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Abstract

We present a systematic treatment of the theory of Compensated Compactness
under Murat’s constant rank assumption. We give a short proof of a sharp weak
lower semicontinuity result for signed integrands, extending aspects of the results of
Fonseca–Müller. The null Lagrangians are an important class of signed integrands,
since they are the weakly continuous functions. We show that they are precisely the
compensated compactness quantitieswithHardy space integrability, thus proposing
an answer to a question raised by Coifman–Lions–Meyer–Semmes. Finally we
provide an effective way of computing the null Lagrangians associated with a
given operator.

1. Introduction

Let A be a linear partial differential operator acting on fields v : R
n → V,

for some finite-dimensional inner product space V. In this paper, we address the
following question:

Main question. Are there special quantities F : V → R which are well-behaved
with respect to solutions of the system Av = 0? In particular:

– For solutions of Av = 0, does F(v) benefit from compensated regularity?,
e.g.

v ∈ C∞c (Rn, V) and Av = 0 �⇒ F(v) ∈H 1(Rn). (1.1)
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– For solutions ofAv = 0, does F(v) benefit from compensated compactness?,
e.g.

v j
∗
⇀ v in L∞loc(Rn, V) and Av j = 0 �⇒ F(v j )

∗
⇀ F(v) in D ′(Rn).

(1.2)

If there are such quantities, how do we characterize and compute them?
It is clear that, for the first part, one should look for nonlinear quantities, since

otherwise F(v) has precisely the same regularity as v. In (1.1),H 1(Rn) denotes the
real Hardy space, which can be thought of as a proper subspace of L1(Rn) whose
elements have cancellations at all scales, and therefore have additional integrability.
Being able to identify L1-quantities that in fact have Hardy space integrability is
often important in PDE: this has been useful in Fluid Dynamics [33–35] as well as
Differential Geometry [51,79] and we refer the reader to [18] for further examples
and references.

Weakly continuous functions, as in (1.2), can be thought of as representing
physical quantities that are robust to errors in measurements induced from small-
scale oscillations. We call these quantities null Lagrangians [7] or A-quasiaffine
functions [23] and they are the classical objects of study in the Murat–Tartar
theory of Compensated Compactness [81,82,99,100]. In the last four decades,
the theory was developed much further, having found applications in Continuum
Mechanics [31–33], Homogenization [11,15,73,74] and Nonlinear Analysis [4,29,
42,58,80]. We also refer the reader to the recent papers [3,21,25,85].

The two main contributions of our work are as follows: under standard as-
sumptions in compensated compactness theory, we show that (1.1) and (1.2) are
equivalent; we also give a comprehensive treatment of (1.2) and its generalizations.
The former gives an answer to a question of Coifman--Lions--Meyer--Semmes
raised in [18], whereas the latter improves aspects of the classical work of Murat-
-Tartar [82] and Fonseca--Müller [43]. The main novelty of this paper is an
enhanced version of the tools introduced by the second author in [87], which make
our proofs very clear and streamlined.We expect our ideas to be useful for different
problems, see the recent developments in [64,66].

To be precise, in our main question we consider an operator A of the form

A =
∑

|α|=l
Aα∂α, where Aα ∈ Lin(V, W)

for some finite dimensional inner product spaces V, W. The prototypical example
we have in mind is A(B, E) = (div B, curl E), for a domain � ⊂ R

n and fields
E, B : � → R

n in L2(�), which we think of as the electric and the magnetic fields
respectively. Coifman–Lions–Meyer–Semmes [18] proved that (1.1) holds, i.e.,

div B = 0, curl E = 0 �⇒ B · E ∈H 1(Rn). (1.3)

The implication (1.3)was inspired by a surprising and remarkable result ofMüller
[76] and it can be proved through the Coifman–Rochberg–Weiss commuta-
tor theorem [19], see also [67] for a different approach and [24] for local, non-
homogeneous versions. The quantity E ·B is also weakly continuous for the system
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(div, curl), a fact which goes back to the pioneering work of Murat and Tartar
[99]: if d = n2 + 1, then (1.2) holds, i.e.,

(B j , E j ) ⇀ (B, E) in L2(�, R
2n)

(div B j , curl E j ) → (div B, curl E) in H−1loc (�, R
d )

}
�⇒ B j · E j

∗
⇀ B · E in D ′(�).

(1.4)
Continuum Mechanics furnishes plenty of interesting examples beyond elec-

tromagnetism: in the theory of elasticity the deformation gradient is irrotational,
while the linearized strain satisfies the Saint-Venant compatibility condition, and
in incompressible fluid flow the velocity field is divergence-free; see also Example
3.8. In these examples the operator A has an important non-degeneracy property:

A has constant rank and span�A = V. (1.5)

Here �A is the wave cone of the operator A, see also Section 3 for notation and
terminology, and the spanning assumption is natural since weakly continuous quan-
tities are completely unconstrained along directions not in span�A. The constant
rank assumption is standard [43,82] and, per the results of the authors in [48],
it is equivalent to a certain L p-estimate on which many results in compensated
compactness theory crucially rely. In the constant rank case, weak continuity is
well understood since Murat’s work [82] but, without this assumption, very little
is known, an important exception being the case of separate convexity [77,101],
which was proposed by Tartar as a toy model for rank-one convexity. The case of
quadratic functions F is also special: in this setting, there is a satisfactory theory
both for Hardy integrability [18,68] and for weak continuity [99]. However, these
proofs rely crucially on Plancherel’s Theorem.

Returning to the div-curl example, we observe that the inner product is both
weakly continuous and has Hardy space integrability. Hence, the following natural
question was asked in [18]: is this a general phenomenon, i.e. is it the case that
(1.1) and (1.2) are equivalent? Our main theorem shows that, under the standard
assumption (1.5), this is indeed the case.

Theorem A. (Hardy integrability ⇐⇒ weak continuity) Assume (1.5) and let
F : V → R be a locally bounded, Borel function that is not affine. Then (1.1) holds
if and only if (1.2) holds and in that case we have:

– F is a polynomial of degree s � min{n, dimV} and it is A-quasiaffine, i.e. F
and −F are both A-quasiconvex;

– if moreover F is homogeneous, there is an estimate

‖F(v)‖H 1(Rn) � C‖v‖Ls (Rn) for all v ∈ Ls(Rn) with Av = 0 in D ′(Rn).

The class of such polynomials can be computed explicitly by solving an algebraic
system of linear equations.

Theorem A shows that compensated compactness and compensated regularity
are two facets of the algebraic cancellations in the nonlinearity, which compensate
the lack of ellipticity of the operator A.
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When F is linear, it is possible to make a statement similar to the one in The-
orem A, c.f. Theorem 6.1, although we show that there is no estimate in that case.
We would also like to highlight that we provide an effective way of computing the
A-quasiaffine functions.Murat [82] derived the algebraic identity (5.4) that char-
acterizes these functions but, as he was already aware, it is in general not feasible
to decide which nonlinear polynomials, if any, satisfy this identity. In order to deal
with this issue, we crucially rely on the work of Ball–Currie–Olver [5]. We
deduce that allA-quasiaffine functions can be written as coefficients of differential
forms, which answers in the positive a question of Robbin–Rogers–Temple [90,
§5] under the assumption (1.5). Our main new tool is an L p Helmholtz–Hodge de-
composition for constant rank operators,which is based on the existence of potential
operators. These were constructed recently by the second author in [87].

In the setup of Theorem A, it is natural to wonder whether the convergence in
(1.2) can be improved. Tartar [102, Lemma 7.3] showed that one cannot upgrade
weak-∗ convergence in measures to weak convergence in L1, i.e. one cannot test
the convergence against L∞ functions. However, as a by product of Theorem A,
one can test the convergence against functions in VMO(Rn); this a space which is
neither contained nor contains L∞(Rn).

Theorem B. (Improved and quantified convergence) As before assume (1.5) and
let F : V → R be A-quasiaffine and s-homogeneous for some s � 2. Then

v j ⇀ v in Ls(Rn, V) and Av j = 0 �⇒ F(v j )
∗
⇀ F(v) inH 1(Rn).

(1.6)
Moreover, let p ∈ (s−1,∞) and q ∈ (1,∞) be such that s−1p + 1

q = 1. ForA-free
fields v1, v2 ∈ C∞c (Rn, V) and any ϕ ∈ C∞c (Rn) we have the uniform estimate
∣∣∣∣
ˆ
Rn

ϕ (F(v1)− F(v2)) dx

∣∣∣∣�C‖v1 − v2‖Ẇ−1,q (‖v1‖L p+‖v2‖L p )s−1 ‖Dϕ‖L∞ .

The last part of Theorem B generalizes the quantitative statements in the A =
curl case of [14] and [54, §8], see also [41,55,56]. It shows that, under weaker
integrability hypothesis, distributional A-quasiaffine quantities are still weakly
continuous, c.f. Section 7 and [49].

We conclude this introduction by discussing the more general class of A-
quasiconvex functions and their weak lower semicontinuity properties. Due to
Theorems A and B, where the functions are polynomials, we are interested in
the general case of signed integrands. This case is not covered by the influential
work of Fonseca–Müller [43] (see also [40]), where only positive integrands are
studied. When the integrand changes sign one needs to deal with the possibility of
concentrations of the sequence on the boundary of the domain. When this happens,
weak lower semicontinuity breaks down: this is already the case whenA = curl, as
an example due to Tartar shows [6]. As a consequence, the convergence should
be tested against functions which vanish on the boundary. In Section 4, we prove
the following result:

Theorem C. (Weak lower semicontinuity) Let � ⊂ R
n be a bounded domain,

p ∈ (1,∞), and let F : V → R be an A-quasiconvex function such that, for all
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v ∈ V, |F(v)| � C(|v|p + 1). As before assume (1.5). Then, for all ϕ ∈ C∞c (�)

with ϕ � 0,

v j ⇀ v in L p(�, V)

Av j → Av in W−l,p
loc (�, V)

}
�⇒ lim inf

j→∞

ˆ
�

ϕF(v j ) dx �
ˆ

�

ϕF(v) dx .

This result is sharp in the sense that ϕ cannot be taken to be in C∞(�), nor even
ϕ ≡ 1.

The methods used to prove Theorem C are distinct than the ones from [43],
where the general case of Carathéodory integrands is addressed; in particular, we
avoid the use of Young measure machinery.

Due to its relation to weak lower semicontinuity and to the Direct Method,
as evidenced by the above theorem, quasiconvexity is the natural mathematical
assumption on the integrands in the classical curl-free case of the Calculus of Vari-
ations [7,22,78]. In this context, quasiaffine functions play an important role in the
study of quasiconvexity, for instance through the notion of polyconvexity; however,
in our more general setting, there are several distinct competing notions of poly-
convexity, see Section 5. The concept of quasiconvexity is still poorly understood
and the most important question concerning it is whether it admits an explicit de-
scription and, in particular, whether it agrees with rank-one convexity in R

2×N for
N � 2. This last question is known asMorrey’s problem and it remains an outstand-
ingly difficult problem [37,46,47,61,62,77,97] with far-reaching consequences in
analysis [52]. Advances in this direction have been made through the study of
quasiaffine integrands in the more general A-free setup; Morrey’s problem was
solved—in sufficiently high dimensions—much earlier for higher order gradients
[5] than for first order gradients [97]. Furthermore, Šverák’s example has many
similarities with an older example of Tartar [99] of a �A-affine integrand which
is not A-quasiaffine, where Au = (∂1u1, ∂2u2, (∂1 + ∂2)u3) for u : R

2 → R
3.

It is therefore interesting to study weak continuity and lower semicontinuity in a
larger class of operators [22] and the constant rank assumption is adequate in so
far as all constant rank operators are “curl-like”, in the sense that one can find a
potential operator which plays the role of the gradient.

Outline. Finally let us give a brief outline of the paper. In Section 2 we gather
notation as well as basic results that we will use throughout the paper. In Section 3
we present a systematic treatment of constant rank operators as well as some basic
facts concerning cocanceling operators. Section 4 is dedicated to quasiconvexity
and to the lower-semicontinuity proofs while, in Section 5, we use these results to
give both abstract and concrete characterizations of null Lagrangians. In Section 6
we study the Hardy space integrability of null Lagrangians and finally in Section 7
we prove the quantitative estimates of Theorem B.

2. Preliminaries

We begin by fixing some notation that will be used throughout the paper. As
usual, � ⊆ R

n will denote an open, bounded set and, unless stated otherwise,
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1 < p < ∞. The letters U, V, W will denote finite-dimensional inner product
spaces and, if U ⊂ V, then ProjU : V → U denotes the orthogonal projection onto
U. The sphere in V is denoted by SV. We write �k(Rn, U) for the space of all
U-valued symmetric k-linear maps on R

n ; for a Ck map u : � → U we have that
Dku ∈ �k(Rn, U). The notationM(�) denotes the space of Radon measures in�.

2.1. Moore–Penrose generalized inverses

Let A ∈ Lin(V, W). We will use the notation A† ≡ (A∗A)−1A∗ if ker A =
{0}, where A∗ denotes the adjoint (transpose) of A. In particular, for injective
linear transformations between finite-dimensional inner product spaces, we obtain
a formula for a left-inverse. In more generality, the Moore-Penrose generalized
inverse of A (which we will here call simply the pseudo-inverse, though this
terminology is not standard; algebraists use various algorithms to invert non-square
matrices) is defined geometrically as the unique A ∈ Lin(V, W) such that

AA† = Projim A and A†A = Projim A∗ , (2.1)

where the projections are orthogonal, see [16]. Equivalently, a computable formula
is given using the fact that the linear map A|(ker A)⊥ : (ker A)⊥ → im A is bijective.
In this case, it is easy to check that

A† ≡
{

(A|ker A⊥)−1 on im A

0 on (im A)⊥

defines a matrix that indeed satisfies (2.1). We have the following useful fact, c.f.
[48]:

Lemma 2.2. Let � ⊂ R
n be open. A smooth map A : � → Lin(V, W), A† : � →

Lin(W, V) is locally bounded if and only if rank A is constant in �. In that case,
A† is also smooth.

2.2. Harmonic Analysis

In this paper we only use standard results from Harmonic Analysis, such as the
Maximal Theorem and the Hörmander–Mikhlin multiplier theorem, which can be
found for instance in the book [95]. Here we briefly recall some definitions for the
convenience of the reader.

Fix a function φ ∈ C∞c (Rn) with non-zero mean and as usual let φt (x) ≡
t−nφ(x/t) for t > 0. The Hardy space is defined as

H 1(Rn) ≡
{
f ∈ S ′(Rn) : sup

t>0
| f ∗ φt | ∈ L1(Rn)

}
,

and this definition is independent of the choice of φ [39]. Other characterizations
of the Hardy space are possible, for instance through the atomic decomposition.
Another possibility, which is relevant for our purposes, is the following (see [95,
III.4.3]):
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Proposition 2.3. Let f be a tempered distribution which is restricted at infinity in
the sense that, for all r < ∞ sufficiently large,

f ∗ ϕ ∈ Lr (Rn) for all ϕ ∈ S (Rn).

Then f ∈H 1(Rn) if and only if both f and R j f , for j = 1, . . . , n, are in L1(Rn),

where R j is the j-th Riesz transform, i.e., R̂ j f (ξ) = ξ j/|ξ | f̂ (ξ) for f ∈ S (Rn),
ξ ∈ R

n.

We will also use repeatedly the well-known fact that functions in the Hardy
space have zero mean; in fact, a bounded, compactly supported function f is in
H 1(Rn) if and only if

´
Rn f (x) dx = 0.

Weak convergence in the Hardy space is induced from its dual, the space
BMO(Rn) of functions of bounded mean oscillation [38], defined as the space of
those locally integrable functions f ∈ L1

loc(R
n) such that

‖ f ‖BMO ≡ lim
δ→∞Mδ( f ) < ∞, where Mδ( f ) ≡ sup

|B|<δ

 
B

∣∣∣∣ f −
 
B
f

∣∣∣∣ dx

and the supremum runs over balls inR
n . Here, and in the sequel,wewrite

ffl
E f dx ≡

1
|E |

´
E f dx . Moreover, H 1(Rn) is a dual space itself: it is the dual of the space

VMO(Rn) of functions of vanishing mean oscillation [20,91]; this is the space
of those functions in BMO(Rn) such that

lim
δ→0

Mδ( f ) = 0.

In particular, there is a notion of weak-∗ convergence in H 1, defined by testing
against functions in VMO(Rn). We have the following classical result [59]:

Theorem 2.4. (Jones–Journé) If a sequence f j is bounded inH 1(Rn) and it con-

verges a.e. to f then f ∈H 1 and in fact f j
∗
⇀ f inH 1.

Notice that if we replaceH 1(Rn) bounds by L1(Rn) bounds then the conclu-
sion of the theorem does not hold; in this case, we have that

assuming that f j → f a.e.,

f j ⇀ f in L1(Rn) ⇐⇒ ( f j ) is equi-integrable.

The difference betweenH 1 and L1 convergence will be used crucially in Lemma
6.5 below.

3. Constant Rank Linear Operators

Let us consider a collection of linear operators Aα ∈ Lin(V, W) for each n-
multi-index α. We define a homogeneous l-th order linear operator A by

Av =
∑

|α|=l
Aα∂αv, v : � ⊆ R

n → V. (3.1)
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We think of A as a polynomial in ∂ and so we write

A : R
n → Lin(V, W), A(ξ) =

∑

|α|=l
Aαξα.

Associated with A we have a set of directions and frequencies, introduced by
Murat and Tartar [81,99],

VA ≡
{
(λ, ξ) ∈ V× R

n\{0} : A(ξ)λ = 0
}
,

and its projection onto V is the wave cone associated to A which we denote by

�A ≡
⋃

ξ∈Sn−1
kerA(ξ).

We will sometimes drop the subscript A in the above notation.
We say that the operator A has constant rank if there is a number r ∈ N such

that

rankA(ξ) = r for all ξ ∈ S
n−1.

A geometric interpretation of this property is that VA is a smooth vector bundle
over S

n−1 with fiber kerA(ξ) at the point ξ . A more analytic interpretation, c.f.
Lemma 2.2 and [60,82,92], is the following:

Lemma 3.2. The operator A has constant rank if and only if the map ξ �→
ProjkerA(ξ), defined for ξ ∈ R

n\{0}, is bounded. In this case, the map is smooth
away from zero.

Lemma 3.2 can be used to prove a more refined characterization of constant
rank operators. For ϕ ∈ C∞c (Rn, V), we write P̂Aϕ(ξ) ≡ ProjkerA(ξ)ϕ̂(ξ). In [48],
the authors proved:

Theorem 3.3. Fix 1 < p < ∞. An operatorA as in (3.1) has constant rank if and
only if

‖Dk(ϕ − PAϕ)‖L p(Rn) � Cp‖Aϕ‖L p(Rn) for all ϕ ∈ C∞c (Rn, V).

At the endpoint p = 1 and p = ∞ the above result should be contrasted
with Ornstein’s non-inequality, see [26,36,61,84]. This means no strong type L1

estimates can hold for the highest order derivative and we can say that in that case
one cannot obtain better than weak type bounds. Instead, the theory of strong type
estimates for lower order derivatives was developed by Van Schaftingen in [103],
building on the work of Bourgain–Brezis [13]. These estimates concern elliptic
operators (i.e. of full constant rank); the analogue of the estimate of Theorem 3.3
in this L1 context is due to Rait,ă [86]. The constant rank condition also admits a
functional-analytic interpretation, see the corollary in [48].

Another characterization of constant rank operators was given by the second
author in [87]. This characterization will be particularly useful for our purposes
and the proof is based on a result of Decell [30].
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Theorem 3.4. An operatorA as in (3.1) if and only if there is a linear homogeneous
differential operator B with constant coefficients such that

imB(ξ) = kerA(ξ) for all ξ ∈ R
n\{0}. (3.5)

Moreover, B has constant rank as well.

We will write, for some Bα ∈ Lin(U, V),

Bu =
∑

|α|=k
Bα∂αu, u : � ⊆ R

n → U; (3.6)

equivalently, there is T ∈ Lin(�k(Rn, U), V) such that we can write in jet notation

B = T ◦ Dk . (3.7)

We would like to emphasize that the construction of B given in [87] is computable
and that in fact one can always take U = V. We will refer to the potential operator
B simply as the potential and to A as the annihilator, although this terminology
is not standard.

From now onwards we shall assume implicitly that (1.5) holds and, for the sake
of concreteness, we give a few examples when this is the case.

Example 3.8. (a) Unconstraintedfields: ifA = 0 then�A = V andA-quasiconvexity
is just ordinary convexity.

(b) Irrotational fields: let v : R
n → R

n be a vector field and let A = curl, where
(curlv)i, j = ∂iv j − ∂ jvi , i, j = 1, . . . , n. It is standard that A-free vector
fields have a potential over simply connected domains, i.e. they can be written
as the gradient of some other function. One can also consider other variants Ã
of the curl, for instance by applying the curl row-wise to m × n matrices, or
more generally to higher order tensors, so that Ã-free fields correspond to k-th
order gradients; see [5] or [43] for details.

(c) Solenoidal fields: the constraint A = div appears, for instance, in Fluid Dy-
namics, where the velocity field of an incompressible fluid is divergence-free.

(d) Examples (b), (c) fall in the framework of exterior derivatives of differential
forms [90].

(e) Linear elasticity: in this case one studies integrands which depend only on the
symmetric gradient E(u) ≡ 1

2 (Du+(Du)T ) of the displacement u : � ⊂ R
n →

R
n . A sufficiently regular vector field v : � → R

n×n
sym is a symmetric gradient

if and only if it is (curl curl)-free, where

(curl curlv)i, j,k,l ≡ ∂2klvi j + ∂2i jvkl − ∂2jkvil − ∂2ilv jk

is the Saint–Venant compatibility operator.
(f) Coupling of constraints: by combining several admissible constraints one ob-

tains a new operator. For instance, by coupling (c) and (b) we have the equations
of Electrostatics:

div B = 0, curl E = 0.

If furthermore we couple these equations with (e) we have the system of piezo-
electricity. See [74] for more examples.
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Two important examples where the constant rank assumption does not hold are
the operator associated to separate convexity [77,101], Av = (∂iv j )i �= j acting on
v : R

n → R
n , and the operator associated to the incompressible Euler equations

[27,28,98].

3.1. Cocanceling Operators

In order to discuss further properties of constant rank operators it will be con-
venient to employ simple algebraic properties of cocanceling operators, which for
the reader’s convenience we prove in this section.

Definition 3.9. The operator B is said to be cocanceling if IB ≡
⋂

ξ∈Sn−1 ker B(ξ)

= {0}.
This notion was introduced by Van Schaftingen in [103] and is equivalent to

a critical linear L1-estimate forB-free fields. Typical examples of cocanceling oper-
ators are the divergence, the exterior derivative and the Saint–Venant compatibility
operator, c.f. Example 3.8(e).

We recall a fundamental characterization of cocanceling operators
[103, Prop. 2.1]:

Lemma 3.10. The following are equivalent:

(a) A is cocanceling;
(b)

´
v = 0 for all v ∈ C∞c (�, V) such that Av = 0;

(c) If v0 ∈ V such that A (δ0v0) = 0, then v0 = 0.

For our purposes, the relevance of cocancellation stems from the following
simple result:

Lemma 3.11. Let B be as in (3.6) and let J be a subspace which is such that
U = IB ⊕ J. Then there is a choice of coordinates of U such that B can be
represented as a block matrix

B = [0Lin(IB,V) B̃
]

where B̃(ξ) : J → V is cocanceling.

An immediate consequence of Lemma3.11 is that the space ofB-free fields contains
C∞c (Rn, IB). This space is trivial if and only if B is cocanceling.

Proof. The proof relies on [103, Proposition 2.5]. Using the notation in (3.6), we
first claim that

IB =
⋂

|α|=k
ker Bα.

On one hand, if Bαv0 = 0 for all α, then B(ξ)v0 = 0 for all ξ ∈ R
n , so that

v0 ∈ IB. On the other hand, if
∑
|α|=k ξαBαv0 = 0 for all ξ ∈ R

n , by identifying
coefficients, we obtain that Bαv0 = 0 for all α.

We choose a basis of U such that the matrices Bα can be written as Bα =
[0Lin(IB,V) B̃α] anddefine B̃(ξ) =∑|α|=k ξα B̃α . It is then clear that

⋂
|α|=k ker B̃α =

{0}, which implies that B̃ is cocanceling. ��
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These results suggest that one can reduce statements about non-cocanceling op-
erators to statements about cocanceling operators, as often Lemma 3.11 can be used
to perform reductions. As a side note, we also record the following consequence:

Corollary 3.12. With the notation of Lemma 3.11, we have that �B = IB ×�B̃.

3.2. Further Properties of Potentials

We shall now consider the following question: is there any meaningful sense in
which the potential B associated with the operatorA is unique? To find a canonical
potential B, one must take into account the following:

(a) B should have minimal order (for instance, if B is a potential, so is |ξ |2B(ξ));
(b) B is at best unique only modulo isomorphisms: if Q ∈ GL(U), then BQ is

another potential;
(c) B should be cocanceling, since adding columns of zeroes does not change imB

and hence preserves the exactness (3.5), see Lemma 3.11.

While for many of the operators that occur in applications these conditions seem to
suffice to single out a canonical potential (modulo isomorphisms of U), in general
they are not enough:

Proposition 3.13. There is a first order constant rank operatorAwhich admits two
cocanceling potentials B1,B2 of minimal order which moreover satisfy B1 �= B2Q
for all Q ∈ Lin(U, U).

The proof of the proposition proceeds by construction of an explicit example;
we relegate this to the appendix due to the long computations it requires. The
example in the appendix is also one where it is not possible to choose B to have the
order ofA. It seems to have been known for quite some time that this is generically
the case, see for instance [63, page 445]. A simpler example with this property
can be found by considering the symmetric gradient of maps u : R

2 → R
2, which

only has annihilators of order two or higher, see also [81, Remarque 4]. On the
other hand, there is an example [43, Example 3.10(d)] of a first order annihilator
for which the only known potential is Dk . To sum up, we remark that one cannot
make any assumption on the relation between the orders of A and B.

From our perspective, Proposition 3.13 implies that, in the general, the operator
B associated to the constant rank operatorA has no physical content and is instead
a useful mathematical tool. The potential is simply a polynomial parametrization of
the wave cone; the physically relevant object is kerA(ξ). This is already apparent
in the Hilbert space axiomatization of Milton [73] for composite materials, where
the author postulates an orthogonal decomposition of the form

V = Eξ ⊕ Jξ , ξ �= 0;
the subspaces Eξ and Jξ correspond to the constraints satisfied by the applied and
induced fields, respectively—these would be, for instance, the electric field and
current in the case of conductivity, hence the choice of notation. In practice, these
constraints come from a partial differential equation and we have Eξ = kerA(ξ)

and Jξ = ker B∗(ξ) for some suitable operators.



290 A. Guerra, & B. Rait, ă

3.3. Function Spaces

In this subsection we gather some notation for function spaces associated with
linear operators and prove some basic properties of these spaces. For our purposes
it will be important to consider the space of A-free test fields, i.e.

C∞c,A(�) ≡ {v ∈ C∞c (�, V) : Av = 0}.
In the general case whereA is cocanceling (but does not necessarily have constant
rank) it is unclear whether this space contains non-zero functions, while it always
does in the non-cocanceling case as per Lemma 3.11. Related to this we have the
following simple lemma (see also [103, Proposition 2.1]):

Lemma 3.14. The space C∞c,A(Rn) is contained in H 1(Rn) if and only if A is
cocanceling.

Proof. Suppose that C∞c,A(Rn) is contained in the Hardy space; since functions in

H 1(Rn) have zero mean then so do functions in C∞c,A(Rn) and this happens if and
only ifA is cocanceling. Moreover, test functions with zero mean are contained in
H 1(Rn)—in fact, they are dense there—and this proves the other direction. ��

For 1 � p � ∞, we have the L p-type spaces

L p
A(�) ≡ {v ∈ L p(�, V) : Av = 0}.

Associated with B, we define the B-Sobolev-type spaces

W B,p(�) ≡ closu �→‖Bu‖pC
∞
c (�, U). (3.15)

General properties of the WB,p-spaces can be found in the recent works [12,45].
WhenA is a constant rank operator and 1 < p < ∞we have thatC∞c,A is dense

in L p
A; it is unclear whether this holds for non-constant rank operators. In fact, we

have:

Proposition 3.16. If B is a potential for A, we have

B(W B,p(Rn)) = B(Ẇ k,p(Rn, U)) = L p
A(Rn), (3.17)

where Ẇ k,p(Rn, U) denotes the usual homogeneous Sobolev space.

Proposition 3.16 follows from the following Helmholtz–Hodge decomposition:

Proposition 3.18. Let 1 < p < ∞. A vector field v ∈ L p(Rn, V) can be uniquely1

decomposed as

v = Bu +A∗w

for some u ∈ W B,p(Rn), w ∈ W A∗,p(Rn). Moreover, this decomposition is con-
tinuous:

‖Bu‖L p(Rn) � C‖v‖L p(Rn), ‖A∗w‖L p(Rn) � C‖Av‖Ẇ−l,p(Rn).

1 Here we do not mean that u, w are unique, but rather their images Bu,A∗w.
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Proposition 3.18 follows by standard methods from Theorem 3.4, see for in-
stance [43,44]. We will in fact construct u ∈ Ẇ k,p(Rn, U), w ∈ Ẇ l,p(Rn, W).

Proof. We begin by remarking that, once we have the decomposition, uniqueness
follows straightforwardly from orthogonality. Indeed, consider a decomposition of
zero, 0 = Bu +A∗w. If p′ denotes the Hölder conjugate of p, let ϕ ∈ L p′(Rn, V)

be arbitrary and write ϕ = Bχ +A∗ψ for χ ∈ W B,p′ , ψ ∈ W A∗,p′ . Then

ˆ
Rn
〈Bu, ϕ〉 =

ˆ
Rn
〈Bu,Bχ〉 +

ˆ
Rn
〈Bu,A∗ψ〉

=
ˆ
Rn
〈Bu,Bχ〉 = −

ˆ
Rn
〈A∗w,Bχ〉 = 0

where we used twice the fact that
´ 〈Bb,A∗a〉 = 0 for all b ∈ W B,p, a ∈ W A∗,p′

in view of (3.5).
We assume that ordB = k � l = ordA, for otherwise we can replace B by

|ξ |2mB(ξ) for m sufficiently large. Let j = k − l and consider the homogeneous
k-th order operator

� ≡ BB∗ +A∗A� j ;

by the exactness relation (3.5), this operator is elliptic, meaning that�(ξ) ∈ GL(V)

for all 0 �= ξ ∈ R
n . This can be seen by letting v0 ∈ ker�(ξ) and writing

0 = 〈�(ξ)v0, v0〉 = 〈B(ξ)B∗(ξ)v0, v0〉 + |ξ |2 j 〈A∗(ξ)A(ξ)v0, v0〉
= |B∗(ξ)v0|2 + |ξ |2|A(ξ)v0|2,

so v0 ∈ ker B∗(ξ) ∩ kerA(ξ) = ker B∗(ξ) ∩ imB(ξ) = (imB(ξ))⊥ ∩ imB(ξ)

= {0}.
Consequently, we can solve �ϕ = v for ϕ ∈ Ẇ 2k,p(Rn, V) with the elliptic

estimate

‖D2kϕ‖L p(Rn) � C‖v‖L p(Rn). (3.19)

Now define

u ≡ B∗ϕ, w ≡ A� jϕ;

then (3.19) already gives the estimate for Bu in the statement, as well as a similar
estimate for A∗w. Note that due to the bounds in (3.19), we can assume that
ϕ ∈ C∞c (Rn, V), otherwise it can be replaced with an approximating sequence ϕ j

such that �ϕ j converges to v in L p.
To get the better estimate for A∗w, we apply A to the decomposition to get

Av = AA∗w, so that we can compute in Fourier space, for ξ �= 0,

A∗(ξ)ŵ(ξ) = A†(ξ)A(ξ)A∗(ξ)ŵ(ξ) = A†
(

ξ

|ξ |
) Âv(ξ)

|ξ |l ,
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where we used the fact that A†A = Projim A∗ . The Hörmander–Mihlin multiplier
theorem then implies that

‖A∗w‖L p(Rn) � C

∥∥∥∥∥F
−1
(
Âv(ξ)

|ξ |l
)∥∥∥∥∥

L p(Rn)

= C‖Av‖Ẇ−l,p(Rn),

which concludes the proof. ��
Proof of Proposition 3.16. Let v ∈ L p(Rn) withAv = 0. Using Proposition 3.18,
we have that v = Bu + f , where f = A∗w ∈ L p(Rn, V) is such that B∗ f = 0.
This follows since the exactness (3.5) can equivalently be written as imA∗(ξ) =
ker B∗(ξ) for ξ �= 0, hence B∗ ◦A∗ = 0. On the other hand, since v is A-free, we
also obtain A f = 0. Therefore � f = 0, so that f is analytic by the ellipticity of
�. Since f ∈ L p(Rn), we conclude that f = 0, which implies the only non-trivial
inclusion in (3.17). ��

Through the multiplier A†(ξ/|ξ |), the proof of the Helmholtz–Hodge decom-
position in Proposition 3.18 relies heavily on the Calderón–Zygmund theory to
solve an auxiliary partial differential equation in full space. Having a similar de-
composition that holds in bounded domains may be a viable tool to tackle other
problems in the field. This motivates the following:

Question 1. Let� ⊂ R
n be a sufficiently regular boundeddomainand1 < p < ∞.

Is it the case that each v ∈ L p(�, V) has a unique decomposition

v = Bu +A∗w + h,

where u ∈ W B,p(�), w ∈ W A∗,p(�), and B∗h = 0, Ah = 0 in the sense of
distributions, with the bounds

‖Bu‖L p(�) + ‖h‖L p(�) � Cp‖v‖L p(�), ‖A∗w‖L p(�) � C‖Av‖Ẇ−l,p(�)?

It is known that the domain � cannot be taken to be an arbitrary open set [50].
The “harmonic” field h is analytic in �, since it satisfies �h = 0. It is also known
that one cannot hope for a decomposition with h = 0, since this is not the case for
exterior differentials and codifferentials; in this situation, furthermore, the answer
to the question is positive, see for instance [57] or [93] for an elementary proof.
Question 1 is also true for p = 2:

Proof. (Answer to Question 1 for p = 2) Note that the orthogonal complement in
L2(�, V) of X ≡ {Bu : u ∈ C∞c (�, U)} is

Y ≡ {v ∈ L2(�, V) : B∗v = 0 in the sense of distributions
}
.

This follows from the following identity, which holds for all u ∈ C∞c (�, U) and
f ∈ L2(�, V):

〈 f,Bu〉L2 =
ˆ

�

〈 f,Bu〉V dx = 〈 f,Bu〉D ′,D = (−1)k〈B∗ f, u〉D ′,D .
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The projection theorem yields the orthogonal decomposition L2(�, V) = X ⊕ Y .
We then note that Z ≡ {A∗w : w ∈ C∞c (�, W)} is a subspace of Y . An anal-
ogous argument shows that the orthogonal complement of Z in Y is H ≡ {h ∈
L2(�, V) : Ah = 0, B∗h = 0}. In particular, we obtain the orthogonal decomposi-
tion L2(�, V) = X⊕Z⊕H , which gives the claim, except for the negative Sobolev
bound. To prove this aswell, note that we already have a sequencew j ∈ C∞c (�, W)

such thatA∗w j → v−Bu−h in L2(�, V), so thatAA∗w j → Av in Ẇ−l,2(�, V).
It remains to recall the last estimate from the proof of Proposition 3.18, i.e.

‖A∗w j‖L2(�) = ‖A∗w j‖L2(Rn) � C‖AA∗w j‖Ẇ−l,2(Rn) = C‖AA∗w j‖Ẇ−l,2(�),

where the equalities follow since w j are supported inside �. ��

4. A-Quasiconvexity and Weak Lower Semicontinuity

We recall the following definition [43], generalizing the previous notion of
Morrey [75]:

Definition 4.1. A locally bounded, Borel function F : V → R is A-quasiconvex
if

0 �
ˆ
[0,1]n

F(z + v(x))− F(z) dx

for all z ∈ V and all v ∈ C∞per([0, 1]n, V) such that Av = 0 and
´
[0,1]n v = 0.

Moreover, F : V → R is said to be A-quasiaffine if both F and −F are
A-quasiconvex.

An important consequence of Theorem 3.4 is that, under a constant rank as-
sumption, the above definition can be changed to resemblemore closely the original
definition of quasiconvexity in the gradient case (see [87, Corollary 1]):

Corollary 4.2. Let � ⊆ R
n be a non-empty open subset, A be a constant rank

operator as in the setup of Theorem 3.4 and let B be an operator as in (3.6) which
satisfies (3.5). A locally bounded Borel function F : V → R is A-quasiconvex,
respectively A-quasiaffine, if and only if

0 �
ˆ

�

F(z + Bu(y))− F(z) dy,

respectively

0 =
ˆ

�

F(z + Bu)− F(z) dx, (4.3)

for all z ∈ V and all u ∈ C∞c (�, U).

In particular, Corollary 4.2 shows that F : V → R is A-quasiaffine if and only
if for all z ∈ V and u ∈ C∞c (�, U) and every non-empty open set � ⊂ R

n .
Besides constant rank, it will be important to assume that the wave cone of

A spans the entire space. This is related to the following well-known lemma [3,
Section 2.5] (we give a proof only for the sake of completeness):
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Lemma 4.4. We have span�A = V if and only if allA-quasiconvex functions are
continuous.

Proof. The direction⇒ is standard and follows from the fact that any such function
is �-convex and �-convex functions are (locally Lipschitz) continuous in span�,
see e.g. [61, Lemma 2.3]. To prove ⇐ assume span� �= V. Then we can write
(v1, v2) ∈ V = span�⊕ Ṽ where Ṽ �= {0}. The function defined by F(v1, v2) =
1{v2=0}(v1, v2) is a discontinuous A-quasiconvex function; in fact, it is even A-
quasiaffine. Here we used the fact that periodic A-free fields take their values in
span�. ��

In what follows we will make the standard assumption that F : V → R satisfies
a p-growth condition

|F(v)| � C(|v|p + 1) (Gp)

The importance of A-quasiconvexity is its relation to lower semicontinuity, made
precise by the following fundamental result by Fonseca–Müller [43] (see also
[3, Remark 1.3]):

Theorem 4.5. LetA have constant rank and let F : �×V → R be a Carathéodory
integrand. The functional v �→ ´

�
F(x, v(x)) dx is sequentially weakly-∗ lower

semicontinuous on L∞A (�) if and only if for each fixed x0 ∈ � the map F(x0, ·) is
A-quasiconvex.

Moreover, if (G p) holds for some 1 < p < ∞ and we fix 1 < p < q, then we
have

v j ⇀ v in Lq (�)

Av j → 0 in W−l,q (�)

}
�⇒ lim inf

j→∞

ˆ
�

F(x, v j (x)) dx �
ˆ

�

F(x, v(x)) dx

if and only if for a.e. x0 ∈ � the map F(x0, ·) is A-quasiconvex.

We remark that, in general, the conclusion of the theorem is false in the critical
case p = q unless one assumes additional structure on either the integrand, for
instance positivity as done in [43], or on the sequence, for instance that it does not
concentrate on the boundary. A counterexample illustrating this failure was given
for A = curl and F = det in [6, Example 7.1, 7.3]. We refer the reader to [9] for a
detailed discussion of this issue.

The following lemma is well-known and was proved in the A = curl case in
[1,70].

Lemma 4.6. Assume � spans V. If F : V → R is �-convex and satisfies (G p)
then

|F(v)− F(w)| � C(1+ |v|p−1 + |w|p−1)|v − w|
for all v,w ∈ R

d .
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Proof. By the spanning condition, F is Lipschitz and, for v,w ∈ Br (0) ⊂ V,

|F(v)− F(w)| � C

r
osc(F, B2r )|v − w|,

where C depends only on �; see [61, Lemma 2.3]. Using (Gp) and the triangle
inequality, we get

|F(v)− F(w)| � C

(
1+ |v|

p

r
+ |w|

p

r

)
|v − w|

� C(1+ |v|p−1 + |w|p−1)|v − w|
where we also assumed without loss of generality that r � 1. ��

We are now ready to begin the proof of the main result of this section. Recall
that we always assume (1.5). The next proposition, although relatively simple, is
a crucial ingredient in the proof of Theorem 4.8 below. The point is that when a
weakly convergent sequence does not concentrate on the boundary it can be replaced
by a sequence of potentials.

Proposition 4.7. Let � be a bounded domain. Let v j , v ∈ L p(�, V) be such that

v j ⇀ v in L p(�, V), Av j → Av in W−l,p
loc (�, V)

and moreover let λ be such that |v j |p ∗
⇀ λ inM(�).

Assume that λ(∂�) = 0. Up to passing to subsequences in (v j ), there is a
sequence u j ∈ C∞c (�, U) such that

v j − v − Bu j → 0 in L p(�, V).

Proof. By linearity we may assume that v = 0. LetU � V � � to be determined
later and take η ∈ C∞c (�) with 1U � η � 1V and |Dmη| � 2d−m for m =
1, . . . , k; here d ≡ dist(U, ∂V ). Write, using the Helmholtz-Hodge decomposition
of Proposition 3.18,

ṽ j ≡ ηv j , ṽ j = Bu j + w j ,

where we have extended ṽ j by zero outside � so that it is in L p(Rn, V). Moreover,
we have

‖v j − Bu j‖L p(�) � ‖v j − ṽ j‖L p(�) + ‖̃v j − Bu j‖L p(�)

� ‖v j − ṽ j‖L p(�) + ‖Aṽ j‖W−l,p(�).

Let us estimate the first term: since λ is a positive measure,

lim
j→∞‖(1− η)v j‖L p(�) =

ˆ
�

(1− η)p dλ � λ(�\U ).
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Taking U ↑ � the left-hand side goes to zero by the dominated convergence
theorem, since λ(∂�) = 0. For the second term, we have

‖A(ηv j )‖W−l,p(�) � ‖ηAv j‖W−l,p(V ) +
k∑

i=1
‖Bi [Diη,Dk−iv j ]‖W−l,p(V )

where the Bi are fixed bilinear pairings given by the chain rule. For the first term
note that, up to taking subsequences in v j if necessary, we can assume that

‖ηAv j‖W−l,p(V ) � 1

j

by our hypothesis. The second term can be bounded by

‖Bi [Diη,Dk−iv j ]‖W−l,p(V ) �
‖Dk−iv j‖W−l,p(V )

di
� ‖v j‖L p(V )

di
.

Thus, picking U, V ↑ � such that d approaches zero sufficiently slowly, this term
also goes to zero. This finishes the proof: although u j is only in W B,p(�), by
definition of this Sobolev space there are ũ j ∈ C∞c (�, U) with ‖B(u j − ũ j )‖p
→ 0. ��

We proceed to the proof of the main result of this section; it is inspired by
standard lower semicontinuity proofs in the gradient case [1,17,65,70,72,75].

Theorem 4.8. Let � ⊂ R
n be a bounded domain. If F : V → R is A-quasiconvex

and satisfies (G p) then, whenever

v j ⇀ v in L p(�, V), Av j → Av in W−l,p
loc (�, V),

for all ρ ∈ C∞c (�) with ρ � 0 we have

lim inf
j→∞

ˆ
�

ρF(v j ) dx �
ˆ

�

ρF(v) dx .

Proof. By taking a subsequence, we can assume that |v j |p ∗
⇀ λ in M(�). Let us

also fix ρ ∈ C∞c (�) with ρ � 0 and ε ∈ (0, 1).
Step 1: We can find ṽ ∈ C∞c (�, V) such that ‖v − ṽ‖p < ε. Let us also take

δ ∈ (0, 1) such that, given any triangulation T̃ of R
n with supT∈T̃ diam T < δ, we

can find a function a, constant in each T ∈ T̃ , with the bound ‖̃v − a‖L p(�) < ε.
In particular, a satisfies

‖a‖L p(�) � 2ε + ‖v‖L p(�) < 2+ ‖v‖L p(�). (4.9)

We need to wiggle the triangulation sightly so that Proposition 4.7 becomes
applicable. For this, let T� ≡ {T ∈ T̃ : T ∩ B2(�) �= ∅}. Take a direction
e ∈ S

n−1 which is not tangent to any face of any simplex T ∈ T�. Then, given a
face σ of T , the sets te + σ , for t ∈ (0, δ), are disjoint. This shows that the set

{t ∈ (0, δ) : λ(te + σ) > 0}
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is at most countable and hence so is the set

E ≡
⋃

T∈T�

{t ∈ (0, δ) : λ(te + ∂T ) > 0}.

Select t ∈ (0, δ)\E and define the final triangulation T ≡ te+T�, which contains
B1(�). Choose a to be constant in each T ∈ T and satisfy (4.9).

Step 2: Let us write w j ≡ a + v j − v ∈ L p(�, V). Then
ˆ

�

ρ(F(v j )− F(v)) dx =
ˆ

�

ρ(F(v j )− F(w j )) dx +
ˆ

�

ρ(F(w j )− F(a)) dx

+
ˆ

�

ρ(F(a)− F(v)) dx ≡ I+II+III.

Using the local Lipschitz estimate of Lemma 4.6, we get

|I+ III| �
ˆ

�

ρ
(
1+ |v j |p−1 + |w j |p−1

)
|v j − w j | dx

+
ˆ

�

ρ
(
1+ |v|p−1 + |a|p−1

)
|v − a| dx

� max ρ

ˆ
�

(
1+ |v j |p−1 + 2p|v j |p−1 + 2p|v − a|p−1

)
|v − a| dx

+max ρ

(ˆ
�

(1+ |v|p−1 + |a|p−1) p
p−1 dx

) p−1
p
(ˆ

�

|v − a|p
) 1

p

Thus, from (4.9) and using Hölder again for the first term, we find that

|I+ III| � C

(
1+ ‖v‖p−1p + sup

j
‖v j‖p−1p

)
ε = O(ε)

where C now also depends on ρ. To summarize, we have w j ⇀ a in L p(�, V)

and we have shown that

lim inf
j→∞

ˆ
�

ρ(F(v j )−F(v)) dx = O(ε)+lim inf
j→∞

ˆ
�

ρ(F(w j )−F(a)) dx . (4.10)

Step 3: Since T triangulates � we haveˆ
�

ρ(F(w j )− F(a)) dx =
∑

T∈T

ˆ
T∩�

ρ(F(w j )− F(a)) dx . (4.11)

Using Proposition 4.7, take for each T ∈ T a sequence u j,T ≡ u j ∈ C∞c (T, V)

such that w j − a − Bu j → 0 in L p(T, V). By Lemma 4.6,
ˆ
T
F(w j )− F(a + Bu j ) dx → 0

and since F is A-quasiconvex, from Corollary 4.2,ˆ
T
F(a + Bu j )− F(a) dx � 0.
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Putting these together, we have shown that

lim inf
j→∞

ˆ
T
F(w j )− F(a) dx � 0. (4.12)

Take for each T ∈ T a point xT ∈ T and note that, from (4.11),

ˆ
�

ρ(F(w j )− F(a)) dx =

=
∑

T∈T
ρ(xT )

ˆ
T∩�

F(w j )− F(a) dx +
ˆ
T∩�

(ρ − ρ(xT ))(F(w j )− F(a)) dx

�
∑

T∈T
ρ(xT )

ˆ
T∩�

F(w j )− F(a) dx

−max
T∈T

diam ρ(T )

ˆ
�

C(1+ |w j |p−1 + |a|p−1)|w j − a| dx .

To bound the first term we use (4.12) and to bound the second we recall that
w j − a = v j − v and use the estimate (4.9) for a:

lim inf
j→∞

ˆ
�

ρ(F(w j )− F(a)) dx

� −C max
T∈T

diam ρ(T )

[ˆ
�

1+ |v|p dx + sup
j

ˆ
�

|v j |p dx
]

.

Since ρ has compact support it is uniformly continuous and since diam T < δ for
T ∈ T we have that maxT∈T diam ρ(T ) → 0 as δ → 0. Finally, using (4.10) and
sending ε → 0 the conclusion follows. ��

The above proof can be easily adapted to the case where we do not assume that
ρ has compact support, instead assuming that the negative part of the integrand has
q-growth for q < p, see e.g. the proofs in [23,70]. This recovers the second case
of Theorem 4.5 above.

5. Null Lagrangians and Weak Continuity

We begin by recording the following definition:

Definition 5.1. Given a C1 integrand F : V → R, we say that it is an A-null
Lagrangian if it satisfies, in the sense of distributions,

B∗ (DF(Bu)) = 0, (5.2)

for all u ∈ Ck(�, U). When the choice of A is implicit from the context we refer
to such integrands simply as null Lagrangians.
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We remark that one can also consider null Lagrangians depending on lower
order terms, as in [83], but we shall not pursue this here.

Having Theorem 4.8 at our disposal, we can give a first abstract characterization
of A-quasiaffine maps under the main assumption (1.5); this will be improved in
the next section and quantified in Section 7. The following proposition is modelled
on [5, Theorem 3.4].

Proposition 5.3. Let F : V → R be locally bounded and Borel and let � be a
bounded domain. The following are equivalent:

(a) F is A-quasiaffine;
(b) F is an A-null Lagrangian;
(c) F : L∞A (�) → L∞(�) is sequentially weakly-∗ continuous;
(d) F is a polynomial of degree s � min{n, dimV} and

v j ⇀ v in Ls(�, V)

Av j → Av in W−l,s
loc (�, V)

}
�⇒ F(v j )

∗
⇀ F(v) in D ′(�).

In light of 5.3 above we will sometimes call A-quasiaffine maps null La-
grangians, as it is usual in the Calculus of Variations literature.

Proof. 5.3⇔ 5.3: It is clear that 5.3 holds if and only if, for anyϕ ∈ C(�), the func-
tionals u �→ ± ´

�
ϕ(x)F(v(x)) dx are sequentially weakly∗ lower semicontinuous

on L∞A (�). By Theorem 4.5 this happens if and only if F is A-quasiaffine.
Clearly 5.3⇒ 5.3. We now prove 5.3⇒ 5.3, by an argument similar to the one

in the first paragraph. It is well-known that F must be �-affine (see e.g. [99]), i.e.
it is affine along lines parallel to �. Since span� = V, it must be a polynomial
of degree s ≤ dimV and the inequality s � n follows from (5.4) below. We apply
Theorem 4.8 to conclude that if the premise of the implication in 5.3 holds then´
�

ϕ(x)F(x, v j (x)) dx →
´
�

ϕ(x)F(x, v(x)) dx .
5.3⇒ 5.3:We already know that F is a polynomial so in particular it is smooth.

Let us take un, ϕ ∈ C∞c (�, R
b) and t > 0. Then, by (4.3),

0 = d

dt

∣∣∣∣
t=0

ˆ
�

F(Bun + tBϕn) dx =
d∑

i=1

ˆ
�

∂F

∂vi
(Bun)(Bϕ)i dx .

Choosing un → u in Ck(suppϕ), we obtain 5.3. The converse direction is identi-
cal. ��

Most of the above proposition is essentially contained in the literature, as be-
comes clear from the proof. The only novelty is 5.3,which improves the integrability
required for Murat’s result [82] to hold: even in the simplest case where B = Dk ,
it only follows from his result that a polynomial of degree three is sequentially
weakly continuous as a map Wk,4(�) → D ′(�); this had already been observed
and improved in [5], see also [88,89], but here it is extended to an arbitrary constant
rank operator.
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While Proposition 5.3 gives an abstract characterization of null Lagrangians it
is relevant to have an effective way of computing them. For an operator2 A not
necessarily of constant rank Tartar [99] showed that 5.3 implies the algebraic
condition

Dr F(v)[λ1, . . . , λr ] = 0 for all (λ1, ξ1), . . . , (λr , ξr ) ∈ V with rank (ξ1, . . . , ξr ) < r
(5.4)

for all v ∈ V and all r � 2. Murat [82] then proved that if moreover A has
constant rank then these conditions are in fact sufficient, i.e. (5.4) is equivalent
to 5.3. Unfortunately, it is in general unclear what are the polynomials, if any,
satisfying the above restriction. Murat [81, page 93] was already aware of this
difficulty (emphasis not ours):

Encore faut-il, dans chaque cas particulier, expliciter quels sont les polynômes
homogènes de degré r qui satisfont [(5.4)]. Cela conduit à des calculs al-
gébriques qui sont parfois difficiles, voire inextricables.

Even in the case where B = Dk it is by no means easy to find all the weakly
continuous functions. The following result [5, Theorem4.1] relies on deep algebraic
facts:

Theorem 5.5. Let F : �k (Rn, R
m) → R be continuous. Then F = F(Dku) is

Dk-quasiaffine if and only if it is an affine combination of Jacobians of U ≡ Dk−1u,
by which we mean that there exist constants cM ∈ R such that

F = F(0)+
∑

M

cMM(DU )

where M : R
N×n → R runs over all s × s minors of N × n matrices, for N =

dim�k−1(Rn, R
m) and s = 1, . . .min{n, N }.

It appears that this result was proved independently around the same time in
[2]. We are interested in using the above theorem to make the characterization of
Proposition 5.3 more explicit. Let us write, following [61, §4],

D(n, k, U) ≡
{
u ⊗ ξ⊗k : u ∈ U, ξ ∈ R

n
}
;

this cone spans �k(Rn, U) and when k = 1 is the usual cone of rank-one linear
transformations. Going back to (3.7), we note that it implies that, for v ∈ V,

B(ξ)v = T (v ⊗ ξ⊗k).

Since imB(ξ) = kerA(ξ), it follows from the definition of� that T maps the cone
D(n, k, U) onto �. The following straightforward lemma will be helpful:

2 Strictly speaking, in [82,99] it is assumed that A is a first-order operator, but one can
easily check that the proof carries through to the case where A is a general homogeneous
l-th order operator.



Hardy Spaces and Compensated Compactenss Under Constant Rank Constraints 301

Lemma 5.6. If F : V → R is A-quasiaffine then the composition F ◦ T is Dk-
quasiaffine; the converse also holds if span� = V.

Proof. We only prove the converse direction as the other one is absolutely similar,
so suppose that F is Dk-quasiaffine. By assumption, for each v ∈ V there is some
z ∈ �k(Rn, U) such that T z = v. Then for any u ∈ C∞c (�, U) we have

F(v) = F ◦ T (z) =
 

�

F ◦ T (z + Dku) dx =
 

�

F(v + Bu) dx

where we used the linearity of T and (3.7). This shows that F ◦ T is A-
quasiaffine. ��
Remark 1. An interesting takeaway from this lemma is that there seem to be two
competing notions of polyconvexity [10]. We follow the usual definition in the
curl-free case [7] and say that F : V → R is A-polyconvex if it is the pointwise
supremumofA-quasiaffine functions; this is an intrinsic notion.Another possibility
is to consider the class of functions F such that F ◦ T is Dk-polyconvex. This class
is contained in the class of A-quasiconvex functions, as one readily checks by a
calculation similar to the one in the proof of the lemma. Let us call such functions
extrinsically A-polyconvex. We have that

convexity �⇒ A-polyconvexity �⇒ extrinsic A-polyconvexity

�⇒ A-quasiconvexity

and in some cases the first two notions coincide, see Example 5.11 below, where
B = E . In this case, F(Bu) = det Eu is extrinsic symmetric polyconvex, but
not symmetric polyconvex. It is also clear that the intrinsic and extrinsic classes
of polyconvex integrands can be the same, as it is the case when B = Dk . These
notions have been further studied in the particular case where the integrands depend
on differential forms [8].

Since we assume that span� = V, we have that T is onto V and the Rank–
Nullity Theorem yields the linear isomorphism

�k(Rn, U) ∼= ker T ⊕ im T = ker T ⊕ V. (5.7)

Therefore we think of V as a subspace of�k(Rn, U) and of T as a projection onto
that subspace. The utility of this viewpoint is illustrated by the previous results:
under the assumptions of the lemma, the map F ◦ T is an affine combination of
Jacobians and under the identification (5.7) we can in fact think of F as real-valued
map defined on V ⊆ �k(Rn, U). Thus, we have shown:

Proposition 5.8. Let F : V → R be a A-quasiaffine map. Then, under the identi-
fication (5.7), we can find constants cM ∈ R such that

F ◦ T = F(0)+
∑

M

cMM, (5.9)

where M : R
N×n → R, N = dim�k−1(Rn, R

m), runs over all minors of N × n
matrices.
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In other words, in the right coordinates, A-quasiaffine maps are precisely the
Jacobians.

It is natural to ponder for a moment whether one can hope for a more invariant
statement. The crucial point here is that proper minors, i.e. minors which are not
the determinant, have no intrinsic geometric content, in the sense that they are not
invariant under changes of coordinates. We make this well-known fact very precise
in the following remark.

Remark 2. Assume that m �= n. A (non-trivial) linear isomorphism L ∈ GL(Rm ⊗
R
n) maps minors into minors, i.e. M ◦ L : R

m×n ∼= R
m ⊗ R

n → R is a minor
whenever M : R

m×n → R is a minor, if and only if

L = R ⊗ S for some R ∈ GL(m), S ∈ GL(n). (5.10)

This follows from the fact that minors are precisely the rank-one affine functions
(and that they are affine only along rank-one lines) and that T maps the rank-one
cone into itself if and only if it has the form (5.10), see [71, Theorem 1]. This shows
the intuitive fact that minors are closely tied with the tensor product structure of
the vector space R

m ⊗ R
n and that, to make sense of them, one should not forget

this structure and think of it instead as a generic vector space of dimension m × n.

Remark 3. Robbin–Rogers–Temple [90, §5.2] asked whether all weakly continu-
ous functions could be obtained in a framework with differential forms. Proposition
5.8 gives a positive answer to this question under the main assumption (1.5). We
refer the reader to the works [53,94] for further properties of null Lagrangians
depending on differential forms.

The above discussion shows that the choice of coordinates (5.7) is in some
sense very arbitrary. Nonetheless, the identification (5.7) also turns out to be com-
putationally effective. The computational problem is to decide which, if any, of the
constants cM that appear in (5.9) can be taken to be non-zero. The key to solving
this problem is the the immediate fact that, if H : �k (Rn, U) → R denotes the
right-hand side of (5.9), then

H = H ◦ T .

Wethinkof both sides of this equality as beingpolynomials in the algebraically inde-
pendent variables xi1,...,ik , i j ∈ {1, . . . , n}, that define an element X = (xi1,...,ik ) ∈
�k(Rn, U). Since both sides are equal as polynomials, all the coefficients must
be the same. Noting that the coefficients of these polynomials depend linearly on
(cM )M , we find from the equality of coefficients a linear system for the cM whose
solution determines completely the possible null Lagrangians. This system can in
turn be solved using symbolic computation software. One can also fix a specific
order of the minors in (5.9), say s, and solve instead the above system with H
replaced by

Hs ≡
∑

degM=s
cMM,

since minors of different orders cannot cancel each other out. For the sake of
concreteness, we illustrate this method with simple examples.
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Example 5.11. Let T = Psym, where Psym : R
n×n → R

n×n
sym = V is the orthogonal

projection, i.e. B = E is the symmetric gradient. The algorithm described above
can be very easily implemented; in Mathematica a possible implementation is
given in Code Listing 1.

sym[X_] := (X+Transpose[X])/2;
X = Array[Subscript[x, #1, #2]&, {n, n}];
const = Array[Subscript[c, #]&, Binomial[n, s]^2];
%
Solve[
DeleteCases[
CoefficientList[
const.(Flatten[Minors[sym[X], s] − Minors[X, s]]), Flatten[X]
]//Flatten, 0
] == 0
]

Code Listing 1. A possible implementation of the algorithm in the setup of Example 5.11

In this case, however, it is relatively easy to verify analytically that there are no
non-affine null Lagrangians (when n = 2, 3, this was proved in [10] as a conse-
quence of more general statements). For this, it suffices to consider the case where
the null Lagrangians are homogeneous polynomials of degree 2. Indeed, if F is an
s-homogeneous null Lagrangian then ∂F/∂v is an (s − 1)-homogeneous null La-
grangian, where v is any vector from V; this follows straightforwardly from (4.3).
Thus, if we prove that there are no null Lagrangians with order two then there can
be no higher order null Lagrangians.

From the relation H2 = H2 ◦ T we deduce that, for any X ∈ R
n×n , H2(X) =

H2(XT ). Given a 2×2 minor M , let M̃ be the minor defined by M̃(X) ≡ M(XT );
in particular M̃ = M if M is a principal minor. For the sake of concreteness, let us
say that M(X) = det[(xi, j )i∈I, j∈J ] where I = {i1, i2}, J = { j1, j2} ⊂ {1, . . . , n}.
If we let X = (xi, j ) be such that

xi, j =
{
1 (i, j) = (ik, jk) for k ∈ {1, 2}
0 otherwise

then

cM = cMM(X) = Hs(X) = Hs(X
T ) = cM̃ M̃(X) = cM̃ .

Now let Y = X− XT and observe that, since M(Z) = M(−Z) for any Z ∈ R
n×n ,

cM + cM̃ = cMM(X)+ cM̃ M̃(X) = H2(Y ) = H2(T (Y )) = 0.

The conclusion follows.

Example 5.12. Another relevant example is that of solenoidal matrix fields, i.e.
A = div , which can be embedded in the framework of exterior derivatives of
differential forms. As above, we are particularly interested in null Lagrangians of
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degree (at least) two. We will consider divergence-free fields v : R
n → R

n×n for
n = 2, 3. For n = 2, we can set3

v =
(

∂2u1 −∂1u1
∂2u2 −∂1u2

)
= (Du)J, where J =

(
0 −1
1 0

)
,

and note that H2 = c det for c ∈ R. To see that this is indeed a null Lagrangian,
we need only observe that det X = det(X J ) for X ∈ R

2×2.
For n = 3, we will show that there are no (homogeneous) quadratic null La-

grangians. First, recall that curl is a potential operator for div in this case, which
we write in the form

Bu ≡ PasymDu, for u : R
3 → R

3,

where T ≡ Pasym denotes the orthogonal projection onto anti-symmetric matrices.
We will test the relation H2(X) = H2(T (X)) with different matrices X ∈ R

3×3 to
show that H2 = 0, since this is enough to show that there are no non-affine null
Lagrangians (see alsoExample 5.11). First, note that by taking X = ei⊗ei+e j⊗e j ,
i �= j , the coefficients of the principal minors in H2 must be zero. The other
2 × 2 minors touch the main diagonal on exactly one entry, say (i, i). By taking
X = aei ⊗ ei + e j ⊗ ek , j �= i �= k, for a ∈ R, we see that indeed H2 = 0.

For general dimension n � 3, it is not too difficult to see that there are no
non-affine div-null Lagrangians.

It would be interesting to give a theoretical characterization of the solutions of
the computational problem. This is also a relevant question since the linear system
described above grows factorially in dimV, although in applications to continuum
mechanics this number is usually relatively small. Unfortunately, even in the special
case whenB has order one such a characterization seems difficult. The authors were
unable to give a definitive answer even to the following simple-looking question.

Assume we are given a projection T : R
m×n → V, which can be chosen to be

orthogonal, onto some subspace V ⊆ R
m×n . Consider a function Hs : R

m×n → R

as above, i.e.

Hs(X) =
∑

degM=s
cMM(X), Hs = Hs ◦ T

where the sum runs over the set of all minors (not necessarily principal) of order
2 � s < min{m, n}. The second condition can be equivalently rewritten as

Hs(X) = Hs(X + Y ) for all X, all Y such that T (Y ) = 0. (5.13)

We think of this as saying that the linear combination of minors Hs only depends
on the coordinates of V.

Question 2. Under which conditions on T can we find non-zero Hs satisfying
(5.13)? Can we characterize such Hs in terms of V?

3 In this simple case, an example of a potential operator B is easily chosen by inspection.
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6. Compensated Compactness in Hardy Spaces

We begin by stating the main theorem of this section; as usual, we assume (1.5)
holds throughout. Recall that A-quasiaffine maps are polynomials (c.f. Proposi-
tion 5.3) and see Definition 3.9 for the definition of IA.

Theorem 6.1. Let F : V → R be locally bounded and Borel. If the implication

v ∈ C∞c,A(Rn) �⇒ F(v) ∈H 1(Rn) (6.2)

holds, F is a sum of homogeneous A-quasiaffine functions of degree at most
min{n, dimV}.

Conversely, assume that F is an s-homogeneousA-quasiaffine function. If s � 2
then (6.2) holds and moreover

‖F(v)‖H 1 � C‖v‖sLs for v ∈ C∞c,A(Rn).

If s = 1, we have that F(v) = v0 · v for some v0 ∈ V and (6.2) holds if and only if
v0 ⊥ IA, although nonetheless the above estimate fails.

It will be convenient to prove the homogeneous case first. We will deal with the
linear case, which is somewhat degenerate, afterwards.

Proposition 6.3. Let F be a homogeneous polynomial on V of degree 2 ≤ s �
min{n, dimV}. The following statements are equivalent:

(a)
´
Rn F(v) = 0 for all v ∈ C∞c,A(Rn).

(b) ‖F(v)‖H 1(Rn) ≤ c‖v‖sLs (Rn)
whenever v ∈ Ls

A(Rn).

Observe that the direction 6.3⇒ 6.3 is clear, since functions inH 1(Rn) have
zero mean. To prove the estimate, we follow the original strategy in [18]. In fact, we
will use the potential B and Lemma 5.6 to show that the estimate can be inferred
from the case B = Dk . The statement for v = Dku is then known from [69,
Theorem 6.2]; here we give a proof by reduction to the div-curl case.

We emphasize the technical fact that the assumption s � n will be important in
order to apply the Poincaré–Sobolev inequality. Given a ball Bt (x) ⊂ R

n we write
( f )x,t ≡

ffl
Bt (x)

f (y) dy.

Proof of Proposition 6.3. From (3.17) we see that it is sufficient to bound F(Bu)

for u ∈ C∞c (Rn, U). Recalling Lemma 5.6, it is natural to first deal with the case
B = Dk . This case is already known from [69], but here we give a simpler proof,
at least as far as notation is concerned.

We claim that if
´
Rn F(Dku) dx = 0 for u ∈ C∞c (Rn) then there is an estimate

‖F(Dku)‖H 1 � C‖Dku‖sLs for u ∈ C∞c (Rn). (6.4)

The assumption implies that F is Dk-quasiaffine at zero, and hence everywhere,
c.f. the proof of Theorem 6.1 below. By Theorem 5.5 and s-homogeneity, we see
that F is a linear combination of minors of order s of DU , whereU ≡ Dk−1u, i.e.

F(Dku) =
∑

degM=s
cMM(DU ).
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Thus, it is sufficient to prove the estimate in the case F(Dku) = M(DU ). We
choose coordinates x = (x ′, x ′′) ∈ R

n and T = (T ′, T ′′) ∈ �k−1(Rn, U), where
x ′, T ′ are s-dimensional. Then we can write

M(DU (x)) = det Dx ′U
′(x).

Note that Dx ′ can be regarded as a differential operator on R
n .

To prove the claim, one can use the reasoning used in the proof of [18, Theo-
rem II.1.1)]. By looking at the (1, 1) entry of the identity (det A)Id = A(cof A)T

applied to A = D f , f : R
s → R

s , we see that det D f = D f1 · σ , where σ is
the first row of the matrix cofD f , which is row-wise divergence-free, and more-
over we have the pointwise estimate |σ | � |D f2||D f3| . . . |D fs |. In our case, it is
elementary to adapt these considerations to see that

M(DU ) = 〈Dx ′U
′
1(x),�(x)〉Rs

where 〈·, ·〉Rs is the usual Euclidean inner product and � : R
n → R

s is such that

divx ′� = 0 in R
n and |�| � |DU ′2||DU ′3| . . . |DU ′s |.

Here divx ′ = D∗x ′ is the adjoint of the differential operator Dx ′ .
Let ψ ∈ C∞c (B1(0)) be a non-negative function with non-zero mean. We have

|ψt ∗ M(DU )|(x) =
∣∣∣∣
1

tn

ˆ
Rn

ψ

(
x − y

t

)
〈Dx ′U

′
1(y),�(y)〉Rs dy

∣∣∣∣

=
∣∣∣∣
1

tn

ˆ
Bt (x)

〈
Dx ′
[
U ′1(y)− (U ′1)x,t

]
, ψ

(
x − y

t

)
�(y)

〉

Rs
dy

∣∣∣∣

=
∣∣∣∣

1

tn+1

ˆ
Bt (x)

(U ′1(y)− (U ′1)x,t )
〈
(Dx ′ψ)

(
x − y

t

)
, �(y)

〉

Rs
dy

∣∣∣∣

� 1

tn+1

ˆ
Bt (x)

|U ′1(y)− (U ′1)x,t ||�(y)| dy,

where in the third equalitywe integrated byparts, using the fact that that divx ′� = 0.
We apply Hölder’s inequality with p = nq/(n + q) for some q ∈ (1, s) to get

|ψt ∗ M(DU )|(x) � 1

t

( 
Bt (x)

|U ′1(y)− (U ′1)x,t |p dy
)1/p ( 

Bt (x)
|�(y)|p′ dy

)1/p′

�
( 

Bt (x)
|DU ′1(y)|q dy

)1/q ( 
Bt (x)

|�(y)|p′ dy
)1/p′

wherewe also used the Poincaré–Sobolev inequality; note that the implicit constant
does not depend on t . We further ensure that p′ = p/(p− 1) < s/(s − 1) = s′ by
requiring q > ns/(n+ s). We next note that, writingM for the Hardy–Littlewood
maximal function,

sup
t>0
|ψt ∗ M(DU )|(x) � sup

t>0

[( 
Bt (x)

|DU ′1(y)|q dy
)1/q ( 

Bt (x)
|�(y)|p′ dy

)1/p′]

� sup
t>0

( 
Bt (x)

|DU ′1(y)|q dy
)1/q

sup
t>0

( 
Bt (x)

|�(y)|p′ dy
)1/p′

=M(|DU ′1|q)(x)1/qM(|�|p′)(x)1/p′
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Integrating this estimate with respect to x and applying Hölder’s inequality twice
we obtain

‖M(DU )‖H 1(Rn) �
(ˆ

Rn
M(|DU ′1|q)s/q

)1/s (ˆ
Rn

M(|�|p′)s′/p′
)1/s′

�
(ˆ

Rn
|DU ′1|s

)1/s (ˆ
Rn
|�|s′
)1/s′

�
(ˆ

Rn
|DU ′1|s

)1/s (ˆ
Rn

s∏

i=2
|DU ′i |s/(s−1)

)(s−1)/s

�
s∏

i=1
‖DU ′i ‖Ls (Rn) � C‖DU ′‖sLs (Rn),

where moreover the second inequality follows by boundedness of the maximal
function. This proves the desired claim (6.4).

To conclude the proof, we return to the case of a general B and use Lemma 5.6:

‖F(Bu)‖H 1(Rn) = ‖F ◦ T (Dku)‖H 1(Rn) � C‖Dku‖sLs (Rn) � C‖Bu‖sLs (Rn),

where the last estimate follows from Theorem 3.3, since the left-hand side is kept
unchanged by replacing u with u − PBu. ��
Remark 4. It is possible to give a more abstract proof of the above proposition in
the spirit of [69,96], circumventing the explicit representation of null Lagrangrians
from [5]. The basic idea is that, since both F andB are homogeneous, we can write

F(Bu) =
∑

ν∈{1,...,dimU}s

∑

|β1|,...,|βs |=k
fβ,ν

s∏

i=1
∂βi uνi

for some constants fβ,ν ∈ R, where each βi is an n-multi-index. Using the Leibniz
rule together with the cancellation assumption 6.3 we have, after some elementary
calculations,

ˆ
Rn

ψt (x − y)F(Bu(y)) dy =

−
∑

β,ν

fβ,ν

tn

ˆ
Rn

s∏

i=1

∑

γ<β

cβ,γ ∂βi−γi φ

(
x − y

t

)
∂γi uνi (y) dy

where by γ < β wemean that there is some i such that γi < βi as multi-indices and
ψ ≡ φs . The point is that, for each (β, ν) fixed, at least one of the terms on the right
has one less derivative than the others. Therefore, subtracting enough moments
from u, we see from the Poincaré–Sobolev inequality that this term has higher
integrability than the others. One then concludes by suitably applying Hölder’s
inequality, similarly to above.
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In order to deduce the theorem from the proposition we need to justify the
assumption s � 2. This will be done in the following lemma, which proves a non-
inclusion of L1

A(Rn) intoH 1(Rn) andwhich is somewhat reminiscent of themuch
deeper Ornstein’s non-inequality [61,84]. The common theme is, of course, the lack
of boundedness of singular integrals on generic subspaces of L1, c.f. Proposition
2.3. Recall that we assume (1.5).

Lemma 6.5. Let v0 ∈ V be a non-zero vector. Then there exists a sequence v j ∈
C∞c,A(Rn) such that ‖v0 · v j‖H 1 � j but ‖v j‖L1 � 1 for all j � 1.

Proof. By the spanning cone condition, there exists non-zero ṽ0 ∈ V and ξ ∈
R
n such that ṽ0 ∈ kerA(ξ) = imB(ξ), say B(ξ)u0 = ṽ0, and ṽ0 · v0 �= 0.

Note that if u(x) = f (x · ξ)u0 for some f ∈ L1
loc(R), then Bu(x) = f (k)(x ·

ξ)B(ξ)u0. In particular, by choosing f (t) = max{t, 0}k−1, we obtain that Bu =
(k − 1)!ṽ0

(
H n−1 {x · ξ = 0}).

By defining ũ = ρu for some test function ρ that equals one in a neighbourhood
of the unit ball, we obtain a compactly supported A-free measure Bũ that is not
absolutely continuous.

We now explain how the proof can be concluded easily. Assume for contradic-
tion that the claim of the lemma fails, so that there is a bound

‖v · v0‖H 1 � C‖v‖L1 for v ∈ C∞c,A(Rn).

Consider a sequence of mollifications ũε, so that ũε ∈ C∞c (Rn) and Bũε
∗
⇀ Bũ as

measures. The estimate implies

‖Bũε · v0‖H 1 ≤ C sup
ε∈(0,1)

‖Bũε‖L1 < ∞,

and so, up to subsequences, (Buε ·v0)ε is convergent inH 1. It follows thatBu ·v0 ∈
H 1, so Bu · v0 is absolutely continuous, which leads to a contradiction since
ṽ0 · v0 �= 0. ��

We are finally ready to finish the proof.

Proof of Theorem 6.1. Note that if (6.2) holds then F is A-quasiaffine at zero, i.e.
we have (4.3) with z = 0: if u ∈ C∞c (Rn, U) then Bu ∈ C∞c,A and therefore´
Rn F(Bu) = 0 since functions in the Hardy space have zero mean. Moreover, if F
isA-quasiaffine at zero then it is quasiaffine everywhere. To see this, fix z ∈ V and
u ∈ C∞c (Rn, U). Let φ ∈ C∞c (Rn, U) be chosen so that Bφ = z in the support of
u; thus

´
Rn F(tBφ+Bu) = 0 for any t ∈ R. Then, since F(tBφ+Bu) = F(tBφ)

outside the support of u,

0 = d

dt

ˆ
Rn

F(tBφ + Bu)− F(tBφ) dx = d

dt

ˆ
Rn

F(t z + Bu)− F(t z) dx

so the right-hand side is constant. In particular, comparing the values at t = 1 and
t = 0, ˆ

Rn
F(z + Bu)− F(z) dx =

ˆ
Rn

F(Bu) dx = 0,
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as wished.
Since F isA-quasiaffine, it is a polynomial, which we write as a sum of homo-

geneous terms as F =∑n
s=0 Ps . In fact, it is clear that P0 = 0. We note that

0 =
ˆ
Rn

F(tBu) dx =
n∑

s=1
t s
ˆ
Rn

Ps(Bu) dx

for all t ∈ R and u fixed. This implies that each Ps is A-quasiaffine as well.
Conversely, if F isA-quasiaffine then it is continuous and, given v ∈ C∞c,A(Rn)

we have, from Proposition 3.18, a sequence u j ∈ C∞c (Rn, U) such that Bu j → v

in L p(Rn, V). Therefore

0 =
ˆ
Rn

F(Bu j ) dx →
ˆ
Rn

F(v) dx as j →∞,

so we can use Proposition 6.3 to see that (6.2) and the required estimate for s-
homogeneous F , s � 2, holds.

Finally, let F be linear, say F(v) = v0 · v. By Lemma 6.5, there can be no
uniform estimate in this case. Moreover, if v0 is not orthogonal to IA, we consider
v1 ∈ IA be such that v0 · v1 �= 0 and a scalar test field ρ ∈ C∞c (Rn) with non-zero
integral. Then ρv1 ∈ C∞c,A(Rn) but F(ρv1) is not in the Hardy space. On the other
hand, if v0 is orthogonal to IA, we write v = v1 + v2 for the decomposition of
v ∈ C∞c,A(Rn) such that v1 ∈ C∞c (Rn, IA) and v2 ∈ C∞

c,Ã(Rn) (recall Lemma 3.11

and its notation). We then have that F(v) = v0 · v2, which is a test function with
zero integral, as is v2 by Lemma 3.10. It follows that F(v) lies in H 1(Rn). The
proof is complete. ��

We remark that Theorem 6.1 seems to contradict [69, Proposition 6.3], but
unfortunately there appears to be a mistake in the calculation presented there. As a
simple consequence of the theorem, we have:

Corollary 6.6. If F is an s-homogeneous A-null Lagrangian, s � 2, then

F : (Ls
A(Rn),w) → (H 1(Rn),w∗) is sequentially continuous.

Proof. Given a sequence v j ∈ Ls
A(Rn) such that v j ⇀ v in Ls , we have from 5.3

of Proposition 5.3 that
ˆ
Rn

ϕF(v j ) dx →
ˆ
Rn

ϕF(v) dx for all ϕ ∈ C∞c (Rn).

Since F(v j ), F(v) are uniformly bounded inH 1(Rn), and by density of test func-
tions in VMO(Rn), we can replace C∞c by VMO above; in this case, the integrals
should be thought of as shorthand notation for the duality pairing. ��

The utility of Hardy space bounds when dealing with weakly converging se-
quences is apparent, for instance, from Theorem 2.4. To conclude this section we
provide some concrete examples which illustrate the way in which Theorem 6.1
contains the examples of [18].
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Example 6.7. (Stationary Maxwell system) Let E, B ∈ C∞c (Rn, R
n) be such that

div E = 0, curl B = 0.

Then the vector field (E, B) is A-free, where of course A = (div, curl), which
is a constant rank operator. The quantity E · B is easily seen to be A-quasiaffine:
indeed, writing B = Du for some smooth u,ˆ

Rn
E(x) · B(x) dx = −

ˆ
Rn

u(x) div E(x) dx = 0.

Therefore, from the theorem,

‖E · B‖H 1 � ‖(E, B)‖2.
In particular, and arguingbydensity,we see that the sameholds if B, E ∈ L2(Rn, R

n).

A generalization of the previous example for quadratic forms was given in [68],
even without assuming that A has constant rank.

Example 6.8. (Double cancellation)Let us takevectorfieldsU, V ∈ L2(Rn, R
n×n);

again we shall first argue formally as the general case can be recovered by density.
We introduce the constant rank operator

A
[
U
V

]
=
⎡

⎣
D(trU )

curlU
curl V

⎤

⎦ .

Note that anA-free test vector field (U, V ) can be written asU = Du and V = Dv,
where moreover div u = 0 since div u = trU is both constant and zero outside a
compact set. The function F(U, V ) = 〈UT , V 〉 =∑i, j U

j,i V i, j isA-quasiaffine:
ˆ
Rn

F(U, V ) =
ˆ
Rn

∑

i, j

∂ i u j∂ jvi =
ˆ
Rn

div u div v = 0.

Therefore, from the theorem,
∥∥∥∥
ˆ
Rn

∑

i, j

∂ j ui∂
iv j

∥∥∥∥
H 1

� ‖Du‖2‖Dv‖2

whenever u is divergence-free.

Example 6.9. (Monge-Ampère) Let A be an annihilator for D2. Given U, V ∈
C∞c (R2, R

2), the map

F(U, V ) = U11V22 +U22V11 − 2U12V12

is A-quasiaffine: writing U = D2u, V = D2v, we haveˆ
Rn

F(U, V ) =
ˆ
Rn

∂xxu∂yyv + ∂yyu∂xxv − 2∂xyu∂xyv ≡
ˆ
Rn
[u, v] = 0

by integration by parts. Thus

‖[u, v]‖H 1 � ‖D2u‖2‖D2v‖2.
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7. Continuity Estimates for Null Lagrangians

In the casewhere� = R
n it is possible to give a simple proof ofweak continuity

of null Lagrangians following the strategy from [14,54]. This proof circumvents
the use of Theorem 4.5 and moreover has the advantage of giving a quantitative
statement.

Proposition 7.1. Let F be s-homogeneous for some s � 2 and A-quasiaffine and
let p ∈ (s−1,∞), q ∈ (1,∞) be such that s−1p + 1

q = 1. Given v1, v2 ∈ C∞c,A(Rn),
we have the estimates
∣∣∣∣
ˆ
Rn

ϕ (F(v1)− F(v2)) dx

∣∣∣∣ � C‖v1 − v2‖Ẇ−1,q (‖v1‖L p + ‖v2‖L p )s−1 ‖Dϕ‖L∞
(7.2)

and
∣∣∣∣
ˆ
Rn

ϕ (F(v1)−F(v2)) dx

∣∣∣∣�C‖v1− v2‖Ẇ−1,BMO (‖v1‖L p+‖v2‖L p )s−1 ‖Dϕ‖Lq .

(7.3)
for all ϕ ∈ C∞c (Rn).

We remark that (7.2) estimates the Kantorovich–Rubinstein–Wasserstein norm
of the difference F(v1)− F(v2). If we take p = q = s, we recover a quantitative
version of the statement

v j ⇀ v in Ls
A(Rn) �⇒ F(v j )

∗
⇀ F(v) in D ′(Rn).

For the second estimate (7.3), we define the norm in Ẇ−1,BMO(Rn) by

‖v‖Ẇ−1,BMO ≡
∥∥∥∥F

−1
(

v̂(ξ)

|ξ |
)∥∥∥∥

BMO
.

Furthermore, Proposition 7.1 yields continuity results in the regime below integra-
bility.

Remark 5. In this remark we discuss the case p < s, so that the quantity F(v) is
not integrable, and we define an appropriate distributional version of F .

Given a sequence v j ∈ C∞c,A(Rn) such that sup j ‖v j‖L p < ∞ and v j → v ∈
Ẇ−1,q , since F(v j ) ∈ C∞c (Rn), we can define

F(v) ≡ w*- lim
j→∞ F(v j ) in D

′(Rn); (7.4)

that this is well defined follows from estimate (7.2). A particularly relevant instance
is the case when v j ∈ C∞c,A(�) and p > ns

n+1 , where� ⊂ R
n is bounded and open.

In this situation,

v j ⇀ v in L p(�) �⇒ sup
j
‖v j‖L p < ∞ and v j → v in Ẇ−1,q(�),

where the second convergence follows from the compactness of Sobolev embed-
dings. In particular, (7.2) can be reinterpreted as a weak continuity statement for
the distributional version of F defined in (7.4). Further properties of distributional
null Lagrangians will be explored elsewhere [49].
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Proof of Proposition 7.1. We use the strategy of the proof of Proposition 6.3, rely-
ing on the explicit structure of null Lagrangians. We can write, by Proposition 3.18,
vi = Bui . Let us first note that it suffices to prove (7.2) when B = Dk ; indeed,
assuming this has been done, and using Lemma 5.6, we have
∣∣∣∣
ˆ
Rn

ϕ (F(v1)− F(v2)) dx

∣∣∣∣ =
∣∣∣∣
ˆ
Rn

ϕ
(
F ◦ T (Dku1)− F ◦ T (Dku2)

)
dx

∣∣∣∣

� C‖Dk−1(u1 − u2)‖Lq
(
‖Dku1‖L p + ‖Dku2‖L p

)s−1 ‖Dϕ‖L∞
� C‖Bu1 − Bu2‖Ẇ−1,q (‖Bu1‖L p + ‖Bu1‖L p )s−1 ‖Dϕ‖L∞

which is precisely (7.2). In the last inequality we have used the fact that

‖Dk−1u‖Lq � C

∥∥∥∥∥F
−1
(
B̂u(ξ)

|ξ |

)∥∥∥∥∥
Lq

≡ ‖Bu‖Ẇ−1,q

which follows from the identity

F
(
Dk−1u

)
(ξ) = û(ξ)⊗ ξ⊗(k−1) = B†(ξ)B̂u(ξ)⊗ ξ⊗(k−1)

= B†
(

ξ

|ξ |
) B̂u(ξ)

|ξ | ⊗
(

ξ

|ξ |
)⊗(k−1)

togetherwith theHörmander–Mihlinmultiplier theorem.A similar argument shows
that it also suffices to prove (7.3) for B = Dk , by boundedness of Calderón-
Zygmund operators from BMO to BMO, see e.g. [95, IV, §6.3a].

Let us thus assume that B = Dk and let us write Ui ≡ Dk−1ui . It suffices to
consider the case where F(Dku) = det Dx ′U ′(x), where we use the notation of the
proof of Proposition 6.3. Note the algebraic identity

det Dx ′U
′
1 − det Dx ′U

′
2 =

s∑

i, j=1

∂

∂x ′i

[
X ( j)
i j

(
(U ′1) j − (U ′2) j

)]
(7.5)

where X ( j) is the matrix

X ( j) ≡ cof(Dx ′(U
′
2)

1, . . . ,Dx ′(U
′
2)

j−1,Dx ′(U
′
1 −U ′2) j ,

Dx ′(U
′
1)

j+1, . . . ,Dx ′(U
′
1)

s).

Then, integrating by parts and using Hölder’s inequality, we get
∣∣∣∣
ˆ
Rn

ϕ [F(DU1)− F(DU2)] dx

∣∣∣∣ �
s∑

j=1
‖(U ′1 −U ′2) j‖Lq ‖DU ′1‖s− j

L p ‖DU ′2‖ j−1L p ‖Dϕ‖L∞

from which the desired inequality
∣∣∣∣
ˆ
Rn

ϕ [F(DU1)− F(DU2)] dx

∣∣∣∣ � ‖U1 −U2‖Lq (‖DU1‖L p + ‖DU2‖L p )s ‖Dϕ‖L∞

follows.
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In order to prove (7.3) for B = Dk we use the Hardy space integrability of
Proposition 6.3. Starting from (7.5), we do an integration by parts to get
∣∣∣∣
ˆ
Rn

ϕ (F(DU1)− F(DU2)) dx

∣∣∣∣ �
s∑

j=1
‖(U ′1 −U ′2) j‖BMO

∥∥∥∥
s∑

i=1
X ( j)
i j

∂

∂x ′i
ϕ

∥∥∥∥
H 1

.

Noting the estimate

|X ( j)
i j | � |Dx ′(U

′
2)

1| . . . |Dx ′(U
′
2)

j−1||Dx ′(U
′
1)

j+1| . . . |Dx ′(U
′
2)

s |,
we find, from the Hardy estimate and Hölder’s inequality,
∣∣∣∣
ˆ
Rn

ϕ [F(DU1)− F(DU2)] dx

∣∣∣∣ �
s∑

j=1
‖(U ′1 −U ′2) j‖BMO‖DU ′1‖s− j

L p ‖DU ′2‖ j−1L p ‖Dϕ‖Lq

from where one readily deduces (7.3). ��
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A Computations for Proposition 3.13

We shall only sketch the proof of the proposition, since it is purely computational. The cal-
culations are very involved and should be performed with the help of symbolic computation
software. Let n = 3, U = R

7, V = R
7, W = R

3 and consider the operator defined by

A(ξ) =
⎡

⎣
ξ1 ξ2 ξ3 0 0 0 0
0 0 0 ξ1 ξ2 ξ3 0
0 ξ1 0 ξ2 0 0 ξ3

⎤

⎦ .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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It is easy to see that rankA(ξ) = 3 for all ξ �= 0.

Our general strategy is as follows. Fix an order k forB and consider a generic operator of that

order: in other words, let B(ξ) = ∑|α|=k ξαBα , where Bα = (bi, jα ) are generic matrices
with coefficients to be determined. One must have A(ξ)B(ξ) = 0; this is a matrix whose
entries are polynomials in ξ and therefore is zero if and only if all coefficients of all the
polynomials are zero. In other words, the conditionA(ξ)B(ξ) = 0 imposes a linear system

on the variables bi, jα .

As a first step, one needs to verify thatA does not admit potentials with first or second order.
For instance, when we look for potentials with order two, we can solve the system

A(ξ1, ξ2, 0)B(ξ1, ξ2, 0) = 0

to find that we must have bi, jα = 0 when i = 1, 2, 4, 5. This shows that
rankB(ξ1, ξ2, 0) � 3, which cannot be if we are to have (3.5).

However,A does have multiple cocanceling potentials of order three; they are quite compli-
cated and the reader can find the expressions of two of them, B1 and B2, below. In order to
verify that they are cocanceling, one can check for instance that, with ei being the canonical
basis in R

3,

3⋂

i=1
kerB j (ei ) = {0} for j = 1, 2.

One can also verify that there is no isomorphism Q ∈ GL(U) such that B1(ξ)Q = B2(ξ);
this can be achieved by testing with ξ = ei for i = 1, 2, 3 as above.
We denote by (Bi )• j the j-th column of Bi . Then we have, for i = 1,

(B1)•1 =

⎡

⎢⎢⎢⎢⎢⎣

−p5 − p7
p4 − p10
p2 + p9−p2 − p3 − p5 − p6 − 2p8 − p10

p1 + p5 − p8 − p10
p1 + p2 + p3 + p4 + p6 + p7 + p9
p2 + p4 + p5 + p6 + 2p7 + p9

⎤

⎥⎥⎥⎥⎥⎦
, (B1)•2 =

⎡

⎢⎢⎢⎢⎢⎣

−p3 − p5 − p7 − p8 − p10
p4 − p6 + p8 − p10

p1 + p2 + p4 + p5 + p6 − p7 + p9−p2 − p5 − p6 − p8 − p9 − p10
p1 + p5 − p8 − p9

p2 + p3 + p5 + p6 + p7 + p8
p3 + p5 + p6 + p7 + p8 + p9

⎤

⎥⎥⎥⎥⎥⎦

(B1)•3 =

⎡

⎢⎢⎢⎢⎢⎣

p5 + p8−p3 − p5 + p8−p7−p5 − p8 − 2p9 − p10
p3 + p6 − p8 − p9 − p10

p4 + p5 + p6 + p7 + p8 + p9
p1 + p2 + p7 + 2p8 + p9

⎤

⎥⎥⎥⎥⎥⎦
(B1)•4 =

⎡

⎢⎢⎢⎢⎢⎣

0
−p3 + p8 + p9
p2 − p7 − p8−p3 − p5 − p6 − 2p8
p5 − p9 − p10

p1 + p2 + p3 + p4 + p8 + p9
p1 + p2 + 2p7

⎤

⎥⎥⎥⎥⎥⎦

(B1)•5 =

⎡

⎢⎢⎢⎢⎢⎣

p5 − p6 − p9−p3 + p8 − p9
p3 + p5 − p7 + p8−p3 − p5 − p10
p3 − p9 − p10

p1 + p6 + p8 + p9
p1 + p2 + p5 + p9

⎤

⎥⎥⎥⎥⎥⎦
(B1)•6 =

⎡

⎢⎢⎢⎢⎢⎣

p8 − p3−p3 − p5 + p8
p1 + p2 − p7−p5 − p8 − p9

0
p2 + p4 + p5

p1 + p2 + p7 + p8

⎤

⎥⎥⎥⎥⎥⎦

(B1)•7 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−p3 − p7 − 2p8 + p9−p3 + p4 + p5 − p6 + p9 − p10
p1 + p2 + p4 − p8 + p9−p2 − p3 − p5 − p6 − 2

(
p8 + p9

)− p10
p1 + p3 + p5 + p6

p1 + p3 + p4 + p5 + p6
p1 + p3 + p4 + p6 + 2

(
p7 + p8

)+ p9

⎤

⎥⎥⎥⎥⎥⎥⎦

For i = 2, we have
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(B2)•1 =

⎡

⎢⎢⎢⎢⎢⎣

−p6 − p7 − p8 + p9 − p10
p4 − p6 − p10

p3 + p4 + p6 + p9−p2 − p3 − p5 − p6 − p8 − p9
p1 + p3 + p5 + p6 − p8 − p10

p1 + p3 + p7 + p9
p2 + p3 + p4 + p5 + p6 + p7 + p8

⎤

⎥⎥⎥⎥⎥⎦
, (B2)•2 =

⎡

⎢⎢⎢⎢⎢⎣

−p3 − p5 − p6 − p7 − p8
p4 − p6 − p9 − p10

p1 + p2 + p3 + p4 + p5 + p8 + p9−p2 − p3 − p5
p1

p1 + p2
p2 + p3 + p4 + p5 + p6

⎤

⎥⎥⎥⎥⎥⎦

(B2)•3 =

⎡

⎢⎢⎢⎢⎢⎣

−p3 − p5 − p6 + p8−p5 − p6 − p10
p1 + p2 + p3 + p5 + p9−p5 − p8 − p10
p3 + p5 − p9 − p10

p6 + p8 + p9
p2 + p3 + p4 + p6 + p7 + p9

⎤

⎥⎥⎥⎥⎥⎦
(B2)•4 =

⎡

⎢⎢⎢⎢⎢⎣

−p3 − p6 − p7 − p10
p4 − p6 + 2p8 + p9 − p10

p1 + p3 + p5 + p6 − 2p7 − p8 + p9−p2 − 2p5 − p6 − p8 − 2p9
p1 + p3 + p6 − p8 − p9 − p10

p2 + p3 + p4 + p5 + p7 + p8 + p9
p3 + p6 + p7 + 2p8

⎤

⎥⎥⎥⎥⎥⎦

(B2)•5 =

⎡

⎢⎢⎢⎢⎢⎣

p5 − p7 − p8 − p10−p3 + p4 − p6 + p8 + p9
p4 + p5 + p6 − p7 − p8−p2 − p5 − p6 − 2p9

p1 + p3 + p6 − p9
p3 + p5 + p8
p1 + p3 + 2p8

⎤

⎥⎥⎥⎥⎥⎦
(B2)•6 =

⎡

⎢⎢⎢⎢⎢⎣

−p7 − p8 − p10−p3 + p4 − p6 + p8 − p10
p2 + p4 + p5 + p6 − p7 + p9−p2 − p5 − p8 − p9
p1 + p3 + p5 − p8 − p10

p5 + p7 + p9
p1 + p3 + p6 + p7 + p8

⎤

⎥⎥⎥⎥⎥⎦

(B2)•7 =

⎡

⎢⎢⎢⎢⎢⎣

−p6 − p7 − p8−p3 + p4 + p8 − p9
p2 + p3 + p4 − p7 + p8−p2 − p3 − p5 − 2p8 − p9
p1 + p5 + p6 − p8 − p10
p1 + p2 + p4 + p7 + p9
p1 + p2 + p5 + 2p7 + p8

⎤

⎥⎥⎥⎥⎥⎦

where we made for simplicity the substitutions

ξ31 = p1, ξ21 ξ2 = p2, ξ21 ξ3 = p3, ξ1ξ
2
2 = p4, ξ1ξ2ξ3 = p5

ξ1ξ
2
3 = p6, ξ32 = p7, ξ22 ξ3 = p8, ξ2ξ

2
3 = p9, ξ33 = p10.
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