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Abstract

We prove that every GNS-symmetric quantum Markov semigroup on a finite
dimensional matrix algebra satisfies a modified log-Sobolev inequality. In the dis-
crete time setting, we prove that every finite dimensional GNS-symmetric quantum
channel satisfies a strong data processing inequality with respect to its decoher-
ence free part. Moreover, we establish the first general approximate tensorization
property of the relative entropy. This extends the famous strong subadditivity of
the quantum entropy (SSA) of two subsystems to the general setting of two subal-
gebras. All three results are independent of the size of the environment and hence
satisfy the tensorization property. They are obtained via a common, conceptually
simple method for proving entropic inequalities via spectral or L2-estimates. As
an application, we combine our results on the modified log-Sobolev inequality and
approximate tensorization to derive tight bounds for local generators.
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1. Introduction and Main Results

Relative entropy is a fundamental information measure that has been widely
used in probability, statistics and information theory. It was first introduced by
Kullback and Leibler [52] for probability distributions (also called KL-divergence),
and later extended by Umegaki [79] to the noncommutative setting for quantum
states. For two quantum states with density matrices ρ and σ , the relative entropy
of ρ with respect to σ is defined as

D(ρ‖σ) = tr(ρ ln ρ − ρ ln σ) , (1)

where tr is the matrix trace. When ρ and σ share a same eigenbasis, (1) recovers
the KL-divergence for two (discrete) probability densities. In both classical and
quantum cases, D(ρ‖σ)measures how well the classical or quantum state ρ can be
distinguished from σ by statistical or quantum-mechanical experiments [13,43,65].
In this work, we study several related inequalities of the quantum relative entropy
which have direct applications in quantum information theory and quantum many-
body systems. Some of our results also yield new insights in the classical cases for
probability distributions.

1.1. Modified Logarithmic Sobolev Inequality

The logarithmic Sobolev inequality is a functional inequality that was first
introduced by Gross in his study of quantum field theory [40] as an equivalent
formulation of hypercontractivity [64]. Over the past several decades, logarithmic
Sobolev inequalities have been intensively studied for their applications in analysis,
probability and information theory (see e.g. the [41,54] and the references therein).
Let (�,μ) be a probability space and (Tt : L∞(�,μ) → L∞(�,μ))t≥0 be a
Markov semigroup with the unique invariant measure μ. The semigroup (Tt )t≥0 is
said to satisfy the α-logarithmic Sobolev inequality (in short, α-LSI) for α > 0 if∫

f 2 ln f 2dμ −
(∫

f 2dμ

)
ln

(∫
f 2dμ

)
≤ − 1

α

∫
f (L f )dμ (2)

for any real function f in the domain ofL,whereL is the generator of the semigroup,
i.e. Tt = etL. It is well-known that the logarithmic Sobolev inequality admits
a (weaker) variant formulation, called modified logarithmic Sobolev inequality,
which is directly related to the relative entropy. The semigroup (Tt )t≥0 is said to
satisfy theα-modified logarithmic Sobolev inequality (in short,α-MLSI ) forα > 0
if, for any probability density f ≥ 0 with

∫
f dμ = 1,

α

∫
f ln f dμ ≤ −

∫
L( f ) ln f dμ. (3)
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The left hand side is the (classical) entropy functional Ent( f ) := ∫ f ln f dμ. The
α-MLSI (3) is equivalent to

Ent(Tt f ) ≤ e−αtEnt( f ),

which means that the entropy of the system decays exponentially. This entropic
convergence property is a powerful tool to derive mixing times for the semigroup.

The main purpose of this work is to study modified logarithmic Sobolev in-
equalities for quantumMarkov semigroups. QuantumMarkov semigroups are non-
commutative generalizations of Markov semigroups where the underlying function
spaces are replaced by matrix algebras or operator algebras. Let H be a finite di-
mensional Hilbert space and let B(H) be the bounded operators onH. A quantum
Markov semigroup (QMS) (Pt : B(H) → B(H))t≥0 is a continuous semigroup of
completely positive trace preserving maps. Such continuous-time families of quan-
tum channels model theMarkovian evolution of dissipative open quantum systems.
In recent years, the connection between logarithmic Sobolev inequalities and other
functional inequalities, such as hypercontractivity, Poincaré inequality and trans-
port cost inequalities, have been largely extended to quantum Markov semigroup
(see [21,22,29,50,66,74]). Some of these works found direct applications in quan-
tum information and quantum computational complexity (see e.g. [11,16,63]).

Despite the rich connections to many aspects of quantum Markov processes,
logarithmic Sobolev inequalities in the quantum framework are missing one key
property—the tensorization property. For two classicalMarkov semigroups (St )t≥0
and (Tt )t≥0, if each semigroup satisfies α-MLSI, then (St ⊗ Tt )t≥0 also satisfies
α-MLSI [14] with the same constant α. Tensorization is a powerful property that
allow us to obtain MLSI for large, composite systems in terms of the dynamics
on smaller subsystems, which is a technique that was already used by Gross in
his very first work on the logarithmic Sobolev inequality. Nevertheless, the tensor
stability of MLSI fails for general (non-ergodic) quantumMarkov semigroups [17,
Proposition 4.21]. The lack of tensorization property is a common difficulty in
quantum information (see e.g. the super-additivity of the channel capacity [42,75]).
On the other hand, it was discovered in [37] that the tensorization property is
satisfied with a stronger definition of MLSI: a quantum Markov semigroup (Pt :
B(H) → B(H))t≥0 is said to satisfy the α-complete modified logarithmic Sobolev
inequality (in short, α-CMLSI) if for any n ≥ 1, the amplificationPt ⊗ idn satisfies
α-MLSI, where idn is the identity map on an n-dimensional quantum system. Our
first main result shows that such tensor stable modified log-Sobolev inequalities
generically hold in finite dimensions.

Theorem 1.1. Let (Pt )t≥0 be a quantum Markov semigroup and assume (Pt )t≥0
is GNS-symmetric to some full-rank invariant state σ . Denote E∗ = limt→∞ Pt∗
as the limit of the pre-adjoint map, which gives the projection onto the fixed point
space of Pt∗. Then for all n ∈ N and all states ρ ∈ B(H ⊗ C

n),

D(Pt∗ ⊗ idn(ρ)‖E∗ ⊗ idn(ρ)) ≤ e−αt D(ρ‖E∗ ⊗ idn(ρ)) , (CMLSI)

where D(·‖·) denotes the relative entropy and the constant α satisfies

λ

Ccb(E∗)
≤ α ≤ 2λ .
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Here λ is the spectral gap of the generator L of the QMS and Ccb(E∗) is the
complete Pimsner–Popa index of the map E∗.

We refer to Section 3 for details concerning the spectral gap and GNS symme-
try, and to Section 2 for the index Ccb(E∗). We emphasise that Theorem 1.1 asserts
that there exists an exponential decay rate α for the relative entropy independent of
n ∈ N, and which holds not only for the semigroup (Pt )t≥0 itself but also for its am-
plifications (Pt ⊗ idn)t≥0 coupling it to an environment system C

n . This definition
was introduced in [37], and proved to satisfy the tensorization property: whenever
two quantum Markov semigroups satisfy α-CMLSI, their tensor product satisfies
α-CMLSI. Later, Li, Junge and LaRacuente [56] proved that the heat semigroup
of Riemannian manifolds of positive curvature and all classical (continuous-time)
finite Markov chains satisfy CMLSI. Using the noncommutative curvature lower
bound introduced in [21,29], CMLSI was obtained for heat semigroup on all com-
pact Riemannian manifolds and some examples from operator algebras [17,18].
Despite the constant progress on this topic in the recent years, the problem of the
positivity of the CMLSI constant for finite dimensional QMS has been left open.
Here, Theorem 1.1 finally provides a positive answer to the question via a relatively
simple proof.

1.2. Strong Data Processing Inequality

One key property behind the widespread applications of the quantum rela-
tive entropy is the data processing inequality. It states that the relative entropy is
non-increasing under the action of a quantum channel � (complete positive trace
perserving map). Namely, for all states ρ and σ ,

D(�(ρ)‖�(σ)) ≤ D(ρ‖σ). (4)

As the relative entropy is a measure of distinguishability, the data processing in-
equality asserts that two states can not become more distinguishable after applying
a same channel to them. First proved by Lindblad [60] and Uhlmann [78], the data
processing inequality for the relative entropy has been largely refined and improved
in recent years (e.g. [23,48,62]). As discussed in [12,44,55,63], one natural refine-
ment of the inequality consists in askingwhen the contraction of the relative entropy
observed in (4) can be strict, i.e. whether there exists a constant c < 1 such that

D(�(ρ)‖�(σ)) ≤ c D(ρ‖σ). (5)

This question has been intensively studied for classical channels and more general
entropies (see e.g. [3,26,32,33,59,71,73] and the references therein) under the
name strong data processing inequality (SDPI). In the quantum setting, despite
progresses on some special cases [44,63], the existence of a contractive coefficient
for general channels in (5) remains open. Our second main result is the following
strong data processing inequality as a discrete time analog of Theorem 1.1:
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Theorem 1.2. (c.f. Corollary 4.3) Let � : B(H) → B(H) be a quantum channel.
Suppose � is GNS-symmetric to a full-rank invariant state σ = �(σ). Then there
exists an explicit constant c < 1 such that for any n ∈ N and all bipartite states
ρ ∈ D(H ⊗ C

n),

D((� ⊗ idn)(ρ)‖(� ◦ E∗ ⊗ idn)(ρ)) ≤ c D(ρ‖(E∗ ⊗ idn)(ρ)), (CSDPI)

where E∗ is the projection onto the decoherence-free space of �.

We refer to Section 4 for the definition of E∗ and remark that the constant c
explicitly depends on the index Ccb(E∗) and an L2-condition λ :=‖ � − E∗ :
L2 → L2 ‖. The above inequality (CSDPI) implies a discrete time entropy decay.
Moreover, the inequality (CSDPI) again gives a uniform control for all amplifica-
tions � ⊗ idn , which is the reason that we call it complete strong data process-
ing inequality (CSDPI). These improvements over the standard data processing
inequality have applications to quantum state preparation and quantum channel ca-
pacities [9,19]. For instance, similarly to CMLSI, CSDPI admits tensorization: if
two quantum channels � and � satisfy CSDPI with contraction coefficient c < 1,
so does�⊗�. Also, thanks to its “completeness”, Theorem 1.2 implies a concrete
estimate on the convergence �n → �n ◦ E∗ in terms of the diamond norm.

1.3. Approximate Tensorization of Relative Entropy

The data processing inequality is closely related to another celebrated inequality
in quantum information theory, namely the strong subadditivity (SSA). SSA can be
equivalently stated in terms of relative entropies as follows: for any tripartite state
ρABC ,

D
(
ρABC

∥∥∥1AB

dAB
⊗ ρC

)
≤ D

(
ρABC

∥∥∥1A

dA
⊗ ρBC

)
+ D

(
ρABC

∥∥∥1B

dB
⊗ ρAC

)
.

here 1AB
dAB

is the completely mixed state on AB whereas ρC denotes the reduced
density on C (and similarly for the other terms). SSA was long known in classical
information theory, and proved by Lieb and Ruskai [58] for the quantum entropy.
Later Petz [68] proved SSA in a very general setting: given any four matrix subal-
gebras N ⊂ N1,N2 ⊂ M, and corresponding projections E1, E2, EN from M
onto N1, N2 and N , for all states ρ on M, it holds that

D(ρ‖EN ∗(ρ)) ≤ D(ρ‖E1∗(ρ)) + D(ρ‖E2∗(ρ)), (6)

as long as E1 ◦ E2 = E2 ◦ E1 = EN . This last commutation relation is usually
referred to as a “commuting square” condition and was introduced by Popa [72].

Although the commuting square gives a nice characterization of SSA, SSA-type
inequalities are also desired when the “commuting square” condition is not fully
satisfied. For instance, in the context of classical lattice spin systems, where the
projections are conditional expectations onto different regions of the lattice with
respect to a given Gibbs measure, the commuting square condition corresponds to
the infinite temperature regime [8]. To assess the finite temperature regime, (6) has
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to be modified in the following way [24,27]: there exists a constant c > 1 such
that, for all states ρ,

D(ρ‖EN ∗(ρ)) ≤ c
(
D(ρ‖E1∗(ρ)) + D(ρ‖E2∗(ρ))

)
, (7)

where the constant c is some measure of the violation of the commutation relation
‖E1 ◦ E2 − EN ‖ in some appropriate norm. This inequality, called approximate
tensorization of the relative entropy, was used in the classical case (i.e. when all
algebras are commutative) in the study of logarithmic Sobolev inequalities for
lattice spin system [24]. In the quantum setting, a weaker bound to (7) was derived
in [8] with a further additive error term vanishing on classical states. However, the
question of finding general bounds like (7) without the additive error term was left
unresolved. Our third main theorem answers this question.

Theorem 1.3. Let N ⊂ N1,N2 ⊂ M be four finite dimensional von Neumann
algebras. Let E1, E2, EN be the corresponding projections fromM ontoN1, N2
andN such that EN ◦E1 = EN ◦E2 = EN . Then there exists an explicit constant
ccb such that, for any n ∈ N and all states ρ ∈ M ⊗ B(Cn), we have

D(ρ‖(EN ∗ ⊗ id)(ρ)) ≤ ccb
(
D(ρ‖(E1∗ ⊗ id)(ρ)) + D(ρ‖(E2∗ ⊗ id)(ρ))

)
.

(8)

We refer to Theorems 5.1 and Corollary 5.4 for concrete estimates on the con-
stant ccb. All of the three results above rely on a common conceptually simple tool,
namely a two-sided estimate of the relative entropy via the so-called Bogoliubov-
Kubo-Mori Fisher information (see Lemma 2.2 in Section 2 for more details). The
Bogoliubov-Kubo-Mori Fisher information is closely related to a special case of
monotone Riemannian metric on the state space studied in [55,69] and a quantum
χ2-divergence studied in [82]. This allows us to approach each of the three above
entropic inequalities via corresponding spectral gap conditions. Given the simplic-
ity of our approach, we believe it will also prove useful in the study of other entropic
inequalities.

1.4. Applications and Examples

Based on the above results, we exploit the approximate tensorization estimate
fromTheorem1.3 to get tighter bounds on the optimal CMLSI constant for quantum
Markov semigroups (QMS) relevant to the communities of mathematical physics
and quantum information theory. For a QMS (Pt = etL)t≥0 with the generator L,
we denote byαCMLSI(L) the largest constantα satsisfying (CMLSI) inTheorem1.1.
In Section 6, we restrict our analysis to the class of symmetric QMS, that is QMS
symmetric to the trace inner product or equivalently themaximallymixed state. The
generators of these semigroups admit a simple formas a sumof double commutators
with self-adjoint operators {ak}:

L(ρ) = −
l∑

k=1

[ak, [ak, ρ]]. (9)

Using approximate tensorization, we obtain the following improved CMLSI con-
stant for symmetric QMS:
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Theorem 1.4. (c.f. Corollary 6.3) For a symmetric generator L given as above,

αCMLSI(L) ≥ �
(
λ2 polylog(dH)−1),

where dH is the dimension of the underlying Hilbert space, and λ := mink λ(Lak )

is the minimum spectral gap of any of the generators Lak (ρ) = [ak, [ak, ρ]].
Note that the above bound is asymptotically better than Theorem 1.1 because

the index is Ccb(E∗) = d2H for primitive semigroups.

Example 1.5. Consider the quantumMarkov semigroups inducedby sub-Laplacians
of the special unitary group SU(2) on its irreducible representations:

LH
m (ρ) := −[Xm, [Xm, ρ]] − [Ym, [Ym, ρ]].

Here Xm (resp. Ym) is the spin-m−1
2 representation of the Pauli X matrix (resp.

Y -matrix). In contrast to the induced semigroup of the standard Laplace-Beltrami
operator 
 = X2 + Y 2 + Z2 the CMLSI constant of LH

m is not accessible from
the corresponding classical Markov semigroup due to the lack of curvature lower
bound in the sub-Riemannian setting. With help of numerics, we obtain that

αCMLSI(LH
m ) > 0.18

uniformly for all m ≥ 2.

In Section 6.2, we focus on symmetric semigroups which bare a locality struc-
ture inherited from a graph. More precisely, given a finite graph G = (V, E), we
consider the n-fold tensor product HV := ⊗

v∈V Hv of a finite dimensional lo-
cal Hilbert space H, namely, an n-qudit system for d = dim(H). The Lindblad
operators are supported on the edges e ∈ E of the graph

LG :=
∑
e∈E

Le, where Le(ρ) :=
∑
j∈J (e)

L(e)
j ρL(e)

j − 1

2
{L(e)

j L(e)
j , ρ},

(10)

where for any edge e ∈ (v,w) ∈ E and any j ∈ J (e), the local Lindblad operator
L(e)
j acts trivially on subsystems other than Hv ⊗ Hw. We call (10) a subsystem

Lindbladian, whichmeans that the global dynamics consists of local interactions on
subsystems of adjacent vertices. This gives a general model of 2-local interacting
quantum lattice spin systems. Using approximate tensorization again, we provide
a lower bounds on the CMLSI constant for the global Lindbladian LG based on the
local Lindbladians Le.

Theorem 1.6. (c.f. Theorem 6.6) Let G = (V, E) be a finite, connected graph of
maximum degree γ and let LG be a symmetric subsystem Lindbladian of the form
(10). Denote by Ee the projection onto the kernel of the local LindbladianLe. Then

αCMLSI(Le) ≥ �

⎛
⎝ ln

(
λ(L̃G )

4(γ−1)2
+ 1
)

ln(C) + 1

⎞
⎠min

e∈E αCMLSI(Le),

where αCMLSI(Le) is the CMLSI constant of Le, and λ(L̃G) is the spectral gap of
the generator L̃G :=∑e∈E Ee − id.
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Here the indexC can be chosen as either the complete Pimsner–Popa index [70]
of the algebraN of fixed points of the evolution, or the inverse minimal eigenvalue
of the Choi state of the projection map EG := lim

t→∞ etLG . The index C can be

thought of as what replaces the size of the graph in the case of classical graph
Laplacians. In particular, for expander graphs, our bound gives

αCMLSI(L̃G) ≥ �

(
1

ln(C)

)
.

We exemplify our bound on the random transposition model.

Example 1.7. (Random transposition) Motivated by the classical random trans-
position model in [14,35], we introduce the quantum nearest neighbor random
transposition via the local Lindbladian on an edge (i, j) ∈ E given by

L(i, j)(ρ) := 1

2
(Si, jρSi, j − ρ), Si, j (|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉, (11)

where Si, j : Hi ⊗ H j → Hi ⊗ H j is the swap unitary gate between vertex i and
j . Then the global Lindbladian LNNRT

G :=∑e∈E Le is generated by local random
swaps on |V | = n qudits. In this case, we find that

αCMLSI(LNNRT
G ) ≥ λ(LNNRT

G )�((ln n!)−1),

where λ(LNNRT
G ) is the spectral gap and the factorial n! is the size of the permu-

tation group Sn . This presents an exponential improvement over the bounds from
Theorem 1.1, where the constant was controlled by the inverse size of the group
(n!)−1.

The rest of the paper is organized as follows: in the next section, we review some
preliminary definitions and prove our key lemma. Section 3 is devoted to the proof
of Theorem 1.1, which is our first main result on the completemodified log-Sobolev
inequality. In Section 4, we prove the complete strong data processing inequality
of Theorem 1.2. The approximate tensorization results are discussed in Section 5.
Section 6 provides the improved CMSLI constant of Theorem 1.4 for symmetric
quantumMarkov semigroups. In Section 6.2, we discuss examples from subsystem
Lindbladians. We end the paper with some discussion on questions that remain
open. We remark that although we restrict our discussion to finite dimensions, the
general results in Sections 3, 4, and 5 can be extended to (trace) symmetric maps
in the setting of finite von Neumann algebras, as long as the index Ccb(E) is finite
and the corresponding spectral gap condition is satisfied. For more examples and
applications, we invite the interested reader to consult a longer version of the present
article available at [39].
Notations.We denoteH as a Hilbert space, B(H) as the bounded operators onH,
andM ⊂ B(H) as a vonNeumann subalgebra.Wewrite “tr” for the standardmatrix
trace, 〈·, ·〉HS for the trace inner product and ‖ · ‖2 for the Hilbert–Schmidt norm.
The corresponding Hilbert–Schmidt space (resp. trace class operators) is denoted
by T2(H) (resp. T1(H)). Operators will be denoted by capital letters A, X,Y, . . .,
and states or density operators are denoted by Greek letters ρ, σ, ω, . . .. Sometimes
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we will also use lowercase letters to emphasize their belonging to a subalgebra. We
write A† for the adjoint of an operator A ∈ B(H), and�∗ (or�∗) for the adjoint (or
pre-adjoint) of a map� : B(H) → B(H). The identity operator onH is denoted as
1H and the identitymap on a vonNeumann subalgebraM ⊆ B(H) is idM.We also
denote the dimension of H by dH = dim(H). Given two maps �,� : M → M
on a von Neumann subalgebra M ⊆ B(H), we write � ≤cp � if � − � is
completely positive. Given a subalgebra N ⊂ M, we will use EN : M → N for
a conditional expectation ontoN andwriteC(EN ) for the corresponding Pimsner–
Popa index (see Section 2). We will also write C(EN ) = Cτ (M : N ) where τ is
the special operator (17) uniquely determined by EN .When EN is trace preserving
and τ = 1

dH
, we omit τ and write the original Pimsner–Popa index as C(M : N ).

2. Preliminaries

2.1. Relative Entropy and Conditional Expectation

Throughout the paper, we will consider H to be a finite dimensional Hilbert
space. We say that an operator ρ ∈ B(H) is a state (or density operator) if ρ ≥ 0
and tr(ρ) = 1. We denote by D(H) the set of states on H. A quantum channel
� : T1(H) → T1(H) (or more generally, � : M∗ → M∗) is a completely
positive trace preserving map. With slight abuse of notation, we will often write
�(ρ) := (� ⊗ id)(ρ) for a bipartite state ρ ∈ D(H⊗ C

n) and a quantum channel
� : T1(H) → T1(H). For two states ρ and σ , their relative entropy is defined as

D(ρ‖σ) =
{
tr(ρ ln ρ − ρ ln σ), if supp(ρ) ≤ supp(σ )

+∞, otherwise,

where supp(ρ) (resp. supp(σ )) is the support projection of ρ (resp. σ ).
Let N ⊆ M ⊆ B(H) be two von Neumann subalgebras. Recall that a con-

ditional expectation onto N is a completely positive unital map EN : M → N
satisfying that

(i) for all a ∈ N , EN (a) = a
(ii) for all a, b ∈ N , X ∈ B(H), EN (aXb) = aEN (X)b.

We denote by EN ∗ its adjoint map with respect to the trace inner product, i.e.

tr(EN ∗(X)Y ) = tr(XEN (Y )) .

For a state ρ, the relative entropy with respect to the conditional expectation EN ∗
is given by

D(ρ‖EN ∗(ρ)) = inf
EN∗(σ )=σ

D(ρ‖σ) ,

where the infimum is always attained by EN ∗(ρ). We note that D(ρ‖EN ∗(ρ))

depends not only on the subalgebraN , but also on the conditional expectation EN ,
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which is not unique for a subalgebraN . Indeed, for any σ satisfying EN ∗(σ ) = σ ,
we have the chain rule (see [46, Lemma 3.4])

D(ρ‖σ) = D(ρ‖EN ∗(ρ)) + D(EN ∗(ρ)‖σ) . (12)

Hence the infimum is attained if and only if D(EN ∗(ρ)‖σ) = 0. More explicitly, a
finite dimensional von Neumann (sub)algebra can always be expressed as a direct
sum of matrix algebras with multiplicity, i.e.

N =
n⊕

i=1

B(Hi ) ⊗ C1Ki , H =
n⊕

i=1

Hi ⊗ Ki .

Denote Pi as the projection ontoHi ⊗Ki . There exists a family of density operators
τi ∈ D(Ki ) such that

EN (X) =
n⊕

i=1

trKi (Pi X Pi (1Ki ⊗ τi )) ⊗ 1Ki ,

EN ∗(ρ) =
n⊕

i=1

trKi (PiρPi ) ⊗ τi , (13)

where trKi is the partial trace with respect to Ki . A state σ satisfies EN ∗(σ ) = σ

if and only if

σ =
n⊕

i=1

pi σi ⊗ τi

for some density operators σi ∈ D(Hi ) and a probability distribution {pi }ni=1. We
denote D(EN ) := {σ ∈ D(H)|σ = EN ∗(σ )} as the subset of states that are
invariant under EN ∗. For any σ ∈ D(EN ) and all X ∈ M,

EN ∗(σ
1
2 Xσ

1
2 ) = σ

1
2 EN (X)σ

1
2 .

2.2. Subalgebra Index and Max-relative Entropy

LetM ⊂ B(H) be a finite dimensional von Neumann algebra and letN ⊂ M
be a subalgebra ofM. The trace preserving conditional expectation EN ,tr : M →
N is defined so that, for any X ∈ M and Y ∈ N ,

tr(XY ) = tr(EN ,tr(X)Y ) .

EN ,tr is self-adjoint and corresponds to taking τi = d−1
Ki

1Ki in (13). We recall the
definition of the index associated to the algebra inclusion N ⊂ M,

C(M : N ) = inf{c > 0 | ρ ≤ c EN ,tr(ρ) for all states ρ ∈ M} ,

Ccb(M : N ) = sup
n∈N

C(M ⊗ Mn : N ⊗ Mn) ,
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where the supremum in Ccb(M : N ) is taken over all finite dimensional matrix
algebras Mn . The index C(M : N ) was first introduced by Pimsner and Popa in
[70] for the connection to subfactor index and Connes entropy, and the completely
bounded version Ccb(M : N ) was studied in [38]. In particular, it was proved in
[38, Theorem 3.9] thatCcb(M : N ) is indeed some completely bounded norm (see
(69) in “Appendix B”).

These indices are closely related to the notion of maximal relative entropy.
Recall that for two states, ρ, ω, their maximal relative entropy is [28]

Dmax(ρ‖ω) = ln inf{ c > 0 | ρ ≤ cω } .

Indeed,

lnC(M : N ) = sup
ρ∈D(EM,tr)

Dmax(ρ‖EN ,tr(ρ)).

For all finite dimensional inclusion N ⊂ M, the index C(M : N ) is explicitly
calculated in [70, Theorem 6.1] (hence also for Ccb(M : N )). In particular, for
M = B(H) and N =⊕n

i=1 B(Hi ) ⊗ C1Ki ,

C(B(H) : N ) =
n∑

i=1

min{dHi , dKi } dKi , Ccb(B(H) : N ) =
n∑

i=1

d2Ki
. (14)

For example, if we take D ⊂ B(H) to be the subalgebra of diagonal matrices and
C as the multiple of identity

C(B(H) : D) = Ccb(B(H) : D) = dH ,

C(B(H) : C) = dH, Ccb(B(H) : C) = d2H . (15)

In this paper, we will also consider the index for a general conditional expectation
EN : M → N (see e.g [51] for more information). For a conditional expectation
EN : M → N onto N , we define

C(EN ) = inf{c > 0 | ρ ≤ c EN ∗(ρ) for all states ρ ∈ M} ,

Ccb(EN ) = sup
n∈N

C(EN ⊗ idMn ) . (16)

Here, we recall that Mn is the n-dimensional matrix algebra and EN ⊗ idMn is a
conditional expectation fromM⊗Mn → N ⊗Mn . Note that given the subalgebra
N , EN and EN ∗ are uniquely determined by any invariant state σ ∈ D(EN ), or
equivalently the densities {τi } in (13). Indeed, denoting

τ =
n⊕

i=1

1Hi ⊗ τi , (17)

we have

EN (X) = EN ,tr(τ
1
2 Xτ

1
2 ), EN ∗(ρ) = τ

1
2 EN ,tr(ρ)τ

1
2 . (18)
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In particular, EN is faithful if and only if τ is full-rank. By definition, the Pimsner–
Popa index C(M : N ) is the special case for the trace perserving condition expec-
tation C(EN ,tr). In the later discussion, we will often use the alternative notation

Cτ (M : N ) := C(EN ) , Cτ,cb(M : N ) := Ccb(EN ).

Since τ commutes with N ,

Cτ (M : N ) ≤ μmin(τ )−1C(M : N ),

Cτ,cb(M : N ) ≤ μmin(τ )−1Ccb(M : N ), (19)

where μmin(τ ) = mini μmin(τi ) is the minimal eigenvalue of τ . Hence in finite
dimensions, both C(EN ) and Ccb(EN ) are finite if and only if EN is faithful.
Moreover, for any invariant state σ ∈ D(EN ), by the obvious bound σ ≤ τ , we
also have

Cτ (M : N ) ≤ μmin(σ )−1C(M : N ),

Cτ,cb(M : N ) ≤ μmin(σ )−1Ccb(M : N ). (20)

2.3. A Key Lemma

We shall now discuss the key lemma that will be repeatedly used in the later
sections. Given a density operator ρ ∈ D(H), we define themultiplication operator

�ρ(X) :=
∫ 1

0
ρs X ρ1−sds .

�ρ is a positive operator on the Hilbert–Schmidt space T2(H) := L2(B(H), tr) and
hence induces a weighted L2-norm (semi-norm if ρ is not full-rank) defined for
X ∈ B(H) as

‖ X ‖2ρ := 〈X, �ρ(X)〉HS =
∫ 1

0
tr(X†ρs Xρ1−s) ds . (21)

We denote by L2(ρ) the corresponding L2-space. For a full-rank density ρ, the
inverse operator of �ρ is given by

�−1
ρ (X) :=

∫ ∞

0
(ρ + r)−1X (ρ + r)−1 dr ,

which is the double operator integral for the difference quotient of f (t) = ln t and
operator ρ (see e.g. [21]). We denote by slight abuse of notations the corresponding
weighted L2-norm as

‖ X ‖2
ρ−1 := 〈X, �−1

ρ (X)〉HS =
∫ ∞

0
tr(X†(ρ + r)−1X (ρ + r)−1)dr ,

and the corresponding L2 space as L2(ρ
−1). Note that the definition ‖ · ‖ρ−1 does

not amount to plugging in the inverse operator σ = ρ−1 into the definition of ‖·‖σ
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in (21). Namely, in our notations ‖ X ‖ρ−1 �=‖ X ‖σ for σ = ρ−1. The inverse
weighted norm ‖·‖ρ−1 is closely related to the quantum χ2-divergence introduced
in [77, Defnition 1] for the logarithmic function. It is easy to see that

‖�ρ(X)‖ρ−1=‖ X ‖ρ and ‖�−1
ρ (X)‖ρ=‖ X ‖ρ−1 .

Lemma 2.1. If ρ ≤ c σ for any two states ρ, σ and some c > 0, then, for any
X ∈ B(H) and all μ1, μ2 > 0,

∫ ∞

0
tr(X†(μ1 σ + r)−1X (μ2σ + r)−1) dr

≤ c
∫ ∞

0
tr(X†(μ1ρ + r)−1X (μ2ρ + r)−1) dr .

In particular, ‖ X ‖σ−1≤ c ‖ X ‖ρ−1 .

Proof. This is a standard comparison. Using cyclicity of the trace and the fact that
t �→ t−1 is operator anti-monotone,

∫ ∞

0
tr(X†(μ1ρ + r)−1X (μ2ρ + r)−1)dr

≥
∫ ∞

0
tr(X†(cμ1σ + r)−1X (μ2ρ + r)−1)dr

≥
∫ ∞

0
tr(X†(cμ1σ + r)−1X (cμ2σ + r)−1)dr

=
∫ ∞

0

1

c2
tr

(
X†
(
μ1σ + r

c

)−1
X
(
μ2σ + r

c

)−1
)
dr

= 1

c

∫ ∞

0
tr(X†(μ1σ + r)−1X (μ2σ + r)−1)dr.

In the last equality, we used the change of variable r → r
c .

Our key lemma is a two-sided estimate of D(ρ‖σ) via the inverse weighted
norm.

Lemma 2.2. Let ρ and σ be two full-rank density operators and suppose ρ ≤ c σ

for some c > 0. Then

k(c) ‖ρ − σ ‖2
σ−1 ≤ D(ρ‖σ) ≤ ‖ρ − σ ‖2

σ−1 (22)

where k(c) = c ln c − c + 1

(c − 1)2
. Note that k(c) ≤ 1/2 for c ≥ 1.

Proof. For the lower bound, we consider ρt := (1 − t)σ + tρ, t ∈ [0, 1] and the
function f (t) = D(ρt‖σ). We have f (0) = 0, f (1) = D(ρ‖σ) and the derivatives

f ′(t) = tr((ρ − σ) ln ρt − (ρ − σ) ln σ) ,

f ′′(t) =
∫ ∞

0
tr
(
(ρ − σ)

1

ρt + r
(ρ − σ)

1

ρt + r

)
dr =‖ρ − σ ‖2

ρ−1
t

.
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Note that f ′(0) = 0 and ρt ≤ (ct + (1 − t))σ . We have for the lower bound

D(ρ‖σ) =
∫ 1

0

( ∫ s

0
f ′′(t)dt

)
ds

=
∫ 1

0

∫ s

0
‖ρ − σ ‖2

ρ−1
t

dtds

≥
∫ 1

0

∫ s

0

1

1 + (c − 1)t
dtds ‖ρ − σ ‖2

σ−1

≥ k(c) ‖ρ − σ ‖2
σ−1 ,

where we used Lemma 2.1 and

k(c) =
∫ 1

0

∫ s

0

1

1 + (c − 1)t
dtds = c ln c − c + 1

(c − 1)2
.

The upper bound is a special case of [77, Proposition 6]. Here we present a different
proof using a method similar to our lower bound. Note that ρt = (1 − t)σ + tρ ≥
(1 − t)σ . Then,

D(ρ‖σ) =
∫ 1

0

∫ s

0
‖ρ − σ ‖2

ρ−1
t

dtds

≤
∫ 1

0

∫ s

0

1

1 − t
‖ρ − σ ‖2

σ−1 dtds

=
∫ 1

0

∫ s

0

1

1 − t
dtds ‖ρ − σ ‖2

σ−1=‖ρ − σ ‖2
σ−1 .

Remark 2.3. Note that the upper bound does not require the assumption ρ ≤ c σ .

Now given a conditional expectation EN : M → N , it follows immediately
from the above that for any state ρ and ρN = EN ∗(ρ),

k(C(EN )) ‖ρ − ρN ‖2
ρ−1
N

≤ D(ρ‖ρN ) ≤‖ρ − ρN ‖2
ρ−1
N

, (23)

where C(EN ) is the index defined in (16). We also have an variant of the lower
bound with another weighting state.

Lemma 2.4. Letρ,σ andω be three full-rankdensity operators and supposeρ, σ ≤
cω for some c > 0. Then

‖ρ − σ ‖2
ω−1≤ 2c D(ρ‖σ). (24)

Proof. Take ρt = (1 − t)σ + tρ, t ∈ [0, 1]. By the assumption and Lemma 2.1,
we have ρt ≤ cω and hence

c ‖ρ − σ ‖2
ρ−1
t

≥ ‖ρ − σ ‖2
ω−1
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for each t . Therefore,

D(ρ‖σ) =
∫ 1

0

∫ s

0
‖ρ − σ ‖2

ρ−1
t

dtds

≥
∫ 1

0

∫ s

0

1

c
‖ρ − σ ‖2

ω−1 dtds

≥ 1

2c
‖ρ − σ ‖2

ω−1 .

2.4. Detailed Balance

We shall now discuss the detailed balance condition and its connection to the
spectral gap. Given a full-rank state σ and 0 ≤ s ≤ 1, we define the multiplication
operator

�σ,s(X) = σ 1−s Xσ s .

�σ,s is a positive operator on the Hilbert–Schmidt space and induces the following
weighted inner product

〈X,Y 〉σ,s := tr(X†σ 1−sYσ s), ‖ X ‖2σ,s= 〈X, X〉σ,s .

We denote by L2(σ, s) the corresponding L2 space. A map �∗ : M → M is
self-adjoint with respect to 〈·, ·〉σ,s if

� ◦ �σ,s = �σ,s ◦ �∗ ,

where � is the adjoint of �∗ for the trace inner product. Denote

H = − ln σ, 
σ (X) = σ Xσ−1, αt (X) = eit H Xe−i t H , t ∈ C

as the modular generator, modular operator, and modular automorphism group
of σ respectively. It was proved in [21, Theorem 2.9] that under the assumption
�∗(a†) = (�∗(a))†, �∗ is self-adjoint with respect to 〈·, ·〉σ,s for some s �= 1/2 if
and only if �∗ commutes with 
σ and is self-adjoint for s = 1/2, and hence �∗ is
self-adjoint with respect to 〈·, ·〉σ,s for all s ∈ [0, 1]. We say that a map �∗ satisfies
σ -DBC (detailed balance condition) if �∗ is self-adjoint with respect to 〈·, ·〉σ,1.
Note that

�σ =
∫ 1

0
�σ,s ds.

Thus, we also have �σ ◦ �∗ = � ◦ �σ and hence �−1
σ ◦ � = �∗ ◦ �−1

σ if �∗
satisfies the σ -DBC.

Let EN : M → N be a conditional expectation. It can be readily seen that
EN satisfies the σ -DBC condition for all σ ∈ D(EN ) (invariant state satisfying
σ = EN ∗(σ )). Hence

∀s ∈ [0, 1], �σ,s ◦ EN = EN ∗ ◦ �σ,s and �σ ◦ EN = EN ∗ ◦ �σ .



198 Li Gao, Cambyse Rouzé

In particular, EN is the projection ontoN for the L2-norms ‖·‖σ,s for any s ∈ [0, 1]
and ‖·‖σ , for all σ ∈ D(EN ). Indeed, for any X ∈ M,

〈EN (X), X − EN (X)〉σ,s = 〈�σ,s ◦ EN (X), X − EN (X)〉HS
= 〈EN ∗ ◦ �σ,s(X), X − EN (X)〉HS
= 〈�σ,s(X), EN (X − EN (X))〉HS = 0.

Now, let � : M∗ → M∗ be a quantum channel and N be the multiplicative
domain of �∗. Then,

N := {a ∈ M | �∗(aa†) = �∗(a)�∗(a†) ,�∗(a†a) = �∗(a†)�∗(a)} .

There always exists an invariant state σ such that �(σ) = σ . The next lemma
shows that if �∗ satisfy σ -DBC, then �∗ restricted to N is a ∗-involution.
Lemma 2.5. Let � : M∗ → M∗ be a quantum channel and let N be the multi-
plicative domain of �∗. Then,

(i) There exists an invariant state σ such that �(σ) = σ

If, in addition, σ is full-rank and �∗ satisfies σ -DBC,

(ii) �∗ is a contraction on L2(σ, s) for any s ∈ [0, 1] and L2(σ ). �∗ restricted to
N is a ∗-isomorphism and an L2-isometry on L2(σ, s) for all s ∈ [0, 1], as
well as on L2(σ ).

(iii) Let EN : M → N be the conditional expectation such that EN ∗(σ ) = σ .
Then

�∗ ◦ EN = EN ◦ �∗ , (�∗)2 ◦ EN = EN ◦ (�∗)2 = EN .

Proof. (i) Viewing� as a linearmap,� has eigenvalue 1 because�∗(1) = 1. Since
� preserves self-adjointness, we have an operator a = a† such that �(a) = a.
Let a+ (resp. a−) be the positive (resp. negative) part of a. We have �(a) =
�(a+) − �(a−) = a. Because � is positive and trace preserving, �(a+) and
�(a−) are positive and

tr(�(a+)) + tr(�(a−)) = tr(a+) + tr(a−) =‖a ‖1 .

We show that this implies�(a+) = a+ and�(a−) = a−, which proves (i). Indeed,
let b1 and b2 be any two positive operators such that

b1 − b2 = b and tr(b1) + tr(b2) =‖b‖1 .

Then by duality, there exists a self-adjoint operator −1 ≤ X ≤ 1 such that

‖b‖1= tr(bX) = tr(b1X) − tr(b2X) ≤‖b1 ‖1 + ‖b2 ‖1= tr(b1) + tr(b2) =‖b‖1 .

This implies that supp(b1) is contained in the spectrum projection of X for eigen-
value +1 and similarly supp(b2) is contained in the spectrum projection of X for
eigenvalue −1. Hence supp(b1) and supp(b2) are mutually orthogonal, which im-
plies b+ = b1 and b− = b2. The result follows after choosing b = �(a) with
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b1 = �(a+), b2 = �(a−), b+ = �(a)+ and b− = �(a)−. For (ii), consider, for
X ∈ M,

‖�∗(X)‖2σ,s = tr
(
�∗(X†)σ 1−s�∗(X)σ s

)

= tr
(
�∗(αi 1−s

2
(X)†)�∗(αi 1−s

2
(X))σ

)

≤ tr
(
�∗(αi 1−s

2
(X)†αi 1−s

2
(X))σ

)

= tr
(
αi 1−s

2
(X)†αi 1−s

2
(X)σ

)

=‖ X ‖2σ,s .

In the above inequality, we used the Kadison–Schwarz inequality and the second
to last equality follows from �(σ) = σ . Note that αs(N ) = N for any s ∈ C.
Then for any X ∈ N , �∗(αi 1−s

2
(X)†)�∗(αi 1−s

2
(X)) = �∗(αi 1−s

2
(X)†αi 1−s

2
(X))

and the above inequality becomes an equality. This proves (ii) for L2(σ, s) for all
s ∈ [0, 1]. The assertion for L2(σ ) follows by integration. For (iii), we first note
that, for any X ∈ N , (�∗)2(X) = X . Indeed,

〈(�∗)2(X), X〉σ,s = 〈�∗(X),�∗(X)〉σ,s =‖ X ‖2σ,s .

This further implies that �∗(X) ∈ N is in the multiplicative domain because

�∗(�∗(X†)�∗(X)) = �∗(�∗(X†X)) = X†X = (�∗)2(X†)(�∗)2(X†) .

Also,�∗ is invariant on the orthogonal complement ofN because, for any Y ∈ M,

〈X,�∗ ◦ (id−EN )(Y )〉σ,s = 〈�∗(X), (id−EN )(Y )〉σ,s = 0 .

This completes the proof.

We see from the above lemma that underσ -DBC,�∗ is a self-adjoint contraction
on L2(σ, s) (also L2(σ )), andN is the union of the eigenspace of�∗ for eigenvalue
1 and −1. The eigenspace for eigenvalue 1 is the fixed point space of �∗, which is
a subalgebra F ⊂ N . For each invariant state σ = �(σ), we have σ = EF∗(σ ).
In finite dimensions, there always exists 0 < ε < 1 such that

‖�∗(id−EN ) : L2(σ, s) → L2(σ, s)‖≤ (1 − ε) ,

which is a spectral gap condition. The next lemma shows that this spectral gap
condition is independent of s ∈ [0, 1] and of the choice of invariant state σ .

Lemma 2.6. Let � : M∗ → M∗ be a quantum channel and �∗ be its adjoint.
Suppose�∗ satisfyσ -DBC for some full-rank invariant stateσ such that�(σ) = σ .
Then,

(i) (�∗)2 satisfies ρ-DBC for all states ρ ∈ D(EN ) and �∗ satisfies ρ-DBC for
all invariant states ρ.
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(ii) For each full-rank state ρ ∈ D(EN ), denote λ(ρ, s) =‖ �∗(id−EN ) :
L2(ρ, s) → L2(�(ρ), s)‖2. Then for all s ∈ [0, 1]

λ(ρ, s) = λ(σ, 1) .

(iii) For each full-rank stateρ ∈ D(EN ), denoteλ(ρ) :=‖�∗(id−EN ) : L2(ρ) →
L2(�(ρ))‖2. Then

λ(ρ) :=‖�(id−EN ∗) : L2(ρ
−1) → L2(�(ρ)−1)‖

=‖�∗(id−EN ) : L2(ρ) → L2(�(ρ))‖= λ(σ, 1) = λ(σ) .

Proof. By Lemma 2.5, (�∗)2|N is the identity map and we have the module prop-
erty

(�∗)2(aXb) = a(�∗)2(X)b , ∀a, b ∈ N .

Note that for any two states ρ, σ ∈ D(EN ), ρ−sσ s ∈ N for any s ∈ C. Therefore,
we have for all s ∈ [0, 1],

�ρ,s ◦ (�∗)2 ◦ �−1
ρ,s = �σ,s ◦ (�∗)2 ◦ �−1

σ,s = �2 .

This shows (�∗)2 satisfies ρ-DBC. Now consider a state ρ such that �(ρ) = ρ.
Because both ρ, σ ∈ D(EF ), we have ρ−sσ s ∈ F for any s ∈ C. Then it follows
from the same argument above that �∗ satisfies ρ-DBC. For (ii), we denote ι =
�∗|N to be the involution �∗ restricted to N . Note that for any s ∈ C, it can be
verified by the finite dimensional direct sum structure in (13) that

ι(ρ−sσ s) = �(ρ)−sσ s, (25)

where ρ ◦ ι = �(ρ). For a mean zero element Y = X − EN (X),

‖Y ‖2ρ,s =‖�
1/2
ρ,s (Y )‖22

=‖�
1/2
σ,s �

−1/2
σ,s �

1/2
ρ,s (Y )‖22

=‖�
1/2
σ,s (Y0)‖22

=‖Y0 ‖2σ,s,

where Y0 = �
−1/2
σ,s �

1/2
ρ,s (Y ) is also a mean zero element in N⊥. Moreover,

‖�∗(Y0)‖2σ,s =‖�
1/2
σ,s �

−1/2
σ,s �

1/2
�(ρ),s�

∗(Y0)‖22
=‖�

1/2
�(ρ),s�

∗(Y0)‖22
=‖�∗(Y0)‖2�(ρ),s,

where we used (25) in the first line. This proves λ(ρ, s) = λ(σ, s) for each s. For
the independence of s, we have, for r ∈ [0, 1],

‖�∗(Y )‖2σ,s = tr
[
�∗(Y )†σ 1−s�∗(Y )σ s]

= tr
[
�∗(αi r−s

2
(Y ))†σ 1−r�∗(αi r−s

2
(Y ))σ r ]

=‖�∗(αi r−s
2

(Y )
)‖2σ,r ,
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where αi r−s
2

(Y ) = αi r−s
2

(X − EN (X)) = αi r−s
2

(X) − EN (αi r−s
2

(X)) is also in

N⊥. Moreover,

‖Y ‖2σ,s=‖αi r−s
2

(Y )‖2σ,r .

For (iii), the inequality λ(ρ) ≤ λ(σ, 1) follows from integrating the 〈·, ·〉ρ,s inner
product to obtain 〈·, ·〉ρ . The equality λ(σ, 1) = λ(σ) follows from the fact that
the map �∗(id−EN ) is self-adjoint with respect to both 〈·, ·〉σ and 〈·, ·〉σ,s for
any s ∈ [0, 1]. Then the quantity ‖�∗(id−EN )‖, which is equal to the maximal
eigenvalue of �∗(id−EN ), is independent of the choice of Hilbert space norm
‖ · ‖. We note that, by (25),

��(ρ),s ◦ �∗ ◦ �−1
ρ,s = ��(ρ),s ◦ �∗ ◦ �−1

ρ,s�σ,s�
−1
σ,s

= ��(ρ),s�
−1
�(ρ),s�σ,s ◦ �∗ ◦ �−1

σ,s = �.

and

��(ρ) ◦ �∗ ◦ �−1
ρ = � ,

This implies ��(ρ) ◦ �∗(id−EN ) ◦ �−1
ρ = �(id−EN ∗), and hence

‖�(id−EN ∗) : L2(ρ
−1) → L2(�(ρ)−1)‖

=‖��(ρ) ◦ �∗(id−EN ) ◦ �−1
ρ : L2(ρ

−1) → L2(�(ρ)−1)‖
=‖�∗(id−EN ) : L2(ρ) → L2(�(ρ))‖ .

Moreover, since both σ and ρ are invariant to �2, we have by (ii),

λ(σ) =‖(�2)∗(id−EN ) : L2(σ ) → L2(σ )‖=‖(�2)∗(id−EN ) : L2(ρ) → L2(ρ)‖
≤‖�∗(id−EN ) : L2(ρ) → L2(�(ρ))‖‖�∗(id−EN ) : L2(�(ρ)) → L2(ρ)‖
≤‖�∗(id−EN ) : L2(σ ) → L2(σ )‖2= λ(σ).

This verifies (iii).

3. Modified Logarithmic Sobolev Inequalities

In this section, we prove the complete modified logarithmic Sobolev inequality
(CMLSI) for quantum Markov semigroups on finite dimensional matrix algebras.
The argument is a simple application of the key estimates in Section 2.3. LetM ⊂
B(H) be a finite dimensional vonNeumann algebra. A quantumMarkov semigroup
(QMS) (Pt )t≥0 : M → M is a continuous parameter semigroup of completely
positive, unital maps such thatP0 = idM andPs ◦Pt = Ps+t for all s, t ≥ 0. Such
a semigroup is characterised by its generator, called the Lindbladian L, which is
defined as

L(X) = limt→0
1

t
(Pt (X) − X) , ∀ X ∈ M,
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so that Pt = etL for all t ≥ 0. A QMS is said to be primitive if it admits a unique
full-rank invariant state σ . In this section, we consider semigroups Pt : M → M
on a finite dimensional von Neumann algebra M and exclusively study QMS that
satisfy the following detailed balance condition with respect to some (possibly
non-unique) full-rank invariant state σ : if, for any X,Y ∈ M and any t ≥ 0,

tr(σ X†Pt (Y )) = tr(σ Pt (X)†Y ), (σ -DBC)

then we say that a semigroup Pt is GNS-symmetric if Pt satisfies σ -DBC for a
full-rank invariant state σ . It was proved (see [21,61]) that for a GNS-symmetric
QMS (Pt : B(H) → B(H))t≥0 on B(H), its generator L can be written as

L(X) =
∑
j

(
e−ω j /2 A†

j [X, A j ] + eω j /2[A j , X ]A†
j

)
. (26)

Here A j ∈ B(H) andω j are some real parameters such that for any invariant stateσ ,

σ (A j ) := σ A j σ

−1 = e−ω j A j . Very recently, this result was extended by Wirth
[80] to all uniform continuous semigroups (Pt : M → M)t≥0 on a von Neumann
algebra M. Since we focus on finite dimensions, all the (continuous) semigroups
considered in this paper admit the above Lindbladian form (26). Moreover, there
exists a conditional expectation EN : M → F onto the fixed point algebra F =
{X ∈ M | [A j , X ] = 0 ∀ j } such that [34]

etL →
t→∞ EF .

We are interested in the exponential convergence to this limit in terms of relative
entropy. Recall that the entropy production (sometimes also referred as Fisher
information) for a state ρ ∈ D(M) is defined as

EPL(ρ) := − d

dt

∣∣∣∣
t=0

D(Pt∗(ρ)‖EF∗(ρ)) = − tr(L∗(ρ)(ln ρ − ln EF∗(ρ))),

(27)

which is the opposite of the derivative of the relative entropy with respect to the
equilibrium state. Here and in what follows, L∗ (resp. Pt∗ and EF∗) denotes the
adjoint maps of the generator L (resp. semigroup map Pt and conditional expec-
tation EF ). We say that a QMS Pt : M → M satisfies the modified logarithmic
Sobolev inequality (MLSI) with α > 0 if, for any ρ ∈ D(M),

α D(ρ‖EF∗(ρ)) ≤ EPL(ρ). (MLSI)

The best constant α achieving this bound is called themodified logarithmic Sobolev
constant of the semigroup, and is denoted by αMLSI(L). It turns out that this in-
equality is equivalent to the following exponential decay of relative entropy;

D(Pt∗(ρ)‖EF∗(ρ)) ≤ e−αt D(ρ‖EF∗(ρ)).

We also consider the complete modified logarithmic Sobolev inequality (CMLSI),
which requires

α D(ρ‖(EF∗ ⊗ id)(ρ)) ≤ EP(L⊗id)(ρ) (CMLSI)
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to hold for all states ρ on M ⊗ B(H) and any finite dimensional Hilbert space H
as a reference system (or even B(H) replaced by a finite von Neumann algebra).
We denote the best constant α achieving (MLSI) as αCMLSI(L). In [46], it was
shown that the proof of the positivity of αCMLSI for all GNS-symmetric quantum
Markov semigroups can be reduced to that for (trace) symmetric quantum Markov
semigroups, that is to those for which L = L∗. However, the problem of the
positivity of the CMLSI constant for symmetric QMS has been left open despite
considerable work delved on that topic in the recent years (see e.g. [17,18,37,81]).
Here, we provide a positive answer to the question via a simple application of our
key estimates from Section 2.3.

First, we recall that theDirichlet form associated toL takes the following simple
form [21, Section 5]: for any invariant state σ = EF∗(σ ),

Eσ (X) := −〈X, L(X)〉σ =
∑
j

∫ 1

0
e( 12−s) ω j 〈∂ j (X), ∂ j (X)〉σ,s ds, (28)

where ∂ j (X) := [A j , X ]. We denote

‖X‖σ,ω j :=
∫ 1

0
e( 12−s) ω j 〈∂ j (X), ∂ j (X)〉σ,s ds ⇒ Eσ (X) =

∑
j

‖∂ j (X)‖2σ,ω j
.

(29)

Then the entropy production associated to L can be written as (see [46, Lemma
2.3])

EPL(ρ) =
∑
j

‖�σ, 12
◦ ∂ j ◦ �−1

σ, 12
(ρ)‖2

ρ−1,ω j
, (30)

where, for any X ∈ M,

‖X‖2
ρ−1,ω j

=
∫ ∞

0
tr
[
X† (e− ω j

2 ρ + u)−1X (e
ω j
2 ρ + u)−1

]
du.

We denote the kernels corresponding to the inner products ‖.‖σ,ω j and ‖.‖σ−1,ω j

by �σ,ω j and �σ−1,ω j
, respectively.

Lemma 3.1. The following relation holds for any full-rank state σ :

�−1
σ,ω j

= �σ−1,ω j
. (31)

Moreover, whenever σ = EF∗(σ ),

�σ, 12
◦ ∂ j ◦ �−1

σ, 12
= �σ,ω j ◦ ∂ j ◦ �−1

σ . (32)

Proof. The first identity follows from Lemma 5.8 in [21]. The proof of the second
identity follows by direct computation using the commutation relation σ A j =
e−ω j A jσ .
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We recall that the spectral gap λ(L) of the Lindbladian L is characterized as

λ(L) := inf
X

Eσ (X)

‖X − EF (X)‖2σ
(33)

for a given full-rank invariant state σ .

Lemma 3.2. Suppose Pt is GNS-symmetric to a full-rank invariant state σ =
EF∗(σ ). Then the infimum in (33) is independent of the choice of the full-rank
invariant state σ .

Proof. By assumption the generator L is symmetric with respect to the GNS inner
product (σ -DBC), which also implies self-adjointness with respect to the inner
products 〈., .〉σ (cf. [21, Theorem 2.9]). Moreover, self-adjointness with respect to
the GNS inner product is independent of the invariant state chosen. Therefore, L
is self-adjoint with respect to 〈., .〉σ for any full-rank invariant state σ . Now, the
spectral gap (33) is the difference between the smallest eigenvalue (here, 0) and
the second smallest eigenvalue of −L, hence a quantity independent of the inner
product with respect to which L is self-adjoint, which allows us to conclude.

We are now ready to prove Theorem 1.1, which is the main theorem of this
section.

Theorem 3.3. Any GNS-symmetric quantum Markov semigroup on a finite dimen-
sional vonNeumannalgebraM satisfies the completemodified logarithmic Sobolev
inequality. More precisely, given such a QMS (Pt = etL : M → M)t≥0 with
fixed point algebra F , the following bound holds true:

λ(L)

Cτ,cb(M : F)
≤ αCMLSI(L) ≤ 2λ(L). (34)

Similarly, the modified logarithmic Sobolev inequality constant is controlled by

λ(L)

Cτ (M : F)
≤ αMLSI(L) ≤ 2λ(L). (35)

Proof. The proof of the upper bounds is standard and can be found in [6,50], so
we focus on the lower bounds. We first provide a bound on the MLSI constant. For
this we use the upper bound in Lemma 2.2 that, for X := �−1

EF∗(ρ)(ρ),

D(ρ‖EF∗(ρ)) ≤ ‖ρ − EF∗(ρ)‖2EF∗(ρ)−1 = ‖X − 1‖2EF∗(ρ) ≤ λ(L)−1 EEF∗(ρ)(X),
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where λ(L) is the spectral gap of L. Next, we have, by (29), that

EEF∗(ρ)(X) =
∑
j

‖∂ j (X)‖2EF∗(ρ),ω j

(1)=
∑
j

‖�EF∗(ρ),ω j ◦ ∂ j ◦ �EF∗(ρ)−1(ρ)‖2EF∗(ρ)−1, ω j

(2)=
∑
j

‖�EF∗(ρ), 12
◦ ∂ j ◦ �EF∗(ρ)−1, 12

(ρ)‖2EF∗(ρ)−1, ω j

(3)≤ Cτ (M : F)
∑
j

‖�EF∗(ρ), 12
◦ ∂ j ◦ �EF∗(ρ)−1, 12

(ρ)‖ρ−1, ω j

(4)= Cτ (M : F) EPL(ρ).

For the above equality (1), we used the inverse relation (31); in (2) we used the
relation (32); (3) is an application of Lemma 2.1 with the weightsμ1 := exp(−ω j

2 )

andμ2 := exp(
ω j
2 ); finally (4) follows from (30). The proof of CMLSI (34) follows

the exact same steps, up to replacing the constant Cτ (M : F) by its completely
bounded version Cτ,cb(M : F).

Remark 3.4. The above theorem applies for the derivation triples introduced in
Carlen-Maas’s work [22] as well as the symmetric quantum Markov semigroup on
finite von Neumann algebra considered in [17,25,30] whenever the index Ccb(M :
F) is finite. Nevertheless, Ccb(M : F) = C(M : F) = +∞ whenever M is
infinite dimensional and F is finite dimensional, which limits its applicability in
infinite dimensional settings. In infinite dimensions, other tools like curvature have
been introduced to obtain CMLSI (see [17,18,56,81]).

Remark 3.5. When M := B(H) and the semigroup is primitive, comparison to
the logarithmic Sobolev constant αLSI combined with standard interpolation in-
equalities provide the following bounds for αMLSI [20,50,66]:

λ(L)

ln(μmin(σ )−1) + 2
≤ αLSI(L) ≤ αMLSI(L)

2
≤ λ(L). (36)

The lower bound can be compared with the one provided in (35) together with (19)
and (15) to give that

μmin(σ )λ(L)

dH
≤ αMLSI(L),

μmin(σ )λ(L)

d2H
≤ αCMLSI(L). (37)

Clearly, the lower bounds in (36) are asymptotically tighter. However,we emphasise
that our bounds (37) are the first generic non-trivial lower bounds for non-primitive
QMS, and the CMLSI bound are independent of the size of the environment and
hence stable under tensorization, which is even new for primitive semigroup. For
classical Markov semigroups (equivalently, graph Laplacians of a weighted graph),
(37) gives an alternativeCMLSI bounds to the one proved in [56]. In Sects. 6 and 6.2,
we will use the approximate tensorization bounds, which is the subject of Section 5,
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to derive bounds on the CMLSI constant that are sharper than (37) above. As we
will see, in some cases, the CMLSI lower bounds can scale similarly to the LSI
bounds in the primitive setting. It remain openswhether the CMLSI constant admits
asymptotic bounds better than O(d−2

H )λ(L) in general.

4. Strong Data Processing Inequalities

In this section, we study the complete strong data processing inequality for a
quantumchannel,which is a discrete time analog ofCMLSI.We recall the definition
of the weighted L2-norm corresponding to a full-rank state ω:

‖ X ‖2
ω−1=

∫ ∞

0
tr
(
X† 1

ω + s
X

1

ω + s

)
ds , X ∈ M∗ .

If X = ρ − ω for some other state ρ,

χ2(ρ, ω) :=‖ρ − ω‖2
ω−1

is a special case of the quantum χ2-divergence studied in [82]. It is known that χ2
also satisfies the data processing inequality: for a quantum channel �,

χ2(�(ρ),�(ω)) ≤ χ2(ρ, ω) . (38)

Indeed, the data processing inequality of relative entropy follows from (38) and the
argument used in Lemma 2.2. We shall now discuss how to control relative entropy
contraction coefficients by their χ2 analogues.

Let � : M∗ → M∗ be a quantum channel and �∗ be the adjoint map of �.
We denote by N the multiplicative domain of �∗. Suppose � admits a full-rank
invariant state σ and� satisfies σ -DBC. Then by Lemma 2.5,�∗ restricted toN is
a ∗-isomorphism. Denote by E : M → N the σ -preserving condition expectation
and by E∗ its pre-adjoint on M∗. For a full-rank state ω, we have discussed the
following L2-contraction constant in Lemma 2.6:

λ(ω) :=‖�(id−E∗) : L2(ω
−1) → L2(�(ω)−1)‖2 .

Equivalently, λ(ω) gives the contraction coefficient of χ2:

λ(ω) = sup
E∗(ρ)=E∗(ω),ρ �=ω

χ2(�(ρ),�(ω))

χ2(ρ, ω)
.

Here the supremum is over all state ρ �= ω with E∗(ρ) = E∗(ω), and we restrict
our optimization to states ρ and ω with the same “mean” (also called decoherence
free part) given by the map E∗. This is because if N �= C1 is not trivial, then for
any two invariant states σ, σ ′ ∈ D(N ),

χ2(�(σ ′),�(σ)) = χ2(σ
′, σ ) , D(�(σ ′)‖�(σ)) = D(σ ′‖σ) ,

and hence λ(σ) = 1 for any invariant state �(σ) = σ .
The next theorem is a quantum analog of [73, Theorem 3.4] which shows that

the χ2 contraction coefficient implies local strong data processing inequality.
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Theorem 4.1. Let � : M∗ → M∗ be a quantum channel that admits some full-
rank invariant state σ = �(σ). Let ω be a full-rank state and denote λ(ω) :=‖
�(id−E∗) : L2(ω

−1) → L2(�(ω)−1) ‖2. Then, for any state ρ with E∗(ω) =
E∗(ρ),

D(�(ρ)‖�(ω)) ≤ c D(ρ‖ω), (39)

where c is a constant such that

λ(ω) ≤ c ≤ c (C(ρ : ω), λ(ω)). (40)

Here C(ρ : ω) := inf{C |ρ ≤ C ω} and c(C, λ) is an explicit function such that
c(C, λ) < 1 whenever λ < 1. In particular, for any state ρ, c (C(ρ : ω), λ(ω)) ≤
c (μmin(ω)−1, λ(ω)) where μmin(ω) is the minimum eigenvalue of ω.

Proof. We first show the lower bound. Write λ ≡ λ(ω). Let ρ be a state with
E∗(ρ) = E∗(ω). Take the linear interpolation of states ωt := (1 − t) ω + t ρ, t ∈
[0, 1]. Now assume � satisfies (39) for c > 0. We have

D(�(ωt )‖�(ω)) ≤ c D(ωt‖ω),

since E∗(ωt )=E∗(ω). Consider the function f (t) = c D(ωt‖ω)−D(�(ωt )‖�(ω)).
Taking derivatives, we have f (0)= f ′(0)=0 and [55]

f ′′(0) = c ‖ρ − ω‖2
ω−1 − ‖�(ρ) − �(ω)‖2

�(ω)−1 .

Note that f ′′(0) ≥ 0, because f (t) ≥ 0 for t ∈ [0, ε]. Therefore,
‖�(ρ − ω)‖2

�(ω)−1≤ c ‖ρ − ω‖2
ω−1 .

This proves the lower bound

λ(ω) ≤ c .

For the upper bound, denote ρt = tρ + (1− t) ω and g(t) = D(ρt‖ω)− D(�(ρt )‖
�(ω)). We have g(0) = g′(0) = 0, and

g′′(t) =‖ρ − ω‖2
ρ−1
t

− ‖�(ρ − ω)‖2
�(ρ)−1

t
.

It follows from (38) (see also [55, Example 2]) that g′′(t) ≥ 0. Using Lemma 2.1
and the definition of λ(ω), we also have that

g′′(t) =‖ρ − ω‖2
ρ−1
t

− ‖�(ρ − ω)‖2
�(ρ)−1

t

≥ 1

1 + (C − 1)t
‖ρ − ω‖2

ω−1 − 1

1 − t
‖�(ρ − ω)‖2

�(ω)−1

≥
( 1

1 + (C − 1)t
− λ2

1 − t

)
‖ρ − ω‖2

ω−1 ,
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where C = inf{C | ρ ≤ C ω}. Thus, we have, for t0 := 1−λ2

1+λ2(C−1)
,

g′′(t) ≥
{(

1
1+(C−1)t − λ2

1−t

)
‖ρ − ω‖2

ω−1 , t ≤ t0

0, t > t0
.

Denote a(s) :=
∫ s

0

1

1 + (C − 1)t
− λ2

1 − t
dt = ln(1 + (C − 1)s)

C − 1
+ λ2 ln(1− s).

Since g′(0) = 0, we have g′(s) ≥ a(s) ‖ρ − ω‖2
ω−1 if s ≤ t0 and g′(s) ≥ a(t0) ‖

ρ − ω‖2
ω−1 if s ≥ t0. Denote

b(t) :=
∫ t

0
a′(s)ds = (1 + (C − 1)t) ln(1 + (C − 1)t) − (C − 1)t

(C − 1)2

−λ2((1 − t) ln(1 − t) + t) .

We have

D(ρ‖ω) − D(�(ρ)‖�(ω)) = g(1) − g(0) =
∫ 1

0
g′(s)ds

≥ ((1 − t0)a(t0) + b(t0)
) ‖ρ − ω‖2

ω−1

≥ ((1 − t0)a(t0) + b(t0)
)
D(ρ‖ω),

where the last inequality follows from Lemma 2.2. The SDPI constant is then upper
bounded by

c = 1 − (1 − t0)a(t0) − b(t0) < 1 .

It is clear from the derivation that c as a function depending on C and λ satisfies

c(C, λ) ≥ c(C ′, λ) , C ′ ≥ C ≥ 1 .

Then the last assertion follows from ρ ≤ 1 ≤ μmin(ω)−1ω.

Next, we consider strong data processing inequality for a quantum channel
� : M∗ → M∗ with respect to its decoherence free states D(EN ). We say �

satisfies a α-strong data processing inequality (α-SDPI) for some 0 < α < 1 if for
any state ρ ∈ D(H),

D(�(ρ)‖� ◦ EN ∗(ρ)) ≤ α D(ρ‖EN ∗(ρ)). (41)

We say that� satisfies the α-complete strong data processing inequality (α-CSDPI)
for some 0 < α < 1 if, for any n ∈ N and all bipartite states ρ ∈ D(Mn(M)),

D((� ⊗ idn)(ρ)‖(� ◦ EN ∗ ⊗ idn)(ρ)) ≤ α D(ρ‖(EN ∗ ⊗ idn)(ρ)), (42)

where idn denotes the identity channel on the matrix algebra Mn . We denote the
best (smallest) constant achieving SDPI (41) (resp. CSDPI (41)) as αSDPI(�) (resp.
as αCSDPI(�)). The advantage of the CSDPI constant is that it is stable under
tensorization.
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Proposition 4.2. Let �1 : M1∗ → M1∗ and �2 : M2∗ → M2∗ be two quantum
channel. Denote E j : M j → N j , j = 1, 2 as the condition expectation onto the
multiplicative domain of �∗

j respectively. Then

αCSDPI(�1 ⊗ �2) ≤ max{αCSDPI(�1), αCSDPI(�2)} .

Namely, for any n ≥ 1 and states ρ ∈ D(M1 ⊗ M2 ⊗ Mn)

D(�1 ⊗ �2 ⊗ idMn (ρ)‖(�1 ◦ E1∗) ⊗ (�2 ◦ E2∗) ⊗ idMn (ρ))

≤ max{αCSDPI(�1), αCSDPI(�2)}D(ρ‖E1∗ ⊗ E2∗ ⊗ idMn (ρ)). (43)

Proof. The proof is a natural application of the data processing inequality. For ease
of notations, we argue for n = 1 as the case for general n ≥ 1 follows the same
argument. Note that for j = 1, 2, � j ◦ E j∗ = E j∗ ◦ � j . Write α1 := αCSDPI(�1)

and α2 := αCSDPI(�2). We have

D
(
�1 ⊗ �2(ρ)‖(�1 ◦ E1∗) ⊗ (�2 ◦ E2∗)(ρ)

)

= D
(
�1 ⊗ �2(ρ)‖E1∗ ⊗ E2∗

(
�1 ⊗ �2(ρ)

))

= D
(
�1 ⊗ �2(ρ)‖E1∗�1 ⊗ �2(ρ)

)

+ D
(
E1∗�1 ⊗ �2(ρ)‖E1∗ ⊗ E2∗

(
�1 ⊗ �2(ρ)

))

≤ α1D
(
id⊗�2(ρ)‖E1∗ ⊗ �2(ρ)

)

+ α2D
(
(E1∗ ◦ �1) ⊗ id(ρ)‖(E1∗ ◦ �1) ⊗ E2∗(ρ)

)

≤ α1D
(
ρ‖E1∗ ⊗ id(ρ)

)

+ α2D
(
E1∗ ⊗ id(ρ)‖E1∗ ⊗ E2∗(ρ)

)

≤ max{α1, α2}D
(
ρ‖E1∗ ⊗ E2∗(ρ)

)
,

where in the second equality and the last inequality, we used the chain rule (12)
and the second last inequality uses data processing inequality for the map id⊗�2
and �1 ⊗ id, respectively.

As an application of Theorem (4.1), we have αSDPI(�) and αCSDPI(�) are
two-sided bounded by the spectral gap in finite dimensions.

Corollary 4.3. Let � : M∗ → M∗ be a quantum channel and N be the multi-
plicative domain of �∗. Assume that �∗ satisfies the σ -DBC for some full-rank
invariant state σ = �(σ). Denote the spectral gap λ(�) :=‖ �∗(id−EN ) :
L2(σ ) → L2(σ )‖2< 1. There exists an explicit constant c (Cτ,cb(M : N ), λ) < 1
such that

λ(�) ≤ αCSDPI(�) ≤ c (Cτ,cb(M : N ), λ(�)). (44)

The same estimate holds for αSDPI(�) simply replacing Cτ,cb(M : N ) by Cτ (M :
N ).
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Proof. We have shown in Lemma 2.6 that λ(�) = λ(σ) and λ(σ) ≥ λ(ρ) for all
decoherence free state ω ∈ D(EN ∗). Then (44) follows from Theorem 4.1 and the
fact that ρ ≤ Cτ,cb(M : N )EN ∗(ρ) for any ρ ∈ D(H ⊗ C

n).

Remark 4.4. For a primitive unital quantum channel � : B(H) → B(H), it was
proved in [63] that

αSPDI(�) ≤ 1 − αLSI(�
∗� − id) ≤ 1 − λ(�)

ln d + 2
,

where αLSI(�
∗� − id) is the log-Sobolev constant of the map �∗� − id seen as

the generator of a quantum Markov semigroup. This is generically better than the
bounds found in Corollary 4.3. Nevertheless, our results give explicit SDPI con-
stants for general non-egordic GNS-symmetric quantum channels, independently
of the size of the environment. Moreover, the CSDPI constant satisfies the ten-
sorization property.

5. Approximate Tensorization

In this section, we consider the approximate tensorization of the relative entropy
in a general setting. LetM be a finite dimensional von Neumann algebra equipped
with a faithful trace tr. Let N1,N2 ⊂ M be two subalgebras of M and N =
N1 ∩ N2. Let EN : M → N and Ei : M → Ni , i = 1, 2, be conditional
expectations such that EN ◦ Ei = EN . If ρ is a state that satisfies EN ∗(ρ) = ρ,
then

ρ = EN ∗(ρ) = Ei∗ ◦ EN ∗(ρ) = Ei∗(ρ) , i = 1, 2 .

Namely, every EN invariant state is both E1 and E2 invariant. Denote that ρN =
EN ∗(ρ) and ρi = Ei∗(ρ), i = 1, 2.We are interested in the following approximate
tensorization property:

D(ρ‖ρN ) ≤ c (D(ρ‖ρ1) + D(ρ‖ρ2)) , ∀ρ ∈ D(EM). (45)

It was proved in [36, Corollary 2.3] that the constant c equals to 1 if and only if E1
and E2 form a commuting square, i.e. E1 ◦ E2 = E2 ◦ E1 = EN . Using the chain
rule D(ρ‖ρN ) = D(ρ‖ρi ) + D(ρi‖ρN ), the inequality (45) is equivalent to the
entropic uncertainty relation

D(ρ‖ρN ) ≥ α(D(ρ1‖ρN ) + D(ρ2‖ρN )) , ∀ρ ∈ D(EM), (46)

where α = c

2c − 1
> 1/2. Take ρ(t) = tρ + (1 − t)ρN and the function

f (t) = D(ρ(t)‖ρN ) − α
(
D(ρ1(t)‖ρN ) + D(ρ2(t)‖ρN )

)
.

Then we have f (0) = f ′(0) = 0 and

f ′′(0) =‖ρ − ρN ‖2
ρ−1
N

−α
( ‖ρ1 − ρN ‖2

ρ−1
N

+ ‖ρ2 − ρN ‖2
ρ−1
N

)
,
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so a necessary condition for (46) and, equivalently, (45), is that for any state ρ,

‖ρ − ρN ‖2
ρ−1
N

≥ α
( ‖ρ1 − ρN ‖2

ρ−1
N

+ ‖ρ2 − ρN ‖2
ρ−1
N

)
.

In particular, if we choose ρ = ρ1 = E1∗(ρ), we have

(1 − α)

α
‖ρ1 − ρN ‖2

ρ−1
N

≥‖E2∗(ρ1) − ρN ‖2
ρ−1
N

.

Because 1/2 < α ≤ 1, for λ = 1−α
α

this can be reformulated as the L2-clustering
condition

‖E2∗ ◦ E1∗ − EN ∗ : L2(ρ
−1
N ) → L2(ρ

−1
N )‖

=‖E1 ◦ E2 − EN : L2(ρN ) → L2(ρN )‖:= λ < 1 .

Since E2 ◦ E1 is the identity onN and satisfies the ρN -DBC condition, the above
definition is independent of the choice of invariant stateρN (see Lemma2.6, also [8,
Theorem2]).Note that in finite dimensions, the constantλ is always strictly less than
1, otherwise therewould exist a nonzero X /∈ N such that E1(X) = X, E2(X) = X
and hence X ∈ N , which leads to a contradiction. We now show that the L2-
clustering condition is also a sufficient condition for (45).

Theorem 5.1. Let σ ∈ D(EN ). Denote ‖ E1 ◦ E2 − EN : L2(σ ) → L2(σ ) ‖=
λ < 1 as the L2-clustering constant. Then for any state ρ,

D(ρ‖ρN ) ≤ c
(
D(ρ‖ρ1) + D(ρ‖ρ2)

)
, (47)

where

(i) the constant c satisfies

1

1 − λ2
≤ c ≤ 2Cτ (M : N )

(1 − λ)2
; (48)

(ii) if, in addition, λ < 1√
2
,

c ≤ 1 +
( λ

1 − λ
+ λ2

1 − 2λ2

)
Cτ (M : N ) . (49)

Similarly, for any n ∈ N and all states ρ ∈ D(M ⊗ Mn), we have

D(ρ‖(EN ∗ ⊗ id)(ρ)) ≤ ccb
(
D(ρ‖(E1∗ ⊗ id)(ρ)) + D(ρ‖(E2∗ ⊗ id)(ρ))

)
,

(50)

where ccb satisfies either (48) or (49) after replacingCτ (M : N ) byCτ,cb(M : N ).
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Proof. The lower bound was proven at the beginning of the section, so we focus
on the upper bound. Note that E1, E2 and EN are all projections on L2(ρN ). For
a state ρ, we write ρ12 = E1∗E2∗(ρ) and ρ21 = E2∗E1∗(ρ). By the L2-clustering
condition

‖ρ − ρ21 ‖
ρ−1
N

≥‖ρ − ρN ‖
ρ−1
N

− ‖ρN − ρ21 ‖
ρ−1
N

≥ (1 − λ) ‖ρ − ρN ‖
ρ−1
N

. (51)

Moreover, since E1∗, E2∗ and EN ∗ are projections on L2(ρ
−1
N ),

‖ρ − ρN ‖2
ρ−1
N

− ‖ρ − ρ1 ‖2
ρ−1
N

− ‖ρ − ρ2 ‖2
ρ−1
N

≤‖ρ − ρN ‖2
ρ−1
N

− ‖ρ − ρ2 ‖2
ρ−1
N

− ‖ρ2 − E2∗(ρ1)‖2
ρ−1
N

≤‖ρ − ρN ‖2
ρ−1
N

− ‖ρ − E2∗(ρ1)‖2
ρ−1
N

=‖ρ − ρN ‖2
ρ−1
N

− ‖ρ − ρ21 ‖2
ρ−1
N

≤ (1 − (1 − λ)2) ‖ρ − ρN ‖2
ρ−1
N

,

where the last line follows from (51). Namely, we have

‖ρ − ρN ‖2
ρ−1
N

≤ 1

(1 − λ)2

( ‖ρ − ρ1 ‖2
ρ−1
N

+ ‖ρ − ρ2 ‖2
ρ−1
N

)
.

Now, using Lemma 2.2,

D(ρ‖ρN ) ≤‖ρ − ρN ‖2
ρ−1
N

≤ 1

(1 − λ)2

( ‖ρ − ρ1 ‖2
ρ−1
N

+ ‖ρ − ρ2 ‖2
ρ−1
N

)

≤ Cτ (M : N )

(1 − λ)2

( ‖ρ − ρ1 ‖2
ρ1(t)−1 + ‖ρ − ρ2 ‖2

ρ2(t)−1

)
,

where ρ1(t) = tρ + (1 − t)ρ1 and ρ2(t) = tρ + (1 − t)ρ2. As in Lemma 2.2,

for i = 1, 2 D(ρ‖ρi ) =
∫ 1

0

∫ s

0
‖ρ − ρi ‖2ρi (t) dtds. Then, integrating the above

inequality, we have

D(ρ‖ρN ) ≤ 2Cτ (M : N )

(1 − λ)2

(
D(ρ‖ρ1) + D(ρ‖ρ2)

)
,

which proves (i). For (ii), by the chain rule ([46, Lemma 3.4]), we have

D(ρ‖ρN ) = D(ρ‖ρ1) + D(ρ1‖ρN )

= D(ρ‖ρ1) + D(ρ1‖ρ12) + tr(ρ1(ln ρ12 − ln ρN )),

and similarly,

D(ρ‖ρN ) = D(ρ‖ρ2) + D(ρ2‖ρN )

= D(ρ‖ρ2) + D(ρ2‖ρ21) + tr(ρ2(ln ρ21 − ln ρN )).
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It suffices to estimate the error term tr(ρ1(ln ρ12 − ln ρN )) and tr(ρ2(ln ρ21 −
ln ρN )). Recall the integral identity that for positive A, B > 0

ln A − ln B =
∫ ∞

0

1

A + s
(A − B)

1

B + s
ds .

Thus, by Cauchy–Schwarz inequality and Lemma 2.2,

tr(ρ1(ln ρ12 − ln ρN ))

= tr((ρ1 − ρ12)(ln ρ12 − ln ρN )) + tr(ρ12(ln ρ12 − ln ρN ))

=
∫ ∞

0
tr

(
(ρ1 − ρ12)

1

ρ12 + s
(ρ12 − ρN )

1

ρN + s

)
ds + D(ρ12‖ρN )

≤‖ρ1 − ρ12 ‖
ρ−1
12

‖ρ12 − ρN ‖
ρ−1
N

+ ‖ρ12 − ρN ‖2
ρ−1
N

.

Similarly,

tr(ρ2(ln ρ21 − ln ρN )) ≤ ‖ρ2 − ρ21 ‖
ρ−1
21

‖ρ21 − ρN ‖
ρ−1
N

+ ‖ρ21 − ρN ‖2
ρ−1
N

.

Note that by the L2-clustering condition,

‖ρ12 − ρN ‖
ρ−1
N

≤ λ ‖ρ2 − ρN ‖
ρ−1
N

≤ λ(‖ρ2 − ρ21 ‖
ρ−1
N

+ ‖ρ21 − ρN ‖
ρ−1
N

),

‖ρ21 − ρN ‖
ρ−1
N

≤ λ ‖ρ1 − ρN ‖
ρ−1
N

≤ λ(‖ρ1 − ρ12 ‖
ρ−1
N

+ ‖ρ12 − ρN ‖
ρ−1
N

).

Thus

‖ρ12 − ρN ‖2
ρ−1
N

≤ 2λ2(‖ρ2 − ρ21 ‖2
ρ−1
N

+ ‖ρ21 − ρN ‖2
ρ−1
N

) ,

‖ρ21 − ρN ‖2
ρ−1
N

≤ 2λ2(‖ρ1 − ρ12 ‖2
ρ−1
N

+ ‖ρ12 − ρN ‖2
ρ−1
N

.

Therefore, for λ < 1√
2
, by Lemma 2.4,

‖ρ12 − ρN ‖2
ρ−1
N

+ ‖ρ21 − ρN ‖2
ρ−1
N

≤ 2λ2

1 − 2λ2
( ‖ρ1 − ρ12 ‖2

ρ−1
N

+ ‖ρ2 − ρ21 ‖2
ρ−1
N

)

≤ 2λ2

1 − 2λ2
(
2C1D(ρ1‖ρ12) + 2C2D(ρ2‖ρ21)

)
,

C1 = Cτ (N1 : N ), and C2 = Cτ (N2 : N ). On the other hand, denoting

M := max{√2C1D(ρ1‖ρ12),
√
2C2D(ρ2‖ρ21)},

we have

‖ρ1 − ρ12 ‖
ρ−1
12

‖ρ12 − ρN ‖
ρ−1
N

+ ‖ρ2 − ρ21 ‖
ρ−1
21

‖ρ21 − ρN ‖
ρ−1
N

≤ M (‖ρ12 − ρN ‖
ρ−1
N

+ ‖ρ21 − ρN ‖
ρ−1
N

)

≤ M
λ

1 − λ
(‖ρ2 − ρ21 ‖

ρ−1
N

+ ‖ρ1 − ρ12 ‖
ρ−1
N

)

≤ M
λ

1 − λ
(
√
2C2D(ρ2‖ρ21) +√2C1D(ρ1‖ρ12))

≤ 2λ

1 − λ
Cmax

(
D(ρ‖ρ1) + D(ρ‖ρ2)

)
,
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where Cmax := max{Cτ (N1 : N ),Cτ (N2 : N ),Cτ (M : N1),Cτ (M : N2)} ≤
Cτ (M : N ). Therefore, we have

2D(ρ‖ρN ) − D(ρ‖ρ1) − D(ρ‖ρ2) − D(ρ1‖ρ12) − D(ρ2‖ρ21)
= tr(ρ1(ln ρ12 − ln ρN )) + tr(ρ2(ln ρ21 − ln ρN ))

≤‖ρ1 − ρ12 ‖
ρ−1
12

‖ρ12 − ρN ‖
ρ−1
N

+ ‖ρ2 − ρ21 ‖
ρ−1
21

‖ρ21 − ρN ‖
ρ−1
N

+ ‖ρ12 − ρN ‖2
ρ−1
N

+ ‖ρ21 − ρN ‖2
ρ−1
N

≤ 2λ

1 − λ
Cmax

(
D(ρ‖ρ1) + D(ρ‖ρ2)

)+ 2λ2

1 − 2λ2
(
C1D(ρ1‖ρ12) + C2D(ρ2‖ρ21)

)

≤
( 2λ2

1 − 2λ2
+ 2λ

1 − λ

)
Cmax

(
D(ρ‖ρ1) + D(ρ‖ρ2)

)
.

follows after rearranging the terms in the outer bounds and a last use of the data
processing inequality. The proof of (50) follows the exact same lines after replacing
Cτ (M : N ) by Cτ,cb(M : N ) .

Remark 5.2. By using ρi (t) = tρ + (1 − t)ρi ≤ (tCτ (M : N ) + (1 − t)Cτ (Ni :
N )
)
ρN , the constant c in (i) can be improved to

c = K (Cτ (M : N ),max{Cτ (N1 : N ),Cτ (N2 : N )})
(1 − λ)2

,

where K (c1, c2) := c1 ln c1 − c1 + c2
(c1 − c2)2

. ccb. For (ii), as shown in the proof, the

constant Cτ (M : N ) in (ii) can be improved to

Cmax := max{Cτ (N1 : N ) ,Cτ (N2 : N ),Cτ (M : N1),Cτ (M : N2)}
≤ Cτ (M : N ) ,

The same remark holds for ccb in both cases.

The above theorem gives the equivalence of L2-clustering condition and com-
plete approximate tensorization ccb given finite index. Moreover, the (ii) above
recovers the optimal constant c = 1 in the case of commuting squares (λ = 0).

In the classical literature [24,27], approximate tensorization constants were
found under the strong condition of smallness of the norm ‖E1 ◦ E2 − EN : L1 →
L∞ ‖ instead of the L2-condition ‖ E1 ◦ E2 − EN : L2 → L2 ‖ that we use. In
that setting, the approximate tensorization constants obtained in Theorem 5.1 are
not tight because the Pimsner–Popa indices coincide with the dimension bounds
for the L1 → L∞ norm. Quantum extensions using L1 → L∞ cluster condi-
tion were recently found in [8], however they yield additive error terms in generic
noncommutative situations, e.g. when the algebraN is not trivial. This generaliza-
tion however was found fruitful in deriving the positivity of the MLSI constant for
some classes of Gibbs samplers in [19], where the multiplicative constant could
be related to the notion of clustering of correlations in the equilibrium Gibbs state.
There, the analysis could be reduced to the case of states ρ for which the additive
error vanishes. However, the problem of the vanishing of the additive constant for
general states remained open.
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After the preprint submission of a preliminary version of the present paper,
LaRacuente in [53] introduced a method based on our Lemma 2.2 to find asymp-
totically tight approximate tensorization constants. Themain idea from [53] resides
in an application of the map (E1 ◦ E2)

k in order to control the L1 → L∞ norm via
‖(E1 ◦ E2)

k − EN : L2(σ ) → L2(σ )‖ = λk , at the cost of having to multiply the
approximate tensorization constant by k. Our next two results can be interpreted as
a merging of these different contributions to improve the tightness of the approx-
imate tensorization constant. We first start with a theorem which generalizes the
original results of [24,27] without the additive error terms found in [8], at the cost
of having to replace the L1 → L∞ condition by the completely bounded version
of it. Although the condition is closer to that of [53], our proof is arguably more
straightforward and resembles the ones of [8,19,24,27].

Theorem 5.3. Let N ⊂ M be a finite dimensional von Neumann subalgebra and
EN : M → N be a conditional expectation. Let � : M∗ → M∗ be a quantum
channel such that �∗ is GNS-symmetric to a full-rank EN -invariant states and
satisfies �∗ ◦ EN = EN ◦ �∗ = EN . Suppose, for some 0 < ε <

√
2 ln 2 − 1,

that

(1 − ε)EN ≤cp �∗ ≤cp (1 + ε)EN ,

where the inequalities hold in completely positive order. Then, for all n ∈ N and
states ρ ∈ D(M ⊗ Mn),

D(ρ‖EN ∗(ρ)) ≤ 1

1 − ε2(2 ln 2 − 1)−1 D(ρ‖�2(ρ)) . (52)

Proof. Let ρ ∈ D(M ⊗ Mn) and ρN := EN ∗(ρ). Then,

D(ρ‖ρN ) − D(ρ‖�2(ρ)) = tr
[
ρ (− ln(ρ) + ln A)

]

= −D
(
ρ

∥∥∥ A

tr(A)

)
+ ln tr(A) ≤ ln tr(A)

for A := exp(ln�2(ρ) − ln ρN + ln ρ). Here the last inequality follows from the
positivity of the relative entropy. Using Lieb’s triple matrix inequality (see [57,
Theorem 7]),

ln tr(A) ≤ ln
∫ ∞

0
tr

(
�2(ρ)

1

ρN + s
ρ

1

ρN + s

)
ds .

Then, by the GNS-symmetry of �∗,

D(ρ‖ρN ) ≤ D(ρ‖�2(ρ)) + ln
∫ ∞

0
tr

(
�(ρ)

1

ρN + s
�(ρ)

1

ρN + s

)
ds

(1)≤ D(ρ‖�2(ρ)) +
∫ ∞

0
tr

(
(�(ρ) − EN ∗(ρ))

× 1

ρN + s
(�(ρ) − EN ∗(ρ))

1

ρN + s

)
ds,
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where (1) arises from the basic inequality ln(x) ≤ x − 1 and the trace preserving
property of � and EN ∗. Now, since �∗ ≥cp (1 − ε)EN , there exists a quantum
channel � : M∗ → M∗ such that � = (1 − ε)EN ∗ + ε�. Therefore,

D(ρ‖ρN ) ≤ D(ρ‖�2(ρ)) + ε2
∫ ∞

0
tr
(
(�(ρ) − EN ∗(ρ))

× 1

ρN + s
(�(ρ) − EN ∗(ρ))

1

ρN + s

)
ds

= D(ρ‖�2(ρ)) + ε2 ‖(� − EN ∗)(ρ)‖2
ρ−1
N

(2)≤ D(ρ‖�2(ρ)) + ε2 k(2)−1 D(�(ρ)‖ρN )

≤D(ρ‖�2(ρ)) + ε2 k(2)−1 D(ρ‖ρN ),

where (2) comes from Lemma 2.2 and the fact that �∗ ≤ (1 + ε)EN , so that

�(ρ) ≤ ε−1(1 + ε − (1 − ε))ρN = 2ρN .

The result follows after rearranging the terms in the last inequality.

The above theorem can be used to derive approximate tensorization bounds.We
are grateful to Chi-Fang Chen for pointing out that the approximate tensorization
constant in the older version can be improved with a factor 1

m .

Corollary 5.4. Let N1, . . . ,Nm ⊂ M be finite dimensional von Neumann subal-
gebras of B(H), and let N = ∩m

i=1Ni . Let EN : M → N and Ei : M → Ni

be some corresponding conditional expectations. Suppose for some full-rank EN -
invariant state σ = EN ∗(σ ), σ = Ei∗(σ ) for each i . Then for �∗ = 1

m

∑m
i=1 Ei ,

we have that, for all n ∈ N and all states ρ ∈ D(M ⊗ Mn),

D(ρ‖EN ∗(ρ)) ≤ 2k

1 − ε2(2 ln(2) − 1)−1

m∑
i=1

D(ρ‖Ei∗(ρ)), (53)

whenever 0 < ε <
√
2 ln(2) − 1 and k satisfies

(1 − ε)EN ≤cp (�∗)k ≤cp (1 + ε)EN . (54)

If, additionally, Ei and EN are trace preserving conditional expectations, we have
that for all n ∈ N and all state ρ ∈ D(M ⊗ Mn),

D(ρ‖EN ∗(ρ)) ≤ 4

m

⌈
lnCcb(M : N ) + 1

ln(λ−1)

⌉ m∑
i=1

D(ρ‖Ei∗(ρ)), (55)

where λ := ‖� − EN : L2(tr) → L2(tr)‖ and �s� denotes the smallest integer
greater than or equal to s.



Complete Entropic Inequalities for Quantum Markov Chains 217

Proof. Equation (53) is a direct consequence of Theorem 5.3 and successive ap-
plications of convexity of the relative entropy and the chain rule [53, Lemma 3.2],

D(ρ‖�2k(ρ)) ≤ 1

m

m∑
i=1

D(ρ‖Ei∗�2k−1(ρ))

≤ 1

m

m∑
i=1

D(ρ‖Ei∗(ρ)) + D(ρ‖�2k−1(ρ))

≤ 2k

m

m∑
i=1

D(ρ‖Ei∗(ρ)).

In the case when all Ei and E are trace preserving, we prove in “Appendix A” that
ε can be chosen as (see Lemma A.1)

ε = λkCcb(M : N )

for k large enough so that the condition (54) is satisfied. Therefore, we can choose

ε ≤
√
ln 2 − 1

2 and 1 − ε2(2 ln(2) − 1)−1 ≥ 1/2 by taking

k =
⌈

(− ln λ)−1
(
lnC − ln

√
ln 2 − 1

2

)⌉
≤
⌈
lnC + 1

− ln λ

⌉
, C := Ccb(M : N ).

Then (55) follows from (53).

Remark 5.5. Although the bound (53) does not recover the exact tensorization for
commuting conditional expectations, it has the merit over our other bounds to be
independent of the index Cτ,cb(M : N ). In Section 6, we use the bound (55) to
derive sharper CMLSI constants than Theorem 3.3 for several examples.

Remark 5.6. Another natural choice is �∗ = ∏m
i=1 Ei , where the product can be

interpreted with any order. Indeed, by the chain rule,

D

(
ρ‖

m∏
i=1

Ei (ρ)

)
≤

m∑
i=1

D(ρ‖Ei (ρ)).

By a similar argument as to that above, we obtain the approximate tensorization

D(ρ‖EN ∗(ρ)) ≤ 4k
m∑
i=1

D(ρ‖Ei∗(ρ)) where k ≤
⌈
lnCcb(EN ) + 1

− ln λp

⌉

with λp :=‖∏m
i=1 Ei − EN ‖. Let us also denote λs :=‖ 1

m

∑m
i=1 Ei − EN ‖. By

the detectability lemma [4], we have

λp =
∥∥∥

m∏
i=1

Ei − EN
∥∥∥ ≤ 1

λE
g2

+ 1
,

where λE = m − mλs is the spectral gap of
∑

i 1 − Ei and g is the integer such
each Ei commute with all but at most g E j ’s. Then when λE → 0 is small, the
approximate tensorization constant from �∗ =∏m

i=1 Ei is always weaker than the
one from �∗ = 1

m

∑m
i=1 Ei .
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6. Applications and Examples

6.1. Symmetric Lindbladians

In this section, we use the approximate tensorization results of Section 5 to give
tighter bounds on the CMLSI constant for generators L which can be expressed as
a summation of a family of generators

L =
m∑

k=1

Lk .

For simplicity, here we only consider symmetric generators.We say that a generator
L : B(H) → B(H) is symmetric if

tr(Y †L(X)) = tr(L(Y †)X) , ∀ X, Y ∈ B(H).

Hence, L = L∗, Pt = Pt∗ and the conditional expectations E = E∗ are all trace
symmetric (or equivalently, Pt is GNS-symmetric with respect to the completely
mixed state 1

dH ). In this case, we do not distinguish Pt (resp. E and L) from its
predual Pt∗ (resp. E∗ and L∗) because one can identify B(H) ∼= B(H)∗ via the
Hilbert–Schmidt inner product in finite dimensions. The main idea here consists in
using the approximate tensorization of the CMLSI constant.

Proposition 6.1. Let (Lk : B(H) → B(H))mk=1 bea family of symmetric generators
and L = ∑m

k=1 Lk . Denote E, resp. Ek, as the conditional expectation onto the
kernel of L, resp. Lk . Then the CMLSI constants of L and Lk satisfy

αCMLSI(L) ≥ C−1
(
min
k

αCMLSI(Lk)
)
,

where C satisfies the complete approximate tensorization

D(ρ‖E(ρ)) ≤ C
m∑
i=1

D(ρ‖Ei (ρ)). (56)

Moreover, denote λ(Lk) as the spectral gap of Lk and λE as the spectral gap of
LE =∑k(Ek − id). Then,

C ≤ 4

m

⌈
lnCcb(E) + 1

ln(λ−1)

⌉
, (57)

where Ccb(E) is the index of E and λ := 1 − λE
m .
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Proof. For any state, we have

D(ρ‖E(ρ)) ≤ C
m∑
i=1

D(ρ‖Ei (ρ))

≤ C
m∑
i=1

αCMLSI(Lk)
−1EPLk (ρ)

≤ C(min
k

αCMLSI(Lk))
−1
∑
k

EPLk (ρ)

= C(min
k

αCMLSI(Lk))
−1EPL(ρ).

Here the first inequality above uses the assumption (56), and the last line uses the
linearity of the entropy production (27). For the second assertion, we denote N
as the range of E , which coincides with the kernel of L. Then 1

m

∑
k Ek − E is a

positive contraction supported on L2(N )⊥ ⊂ L2(B(H)). Since

1

m

∑
k

Ek − EN + 1

m
LE = 1

m

∑
k

Ek − E + 1

m

∑
k

id−Ek = id−E,

we have

∥∥∥ 1
m

m∑
k=1

Ek − E : L2(B(H)) → L2(B(H))

∥∥∥ = 1 − λE

m
=: λ .

Then the approximate tensorization constant (57) follows fromusing� = 1
m

∑
k Ek

in Corollary 5.4.

Remark 6.2. The above proposition can be extended to a family of generator Lk

that are GNS-symmetric to a common full rank state σ . Indeed, the content in
“Appendix B” can be extended to state preserving conditional expectations (see [7,
Section 5]), hence Corollary (55) and the above Proposition 6.1 also extend to that
setting. Nevertheless, the symmetric setting is sufficient for the examples discussed
in this section.

We now illustrate the above bound on several examples. First, we note that, due
to symmetry, the Lindbladian (26) takes a simple form

L(ρ) = −
m∑

k=1

[ak, [ak, ρ]], (58)

where a1, . . . , am ∈ B(H) form a family of self-adjoint operators. Let us first
consider a single term in the generator

La(ρ) = −[a, [a, ρ]]
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for a self-adjoint a ∈ B(H). Let a =∑n
i=1 κi Pi be the spectral decomposition of a,

where Pi is the spectral projection with respect to the eigenvalue κi . One calculates
that

[a, ρ] =
∑
i, j

(κi − κ j )PiρPj , La(ρ) = −[a, [a, ρ]] = −
∑
i, j

(κi − κ j )
2PiρPj .

Then La generates the semigroup

eLa t (ρ) =
∑
i, j

e−(κi−κ j )
2t PiρPj ,

which is a Schur multiplier semigroup (also called generalized dephasing semi-
group). The invariant subalgebra Na = ⊕n

i=1B(PiH) and the indices are

C(B(H),Na) = Ccb(B(H),Na) = n ≤ dH.

Viewing La as a self-adjoint operator on L2(B(H), tr), PiB(H)Pj corresponds to
the eigenspace associated to the eigenvalue−(κi −κ j )

2. Thus the norm and spectral
gap of La are

‖La : L2(B(H), tr) → L2(B(H), tr)‖= max
i, j

|κi − κ j |2 , λ(La) = min
i �= j

|κi − κ j |2 .

It was proved in [17, Theorem 4.23] that Schur multiplier semigroups admit the
following estimates on their CMLSI constant (note that our normalization of the
CMLSI constants differs with [17] by a factor of 2):

λ(La)

2 ln(2n)
≤ αCMLSI(La) ≤ 2λ(La). . (59)

Moreover, for a commuting family {a1, . . . , am}, the Lindbladian L(ρ) =
−∑m

k=1[ak, [ak, ρ]] also generates a Schur multiplier semigroup and the above
estimate (59) remains valid.

Applying Proposition 6.1, we extend the above estimate to general Lindbladians
of the form L =∑k Lak for not necessarily commuting operators ak .

Corollary 6.3. Let (Pt = eLt : B(H) → B(H))t≥0 be a symmetric quantum
Markov semigroup, and let its generator be given by

L(X) =
m∑

k=1

Lak (X) = −
m∑

k=1

[ak, [ak, X ]].

Denote EN , resp. Ek, as the conditional expectation onto the kernel of L, resp.
that of Lak . Denote λ(Lak ) as the spectral gap of Lak and λE as the spectral gap
of LE =∑k(Ek − id). Then,

αCMLSI(L) ≥ m

⌈
2 ln d + 1

ln(λ−1)

⌉−1 mink λ(Lak )

8 ln(2d)
,

where d = dim(H) and λ := 1 − λE
m .
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Remark 6.4. For the spectral gap, we have that, for each k,

λ(Lak ) ≤ λ(L) .

Also, the spectral gap of LE =∑i Ei − id satisfies

λ(LE ) ≤‖L : L2(tr) → L2(tr)‖−1 λ(L) ,

because id−Ek ≥ − ‖Lak : L2 → L2 ‖−1 Lak and ‖Lak : L2 → L2 ‖≤‖L :
L2 → L2 ‖, since each generator Lak is a non-positive operator in the L2 sense.
Therefore the constant obtained in Theorem 6.3 can be further estimated by

αCMLSI(L) ≥ m
⌈ 2 ln d + 1

− ln(1 − λ(L)
m )

⌉−1 mink λ(Lak )

8 ln(2d)
= �

(λ(L)mink λ(Lak )

(ln d)2

)
.

Thus, in general, the constant obtained in Corollary 6.3 has better asymptotics in
terms of the dimension d than that of Theorem 3.3. We note that this approach does
not apply to GNS-symmetric Lindbladians because in general the decomposition
(58) in terms of Schur multipliers is not available.

Example 6.5. We now illustrate Theorem 6.3 for transference semigroups from the
sub-Laplacian on SU(2).We refer to [37, Section 4.2] for the transference technique
for quantum Markov semigroups. Let SU(2) be the special unitary group on C

2.
Denote

X =
[

0 1
−1 0

]
, Y =

[
0 i
i 0

]
, Z =

[
i 0
0 −i

]

as the anti-selfadjoint Pauli matrices. Then

SU(2) = {aX + bY + cZ + d1 | |a|2 + |b|2 + |c|2 + |d|2 = 1} ,

which is isomorphic to the 3-sphere S
3. Its Lie algebra is the anti-selfadjoint matrix

space

i(M2)sa := span{X,Y, Z},
equipped with the Lie bracket relations

[X,Y ] = 2Z , [Y, Z ] = 2X, [Z , X ] = 2Y. (60)

The canonical bi-invariant Riemannian metric on SU(2) admits {X,Y, Z} as an
orthonormal basis. The representation theory of SU(2) gives the well-known spin
structure of quantum mechanics, where any irreducible representation of SU(2) is
indexed by an integer m ∈ N

+. Let ηm : su(2) → i(Mm)sa be the Lie algebra
homomorphism induced by the m-th irreducible representation, and let {| j〉| j =
1, . . . ,m} be the eigenbasis of ηm(Z). Denote that Xm := ηm(X), and similarly
for Ym and Zm as short notations. Under the normalization of (60),

Xm | j〉 = √( j − 1)(m − j + 1) | j − 1〉 −√( j + 1)(m − j − 1) | j + 1〉,
Ym | j〉 = i

√
( j − 1)(m − j + 1) | j − 1〉 + i

√
( j + 1)(m − j − 1) | j + 1〉,

Zm | j〉 = (m − 2 j + 1) | j〉.
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For each irreducible representation, one can consider quantumMarkov semigroups
transferred from the heat semigroup (e
t )t≥0 on SU(2), which is given by the
Casimir operator


 = X2 + Y 2 + Z2.

It follows from the complete Bakry-Emery Theorem [56, Theorem 4.3] that the
heat semigroup has αCMLSI(
) ≥ 2 because its Ricci curvature is 1. Therefore, the
transferred Lindbladian on Mm

L

m (ρ) = −[Xm, [Xm, ρ]] − [Ym, [Ym, ρ]] − [Zm, [Zm, ρ]]

admits a uniform CMLSI constant αCMLSI(L

m ) ≥ 2 by transference principle [37,

Proposition 4.7]. Here we consider the canonical sub-Laplacian on SU(2) given by


H = X2 + Y 2.

It is known (see e.g. [10]) that 
H is hypoelliptic and generates a classical Markov
semigroup (e
H t )t≥0; its transferred Lindbladian on Mm is given by

LH
m (ρ) = −[Xm, [Xm, ρ]] − [Ym, [Ym, ρ]] .

Although the CMLSI constant for the sub-Laplacian
H is currently still unknown
(MLSI is known from hypercontractivity), we can use approximate tensorization
to obtain a uniform lower bound on αCMLSI(LH

m ) for each m.
It suffices to consider m ≥ 3. Denote X and Y as the kernel of LXm (·) =

[Xm, [Xm, ·]] (resp. LYm ). Since both Xm and Ym have distinct spectrum {m −
1,m − 3,m − 5, . . . ,−(m − 1)}, X and Y are subalgebra generated by Xm and
Ym respectively. Then the conditional expectation EX (resp. EY ) are the pinching
map

EX (ρ) =
∑
i

〈xi |ρ|xi 〉|xi 〉〈xi | , EY (ρ) =
∑
y

〈y j |ρ|y j 〉|y j 〉〈y j |,

where {|xi 〉} and {|y j 〉} are the eigenbasis of Xm and respectively Ym . Also denote
EC := tr(.)m−11 the conditional expectation onto C1. Note that it is sufficient to
consider the map EX EY − EC : B(HA) → B(HA) from its support Y to the range
X , which is given by the matrix

OX ,Y =
(
|〈xi |y j 〉|2 − 1

m

)
i, j

.

Therefore, we have that

‖EX EY − EN : L1(B(HA), d−1
A 1) → B(HA)‖cb = ‖OX ,Y : l1(Y) → l∞(X )‖

=: λ.

Since all the eigenvectors {|xi 〉} and {|y j 〉} are explicit, one can numerically see
that the constant λ in Corollary 5.4 satisfies λ < 1/5. Combining Corollary 5.4 and
Lemma A.1, we get the approximate tensorization

D(ρ‖m−11) ≤ c (D(ρ‖EX (ρ)) + D(ρ‖EY (ρ)))
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for c = 2(1− 1
25 (2 ln 2− 1)−1)−1 ≈ 2.231 < 9

4 . Furthermore, since both Xm and
Ym have integer spectrum, they can be transferred from the Laplace operator 
T

on the unit torus T. Then by transference and [17, Theorem 4.12] (note that our
normalization differs by a factor of 2),

αCMLSI(LXm ) = αCMLSI(LYm ) ≥ 1

2 ln(3)

for each m. Therefore we obtain the dimension-free numerical bound

αCMLSI(LH
m ) ≥

(9
2
ln(3)

)−1 ≈ 0.2,

which is obviously tighter than the dimension dependent estimate fromTheorem3.3
(LH

m has a uniform spectral gap 1 for all m by transference, see [10, Proposition
3.1]). It remains open whether the sub-Laplacian 
H itself satisfies CMLSI.

6.2. Subsystem Lindbladians

In this subsection, we consider symmetric Markov semigroups whose Lindblad
operators act on edges of a given graph. Such generators have been extensively
studied for functional inequalities in the classical setting. (see e.g. [76] and the
references therein). Here, we use (i) the CMLSI constants found in Theorem 3.3
to control the local interaction in combination with (ii) the sharpening of the ap-
proximate tensorization constant found in Section 6 to derive asymptotically tight
lower bounds on the CMLSI constant for various models of relevance.

Let G := (V, E) be a finite, connected and undirected graph with vertex set V ,
of cardinality |V | = n, and edge set E := {(v,w) ∈ V × V : v ∼ w}. We recall
that the degree deg(v) of a vertex v ∈ V is the number of edges that are incident
to v. Moreover, G is said to be γ -regular if all vertices v ∈ V have same degree γ .
Important examples include finite groups through the scope of their Cayley graphs.
Given a graph G := (V, E), the graph Laplacian 
G acting on the function spaces
{ f | f : V → C} is defined as


G f (v) =
∑

w:(w,v)∈E
( f (w) − f (v)) , (61)

where 
G is a negative semi-definite matrix on l2(V ), which generates the heat
semigroup Tt = e
Gt on l∞(V ). Note that here we choose 
G to be negative to
match our convention for quantum Lindbladians. The spectral gap is defined as the
gap between the largest and second largest eigenvalues of 
G .

Here we consider a quantum Markov semigroup with the locality structure of
G = (V, E) consists in introducing a local evolution on the n-fold tensor product
HV := ⊗

v∈V Hv of a given finite dimensional local Hilbert space H, namely,
an n-qudit system for d = dim(H). The Lindblad operators are supported on the
edges e ∈ E as

LG :=
∑
e∈E

Le, where Le(ρ) :=
∑
j∈J (e)

L(e)
j ρL(e)

j − 1

2
{L(e)

j L(e)
j , ρ}, (62)
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where for any edge e = (v,w) and {L(e)
j } j∈J (e) are the family of local Lindblad

operators that act trivially on subsystems other than Hv ⊗ Hw. We call (62) a
subsystem Lindbladian. In what follows, we denote by MV := B(HV ) (resp.
Me := B(Hv ⊗ Hw)) the algebra of operators on which LG (resp. Le for e =
(v,w) ∈ E) acts. We also denote by Ee ( resp. EG) the conditional expectation
projecting onto the kernel of Le for e ∈ E (resp, of LG ). Finally, we introduce the
indices

CG := Ccb(MV : EG(MV )) , Ce := Ccb(Me : Ee(Me)),

and cG as the minimum non-zero eigenvalue of the Choi-Jamiolkowski state JEG

of EG . It is also useful to introduce the generator

L̃G :=
∑
e∈E

Ee − id .

As previously discussed, the lower bounds on the complete modified logarith-
mic Sobolev constant derived in Theorem 3.3 are asymptotically not tight when the
total dimension is large. For instance, in the case of a primitive semigroup on n-qudit
systems, the completely bounded Pimsner–Popa index is equal to dn , where d is
the dimension of the local Hilbert spaceH. This gives lower bounds on the CMLSI
constant of a subsystem Lindbladian that are exponentially small in the number of
vertices. In the next theorem, we essentially leverage the locality structure of LG

to provide exponentially tighter bounds by combining Theorem 3.3, Corollary 5.4,
Lemma A.1 and the detectability lemma [1,2,4,49].

Theorem 6.6. Let G = (V, E) be a finite, connected, undirected graph with maxi-
mum degree γ , and let LG be a symmetric subsystem Lindbladian of the form (62).
Then, for all m ∈ N and any state ρ ∈ D(HV ⊗ C

⊗m),

D(ρ‖EG(ρ)) ≤ 4
⌈ (ln(C) + 1)

ln
( L̃G )

4(γ−1)2
+ 1
)
⌉ ∑

e∈E
D(ρ‖Ee(ρ)), (63)

where C := min{CG, c−1
G } and λ(L̃G) is the spectral gap of L̃G. Moreover, the

CMLSI constant for the generator LG satisfies

1

4

⌈ ln(C) + 1

ln
(

λ(L̃G )

4(γ−1)2
+ 1
)
⌉−1

min
e∈E

λ(Le)

Ce
≤ 1

4

⌈ ln(C) + 1

ln
(

λ(L̃G )

4(γ−1)2
+ 1
)
⌉−1

min
e∈E αCMLSI(Le)

≤ αCMLSI(LG). (64)

As a consequence, whenever λ(L̃G) is uniformly lower bounded by a constant

independent of |V |, αCMLSI(L̃G) = �
(

1
ln(C)

)
, hence recovering the asymptotics

of classical expanders.
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Proof. We first establish (63): by Remark 5.6, the approximate tensorization con-
stant of the family {Ee}e∈E of conditional expectations can be upper bounded by
the constant 4k, where k is the integer such that

(1 − ε) EG ≤
(∏
e∈E

Ee

)k ≤ (1 + ε)EG

for ε :=
√
ln(2) − 1

2 . Here the ordering in the product
∏

e∈E Ee is arbitrary. Next,
we have from Lemmas A.1 and A.2 in “Appendix A” that k can be chosen as

k =
⌈
1 + lnC

ln 1
λ

⌉
, where λ :=

∥∥∥∏
e∈E

Ee − EG : L2 → L2

∥∥∥,
C := min{CG, c−1

G }.

Finally, the L2-constant λ can be controlled by the gap of the generator L̃G using
the detectability Lemma from [4, Corollary 3]:

λ =
∥∥∥∏
e∈E

Ee − EG : L2 → L2

∥∥∥ ≤ 1

λ(L̃G)/4(γ − 1)2 + 1
.

Here γ is the maximum degree of the graph. We then use Theorem 3.3 to further
lower bound αCMLSI(Le) in terms of the spectral gap λ(Le) and corresponding
index Ce.

Remark 6.7. A sequence of γ -regular graphs {Gi = (Vi , Ei )}i∈N of increasing
size with limi |Vi | = +∞ is called a family of expander graphs if there exists
λ0 > 0 such that the spectral gaps λ(
Gi ) ≥ λ0 uniformly for all i [45]. Modified
logarithmic Sobolev inequalities for such generators have been widely considered
in the classical literature, (see e.g. the survey [14]). In the limit i → ∞, using
Corollary 5.4 for the average map � = 1

|E |
∑

e Ee instead of resorting to the
detectability Lemma for the product map � = ∏

e∈E Ee would lead to a similar
bound:

|E |
4

⌈ ln(C) + 1

ln(1 − λ(L̃G )
|E | )

⌉−1
min
e∈E

λ(Le)

Ce
≤ αCMLSI(LG).

In [15, Remark 5.6], it was shown that the MLSI constant of a random walk on an
expander graph G of degree γ satisfies that

2λ0
ln |G| ≤ αMLSI(
G) ≤ 2γ ln(γ )2

ln |G| .

Since, for these graphs,C = ln |G|, the above estimates show that our lower bounds
recover the right dependence on |G| up to multiplicative constants.
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6.3. Random Permutations

We now illustrate the bounds derived in Theorem 6.6 on random permutations
models. We consider quantum Markov semigroups introduced in [9, Section IV.D]
which represent the action of a random transposition gate applied to two registers
i, j on the n qudit system HV = H⊗n with dim(H) = d. Let G = (V, E) be a
finite graph with |V | = n. Denote the swap gate Si, j acting on registers of vertex i
and j as

Si, j (|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉 (65)

for any two |ψ〉, |ϕ〉 ∈ H. The generator of the quantum nearest neighbour random
transposition model [9, Section IV.D] is defined as

LNNRT
G :=

∑
e∈E

Le , where Le(ρ) = 1

2
Si, jρSi, j − ρ

for e = (i, j). The above generator can simply be understood as that of the natural
action of the permutation group Sn on HV = H⊗n , which allows transitions be-
tween random adjacent registers connected by edges. In other words, LNNRT

G is the
subsystem Lindbladian of the graph G = (V, E) with the local Lindbladian Le at
edge (i, j) ∈ E .

Corollary 6.8. Let G = (V, E) be a connected finite graph and let LG
NNRT be the

generator of the quantum nearest neighbour random transposition model defined
as above. Then

αCMLSI(LNNRT
G ) ≥ 1

2

⌈ (ln(n!) + 1)

ln
(λ(LNNRT

G )

4(γ−1)2
+ 1
)
⌉−1

,

where γ is the maximal degree of G and λ(LNNRT
G ) is the spectral gap.

Proof. We first note that, for each edge,

Le(ρ) = 1

2
(Si, jρSi, j − ρ) = Ei, j (ρ) − ρ,

where Ei, j (ρ) = 1
2 (Si, jρSi, j + ρ) is a conditional expectation onto the symmetric

space onHi ⊗H j . Themaps Ei, j are implemented by the self-adjoint unitaries Si, j .
Then by [81, Theorem 5.1], the local CMLSI constant αCMLSI(Le) = 2. Given the
bound derived inTheorem6.6, it suffices to calculate the indexCG := Ccb(B(HV ) :
N ), where N is the fixed point subalgebra of LNNRT

G . Since G is connected, then
{σi, j | (i, j) ∈ E} is a generating set for Sn . Thus N is the commutant of the
representation

π : Sn → B(HV ) , π(σi, j ) = Si, j .

As discussed in Example A.4 of “Appendix A”, the index is

Ccb(B(HV ) : N ) =
∑

πi∈Irr(Sn),πi⊂π

m2
i ,
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where mi is the dimension of irreducible representation πi and the summation is
over all irreducible representations in the decomposition ofπ = ⊕iπi⊗idni . By the
expression provided in (14), we know all irreducible representations (up to unitary
equivalent) are contained in π . Then, by the Schur–Weyl Theorem,

CG = Ccb(B(HV ) : N ) =
∑

πi∈Irr(Sn)

m2
i = |Sn| = n! .

The quantum random transposition model above corresponds to a classical
random transposition on the permutation group Sn on [n] := {1, . . . , n}. Indeed,
consider the classical generator 
G

Sn
on Sn ,


G
Sn

f (σ ) = 1

2

∑
(i, j)∈E

( f (σi jσ) − f (σ )) , σ ∈ Sn,

where σi j ∈ Sn is the 2-permutation switching i and j . One can verify that LNNRT
G

is the transferred generator of 
G
Sn
, which is the the graph Laplacian 
G

Sn
of the

Cayley graph of Sn with generating set {σi j | (i, j) ∈ E}.
For a general graph G = (V, E), the transference goes through the graph

Laplacian 
G
Sn

of the Cayley graph of Sn with generating set {σi j | (i, j) ∈ E}.
When a sharp estimate for αCMLSI(
Sn ) is missing, our Theorem 6.6 can provide
tighter bounds than transference. It was proved in [56] that for a graph Laplacian

G ,

αCMLSI(
G) ≥ 2

45 γ (|G| + 1)2
,

where γ is the maximum degree of G. Here, we have V = Sn with |Sn| = n! grow-
ing exponentially. This exponential growth also appears if we use Theorem 3.3,

λ(
G
Sn

)

n! ≤ αCMLSI(

G
Sn

) ≤ 2λ(
G
Sn

),

since Ccb(l∞(Sn); C) = |Sn| = n!. Compared with these, Theorem 6.6 gives
a lower bound on the CMLSI constant for LNNRT

G that has exponentially better
dependence of |G| = n (and is also independent of d = dim(H)).

7. Discussion and Open Problems

We end our paper by discussing some open problems. Theorem 3.3 proves that
any GNS-symmetric quantum Markov semigroup (Pt : B(H) → B(H))t≥0 on
a finite dimensional Hilbert space H satisfies the complete modified log-Sobolev
inequality (CMLSI) with constant

αCMLSI(L) ≥ λ(L)

Ccb(E)
, (66)
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where L is the generator and E = limt Pt . In the primitive case (unique invariant
state), Ccb,τ (E) ∼ d2 with d = dim(H). On the other hand, it was proven that, for
a primitive semigroup with invariant state σ ,

λ(L)

ln(μmin(σ )−1) + 2
≤ αLSI(L)

2
≤ αMLSI(L), (67)

where αMLSI is the optimal constant for the modified log-Sobolev inequality and
αLSI is the optimal constant for the L2-log-Sobolev inequality (LSI),which is known
to be equivalent to hypercontractivity [66]. Hereμmin(σ ) is the minimal eigenvalue
of σ and ln(μmin(σ )−1) ∼ ln d. Our lower bound on αCMLSI controls any ampli-
fication Pt ⊗ idMn , in contrast with L2-log-Sobolev inequality/hypercontractivity
bound which fails for Pt ⊗ idMn for any n > 1. It remains open whether the bound
(66) can be improved asymptotically.

Problem 7.1. Does there exist a general lower bound on the CMLSI constant of
the form αCMLSI(L) ≥ λ(L)O(ln d)−1?

Our second question concerns the strong data processing inequality (SDPI). It
was proven in [63] that for a primitive unital quantum channel �,

αSDPI(�) ≥ 1 − 1

2
αLSI(�

∗� − id), (68)

where αLSI(T ∗T −id) is the LSI constant of themap T ∗T −id seen as the generator
of a QMS. This combined with (66) gives upper bounds on SDPI constant for
primitive unital channel. Nevertheless, since LSI generally fails for non-primitive
semigroups, this approach does not apply to CSDPI. In order to find better (C)SDPI
constant, we propose the following question:

Problem 7.2. Can we find a lower bound on αSDPI(�) in terms of the modified
log-Sobolev constant αMLSI(�

∗�− id) for any non-primitive quantum channel�?

For classical Markov chains, such a result was obtained in [31]. Note that in general
2αMLSI(L) ≥ αLSI(L), so a positive answer to Problem 7.2 would be stronger than
(68). Moreover, combined with our Theorem 3.3, such a positive solution would
also give a lower estimate on the CSDPI constant in terms of the spectral gap and
the index.

Recall that our SDPI constantαSDPI is defined as the optimal constant 0 ≤ α ≤ 1
such that

D(�(ρ)‖� ◦ E∗(ρ)) ≤ αD(ρ‖E∗(ρ))

for any state ρ. Here E∗(ρ) is the decoherence free part of the state ρ in the
sense that for a GNS symmetric channel �, �2 ◦ E∗(ρ) = E∗(ρ) and lim

n→∞ ‖
�n(ρ)−�n◦E∗(ρ)‖= 0. This is a natural choice analogous toMLSI.Nevertheless,
the data processing inequality asserts that D(�(ρ)‖�(σ)) ≤ D(ρ‖σ) for any two
states ρ and σ . Indeed, in Theorem 4.1, we prove that for a state ω, the best local
constant α′(σ ), which satisfies

D(�(ρ)‖�(σ)) ≤ α′(σ )D(ρ‖σ)
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for all states ρ with E∗(ρ) = E∗(ω), can be two-sided controlled by the cor-
responding χ2 contraction coefficient. (Here the restriction E∗(ρ) = E∗(ω) is
needed because without it the constant α(ω) would often be trivially equal to 1). It
is then natural to ask whether for a quantum channel �, there is a non-trivial upper
bound on α(ω) uniformly in ω. Namely,

Problem 7.3. For a finite dimensional quantum channel �, does there exist a con-
stant α′(�) < 1 such that

D(�(ρ)‖�(σ)) ≤ α′(�)D(ρ‖σ)

for all states ρ, σ with E∗(ρ) = E∗(ω)?

Such a constant α′(�) leads to a stronger notion of contraction than our definition
of αSDPI; it is closer to the classical strong data processing inequality studied in [71,
73], which was proven to be equivalent to the contraction coefficient of (classical)
χ2-divergence. Note that, by our Theorem 4.1, it also suffices to show that there is
a global contraction coefficient on the quantum χ2 divergence

χ2(ρ, σ ) =‖ρ − σ ‖2
σ−1=

∫ ∞

0
tr
(
(ρ − σ)

1

σ + s
(ρ − σ)

1

σ + s

)
ds

for all states σ .

Appendix A: Completely Positive Order Relations from Norm Estimates

In this appendix, we provide two generic strategies to derive the order relations
needed in Theorem 5.3 in the case of symmetric generators. Our first method is
a variant of [37, Lemma 3.15] (see also [53, Corollary 1.8]). Let M be a finite
dimensional von Neumann algebra equipped with trace τ and letN ⊂ M be a von
Neumann subalgebra.Note thatwe do not fix the normalization of τ at this point. For
p ≥ 1, the space of p-integrable operators inM is denoted by L p(M, τ ) ≡ L p(τ ),
with associated norm

‖x‖L p(M) ≡ ‖x‖p := τ
(|x |p) 1p .

We also need the notion of an amalgamated L p norm [47]: for 1 ≤ p ≤ ∞ the
L p∞(N ⊂ M) norm of X ∈ M is given by

‖ X ‖L∞
p (N⊂M):= sup ‖aXb‖L p(M) ,

where the supremum is taken over a, b ∈ N with ‖a ‖2p=‖b‖2p= 1. Its operator
space structure is given by (see [38, Appendix])

Mn(L
p∞(N ⊂ M)) = L p∞(Mn(N ) ⊂ Mn(M)) .

It was proved in [38, Theorem 3.9] that

‖ id : L2∞(N ⊂ M) → M‖2cb=‖ id : L1∞(N ⊂ M) → M‖cb= Ccb(M : N ) .

(69)
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Let EN : M → N be the trace preserving conditional expectation ontoN . Recall
that there exists a module basis {ξi }ni=1 ∈ M satisfying ( [67, Theorem 3.15], see
also [5, Conséquence 1.8]):

EN (ξ
†
i ξ j ) = δi j pi ,

where pi ∈ N are some projections. Also recall that � : M → M is a N -
bimodule map if �(aXb) = a�(X)b for all a, b ∈ N and X ∈ M. We have
� ◦ EN = EN if � is unital and EN ◦ � = EN if � is trace preserving. For a
N -bimodule map �, we have by [37, Lemma 3.12]

λ =‖� : L2(M) → L2(M)‖=‖� : L2(M) → L2(M)‖cb
=‖� : L2∞(M) → L2∞(M)‖cb . (70)

Next, we define the module Choi operator of a bi-modular map � as

χ� =
n∑

i, j=1

|i〉〈 j | ⊗ �(ξ
†
i ξ j ) ∈ B(ln2 ) ⊗ M ,

where ln2 denotes the space of n-dimensional vectors with associated norm

‖u‖ln2 =
(∑

i

|ui |2
) 1

2

and {|i〉}ni=1 is a fixed orthonormal basis in ln2 . Thus � and χ� determine each
other because for each x ∈ M, we have a unique decomposition x =∑i ξi xi with
xi ∈ N satisfying pi xi = xi . Indeed, we have xi = EN (ξ

†
i x). Moreover, � is

completely positive if and only ifχ� is a positive operator inB(ln2 )⊗M. Indeed, for
any finite family y1, . . . , ym ∈ M, we assume the decomposition y j = ∑

l ξl x jl
with x jl ∈ N . Then

(id⊗�)

⎛
⎝∑

i, j

|i〉〈 j | ⊗ y†i y j

⎞
⎠ =

∑
i, j

|i〉〈 j | ⊗ �(y†i y j )

=
∑
i, j,k,l

|i〉〈 j | ⊗ x†ik�(ξ
†
k ξl)x jl

=
⎛
⎝∑

i,k

|i〉〈k| ⊗ x†ik

⎞
⎠χ�

⎛
⎝∑

j,l

|l〉〈 j | ⊗ x jl

⎞
⎠ ,

from which the equivalence claimed directly follows. We also recall [37, Lemma
3.14] that for a N -bimodule map �,

‖χ� ‖B(ln2 )⊗M=‖� : L1∞(N ⊂ M) → M‖cb . (71)

We are now ready to state and prove the first main Lemma of this section:
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Lemma A.1. Let N ⊂ M be a von Neumann subalgebra and let EN : M → N
be the corresponding trace preserving conditional expectation. Let � : M → M
be a N -bimodule map.

(i) if ‖χ� − χEN ‖B((ln2 ))⊗M ≤ ε < 1, then

(1 − ε)EN ≤cp � ≤cp (1 + ε)EN .

(ii) if � is a τ -symmetric quantum channel and λ :=‖ � − EN : L2(M, τ ) →
L2(M, τ )‖< 1, then for k >

lnCcb(M:N )
− ln λ

,

(1 − ε)EN ≤cp �k ≤cp (1 + ε)EN

for ε = λkCcb(M : N ) < 1.

Proof. For (i) we first observe that the Choi operator of EN

χEN =
n∑

i, j=1

|i〉〈 j | ⊗ EN (ξ
†
i ξ j ) =

∑
i

|i〉〈i | ⊗ pi

is a projection. By the assumption ‖ χ� − χEN ‖B((ln2 ))⊗M ≤ ε < 1, we may
write χEN − χ� = α − β with 0 ≤ α, β ≤ ε. Let {y1, . . . , ym} be a finite family
of elements in M with decomposition y j = ∑l ξl x jl with x jl = p j x jl ∈ N , and
denote Y =∑ j |1〉〈 j | ⊗ y j . Then,

(id⊗�)(Y †Y ) − (id⊗EN )(Y †Y )

=
∑
i, j,k,l

|i〉〈 j | ⊗ x†ik pk(� − EN )(ξ
†
k ξl)p j x jl

=
(∑

i,k

|i〉〈k| ⊗ x†ik

)(
χ� − χEN

)(∑
j,l

|l〉〈 j | ⊗ x jl
)

=
(∑

i,k

|i〉〈k| ⊗ x†ik pk
)(

α − β
)(∑

j,l

|l〉〈 j | ⊗ p j x jl
)
.

Since 0 ≤ α ≤ ε,(∑
i,k

|i〉〈k| ⊗ x†ik pk
)
α
(∑

j,l

|l〉〈 j | ⊗ p j x jl
)

≤ ε
(∑

i,k

|i〉〈k| ⊗ x†ik pk
)(∑

j,l

|l〉〈 j | ⊗ p j x jl
)

= ε
∑
i, j,k

|i〉〈 j | ⊗ x†ik pk x jk

= ε
∑
i, j,l,k

|i〉〈 j | ⊗ x†ik EN (ξkξl)x jl = ε (id⊗EN )(Y †Y )

and similarly for β. Thus we showed that

−ε (id⊗EN )(Y †Y ) ≤ (id⊗�)(Y †Y ) − (id⊗EN )(Y †Y ) ≤ ε (id⊗EN )(Y †Y )
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for any Y =∑ j |1〉〈 j |⊗ y j , which proves (i) because any X ≥ 0 in Mm ⊗M can

be written as a sum X =∑ j Y
†
j Y j of such Y ’s.

For (ii), we first observe that since � is trace perserving and unital, we have
by bimodule property that � ◦ EN = EN ◦ � = EN and hence (� − EN )k =
�k − EN . Then, we can use identity (71) between the L∞ norm of the module
Choi operator of �k and its L1∞ norm, so that:

‖χ�k − χEN ‖B(ln2 )⊗M
=‖�k − EN : L1∞(N ⊂ M) → M‖cb
=‖(� − EN )k : L1∞(N ⊂ M) → M‖cb
=‖ id : L1∞(N ⊂ M) → L2∞(N ⊂ M)‖cb
× ‖(� − EN )k : L2∞(N ⊂ M) → L2∞(N ⊂ M)‖cb
× ‖ id : L2∞(N ⊂ M) → M‖cb

= Ccb(M : N )1/2 · λk · Ccb(M : N )1/2 = Ccb(M : N )λk,

where we also used (69) and (70). Then the assertion (ii) follows from (i).

The next main result of the present appendix is an approach to obtain cp orders
which follows the idea of [16, Appendix A]. Here, we restrict ourselves to the
algebra M = B(H) and take τ := tr to be the standard matrix trace. Given a map
� : B(H) → B(H), the standard (normalized) Choi-Jamiolkowski matrix J� is

J� := (id⊗�)(|ψ〉〈ψ |) ∈ B(H ⊗ H) ,

where |ψ〉 = 1√
dH

∑
i |i〉|i〉 is the maximally entangled state onH⊗H. It is well-

known that J� ≥ 0 if and only if � is completely positive, and J� is a state if and
only if � is a quantum channel.

Lemma A.2. Let EN : B(H) → N be the trace preserving conditional expecta-
tion onto a subalgebra N . Let � : T1(H) → T1(H) be a quantum channel such
that � ◦ EN = EN ◦ � = EN . Suppose JEN ≥ C−1

E P for some CE > 0 where
P is the support projection of JEN .

(i) If J� has support P� ≤ P and for some 0 ≤ ε < 1

‖J� − JEN ‖∞ ≤ εC−1
E ,

then

(1 − ε)EN ≤cp � ≤cp (1 + ε)EN .

(ii) If for each k, J�k has support projection P andλ :=‖�−EN : L2(B(H), tr) →
L2(B(H), tr)‖< 1. Then for k >

ln(CE )
− ln(λ)

,

(1 − ε)EN ≤cp �k ≤cp (1 + ε)EN ,

where ε = λk CE < 1.
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Proof. If J� has support P� ≤ P , then

J� − JEN ≤ ‖J� − JEN ‖∞ P ≤ ‖J� − JEN ‖∞ CE JEN ≤ ε JEN ,

Similarly,

JEN − J� ≤ ε JEN ,

Thus we have

(1 − ε)JEN ≤ J� ≤ (1 + ε)JEN

which implies (i). For (ii), we note that the maximally entangled state |ψ〉〈ψ | is a
pure state, so that

‖ J�k − JEN ‖∞ ≤‖ J�k − JEN ‖2=‖(id⊗(�k − EN ))(|ψ〉〈ψ |)‖2
=‖(id⊗(� − EN )k)(|ψ〉〈ψ |)‖2
≤‖(id⊗(� − EN )k)(|ψ〉〈ψ |)‖2
≤‖� − EN : L2(B(H), tr) → L2(B(H), tr)‖k= λk

Then assertion (ii) follows from (i).

We end this appendix by comparing the approaches proposed in Lemmas A.1
and A.2 in two cases.

Example A.3. (Trivial subalgebra) Consider the trivial subalgebra C1 ⊂ B(H).
Then for dim(H) = d,

Ccb(B(H), C) = CE = d2 .

Example A.4. (Unitary Representations of compact groups) Let G be a compact
group and let π : G → B(H) be a unitary representation. The fixed point space
for the conjugation action α : G � B(H) defined as αg(x) = π(g)xπ(g)† is
N = π(G)′ = {x ∈ B(H) | xπ(g) = π(g)x }, that is the commutant of the
representation. Suppose π admits the decomposition π = ⊕i∈Irr(G)

(
πi ⊗ idni

)
as

a direct sum of irreducible representations πi : G → Mmi with multiplicity ni .
Then N = ⊕i∈Irr(G)

(
C1mi ⊗ Mni

)
is a direct sum of matrix algebras Mni with

multiplicity mi . The trace preserving conditional expectation is

EN = ⊕i
(
trmi ⊗ idni

)
,

where trmi (x) = tr(x) 1
mi

is the partial trace map and idni is the identity map on
Mni . The Choi-Jamiolkowski state of EN is

JEN = 1

dH
⊕i

( ni
mi

(1mi ⊗ 1mi ) ⊗ |ψni 〉〈ψni |
)

where 1mi ∈ Mmi is the identity operator and |ψni 〉 = 1√
ni

∑ni
j=1 | j〉| j〉 is the

maximally entangled state in Mni ⊗ Mni . The support projection is

P = ⊕i

(
(1mi ⊗ 1mi ) ⊗ |ψni 〉〈ψni |

)
.
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Then JEN ≥ C−1
E P for

CE = dHmax
i

mi

ni
.

On the other hand, the cb-index is

Ccb(B(H) : N ) =
∑
i

m2
i .

In particular, when G is a finite group and πL : G → B(l2(G)) is its the left regular
representation, we have by Schur–Weyl Theorem that ni = mi and

CE = dH =
∑
i

m2
i = Ccb(B(l2(G)) : N ),

where N is isomorphic to the group algebra CG.
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