN−1ϕ

(
x
|x |
)∣
∣
∣
2
v

(
x

|x |
)

dσ�ϕ ,

(3.11)

where dσ�ϕ , dσ�1,ϕ\{0} are the (N − 1)-dimensional area elements of �ϕ , �1,ϕ \
{0}, respectively. Finally, writing x = eϕ(q)q, q ∈ D, observing that dσ�ϕ =
e(N−1)ϕ

√
1 + |∇SN−1ϕ|2dσ and x

|x | = q, then from (3.11) we obtain that

E ′(ϕ)[v] = −1

2

∫

D
eNϕv

(
∂u�ϕ

∂ν
(eϕq)

)2

dσ,

and this completes the proof. ��
For the second variation of the functional E we have

Lemma 3.2. Let ϕ be as in Lemma 3.1. Then, for any v,w ∈ C2(D,R), it holds
that

E ′′(ϕ)[v,w] = −N

2

∫

D
eNϕ v w

(
∂u�ϕ

∂ν
(eϕq)

)2

dσ

−
∫

D
eNϕ v

∂u�ϕ

∂ν
(eϕq)

∂u′
w

∂ν
(eϕq) dσ

−
∫

D
eNϕv w

∂u�ϕ

∂ν
(eϕq) D2u�ϕ (eϕ(q)q)eϕq · ν dσ

+
∫

D
eNϕv

∂u�ϕ

∂ν
(eϕq)

∇u�ϕ (eϕq) · ∇SN−1w
√
1 + |∇SN−1ϕ|2 dσ

+
∫

D
eNϕv

(
∂u�ϕ

∂ν
(eϕq)

)2 ∇SN−1ϕ · ∇SN−1w

(1 + |∇SN−1ϕ|2) dσ,

(3.12)
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where u′
w = d

ds

(
u�ϕ+sw

)∣
∣
s=0 is the solution to (3.9) with V given by V (x) =

w
(

x
|x |
)
x.

Proof. Let us fix v,w ∈ C2(D,R), by definition and by Lemma 3.1 we have

E ′′(ϕ)[v,w] = d

ds

(

−1

2

∫

D
eN (ϕ+sw)v

(
∂u�ϕ+sw

∂ν
(eϕ+swq)

)2

dσ

)∣
∣
∣
∣
∣
s=0

,

(3.13)

and thus

E ′′(ϕ)[v,w] = − 1

2

∫

D
eNϕNv w

(
∂u�ϕ

∂ν
(eϕq)

)2

dσ

−
∫

D
eNϕv

∂u�ϕ

∂ν
(eϕq)

d

ds

(
∂u�ϕ+sw

∂ν
(eϕ+swq)

)∣
∣
∣
∣
s=0

dσ.

(3.14)

Since �ϕ+sw is a radial graph, then, in view of (2.7), we have

∂u�ϕ+sw

∂ν
(eϕ+swq) = ∇u�ϕ+sw(eϕ+swq) · q − ∇SN−1(ϕ + sw)

√
1 + |∇SN−1(ϕ + sw)|2 . (3.15)

As in the proof of Lemma 3.1 we consider the map �̂ : (−δ, δ) → H1
0 (�ϕ ∪�1,ϕ),

defined by

�̂(s) = ûs := u�ϕ+sw ◦ ξ(s, ·)|�ϕ .

Moroever, let G : H1
0 (�ϕ ∪ �1,ϕ) → L2(�ϕ ∪ �1,ϕ,RN ), given by G( f ) := ∇ f .

Since G is a bounded linear operator, then G is differentiable, G ′( f )[g] = ∇g
for any g ∈ H1

0 (�ϕ ∪ �1,ϕ). In addition, as �̂ is differentiable (see the proof of
[23, Proposition 4.3] for the details), then the composition G ◦ �̂ : (−δ, δ) →
L2(�ϕ ∪ �1,ϕ,RN ) is differentiable and

(G ◦ �̂)′(s) = G ′(�̂(s))[�̂′(s)] = ∇�̂′(s) ∀s ∈ (−δ, δ).

In terms of ûs , this means that

d

ds

(∇ûs
) = ∇

(
dûs
ds

)

. (3.16)

In addition, since u�ϕ+sw = ûs ◦ ξ(−s, ·)|�ϕ+sw it follows that also s �→ ∇u�ϕ+sw

is differentiable. We claim that

d

ds

(∇u�ϕ+sw

) = ∇
(

d

ds
u�ϕ+sw

)

. (3.17)

Indeed, setting ξs := ξ(−s, ·)|�ϕ+sw , since

∂

∂xi
u�ϕ+sw = ∂

∂xi

(
ûs ◦ ξs

) = ∇ûs(ξs) · ∂ξs

∂xi
,
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then, using (3.16), we get that

d

ds

(
∂

∂xi
u�ϕ+sw

)

=
(
∇
(
dûs
ds

)
(ξs) + D2ûs(ξs)

dξs
ds

)
· ∂ξs
∂xi

+∇ûs(ξs)· ∂
∂xi

dξs
ds = ∂

∂xi

( d
ds u�ϕ+sw

)

and, thus by a straightforward computation, we obtain

d

ds

(
∂

∂xi
u�ϕ+sw

)

=
(

∇
(
dûs
ds

)

(ξs) + D2ûs(ξs)
dξs
ds

)

· ∂ξs

∂xi

+∇ûs(ξs) · ∂

∂xi

dξs
ds

= ∂

∂xi

(
d

ds
u�ϕ+sw

)

for any i = 1, . . . , N , which proves Claim (3.17).

Thanks to (3.15) and (3.17) we have

d

ds

(
∂u�ϕ+sw

∂ν
(eϕ+swq)

)∣
∣
∣
∣
s=0

=
(
∇u′

w(eϕq) + D2u�ϕ (eϕq)eϕwq
)
· q − ∇SN−1ϕ
√
1 + |∇SN−1ϕ|2

+ ∇u�ϕ (eϕq)·
(

− ∇SN−1w
√
1 + |∇SN−1ϕ|2 − (q − ∇SN−1ϕ)(∇SN−1ϕ·∇SN−1w)

(1 + |∇SN−1ϕ|2)3/2
)

= (∇u′
w(eϕq) + D2u�ϕ (e

ϕq)eϕwq
) ·ν

+ ∇u�ϕ (eϕq)·
(

− ∇SN−1w
√
1 + |∇SN−1ϕ|2 − ∇SN−1ϕ·∇SN−1w

(1 + |∇SN−1ϕ|2) ν

)

= ∂u′
w

∂ν
(eϕq) + w D2u�ϕ (e

ϕq)eϕq·ν

− ∇u�ϕ (eϕq)·∇SN−1w
√
1 + |∇SN−1ϕ|2 − ∂u�ϕ

∂ν
(eϕq)

∇SN−1ϕ·∇SN−1w

(1 + |∇SN−1ϕ|2) .

(3.18)

Finally, combining (3.14) and (3.18)we readily obtain (3.12). Theproof is complete.
��

4. Volume-Constrained Critical Points for the Torsional Energy of
Star-Shaped Domains

For any ϕ ∈ C2(D,R), the volume of the associated star-shaped domain �ϕ

(see (3.3)) is given by

V(ϕ) = |�ϕ | = 1

N

∫

D
eNϕ dσ, (4.1)
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where dσ is the (N −1)-dimensional area element of SN−1. It is easy to check that
V is of class C2 and for any v,w ∈ C2(D,R) it holds

V ′(ϕ)[v] =
∫

D
eNϕ v dσ, (4.2)

and

V ′′(ϕ)[v,w] = N
∫

D
eNϕ v w dσ. (4.3)

For a number c > 0 we define

M = {ϕ ∈ C2(D,R); V(ϕ) = c}. (4.4)

Clearly M is a smooth manifold and for any ϕ ∈ M it holds

TϕM =
{

v ∈ C2(D,R);
∫

D
eNϕ v dσ = 0

}

. (4.5)

We consider the restriction of the torsional energy to the domains corresponding to
functions ϕ ∈ M , namely the functional defined by

I (ϕ) := E (ϕ)|ϕ∈M = E(�ϕ;�D)
∣
∣
ϕ∈M . (4.6)

If ϕ ∈ M is critical point of I then there exists λ ∈ R such that

E ′(ϕ) = λV ′(ϕ). (4.7)

As a straightforward consequence of Lemma 3.1 and (4.2) we have

Lemma 4.1. Letϕ ∈ M beacritical point for I andassume that u�ϕ ∈ W 1,∞(�ϕ)∩
W 2,2(�ϕ). Then the Lagrange multiplier λ is negative and

∂u�ϕ

∂ν
≡ −√−2λ on �ϕ.

Proof. Let ϕ ∈ M be a critical point for I and assume that u�ϕ ∈ W 1,∞(�ϕ) ∩
W 2,2(�ϕ), then, from (4.7) and exploiting Lemma 3.1 and (4.2), we have

−1

2

∫

D
eNϕ v

(
∂u�ϕ

∂ν

(
eϕq

)
)2

dσ = λ

∫

D
eNϕ v dσ,

for any v ∈ C2(D,R). Hence we readily obtain that

∫

D
eNϕ v

[(
∂u�ϕ

∂ν

(
eϕq

)
)2

+ 2λ

]

dσ = 0,

and from the arbitrariness of v ∈ C2(D,R) we easily deduce that λ < 0 and

(
∂u�ϕ

∂ν

)2

= −2λ on �ϕ. (4.8)
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Now, recalling that u�ϕ is the only (positive) weak solution to
⎧
⎪⎨

⎪⎩

−�u = 1 in �ϕ,

u = 0 on �ϕ,
∂u
∂ν

= 0 on �1,ϕ \ {0},
(4.9)

then from standard regularity estimates we infer that u�ϕ is smooth in�ϕ , and from

Hopf’s lemma we get that
∂u�ϕ

∂ν
< 0 on �ϕ . Hence, in view of (4.8), we obtain

∂u�ϕ

∂ν
= −√−2λ on �ϕ.

��
Remark 4.2. From Lemma 4.1 we deduce that each critical point of I produces a
star-shaped domain �ϕ for which the overdetermined problem (1.2) has a solution.
We recall that, as shown in [23, Proposition 4.3], each critical point of the functional
E(�;�D) on the whole family of domains in �D , with a volume constraint, is a
domain for which (1.2) has a solution. Hence Lemma 4.1 shows that the same
statement holds even if the variations are taken only in the class of star-shaped
domains.

In the next result we compute the second derivative of I at critical point along
variations in TϕM .

Lemma 4.3. Let ϕ ∈ M be a critical point for I and let v,w ∈ TϕM. Then

I ′′(ϕ)[v,w] = E ′′(ϕ)[v,w] − λV ′′(ϕ)[v,w],
where λ is the Lagrange multiplier.

Proof. By definition if ϕ ∈ M is a critical point for I , the second variation
I ′′(ϕ)[v,w] along the variations v,w ∈ TϕM is given by

I ′′(ϕ)[v,w] = ∂2 I (�(t, s))

∂t∂s

∣
∣
∣
∣
(t,s)=(0,0)

,

where � : (−ε, ε) × (−ε, ε) → M is a smooth surface in M such that

�(0, 0) = ϕ,
∂�

∂t
(0, 0) = v,

∂�

∂s
(0, 0) = w.

We recall that by definition it holds I (�(t, s)) = E (�(t, s)). Since

∂

∂s
(E (�(t, s))) = E ′(�(t, s))

[
∂�

∂s
(t, s)

]

,

we have

∂

∂t

∂

∂s
(E (�(t, s))) = E ′′(�(t, s))

[
∂�

∂s
(t, s),

∂�

∂t
(t, s)

]

+ E ′(�(t, s))

[
∂2�

∂t∂s
(t, s)

]

.

(4.10)
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On the other hand, since �(t, s) ∈ M we have V(�(t, s)) = c for any (t, s) ∈
(−ε, ε)×(−ε, ε), and thus differentiatingwith respect to t we infer thatV ′(�(t, s))
[ ∂�

∂s (t, s)] = 0. Differentiating again with respect to s we obtain

V ′′(�(t, s))

[
∂�

∂s
(t, s),

∂�

∂t
(t, s)

]

+ V ′(�(t, s))

[
∂

∂t

∂�

∂s
(t, s)

]

= 0 (4.11)

Hence, computing (4.10) at (t, s) = (0, 0), since ϕ = �(0, 0) is a critical point of
I and taking into account that (4.7), (4.11), we get that

∂

∂t

∂

∂s
(E (�(t, s)))|(t,s)=(0,0) = E ′′(�(t, s)) [v,w] + E ′(�(t, s))

[
∂

∂t

∂�

∂s
(0, 0)

]

= E ′′(�(t, s)) [v,w] + λV ′(ϕ)

[
∂

∂t

∂�

∂s
(0, 0)

]

= E ′′(�(t, s)) [v,w] − λV ′′(ϕ) [v,w] ,

which proves the desired relation. ��

Remark 4.4. When ϕ ≡ 0 then �ϕ is the unit spherical sector �D,1 = �D ∩ B1,
where B1 = B1(0) is the unit ball in R

N centered at the origin. We denote it by
�0, while �0 will be its relative boundary. In this case the torsion function u�0 is

known to be the radial function u�0(x) = 1−|x |2
2N . Then we can choose c = |�0|

in the definition of M and the tangent space to M at ϕ ≡ 0 is T0M = {v ∈
C2(D,R); ∫D v dσ = 0}. It is easy to check that∇u�0 = − 1

N x , for x ∈ �D ∩ B1,

and
∂u�0
∂ν

= − 1
N on �0, so that �0 is a critical point for I with λ = − 1

2N2 . Finally

D2u�0(x) = − 1
N IN , for x ∈ �D ∩ B1, where IN is the identity matrix of order N ,

and thus we readily have that u�0 ∈ W 1,∞(�0) ∩ W 2,2(�0).

For the second variation we have

Proposition 4.5. For any v ∈ T0M it holds that

I ′′(0)[v, v] = − 1

N 2

∫

D
v2 dσ + 1

N

∫

D
v
∂u′

∂ν
dσ, (4.12)

where u′ = d
dt

(
u�0+tv

)∣
∣
t=0 (see (3.9)) and ∂u′

∂ν
is the normal derivative of u′ on

�0 = D.

Proof. First we observe that, taking ϕ ≡ 0, from (3.9) and (3.5) we have that u′
satisfies

⎧
⎪⎨

⎪⎩

−�u′ = 0 in �0,

u′ = 1
N v on �0,

∂u′
∂ν

= 0 on �1,0.

(4.13)
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Then, taking v ∈ C2(D,R) such that
∫

D v dσ = 0, from Lemma 3.2, Lemma
4.3, Remark 4.4 and (4.3), (4.13) we obtain

I ′′[v, v] = − N

2

∫

D
v2
(

− 1

N

)2

dσ −
∫

D
v

(

− 1

N

)
∂u′

∂ν
dσ

−
∫

D
v2
(

− 1

N

)(

− 1

N
q·q

)

dσ +
∫

D
v

(

− 1

N

)

∇u�0 ·∇SN−1v dσ

−
(

− 1

2N 2

)

N
∫

D
v2 dσ

=
(

− 1

2N
− 1

N 2 + 1

2N

)∫

D
v2 dσ + 1

N

∫

D
v

∂u′

∂ν
dσ,

(4.14)

since∇u�0 ·∇SN−1v ≡ 0 in D because∇u�0 is proportional to the radial direction.
��
Remark 4.6. We observe that thanks to (4.12), since u′ = 1

N v on �0, by (4.13) and
recalling that �0 = D, we can write

I ′′(0)[v, v] = −
∫

D
(u′)2 dσ +

∫

D
u′ ∂u′

∂ν
dσ.

Then by Green’s identity and (4.13) we infer that

I ′′(0)[v, v] = −
∫

D
(u′)2 dσ +

∫

�0

|∇u′|2 dx .

5. A Condition for Instability

In this section we provide conditions on the domain D ⊂ S
N−1 such that the

corresponding spherical sector (i.e. the domain�0 associated to the functionϕ ≡ 0,
see (3.3)) is not a local minimizer for the torsional energy functional under a volume
constraint. This is achieved by showing that �0 is an unstable critical point of I ,
i.e. its Morse index is positive.

More precisely, let M be the manifold defined in (4.4), with c = |�0| and let
I be as in (4.6). As observed in Remark 4.4 the function ϕ ≡ 0 belongs to M and
�0 is a critical point for I . The main result of this section is the following:

Theorem 5.1. Let D ⊂ S
N−1 be a smooth domain and let λ1(D) be the first non

trivial eigenvalue of the Laplace-Beltrami operator −�SN−1 , with zero Neumann
condition on ∂D. It holds that

(i) if λ1(D) < N − 1, then �0 is not a local minimizer for I ;
(ii) if λ1(D) > N − 1, then �0 is a local minimizer for I .

Proof. To prove (i), let (w j ) j∈N be a L2(D)-orthonormal basis of eigenfunctions
of the eigenvalue problem

{−�SN−1w j = λ jw j in D,
∂w j
∂ν

∂D
= 0 on ∂D,

(5.1)
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where ν
∂D is the exterior unit co-normal to ∂D, i.e. for any q ∈ ∂D, ν

∂D (q) is the
only unit vector in TqSN−1 such that ν

∂D (q) ⊥ Tq∂D and ν
∂D (q) points outward

D. We define the following extension of w j to the cone �D

w̃ j (rq) := 1

N
rα j w j (q) q ∈ D, r > 0, (5.2)

where

α j := −N − 2

2
+
√
(
N − 2

2

)2

+ λ j . (5.3)

We claim that w = w̃ j
∣
∣
�0

is the unique solution of

⎧
⎪⎨

⎪⎩

−�w = 0 in �0,

w = 1
N w j on �0,

∂w
∂ν

= 0 on �1,0.

(5.4)

Indeed, writing the Laplace operator in polar coordinates and exploiting (5.1) we
easily check that

�w̃ j = ∂2w̃ j

∂2r
+ N − 1

r

∂w̃ j

∂r
+ 1

r2
�SN−1w̃ j

= (
α j (α j − 1) + α j (N − 1) − λ j

) rα j−2w j (q)

N
= 0,

because α j satisfies α2
j + (N − 2)α j − λ j = 0. Moreover, by definition, we have

w̃ j
∣
∣
D = 1

N w j and
∂w̃ j
∂ν

= 0 on �1,0.
Now, let us take j = 1. It is well known that the first eigenfunctionw1 is smooth

and satisfies
∫

D w1 dσ = 0, i.e. w1 ∈ T0M . Computing I ′′(0)[w1, w1], thanks to
Proposition 4.5 and taking into account that w̃1

∣
∣
�0

is the solution of (5.4), with
j = 1, we get that

I ′′(0)[w1, w1] = − 1

N 2

∫

D
w2
1 dσ + 1

N

∫

D
w1

(
∂w̃1

∂ν

)

dσ. (5.5)

Then, since the L2(D)-norm of w1 is equal to 1, the exterior unit normal ν to �0 is
the radial direction, and

∂w̃1

∂ν
= 1

N
α1r

α1−1w1 = α1

N
w1 on D, (5.6)

from (5.5) we obtain

I ′′(0)[w1, w1] = − 1

N 2 + α1

N 2 .

Thus we deduce that

I ′′(0)[w1, w1] < 0 if and only if − 1 + α1 < 0.
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Finally, from (5.3) it is immediate to check that α1 < 1 is equivalent to λ1(D) <

N − 1 and the proof of (i) is complete.
Toprove (ii), letv ∈ T0M and assume,without loss of generality, that

∫

D v2 dσ =
1. Taking (w j ) j∈N as in the proof of (i), since v ∈ T0M we can write

v =
∞∑

j=1

(v,w j )L2(D)w j .

Let w̃ j be the harmonic extension ofw j defined in (5.2). Then, as w̃ j
∣
∣
�0

is a solution

to (5.4) for any j ∈ N, we infer that ṽ := ∑∞
j=1(v,w j )L2(D)w̃ j is a solution to

⎧
⎪⎨

⎪⎩

−�u = 0 in �0,

u = 1
N v on �0,

∂u
∂ν

= 0 on �1,0.

Thus, by Proposition 4.5, we get

I ′′(0)[v, v] = − 1

N 2

∫

D
v2 dσ + 1

N

∫

D
v

∂ṽ

∂ν
dσ.

As in (5.6)we have that
∂w̃ j
∂ν

= α j
N w j on D, for any j ∈ N. Hence, since

∫

D v2 dσ =
1, we deduce

I ′′(0)[v, v] = − 1

N 2 + 1

N 2

∫

D
v

∞∑

j=1

α j (v,w j )L2(D)w j dσ = − 1

N 2 + 1

N 2

∞∑

j=1

α j (v,w j )
2
L2(D)

.

Now, if λ1(D) > N − 1 it follows that α1 > 1, and, as (α j ) j∈N is a nondecreasing
sequence, we obtain

I ′′(0)[v, v] > − 1

N 2 + 1

N 2

∞∑

j=1

(v,w j )
2
L2(D)

= 0, (5.7)

having used that
∑∞

j=1(v,w j )
2
L2(D)

= 1, as
∫

D v2(q) dσ = 1. Hence (ii) holds. ��

We conclude this section with a useful criterion for checking the property
λ1(D) < N − 1. To this end let e ∈ S

N−1 and let ue ∈ C∞(RN ) be the func-
tion defined by

ue(x) = x · e, (5.8)

which satisfies

− �SN−1ue = (N − 1)ue on S
N−1. (5.9)

We have
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Proposition 5.2. Let D be a smooth proper domain of SN−1 and let e ∈ S
N−1

satisfy
∫

D
ue dσ = 0.

Assume that either one of the following holds:

(i)
∫

∂D
ue

∂ue
∂ν

dσ̂ < 0;

(ii)
∫

∂D
ue

∂ue
∂ν

dσ̂ = 0, andue is not an eigenfunctionof

{−�SN−1w = λw in D,
∂w
∂ν

= 0 on ∂D,

where dσ̂ is the (N − 2)-dimensional area element of ∂D and ν = ν
∂D is the

exterior unit co-normal to ∂D. Then λ1(D) < N − 1.

Proof. Taking ue as test function in the variational characterization of the first
non-trivial eigenvalue of −�SN−1 with zero Neumann condition on ∂D, applying
Green’s identity and exploiting (5.9), we have
∫

D
|∇ue|2 dσ =

∫

∂D
ue

∂ue
∂ν

dσ̂ −
∫

D
ue�ue dσ =

∫

∂D
ue

∂ue
∂ν

dσ̂ + (N − 1)
∫

D
u2e dσ.

Therefore, if (i) holds it follows that
∫

D |∇ue|2 dσ
∫

D u2e dσ
< N − 1 (5.10)

which implies that λ1(D) < N − 1. This completes the proof for the case (i). On
the other hand, under the assumption (ii), the equality sign in (5.10) holds, but as
ue is not an eigenfunction it follows that N − 1 cannot be the smallest non-trivial
eigenvalue. ��

6. Existence of Volume-Constrained Minimizers for the Torsional Energy

Let D ⊂ S
N−1 be a domain of the unit sphere and let�D be the cone generated

by D. We will always assume that D is smooth so that �D is smooth exept at the
vertex. In Sect. 3 we defined the torsional energy E(�;�D) for smooth domains
� ⊂ �D strictly star-shapedwith respect to the vertex of the cone. In this sectionwe
study the minimization problem for the torsional energy under a volume constraint
in a larger class of sets. Thus we recall some definitions.

Definition 6.1. We say that� ⊂ R
N is quasi-open, if for any ε > 0, there exists an

open set�ε such that cap(�ε) � ε and�∪�ε is open, where cap(�ε) denotes the
capacity of �ε with respect to the H1-norm (see [14, Sect. 3.3] or [9, Sect. 2.1]).

For any quasi-open set � ⊂ �D we consider the Sobolev space:

H1
0 (�;�D) :=

{
u ∈ H1(�D); u = 0 q.e. on �D \ �

}
,

where q.e. means quasi-everywhere, i.e. up to sets of zero capacity.
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Definition 6.2. We say that u is a (weak) solution of the mixed boundary value
problem

⎧
⎪⎨

⎪⎩

−�u = 1 in �,

u = 0 on ∂� ∩ �D,
∂u
∂ν

= 0 on ∂�D,

(6.1)

if u ∈ H1
0 (�;�D) and

∫

�D

∇u · ∇v dx =
∫

�D

v dx ∀v ∈ H1
0 (�;�D).

Remark 6.3. As �D is connected and smooth (execpt at the vertex) then �D is
uniformly Lipschitz. Thus if |�| < +∞ the inclusion H1

0 (�;�D) ↪→ L2(�D) is
compact (see [9, Proposition 2.3-(i)]). This implies that the functional

J (v) = 1

2

∫

�D

|∇v|2 dx −
∫

�D

v dx (6.2)

has a unique minimizer u� ∈ H1
0 (�;�D) which is the unique (weak) solution to

(6.1), which is called energy function or torsion function of �. We also recall that
� = {u� > 0} up to a set of zero capacity (see [9, Proposition 2.8-(e)]). Moreover
we denote by λ1(�;�D) the first eigenvalue of the Laplacian in H1

0 (�;�D), i.e.

λ1(�;�D) = min
v∈H1

0 (�;�D)\{0}

∫

�D
|∇v|2 dx

∫

�D
v2 dx

. (6.3)

Then, as before, we define the torsional energy of � (relative to �D) as:

E(�;�D) = J (u�) = −1

2

∫

�

|∇u�|2 dx = −1

2

∫

�

u� dx . (6.4)

We want to study the problem of minimizing the functional E(�;�D) among
quasi-open sets of uniformly bounded measure. Therefore, fixing c > 0 we define

Oc(�D) := inf{E(�;�D); � quasi-open, � ⊂ �D, |�| � c}. (6.5)

Our aim is to give a sufficient condition on the cone �D (hence on D) for the
infimum in (6.5) to be achieved. We begin by recalling some known properties of
the function u� that will be used in this section.

Proposition 6.4. Let c > 0. There exists a positive constant C depending only on
N, �D and c such that, for any quasi-open subset � of �D with |�| � c, it holds
that

(i) u� is bounded and ‖u�‖L∞(�D) � C |�|2/N ;
(ii)

∫

�D
|∇u�|2 dx � C |�| N+2

N ;

(iii)
∫

�D
u2� dx � C |�| N+4

N .
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Proof. Let us fix c > 0. Since the cone�D is a uniformly Lipschitz connected open
set of RN then we can apply [9, Lemma 2.5]. Hence, for any quasi-open subset
� ⊂ �D , with |�| � c, fixing p ∈]N/2,+∞[ and taking f = χ�, where χ�

denotes the characteristic function of �, we obtain from [9, Lemma 2.5] that there
exists a positive constant C̃ depending on N , p, �D and c only such that

‖u�‖L∞(�D) � C̃‖ f ‖L p(�D)|�|2/N−1/p = C̃ |�|1/p|�|2/N−1/p = C̃ |�|2/N ,

which gives (i).
Next, taking u� as test function in the weak formulation of (6.1) we get

∫

�

|∇u�|2 dx =
∫

�

u� dx,

and, by (i), we obtain
∫

�

|∇u�|2 dx � C |�|2/N |�| = C |�| N+2
N ,

i.e. (ii). Finally (iii) is a trivial consequence of (i) since
∫

�

u2� dx � ‖u�‖2L∞(�D)|�| � C2|�|4/N |�| = C2|�| N+4
N .

��
Notice that as a straightforward consequence of the previous result it holds that

Oc(�D) > −∞.

Remark 6.5. As remarked in [23,Remark4.2] there is a natural invariance by scaling
in our problem, which, in particular, allows to claim that the infimum as in (6.5),
but with volume bounded by another constant λ > 0, can be easily computed from
Oc(�D). Namely we have

λ− N+2
N Oλ(�D) = c− N+2

N Oc(�D) = O1(�D). (6.6)

Indeed, for any quasi-open � ⊂ �D , for any t > 0 it holds that t� ⊂ �D ,
|t�| = t N |�|, and it is easy to check that ut�(x) = t2u�

( x
t

)
and

E(t�;�D) = t N+2E(�;�D). (6.7)

In particular Oc(�D) can be defined by taking |�| = c in (6.5) and either a
minimizer exists for any fixed volume or there are no minimizers whatever bound
for the volume is chosen.

Among the quasi-open sets in �D we can consider the spherical sectors

�D,R := �D ∩ BR(0). (6.8)

In this case the solution of (6.1) is radial and explicitly given by

u�D,R (x) =
{

R2−|x |2
2N ifx ∈ �D,R,

0 ifx ∈ �D \ �D,R,
(6.9)
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and its energy is

E(�D,R;�D) = − 1

2N 2(N + 2)
RN+2HN−1(D). (6.10)

Therefore, by (6.5), we have

Oc(�D) � E(�D,Rc ;�D) < 0, (6.11)

where Rc = Rc(D) > 0 is such that |�D,Rc | = RN
c HN−1(D) = c, namely

Rc(D) =
(

c
HN−1(D)

) 1
N
.

Remark 6.6. Notice that for any c > 0 it holds

E(�D,Rc(D);�D) = − 1

2N 2(N + 2)
c

N+2
N
[
HN−1(D)

]− 2
N (6.12)

whichmeans that E(�D,Rc ;�D) is monotone increasing with respect toHN−1(D).

Remark 6.7. When D is a hemisphere, let us say for convenience the upper hemi-
sphere, denoted by SN−1+ = S

N−1 ∩ {(x1, . . . , xN ) ∈ R
N ; xN > 0}, then the cone

�
S
N−1+

coincides with the half-space RN+ . In this case it is well known, for example

by symmetrization, thatOc

(
�

S
N−1+

)
is achieved by any half-ball of measure c and

Oc

(
�

S
N−1+

)
= E

(
�

S
N−1+ ,Rc(S

N−1+ )
;�

S
N−1+

)

= − ωN

4N (N + 2)

(
2c

NωN

) N+2
N

. (6.13)

In the general case, using the smoothness of the cone, we prove in Proposition 6.10
that it always holds

Oc (�D) � Oc

(
�

S
N−1+

)
. (6.14)

The main result of this section is to show that if the strict inequality holds in (6.14)
then the infimum is achieved. Indeed we have

Theorem 6.8. Let c > 0 and assume that

Oc (�D) < Oc

(
�

S
N−1+

)
. (6.15)

Then Oc(�D) is achieved.

Proof. Let (�n)n ⊂ �D be a minimizing sequence for Oc(�D) and consider the
corresponding energy functions u�n ∈ H1

0 (�n;�D) for any n ∈ N. By definition,
we have

E(�n;�D) = −1

2

∫

�n

u�n dx → Oc(�D), as n → +∞.
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Setting un := u�n , since |�n| � c, for any n ∈ N, by Proposition 6.4 we find a
positive constant C1 independent of n such that

‖un‖H1(�D) � C1 ∀n ∈ N. (6.16)

In particular, up to a subsequence (still denoted by (un)n), we have ‖un‖2L2(�D)
→

λ, for some λ � 0. We first observe that λ > 0. Otherwise, if λ = 0, by Hölder’s
inequality and exploiting the uniform bound |�n| � c, we would have

‖un‖L1(�D) → 0, as n → +∞, (6.17)

which implies that E(�n;�D) → 0, as n → +∞, contradictingOc(�D) < 0 (see
(6.11)). Therefore, as (un)n is bounded in H1(�D) and

‖un‖2L2(�D)
→ λ, for n → +∞, (6.18)

for someλ > 0,wecan apply,with smallmodifications in theproof, the concentration-
compactness principle of P. L. Lions (see [17, Lemma III.1]). Hence, there exists a
subsequence (unk )k satisfying one of three following possibilities:

(i) there exists (ynk )k ⊂ �D satisfying

∀ε > 0 ∃R > 0 such that
∫

BR(ynk )∩�D

u2nk dx � λ − ε ∀k ∈ N;

(ii) lim
k→+∞ sup

y∈�D

∫

BR(y)∩�D

u2nk dx = 0, for all R > 0;

(iii) there exists α ∈]0, λ[ such that for all ε > 0, there exist k0 � 1 and two
sequences (u1,k)k , (u2,k)k bounded in H1(�D) satisfying, for k � k0

‖unk − u1,k − u2,k‖L2(�D) � 4ε,

∣
∣
∣
∣

∫

�D

u21,k dx − α

∣
∣
∣
∣ � ε,

∣
∣
∣
∣

∫

�D

u22,k dx − (λ − α)

∣
∣
∣
∣ � ε,

dist(supp(u1,k), supp(u2,k)) → +∞, as k → +∞,

lim inf
k→+∞

∫

�D

|∇unk |2 − |∇u1,k |2 − |∇u2,k |2 dx � 0.

We now divide the proof in some steps. We begin by showing that the “vanish-
ing” case (ii) cannot occur.
Step 1: (ii) cannot happen.

Assume by contradiction that (ii) holds. The idea is to show that unk → 0
strongly in L2(�D), as k → +∞, contradicting (6.18). To prove this we invoke
[28, Lemma 1.21] (whose proof can be easily adapted for functions in H1(�D)),
which claims that (ii) and (6.16) imply unk → 0 in L p(�D), for any 2 < p < 2∗, as
k → +∞, where 2∗ = 2N

N−2 is the critical Sobolev exponent. Then, exploiting that
unk ∈ H1

0 (�nk ;�D) and |�nk | � c, by Hölder’s inequality we readily conclude
that unk → 0 in L2(�D), as k → +∞.
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In the next step we prove that the “dichotomy” case (iii) cannot occur.
Step 2: (iii) cannot happen.

Assume by contradiction that (iii) holds. We claim that, up to a further subse-
quence, there exists another minimizing sequence (�̃nk )k ⊂ �D , with �̃nk ⊂ �nk ,
for any k, satisfying:

• �̃nk = �1,k ∪ �2,k , for some quasi-open subsets �1,k , �2,k of �nk ;
• dist(�1,k,�2,k) → +∞, as k → +∞;
• ci := lim infk→+∞ |�i,k | > 0, for i = 1, 2.

Indeed, by (iii) and a diagonal argument, we find bounded subsequences (u1,k)k ,
(u2,k)k in H1(�D) (still indexed by k) satisfying

‖unk − u1,k − u2,k‖L2(�D) → 0,
∫

�D

u21,k dx → α,

∫

�D

u22,k dx → (λ − α), as k → +∞,

dist(supp(u1,k), supp(u2,k)) → +∞, as k → +∞,

lim inf
k→+∞

∫

�D

|∇unk |2 − |∇u1,k |2 − |∇u2,k |2 dx � 0.

(6.19)

By the proof of [17, Lemma III.1] we see that u1,k , u2,k can be chosen to be non-
negative and in addition, since unk ∈ H1

0 (�nk ;�D), we also have that u1,k, u2,k ∈
H1
0 (�nk ;�D) for any k. In particular, as u1,k, u2,k ∈ H1(�D), setting �1,k :=

{u1,k > 0}, �2,k := {u2,k > 0} it follows that �1,k , �2,k are quasi-open subsets
of �D . Therefore, �̃k := �1,k ∪ �2,k is a quasi-open set contained in �nk and
denoting by ũnk := u�̃nk

the torsion function of �̃nk and arguing as in [6, Sect.
3.3] (with obvious small modifications), we infer that

‖unk − ũnk‖H1(�D) → 0, as k → +∞. (6.20)

From (6.20) it follows that (�̃nk )k is a minimizing sequence forOc(D). Moreover,
by construction and (6.19) we readily deduce that dist(�1,k,�2,k) → +∞, as
k → +∞. Finally, setting

ci := lim inf
n→+∞ |�i,k |, i = 1, 2, (6.21)

it holds that ci > 0 for i = 1, 2. Indeed, assuming by contradiction, for instance,
that c1 = 0, by Hölder’s inequality and Sobolev’s inequality (note that�D satisfies
the cone condition) we get

∫

�D

u21,k dx �
(∫

�D

|u1,k |2∗
dx

) 2
2∗ |�1,k | 2

N � C(N , �D)

∫

�D

|∇u1,k |2 dx |�1,k | 2
N .

Now, recalling that (u1,k)k is a bounded sequence in H1(�D), from the previous
inequality and since we are assuming c1 = 0 we deduce that

lim inf
k→+∞

∫

�D

u21,k dx = 0,
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which contradicts (6.19). Hence c1 > 0, and by the same argument we infer that
c2 > 0. The proof of the claim is complete.

In order to conclude the proof of Step 2 we show that the previous claim leads
to a contradiction. To this end we begin observing that by invariance by dilatation
(see Remark 6.5) it follows that our minimization problem is equivalent to

M(�D) := inf

{
E(�;�D)

|�| N+2
N

; � quasi-open, � ⊂ �D, |�| > 0

}

.

In particular by (6.6) and a straightforward computation we check that

Oc(�D) = c
N+2
N O1(�D) = c

N+2
N M(�D),

and a minimizing sequence for M(�D) is given by �k := |�̃nk |−
1
N �̃nk . Then,

setting �i,k := |�̃nk |−
1
N �i,k , i = 1, 2, and in view of the previous claim, up to a

subsequence, we have�k = �1,k ∪�2,k , where |�i,k | → ci
c1+c2

> 0, as k → +∞,
i = 1, 2, and �1,k ∩ �2,k = ∅ for all sufficiently large k. Now, as �i,k ⊂ �D are
quasi-open subsets with positive measure, then by definition of M(�D), for any
i = 1, 2, we have

E(�i,k;�D)

|�i,k | N+2
N

� M(�D). (6.22)

In addition, assuming without loss of generality that |�1,k | � |�2,k |, by an ele-
mentary computation, we deduce that

(|�1,k | + |�2,k |
) N+2

N = |�1,k | N+2
N + N + 2

N
|�1,k | 2

N |�2,k |

+ N + 2

N 2 (|�1,k | + ξk)
2−N
N |�2,k |2

� |�1,k | N+2
N + |�2,k | N+2

N + N + 2

N 2 (|�1,k | + ξk)
2−N
N |�2,k |2,

(6.23)

where ξk ∈ [0, |�2,k |]. Then, setting Mk(�D) := E(�k ;�D)

|�k |
N+2
N

< 0, recalling that

(�k)k is minimizing for M(�D), exploiting the properties of �k and taking into
account (6.23), (6.22), we infer that for all sufficiently large k it holds

E(�k; �D) = Mk(�D)|�k | N+2
N

= (M(�D) + o(1))
(|�1,k | + |�2,k |

) N+2
N

� (M(�D) + o(1))

(

|�1,k | N+2
N + |�2,k | N+2

N + N + 2

N 2 ξ
2−N
N

k |�2,k |2
)

= M(�D)|�1,k | N+2
N

+ M(�D)|�2,k | N+2
N + M(�D) N+2

N2 (|�1,k | + ξk)
2−N
N |�2,k |2 + o(1)

� E(�1,k; �D) + E(�2,k; �D)

+ M(�D) N+2
N2 (|�1,k | + ξk)

2−N
N |�2,k |2 + o(1)

= E(�k; �D) + M(�D)
N + 2

N 2 (|�1,k | + ξk)
2−N
N |�2,k |2 + o(1)

< E(�k; �D)

(6.24)
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where the last inequality is strict because |�i,k | → ci
c1+c2

> 0, for i = 1, 2,
k → +∞, andM(�D) < 0. Clearly (6.24) is contradictory and this concludes the
proof of Step 2.

From Step 1 and Step 2 we know that the only admissible case is (i). Roughly
speaking (i) states that, there exists a sequence (ynk )k ⊂ �D such that for a suffi-
ciently large ball BR(ynk ), the mass of unk is concentrated in BR(ynk )∩�nk , while
the part in the complement B�

R(yk) ∩ �nk is negligible. With (i) at hand we can
show that the same happens for the energy, in particular the possible tails of �nk
do not play a role. This is the content of the next technical step.
Step 3: For any fixed ε > 0 there exist R̄ > 1 and k̄ ∈ N, both depending only on
ε, such that

E(�nk ;�D) � E(B2R(ynk ) ∩ �nk ;�D) − 2c
√
2ε, ∀k � k̄ ∀R � R̄.

(6.25)

Let us fix ε > 0 and let R > 0 be tha radius given by (i). Let ϕ ∈ C∞
c (RN )

such that 0 � ϕ � 1, ϕ ≡ 1 in BR(0), ϕ ≡ 0 in B�
2R(0) and |∇ϕ| � C0

R in R
N ,

where C0 > 0 is a constant independent of R. We set ϕk(x) := ϕ(x − ynk ) and
observe that

∫

�D

|∇unk |2 dx �
∫

�D

|∇unk |2ϕ2
k dx

=
∫

�D

|∇(unkϕk)|2 dx

− 2
∫

�D

unkϕk∇unk ·∇ϕk dx

︸ ︷︷ ︸
(I)

−
∫

�D

u2nk |∇ϕk |2 dx
︸ ︷︷ ︸

(II)

.

(6.26)

Then, exploiting the properties of ϕk , Hölder’s inequality and (6.16) we infer that

|(I)| � C0

R
‖∇unk‖L2(�D)‖unk‖L2(�D) � C0C2

1

R
,

where C0, C1 are both independent of k and R. Similarly, for |(II)| we have

|(II)| � C2
0C1

R2 ,

and thus by (6.26) and assuming without loss of generality that R > 1 we obtain
that

∫

�D

|∇unk |2 dx �
∫

�D

|∇(unkϕk)|2 dx − C2

R
, (6.27)

where C2 > 0 is independent of k and R. In addition, let us write

−
∫

�D

unk dx = −
∫

�D

unkϕk dx −
∫

�D∩BR (yk )
unk (1 − ϕk) dx

︸ ︷︷ ︸
(III)

−
∫

�D∩B�
R (yk )

unk (1 − ϕk) dx

︸ ︷︷ ︸
(IV)

.



1032 Alessandro Iacopetti, Filomena Pacella & Tobias Weth

We first observe that (III) = 0, because ϕk ≡ 1 in BR(yk), while for (IV), applying
Hölder’s inequality, taking into account that unk = 0 q.e. on � \ �nk and the
properties of ϕk , we get that

|(IV)| �
(∫

�D∩B�
R(yk )

u2nk dx

) 1
2

|B2R(yk) ∩ �nk |.

Now, thanks to (i) and (6.18) it follows that ‖unk‖L2(�D∩B�
R(yk))

�
√
2ε for all

sufficiently large k, and thus, as |�nk | � c, we deduce that

|(IV)| �
√
2εc.

Summing up, we have proved that

−
∫

�D

unk dx � −
∫

�D

unkϕk dx − √
2εc. (6.28)

Hence, combining (6.27), (6.28) and recalling the definition of the functional J
(see (6.2)) we obtain

J (unk ) � J (unkϕk) − C2

2R
− √

2εc.

Since ε is fixed and C2 is independent of R and k, up to taking a larger R, we can
assume that C2

2R <
√
2εc. Then, observing that unkϕk ∈ H1

0 (B2R(ynk ) ∩ �nk ;�D)

we finally get

E(�nk ;�D) = J (unk ) � J (unkϕk) − 2
√
2εc � E(B2R(ynk ) ∩ �nk ;�D) − 2

√
2εc,

so that Step 3 is proved.
In the next step we prove that the sequence of points (ynk )k ⊂ �D provided by

(i) is bounded.
Step 4: The sequence (ynk )k ⊂ �D existing by (i) is bounded.

Assume by contradiction that there exists a subsequence (still indexed by k)
such that

lim
k→+∞ |ynk | = +∞.

Thanks to the assumption (6.15) we can fix ε > 0 sufficiently small so that

Oc(�D) + 2c
√
2ε < Oc

(
�

S
N−1+

)
, (6.29)

and by Step 3 we find R sufficiently large depending only on ε, such that for all
sufficiently large k

E(�nk ;�D) � E(B2R(ynk ) ∩ �nk ;�D) − 2c
√
2ε. (6.30)

We observe that B2R(ynk ) ∩ �nk intersects the boundary of �D . More precisely,
for all sufficiently large k, it holds that

HN−1

(
(B2R(ynk ) ∩ �nk ) ∩ ∂�D

)
> 0. (6.31)
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Indeed, on the contrary, setting for convenience�R,k := B2R(ynk )∩�nk there exists
a subsequence (still indexed by k) such thatHN−1(�R,k ∩∂�D) = 0 for all k ∈ N,
and by the same argument of [9, Remark 4.3] we conclude that H1

0 (�R,k;�D) =
H1
0 (�R,k), and thus

E(�R,k;�D) = E(�R,k;RN ), (6.32)

where E(�R,k;RN ) denotes the “free” energy of �R,k , under a homogeneous
Dirichlet condition, namely, E(�R,k;RN ) is the minimizer in H1

0 (�R,k) of the
functional J (v) = 1

2

∫

RN |∇v|2 dx − ∫
RN v dx . Then, by considering the Schwartz

symmetrization u∗
�R,k

of the energy function u�R,k associated to �R,k , and thanks
to the classical Pólya-Szegö inequality, we infer that

E(�R,k;RN ) = 1

2

∫

�R,k

|∇u�R,k |2 dx −
∫

�R,k

u�R,k dx

� 1

2

∫

�∗
R,k

|∇u∗
�R,k

|2 dx −
∫

�∗
R,k

u∗
�R,k

dx

� E(�∗
R,k;RN ),

(6.33)

Hence, as �∗
R,k is a ball, with ck := |�∗

R,k | = |�R,k | � c, then from (6.32),(6.33),

taking into account Remark 6.6 and (6.13) (noticing that E(�∗
R,k;RN )

= E(�SN−1,Rck (SN−1);�SN−1), where �SN−1,Rck (SN−1) is the ball centred at the ori-

gin of radius Rck (S
N−1) with |�SN−1,Rck (SN−1)| = ck , see (6.8), (6.12)), we deduce

that

E(�R,k;�D) � E(�∗
R,k;RN ) > Ock

(
�

S
N−1+

)
� Oc

(
�

S
N−1+

)
. (6.34)

Finally, recalling that �R,k = B2R(ynk ) ∩ �nk , then from (6.25) and (6.34) we
have, for large k,

E(�nk ;�D) � Oc

(
�

S
N−1+

)
− 2c

√
2ε.

Hence passing to the limit as k → +∞ we conclude that

Oc(�D) � Oc

(
�

S
N−1+

)
− 2c

√
2ε,

which contradicts (6.29).
Then, by (6.31), there exists k0 ∈ N such that dist(ynk , ∂�D) � 2R for all

k � k0 and we can find a sequence of points (zk)k ⊂ ∂�D \ {0} such that zk ∈
(B2R(ynk ) ∩ �nk ) ∩ ∂�D and B2R(ynk ) ⊂ B4R(zk), for all k � k0. Then, by
monotonicity of the torsional energy E with respect to the set inclusion, noticing
that H1

0 (B2R(ynk ) ∩ �nk ;�D) ⊂ H1
0 (B4R(zk) ∩ �nk ;�D), we have

E(B2R(ynk ) ∩ �nk ;�D) � E(B4R(zk) ∩ �nk ;�D), (6.35)

for all k � k0. Clearly, by construction, |B4R(zk) ∩ �nk | � c for all k � k0 and
|zk | → +∞, as k → +∞. We claim that, up to a further subsequence (still indexed
by k) it holds

E(B4R(zk) ∩ �nk ;�D) � Oc

(
�

S
N−1+

)
+ o(1), (6.36)
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for all sufficiently large k, where o(1) → 0 as k → +∞.

Notice that if Claim (6.36) holds then the proof of Step 4 is complete. Indeed
combining (6.30), (6.35) and (6.36), up to a subsequence, we have

E(�nk ;�D) � Oc(�S
N−1+

) + o(1) − 2c
√
2ε,

for all sufficiently large k. Then, passing to the limit as k → +∞ we get

Oc(�D) � Oc

(
�

S
N−1+

)
− 2c

√
2ε,

but this contradicts (6.29).
Proof of Claim (6.36): We first observe that since ∂�D \ {0} is a smooth hypersur-
face, then, for any fixed q ∈ ∂D ⊂ ∂�D \ {0} there exists an open neighborhood
V of q in ∂�D \ {0} such that V −q is the graph over Tq∂�D of a smooth function
g : U → R, with g(0) = 0, where U is an open neighborhood of the origin in
Tq∂�D (without loss of generality we can assume that U is a ball and g is smooth
in U ). Namely, fixing a orthonormal base B′ := {v1, . . . , vN−1} of Tq∂�D and
choosing B := {v1, . . . , vN−1,−ν(q)} as orthonormal base of RN , where −ν(q)

is the inner unit normal of ∂�D at q, denoting by x ′ = (x ′
1, . . . , x

′
N−1) the coordi-

nates of the points in Tq∂�D with respect toB′ and by x = (x ′, xN ) the coordinates
in RN with respect to B, we can identify

V − q = {(x ′, xN ) ∈ R
N ; x ′ = (x ′

1, . . . , x
′
N−1) ∈ U, xN = g(x ′

1, . . . , x
′
N−1)},

where U is the orthogonal projection of V − q onto Tq∂�D . To be precise, if
ϕ is a local parametrization centered at q, i.e. ϕ(0) = q, by writing ϕ − q =∑N−1

i=1 [(ϕ − q) · vi ]vi + (ϕ − q) · (−ν(q)), and since
∑N−1

i=1 [(ϕ − q) · vi ]vi is
a locally invertible map from an open neighborhood of the origin in R

N−1 to an
open neighborhood of the origin in Tq∂�D ∼= R

N−1, then, denoting by G its local
inverse and taking g(x ′) := [(ϕ −q)◦G(x ′)] · (−ν(q)) we obtain the desired map.
In particular, notice that since ∂[(ϕ−q)◦G]

∂x ′
i

(0) ∈ Tq∂�D it follows that ∂g
∂x ′

i
(0) = 0,

for any i = 1, . . . , N − 1.
Now, since ∂�D is a cone it follows that for any t > 0, Ttq∂�D = Tq∂�D ,

ν(tq) = ν(q) and tV − tq is the graph over Tq∂�D of the map gt : tU → R

defined by

gt (x
′) := tg

(
x ′

t

)

, x ′ ∈ tU. (6.37)

For any x ′ ∈ tU , for any i = 1, . . . , N − 1, we have

∂gt
∂x ′

i
(x ′) = ∂g

∂x ′
i

(
x ′

t

)

= ∂g

∂x ′
i
(0) + 1

t
∇x ′

[
∂g

∂x ′
i

](
ξ

t

)

· x ′, (6.38)

where ξ = ξ(x ′, t) belongs to the segment joining 0 and x ′
t , and ∇x ′ denotes the

gradient with respect to x ′
1, . . . , x

′
N−1. Hence, for any fixed ball BR1(0) ⊂ Tq∂�D ,
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for all t > 0 sufficiently large such that BR1(0) ⊂ tU , recalling that ∂g
∂x ′

i
(0) = 0,

we have

max
x ′∈BR1 (0)

|∇x ′gt (x
′)| � 1

t
max
x ′∈U

√
√
√
√

N−1∑

i=1

∣
∣
∣
∣∇x ′

[
∂g

∂x ′
i

]

(x ′)
∣
∣
∣
∣

2

R1 � C

t
, (6.39)

where C is independent of t , and, in particular,

lim
t→+∞ max

x ′∈BR1 (0)
|∇x ′gt (x

′)| = 0. (6.40)

LetC+
BR1 (0), E

+
(
gt
∣
∣
BR1 (0)

)
be, respectively, the upper cylinder generatedby BR1(0)

and the epigraph associated to gt
∣
∣
BR1 (0), namely

C+
BR1 (0) := {(x ′, xN ) ∈ R

N ; x ′ = (x ′
1, . . . , x

′
N−1) ∈ BR1(0), xN > 0},

E+ (gt
∣
∣
BR1 (0)

)
:= {(x ′, xN ) ∈ R

N ; x ′ = (x ′
1, . . . , x

′
N−1) ∈ BR1(0),

xN > gt (x ′
1, . . . , x

′
N−1)}.

(6.41)

Then, the map Ft : C+
BR1 (0) → E+

(
gt
∣
∣
BR1 (0)

)
defined by

Ft (x
′, xN ) = (x ′, xN + gt (x

′)), (x ′, xN ) ∈ C+
BR1 (0), (6.42)

is a diffeomorphism whose Jacobian matrix is of the form

Jac(Ft )(x
′, xN ) =

[
IN−1 0TN−1∇x ′gt (x ′) 1

]

, (6.43)

where IN−1 is the identity matrix of order N − 1, 0N−1 is the null vector in RN−1,
T is the transposition. Notice also that Jac(Ft ) is independent of xN and in view of
(6.40) it holds that

lim
t→+∞ ‖Jac(Ft ) − IN‖

C0

(

C+
BR1

(0)

) = 0. (6.44)

Now, let us consider the sequence (qk)k ⊂ ∂D, where qk := zk|zk | , and (zk)k ⊂
∂�D \ {0} is the sequence appearing in Claim (6.36). Since ∂D is a compact subset
of SN−1 we deduce that, up to a subsequence (still indexed by k) it holds that
distSN−1(qk, q̄) → 0, as k → +∞, for some q̄ ∈ ∂D, where distSN−1 denotes
the geodesic distance in S

N−1. Then, from the previous discussion there exist an
open neighborhood V1 of q̄ in ∂�D \ {0}, a convex open neighborhood U1 of
the origin in Tq̄∂�D and a smooth function g1 : U1 → R such that g1(0) = 0,
∇x ′g1(0) = 0, and V1 − q̄ is the graph over Tq̄∂�D associated to g1

∣
∣
U1
, where

x ′ = (x ′
1, . . . , x

′
N−1) are the coordinates with respect to fixed orthonormal base

{v̄1, . . . , v̄N−1} of Tq̄∂�D . Since distSN−1(qk, q̄) → 0, as k → +∞, then definitely
qk ∈ V1, �Tq̄∂�D (qk − q̄) ∈ U1, where �Tq̄∂�D : RN → Tq̄∂�D is the orthogonal
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projection onto Tq̄∂�D and �Tq̄∂�D (qk − q̄) → 0, as k → +∞. Let x̄ ′
k :=

(x̄ ′
1,k, . . . , x̄

′
N−1,k) be the coordinates of �Tq̄∂�D (qk − q̄) and set

U1,k := U1 − x̄ ′
k,

g1,k(x
′) := g1(x

′ + x̄ ′
k) − g1(x̄

′
k), x ′ ∈ U1,k .

Then we readily check that V1 − qk is a cartesian graph over Tq̄∂�D , associated to
g1,k : U1,k → R. Notice that, since x̄ ′

k → 0, as k → +∞, then there exists a ball
BR̄(0) in Tq̄∂�D such that BR̄(0) ⊂ U1,k for all sufficiently large k. In particular,
setting tk := |zk |, recalling that |zk | → +∞, as k → +∞, then, tkU1,k invades
Tq̄∂�D . As in (6.37) we consider the rescaled map htk : tkU1,k → R defined by

htk (x
′) = tkg1,k

(
x ′

tk

)

= tk

[

g1

(
x ′

tk
+ x̄ ′

k

)

− g1(x̄
′
k)

]

, x ′ ∈ tkU1,k,

and arguing as in (6.38) we have the expansion

∂htk
∂x ′

i
(x ′) = ∂g1

∂x ′
i

(
x ′

tk
+ x̄ ′

k

)

= ∂g1
∂x ′

i

(
x̄ ′
k

)+ 1

tk

[

∇x ′
∂g1
∂x ′

i

(
ξk

tk
+ x̄ ′

k

)]

· x ′,

(6.45)

where ξk belongs to the segment joining x̄ ′
k and

x ′
tk
. Let us fix a ball BR1(0) in Tq̄∂�D ,

with R1 to be chosen later and independently on k, and observe that BR1(0) ⊂ tkU1,k
for all sufficiently large k. Since x̄ ′

k → 0, as k → +∞, and ∇x ′g1(0) = 0 we get
that the first term in the right-hand side of (6.45) goes to zero as k → +∞, and
arguing as in (6.39) for the second term, we conclude that

lim
k→+∞ max

x ′∈BR1 (0)
|∇x ′htk (x

′)| = 0. (6.46)

Let Ftk : C+
BR1 (0) → E+

(
htk
∣
∣
BR1 (0)

)
be the diffeomorphism defined by

Ftk (x
′, xN ) = (x ′, xN + htk (x

′)), (x ′, xN ) ∈ C+
BR1 (0),

where E+
(
htk
∣
∣
BR1 (0)

)
is the epigraph associated to htk

∣
∣
BR1 (0) (see (6.41)) and

where we recall that x = (x ′, xN ) are the coordinates with respect to the orthogonal
base {v̄1, . . . , v̄N−1,−ν(q̄)}.

Now, let us consider the set B4R(zk) ∩ �nk appearing in (6.36). Recalling that
zk = tkqk , since tk → +∞, as k → +∞, and since R is independent of k, then,
for all sufficiently large k it holds

(B4R(zk) ∩ �nk ) ∩ ∂�D − zk ⊂ tk(V1 − qk).

We observe that for any k we have

E(B4R(zk) ∩ �nk ;�D) = E(B4R(zk) ∩ �nk − zk;�D − zk) (6.47)
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and we set for brevity

�̃R,k := (B4R(zk) ∩ �nk ) − zk . (6.48)

Notice that since �̃R,k is a uniformly bounded subset of RN and tk(V1 − qk) is the
cartesian graph of htk : tkU1,k → R then we can choose R1 > 0 (independent of
k) in such a way that

F−1
tk

(
�̃R,k

)
⊂ BR1(0) × [0,+∞[, (6.49)

for all large k. Let us denote by ũk := u�̃R,k
∈ H1

0 (�̃R,k;�D − zk) the energy

function of �̃R,k and let Ũk := ũk ◦ Ftk . Notice that by construction and thanks to
(6.49), it follows that Ũk extends to a function Ũk ∈ H1

0 (F−1
tk (�̃R,k);RN+).

Thanks to (6.43) we have that det(Jac(Ftk )) ≡ 1 and thus
∫

�̃R,k

ũk dy =
∫

F−1
tk

(�̃R,k)

ũk ◦ Ftk
∣
∣det(Jac(Ftk ))

∣
∣ dx =

∫

F−1
tk

(�̃R,k)

Ũk dx,

(6.50)

and

|F−1
tk (�̃R,k)| = |�̃R,k | � c. (6.51)

Moreover, setting

M1,k := max
(x ′,xN )∈C+

BR1
(0)

max
|η|�1

|[Jac(Ftk )(x ′, xN )]η|,

which is well defined (see (6.43)) and taking into account that

∇x Ũk(x
′, xN ) = (Jac(Ftk )(x

′, xN ))T∇y ũk(Ftk (x
′, xN )) for a.e. (x ′, xN ) ∈ F−1

tk (�̃R,k),

we obtain that
∫

F−1
tk

(�̃R,k)

|∇xŨk |2 dx � M2
1,k

∫

F−1
tk

(�̃R,k)

|∇y ũk ◦ Ftk |2 dx

= M2
1,k

∫

�̃R,k

|∇y ũk |2 dy.
(6.52)

In viewof (6.46) and recalling (6.43), (6.44)we deduce thatM1,k → 1 as k → +∞.
Therefore, recalling that ũk is the energy function of �̃R,k = B4R(zk) ∩ �nk − zk
and thanks to (6.52) we get that

∫

F−1
tk

(�̃R,k)
|∇xŨk |2 dx is bounded by a uniform

positive constant. Moreover, by definition and thanks to (6.50), (6.52) we have

E(�̃R,k;�D − zk) = 1

2

∫

�̃R,k

|∇y ũk |2 dy −
∫

�̃R,k

ũk dy

� 1

2

1

M2
1,k

∫

F−1
tk

(�̃R,k )

|∇xŨk |2 dx −
∫

F−1
tk

(�̃R,k )

Ũk dx

= J (Ũk) + 1

2

(
1

M2
1,k

− 1

)∫

F−1
tk

(�̃R,k)

|∇xŨk |2 dx .

(6.53)
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Hence, as Ũk ∈ H1
0 (F−1

tk (�̃R,k);RN+), denoting by Wk := uF−1
tk

(�̃R,k)
∈ H1

0 (F−1
tk

(�̃R,k);RN+) the energy function of F−1
tk (�̃R,k) then by reflection, symmetrization

and taking into account (6.51) and (6.13) we infer that

E(�̃R,k;�D − zk) � J (Wk) + 1

2

(
1

M2
1,k

− 1

)∫

F−1
tk

(�̃R,k)

|∇xŨk |2 dx

� Ock (�S
N−1+

) + 1

2

(
1

M2
1,k

− 1

)∫

F−1
tk

(�̃R,k)

|∇xŨk |2 dx

� Oc(�S
N−1+

) + 1

2

(
1

M2
1,k

− 1

)∫

F−1
tk

(�̃R,k)

|∇xŨk |2 dx .

(6.54)

Finally, since
∫

F−1
tk

(�̃R,k)
|∇xŨk |2 dx is uniformly bonded and M1,k → 1, as k →

+∞, then from (6.47), (6.48) and (6.54), we get

E(B4R(zk) ∩ �nk ;�D) � Oc(�S
N−1+

) + o(1),

for all sufficiently large k, and this proves Claim (6.36).
In the next step, we prove the pre-compactness of the sequence (unk )k in

L2(�D).
Step 5: The sequence (unk )k admits a subsequence which strongly converges in
L2(�D).

We first show that

lim
R→+∞ sup

k∈N

∫

B�
R(0)∩�D

u2nk dx = 0 (6.55)

Indeed, if (6.55) is not true there exist ε′ > 0, a sequence (Rm)m ⊂ R
+ such that

Rm → +∞, as m → +∞, and we find a subsequence (nkm )m such that for all
m ∈ N

∫

B�
Rm

(0)∩�D

u2nkm dx � ε′

2
. (6.56)

On the other hand, taking ε = ε′
4 in (i) we find R′ > 0 depending only on ε′ such

that for all k ∈ N

∫

BR′ (yk )∩�D

u2nk dx � λ − ε′

4
. (6.57)

Now, in view of Step 4 we know that (ynk )k is bounded, and thus there exists
R′′ > 0 independent of k such that BR′(yk) ⊂ BR′′(0) for all k. Hence, from (6.57)
we get that

∫

BR′′(0)∩�D

u2nk dx �
∫

BR′ (yk)∩�D

u2nk dx � λ − ε′

4
, (6.58)
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for all sufficiently large k. Finally, by writing

∫

�D

u2nkm dx =
∫

BRm (0)∩�D

u2nkm dx +
∫

B�
Rm

(0)∩�D

u2nkm dx,

and recalling that Rm → +∞, then, we have Rm > R′′, for all sufficiently large
m, and thus from (6.56), (6.58) we deduce that

∫

�D

u2nkm dx � λ − ε′

4
+ ε′

2
= λ + ε′

4
,

for all sufficiently large m, but this contradicts (6.18) and (6.55) is thus proved.
In order to prove the relative compactness of the sequence (unk )k in L2(�D), it

suffices to find, for any given ε > 0, a relative compact sequence (vk)k in L2(�D),
depending on ε, with the property that

‖unk − vk‖L2(�D) < ε ∀k ∈ N. (6.59)

Indeed, the latter property readily implies that the set {unk ; k ∈ N} is totally
bounded in L2(�D), and therefore it is relative compact since L2(�D) is a Banach
space. So let ε > 0. By (6.55), there exists R > 0 with

∫

B�
R(0)∩�D

u2nk dx < ε ∀k ∈ N.

Hence (6.59) holds with vk := χBR(0)unk for k ∈ N, where χBR(0) denotes the
characteristic function of the ball BR(0). Moreover, by (6.16) and the compactness
of the embedding H1(BR(0)∩�D) ↪→ L2(BR(0)∩�D) the sequence of functions
unk
∣
∣
BR(0), k ∈ N is relatively compact in L2(BR(0)∩�D), which obviously implies

that the sequence (vk)k is relatively compact in L2(�D), as required. We have thus
established the relative compactness of the sequence (unk )k in L

2(�D), as claimed.
Step 6: Existence of a minimizer for Oc(�D).

In the previous steps we proved that the sequence of energy functions (un)n ,
associated to a minimizing sequence (�n)n ⊂ �D for Oc(�D), is bounded in
H1(�D) (see (6.16)) and possesses a subsequence which strongly converges in
L2(�D). Hence, up to a subsequence (still indexed by n for convenience), we have
un ⇀ ū in H1(�D), for some ū ∈ H1(�D), and un → ū in L2(�D), as n → +∞.

We set � := {ū > 0} ⊂ �D . Since ū ∈ H1(�D) then � is a quasi-open
subset of�D , in addition, arguing as in [8, Proof of Lemma 5.2], namely using that
un → ū in L2(�D), as n → +∞, and applying Fatou’s Lemma, we infer that

|�| =
∫

�D

χ{ū>0} dx � lim inf
n→+∞

∫

�D

χ{un>0} dx = lim inf
n→+∞ |�n| � c.

We claim that � is a minimizer for Oc(�D) and that ū is the torsion function of
u�. To prove this we first observe that as un → ū in L2(�D) and since |�n| � c,
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|�| � c it follows that un → ū in L1(�D). Indeed by construction we have
un ∈ H1

0 (�n;�D), ū ∈ H1
0 (�;�D), and by Hölder’s inequality we deduce that

∫

�D

|un − ū| dx �
(∫

�n∪�

|un − ū|2 dx
) 1

2 |�n ∪ �| 12 � ‖un − ū‖L2(�D)

√
2c.

Now, as un ⇀ ū in H1(�D), we have

‖ū‖2H1(�D)
� lim inf

n→+∞ ‖un‖2H1(�D)
,

and thus, since un → ū in L2(�D), we readily get that

∫

�D

|∇ū|2 dx � lim inf
n→+∞

∫

�D

|∇un|2 dx

Then, recalling the definition of the functional J (see (6.2)), exploiting that un → ū
in L1(�D) and since un are the energy functions associated to �n , we obtain that

J (ū) � lim inf
n→+∞

(
1

2

∫

�D

|∇un |2 dx −
∫

�D

un dx

)

= lim inf
n→+∞ E(�n; �D) = Oc(�D).

(6.60)

Finally, considering the energy function u� associated to �, i.e. the minimizer of
J in H1

0 (�;�D), then, by the minimality of u�, since ū ∈ H1
0 (�;�D) and thanks

to (6.60) we have

E(�;�D) = J (u�) � J (ū) � Oc(�D). (6.61)

Therefore E(�;�D) = Oc(�D), and (6.61) implies that J (u�) = J (ū). Hence �

is a minimizer for Oc(�D) and ū = u� in H1(�D). ��

Corollary 6.9. If D ⊂ S
N−1 is a smooth domain such that

HN−1(D) < HN−1(S
N−1+ ) (6.62)

then Oc(�D) is achieved, for any c > 0.

Proof. By (6.9)–(6.13) we readily check that (6.62) implies the condition (6.15),
and by Theorem 6.8 we conclude. ��

We conclude this section with

Proposition 6.10. Let D ⊂ S
N−1 be a smooth domain and let c > 0. Then

Oc (�D) � Oc

(
�

S
N−1+

)
. (6.63)
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Proof. Let us fix q ∈ ∂D ⊂ ∂�D \ {0} and let {v1, . . . , vN−1} be an orthonormal
basis of Tq∂�D . We denote by x = (x ′, xN ) the coordinates of points in R

N with
respect to {v1, . . . , vN−1,−ν(q)}, where −ν(q) is the inner unit normal to ∂�D at
q. As seen in the proof of Claim (6.36) there exist an open neighborhood V of q
in ∂�D \ {0}, an open neighborhood U of the origin in Tq∂�D , and a smooth map
g : U → R, g = g(x ′) such that V − q is the graph over Tq∂�D of g

∣
∣
U .

Let B+
R (0) ⊂ R

N+ be a N -dimensional half-ball such that |B+
R (0)| = c, i.e.

B+
R (0) is a half-ball of volume c contained in the upper half-space delimited by

Tq∂�D . Let uB+
R (0) ∈ H1

0 (B+
R (0);RN+) be the energy function of B+

R (0). Then, by
definition and recalling Remark 6.7, we have

Oc(�S
N−1+

) = E(B+
R (0);RN+) = J (uB+

R (0)). (6.64)

Let BR1(0) be a ball in Tq∂�D , with R1 > R. Clearly

B+
R (0) ⊂ BR1(0) × [0,+∞[. (6.65)

Let (tk)k ⊂ R
+ be a sequence such that tk → +∞, as k → +∞, then, setting

zk := tkq we obtain a diverging sequence of points on ∂�D \ {0}. We consider the
rescaled map gtk : tkU → R defined by (6.37) and the associated diffeomorphism

Ftk : C+
BR1 (0) → E+

(
gtk
∣
∣
BR1 (0)

)
given by (6.42), where E+

(
gtk
∣
∣
BR1 (0)

)
, C+

BR1 (0)

are defined by (6.41). The inverse diffeomorphism F−1
tk is given by

F−1
tk (x ′, xN ) = (x ′, xN − gtk (x

′)), (x ′, xN ) ∈ E+
(
gtk
∣
∣
BR1 (0)

)
, (6.66)

and as done in (6.43), (6.44) we readily check that

Det(Jac(F−1
tk )) ≡ 1, lim

k→+∞ ‖Jac(F−1
tk ) − IN‖

C0

(

E+
(

gtk

∣
∣
BR1

(0)

)) = 0.

(6.67)

Moreover, settingUk := uB+
R (0)◦F−1

tk wenotice that sinceuB+
R (0) ∈ H1

0 (B+
R (0);RN+)

(actually uB+
R (0) = 0 in R

N+ \ B+
R (0), see (6.9) with D = S

N−1+ ), then, by con-
struction, taking into account (6.65), it follows that Uk extends to a function
Uk ∈ H1

0 (Ftk
(
B+
R (0)

) ;�D − zk). Arguing as in (6.50)–(6.52), taking into ac-
count (6.67), we infer that |Ftk

(
B+
R (0)

) | = |B+
R (0)| = c,

∫

Ftk
(
B+
R (0)

)Uk dx =
∫

B+
R (0)

uB+
R (0) dy, (6.68)

∫

Ftk
(
B+
R (0)

) |∇xUk |2 dx � M2
2,k

∫

B+
R (0)

|∇yuB+
R (0)|2 dy, (6.69)
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where

M2,k := max

(x ′,xN )∈E+
(

gtk

∣
∣
BR1

(0)

)
max
|η|�1

|[Jac(F−1
tk )(x ′, xN )]η|,

and M2,k → 1, as k → +∞. Hence, combining (6.64), (6.68) and (6.69) we
deduce

Oc(�S
N−1+

) = 1

2

∫

B+
R (0)

|∇yuB+
R (0)|2 dy −

∫

B+
R (0)

uB+
R (0) dy

� 1

2

1

M2
2,k

∫

Ftk
(
B+
R (0)

) |∇xUk |2 dx −
∫

Ftk
(
B+
R (0)

)Uk dx

= J (Uk) + 1

2

(
1

M2
2,k

− 1

)∫

Ftk
(
B+
R (0)

) |∇xUk |2 dx
� E

(
Ftk
(
B+
R (0)

))+ o(1)

(6.70)

where in the last inequality we used that Uk ∈ H1
0 (Ftk

(
B+
R (0)

) ;�D − zk), the
definition of torsional energy of Ftk

(
B+
R (0)

)
, M2,k → 1, as k → +∞ and that

∫

Ftk
(
B+
R (0)

) |∇xUk |2 dx is uniformly bounded. Summing up, from (6.70) and the

definition of Oc(�D) we finally have

Oc(�S
N−1+

) � E(Ftk
(
B+
R (0)

) ;�D − zk) + o(1) = E(Ftk
(
B+
R (0)

)

+zk;�D) + o(1) � Oc(�D) + o(1),

and passing to the limit as k → +∞ we obtain (6.63). ��

7. Properties of Minimizers and Proof of Theorem 1.2

In this section we show some qualitative properties of the minimizers of the
torsional energy functional with fixed volume (we refer to Sect. 6 for the notations).
In view of the scaling invariance of our problem (see Remark 6.5) it suffices to
focus on the case O1(�D). We begin by proving that any minimizer for O1(�D)

is bounded.

Proposition 7.1. If � is a minimizer for O1(�D) then � is bounded.

Proof. We argue as in [3, Sect. 2.1.2] with slightly changes. Let � be a minimizer
for O1(�D). In view of [7, Theorem 1], in order to prove that � is bounded it
is sufficient to show that � is a local shape subsolution for the energy TD , which
means that, there exist δ > 0 and� > 0 such that for any quasi-open subset �̃ ⊂ �

with ‖u� − u�̃‖L2�D
< δ, it holds that

E(�;�D) + �|�| � E(�̃;�D) + �|�̃|.
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Let us assume, by contradiction, that there exist a sequence (�n)n ⊂ R
+ with

�n → 0, as n → +∞, and an increasing sequence (�̃n)n ⊂ � of quasi-open
subsets such that

E(�;�D) + �n|�| > E(�̃n;�D) + �n|�̃n|, (7.1)

and ‖u� − u�̃n
‖L2�D

→ 0, as n → +∞. Then, let us fix tn > 1 such that

|tn�̃n| = t Nn |�̃n| = 1 = |�|.
Obviously, tn → 1+, as n → +∞, and by the minimality of � we have

t N+2
n E(�̃n;�D) = E(tn�̃n;�D) � E(�;�D).

Thus, from (7.1) we obtain

�n(|�| − |�̃n|) > E(�̃n;�D) − E(�;�D) � (t N+2
n − 1)

t N+2
n

(−E(�;�D)),

and dividing by t Nn − 1 = |�|
|�̃n | − 1 we get

−E(�;�D)

t N+2
n

(t N+2
n − 1)

t Nn − 1
< �n

(|�| − |�̃n|)
t Nn − 1

= �n|�̃n|. (7.2)

This gives a contradiction because, as n → +∞, the left-hand side of (7.2) con-
verges to − N+2

N E(�;�D), while the right-hand side converges to zero. ��
Proposition 7.2. If � is a minimizer for O1(�D) then the torsion function u� ∈
H1
0 (�;�D) is Lipschitz continuous in any Lipschitz domain ω ⊂ �D such that

ω ⊂ �D and � = {u� > 0} is an open subset of �D.

Proof. The result follows essentially as in the case ofDirichlet boundary conditions,
which was addressed in the work [5]. The extension to the case of mixed boundary
conditions was done in [21, Theorem 2.14] for the problem of minimizing the first
eigenvalue. In our situation the proof would be similar. ��

Next, we prove that any minimizer is connected.

Proposition 7.3. If � is a minimizer for O1(�D) then � is a connected subset of
�D.

Proof. As seen in the proof of Theorem 6.8, Step 2, we notice that, as |�| = 1,
then � is also a minimizer for

M(�D) := inf

{
E(�;�D)

|�| N+2
N

; � quasi-open, � ⊂ �D, |�| > 0

}

.

Assume by contradiction that� is not connected. Then there exist two open subsets
�1, �2 of �D , with �1,�2 �= ∅, such that �1 ∩ �2 = ∅ and

� = �1 ∪ �2.
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In addition, since�i is an open nonempty subset of�D then |�i | > 0, for i = 1, 2,
and by construction we have

E(�i ;�D)

|�i | N+2
N

� M(�D), for i = 1, 2, and

E(�;�D) = E(�1;�D) + E(�2;�D), |�| = |�1| + |�2|.
Then, since N+2

N > 1, by the convexity of t �→ t
N+2
N , taking into account that

|�1| > 0, |�2| > 0 and M(�D) < 0, we deduce that

M(�D)|�| N+2
N = M(�D) (|�1| + |�2|) N+2

N

< M(�D)
(
|�1| N+2

N + |�2| N+2
N

)

� E(�1;�D) + E(�2;�D) = E(�;�D),

which is a contradiction. ��
Concerning the regularity of the minimizing set, by the theory of free boundary

problems we have

Proposition 7.4. Let � ⊂ �D be a minimizer for O1(�D) and let � = ∂� ∩ �D

be its relative boundary. Then there exists a critical dimension d∗ which can be
either 5,6 or 7, such that

(i) � is smooth if N < d∗;
(ii) � can have countable isolated singularities if N = d∗;
(iii) � can have a singular set of dimension N − d∗, if N > d∗.

Moreover on the regular part of � the normal derivative ∂u�

∂ν
is constant, namely

∂u�

∂ν
≡ −

√
2(N+2)

N |O1(�D)|, where u� is the torsion function of �.

Proof. The points (i)–(iii) follows from the results of [11,15] and [27]. Let us prove
the last statement.

Let�reg be the regular part of� (which is a relative open set of�), let x0 ∈ �reg ,
and let Br (x0) be a small ball such that B2r (x0) ⊂ �D and � ∩ B2r (x0) ⊂ �reg .
Moreover, let ψ ∈ C∞

c (Br (x0)) and consider the vector field V given by V = ψν̄,
where ν̄ is a smooth extension of the normal versor ν|�∩B2r (x0) of � ∩ B2r (x0)
to a smooth vector field defined in Br (x0). Hence, by construction, we have that
V : RN → R

N is a smooth vector field with compact support in Br (x0), and in
particular it holds thatV (0) = 0 andV (x) = 0 ∈ Tx∂�D for all x ∈ ∂�D\{0}. This
means that the associatedflow ξ : (−t0, t0)×�D → �D , for some t0 > 0, preserves
the boundary ∂�D and we consider the induced deformation of �, (�t )t∈(−t0,t0),
where �t := ξ(t,�). Actually, since supp(ψ) ⊂ Br (x0) we infer that ξ(t, x) = x
for x ∈ B�

3
2 r

(x0), t ∈ (−t0, t0).

Let u�t ∈ H1
0 (�t ;�D) be the torsion function of�t , for t ∈ (−t0, t0) and let us

set ut := u�t . Arguing as in the proof of [23, Proposition 4.3] we can prove that the
map from (−t0, t0) to H1(�D), t �→ ut is differentiable. In particular the function
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f : (−t0, t0) → L1(�D), given by f (t) = |∇ut |2 is differentiable. We also
notice that, since u� is a weak solution to (6.1), then by standard elliptic regularity
theory u� ∈ W 2,2(� ∩ Br (x0)). In particular it holds that V f (0) = ψν̄|∇u�|2 ∈
W 1,1(�D,RN ) and by easy modifications to the proof of [14, Theorem 5.2.2] we
infer that the function t �→ E(�t ;�D) = − 1

2

∫

�t
|∇ut |2 dx is differentiable at

t = 0 and

d

dt
(E(�t ;�D))|t=0 = −

∫

�

∇u� · ∇u′ dx − 1

2

∫

�

div(V |∇u�|2) dx,

where u′ = d
dt (ut )|t=0 is a solution to (see the proof of [23, Proposition 4.3])

⎧
⎪⎨

⎪⎩

−�u′ = 0 in �,

u′ = − ∂u�ϕ

∂ν
〈V, ν〉 on �,

∂u′
∂ν

= 0 on �1 \ {0}.
(7.3)

We point out that since the flow ξ leaves invariant B�
3
2 r

(x0) for all t ∈ (−t0, t0), we

have u′ ≡ 0 in � ∩ B�
3
2 r

(x0) and thus

d

dt
(E(�t ;�D))|t=0 = −

∫

�∩B 3
2 r

(x0)
∇u� · ∇u′ dx

︸ ︷︷ ︸
(I)

− 1

2

∫

�

div(V |∇u�|2) dx
︸ ︷︷ ︸

(II)

.

(7.4)

Let us analyse (I). We first observe that as � ∩ B2r (x0) ⊂ �reg and u′ is a so-
lution to (7.3), then by standard elliptic regularity theory, it follows that u′ ∈
W 2,2

(
� ∩ B 3

2 r
(x0)

)
and it is smooth inside �. Hence, applying the Green’s for-

mula, taking into account that �u′ = 0 in � ∩ B 3
2 r

(x0), ∂u′
∂ν

= 0 on � ∩ ∂B 3
2 r

(x0)

(because u′ ≡ 0 in B�
3
2 r

(x0) and u′ is smooth inside�) and u� = 0 on � ∩ B 3
2 r

(x0)

we get that (I) = 0. For (II), applying the divergence theorem, and recalling the
definition of V , in the end, we obtain

d

dt
(E(�t ;�D))|t=0 = −1

2

∫

�∩Br (x0)
|∇u�|2ψ dσ. (7.5)

On the other hand, for the volume, we have

d

dt
(|�t |)|t=0 =

∫

�

〈V, ν〉 dσ =
∫

�∩Br (x0)
ψ dσ. (7.6)

Now, since � is a minimizer for O1(�D), then, recalling Remark 6.5 and as ob-
served in the proof of Step 2 of Theorem 6.8 we get that � is also a minimizer for
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E(�;�D)

|�| N+2
N

. Thus from (7.5), (7.6), since |�| = 1 and E(�;�D) = O1(�D) < 0, we

readily obtain that

d

dt

(
E(�t ;�D)

|�t | N+2
N

)∣
∣
∣
∣
∣
t=0

= −1

2

∫

�∩Br (x0)

(

|∇u�|2 − 2(N + 2)

N
|O1(�D)|

)

ψ dσ = 0.

Finally, from the arbitrariness ofψ and x0 weconclude that |∇u�|2 ≡ 2(N+2)
N |O1(�D)|

on �reg , and as u� = 0 on �reg then by Hopf’s lemma it follows that ∂u�

∂ν
≡

−
√

2(N+2)
N |O1(�D)| on �reg . ��

We conclude this section with the following:

Proof of Theorem 1.2. It follows from Theorem 5.1, Theorem 6.8, Corollary 6.9
and Proposition 7.4. ��

8. The Isoperimetric Problem and Proof of Theorem 1.3

In this section we study the isoperimetric problem in the class of strictly star-
shaped domains in cones, i.e. domains in �D whose relative boundary is a radial
graph.

Using the same notations of the previous sections, if ϕ ∈ C2(D,R) and�ϕ , �ϕ

are, respectively, the associated star-shaped domain (see (3.3)), and the associated
radial graph (see Definition 2.1), the (relative) perimeter of �ϕ in �D is given by

P(�ϕ;�D) = HN−1(�ϕ) =
∫

D
e(N−1)ϕ

√
1 + |∇ϕ|2 dσ,

where dσ is the (N − 1)-dimensional area element of SN−1. Let us observe that P
can be seen as a functional on the space C2(D,R) and, contrarily to the torsional
energy functional of Sect. 3, its expression does not involve the associated domain
�ϕ . Thus we set for brevity P(ϕ) = P(�ϕ;�D).

The derivative of P along a variation v ∈ C2(D,R) is given by

P ′(ϕ)[v] =
∫

D
e(N−1)ϕ

(

(N − 1)
√
1 + |∇ϕ|2v + ∇ϕ · ∇v

√
1 + |∇ϕ|2

)

dσ.

Let V be the volume functional (see (4.1)). We are concerned with critical points ϕ

of P subject to the volume constraint {V = c}. Namely we consider the manifold
M defined by (4.4) and the restriction I := P|M . A critical point ϕ ∈ M for I
satisfies

P ′(ϕ) = λV ′(ϕ), (8.1)

with a Lagrangian multiplier λ ∈ R. In the next two propositions we prove that the
radial graph �ϕ associated to a critical point ϕ ∈ M is a CMC hypersurface which
intersects orthogonally ∂�D \ {0}.

This is well known if the variations of the domains are taken in the whole class
of subsets of �D of finite relative perimeter (see [25]) but not obvious in our case.
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Proposition 8.1. If ϕ ∈ C2(D,R) is a volume-constrained critical point for P ,
then the associated radial graph �ϕ has constant mean curvature H ≡ λ

N−1 .

Proof. Let v ∈ C1
c (D) be a variation with compact support. By definition (see

(8.1)) there exists λ ∈ R such that

∫

D
e(N−1)ϕ

(

(N − 1)
√
1 + |∇ϕ|2v + ∇ϕ · ∇v

√
1 + |∇ϕ|2

)

dσ = λ

∫

D
eNϕv dσ.

(8.2)

Let us observe that
∫

D
e(N−1)ϕ ∇ϕ · ∇v

√
1 + |∇ϕ|2 dσ =

∫

D

∇ϕ · ∇(ve(N−1)ϕ)
√
1 + |∇ϕ|2 dσ

−
∫

D
(N − 1)e(N−1)ϕ |∇ϕ|2

√
1 + |∇ϕ|2 v dσ.

Hence we can rewrite (8.2) as
∫

D

∇ϕ · ∇(ve(N−1)ϕ)
√
1 + |∇ϕ|2 dσ +

∫

D
e(N−1)ϕ N − 1

√
1 + |∇ϕ|2 v dσ = λ

∫

D
eNϕv dσ.

Now, since ϕ is smooth and v has compact support in D, integrating by parts, we
get

∫

D

∇ϕ · ∇(veNϕ)
√
1 + |∇ϕ|2 dσ = −

∫

D
divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

eNϕv dσ, (8.3)

and thus we deduce

∫

D

(

−divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

e(N−1)ϕ + N
√
1 + |∇ϕ|2 e

(N−1)ϕ

)

v dσ =
∫

D
λeNϕv dσ.

Therefore, as v is arbitrary, we obtain

−divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

e(N−1)ϕ + N − 1
√
1 + |∇ϕ|2 e

(N−1)ϕ = λeNϕ in D,

i.e.

− divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

+ N − 1
√
1 + |∇ϕ|2 = λeϕ in D. (8.4)

Comparing (8.4) with (2.10) it follows that the mean curvature of �ϕ is constant
and it is equal to λ

N−1 . ��
Proposition 8.2. If ϕ is as in the statement of Proposition 8.1 then �ϕ intersects
orthogonally ∂�D \ {0}.
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Proof. Let ν
∂�D

be the exterior unit normal to ∂�D \{0}, and let ν�ϕ
be the exterior

unit normal to �ϕ . By (2.7) we have

ν�ϕ
(Y(q)) = q − ∇ϕ

(1 + |∇ϕ|2)1/2 , (8.5)

where Y is the standard parametrization of �ϕ defined by (2.5). Notice that, since
by assumption ϕ is smooth up to the boundary, then (8.5) is well defined on D. If
p ∈ (∂�D \ {0}) ∩ �ϕ , then by definition the intersection is orthogonal at p if and
only if ν

∂�D
(p) · ν�ϕ

(p) = 0. Therefore, writing p = Y(q) this is equivalent to

ν
∂�D

(Y(q)) · (q − ∇ϕ(q)) = 0.

Since p = Y(q) ∈ ∂�D \ {0} and ∂�D \ {0} is the boundary of a cone we have
ν

∂�D
(Y(q))·q = 0 and thus the intersection between ∂�D\{0} and�ϕ is orthogonal

if and only if

ν
∂�D

(Y(q)) · ∇ϕ(q) = 0 ∀q ∈ ∂D. (8.6)

Exploiting again that ∂�D is a cone, we have ν
∂�D

(p) = ν
∂�D

(tp) for any p ∈
∂�D \ {0}, t > 0. Hence, since Y(q) ∈ ∂�D \ {0}, we have ν

∂�D
(Y(q)) =

ν
∂�D

(q) = ν
∂D (q) for any q ∈ ∂D, where ν

∂D is the exterior unit co-normal to ∂D,
and thus (8.6) is equivalent to

∂ϕ

∂ν
∂D

= 0 on∂D. (8.7)

To prove this, we argue as in the proof of Proposition 8.1. Taking a variation
v ∈ C1(D,R) and integrating by parts we have

∫

D

∇ϕ·∇(ve(N−1)ϕ)
√
1 + |∇ϕ|2 dσ =

∫

∂D
e(N−1)ϕv

〈
∇ϕ

√
1 + |∇ϕ|2 , ν

∂D

〉

dσ̂

−
∫

D
divSN−1

(
∇ϕ

√
1 + |∇ϕ|2

)

e(N−1)ϕv dσ.

Using this and arguing as in the proof Proposition 8.1, since ϕ satisfies the equation
(8.4) we obtain

∫

∂D
e(N−1)ϕv

〈
∇ϕ

√
1 + |∇ϕ|2 , ν

∂D

〉

dσ̂ = 0.

Since v ∈ C1(D,R) is arbitrary we can choose v such that v =
〈

∇ϕ√
1+|∇ϕ|2 , ν∂D

〉

on ∂D and thus

∫

∂D
e(N−1)ϕ

∣
∣
∣
∣
∣

〈
∇ϕ

√
1 + |∇ϕ|2 , ν

∂D

〉∣
∣
∣
∣
∣

2

dσ̂ = 0,

which gives

〈
∇ϕ√

1+|∇ϕ|2 , ν∂D

〉

≡ 0 on ∂D, and thus (8.7) is proved. ��
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Analogously to Lemma 4.3, if ϕ ∈ M is a critical point for I then

I ′′(ϕ) = P ′′(ϕ) − λV ′′(ϕ).

Choosing c = |�0| = |�D ∩ B1(0)| in (4.4) we observe that the function ϕ ≡ 0
belongs to M and it is a critical point for I. In particular (8.1) yields λ = N − 1.
Moreover, for any v,w ∈ T0M , since

P ′′(0)[v,w] =
∫

D

(
(N − 1)2vw + ∇v · ∇w

)
dσ,

and recalling (4.3), it follows that

I ′′(0)[v,w] = P ′′(0)[v,w] − (N − 1)V ′′[v,w] =
∫

D
(∇v · ∇w − (N − 1)vw) dσ.

(8.8)

From (8.8) we easily have the analogue of Theorem 5.1 for the perimeter functional
I.

Theorem 8.3. Letλ1(D)be the first nontrivial eigenvalue of−�SN−1 on the domain
D with zero Neumann condition on ∂D. Then

(i) if λ1(D) < N − 1 then ϕ ≡ 0 is not a local minimizer for I;
(ii) if λ1(D) > N − 1 then ϕ ≡ 0 is a local minimizer for I.

Proof. Since T0M is made by functions with zero mean value (see (4.5)), consid-
ering the L2-normalized eigenfunction w1 corresponding to the eigenvalue λ1(D),
from (8.8) we get I ′′(0)[w1, w1] < 0 whenever λ1(D) < N − 1. This proves (i).

Viceversa, if λ1(D) > N −1, from (8.8) and the variational characterization of
λ1(D) we get that I ′′[v, v] > 0 for all v ∈ T0M with v �= 0, and hence (i i) holds.
��
To find examples of domains D ⊂ S

N−1 satisfying λ1(D) < N − 1 we can use the
function ue ∈ C∞(SN−1) introduced in (5.8) and Proposition 5.2. Hence for the
nonconvex domains constructed in the “Appendix”, the spherical sectors are not
the minimizers of I.

Concerning the existence of a minimizer for the relative perimeter P(E;�D)

in the whole class of finite perimeter subsets of �D , with a fixed volume, we
summarise in the following the results stated in [25].

Theorem 8.4. Let D ⊂ S
N−1 be a domain such that HN−1(D) � HN−1(S

N−1+ ).
Then, there exists a set of finite perimeter E∗ inside�D whichminimizes the relative
perimeter under a volume constraint, for any value of the volume. Moreover any
minimizer of the relative perimeter, with fixed volume, is a bounded set.

Proof. It follows from Proposition 3.5 and Proposition 3.7 in [25]. ��
We conclude this section with the following:
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Proof of Theorem 1.3. The existence of a set of finite perimeter E∗ inside �D

which minimizes the relative perimeter under a volume constraint, and its bound-
edness, follows from Theorem 8.4. From Theorem 8.3 we infer that E∗ cannot be
a spherical sector, while the properties (i)-(iii) of �E∗ derive from classical results
for isoperimetric problems (see e.g. [25, Sect. 2] and the references therein). ��
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Appendix A. Examples of Non Convex Domains Satisfying Condition (1.7)

In this section we construct two classes of non-convex domains of S
N−1 satisfying hypoth-

esis (1.7) of Theorem 1.2. In particular to show the instability condition λ1(D) < N − 1 we
will prove the inequality (i) of Proposition 5.2. We begin with some preliminary technical
results.
Let N � 3, let {e1, . . . , eN } be the standard basis in RN , fix θ ∈ (−π

2 , π
2 ) and consider the

vector eθ ∈ S
N−1 defined by

eθ := e1 sin θ + eN cos θ.

By construction the vector eθ lies in the sector {x1 > 0, xN > 0} if θ ∈ (0, π
2 ), in

{x1 < 0, xN > 0} if θ ∈ (−π
2 , 0), and coincides with eN if θ = 0. For any given r ∈ (0, 1)

we consider the hyperplane Hθ,r orthogonal to eθ and passing through reθ , i.e.

Hθ,r = {x ∈ R
N ; x · eθ = r}.

Let Dθ,r be the region of SN−1 above Hθ,r , namely Dθ,r is the spherical cap given by

Dθ,r = {x ∈ S
N−1; x · eθ > r}. (A.1)

By definition it is easy to check that Dθ,r has angular radius arctan
(√

1−r2
r

)
. We consider

the function ue1 defined in (5.8), namely ue1(x) = x · e1 = x1. The first result we prove
is an explicit formula for the boundary integral appearing in Proposition 5.2 applied to the
function ue1 and to the domain Dθ,r .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. For θ ∈ (−π
2 , π

2 ) and r ∈ (0, 1) it holds that

∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂ = r(1 − r2)
N−1
2 cN (1 − N sin2 θ), (A.2)

where ν is the exterior unit co-normal (i.e., for any x ∈ ∂Dθ,r , ν(x) is the unique unit
vector in TxSN−1 which is orthogonal to Tx∂Dθ,r and pointing outward Dθ,r ), dσ̂ is the
(N − 2)-dimensional area element of ∂Dθ,r , cN is a positive constant depending only on N
which is explicit (see (A.13)).

Proof. Let θ ∈ (−π
2 , π

2 ), r ∈ (0, 1). We begin observing that for any x ∈ ∂Dθ,r it holds
that

ν(x) = 1
√
1 − r2

(r x − eθ ). (A.3)

Indeed, x · eθ = r and thus (r x − eθ ) · (r x − eθ ) = 1− r2, namely
∣
∣
∣ 1√

1−r2
(r x − eθ )

∣
∣
∣ = 1,

and we readily check that 1√
1−r2

(r x − eθ ) · x = 1√
1−r2

(r − x · eθ ) = 0, which means

that 1√
1−r2

(r x − eθ ) ∈ TxSN−1. In addition, if v ∈ Tx∂Dθ,r and γ : (−δ, δ) → ∂Dθ,r is

curve such that γ (0) = x and γ ′(0) = v, for some small δ > 0, then as ∂Dθ,r ⊂ S
N−1,

differentiating the identity |γ |2 ≡ 1 we get x · v = 0. Similarly, differentiating the identity
γ ·eθ ≡ r weobtain v·eθ = 0.Hence, 1√

1−r2
(r x−eθ )·v = 0 and thus from the arbitrariness

ofv ∈ Tx∂Dθ,r we infer that
1√
1−r2

(r x−eθ ) ⊥ Tx∂Dθ,r , so that ν(x) = ± 1√
1−r2

(r x−eθ ).

To choose the right sign we now show that 1√
1−r2

(r x − eθ ) points outward Dθ,r . To this

end, let x ∈ ∂Dθ,r and consider the vector ys := x + s√
1−r2

(r x − eθ ), with |s| small. As

r ∈ (0, 1) and since ys ·eθ = r+ s(r2−1)√
1−r2

, then, using the definition (A.1) and by elementary

computations we readily check that ys|ys | ∈ Dθ,r if and only if s < 0 with |s| is small enough,

and this proves that 1√
1−r2

(r x − eθ ) points outward Dθ,r .

With (A.3) at hand, and recalling the definition of ue1 we easily obtain that

ue1(x)
∂ue1
∂ν

(x) = 1
√
1 − r2

(r x21 − sin θx1), (A.4)

for any x = (x1, . . . , xN ) ∈ ∂Dθ,r . In order to compute the integral in (A.2) we determine
a suitable parametrization for ∂Dθ,r . To this aim, we recall that x = (x1, . . . , xN ) ∈ ∂Dθ,r
if and only if x satisfies

{
x21 + . . . + x2N = 1,
x1 sin θ + xN cos θ = r,

and by elementary computations we find that

(x1 − r sin θ)2

cos2 θ
+ x22 . . . + x2N−1 = 1 − r2, xN = r

cos θ
− x1

sin θ

cos θ
. (A.5)

Using the spherical coordinates for S
N−2 ⊂ R

N−1 and the second equation in (A.5)
we find a parametrization for ∂Dθ,r . Indeed, first assuming that N � 4 and denoting by
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φ1, . . . , φN−2 the angular coordinates, where φ1, . . . , φN−3 have the range (0, π) and
φN−2 ranges over (0, 2π), we easily check that

⎡

⎢
⎢
⎢
⎢
⎣

x1
x2
...

xN−2
xN−1

⎤

⎥
⎥
⎥
⎥
⎦

=
√
1 − r2

⎡

⎢
⎢
⎢
⎢
⎣

cos θ cosφ1
sin φ1 cosφ2

...
sin φ1 . . . sin φN−3 cosφN−2
sin φ1 . . . sin φN−3 sin φN−2

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

r sin θ
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎦

(A.6)

is a parametrization of the ellipsoid in R
N−1 (or the sphere if θ = 0) described by the

first equation in (A.5) (up to a zero measure set with respect to the (N − 2)-dimensional
Haussdorf measure). Hence, exploiting the second equation in (A.5), we deduce that ψ :
(0, π) × . . . × (0, π) × (0, 2π) → R

N defined by

ψ(φ1, . . . , φN−1) :=
√
1 − r2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos θ cosφ1
sin φ1 cosφ2

...
sin φ1 . . . cosφN−2
sin φ1 . . . sin φN−2− sin θ cosφ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r sin θ
0
...
0
0

r cos θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.7)

is a parametrization of the (N − 2)-dimensional sphere ∂Dθ,r . Then, arguing by induction

and after a straightforward computation we see that the coefficients gi j =
〈
∂ψ
∂φi

,
∂ψ
∂φ j

〉
,

i, j = 1, . . . , N − 2, of the induced metric on ∂Dθ,r , are given by

gi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − r2 ifi = j = 1,
(1 − r2) sin2 φ1 ifi = j = 2,
(1 − r2) sin2 φ1 · · · sin2 φi−1 ifi = jandi �= 1, 2,
0 ifi �= j.

In particular, the matrix (gi j )i, j=1,...,N−2 is diagonal, positive definite and the square root
of its determinant is given by

√
Det (gi j ) =

⎧
⎪⎨

⎪⎩

(1 − r2) sin φ1 if N = 4,

(1 − r2)
3
2 (sin φ1)

2(sin φ2) if N = 5,

(1 − r2)
N−2
2 (sin φ1)

N−3(sin φ2)
N−4 · · · sin φN−3 if N � 6.

Therefore, when N � 6 (the other cases N = 4, 5 being similar and easier) the (N − 2)-
dimensional area element of ∂Dθ,r is expressed in these local coordinates by

dσ̂ = (1 − r2)
N−2
2 (sin φ1)

N−3(sin φ2)
N−4 · · · sin φN−3 dφ1 · · · dφN−3dφN−2.

Setting for brevity G(φ2, . . . , φN−2) := (sin φ2)
N−4 · · · sin φN−3, d� := dφ2 · · ·

dφN−3dφN−2, and observing that

∫

(0,π)N−4×(0,2π)
G(φ2, . . . , φN−2) d� = |SN−3| = (N − 2)ωN−2, (A.8)



Existence of Nonradial Domains 1053

whereωN−2 is the volume of the unit ball inRN−2, then, recalling (A.4), exploiting Fubini’s
theorem and taking into account (A.7), (A.8) we get that

∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂

= (1 − r2)
N−3
2

[∫

(0,π)N−3×(0,2π)

r
(√

1 − r2 cos θ cosφ1 + r sin θ
)2

(sin φ1)
N−3G dφ1d�

−
∫

(0,π)N−3×(0,2π)

sin θ
(√

1 − r2 cos θ cosφ1 + r sin θ
)

(sin φ1)
N−3G dφ1d�

]

= (N − 2)ωN−2(1 − r2)
N−3
2

∫ π

0

[
r(1 − r2) cos2 θ cos2 φ1 + r3 sin2 θ − r sin2 θ

]
(sin φ1)

N−3dφ1,

(A.9)

where in the last integral we have discarded the linear terms in cosφ1 because
∫ π

0
cosφ1(sin φ1)

N−3 dφ1 = 1

N − 2
(sin φ1)

N−2∣∣π
0 = 0.

Rearranging the terms in the last integral of (A.9), we obtain
∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂

= (N − 2)ωN−2r(1 − r2)
N−1
2

∫ π

0

(
cos2 θ cos2 φ1 − sin2 θ

)
(sin φ1)

N−3dφ1.
(A.10)

Now, let us observe that, for any k ∈ N, k � 2, integrating by parts, we have
∫ π

0
cos2 φ1(sin φ1)

k dφ1 =
∫ π

0
(sin φ1)

k − (sin φ1)
k+2 dφ1

=
∫ π

0
(sin φ1)

k dφ1 − k + 1

k + 2

∫ π

0
(sin φ1)

k dφ1

= 1

k + 2

∫ π

0
(sin φ1)

k dφ1.

(A.11)

Combining (A.10) and (A.11) (with k = N − 3) we get that
∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂ = (N − 2)ωN−2r(1 − r2)
N−1
2

∫ π

0
(sin φ1)

N−3dφ1

(
1

N − 1
cos2 θ − sin2 θ

)

= (N − 2)ωN−2r(1 − r2)
N−1
2

∫ π

0
(sin φ1)

N−3 dφ1

(
1 − N sin2 θ

)

N − 1
, (A.12)

and this proves (A.2), with cN given by

cN := N − 2

N − 1
ωN−2

∫ π

0
(sin φ1)

N−3 dφ1. (A.13)

The proof of the Lemma is then complete for N � 4.
When N = 3 the proof is much simpler. Indeed, in this case, a parametrization of the circle
∂Dθ,r is given by the map ψ : (0, 2π) → R

3 defined by

ψ(φ) :=
√
1 − r2

⎡

⎣
cos θ cosφ

sin φ
− sin θ cosφ

⎤

⎦+
⎡

⎣
r sin θ

0
r cos θ

⎤

⎦ .
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Hence, using the definition, (A.4), and taking into account that |ψ ′(φ)| =
√
1 − r2, we

easily check that

∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂

= 1
√
1 − r2

∫ 2π

0

[

r
(√

1 − r2 cos θ cosφ + r sin θ
)2

− sin θ
(√

1 − r2 cos θ cosφ + r sin θ
)]

|ψ ′(φ)| dφ

= r(1 − r2)
∫ 2π

0
cos2 θ cos2 φ − sin2 θ dφ = πr(1 − r2)

(
cos2 θ − 2 sin2 θ

)

= πr(1 − r2)
(
1 − 3 sin2 θ

)
.

In particular, as ω1 = 2, (A.12) holds true with cN given by (A.13) even for N = 3. The
proof is complete. ��

Remark A.2. Let θ ∈ (0, π
2 ). From the analytic expression of ∂Dθ,r given by (A.5) or,

equivalently, by using (A.7), but with φ1 varying in [0, 2π), it is easy to check that ∂Dθ,r

is contained in the sector {x ∈ S
N−1; x1 > 0, xN > 0} if −

√
1 − r2 cos θ + r sin θ > 0

and −
√
1 − r2 sin θ + r cos θ > 0, which both hold true if r >

√
max{cos2 θ, sin2 θ}. By a

similar argument, we take −θ ∈ (−π
2 , 0), and under the same condition on r , then D−θ,r

is contained in{x ∈ S
N−1; x1 < 0, xN > 0}.

An immediate consequence of the previous remark and Lemma A.1 is the following:

Corollary A.3. Let θ ∈ (arcsin( 1√
N

), π
2 ) and set rθ :=

√
max{cos2 θ, sin2 θ}. Then, for

any r ∈ (rθ , 1), the spherical cap Dθ,r is contained in {x ∈ S
N−1; x1 > 0, xN > 0},

while the symmetrical domain (with respect to the hyperplane {x1 = 0}), namely D−θ,r , is
contained in {x ∈ S

N−1; x1 < 0, xN > 0}. Moreover, it holds that

∫

∂Dθ,r

ue1
∂ue1
∂ν

dσ̂ +
∫

∂D−θ,r

ue1
∂ue1
∂ν

dσ̂ < 0 (A.14)

and
∫

Dθ,r∪D−θ,r

ue1 dσ = 0. (A.15)

Notice that (A.15) follows from the symmetry of Dθ,r ∪ D−θ,r , as ue1 is odd. Since Dθ,r ∪
D−θ,r is not connected, in order to apply the instability criterion given by Proposition 5.2
our idea is to join the two domains Dθ,r , D−θ,r by a suitably “small” tunnel-like domain
which is symmetric with respect to the hyperplane {x1 = 0}. More precisely, we have the
following:

Example A.4. Let ε > 0 be a small number to be determined later and consider the open
region Aε ⊂ S

N−1 between the two symmetric hyperplanes {xN−1 = −ε} and {xN−1 =
+ε}, namely

Aε := {x ∈ S
N−1; −ε < x · eN−1 < ε}.
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Setting ∂A+
ε := {x ∈ S

N−1; x · eN−1 = ε}, ∂A−
ε := {x ∈ S

N−1; x · (−eN−1) = ε}
and arguing as in the proof of Lemma A.1 (see (A.4)) we can check that the exterior unit
co-normal to ∂Aε = ∂A−

ε ∪ A+
ε , pointing outwards Aε , is given by

ν(x) =
⎧
⎨

⎩

1√
1−ε2

(eN−1 − εx) if x ∈ ∂A+
ε ,

1√
1−ε2

(−eN−1 − εx) if x ∈ ∂A−
ε .

(A.16)

In view of (A.16), and as e1 · eN−1 = 0, it follows that ν(x) · e1 = −εx1 for all x ∈ ∂Aε =
∂A−

ε ∪ A+
ε , and thus

ue1(x)
∂ue1
∂ν

(x) = −εx21 for all x ∈ ∂Aε. (A.17)

Now, fixing θ and r ∈ (rθ , 1) as in Corollary A.3 we can choose ε > 0 sufficiently small
(depending on r and θ ) so that ∂Aε intersects Dθ,r ∪ D−θ,r . We then take as tunnel-like
domain the connected subset of

Aε \ (Dθ,r ∪ D−θ,r
) = {x ∈ S

N−1; −ε < x · eN−1 < ε, x · eθ � r, x · e−θ � r}
containing eN , and we denote it by Tε,θ,r . We set

Dε,θ,r := Dθ,r ∪ Tε,θ,r ∪ D−θ,r .

By definition it is easy to check that Dε,θ,r is a domain symmetric with respect to the
hyperplane {x1 = 0} and thus, as ue1 is odd, we have

∫

Dε,θ,r

ue1 dσ = 0.

Then by (A.14) and (A.17) we easily check that
∫

∂Dε,θ,r

ue1
∂ue1
∂ν

dσ̂ < 0

if ε > 0 is sufficiently small, so that Dε,θ,r satisfies (i) of Proposition 5.2 and hence

λ1(Dε,θ,r ) < N − 1. Moreover, by construction Dε,θ,r ⊂ S
N−1+ and also the inequality

HN−1(Dε,θ,r ) < HN−1(S
N−1+ ) holds. Note that the domain Dε,θ,r is not smooth but we

can take a smooth domain close to Dε,θ,r for which the same properties hold.

Next we exhibit another class of non-convex domain satisfying condition (i) of Proposition
5.2 which is not contained in a hemisphere.

Example A.5. Let us fix k ∈ {1, . . . , N − 2} and let

S
k :=

⎧
⎨

⎩
(x1, . . . , xk+1, 0, . . . , 0) ∈ R

N ;
k+1∑

i=1

x2i = 1

⎫
⎬

⎭
⊂ S

N−1. (A.18)

Moreover, we fix r ∈ (0, π
2 ) and consider

Dr := {x ∈ S
N−1; dist

SN−1 (x,Sk) < r},
where dist

SN−1 denotes the geodesic distance in S
N−1. If e ∈ S

k , we have
∫

Dr
ue dσ = 0

since Dr is symmetric with respect to reflection at the hyperplane

He := {x ∈ R
N ; x · e = 0}
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and ue is odd with respect to this reflection. We write points in S
N−1 as

x = y cos θ + z sin θ,

with y ∈ S
k (see (A.18)), θ = dist

SN−1(x, Sk) ∈ (0, π
2 ) and

z ∈ S
N−2−k :=

⎧
⎨

⎩
(0, . . . , 0, xk+2, . . . , xN ) ∈ R

N ;
N∑

k+2

x2i = 1

⎫
⎬

⎭
⊂ S

N−1.

In these coordinates, and since e ∈ S
k , we have ue(x) = (e · y) cos θ. In addition we check

that

∂Dr = {x ∈ S
N−1; x = y cos r + z sin r, y ∈ S

k , z ∈ S
N−2−k},

and the exterior unit co-normal in a point x = y cos r + z sin r ∈ ∂Dr is given by ν(x) =
−y sin r + z cos r . Consequently, for any x ∈ ∂Dr we have

∂ue
∂ν

(x) = (cos r)e · (−y sin r + z cos r) = − cos r sin r (e · y) = − sin r ue(x).

Hence it follows that

ue
∂ue
∂ν

< 0 on ∂Dr \ He,

and thus
∫

∂Dr

ue
∂ue
∂ν

dσ̂ < 0. (A.19)

By Proposition 5.2, the inequality (A.19) implies that λ1(Dr ) < N −1. Finally if r is small,
the condition HN−1(Dr ) < HN−1(S

N−1+ ) also holds.
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