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Abstract

This article is concerned with uniform C1,α and C1,1 estimates in periodic
homogenization of fully nonlinear elliptic equations. The analysis is based on the
compactness method, which involves linearization of the operator at each approx-
imation step. Due to the nonlinearity of the equations, the linearized operators
involve the Hessian of correctors, which appear in the previous step. The involve-
ment of the Hessian of the correctors deteriorates the regularity of the linearized
operator, and sometimes even changes its oscillating pattern. These issues are
resolved with new approximation techniques, which yield a precise decomposi-
tion of the regular part and the irregular part of the homogenization process, along
with a uniform control of the Hessian of the correctors in an intermediate level.
The approximation techniques are even new in the context of linear equations. Our
argument can be applied not only to concave operators, but also to certain class of
non-concave operators.
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1. Introduction

This paper is concerned with the uniform estimates in periodic homogenization
of fully nonlinear elliptic equations subject to a Dirichlet boundary condition,{

F
(
D2uε, x

ε

) = f in �,

uε = g in ∂�.
(1.1)

Here we establish uniform C1,α and C1,1 estimates for viscosity solutions uε up to
the boundary. The analysis is based on the compactness method [3,4], along with a
new, sophisticated treatment on the nonlinear structure of the governing functional.

Uniform regularity in the theory of homogenization has been of great interest
for many years. A notable development was carried out byM. Avellaneda and F.-H.
Lin in the series of works [3,4], where the compactness method is adopted in the
framework of homogenization to prove uniform regularity estimates, which was
primarily a technique for minimal surfaces and calculus of variations. Since then,
the uniform estimates have been developed under various settings, such as singular
integrals [5], Neumann boundary conditions [15], parabolic problems [13], oscil-
lating boundaries [16], almost-periodic settings [25]. Some direct and constructive
approaches were taken in [9,23] and also in [8,21] for homogenization problems
of soft inclusions and highly oscillating obstacles. Recently, some new technique
was developed for almost-periodic [2] and stationary ergodic problems [1] and Lip-
schitz domains [26], and it was also applied to nonlinear scalar equations [29] of
divergence type. To the best of our knowledge, a sharp uniform interior estimate
is available for nonlinear scalar equations of divergence type by [29], but a sharp
estimate up to the boundary is still left unsolved for the nonlinear equations.

However, a sharp uniform estimate of uε up to boundary for nonlinear problems
has not yet been achieved in both divergence and non-divergence type equations,
to the best of the authors’ knowledge. Also the amount of the literature on non-
divergence type equations is considerably smaller than that on the divergence type
equations/systems. In this paper, we achieve a sharp uniform estimate, i.e., C1,1

estimate up to the boundary for fully nonlinear elliptic problems of type (1.1). Our
method can be carried out in various settings, such as nonlinear systems in diver-
gence form, for which everywhere regularity is available, and parabolic problems.
Nevertheless, we shall focus on the elliptic problems of non-divergence structure
here, and leave the generalizations for the future.

In what follows, we shall briefly explain our approach, and illustrate the main
challenges arising from the nonlinearity of the governing operator F .

The compactness method in a nutshell is a technique to approximate the solu-
tions uε by its limit profile, say ū, which is expected to have better regularity than
uε, since ū is meant to solve an effective problem that is homogeneous in small
scales. One iteration step yields an approximation in an intermediate (yet universal)
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scale, say μ, which could be much larger than the small scale, which is of order
ε. Hence, one needs to iterate the approximation as many times as possible, e.g.,
k-times to reach μk ≤ ε < μk−1.

At each iteration step, we linearize the problem (1.1) around the data obtained
from the previous approximation step. Now if the governing operator F were linear,
i.e., F(M, y) = ai j (y)Mi j , then the linearized operator coincides with the original
one. Hence, one can only focus on the linearization of the source term and the
boundary condition.

Nonetheless, if F is nonlinear, the linearized operator records the data from the
previous approximation step, and the data accumulates as the iteration continues.
The accumulation effect itself is a generic issue in the analysis of the nonlinear
equation; for instance, a similar issue appears in the Schauder estimate for fully
nonlinear equations [6, Theorem 8.1]. The difference here is that the accumulated
data includes the (Hessian) of the interior and the boundary layer correctors, in
order to bring back nice estimates for the limit profile ū to uε. This is exactly where
the analysis becomes difficult.

To give amore precise picture of the accumulation effect, suppose that ū satisfies
a (universal) interior C2,ᾱ estimate at a given point. Then we can obtain along with
a compactness argument that an interior C2,α estimate, with α < ᾱ, modulo an
interior corrector, e.g.,

sup
x∈Bμ

∣∣∣∣uε(x) − 1

2

〈
Mε

1 x, x
〉 − ε2wF

(
Mε

1 ,
x

ε

)∣∣∣∣ ≤ J εμ2+α,

where J ε is the initial bound for uε and f , μ is the universal intermediate scale
in which the Hessian of uε is approximated by Mε

1 , modulo the interior corrector
wF (Mε

1 , ·) of F at Mε; more specifically, wF (Mε
1 , ·) is chosen by the periodic

(viscosity) solution to the cell problem,

F(D2w + Mε
1 , y) = F̄(Mε

1 ) in Rn .

This suggests that in the next approximation step, we need to linearize the operator
F at Mε

1 + D2
ywF (Mε

1 , ·), instead of Mε
1 alone, i.e., the linearized operator is given

by

Fε
1 (N , y) = F(J εμαN + Mε

1 + D2
ywF (Mε

1 , y), y) − F(Mε + D2
ywF (Mε

1 , y), y)

J εμα
. (1.2)

Now we have to verify whether Fε
1 satisfies all the structure conditions that were

required in the compactness argument used in the first approximation step. This is
the accumulation effect due to the nonlinear structure, since if F were linear, we
would have Fε

1 = F which leaves us nothing to check.
The uniform ellipticity and periodicity are preserved under the linearization.

However, the regularity of the linearized operator Fε
1 in the space variable now

depends on that of F in the matrix variable as well as the Hessian of the interior
corrector wF (Mε

1 , ·) in the space variable.
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A quick remedy for this issue is to impose a strong assumption on F , such as
C1,1 regularity in the matrix variable and Hölder regularity in the space variable.
Nevertheless, we present a new compactness argument (Lemma 6.2) that does not
require any assumption other than uniform ellipticity, continuity and periodicity of
the given operator; in particular, the argument does not require any control over
the modulus of continuity. This argument is based on the observation (Lemma 3.1)
that regardless of how irregular Fε

1 is in its space variable, the effective functional
F̄ε
1 stays homogeneous and has the same ellipticity bounds as those of (Fε

1 , hence
of) F .

The strength of the general compactness argument (Lemma 6.2) is that we
obtain a uniform interior C1,1 estimate for uε up to a deleted neighborhood of size
ε (Theorem 6.1 (i)), for any uniformly elliptic, periodic functional F that admits
C2-regular correctors. Moreover, the modulus of continuity of the Hessian of the
correctors is not involved in the estimate. This provides us a better understanding of
the homogenization process, as the regularity estimate decomposes uε into regular
part and irregular part. In particular, the irregular part is regularized under a stronger
assumption that the governing operator F is Hölder continuous in its space variable
(Theorem 6.1 (ii)). In other words, a (standard) uniform interior C1,1 estimate of
uε is established, with more regularity assumption on F . Let us remark that such a
decomposition of uε is even new in the context of linear equations.

Amore challenging issue appears in the analysis of the sharp, uniform boundary
estimate. Again we linearize the problem around the approximating data from the
previous iteration step, and the data accumulates due to the nonlinearity of the
given operator F . This times, however, the accumulated data does not only include
the interior correctors but also the boundary layer correctors. The problem is that
the boundary layer correctors do not adhere the same periodic pattern in the rapid
oscillation as the interior correctors do. Thus, once the boundary layer correctors
appear in the linearized operator, the operator no longer oscillates periodically in
the space variable. This implies a qualitative change of the oscillating nature in the
next approximation step.

The authors encountered a similar issue in [19], while studying the higher-order
convergence rates in periodic homogenization of oscillating initial data. Here the
problem is more delicate because the oscillatory patterns of the boundary layer
correctors are more ambiguous than those of the initial layer correctors considered
in [19]. Still, we shall need an analogous treatment that the effect from the boundary
layer correctors dissipates fast as we stay away from the boundary layer, but at the
same time it can be controlled uniformly up to the boundary with respect to certain
norm, which is less sharper, yet sufficient for the analysis.

To explain the issue regarding the boundary layer correctors in more details, let
us suppose that we have approximated uε by its limit profile ū, which satisfies a
boundary C2,ᾱ estimate at 0 ∈ ∂�, as

sup
�μ

∣∣∣∣uε(x) − 1

2

〈
Mε

1 x, x
〉 − ε2wF

(
Mε

1 ,
x

ε

)
− ζ ε

1 (x)

∣∣∣∣ ≤ J εμ2+α,

with some α < ᾱ, where J ε is the initial bound for uε, f and g, �μ = �∩ Bμ and
ζ ε
1 is the boundary layer corrector. Here the boundary layer corrector ζ ε

1 is given
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by the (viscosity) solution to{
F

(
Mε

1 + D2
ywF

(
Mε

1 ,
x
ε

) + D2
xζ

ε
1 , x

ε

)
= F̄(Mε

1 ) in �1,

ζ ε
1 = −ε2wF

(
Mε

1 ,
x
ε

)
on ∂�1.

In other words, ζ ε
1 is chosen so as to correct the error on the boundary layer,

�1 = ∂� ∩ B1, left from the interior correction by ε2wF (Mε
1 ,

·
ε
) in �1. Then the

linearized operator for the next approximation step will be of the form,

Gε
1(N , x, y) = 1

J εμα
F(J εμαN + Mε

1 + D2
ywF (Mε

1 , y) + D2
xζ

ε
1 (μx), y)

− 1

J εμα
F(Mε

1 + D2
ywF (Mε

1 , y) + D2
xζ

ε
1 (μx), y).

It is noteworthy that Gε
1 depends on x , and the dependence is through

D2ζ ε
1 , which is an irregular term. If F were linear in the matrix variable, say

F(M, y) = ai j (y)Mi j , then the effect of D2ζ ε
1 is cancelled out, and we end up

with Gε
1(N , x, y) = ai j (y)Ni j = F(N , y). For this reason, the main focus for the

linear problems is set to the uniform control of the linearized boundary condition,
as shown in [4].

If the dependence of Gε
1 on x were regular and uniform (e.g., of class Cα

uniformly), this would not be an issue either. However, the dependence here is far
from being uniform continuous, since both the interior equation and the boundary
condition for ζ ε

1 are rapidly oscillating in x
ε
. In fact, we do not have a uniform L∞

bound on D2ζ ε
1 up to the boundary at this stage, as it is what we are aiming for.

This suggests that we need to control D2ζ ε
1 with some weaker uniform estimates.

We overcome this difficulty (in Lemma 7.3) as follows. First, we observe that
the effect of D2ζ ε

1 becomes negligible in the interior, or more precisely,

|D2ζ ε
1 (x)| = O

(
ε2

dist(x, �1)2

)
for x ∈ �1/2,

where �1/2 = � ∩ B1/2. This is proved with the uniform interior C1,1 estimate
(Theorem 6.1) that we establish prior to the boundary analysis, together with an
elementary a priori estimate ζ ε

1 = O(ε2) in �1, which follows immediately from
the boundary condition for ζ ε

1 and the maximum principle.
On the other hand, the boundary condition for ζ ε

1 also implies that D2
xζ

ε
1 =

−D2
ywF (Mε

1 ,
x
ε
) = O(1) on �1, from which we observe a uniform control of

D2ζ ε
1 up to the boundary in L p sense, for any p > n large, i.e.,���D2ζ ε

1

���
L p(�1/2)

= O(1).

This is based on a uniform W 2,p estimate up to the boundary (Proposition 7.2),
which we derive by combining the above uniform interior C1,1 estimate with the
uniform boundary C1,β estimate (Theorem 5.1) in a standard way.

These twoobservations allowus to decompose the aperiodic, linearized operator
Gε

1 into a sum of a periodic operator and a source term, which is uniformly bounded
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in the L p space and dissipates away from the boundary layer in the L∞ sense. For
this reason, we canmaintain the periodic nature of the original problem (1.1) during
the entire iteration scheme (Lemma 7.5), through a suitable compactness argument
(Lemma 7.3).

As a final remark, let us discuss about the effective operators in the homogeniza-
tion of fully nonlinear problems. It is by now standard [12] that if F is uniformly
elliptic and periodic, then the problem (1.1) is homogenized into{

F̄(D2ū) = f in �,

ū = g on ∂�,

for some homogeneous, elliptic, or the so-called effective operator F̄ , in the sense
that uε → ū uniformly over �̄. Hence, if ū is a regular solution, e.g., ū ∈ C2,α ,
then one may expect to use this information to derive better regularity for uε, which
constitutes the basic idea of the compactness method.

Unlike linear problems, the homogeneous equation H(D2u) = 0 does not
always admit classical solutions. According to Nadirashvili and Vladut [22], there
are homogeneous, elliptic functionals H that admit viscosity solutions belonging
to C1,β \C1,1 for some β ∈ (0, 1). For this reason, we shall focus ourselves on the
periodically oscillating operator F such that not only the homogeneous equation
F(D2u, y0) = 0 obtained by “freezing coefficients” at each y0, but also the effective
one F̄(D2u) = 0 admit classical, or more precisely,C2,α solutions; this notion will
be made precise in Definition 2.1 and Definition 2.2.

One may ask under which condition on F , viscosity solutions to the homoge-
neous equation F̄(D2u) = 0 verify a universal interior C2,α estimate. Let us stress
that the class of such operators F is non-void. A typical example would be concave
operators F (i.e., F(M, y) is concave in the matrix variable M and periodic in the
space variable y). Note that if F is concave, then so is the effective operator F̄ ,
according to [12]; then by the Evans-Krylov theory [6], interior C2,α estimates are
available for both homogeneous equations F(D2v, y0) = 0 and F̄(D2u) = 0.

However, there has not yet been any observation of a class beyond concave
operators in the literature, forwhich the effective operators inherit the Evans-Krylov
type estimates. Here, we present certain class (Proposition 8.6) of non-concave,
periodic operators F whose effective operators F̄ admit interior C2,α estimates.
This shows that the uniform regularity estimates we establish in this paper are
applicable for a wide class of periodic functionals F .

On a different note, we believe that it deserves independent interests to find
the largest class of such periodic operators. This can be reformulated as follows: if
F is a uniformly elliptic, periodic functional such that F(·, y0) admits an interior
C2,α estimate independent of y0 ∈ R

n , does the effective functional F̄ also admit
an interior C2,α′

estimate, possibly with some other α′? In an abstract level, it is
a question concerning the structures of periodically oscillating functionals that are
preserved during the homogenization process. Uniform ellipticity and concavity
are some typical properties that are preserved, as shown in [12]. More recently,
the authors have proved in the series of papers [18–20] that higher regularity of F
in the matrix variable is also inherited to F̄ , i.e., if F(·, y0) ∈ Ck,1

loc uniformly in
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y0 ∈ R
n , then F̄ ∈ Ck−1,1

loc . From this point of view, here we only present a partial
answer to the question, and aim to give a more complete picture in the future.

We are in a position to state the main theorem of this paper. Here the classes
S0, S1, S2, R0, R1 regarding the structure and regularity conditions of governing
functionals are defined in Definition 2.2, and F̄ is the effective functional as in
Definition 2.4.

Theorem 1.1. Let F ∈ S0(λ,
) be a periodic functional on Sn × R
n, � ⊂ R

n

be a bounded domain with ∂� ∈ C2, f ∈ L∞(�) and g ∈ C1,α(�1), for some
0 < λ ≤ 
 and 0 < α < 1. Let uε be the viscosity solution of (1.1) for each
ε > 0. Let κ̄ , γ̄ , κ , γ , c̄ and ᾱ be additional positive parameters with γ < γ̄ ≤ 1
and α < ᾱ ≤ 1.

(i) If F ∈ S1(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) having F̄ ∈ S1(λ,
, c̄, ᾱ), then uε ∈
C1,α∗(�), with α∗ = min{α, γ̄ } and��uε

��
C1,α∗ (�)

≤ C1
(‖ f ‖L∞(�) + ‖g‖C1,α(∂�)

)
, (1.3)

where C1 depends only on n, λ,
, κ̄ , γ̄ , κ , γ , c̄, ᾱ, α, diam(�) and the maximal
curvature of ∂�.

(ii) If F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R1(κ, γ ) having F̄ ∈ S2(λ,
, c̄, ᾱ), ∂� ∈ C2,ᾱ ,
f ∈ Cα(�) and g ∈ C2,α(∂�), then uε ∈ C1,1(�) and��uε

��
C1,1(�)

≤ C2, (1.4)

with C2 depending only on n, λ, 
, κ̄ , γ̄ , κ , γ , c̄, ᾱ, α, ‖ f ‖Cα(�), ‖g‖C2,α(∂�),
diam(�) and the C2,ᾱ character of ∂�.

It should be remarked that the assumption of Theorem 1.1 (i) on the class S1 is
always satisfied, if the exponents γ̄ and ᾱ are small enough, since a homogeneous,
elliptic functional always admits an interior C1,δ estimate for some δ ∈ (0, 1),
depending only on the space dimension and the ellipticity constants [6, Corollary
5.7]. On the other hand, the assumption of Theorem 1.1 (ii) on the class S2, espe-
cially regarding F̄ , is essential, since a nonlinear functional fails to have an interior
C2,δ estimate in general.

Let us briefly introduce the notation used throughout this article. Number n ≥ 1
will always denote the space dimension. Sn is the space of all symmetric n ×
n matrices. For N ∈ Sn , by N ≥ 0 we shall indicate that all the eigenvalues
of N are nonnegative. By |N | we shall denote the (L2, L2) norm of N , that is,
|N | = (

∑n
i, j=1 Ni j )

1/2. Given a set A ⊂ R
n and a point x ∈ R

n , d(x, A) =
min(dist(x, A), 1). By a domain, we refer to an open connected set. For a domain
�, by ∂�wedenote the topological boundary of�.Occasionally,we shall alsowrite
by � the boundary ∂�. We shall also write�r (z) = �∩ Br (z), �r (z) = �∩ Br (z),
�r = �r (0) and �r = �r (0). Note that ∂�r (z) = �r (z) ∪ (� ∩ ∂Br (z)). Given a
domain �, we define Hölder spaces, Ck,α(�) and Ck,α

loc (�) in the usual sense. Also
when k = 0, we shall simply denote them by Cα(�) and respectively Cα

loc(�).
The paper is organized as follows. In Sect. 2, we list up some preliminaries

required for this paper. In Sect. 3 we observe new stability results that will be used
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in the compactness method in the subsequent sections. Section 4 is devoted to the
uniform interior C1,α estimates (Theorem 4.1). Section 5 is concerned with the
uniform interior C1,α estimates (Theorem 5.1). In Section 6, we study the uniform
interior C1,1 estimates (Theorem 6.1), and in Sect. 7, we consider the uniform
boundary C1,1 estimates (Theorem 7.1). The proof of Theorem 1.1 is omitted, as it
follows straightforwardly from these four theorems. Finally, in Sect. 8, we present
certain class of non-concave functionals satisfying the assumptions of Theorem 1.1.

2. Preliminaries

Let us first introduce some terminologies that will appear throughout this paper.

Definition 2.1. Let Y ⊂ R
n be a domain, and F be a continuous functional on

Sn × Y .

• F is said to be uniformly elliptic with constants λ and 
, if

λ|N | ≤ F(M + N , y) − F(M, y) ≤ 
|N |, N ∈ Sn, N ≥ 0, (2.1)

for any M ∈ Sn and y ∈ Y .
• When Y = R

n , F is said to be periodic, if

F(M, y + k) = F(M, y), k ∈ Z
n, (2.2)

for any M ∈ Sn and y ∈ R
n .

• F is said to have zero source term, if

F(0, y) = 0, y ∈ Y. (2.3)

• F is said to have an interior Ck,γ estimate with constant κ , if for any y0 ∈ Y
with a = F(0, y0) and any viscosity solution v ∈ C(B̄1) of F(D2v, y0) = a
in B1, one has v ∈ Ck,γ (B1/2) and

‖v‖Ck,γ (B1/2) ≤ κ ‖v‖L∞(B1) .

We shall consider several classes of functionals defined as follows.

Definition 2.2. Let F be a continuous functional on Sn × Y , and let λ, 
, κ̄ , γ̄ ,
κ and γ , with λ ≤ 
 and γ < γ̄ ≤ 1. Class S0, S1 and S2, regarding structure
conditions of governing functionals, are defined as follows.

• F ∈ S0(λ,
), if F is uniformly elliptic with ellipticity constants λ and 
, and
has zero source term.

• F ∈ S1(λ,
, κ̄, γ̄ ), if F ∈ S0(λ,
) and has an interior C1,γ̄ estimate with
constant κ̄ .

• F ∈ S2(λ,
, κ̄, γ̄ ), if F ∈ S0(λ,
) and (M, y) 
→ (F(M+N , y)−F(N , y))
has an interior C2,γ̄ estimate with constant κ̄ , uniformly for all N ∈ Sn .

Classes R0, R1 and R′
1 will refer to regularity conditions of governing functionals,

as follows.



Uniform Estimates in Periodic Homogenization 705

• F ∈ R0(κ, γ ), if F ∈ C(Sn × Y ) and

|F(M, y1) − F(M, y2)| ≤ κ|M ||y1 − y2|γ , (2.4)

for any M ∈ Sn and y1, y2 ∈ Y .
• F ∈ R1(κ, γ ), if F ∈ R0(κ, γ ) and F(·, y) ∈ C1(Sn) for any y ∈ Y satisfying

|DMF(M1, y1) − DMF(M2, y2)| ≤ κ(|M1 − M2| + |y1 − y2|γ ), (2.5)

for any pair (Mi , yi ) ∈ Sn × Y with i ∈ {1, 2}.
If the parameters are not important, or are well understood from the context, we
shall omit them and simply write S0, S1, and so on.

Next we define the class of C2,α domains.

Definition 2.3. Given a domain � with 0 < σ̄ ≤ 1 and τ̄ > 0, we shall say
� ∈ D(τ̄ , σ̄ ), if ∂� is locally a C2,τ̄ -graph around the origin, with C2,τ̄ -character
being controlled by σ̄ . More specifically, we indicate that 0 ∈ ∂� and there are a
function φ ∈ C2,σ̄ (Rn−1) with

φ(0) = |DTφ(0)| = 0, ‖φ‖C2,σ̄ (Rn−1) ≤ τ̄ ,

and a rotation � : Rn → R
n , which maps the inward unit normal ν to ∂� at the

origin to en , such that with �1 = � ∩ B1,

�(�1) ⊂ {(x ′, xn) ∈ B1 : xn > φ(x ′)}.
Let us remark that as � being a rotation, |DTφ(0)| = 0 does not imply that the
inward normal vector ν to ∂� at the origin is the same with en .

Let us introduce the notation for effective functional and interior corrector,
whose existence and uniqueness of effective functionals are well understood, and
we refer to [12] for a proof.

Definition 2.4. Let F be a uniformly elliptic, continuous and periodic functional
on Sn ×R

n . By F̄ we shall always denote the functional on Sn satisfying for each
M ∈ Sn , F̄(M) is the unique number for which there exists a periodic viscosity
solution to

F(M + D2
yw, y) = F̄(M) in Rn . (2.6)

F̄ will be called the effective functional of F . Equation (2.6) will be called the cell
problem associated with F .

Moreover, by wF we shall denote a functional on Sn × R
n such that for each

M ∈ Sn , wF (M, ·) is the unique periodic viscosity solution to (2.6) satisfying
wF (M, 0) = 0. (2.7)

wF will be called the normalized interior corrector associated with F .
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In what follows, we shall list up some basic facts that will be used frequently
throughout the paper. Since the proofs are elementary, and we believe are well
understood by the experts, we shall not present them here.

First, we state the closeness of the classes S1 and S2.

Lemma 2.5. Fix i ∈ {1, 2}. Let {Fk}∞k=1 ⊂ Si (λ,
, κ̄, γ̄ ) be a sequence of continu-
ous functionals onSn×Y ,with Y ⊂ R

n a domain, and suppose that Fk → F locally
uniformly on Sn ×Y , as k → ∞, for some functional F. Then F ∈ Si (λ,
, κ̄, γ̄ ).

This ensures the well-definedness of normalized interior correctors. Let us list
up some basic properties that will be used throughout this article.

Lemma 2.6. Let F ∈ S0(λ,
) be a continuous and periodic functional onSn×R
n.

(i) F̄ ∈ S0(λ,
) on Sn, in the sense that F̄(0) = 0 and

λ|M | ≤ F̄(M + N ) − F̄(N ) ≤ 
|M |, N ∈ Sn, N ≥ 0, (2.8)

for any M ∈ Sn.
(ii) There are 0 < α < 1 and C0 > 0, depending only on n, λ and 
, such that for

each M ∈ Sn, wF (M, ·) ∈ Cα(Rn) and

‖wF (M, ·)‖Cα(Rn) ≤ C0|M |. (2.9)

(iii) Moreover, if F ∈ R0(κ, γ ), then there are an exponent 0 < β < 1, depending
only on n, λ and 
, and a constant C1 > 0, depending only on n, λ, 
, κ and
γ , such that for each M ∈ Sn, wF (M, ·) ∈ C1,β(Rn) and

‖wF (M, ·)‖C1,β (Rn) ≤ C1|M |. (2.10)

(iv) Assume further that F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ). Then there is C2 > 0,
depending only on n, λ, 
, κ̄ , γ̄ , κ and γ , such that for each M ∈ Sn,
wF (M, ·) ∈ C2,γ (Rn) and

‖wF (M, ·)‖C2,γ (Rn) ≤ C2|M |. (2.11)

In the subsequent two lemmas, we shall define, given a periodic functional
F ∈ S2 ∩ R0 on Sn × R

n ,

FM,μ(N , y) = F(μN + M + D2
ywF (M, y), y) − F(M + D2

ywF (M, y), y)

μ

= F(μN + M + D2
ywF (M, y), y) − F̄(M)

μ
. (2.12)

First we observe how such a scaling affects the regularity of the associated func-
tional.
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Lemma 2.7. Let F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) be a periodic functional on Sn ×
R
n. Then for each M ∈ Sn and μ > 0, FM,μ ∈ S2(λ,
, κ̄, γ̄ ). Moreover,

FM,μ ∈ R0

(
κ

(
1 + C0|M |

μ

)
, γ

)
,

where C0 depends only on n, λ, 
, κ̄ , γ̄ , κ and γ . Moreover, if F ∈ R1(κ, γ ), then
for any M ∈ Sn and μ > 0,

FM,μ ∈ R0(κ(C0|M | + 1), γ ).

Next lemma amounts to the change of the effective functional and the normal-
ized corrector under the given scaling.

Lemma 2.8. Let F ∈ S0(λ,
) be a periodic functional on Sn × R
n, and suppose

that wF (M, ·) ∈ C2(Rn) for any M ∈ Sn. Then for each M ∈ Sn and μ > 0, one
has

F̄M,μ(N ) = F̄(μN + M) − F̄(M)

μ
, and

wFM,μ
(N , y) = wF (μN + M, y) − wF (M, y)

μ
,

for all N ∈ Sn and y ∈ R
n.

3. Stability in Homogenization

Let us present a stability result of viscosity solutions in periodic homogenization
problem. A key difference from the classical stability theory such as [6, Proposition
4.10] is that we do not assume the family of governing functionals to be convergent.
Although the proof involves a minor modification of the classical argument [12,
Theorem 3.3], we find the assertion itself interesting, and for the sake of complete-
ness, we shall contain the full arguments here.

Lemma 3.1. Let {Fk}∞k=1 ⊂ S0(λ,
) be a sequence of continuous periodic func-
tional on Sn ×R

n. Let � be a domain, { fk}∞k=1 a sequence of continuous functions
on� converging locally uniformly to f . Given a sequence {εk}∞k=1 of positive num-
bers decreasing to zero, suppose that {uk}∞k=1 is a uniformly bounded sequence of
viscosity solutions to

Fk

(
D2uk,

x

εk

)
= fk in �.

Then there are a functional F̄ ∈ S0(λ,
) on Sn, and a function ū ∈ C(�) such
that F̄k → F̄ locally uniformly on Sn and uk → ū locally uniformly in �, after
extracting a subsequence if necessary. Moreover, ū is a viscosity solution of

F̄(D2ū) = f in �.
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Proof. Since Fk ∈ S0(λ,
) on Sn × R
n , the effective functional F̄k on Sn also

belongs to S0(λ,
), c.f. Lemma 2.6 (i). In particular, it ensures the uniform Lip-
schitz continuity of the sequence {F̄k}∞k=1 on Sn . Hence, after extracting a subse-
quence, if necessary, there is a functional F̄ on Sn to which {F̄k}∞k=1 converges
locally uniformly on Sn . It is clear that F̄ is a functional on Sn belonging to
S0(λ,
).

Since fk is locally bounded in � and uk is uniformly bounded in �, it follows
from the Krylov-Safanov theory [6, Proposition 4.9] that {uk}∞k=1 is a bounded
sequence in Cα(K ), for each compact K ⊂ �, where 0 < α < 1 depends only on
n, λ and 
. Here we used that the ellipticity constants of Fk are fixed by λ and 
.
Therefore, after extracting a subsequence if necessary, uk → ū locally uniformly
in �.

Hence, we are left with proving themain assertion of this lemma that F̄(D2ū) =
f in � in the viscosity sense. The rest of the proof follows closely the argument of
[12, Theorem 3.3].

Without loss of generality, let us assume that F̄k → F̄ and uk → ū along the
full sequence as k → ∞. In order to prove that ū is a viscosity subsolution, we
assume towards a contradiction that for some x0 ∈ �, there exists φ ∈ C2(�)

touching ū strictly from above at x0, but

F̄(D2φ(x0)) ≤ f (x0) − 3θ,

for some θ > 0. Since F̄k(D2φ(x0)) → F̄(D2φ(x0)), and fk(x0) → f (x0) as
k → ∞, one has

F̄k(D
2φ(x0)) ≤ fk(x0) − 2θ, (3.1)

for all sufficiently large k’s.
As F̄k being the effective functional of Fk , with the normalized interior corrector

wFk , one has

Fk(D
2
xφ(x0) + D2

ywFk (D
2
xφ(x0), y), y) = F̄k(D

2
xφ(x0)) ≤ fk(x0) − 3θ (3.2)

in the viscosity sense in R
n . Since Fk ∈ S0(λ,
), we know from Lemma 2.6 (ii)

that ���wFk (D
2
xφ(x0), ·)

���
L∞(Rn)

≤ C0(1 + |D2
xφ(x0)|), (3.3)

for all k = 1, 2, · · · , where C0 depends only on n, λ and 
.
Define

φk(x) = φ(x) + wFk

(
D2
xφ(x0),

x

ε

)
,

and let us claim that φk is a viscosity solution to

Fk

(
D2φk,

x

εk

)
≤ fk(x) − θ in Br (x0), (3.4)

provided that r is sufficiently small.
Let us choose r small enough such that Br (x0) ⊂ �, and


|D2φ(x) − D2φ(x0)| + | fk(x) − fk(x0)| ≤ θ for any x ∈ Br (x0), (3.5)
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by utilizing the continuity of D2φ in � and the assumption that fk → f locally
uniformly in �. Moreover, taking r smaller if necessary, we may assume that

ū(x0) = φ(x0), max
∂Br (x0)

(ū − φ) < 0, (3.6)

since φ was taken to be a function touching ū strictly from above at x0.
In order to prove the claim, let x1 ∈ Br (x0) be arbitrary, and suppose that

ψ ∈ C2(Br (x0)) is a function touching φk from below at x1. Then the auxiliary
function

η(y) = 1

ε2k
(ψ(εk y) − φ(εk y)) = 1

ε2k
(ψ(εk y) − φk(εk y)) + wFk

(
D2
xφ(x0),

x

εk

)

belongs to the class C2(B
ε−1
k r (ε

−1
k x0)) and touches wk from below at y1 = ε−1

k x1.

As wFk (D
2
xφ(x0), ·) being a viscosity solution to (3.2), we have

Fk(D
2
xφ(x0) + D2

yη(y1), y1) ≤ fk(x0) − 2θ,

and since D2
yη(y1) = D2

xψ(x1) − D2
xφ(x1), one may deduce, from (3.5) and the

fact that 
 is the upper ellipticity bound of Fk , that

Fk

(
D2
xψ(x1),

x1
εk

)
≤ Fk(D

2
xφ(x0) + D2

yη(y1), y1) + 
|D2
xφ(x1) − D2

xφ(x0)|
≤ fk(x0) − | fk(x1) − fk(x0)| − θ

≤ fk(x1) − θ,

which proves the claim (3.4), for any large k’s.
Now that Fk is a uniformly elliptic functional, the comparison principle yields

that

uk(x0) − φk(x0) ≤ max
∂Br (x0)

(uk − φk),

for all sufficiently large k’s. Passing to the limit with k → ∞, and using the uniform
convergence of uk → ū on B̄r (x0) together with the uniform estimate (3.3), one
arrives at

ū(x0) − φ(x0) ≤ max
∂Br (x0)

(ū − φ)

which is a contradiction to (3.6). Hence, one should have F̄(D2ū) ≥ f in � in the
viscosity sense. The reverse inequality can also be proved in a similar argument,
and we omit the details. ��

Next let us state a stability result in order to formulate a suitable approximation
lemma for boundary estimate. Nowwe require the sequence {Fk}∞k=1 of functionals
to lie in the class S2∩ R0, with fixed parameters, since we are going to allow certain
aperiodic perturbation proportional to the size of the Hessian variable.
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Lemma 3.2. Let { fk}∞k=1, {εk}∞k=1 and � be as in Lemma 3.1. Let {Fk}∞k=1 ⊂
S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) be a sequence of periodic functionals on Sn × R

n, and
suppose that {Gk}∞k=1 ⊂ S0(λ,
) is another sequence of periodic functionals on
Sn×�×R

n such that for any compact K ⊂ � and η > 0, there exists a sufficiently
large k0 ≥ 1 for which

|Gk(N , x, y) − Fk(N , y)| ≤ η|N |, if k ≥ k0,

for all N ∈ Sn, x ∈ K and y ∈ R
n. Under this assumption, let {uk}∞k=1 be a

sequence of locally uniformly bounded viscosity solutions to

Gk

(
D2uk, x,

x

εk

)
= fk in �.

Then there are a functional F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) on Sn × R
n and a

function ū ∈ C(�) such that Fk → F locally uniformly in Sn × R
n and uk → ū

locally uniformly in �, after extracting a subsequence, and that

F̄(D2ū) = f in �.

Proof. Note from Lemma 2.5 that the class S2(λ,
, κ̄, γ̄ ) is closed under a
locally uniform convergence, while the uniform estimate (2.4) on the Hölder con-
tinuity of Fk yields the compactness of the sequence {Fk}∞k=1. Thus, we obtain
F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) such that Fk → F locally uniformly in Sn × R

n ,
after extracting a subsequence. Then it is clear that F̄k → F̄ locally uniformly on
Sn , along a subsequence, where F̄ now is the effective functional corresponding
to F . In addition, one may follow the same argument in Lemma 3.1 and obtain
a function ū ∈ C(�) to which {ūk}∞k=1 converges locally uniformly in �, after
extracting a subsequence. Here we shall assume without loss of generality that all
the convergence listed above holds along the full sequence.

Assume to the contrary that there exist some x0 ∈ � and certain φ ∈ C2(�)

such that φ touches ū strictly from above at x0 but

F̄(D2φ(x0)) = f (x0) − 4θ,

for some θ > 0, and hence

F̄k(D
2φ(x0)) ≤ f (x0) − 3θ, (3.7)

for all sufficiently large k’s. Let us denote by N the matrix D2φ(x0), so that
wFk (N , ·) is a periodic viscosity solution of

Fk(N + D2
ywFk (N , y), y) = F̄(N ) ≤ f (x0) − 3θ in Rn . (3.8)

From the assumption that Fk ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ), Lemma 2.6 (iv) yields
that wFk (N , ·) ∈ C2,γ (Rn) and satisfies���D2

ywFk (N , ·)
���

L∞(Rn)
≤ C0|N |,
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where C0 depends only on n, λ, 
, κ̄ , γ̄ , κ and γ . Thus, the auxiliary function

φk(x) = φ(x) + ε2kwFk

(
N ,

x

εk

)

belongs to C2(�), and moreover

���D2φk

���
L∞(K )

≤
���D2φ

���
L∞(K )

+ C0|N | ≤ (1 + C0)

���D2φ

���
L∞(K )

, (3.9)

for any compact set K ⊂ � containing x0; note that the last inequality follows
from |N | = |D2φ(x0)| ≤ ��D2φ

��
L∞(K )

.

Let k0 ≥ 1 be such that { fk}∞k=k0
is uniformly continuous over K . Such a

number k0 exists, since fk ∈ C(�) and fk → f locally uniformly in� as k → ∞.
Now from the assumption that φ touches ū strictly from above, the hypothesis that
φ ∈ C2(�), and the choice of k0, we can choose r > 0 small enough such that

min
∂Br (x0)

(φ − ū) > 0, (3.10)

and




���D2φ − N
���

L∞(Br (x0))
+ sup

k≥k0
‖ fk − fk(x0)‖L∞(Br (x0)) ≤ θ. (3.11)

Next we choose η so small that

(1 + C0)η

���D2φ

���
L∞(Br (x0))

≤ θ, (3.12)

with C0 as in (3.9), and then correspondingly select a sufficiently large k1 ≥ k0
such that

|Gk(N , x, y) − Fk(N , y)| ≤ η|N |, if k ≥ k0, (3.13)

for all N ∈ Sn , x ∈ Br (x0) and y ∈ R
n . Then for any k ≥ k0, it follows from

(3.11), (3.12), (3.13), (3.9) and (3.8) that

Gk

(
D2φk(x), x,

x

εk

)
≤ Fk

(
D2φk(x),

x

εk

)
+ η

��D2φk
��

L∞(Br (x0))

≤ Fk

(
N + D2

ywFk

(
N ,

x

εk

)
,
x

εk

)
+ 
|D2φ(x) − N | + θ

≤ f (x0) − θ − | fk(x) − fk(x0)|
≤ f (x) − θ,

for any x ∈ Br (x0), in the classical sense. Consequently, one may follow the
argument in Lemma 3.1 and arrive at a contradiction to (3.10). This finishes the
proof. ��
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4. Interior C1,α Estimate

In this section, we study uniform interior C1,α estimates of viscosity solutions
to fully nonlinear elliptic equations. The main result is stated as follows.

Theorem 4.1. Let F ∈ S0(λ,
) be a periodic functional on Sn × R
n with F̄ ∈

S1(λ,
, c̄, ᾱ), f ∈ L∞(B1) and let uε be a viscosity solution to

F
(
D2uε,

x

ε

)
= f in B1. (4.1)

Let α ∈ (0, ᾱ) be arbitrary.

(i) Then for any x0 ∈ B1/2, and any ε ∈ (0, 1
8 ), there exists an affine function lεx0 ,

with lεx0(x0) = uε(x0), such that

|∇lεx0 | + sup
x∈B3/4(x0)\Bε(x0)

|uε(x) − lεx0(x)|
|x − x0|1+α

≤ C1

(��uε
��

L∞(B1)
+ ‖ f ‖L∞(B1)

)
,

(4.2)
where C1 > 0 depends only on n, λ, 
, c̄, ᾱ and α.

(ii) If F ∈ S1(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ), then uε ∈ C1,min(α,γ )(B1/2) and��uε
��
C1,min(α,γ )(B1/2)

≤ C2

(��uε
��

L∞(B1)
+ ‖ f ‖L∞(B1)

)
, (4.3)

where C2 > 0 depends in addition on κ , γ , κ̄ and γ̄ .

The first part of the theorem shows that without any control on the modulus of
continuity for F in its spatial variable, we can still obtain a C1,α estimate all the
way up to an ε-neighborhood, essentially proving that the irregular part of uε due
to the rapid oscillation in the governing operator can be isolated in ε-cubes. Such
an observation was deduced from the stability result established in Lemma 3.1) that
allows the compactness method to work in a very general framework. Now if one
assume stronger regularity on F , we can also control the oscillating behavior of uε

inside the ε-cube, and recover a full C1,α estimate (part (ii) above).
Let us also mention that the almostC1,α estimate (Theorem 4.1 (i)) will be used

essentially in the subsequent analysis, where we establish uniform C1,1 and W 2,p

estimates.
Our analysis begins with an approximation lemma.

Lemma 4.2. Let ᾱ ∈ (0, 1] and α ∈ (0, ᾱ) be arbitrary. One can choose small
positive constants μ and ε̄, depending only on n, λ, 
, c̄, ᾱ and α, such that if
ε ≤ ε̄, F ∈ S0(λ,
) is a periodic functional on Sn ×R

n with F̄ ∈ S1(λ,
, c̄, ᾱ),
and f ∈ L∞(B1), uε ∈ C(B1) satisfying

‖ f ‖L∞(B1) ≤ ε, (4.4)

F
(
D2uε,

x

ε

)
= f in B1, (4.5)

uε(0) = 0 and
��uε

��
L∞(B1)

≤ 1, (4.6)
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then

sup
x∈Bμ

∣∣∣∣∣uε(x) − 1

ωnμn

∫
∂Bμ

u(z)
〈x, z〉
|z| dσ

∣∣∣∣∣ ≤ μ1+α, (4.7)

where ωn is the volume of the unit ball in R
n.

Proof. The proof is the essentially samewith the argument in [4, Lemma4],whence
we shall provide the details for the points where the arguments differ. Suppose by
way of contradiction that this lemma fails to hold. Then there are a sequence {εk}∞k=1
of positive numbers decreasing to zero such that for each k = 1, 2, · · · , a sequence
{Fk}∞k=1 ⊂ S0(λ,
) of periodic functionals on Sn ×R

n having F̄ ∈ S1(λ,
, c̄, ᾱ)

on Sn , sequences { fk}∞k=1 ⊂ L∞(B1) and {uk}∞k=1 ⊂ C(B1) satisfying

‖ fk‖L∞(B1) ≤ εk, (4.8)

Fk

(
D2uk,

x

εk

)
= fk in B1, (4.9)

uk(0) = 0 and ‖uk‖L∞(B1) ≤ 1, (4.10)

such that

sup
x∈Bμ

∣∣∣∣∣uk(x) − 1

ωnμn

∫
∂Bμ

uk(z)
〈x, z〉
|z| dσ

∣∣∣∣∣ > μ1+α. (4.11)

Since Fk has the same ellipticity constants for all k, and uk is a uniformly
bounded solution of (4.9), it follows from theKrylov-Safanov theory [6, Proposition
4.9] that {uk}∞k=1 is uniformly bounded inCβ

loc(B1), for some 0 < β < 1, depending

only on n,λ and
.Without loss of generality, onemay assume that there is ū ∈ Cβ
loc

for which
uk → ū locally uniformly in B1. (4.12)

In particular, it follows from the uniform bound (4.10) of uk that

‖ū‖L∞(B1) ≤ 1. (4.13)

On the other hand, (4.8) implies that fk → 0 in L∞(B1) as k → ∞. Hence,
Lemma 3.1 yields a functional F̄ ∈ S0(λ,
) on Sn , which can be characterized as
a limit of {F̄k}∞k=1 under the locally uniform convergence on Sn , such that

F̄(D2ū) = 0 in B1, (4.14)

in the viscosity sense. Due to the assumption that F̄k ∈ S1(λ,
, c̄, ᾱ) on Sn ,
Lemma 2.5 ensures that F̄ ∈ S1(λ,
, c̄, ᾱ) as well. In view of (4.13) and (4.14),
we have

‖ū‖C1,ᾱ (B3/4) ≤ c̄. (4.15)

From this point the proof is the same with [4, Lemma 4], so we skip the details. ��
Next we proceed with an iteration lemma.
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Lemma 4.3. Let ᾱ, c̄, α,μ and ε̄ be as in Lemma 4.2. If ε ≤ μk−1ε̄ for some integer
k ≥ 1, F ∈ S0(λ,
) is a periodic function on Sn ×R

n having F̄ ∈ S1(λ,
, c̄, ᾱ)

on Sn, f ∈ L∞(B1) and uε is a viscosity solution of

F
(
D2uε,

x

ε

)
= f in B1, (4.16)

then for each l ∈ {1, · · · , k}, there exists aε
l ∈ R

n, with aε
0 = 0, such that

|aε
l − aε

l−1| ≤ C0μ
(l−1)α J ε, and (4.17)

sup
x∈B

μl

|uε(x) − uε(0) − 〈
aε
l , x

〉 | ≤ J εμl(1+α), (4.18)

where C0 is a positive constant, depending only on n, λ, 
, c̄, ᾱ and α,

J ε = ��uε
��

L∞(B1)
+ 1

ε̄
‖ f ‖L∞(B1) . (4.19)

Proof. Let C0 be a constant to be determined later. The case ε ≤ ε̄ (i.e., k = 1
in the statement) can be treated easily from Lemma 4.2, by applying the lemma
to (J ε)−1uε. Hence, we shall assume that Lemma 4.3 is true for the case when
ε ≤ μk−1ε̄ for some k ≥ 2, and we shall attempt to prove that it continues to hold
when ε ≤ μk ε̄ for the same integer k. In particular, from the induction hypothesis,
we already have aε

l ∈ R
n , for l ∈ {1, · · · , k}, such that both (4.17) and (4.18) are

satisfied.
Consider the scaled functions,

uε
k(x) = uε(μk x) − uε(0) − μk

〈
aε
k , x

〉
J εμk(1+α)

, f ε
k (x) = μk(1−α) f (μk x)

J ε
, (4.20)

which are defined for x ∈ B1. From the induction hypothesis (4.18) for uε, which
is a viscosity solution of (4.16), we know that

Fε
k

(
D2uε

k,
μk x

ε

)
= f ε

k in B1, (4.21)

uε
k(0) = 0 and

��uε
k

��
L∞(B1)

≤ 1, (4.22)

where we wrote

Fε
k (N , y) = μk(1−α)

J ε
F

(
J ε

μk(1−α)
N , y

)
. (4.23)

It is clear that Fε
k is a periodic functional on Sn × R

n belonging to S0(λ,
).
Moreover, Lemma 2.8 ensures that

F̄ε
k (N ) = μk(1−α)

J ε
F̄

(
J ε

μk(1−α)
N

)
,

and hence it is clear that F̄ε
k ∈ S1(λ,
, c̄, ᾱ) as well on Sn .

On the other hand, since 0 < α < 1, it follows that

�� f ε
k

��
L∞(B1)

≤ 1

J ε
‖ f ‖L∞(B

μk ) ≤ ε̄. (4.24)
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Thus, one can apply Lemma 4.2 and obtain

sup
x∈Bμ

∣∣∣∣∣uε
k(x) − 1

ωnμn

∫
∂Bμ

uε
k(z)

〈x, z〉
|z| dσ

∣∣∣∣∣ ≤ μ1+α (4.25)

Rewriting this inequality in terms of uε, we see that

sup
x∈B

μk+1

|uε(x) − uε(0) − aε
k+1 · x | ≤ J εμ(k+1)(1+α), (4.26)

with

aε
k+1 = aε

k + J εμkα

ωnμn

∫
∂Bμ

uε
k(z)

z

|z| dσ. (4.27)

From (4.18) we deduce that

|aε
k+1 − aε

k | ≤ nJ εμkα−1,

verifying (4.17) for k + 1. Thus, the proof is finished with C0 = nμ−1, which
certainly depends only on n, λ, 
, c̄, ᾱ and α. ��

We are ready to prove the uniform interior C1,α estimates.

Proof of Theorem 4.1. The first assertion of Theorem 4.1 follows directly from
Lemma 4.3. The second part of the statement is also similar with the proof of [4,
Theorem 1 (i)], due to the same lemma. Hence we omit the details. ��

5. Boundary C1,α Estimate

The main objective of this section is to prove uniform boundaryC1,α estimates.

Theorem 5.1. Let F ∈ S1(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) be a periodic functional on
Sn × R

n, � be domain with � ∈ C2 containing the origin, f ∈ L∞(�) and
g ∈ C1,α(�), for some 0 < α ≤ 1. Suppose that uε is a viscosity solution of

{
F

(
D2uε, x

ε

) = f in �1,

uε = g on �1.
(5.1)

Then uε ∈ C1,min(α,γ )(�1/2) and

��uε
��
C1,min(α,γ )(�1/2)

≤ C
(��uε

��
L∞(�1)

+ ‖ f ‖L∞(�1)
+ ‖g‖C1,ᾱ (�1)

)
, (5.2)

where C depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , α and the maximal curvature of �1.
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It is noteworthy that the boundary C1,α estimate is rather straightforward than
the interior case. For instance, it follows from the work [27] by L. Silvestre and B.
Sirakov that uε satisfies a uniform boundary C1,α estimate with α depending only
on n, λ and 
, since the equation (5.1) essentially belongs to the Pucci class. This
is also the reason why we do not formulate the discrete boundary C1,α estimate in
contrast with the interior case.

What is new here is that one can improve the Hölder exponent as much as one
desires. This is due to the fact that homogeneous functionals always have interior
C2,ᾱ estimate for some universal ᾱ, again due to [27].

As in the previous subsection, we shall begin with an approximation lemma.

Lemma 5.2. Let 0 < α < 1 be arbitrary, and � be a domain such that � ∈ C2

contains the origin and the maximal curvature of �1 is bounded by 1. One can
choose 0 < μ, ε̄ ≤ 1

2 , depending only on n, λ, 
 and α, such that if F ∈ S0(λ,
)

is a periodic functional on Sn × R
n, f ∈ L∞(�1), g ∈ C1,α(�1), uε ∈ C(�1)

satisfying

‖ f ‖L∞(�1)
≤ ε̄, (5.3)

g(0) = |DT g(0)| = 0, ‖g‖C1,α(�1)
≤ ε̄, (5.4){

F
(
D2uε, x

ε

) = f, |uε| ≤ 1 in �1,

uε = g on �1,
(5.5)

then one has

sup
x∈�μ

∣∣∣∣uε(x) − ∂uε

∂ν
(0) 〈x, ν〉

∣∣∣∣ ≤ μ1+α, (5.6)

where ν is the inward unit normal to � at the origin.

Proof. The idea is similar to Lemma 4.2, whereas the proof here is only more
simpler. Let μ be chosen later. Assume towards a contradiction that for each k =
1, 2, · · · , there exists a constant εk > 0with εk → 0, a domain�k such that�k ∈ C2

contains the origin and the maximal curvature of �1,k = �k ∩ B1 is bounded by 1,
a periodic functionals Fk ∈ S0(λ,
) on Sn × R

n , and functions fk ∈ L∞(�k,1)

(here and thereafter, we shall denote �k,r = �k ∩ Br and �k,r = �k ∩ Br ),
gk ∈ C1,α(�k,1, uk ∈ C(�k,1) satisfying

‖ fk‖L∞(�k,1)
≤ εk, (5.7)

gk(0) = |DT gk(0)| = 0, ‖gk‖C1,α(�k,1)
≤ εk, (5.8){

Fk
(
D2uk,

x
εk

)
= fk, |uk | ≤ 1 in �k,1,

uk = gk on �k,1,
(5.9)

such that

sup
x∈�k,μ

∣∣∣∣uk(x) − ∂uk
∂νk

(0) 〈x, νk〉
∣∣∣∣ > μ1+α, (5.10)

where νk is the inward unit normal to �k at the origin.



Uniform Estimates in Periodic Homogenization 717

Since �k ∈ D(1, σ̄ ), we can assume, after extracting a subsequence if neces-
sary, that �k → � for some � ∈ D(1, σ̄ ) in the sense of the Hausdorff distance.
In particular, νk → ν for some ν ∈ ∂B1, and ν is the unit inward normal to ∂�

at the origin. Also denoting by �k and � the rotation mapping associated with �k

and respectively � (as in Definition 2.3) such that �k(νk) = en = �(ν), we have
�k → � in Rn .

Due to the standard boundary C1,β estimate [27, Theorem 1.1], there exists
0 < β < α depending only on n, λ and 
 such that ∂uk

∂ν
∈ Cβ(�k,1/2) with����∂uk

∂ν

����
Cβ (�k,1/2)

≤ C1

(
‖uk‖L∞(�k,1) + ‖ fk‖L∞(�k,1)

+ ‖gk‖C1,α(�k,1)

)
≤ 2C1,

(5.11)
where the second inequality follows from (5.7), (5.8) and (5.9). In particular, one
has ∣∣∣∣uk(x) − ∂uk

∂νk
(0) 〈x, νk〉

∣∣∣∣ ≤ C2|x |1+β, (5.12)

for any x ∈ �k,1/2. Here both C1 and C2 depend only on n, λ, 
 and α (note
that the maximal curvature of �k,1 is bounded uniformly by 1). On the other hand,
it follows from the standard global Hölder estimate, c.f. [28, Theorem 2], that
uk ∈ Cβ

loc(�1,k ∪ �1,k) and ‖uk‖Cβ(E) ≤ cE for each E � �1,k ∪ �1,k , where
cE depends only on n, λ, 
 and dist(E, ∂�1,k \ �1,k), with a possibly smaller β.
Extracting subsequences if necessary, one may assume without loss of generality
that

uk ◦ �−1
k ◦ � → ū locally uniformly on �1 ∪ �1, (5.13)

for some ū ∈ Cβ
loc(�1 ∩ �1), and

∂uk
∂ν

(0) → ā, (5.14)

for some ā ∈ R. Hence, taking k → ∞ in (5.12) we know that ū satisfies

|ū(x) − ā 〈x, ν〉 | ≤ C2|x |1+β,

for any x ∈ �1/2, which shows that ∂ ū
∂ν

(0) exists and

ā = ∂ ū

∂ν
(0). (5.15)

Moreover, it follows from (5.8) and (5.13) that

‖ū‖L∞(�1) ≤ 1 and ū = 0 in �1. (5.16)

In addition, arguing as in the proof of Lemma 4.2, one may deduce from the
stability result in Lemma 3.1 (here we should apply this lemma for each fixed
subdomain of�1∩�k,1 and then let k → ∞, so that the stability result holds for any
subdomain of�1, and thus itself), the uniformconvergence (5.13) ofuk◦�−1

k ◦� →
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ū and the assumptions, (5.7) and (5.9), on fk and uk that F̄k → F̄ locally uniformly
on Sn for some F̄ ∈ S0(λ,
), and

F̄(D2ū) = 0 in �1. (5.17)

This combined with (5.16) yields, owing to the standard boundary regularity [27,
Theorem 1.2, Lemma 4.1], that∣∣∣∣ū(x) − ∂ ū

∂ν
(0) 〈x, ν〉

∣∣∣∣ ≤ c̄|x |2, (5.18)

for any x ∈ �1/2, where c̄ depends only on n, λ, 
 and the maximal curvature of
�1.

Now let us take 0 < μ ≤ 1
2 such that 2c̄μ1−α ≤ 1, which is possible since

0 < α < 1. Then we have from (5.18) that

sup
x∈�μ

∣∣∣∣ū(x) − ∂ ū

∂ν
(0) 〈x, ν〉

∣∣∣∣ ≤ 1

2
μ1+α. (5.19)

However, this leads us to a contradiction from (5.10), due to (5.13), (5.14) and
(5.15). This finishes the proof. ��

Again it follows an iteration lemma.

Lemma 5.3. Let �, α, μ and ε̄ be as in Lemma 5.2. Then there is 0 < η ≤ 1,
depending only on n, λ, 
 and α such that if ε ≤ ε̄μk−1 for some integer k ≥ 1,
F ∈ S0(λ,
) is a periodic functional on Sn × R

n, f ∈ L∞(�1), g ∈ C1,α(�1)

satisfiesg(0) = |DT g(0)| = 0, uε is a viscosity solution of{
F

(
D2uε, x

ε

) = f in �1,

uε = g on �1,
(5.20)

and the maximal curvature of �1 is bounded by η, then there exists aε
k ∈ R such

that

|aε
k | ≤ n

μ(1 − μα)
J ε, and (5.21)

sup
x∈�

μk

|uε
k(x) − aε

k 〈x, ν〉 | ≤ J εμk(1+α), (5.22)

where

J ε = ��uε
��

L∞(�1)
+ 1

ε̄
‖ f ‖L∞(�1)

+ 2

ε̄
‖g‖C1,α(�1)

. (5.23)

Proof. Now that we have Lemma 5.2, one may iterate it under the appropriate
scaling. Since the argument is very similar to Lemma 4.3, we shall leave the details
to the reader. ��

We are ready to prove the discrete and uniform boundary estimates.

Proof of Theorem 5.1. The proof is similar to the proof of Theorem 4.1. Here we
use Lemma 5.2 and Lemma 5.3 instead of Lemma 4.2 and respectively Lemma 4.3.
Also note that the smallness condition on the maximal curvature of �1 in Lemma
5.3 can always be achieved by a standard scaling argument. Thuswe omit the details
to avoid any repeating argument. ��
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6. Interior C1,1 Estimate

This section is devoted to the uniform interior C1,1 estimates.

Theorem 6.1. Let F ∈ S0(λ,
) be a periodic functional on Sn × R
n such that

F̄ ∈ S2(λ,
, c̄, ᾱ) on Sn, and f ∈ Cα(B1) for some α ∈ (0, ᾱ). Suppose that uε

is a viscosity solution of

F
(
D2uε,

x

ε

)
= f in B1. (6.1)

(i) If F ∈ S2(λ,
, ·, ·) ∩ R0(·, ·), then for each x0 ∈ B1/2 and any ε ∈ (0, 1
8 ),

there exists an affine function lεx0 , with l
ε
x0(x0) = uε(x0), such that

|∇lεx0 | + sup
x∈B3/4\Bε(x0)

|uε(x) − lεx0(x)|
|x − x0|2 ≤ C1

(��uε
��

L∞(B1)
+ ‖ f ‖Cα(B1)

)
,

(6.2)
where C1 > 0 depends only on n, λ, 
, c̄, ᾱ and α.

(ii) Moreover, if F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ), then uε ∈ C1,1(B1/2) and��uε
��
C1,1(B1/2)

≤ C2

(��uε
��

L∞(B1)
+ ‖ f ‖Cα(B1)

)
, (6.3)

where C2 > 0 depends further on κ̄ , γ̄ , κ and γ .

As in Theorem 4.1 (i), the first assertion above amounts to a uniform C1,1

estimate for uε up to deleted neighborhoods of size ε. Again this assertion holds
without any control on the modulus of continuity of F in the space variable. This
is also new in the context of linear equations (see Remark 6.4). Now the second
assertion shows that if F admits C2,γ regular solutions in the microscopic scale,
then we can fill in the regularity of uε in the neighborhoods of size ε, completing
the full C1,1 estimate.

Let us begin with an approximation lemma.

Lemma 6.2. Let ᾱ ∈ (0, 1] and α ∈ (0, ᾱ) be arbitrary. There are μ ∈ (0, 1
2 ],

depending only on c̄, ᾱ and α, and ε̄ ∈ (0, 1
2 ], depending only on n, λ, 
, c̄, ᾱ

and α, such that for any ε ≤ ε̄, any continuous periodic functional F ∈ S0(λ,
)

on Sn × R
n having F̄ ∈ S2(λ,
, c̄, ᾱ) on Sn, any function f ∈ Cα(B1) and

uε ∈ C(B1) satisfying

‖ f ‖Cα(B1) ≤ ε̄, (6.4)

F
(
D2uε,

x

ε

)
= f in B1, (6.5)

uε(0) = 0 and
��uε

��
L∞(B1)

≤ 1, (6.6)

there are some aε ∈ R
n and Mε ∈ Sn such that

|aε| ≤ C0, |Mε| ≤ C̄, F̄(Mε) = f (0), and (6.7)

sup
x∈Bμ

∣∣∣∣uε(x) − 〈
aε, x

〉 − 1

2

〈
x, Mεx

〉 − ε2wF

(
Mε,

x

ε

)∣∣∣∣ ≤ μ2+α, (6.8)

where C0 > 0 depends only on n, λ and 
, and C̄ > 0 depends further on c̄.
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Proof. Set C̄ = 2c̄ > 0, and let C0 and μ be determined later. Suppose towards
a contradiction that there is no such ε̄ that the conclusion of this lemma is true.
Then there exists a sequence {εk}∞k=1 of positive real numbers decreasing to zero,
a sequence {Fk}∞k=1 ⊂ S0(λ,
) of periodic functionals on Sn × R

n having
F̄k ∈ S2(λ,
, c̄, ᾱ) on Sn , and sequences { fk}∞k=1 ⊂ Cα(B1), {uk}∞k=1 ⊂ C(B1),
satisfying

‖ fk‖Cα(B1) ≤ εk, (6.9)

Fk

(
D2uk,

x

εk

)
= fk in B1, (6.10)

uk(0) = 0 and ‖uk‖L∞(B1) ≤ 1, (6.11)

such that for any a ∈ R
n and M ∈ Sn satisfying

|a| ≤ C̄, |M | ≤ C̄ and F̄k(M) = fk(0), (6.12)

one has

sup
x∈Bμ

∣∣∣∣uk(x) − 〈a, x〉 − 1

2
〈x, Mx〉 − ε2kwFk

(
M,

x

εk

)∣∣∣∣ > μ2+α. (6.13)

Observe from the Krylov-Safanov theory [6, Proposition 4.9] and the uniform
bound (6.11) of uk that {uk}∞k=1 is uniformly bounded in Cβ

loc(B1), for some β ∈
(0, 1), depending only on n, λ and 
. Hence, one may assume without loss of
generality that

uk → ū locally uniformly in B1, (6.14)

as k → ∞, for some ū ∈ Cβ
loc(B1). Since Fk ∈ S0(λ,
) is a periodic functional

on Sn × R
n , and fk → 0 uniformly in B1 as k → ∞, it follows from Lemma 3.1,

(6.10), (6.11) and (6.14) that

F̄k → F̄ locally uniformly on Sn, (6.15)

for some F̄ ∈ S0(λ,
) on Sn , along a subsequence, and ū is a viscosity solution
to

F̄(D2ū) = 0 in B1, with (6.16)

ū(0) = 0 and ‖ū‖L∞(B1) ≤ 1. (6.17)

Moreover, one can assume without losing generality that (6.15) holds in the full
sequence.

On the other hand, from F̄k ∈ S0(λ,
) along with the Krylov theory [6,
Corollary 5.7] we also know that F̄k ∈ S1(λ,
, c0, α0), for some c0 > 0 and
α0 ∈ (0, 1), both depending only on n, λ and 
. Thus, we can apply the almost
C1, α0

2 estimate (Theorem 4.1 (i)) to uk , from which we obtain a vector ak ∈ R
n

such that

|ak | + sup
x∈B1/2\Bεk

|uk(x) − 〈ak, x〉 |
|x |1+ α0

2

≤ C0, (6.18)
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whereC0 > 0 depends only on n,λ,
, c0 andα0, hence on the first three parameters
only.

As {ak}∞k=1 being a bounded sequence in R
n , one can extract a subsequence

{aki }∞i=1 of {ak}∞k=1 such that aki → ā, as i → ∞, for certain ā ∈ R
n . Passing to

the limit in (6.18), we observe from the uniform convergence (6.14) of uki → ū
over B1/2 that

|ā| + sup
x∈B1/2\{0}

|ū(x) − 〈ā, x〉 |
|x |1+ α0

2

≤ C0. (6.19)

However, since F̄ ∈ S0(λ,
), we also have F̄ ∈ S1(λ,
, c0, α0), which along
with (6.19) implies that ā = ∇ū(0). Therefore, we deduce that

ak → ā, (6.20)

as k → ∞ along the full sequence.
Now since we assume F̄k ∈ S2(λ,
, c̄, ᾱ) for each k ∈ N, Lemma 2.5 together

with (6.15) yields that F̄ ∈ S2(λ,
, c̄, ᾱ). Noting that ū is a viscosity solution of
(6.16), it follows from the definition of the class S2 that

‖ū‖C2,α(B̄1/2) ≤ c̄. (6.21)

In particular, with M̄ = D2ū(0) (and ā = ∇ū(0)), we have

|M̄| ≤ c̄ and sup
x∈B1/2\{0}

|ū(x) − 〈ā, x〉 − 1
2

〈
x, M̄x

〉 |
|x |2+α

≤ c̄. (6.22)

Thus, selecting a sufficiently small μ ≤ 1
2 such that

c̄μᾱ ≤ 1

2
μα, (6.23)

we arrive at

sup
x∈Bμ

∣∣∣∣ū(x) − 〈ā, x〉 − 1

2

〈
x, M̄x

〉∣∣∣∣ ≤ 1

2
μ2+α. (6.24)

Clearly, the smallness of μ depends only on ᾱ, α and c̄. Let us also remark that as
ū being a classical solution of (6.16) in B1/2, one has

F̄(M̄) = 0. (6.25)

We are going to find a sequence {Mk}∞k=1 ⊂ Sn converging to M and satisfying
(6.12). Setting

δk = |F̄k(M̄)|
we know from (6.15) and(6.25) δk → 0, so it follows from the property F̄k ∈
S0(λ,
) and the assumption (6.9) that

F̄k(M̄ + λ−1(εk + δk)I ) ≥ F̄k(M̄) + δk + εk ≥ εk ≥ | fk(0)|,
where in the last inequality we used (6.25). Similarly, one has

F̄k(M̄ − 
−1(εk + δk)I ) ≤ F̄k(M̄) − δk − εk ≤ fk(0).
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Thus, by the intermediate value theorem, there must exists Mk ∈ Sn , for each
k ∈ N, satisfying

F̄k(Mk) = fk(0) and |Mk − M̄| ≤ λ−1(εk + δk). (6.26)

Especially, Mk → M̄ as k → ∞, and it follows from (6.22) that

|Mk | ≤ C̄, (6.27)

for all sufficiently large k’s, since we have taken C̄ = 2c̄ from the beginning.
Therefore, for all large k’s, ak and Mk satisfies (6.12), so we deduce from (6.13)
that

sup
x∈Bμ

∣∣∣∣uk(x) − 〈ak, x〉 − 1

2
〈x, Mkx〉 − ε2kwFk

(
Mk,

x

εk

)∣∣∣∣ > μ2+α. (6.28)

Due to (2.9) and (6.27),��wFk (Mk, ·)
��

L∞(Rn)
≤ C1|Mk | ≤ 2C1c̄, (6.29)

whereC1 depends only on n, λ and
. Hence, from (6.14), (6.20), (6.28) and (6.27),
passing to the limit in (6.28) yields that

sup
x∈B̄μ

∣∣∣∣ū(x) − 〈ā, x〉 − 1

2

〈
x, M̄x

〉∣∣∣∣ ≥ μ2+α,

a contradiction to (6.24). Thus, there must exist ε̄ ∈ (0, 1
2 ] such that the assertion

of this lemma is true. Moreover, the smallness of ε̄ is determined only by the fixed
parameters chosen from the beginning, which are precisely n, λ, 
, c̄ and ᾱ. This
finishes the proof. ��

Next we establish an iteration lemma.

Lemma 6.3. Let α, μ, ε̄, C0 and C̄ be as in Lemma 6.2. If ε ≤ ε̄μk−1 for some
integer k ≥ 1, F ∈ S2(λ,
, ·, ·) ∩ R0(·, ·) is a periodic functional on Sn × R

n

having F̄ ∈ S2(λ,
, c̄, ᾱ) on Sn, f ∈ Cα(B1) and uε is a viscosity solution of

F
(
D2uε,

x

ε

)
= f in B1, (6.30)

then for each l ∈ {1, · · · , k}, there exist aε
l ∈ R

n and Mε
l ∈ Sn, such that aε

0 = 0,
Mε

0 = 0,

|aε
l − aε

l−1| ≤ C0 J
εμ(l−1)(1+α), (6.31)

|Mε
l − Mε

l−1| ≤ C̄ J εμ(l−1)α with F̄(Mε
l ) = f (0), and (6.32)

sup
x∈B

μl

∣∣∣∣uε(x) − uε(0) − 〈
aε
l , x

〉 − 1

2

〈
x, Mε

l x
〉 − ε2wF

(
Mε

l ,
x

ε

)∣∣∣∣ ≤ J εμl(2+α),

(6.33)

where

J ε = ��uε
��

L∞(B1)
+ 1

ε̄
‖ f ‖Cα(B1) . (6.34)
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Proof. As in the proof of Lemma 4.3, we shall assume that Lemma 6.3 holds with
ε ≤ ε̄μk−1 for some k ≥ 1, and prove that it continues to hold when ε ≤ ε̄μk .
Thus, we have aε

l ∈ R
n and Mε

l ∈ Sn for l ∈ {1, · · · , k}, with |aε
0| = |Mε

0 | = 0,
satisfying (6.31) as well as (6.32), and construct aε

k+1 ∈ R
n and Mε

k+1 ∈ Sn that
verify (6.31), (6.32) and (6.33) with l replaced by k + 1.

Define, for x ∈ B1,

uε
k(x) = uε(μk x) − uε(0) − μk

〈
aε
k , x

〉 − 1
2μ

2k xT Mε
k x − ε2wF (Mε

k , ε
−1μk x)

J εμk(2+α)
,

(6.35)
and

f ε
k (x) = f (μk x) − f (0)

J εμkα
. (6.36)

Also set, for M ∈ Sn and y ∈ R
n ,

Fε
k (N , y) = F(J εμkαN + Mε

k + D2
ywF (Mε

k , y), y) − f (0)

J εμkα
. (6.37)

which is clearly a uniformly elliptic, continuous and periodic functional on
Sn × R

n , with ellipticity constants λ and 
; here the continuity of Fε
k fol-

lows from D2
ywF (Mε

k , ·) ∈ C(Rn), which is again ensured by the assumption
F ∈ S2(λ,
, ·, ·) ∩ R0(·, ·). As uε being a viscosity solution to (6.30) and
wF (Mε

k , ·) ∈ C2(Rn), uε
k becomes a viscosity solution of

Fε
k

(
D2uε

k,
μk x

ε

)
= f ε

k in B1, with (6.38)��uε
k

��
L∞(B1)

≤ 1, (6.39)

where the last inequality follows from the induction hypothesis (6.33). Moreover,
it is clear from the choice (6.34) of J ε that

�� f ε
k

��
Cα(B1)

≤ 1

J ε
‖ f ‖Cα(B

μk ) ≤ ε̄. (6.40)

From the last identity in the induction hypothesis (6.31), and the definition of
the effective functional F̄ , we know that

Fε
k (N , y) = F(J εμkαN + Mε

k + D2
ywF (Mε

k , y), y) − F̄(Mε
k )

J εμkα

= F(J εμkαN + Mε
k + D2

ywF (Mε
k , y), y) − F(Mε

k + D2
ywF (Mε

k , y), y)

J εμkα
,

(6.41)
so Fk has zero source term. This implies that Fε

k ∈ S0(λ,
) on Sn × R
n .

Let us denote by F̄ε
k the effective functional corresponding to Fε

k . Following
the notation in Lemma 2.7, we have Fε

k = FMε
k ,J εμkα , so

F̄ε
k (N ) = F̄(μkαN + Mε

k ) − F̄(Mε
k )

μkα
, (6.42)
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and

wFε
k
(N , y) = w(μkαN + Mε

k , y) − w(Mε
k , y)

μkα
, (6.43)

for any (N , y) ∈ Sn × R
n . In particular, we have F̄ε

k ∈ S2(λ,
, c̄, ᾱ) as well.
As Fε

k ∈ S0(λ,
) being a periodic functional with F̄ε
k ∈ S2(λ,
, c̄, ᾱ), f ε

k ∈
Cα(B1) with the smallness condition (6.40), and εμ−k ≤ ε̄, we can apply the
approximation lemma (Lemma 6.2) to the normalized equation (6.38). This yields
a vector bε

k ∈ R
n and a matrix N ε

k ∈ Sn , satisfying

|bε
k | ≤ C0, |N ε

k | ≤ C̄ and F̄ε
k (N ε

k ) = f ε
k (0) = 0, (6.44)

where C0 and C̄ are the same constants appearing in (6.7), such that

sup
x∈Bμ

∣∣∣∣uε
k(x) − 〈

bε
k, x

〉 − 1

2

〈
x, N ε

k x
〉 − ε2

μ2k wFε
k

(
N ε
k ,

μk x

ε

)∣∣∣∣ ≤ μ2+α, (6.45)

Therefore, setting
aε
k+1 = aε

k + J εμk(1+α)bε
k, (6.46)

and
Mε

k+1 = Mε
k + J εμkαN ε

k , (6.47)

we can rephrase (6.45), through (6.42) and (6.43). as

sup
x∈B

μk+1

∣∣∣∣uε(x) − uε(0) − 〈
aε
k+1, x

〉 − 1

2

〈
x, Mε

k+1x
〉 − ε2wF

(
Mε

k+1,
x

ε

)∣∣∣∣
≤ J εμ(k+1)(2+α).

Due to (6.44) and the induction hypothesis (6.31), we have

|aε
k+1 − aε

k | ≤ C0 J
εμk(1+α),

and from (6.32) we also derive that

|Mε
k+1 − Mε

k | ≤ C̄ J εμkα.

Moreover, it follows from (6.42) that

F̄(Mε
k+1) = F̄(Mε

k ) + μkα F̄ε
k (N ε

k ) = f (0).

Therefore, both (6.31) and (6.32) are verified with l replaced by k + 1, which
finishes the proof owing to the induction principle. ��
Remark 6.4. One can see that if F were a linear functional so that F(M, y) =
tr(A(y)M) for some uniformly elliptic matrix A(y), then Fε

k defined as in (6.41)
becomes

Fε
k (N , y) = tr(A(y)N ), (6.48)

whence there is no need to useC2 regular interior corrector to construct the equation
for uε

k . This is the main reason why it is enough to assume uniform ellipticity only
to work with the argument above, in the framework of linear equations.
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Let us prove Theorem 6.1.

Proof of Theorem 6.1. With the iteration lemma (Lemma 6.3), we can prove The-
orem 6.1 by following the argument in the proof of Theorem 4.1 as well as that of
[4, Theorem 1 (iii)]. We omit the details. ��

7. Boundary C1,1 Estimate

This section is devoted to the uniform boundary C1,1 estimate.

Theorem 7.1. Let � ∈ D(τ̄ , σ̄ ), and suppose that F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R1(κ, γ )

is a periodic functional onSn×R
n having F̄ ∈ S2(λ,
, c̄, ᾱ) onSn, f ∈ Cα(�1),

g ∈ C2,α(�1), with some 0 < α < ᾱ, and uε is a viscosity solution of{
F

(
D2uε, x

ε

) = f in �1,

uε = g on �1.
(7.1)

Then uε ∈ C1,1(�1/2) and ��uε
��
C1,1(�1/2)

≤ C, (7.2)

where C > 0 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , c̄, ᾱ, α, τ̄ , σ̄ , ‖ f ‖Cα(�1)
,

‖g‖C2,α(�1)
and supε>0 ‖uε‖L∞(�1).

We have already seen in the iteration scheme for the interior C1,1 estimate that
the nonlinearity of the governing equation results a new equation at each iterative
step, which amounts to the effect coming from the correction in the previous steps;
see the functional Fε

k defined in (6.37) that appears in the k-th iteration step. In
the case of the boundary estimates, one has to involve a boundary layer corrector,
and the same phenomenon occurs. However, the problem becomes more difficult,
since the boundary layer corrector does not oscillate in the periodic manner, and
since it also solves a rapidly oscillating nonlinear equation. It should be stressed
that we do not encounter this issue in the context of linear equations, since the
linearity annihilates the effect coming from the previous correction; see Remark
6.4 for instance.

Let us begin with a uniform boundaryW 2,p estimates, for any p > n. This can
be understood as a byproduct of the uniform interior C1,1 estimates (Theorem 6.1)
and the boundary C1,α estimates (Theorem 5.1), for any α ∈ (0, 1).

Proposition 7.2. Let � be a domain with boundary � ∈ C2 containing the origin.
Suppose that F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) is a periodic functional on Sn × R

n

having F̄ ∈ S1(λ,
, c̄, 1) on Sn, f ∈ Cα(�1) for some α ∈ (0, 1), g ∈ C1,1(�1)

and uε is a viscosity solution of{
F

(
D2uε, x

ε

) = f in �1,

uε = g on �1.
(7.3)
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Let p > 0 be any. Then uε ∈ W 2,p(�1/2) and��uε
��

W 2,p(�1/2)
≤ C

(��uε
��

L∞(�1)
+ ‖ f ‖Cα(�1)

+ ‖g‖C1,1(�1)

)
, (7.4)

where C > 0 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , c̄, α, the maximal curvature of
�1 and p.

Proof. To simplify the notation, let us call δ(x) the distance function d(x, �1). Fix
x0 ∈ �1/2 and consider an auxiliary function vε on Bδ(x0)(x0) defined by

vε(x) = uε(x) − uε(x0) − Duε(x0) · (x − x0).

In view of (7.3), vε solves

F
(
D2vε,

x

ε

)
= f in �1,

and since F and f satisfy the assumption of the uniform interior C1,1 estimate
(Theorem 6.1), it follows from a scaled version of (6.3) that

|D2uε(x0)| = |D2vε(x0)| ≤ C1

(‖vε‖L∞(Bδ(x0)(x0))

δ(x0)2
+ ‖ f ‖Cα(Bδ(x0)(x0))

)
,

(7.5)
where C1 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ and α.

In order to estimate the L∞ norm of vε on Bδ(x0)(x0), we consider a uniform
boundary C1,α estimate for uε. From the assumption that F̄ ∈ S1(λ,
, c̄, 1), one
can apply Theorem 4.1 (ii) to derive that uε ∈ C1,α(�3/4), for any 0 < α < 1, and��uε

��
C1,α(�3/4)

≤ C2

(��uε
��

L∞(�1)
+ ‖ f ‖Cα(�1)

+ ‖g‖C1,1(�1)

)
, (7.6)

where C2 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , c̄ and α. Especially this implies that��vε
��

L∞(Bδ(x0)(x0))
≤ C2δ(x0)

1+α
(��uε

��
L∞(�1)

+ ‖ f ‖C0,1(�1)
+ ‖g‖C1,1(�1)

)
,

which in turn yields in (7.5) that

|D2uε(x0)| ≤ C3δ(x0)
α−1

(��uε
��

L∞(�1)
+ ‖ f ‖Cα(�1)

+ ‖g‖C1,1(�1)

)
, (7.7)

where C3 depends on the same parameters that determine both C1 and C2.
Now given p > 0, let us choose α as close as 1 from below such that (1−α)p <

1. Then we have ∫
�1/2

δ(x)(α−1)p dx ≤ C4,

where C4 depends only on the maximal curvature of �1 and p. This together with
(7.7) implies that���D2uε

���
L p(�1/2)

≤ C5

(��uε
��

L∞(�1)
+ ‖ f ‖Cα(�1)

+ ‖g‖C1,1(�1)

)
, (7.8)

where C5 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , c̄, the maximal curvature of �1 and
p. Hence, the proof is finished. ��
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As in the previous sections, let us present an approximation lemma.

Lemma 7.3. Let � ∈ D(1, σ̄ ). Then there are 0 < ᾱ < σ̄ and C̄ > 0, depending
only on n, λ, 
 and σ̄ , such that the following is true: for any 0 < α < ᾱ, L > 0
and p > n, one can choose 0 < μ ≤ 1

2 , depending only on depending only on n,
λ, 
, σ̄ and α, and 0 < ε̄ ≤ 1

2 , depending only on n, λ, 
, κ̄ , γ̄ , κ , γ , σ̄ , α, L and
p, such that for any ε ≤ ε̄, any periodic functional F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ )

on Sn ×R
n, any periodic functional G ∈ S0(λ,
) on Sn ×�×R

n, satisfying for
any (N , y) ∈ Sn × R

n,

‖G(N , ·, y) − F(N , y)‖L p(�1)
≤ |N |L , and (7.9)���d(·, �1)

2(G(N , ·, y) − F(N , y))
���

L∞(�1)
≤ |N |ε̄, (7.10)

and any f ∈ Cα(�1), g ∈ C2,α(�1) and uε ∈ C(�1), satisfying

‖ f ‖Cα(�1)
≤ ε̄, (7.11)

g(0) = |DT g(0)| = 0, ‖g‖C2,α(�1)
≤ ε̄, and (7.12){

G
(
D2uε, x, x

ε

) = f, |uε| ≤ 1 in � ∩ B1,

uε = g on ∂� ∩ B1,
(7.13)

there exist a matrix Mε ∈ Sn such that

|Mε| ≤ C̄, (I − ν ⊗ ν)Mε = D2
T g(0), F̄(Mε) = f (0), and (7.14)

sup
x∈�μ

∣∣∣∣uε(x) − ∂uε

∂ν
(0) 〈x, ν〉 − 1

2

〈
x, Mεx

〉 − ε2wF

(
Mε,

x

ε

)
− vε(x)

∣∣∣∣ ≤ μ2+α,(7.15)

where vε is the viscosity solution of

{
G

(
Mε + D2

ywF
(
Mε, x

ε

) + D2
xv

ε, x, x
ε

)
= F̄(Mε) = f (0) in �1,

vε = −ε2wF
(
Mε, x

ε

)
on ∂�1.

(7.16)

Proof. Let ᾱ and c̄ be determined later, set C̄ = 2c̄ and fix 0 < α < ᾱ. Also
set μ to a small positive constant to be determined later. Assume to the contrary
that there is no such ε̄ so that the conclusion of this lemma holds. Then for each
k = 1, 2, · · · , one can choose a constant εk > 0 with εk → 0, a bounded domain
�k ∈ D(1, σ̄ ) with νk being the inward unit normal at the origin (we shall write
�k,r = �k ∩ Br and �k,r = �k ∩ Br throughout this proof), a periodic functional
Fk ∈ S2(λ,
, κ̄, γ̄ )∩ R0(κ, γ ) on Sn ×R

n , another functional Gk ∈ S0(λ,
) on
Sn×�k,1×R

n such thatGk(N , x, ·) is periodic onRn for each (N , x) ∈ Sn×�k,1,
and thatfor any (N , y) ∈ Sn × R

n ,

‖Gk(N , ·, y) − Fk(N , y)‖L p(�k,1)
≤ |N |L , and (7.17)���d(·, �k,1)

2(Gk(N , ·, y) − Fk(N , y))
���

L∞(�k,1)
≤ |N |εk, (7.18)
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and functions fk ∈ Cα(�k,1), gk ∈ C2,α(�k,1), uk ∈ C(�k,1) satisfying

‖ fk‖Cα(�k,1)
≤ εk, (7.19)

gk(0) = |DT gk(0)| = 0, ‖gk‖C2,α(�k,1)
≤ εk, and (7.20){

Gk

(
D2uk, x,

x
εk

)
= fk, |uk | ≤ 1 in �k,1,

uk = gk on �k,1,
(7.21)

such that for any M ∈ Sn satisfying

|M | ≤ C̄, (I − νk ⊗ νk)M = D2
T gk(0), F̄k(M) = fk(0), (7.22)

one has

sup
x∈�k,μ

∣∣∣∣uk(x) − ∂uk
∂νk

(0) 〈x, νk〉 − 1

2
〈x, Mx〉 − ε2kwFk

(
M,

x

εk

)
− vk(x)

∣∣∣∣ > μ2+α,

(7.23)
where vk ∈ C(�k,1) is the viscosity solution of⎧⎨

⎩
Gk

(
M + D2

ywFk

(
M, x

εk

)
+ D2

xvk, x,
x
εk

)
= F̄k(M) = fk(0) in �k,1,

vk = −ε2kwFk

(
M, x

εk

)
on ∂�k,1.

(7.24)
Note that such a viscosity solution exists, since �k,1 satisfies a uniform exterior
sphere condition, due to the assumption that �k ∈ D(1, σ̄ ).

Since �k ∈ D(1, σ̄ ), we can assume, after extracting a subsequence if neces-
sary, that �k → � for some � ∈ D(1, σ̄ ) in the sense of the Hausdorff distance.
In particular, νk → ν for some ν ∈ ∂B1, and ν is the unit inward normal to ∂�

at the origin. Also denoting by �k and � the rotation mapping associated with �k

and respectively � (as in Definition 2.3) such that �k(νk) = en = �(ν), we have
�k → � in Rn .

Arguing similarly as in the proof of Lemma 5.2, one can also argue from the
assumptions Gk ∈ S0(λ,
), �k ∈ D(1, σ̄ ), (7.19), (7.20) and (7.21) that there is
ū ∈ Cβ

loc(�1 ∪ �1) for which

uk ◦ �−1
k ◦ � → ū locally uniformly in �1 ∪ �1,

∂uk
∂νk

(0) → ∂ ū

∂ν
(0), (7.25)

possibly after extracting a subsequence. In particular, from (7.20), (7.21) and the
convergence above, we have

ū = 0 on �1, |ū| ≤ 1 in �1. (7.26)

In order to derive the interior equation for ū, we apply Lemma 3.2. Due to (7.19)
and (7.18), we know that fk ◦ �−1

k ◦ � → 0 uniformly in �1 and

sup
N∈Sn ,y∈Rn

(
|Gk(N ,�−1

k (�(·)), y) − Fk(N , y)|
|N |

)
→ 0, locally uniformly in �1.
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Thus, applying Lemma 3.2 to any fixed subdomain of �1 ∩ �k and then letting
k → ∞, we deduce that Fk → F locally uniformly in Sn ×R

n , for some periodic
functional F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) on Sn × R

n ,

F̄k → F̄ locally uniformly in Sn, (7.27)

and that ū is a viscosity solution of

F̄(D2ū) = 0 in �1. (7.28)

In viewof (7.26) and (7.28), it follows from the standard boundaryC2,ᾱ estimate
[27, Theorem 1.4] that there is 0 < ᾱ < σ̄ and c̄ > 0, depending only on n, λ, 

and σ̄ , such that ū ∈ C2,ᾱ(�1/2), and

‖ū‖C2,ᾱ (�1/2)
≤ c̄.

In particular, one can choose 0 < μ ≤ 1
2 , depending only on n, λ, 
, c̄, ᾱ and α,

such that

sup
x∈�μ

∣∣∣∣ū(x) − ∂ ū

∂ν
(0) − 1

2

〈
x, M̄x

〉∣∣∣∣ ≤ 1

2
μ2+α, (7.29)

and moreover, (since νk → ν)

|M̄| ≤ c̄, (I − ν ⊗ ν)M̄ = 0, F̄(M̄) = 0. (7.30)

Now let us construct a sequence {Mk}∞k=1 ⊂ Sn such that each Mk satisfies
(7.22) and Mk → M̄ as k → ∞. As F̄k being elliptic with ellipticity constants
fixed by λ and 
 for all k’s, denoting by

δk = |F̄k(M̄)|, ρk = λ−1(δk + (
 + 1)εk),

and noting that νk ⊗ νk ≥ 0 and |νk ⊗ νk | = 1, one has

F̄k(M̄ + D2
T gk(0) + ρk(νk ⊗ νk))

≥ F̄k(M̄) − 
|D2
T gk(0)| + δk + (
 + 1)εk ≥ εk ≥ fk(0),

due to (7.19) and (7.20). Similarly, one obtains

F̄k(M̄ + D2
T gk(0) − ρk(νk ⊗ νk)) ≤ −εk ≤ fk(0).

Thus, the intermediate value theorem implies that for each k = 1, 2, · · · , there
exists some 0 ≤ tk ≤ 1 such that

Mk = M̄ + D2
T gk(0) + tkρk(νk ⊗ νk), (7.31)

satisfies
F̄k(Mk) = fk(0). (7.32)

Moreover, it follows from (7.30) and (7.27) that

(I − νk ⊗ νk)Mk = D2
T gk(0), Mk → M̄ . (7.33)
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and that
|Mk | ≤ C̄, (7.34)

for any large k, since C̄ was given in the beginning of this proof by C̄ = 2c̄ > c̄ ≥
|M |.

Due to (7.34) and the fact that Fk ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ), it follows from
Lemma 2.6 (iv) and (7.34) that��wFk (Mk, ·)

��
C2,γ (Rn)

≤ C0|Mk | ≤ C0C̄, (7.35)

where C0 depends at most on n, λ, 
, κ̄ , γ̄ , κ , γ and σ̄ . Now let vk be the viscosity
solution of⎧⎨

⎩
Gk

(
Mk + D2

ywFk

(
Mk,

x
ε

) + D2
xvk, x,

x
εk

)
= F̄k(Mk) = fk(0) in �k,

vk = −ε2kwFk

(
Mk,

x
εk

)
on ∂�k .

(7.36)
Note from (7.35) that vk ∈ C0,1(∂�k) with

‖vk‖C0,1(∂�k )
≤ εk

��DywFk (Mk, ·)
��

L∞(Rn)
≤ C0C̄εk . (7.37)

Let us claim that
vk ◦ �−1

k ◦ � → 0 uniformly in �1. (7.38)

If the claim (7.38) is true, then from (7.25), (7.33), (7.35) and (7.38), we see
that passing to the limit in (7.23) with M = Mk yields a contradiction to (7.29).
Thus, the proof will be finished, once we have the claim (7.38).

To justify this claim, we shall construct a suitable barrier function. Utilizing
the cell problem (2.6) associated with Fk at Mk , we see that the interior equation
in (7.36) can be reformulated as

Hk(D
2vk, x) = hk in �k,1, (7.39)

where Hk and hk are defined by

Hk(N , x) = Gk

(
Mk + D2

ywFk

(
Mk,

x

εk

)
+ N , x,

x

εk

)

− Gk

(
Mk + D2

ywFk

(
Mk,

x

εk

)
, x,

x

εk

)

and respectively

hk(x) = Gk

(
Mk + D2

ywFk

(
Mk,

x

εk

)
, x,

x

εk

)

− Fk

(
Mk + D2

ywFk

(
Mk,

x

εk

)
,
x

εk

)
.

Note that both Hk and hk are well-defined, since wFk (Mk, ·) ∈ C2,γ (Rn).
Moreover, we have Hk ∈ S0(λ,
) on Sn × �k,1 × R

n , as Gk ∈ S0(λ,
). On the
other hand, (7.17) and (7.35) together imply that

‖hk‖L p(�k,1) ≤
(

|Mk | +
���D2

ywFk (Mk, ·)
���

L∞(Rn)

)
L ≤ (1 + C0)C̄ L , (7.40)
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and similarly from (7.18) with (7.35) it follows that���d(·, �k,1)
2hk

���
L∞(�k,1)

≤ (1 + C0)C̄εk . (7.41)

Now from (7.37), (7.39) and (7.40), we can invoke a global a priori estimate
[6, Proposition 4.14] such that vk ∈ C(�k,1) and there is a modulus of continuity
ρ such that

|vk(x) − vk(x0)| ≤ ρ(|x − x0|), x, x0 ∈ �k,1. (7.42)

In particular, ρ is determined only by n, the ellipticity constants of Hk , the diameter
of �k,1, the radius with which �k,1 satisfies the uniform exterior sphere condition,
the Ln norm of hk on �k,1 and the modulus of continuity of vk on ∂�k,1. Thus, the
dependence of ρ reduces to the parameters n, λ, 
, σ̄ , C0, C̄ and L; especially, it
is independent of k, and it also has nothing do with either νk and ν being rational
or irrational direction.

Let 0 < δ < 1 be arbitrary. Then from (7.42) and (7.37) we know that

|vk(x)| ≤ ρ(δ) + C0C̄εk, if d(x, �k,1) ≤ δ. (7.43)

On the set �k,1 ∩ {d(·, �k,1) ≥ δ}, consider an auxiliary function

ψk(x) = (1 + C0)C̄εk

2λδ2
(1 − |x |2) + ρ(δ) + C0C̄εk .

Clearly, on the boundary, we deduce from (7.43) that

ψk(x) ≥ vk(x), if d(x, �k,1) = δ. (7.44)

On the other hand, in the interior, from the fact that Hk ∈ S0(λ,
) as well as the
estimate (7.41) for hk , it follows that

Hk(D
2ψk(x), x) ≤ − (1 + C0)C̄εk

δ2
≤ hk(x), if d(x, �k,1) > δ. (7.45)

Hence, ψk is a supersolution to the boundary value problem (7.39) that vk solves
in the viscosity sense, so it follows from the comparison principle that

vk(x) ≤ ψk(x) ≤
(
C0 + 1 + C0

2λδ2

)
C̄εk + ρ(δ), if d(x, �k,1) ≥ δ. (7.46)

Letting k → ∞ in both (7.43) and (7.46), with δ fixed, we obtain

lim sup
k→∞

vk ◦ �−1
k ◦ � ≤ ρ(δ) in �1.

Since δ can be arbitrarily small and ρ is a modulus of continuity, the last inequality
implies that lim supk→∞ vk ◦ �−1

k ◦ � ≤ 0 in �1. By a similar argument, one can
also show that lim infk→∞ vk ◦ �−1

k ◦ � ≥ 0 in �1, verifying the claim (7.38). ��
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Remark 7.4. If L = 0, hence p = ∞ in Lemma 7.3, G coincides with F every-
where. Then we can replace Lemma 3.2 with Lemma 3.1. Since the latter works
with the class S0(λ,
), the dependence of ε̄ can be restricted to the parameters n,
λ, 
, σ̄ and α. This will be used in the initial step (k = 0) in the iteration lemma
below. From the second step (k ≥ 1), one has to work with L > 0 and some finite
p > n.

Next follows an iteration lemma.

Lemma 7.5. Let σ̄ , ᾱ, C̄ , α and μ be as in Lemma 7.3. Let F ∈ S2(λ,
, κ̄, γ̄ ) ∩
R1(κ, γ ) be a periodic functional on Sn × R

n, and suppose that � ∈ D(η, σ̄ ),
f ∈ Cα(�1), g ∈ C2,α(�1), and uε ∈ C(�1) satisfy

g(0) = |DT g(0)| = 0, (7.47)
∂uε

∂ν
(0) = 0, and (7.48){

F
(
D2uε, x

ε

) = f in �1,

uε = g on �1.
(7.49)

Also let K > 0 and p > n be given. Then there are 0 < η, ε̄ ≤ 1
2 , depending only

on n, λ, 
, σ̄ and α, and 0 < ε̂ ≤ ε̄, depending only on n, λ, 
, κ̄ , γ̄ , κ , γ , σ̄ , α,
K and p, such that if ε ≤ ε̂μk−1 for some integer k ≥ 1, � ∈ D(η, σ̄ ) and

J ε = ��uε
��

L∞(�1)
+ 1

ε̄
‖ f ‖Cα(�1)

+ 4

ε̄
‖g‖C2,α(�1)

≤ K , (7.50)

then there are aε
k ∈ R and Mε

k ∈ Sn, satisfying

|aε
k | ≤ C1C̄ε1−β

1 − μα
J ε, |Mε

k | ≤ C̄

1 − μα
J ε, F̄(Mε

k ) = f (0), (7.51)

as well as a viscosity solution ζ ε
k to⎧⎪⎪⎨

⎪⎪⎩
F

(
Mε

k + D2
ywF

(
Mε

k ,
x
ε

) + D2
xζ

ε
k , x

ε

)
= F̄(Mε

k ) = f (0) in �μk−1 ,

ζ ε
k = −ε2wF

(
Mε

k ,
x
ε

)
on �μk−1,

|ζ ε
k | ≤ C2C̄ε2

1−μα J ε on ∂�μk \ �μk−1,

(7.52)
such that

sup
x∈�

μk

∣∣∣∣uε(x) − aε
k 〈x, ν〉 − 1

2

〈
x, Mε

k x
〉 − ε2wF

(
Mε

k ,
x

ε

)
− ζ ε

k (x)

∣∣∣∣ ≤ J εμk(2+α),

(7.53)
where β < 1, C1 and C2 depend only on n, λ and 
.

Proof. Let us choose ε̄ such that Lemma 7.3 holds with L = 0. As noted in Remark
7.4, such ε̄ depends only on n, λ, 
, σ̄ and α. Let ε̂, η, β and C1 be determined
later.
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Henceforth, suppose that ε ≤ ε̂μk for some integer k ≥ 0, and we have already
found some aε

k ∈ R, Mε
k ∈ Sn and a harmonic function ζ ε

k in�μk satisfying (7.53).
If k = 0, we choose aε

0 = 0, Mε
0 = 0 and ζ ε

0 = 0, so that (7.53) clearly holds.
If k ≥ 1, let us assume that aε

k ∈ R satisfies the first inequality in (7.51), and that
Mε

k ∈ Sn satisfies

|(I − ν ⊗ ν)Mε
k − D2

T g(0)| ≤ C1C̄ηε1−β

1 − μα
J ε, |Mε

k | ≤ C̄ J ε
k∑

l=1

μ(l−1)α, (7.54)

aswell as the last equality in (7.51).Moreover, suppose that ζ ε
k the viscosity solution

to (7.52).
Define, for x ∈ μ−k�μk = {x ∈ B1 : μk x ∈ �},

uε
k(x) = uε(μk x) − μkaε

k 〈x, ν〉 − μ2k

2

〈
x, Mε

k x
〉 − ε2wF (Mε

k , ε
−1μk x) − ζ ε

k (μk x)

J εμk(2+α)

(7.55)
and

f ε
k (x) = f (μk x) − f (0)

J εμkα
. (7.56)

Also set, for x ∈ μ−k�μk = {x ∈ B1 : μk x ∈ �},

gε
k (x) = g(μk x) − μkaε

k 〈x, ν〉 − μ2k

2

〈
x, Mε

k x
〉

J εμk(2+α)
. (7.57)

As uε being a viscosity solution of (7.49), and since uε satisfies (7.53) as an induc-
tion hypothesis, we have{

Gε
k

(
D2uε

k, x,
μk x
ε

)
= f ε

k , |uε
k | ≤ 1 in μ−k�μk ,

uε
k = gε

k on μ−k�μk ,
(7.58)

in the viscosity sense, where Gε
k is defined by

Gε
k(N , x, y) = 1

J εμkα
F(J εμkαN + Mε

k + D2
ywF (Mε

k , y) + D2
xζ

ε
k (μk x), y)

− 1

J εμkα
F(Mε

k + D2
ywF (Mε

k , y) + D2
xζ

ε
k (μk x), y),

(7.59)
so that Gε

k is a periodic functional on Sn × (μ−k�μk )×R
n belonging to S0(λ,
).

From (7.56) and (7.50), it is clear that

�� f ε
k

��
Cα(μ−k�

μk )
≤ 1

J ε
[ f ]Cα(�

μk ) ≤ ε̄. (7.60)

On the other hand, we also have��gε
k

��
C2,α(μ−k�

μk )
≤ ε̄. (7.61)



734 S. Kim & K. Lee

Let us stress that this estimate is irrelevant to the nonlinear structure in the interior
homogenization, and moreover it has nothing to do with the PDE that ζ ε

k satisfies
in the interior. Hence, one can follow exactly the same argument in [4, Lemma 11].
Since the argument is long and technical, we shall not repeat it here. Still let us
remark that a direct computation yields

gε
k (0) = |DT g

ε
k (0)| = 0, and (7.62)

D2
T g

ε
k (0) = − 1

J εμkα
(aε

k D
2
Tφ(0) + (I − ν ⊗ ν)Mε

k − D2
T g(0)), (7.63)

where φ : � → R is the parameterization of �1 with respect to the hyperplane
�1 = {x ∈ B1 : 〈x, ν〉 = 0} such that

�1 = {z + φ(z)ν : z ∈ �1}, and

φ(0) = |DTφ(0)| = 0, ‖φ‖C2,σ̄ (�∩B1) ≤ η.

Such a characterization of �1 exists uniquely up to a rotation which fixes the
direction ν, due to the assumption � ∈ D(η, σ̄ ). Following the argument in [4,
Lemma 11] carefully, one can also observe that the smallness condition of η ≤ 1
is determined only by C1, C̄ , μ, α and ε̄, hence on n, λ, 
, σ̄ and α, provided that
C1 depends at most on n, λ and 
; we shall choose C1 at the end of this proof.

In order to verify that one can apply the approximation lemma, Lemma 7.3, let
us define Fε

k on Sn × R
n by

Fε
k (N , y) = F(J εμkαN + Mε

k + D2
ywF (Mε

k , y), y) − f (0)

J εμkα
. (7.64)

From the induction hypothesis F̄(Mε
k ) = f (0), we also have the alternative defini-

tion (6.41). Hence, Fε
k is a periodic functional on Sn ×R

n belonging to S0(λ,
).
Moreover, since F ∈ S2(λ,
, κ̄, γ̄ )∩R1(κ, γ ), it follows from the second assertion
in Lemma 2.7 (or as in the proof of Theorem 4.1 (iii)) that

Fε
k ∈ R0(κ(C0|Mε

k | + 1), γ ) ⊂ R0

(
κ

(
C0C̄K

1 − μα
+ 1

)
, γ

)
, (7.65)

with C0 depending only on n, λ, 
, κ̄ , γ̄ , κ and γ , where the second inclusion is
due to the induction hypothesis (7.54) on Mε

k and the assumption (7.50) on J ε.
On the other hand, in view of (6.41), the interior equation in (7.52) of ζ ε

k can
be reformulated as

Fε
k

(
D2ζ ε

k ,
x

ε

)
= 0 in �μk−1 . (7.66)

This together with the boundary condition in (7.52) yields from the Alexandroff-
Bakelman-Pucci estimate [6, Theorem 3.6] and the L∞ estimate (2.9) ofwF (Mε

k , ·)
that ��ζ ε

k

��
L∞(�

μk−1 )
≤ C2C̄ε2

1 − μα
J ε, (7.67)
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provided that C2 is chosen by the constant in (2.9), which depends only on n, λ and

. Moreover, it follows from the a priori gradient estimate, such as [27, Theorem
1.1], and the C1,β estimate (2.10) of wF (Mε

k , ·) that∣∣∣∣∂ζ ε
k

∂ν
(0)

∣∣∣∣ ≤ C3

{��ζ ε
k

��
L∞(�

μk−1 )
+ ε2

���wF

(
Mε

k ,
·
ε

)���
C1,β (�

μk−1 )

}
≤ C4C̄ε1−β

1 − μα
J ε,

(7.68)
whereβ < 1,C3 andC4, dependingonly onn,λ and
; hereweused the assumption
that� ∈ D(η, σ̄ ) ⊂ D(1, σ̄ ), implying that the maximal curvature of� is bounded
by 1.

In addition, in view of (7.66) and the boundary condition in (7.52) for ζ ε
k , one

can apply the boundary W 2,p estimate (7.4) with p > n, after a scaling argument,
and deduce from (7.67) and the C2,γ estimate (2.11) of wF (Mε

k , ·) that

��D2ζ ε
k

��
L p(�

μk−1/2)
≤ C5μ

(k−1)n/p

⎧⎨
⎩

��ζ ε
k

��
L∞(�

μk−1 )

μ2(k−1)
+ ε2

���wF

(
Mε

k ,
·
ε

)���
C1,1(�

μk−1 )

⎫⎬
⎭

≤ C6μ
(k−1)n/p

(
C̄ε2 J ε

(1 − μα)μ2(k−1)
+ |Mε

k |
)

≤ C7C̄μ(k−1)n/p+2

1 − μα
J ε,

with C5, C6 and C7 depending at most on n, λ, 
, κ̄ , γ̄ , κ , γ , K , C0 and C2,
hence on the first eight parameters only, where in the third inequality we used the
assumption εμk ≤ ε̂ ≤ 1

2 . In particular, since μ ≤ 1
2 , we have �μk ⊂ �μk−1/2 and

���D2ζ ε
k

���
L p(�

μk )
≤ C7C̄μkn/p

1 − μα
J ε. (7.69)

On the other hand, we also have the uniform interior C1,1 estimate (6.3) for ζ ε
k .

This along with (7.67) one can deduce that

���d(·, ∂�μk−1)
2D2ζ ε

k

���
L∞(�

μk−1 )
≤ C8C̄ε2

1 − μα
J ε,

where C8 depends at most on n, λ, 
, κ̄ , γ̄ , κ and γ . Again since �μk ⊂ �μk−1/2,
we have d(·, ∂�μk−1) = d(·, �μk ) in �μk , which implies that

���d(·, �μk )
2D2ζ ε

k

���
L∞(�

μk )
≤ C8C̄ε2

1 − μα
J ε. (7.70)

Now we are ready to verify that Fε
k and Gε

k also satisfy (7.9) and (7.10) with

some L̂ possibly larger than L , such that we can apply the approximation lemma,
Lemma 7.3. Note that one can write Fε

k and Gε
k by

Fε
k (N , y) = tr(Aε

k(N , y)N ), Gε
k(N , x, y) = tr(Bε

k (N , x, y)N ),
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where Aε
k and Bε

k are defined by

Aε
k(N , y) =

∫ 1

0
DMF(t J εμkαN + Mε

k + D2
ywF (Mε

k , y), y) dt,

and respectively by

Bε
k (N , x, y) =

∫ 1

0
DMF(t J εμkαN + Mε

k + D2
ywF (Mε

k , y) + D2
xζ

ε
k (μk x), y) dt.

Thus, the structure condition (2.5) on F implies that

|Gε
k(N , x, y) − Fε

k (N , y)| ≤ |Bε
k (N , x, y) − Aε

k(N , y)||N | ≤ κ|D2ζ ε
k (μk x)||N |,

for any N ∈ Sn , x ∈ μ−k�μk and y ∈ R
n . This estimate combined with (7.69)

and (7.70) yields that

��Gε
k(N , ·, y) − Fε

k (N , y)
��

L p(μ−k�
μk )

≤
(

κC7C̄μ2−n/p J ε

1 − μα

)
|N |, (7.71)

and respectively���d(·, ∂(μ−k�μk ))
2(Gε

k(N , ·, y) − Fε
k (N , y))

���
L∞(μ−k�

μk )

≤
(

κC8C̄ J ε

1 − μα

) (
ε

μk

)2

|N |. (7.72)

We are finally in a position to determine the smallness condition on ε̂. Let us
first take ε̂ ≤ ε̄ in such a way that Lemma 7.3 holds with

L = κC7C̄μ2−n/pK

1 − μα
(7.73)

and the parameters involved in the class R0 for Fε
k , given by (7.65), as well as σ̄ ,

α and p. Then ε̂ depends only on n, λ, 
, κ̄ , γ̄ , κ , γ , σ̄ , α, K and p. Then we let ε̂
even smaller, if necessary, so as to satisfy

(
κC8C̄ J ε

1 − μα

) (
ε

μk

)2

≤
(

κC8C̄K

1 − μα

)
ε̂2 ≤ ε̄, (7.74)

where the first inequality follows from the assumption that ε ≤ ε̂μk . This will not
change the dependence of ε̂ specified above.

From (7.60), (7.61), (7.71), (7.72), (7.73) and (7.74), as well as the fact that
μ−k�μk ∈ D(η, σ̄ ) ⊂ D(1, σ̄ ), we can apply Lemma 7.3 to the problem (7.58),
with ε replaced by εμ−k . This yields N ε

k ∈ Sn , which satisfies

|N ε
k | ≤ C̄, (I − ν ⊗ ν)N ε

k = D2
T g

ε
k (0), F̄ε

k (N ε
k ) = f ε

k (0) = 0, (7.75)
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and the viscosity solution vε
k to⎧⎨

⎩
Gε

k

(
N ε
k + D2

ywFε
k

(
N ε
k ,

μk x
ε

)
+ D2

xv
ε
k , x,

μk x
ε

)
= F̄ε

k (N ε
k ) = 0 in μ−k�μk ,

vε
k = − ε2

μ2k wFε
k

(
N ε
k ,

μk x
ε

)
on ∂(μ−k�μk ),

(7.76)
such that for any x ∈ μ−k�μk ∩ Bμ = μ−k�μk+1 ,∣∣∣∣uε

k(x) − ∂uε
k

∂ν
(0) 〈x, ν〉 − 1

2

〈
x, N ε

k x
〉 − ε2

μ2k wFε
k

(
N ε
k ,

μk x

ε

)
− vε

k (x)

∣∣∣∣ ≤ μ2+α.

(7.77)
Note from the Alexandroff-Bakelman-Pucci estimate [6, Theorem 3.6] that

��vε
k

��
L∞(μ−k�

μk )
≤ ε2

μ2k

���wFε
k

(
N ε
k , ·)���

L∞(∂�
μk )

≤ C2C̄ε2

μ2k , (7.78)

where we used the fact thatGε
k ∈ S0(λ,
), the first inequality in (7.75) and the L∞

estimate (2.9) for wFε
k
(N ε

k , ·); in particular, we chose C2 by the constant appearing
in (2.9), which depends only on n, λ and 
.

To this end, we define

aε
k+1 = aε

k + J εμk(1+α) ∂u
ε
k

∂ν
(0) = −εν · DywF (Mε

k , 0) − ∂ζ ε
k

∂ν
(0), (7.79)

and
Mε

k+1 = Mε
k + J εμkαN ε

k . (7.80)

Let us also define ζ ε
k+1 on �μk by

ζ ε
k+1(x) = ζ ε

k (x) + J εμk(2+α)vε
k

(
x

μk

)
. (7.81)

Due to (7.80), the definition (7.64) of Fε
k and Lemma 2.8, we have the additive

structure (6.42) of F̄ε
k and wFε

k
, as in the proof of Lemma 6.3. Especially, we have

F̄(Mε
k+1) = F̄(Mε

k ) = f (0), wF (Mε
k+1, y) = wF (Mε

k , y)+ J εμkαwFε
k
(N ε

k , y),
(7.82)

where in the first equality we used (7.75) and (7.51). Hence, one can rephrase (7.77)
in terms of uε, as we have, for all x ∈ �μk+1 ,∣∣∣∣uε(x) − aε

k+1 〈x, ν〉 − 1

2

〈
x, Mε

k+1x
〉 − ε2wF

(
Mε

k+1,
x

ε

)
− ζ ε

k+1(x)

∣∣∣∣
≤ J εμ(k+1)(2+α).

This estimate verifies the induction hypothesis (7.53) with newly obtained aε
k+1,

Mε
k+1 and ζ ε

k+1. Thus, the proof is finished if one verifies (7.51), (7.54) and (7.52)
for k + 1.

The first inequality in (7.51) for k + 1 follows immediately from (7.68) and
(2.10), if we select C1 by 2C4, with C4 as in (7.68); hence, C1 depends only on n,
λ and 
. This shows that aε

k+1 verifies its induction hypothesis.
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Regarding Mε
k+1, it is clear that the second inequality in (7.54) for k + 1 holds,

owing to the induction hypothesis (7.54) for Mε
k , and the first inequality in (7.75)

for N ε
k . On the other hand, the first inequality in (7.54) for k + 1 can be deduced

from the second identity in (7.75), the first inequality in (7.51) and the observation
(7.63). The last identity in (7.51) for k + 1 is already verified by (7.82). Therefore,
Mε

k+1 also satisfies its induction hypotheses.
Finally, the proof will be finished if we verify that ζ ε

k+1 solves to the boundary
value problem (7.52) for k + 1. Utilizing (7.80), (7.82), the interior equations in
(7.76) and (7.52) that vε

k and ζ ε
k satisfy respectively, one can proceed as

F
(
Mε

k+1 + D2
ywF

(
Mε

k+1,
x

ε

)
+ D2

xζ
ε
k+1(x),

x

ε

)
= F

(
Mε

k + D2
ywF

(
Mε

k ,
x

ε

)
+ D2

xζ
ε
k (x)

+J εμkα
(
N ε
k + D2

ywFε
k

(
N ε
k ,

x

ε

)
+ D2

xv
ε
k

(
x

μk

))
,
x

ε

)

= F
(
Mε

k + D2
ywF

(
Mε

k ,
x

ε

)
+ D2

xζ
ε
k (x),

x

ε

)
= f (0),

for x ∈ �μk , which verifies that ζ ε
k+1 satisfies the interior equation in (7.52) for

k + 1. The boundary condition for ζ ε
k+1 can be verified in a similar way. Thus, the

proof is finished. ��
We are ready to prove the uniform boundary C1,1 estimates.

Proof of Theorem 7.1. With the iteration lemma (Lemma 7.5) at hand, the proof is
similar to [4, Theorem 1], whose argument can be easily extended to fully nonlinear
equations. Some necessary detail adopting the nonlinear structure can also be found
in the proof of Theorem 6.1. For this reason, we shall omit the detail and finish the
proof here. ��

8. Examples

In this section, we shall present some classes of periodically oscillating fully
nonlinear functionals F that verify the assumptions for the uniform C1,1 estimates,
namely Theorem 6.1 and Theorem 7.1. The key assumption for these theorems
is that both periodically oscillating functional F and the corresponding effective
functional F̄ admit interior C2,γ estimates when the coefficients are fixed. More
precisely, F, F̄ ∈ S2 in the sense of Definition 2.2.

This condition becomes straightforward, when F is a concave functional. First,
we have F ∈ S2 by the Evans-Krylov theory [6, Theorem 6.1]. Next, according to
[12, Lemma 3.2], if F is concave, then so is F̄ , proving F̄ ∈ S2 by the same theory
again.

Henceforth, we shall find a class of non-concave functionals F that both F
and F̄ belong to class S2. This will imply that the class of periodically oscillating
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functionals F that verify the assumptions of Theorem 6.1 and Theorem 7.1 strictly
wider than the class of concave functionals.

Let us being with a lower bound for the Hessian of the interior corrector.

Lemma 8.1. Let F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) be a functional on Sn × R
n that

is periodic in the second argument. Then there is some constant L > 1, depending
only on n, λ, 
, κ̄ , γ̄ , κ and γ , such that for any M ∈ Sn, one has

min
Rn

|D2
ywF (M, ·) + M | ≥ |M |

L
, if |M | > L . (8.1)

Proof. Let us fixM ∈ Sn , and denote byw the interior correctorwF (M, ·). Accord-
ing to [12], w is the limit function of sequence {wδ − wδ(0)}δ>0, where wδ is the
unique, periodic viscosity solution to

F(D2
yw

δ + M, y) − δwδ = 0 in Rn .

In particular, constant functions δ−1 minRn F(M, ·) and δ−1 maxRn F(M, ·) are
a periodic viscosity subsolution and respectively supersolution to the penalized
problem above. Owing to this fact, one can deduce that

min
Rn

F(M, ·) ≤ F̄(M) ≤ max
Rn

F(M, ·). (8.2)

For this reason, one can also derive a sharper interior C2,γ estimate

‖w‖C2,γ (Rn) ≤ C1 ‖F(M, ·)‖L∞(Rn) , (8.3)

compared to (2.11), where C1 > 0 depends only on n, λ, 
, κ̄ , γ̄ , κ and γ .
Let χ > 1 be a given number, fix L > 1 by a sufficiently large number to be

determined at the end of the proof, and suppose that

|M | > Lχ. (8.4)

Let us first consider the case where

‖F(M, ·)‖L∞(Rn) <
(L − 1)

C1
χ. (8.5)

Then it follows from (8.3) that

|D2w + M | ≥ |M | − |D2w| ≥ Lχ − C1 ‖F(M, ·)‖L∞(Rn) > χ.

This proves (8.1) under the additional assumption (8.5).
Next, let us consider the other case where

‖F(M, ·)‖L∞(Rn) ≥ (L − 1)

C1
χ. (8.6)

Due to the assumption F ∈ R0(κ, γ ), we have oscRn F(M, ·) ≤ κ
√
n. Hence,

taking L sufficiently large such that (L − 1)χ > C1κ
√
n, then owing to (8.6), we

may assume loss of generality that

min
Rn

F(M, ·) ≥ L − 1

C1
χ − κ

√
n > 0.
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Therefore, it follows from (2.6), (8.2) and the ellipticity assumption F ∈ S0(λ,
)

that
L − 1

C1
χ − κ

√
n ≤ F(D2w + M, y) ≤ 
|D2w + M | in Rn . (8.7)

Finally, we choose L large enough so as to satisfy

L − 1

C1
− κ

√
n > 
; (8.8)

note that L depends only on 
, κ and C1, hence on n, λ, 
, κ and γ only. Then
one may verify from (8.7) as well as the assumption χ > 1 that

|D2w + M | > χ in Rn,

again proving (8.1).Hence,wehave verified that (8.1) holds under the other assump-
tion (8.6), fromwhichwe conclude that it holds in general. This finishes the proof.��

Next, we present some monotone property of effective functionals.

Lemma 8.2. Let F1 and F2 be uniformly elliptic, periodic and continuous func-
tionals on Sn × R

n. Then

min{F1, F2} ≤ min{F̄1, F̄2} on Sn . (8.9)

Remark 8.3. In general, we do not have equality in (8.9), even if F1 and F2 are
linear functionals. For example, if n = 1, and F1(M, y) = (2 + cos(2πy))M ,
F2(M, y) = (2 + sin(2πy))M , then

F̄1(M) =
(∫ 1

0

dy

2 + cos(2πy)

)−1

M =
(∫ 1

0

dy

2 + sin(2πy)

)−1

M = F̄2(M),

for any M ∈ S1 = R, and therefore,

min{F1, F2}(M) =
(∫ 1

0

dy

2 + min{cos(2πy), sin(2πy)}
)−1

M < F̄1(M) = F̄2(M),

for any M �= 0.

Proof of Lemma 8.2. Set F0 = min{F1, F2}. Suppose towards a contradiction that
(8.9) fails at some M ∈ Sn . For each i ∈ {0, 1, 2}, denote by wi and γi the interior
corrector wFi (M, ·) and respectively the value F̄i (M) of the effective functional
corresponding to Fi , in the sense of Definition 2.4. Then for each i ∈ {1, 2},

Fi (M + D2w0, y) ≥ F0(M + D2w0, y) = γ0 > γi in Rn, (8.10)

in the viscosity sense. As wi being a periodic viscosity solution to Fi (M +
D2w, y) = γi in Rn , we deduce that

P+(D2(w0 − wi )) > 0 in Rn,

in the viscosity sense, where P+ is the Pucci maximal operator associated with the
ellipticity bounds for both F0 and Fi . However, as both w0 and wi being periodic,
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w0 − wi attains a maximum at some yi ∈ Q1, where Q1 is the unique periodic
cube, so

P+(D2(w0 − wi )(yi )) ≤ 0,

in the viscosity sense, a contradiction. ��
Our strategy is as follows. We shall use the Evans-Krylov theory developed

by Cabré and Caffarelli [7] for the class of non-concave functionals F given by
the minimum of a concave and a convex functional, say F∩ and respectively F∪.
The advantage of this class is that those functionals F admit the interior C2,γ̄

estimates with constant κ̄ for certain κ̄ > 1 and γ̄ ∈ (0, 1) that depend only on the
dimension and the ellipticity constants, whence the estimates do not change under
translation and scaling, i.e., F ∈ S2(λ,
, κ̄, γ̄ ) from [7, Theorem 1.1]; recall
that class S2(λ,
, κ̄, γ̄ ) requires that not only F but also all of its the translated
versions, (M, y) 
→ (F(M +N , y)− F(M, y)), satisfy the interior C2,γ̄ estimates
with the same constant κ̄ .

The question is if F̄ ∈ S2(λ,
, c̄, ᾱ) holds for some c̄ > 1 and ᾱ ∈ (0, 1).
Here, we shall impose some additional conditions on F∩ and F∪, whose minimum
produces F , such that F̄ = min{F̄∩, F̄∪}. As a byproduct, F̄ ∈ S2(λ,
, κ̄, γ̄ )

with κ̄ and γ̄ as above.

Remark 8.4. Let us stress that the condition F̄ = min{F̄∩, F̄∪} is sufficient to
have F̄ ∈ S2, but by no means necessary. A good example is shown in Remark
8.3: with the specific choice of the linear functionals F∩ and F∪ there, we have
F̄ < min{F̄∩, F̄∪} on Sn \ {0}, while F as the minimum of two linear functionals
is concave, and so is F̄ , from which we obtain F̄ ∈ S2.

Lemma 8.5. Let F∩ and F∪ be uniformly elliptic, periodic and continuous func-
tionals on Sn × R

n, with ellipticity constants λ and 
, such that F∩ is concave,
while F∪ is convex in the first argument, and that {F∩, F∪} ⊂ R0(κ, γ ) for some
κ > 0 and γ ∈ (0, 1). There exists some L > 1, depending only on n, λ, 
, κ and
γ , such that if F∩ and F∪ also satisfy, for some R > 0,

oscRn F∩(M, ·) = oscRn F∪(M, ·) = 0, whenever |M | ≤ LR and (8.11)

min
Rn

(
F∪(M, ·) − F∩(M, ·) − κn

γ
2 |M |

)
≥ 0, whenever |M | ≥ R, (8.12)

then
min{F∩, F∪} = min{F̄∩, F̄∪} on Sn . (8.13)

Proof. Define F = min{F∩, F∪} on Sn × R
n . The first condition (8.11) implies

that oscRn F(M, ·) = 0 for all M ∈ Sn with |M | ≤ LR. Hence, we have F̄(M) =
F(M, ·), F̄∩(M) = F∩(M, ·) and F̄∪(M) = G∪(M, ·) onRn . In particular, (8.13)
holds for all M ∈ Sn with |M | ≤ LR.

Hence, we are left with proving (8.13) for M ∈ Sn with |M | > LR, with L to
be determined as in Lemma 8.1. To bemore precise, we choose L1 as follows. Since
λ and
 are the ellipticity bounds for both F∩ and F∪, the Evans-Krylov theory [6,
Theorem6.1] for concave functionals implies that {F∩−F∩(0, ·), F∪−F∪(0, ·)} ⊂
S2(λ,
, κ̄, γ̄ ) for some κ̄ > 1 and γ̄ ∈ (0, 1), depending only on n, λ and 
.
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With such κ̄ and γ̄ , let us select L > 1 by the large constant as in Lemma 8.1
such that (8.1) holds for any G ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ), in particular for any
G ∈ {F − F(0, ·), F∩ − F∩(0, ·), F∪ − F∪(0, ·)}. Due to the universality of κ̄ and
γ̄ , L depends only on n, λ, 
, κ and γ .

Fix any M ∈ Sn such that |M | ≥ LR. For the sake of simplicity, denote by w,
w∩ andw∪ the interior correctorwF (M, ·),wF∩(M, ·) and respectivelywF∪(M, ·)
in the sense of Definition 2.4. Since Lemma 8.1 applies to F , we observe from (8.1)
that

min
Rn

|D2
yw + M | ≥ |M |

L
> R,

so the assumption (8.12) implies that F∩(D2w(y) + M, y) ≤ F∪(D2w(y) +
M, y) − κnγ /2|M | < F∪(D2w(y) + M, y) for all y ∈ R

n . Thus, F(D2w(y) +
M, y) = F∩(D2w(y) + M, y) for all y ∈ R

n , which in turn yields that

F∩(D2w + M, y) = F̄(M) in Rn .

As w being a periodic function and F̄(M) being a constant, it follows from the
uniqueness of the effective functional that

F̄(M) = F̄∩(M). (8.14)

To this end, we claim that F̄∩(M) ≤ F̄∪(M) if |M | ≥ LR. Note that w∩ and
w∪ are periodic functions on R

n , and that w∩, w∪ ∈ C2,γ (Rn); these are ensured
by the fact that {F∩ − F∩(0, ·), F∪ − F∪(0, ·)} ⊂ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ).
Hence, we can find some y∩, y∪ ∈ Q̄1 = [− 1

2 ,
1
2 ]n be such that |D2w∩(y∩)| =

|D2w∪(y∪)| = 0. In view of the assumption (8.12) and F∪ ∈ R0(κ, γ ), as well as
the cell problems that w∩ and w∪ solve, we derive that

F̄∩(M) = F∩(M, y∩) ≤ F∪(M, y∩) − κnγ /2|M | ≤ F∪(M, y∪) = F∪(M).

This together with (8.14) finishes the proof of (8.13) for M ∈ Sn with |M | ≥ LR.
��

Consequently, we obtain a class of non-concave, periodic functionals whose
effective functionals admit interior C2,α estimate. In particular, the nonlinear
homogenization problem with this class of functionals admit uniform interior C1,1

estimates.

Proposition 8.6. Let F∩ and F∪ be as in Lemma 8.5, and define F =
min{F∩, F∪}. Suppose that F(0, ·) = 0 on R

n. Then F ∈ S2(λ,
, κ̄, γ̄ ) ∩
R0(κ, γ ), and F̄ ∈ S2(λ,
, κ̄, γ̄ ), where κ > 0 and γ ∈ (0, 1) are as in Lemma
8.5, while κ̄ > 1 and γ̄ ∈ (0, 1) are some constants depending only on n, λ and 
.
Moreover, if f ∈ Cα(B1) and uε ∈ C(B1) is a viscosity solution of

F
(
D2uε,

x

ε

)
= f in B1,

then uε ∈ C1,1(B1/2) and��uε
��
C1,1(B1/2)

≤ C
(��uε

��
L∞(B1)

+ ‖ f ‖Cα(B1)

)
,

where C > 0 depends only on n, λ, 
, κ̄ , γ̄ , κ , γ and α.
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Proof. The fact that F ∈ S2(λ,
, κ̄, γ̄ ) ∩ R0(κ, γ ) follows immediately from
the assumption on F∩ and F∪ in Lemma 8.5 as well as the discussion above
the statement of the lemma. On the other hand, since the effective functional to a
concave/convex functional is also concave/convex [12, Lemma 3.2], it follows from
(8.13) that F̄ is the minimum of a concave and a convex, homogeneous functional.
Thus, we infer from [7, Theorem 1.1] that F̄ ∈ S2(λ,
, κ̄, γ̄ ). Therefore, F and
F̄ verify the assumptions of Theorem 4.1, from which the uniform interior C1,1

estimate of uε follows. ��
Remark 8.7. We do not claim a uniform boundary C1,1 estimate for F as in Propo-
sition 8.6. Note that F , as the minimum of a concave and a convex functional, is
Lipschitz in the matrix variable in general. Hence, F ∈ R0 \ R1, while Theorem 7.1
requires F to belong to R1; recall fromDefinition 2.2 that R1 consists of functionals
whose derivatives in the matrix variable are Lipschitz.
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