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Abstract

Themagnetic field outside the earth is in good approximation a harmonic vector
field determined by its values at the earth’s surface. The direction problem seeks
to determine harmonic vector fields vanishing at infinity and with the prescribed
direction of the field vector at the surface. In general this type of data neither guar-
antees the existence nor the uniqueness of solutions of the corresponding nonlinear
boundary value problem. To determine conditions for existence, to specify the
non-uniqueness and to identify cases of uniqueness is of particular interest when
modeling the earth’s (or any other celestial body’s) magnetic field from these data.
Here we consider the case of axisymmetric harmonic fields B outside the sphere
S2 ⊂ R

3. We introduce a rotation number ro ∈ Z along a meridian of S2 for any
axisymmetric Hölder continuous direction field D �= 0 on S2 and, moreover, the
(exact) decay order 3 ≤ δ ∈ Z of any axisymmetric harmonic field B at infinity.
Fixing a meridional plane and in this plane ro − δ + 1 � 0 points zn (symmetric
with respect to the symmetry axis and with |zn| > 1, n = 1, . . . , ro − δ + 1), we
prove the existence of an (up to a positive constant factor) unique harmonic field B
vanishing at zn and nowhere else, with decay order δ at infinity, and with direction
D at S2. The proof is based on the global solution of a nonlinear elliptic boundary
value problem, which arises from a complex analytic ansatz for the axisymmetric
harmonic field in the meridional plane. The coefficients of the elliptic equation
are discontinuous and singular at the symmetry axis, and this requires solution
techniques that are adapted to this special situation.

1. Introduction

The standard boundary value problems for harmonic vector fields in exterior
domains prescribe, besides asymptotic conditions at infinity, either the normal com-
ponents or the tangential components of the sought-after field at the boundary. The
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Fig. 1. Example of an axisymmetric direction field (shown along two meridians on a trans-
parent sphere) with rotation number ro = 3

well-posedness of these problems, solution methods, and corresponding results on
existence and uniqueness are well-known (see for example [19]). Concerning the
geomagneticfield, however, these types of data are not always available or expensive
to provide. In fact, archaeomagnetic, palaeomagnetic, and even historical magnetic
data sets up to the 19th century contain either exclusively information about the
direction of the magnetic field vector or provide the directional information more
reliably than information about themagnitude of the field vector (for more informa-
tion about the significance of the direction problem for geomagnetism, we refer to
[20], [22], [9] and references therein). In view of the (meanwhile well-established)
fact that the geomagnetic field differed in its history drastically from its present
form (especially during “pole reversals"), a general solution theory for large data
of the direction problem would be of considerable interest.

When accepting some simplifications such as approximating the earth’s surface
by the unit sphere S2, neglecting additional sources of the harmonic field in the
exterior space E ⊂ R

3 of the unit ball, and assuming discrete boundary data to
be continuously interpolated all over S2, the essence of the direction problem may
be formalized as follows: let D : S2 → R

3 be a nonvanishing continuous vector
field (the “direction field”, see Fig. 1 for an example) and δ ∈ N\{1, 2} (the “decay
order” of the harmonic field at infinity). Given a direction field and a decay order,
the direction problem PD asks for all vector fields B ∈ C1(E) ∩C(E) for which a
positive continuous function a : S2 → R+ (the “amplitude function”) exists such
that the conditions

∇ × B = 0, ∇ · B = 0 in E,

|B(x)| = O(|x|−δ) for |x| → ∞,

B = aD on S2

⎫
⎬

⎭
(1.1)

are satisfied. The decay order δ is called “exact" if |B(x)| = O(|x|−δ) but not
|B(x)| = O(|x|−(δ+1)) for |x| → ∞; it will play a crucial role in the classification
of solutions. Note, however, that usually the exact decay order is not part of the
data in the direction problem and PD is formulated with δ = 3, which is the lowest
possible decay order for magnetic fields vanishing at infinity.
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As is obvious from (1.1)3, the direction problem is nonlinear in the sense that
there is no linear relation between solution B and boundary data D, which means
that the usual solution techniques for the above-mentioned standard boundary value
problems are not at our disposal and, moreover, that the solution set SD for a given
direction fieldD is not a linear space. However, the problem can be slightly relaxed
so that the enlarged solution set becomes a linear space; dropping the positivity of
the amplitude function defines the “unsigned" direction problem Pu

D with solution
space LD ⊃ SD.1

The boundary condition (1.1)3 resembles a well-investigated boundary condi-
tion, viz.,

D · B = b on S2,

with given direction field D and scalar field b on S2. The “oblique” case, that is, D
is nowhere tangential to the boundary surface, is well understood and has much in
common with the standard boundary value problems (see, for example, [18]). For
the “Poincaré problem”, where the obliqueness condition is violated in some part
of the boundary, only partial results are so far available and the problem seems not
yet to be well understood (see, for example, [21]). Only in two dimensions, where
the Poincaré problem for harmonic fields is known as “Riemann–Hilbert problem”,
there is a close relationship to the (unsigned) 2D-analogue of (1.1) (see [13]).

So far, for both, the signed and the unsigned, versions of (1.1) there are only a few
results concerning existence and uniqueness of solutions: non-uniqueness is known
by examples for the (signed and unsigned) direction problem in the axisymmetric
case [22] and in the non-axisymmetric case [14]. For the unsigned direction problem
there is, furthermore, an upper bound on the dimension of the solution space LD in
terms of the number lD of “poles” of the direction fieldD (loci on S2 with vanishing
tangential components):

dim LD � lD − 1

[12]; in general, however, this bound is not sharp [14]. In the axisymmetric situation
a better bound has been formulated in terms of rotation number and decay order
[13], and that this bound is sharpwill be a corollary of the present work. Concerning
the existence of solutions there is a small-data result in the axisymmetric case ([13],
see below) and some results for special direction fields [15]. The approach in this
latter reference is based on L2-expansions in spherical harmonics, a method, which
works well if the direction field is itself a single spherical harmonic.

The present paper provides a complete solution of the axisymmetric direction
problem. The method is inspired by the solution of the two-dimensional version of
this problem [13,22], which usedmethods of complex analysis. Axisymmetry leads
- in cylindrical coordinates ρ, ζ in a meridional plane θ = const - likewise to a two-
dimensional problem, which, although complicated by the coordinate singularity
at ρ = 0, is amenable to a complex formulation and corresponding ansätze. With

1 Sometimes, if the distinction between “signed” and “unsigned” direction problem is to
be stressed, we use the notation PD = Ps

D as opposed to Pu
D.
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(Bζ , Bρ) representing the nonvanishing components of the axisymmetric harmonic
field we make the ansatz

Bζ (ζ, ρ) + i Bρ(ζ, ρ) = h(ζ + iρ) exp
(1

2

(
p(ζ, ρ) + i q(ζ, ρ)

))
(1.2)

with the given holomorphic (� complex analytic) function h representing the zeroes
and the asymptotic behaviour of the harmonic field, and the “correction functions”
p and q. Contrary to the two-dimensional case the axisymmetric problem then
requires the solution of the following boundary value problem for the (angle-type)
variable q in A∞ := {(ζ, ρ) ∈ R

2 : ζ 2 + ρ2 > 1} ⊂ R
2:

−� q = −∂ζ

( 1

ρ
cos(q − �)

)
+ ∂ρ

( 1

ρ
sin(q − �)

)
in A∞,

q = φ on S1.

⎫
⎬

⎭
(1.3)

Here the bounded but discontinuous (angle-type) function � is derived from h. �,
the boundary functionφ, and the (weak) solution q are assumed to be antisymmetric
with respect to the variable ρ. The key problemwith (1.3), which prevents the appli-
cation of more or less standard solution methods, is clearly the singular coefficients
on the right-hand side of (1.3)1. In particular the second term on the right-hand side
behaves near the symmetry axis {ρ = 0} like a second order derivative, which has
to be controlled by the left-hand side. In [13] this problem could be bypassed by a
suitable embedding of the problem inR

5 that eliminated the coordinate singularity;
however, at the price of a then unbounded nonlinearity. Accordingly, only a small
data result could be achieved (by the Banach fixed point principle). Unfortunately,
the smallness assumptions were depending on constants whose numerical values
are unknown; so, the compatibiliy of these assumptions with the physical data of
the problem (direction field and decay order) remained an open question.

In this paper the two-dimensional, singular, but nonlinearly bounded problem
(1.3) is directly attacked via Schauder’s fixed point principle. Without smallness
assumptions the structure of the nonlinear terms must now more carefully be uti-
lized. Key to success is a suitable choice of auxiliarily introduced parameters at the
linear as well as at the nonlinear level of the solution procedure. At the linear level
weighted Hardy-type inequalities of the form
∫

R×R+

∣
∣
∣
f

ρ

∣
∣
∣
2 dζdρ

ργ
�
( 2

1+γ

)2
∫

R×R+
|∂ρ f |2 dζdρ

ργ
, f ∈ C∞

0 (R × R+), γ �= −1

(1.4)

allow the control of the right-hand side in (1.3)1 by the left-hand side. The solution
of a linearized version of (1.3) then proceeds by a weighted Lax-Milgram-type
solution criterion, whose applicability depends on two coercivity-type constants
which in turn depend on the weight. The optimal constants are determined by
min-max problems depending on γ and further parameters. Assisted by numerical
computations we derive rigorous lower bounds on these constants with the result
that the criterion works but only in a small “window” of γ -values. At the nonlinear
level, the crucial point is to devise a space large enough to comprise the solutions
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of the linearized problem but not too large in order not to loose control of the
nonlinear terms. Here we make use of a weighted L p-space and, again, only the
subtle balance between p and the weight makes Schauder’s principle work.

In a first step of this program is carried out in the bounded regions An :={(ζ, ρ) ∈
R
2 : 1 < ζ 2 + ρ2 < n2}, n ∈ N\{1} with artificial conditions at the exterior

boundaries. The corresponding sequence of solutions turns out to be uniformly
bounded, so, in a second step, by means of a “diagonal argument”, one then obtains
a solution of (1.3) in the unbounded region A∞. Finally, the function p is determined
from q up to a constant p0, and by substitution into (1.2) one obtains the complete
set of solutions of the (signed as well as unsigned) direction problem (1.1).

2. Reformulation of the Problem, Results, and Sketch of Proof

This section provides the mathematical framework for our treatment of the
direction problem, we review results from [13] as far as they are relevant for the
following, reduce problem (1.1) to (1.3), and present our results in the Theorems
2.1–2.5. Finally, we give an outline of the proofs.

Axisymmetric harmonic vector fields B, expressed in cylindrical coordinates
(ρ, θ, ζ ), have just two nontrivial components Bρ and Bζ , depending on ρ and ζ ,
which satisfy the system

∂ζ Bρ − ∂ρBζ = 0,

∂ζ Bζ + ∂ρBρ + 1

ρ
Bρ = 0.

⎫
⎬

⎭
(2.1)

So far, B is defined on the half-plane H = {(ζ, ρ) ∈ R
2 : ρ > 0} bounded by

the symmetry axis {ρ = 0}. It is convenient, however, to extend the domain of the
definition to R

2 by an (anti)symmetric continuation:

Bζ (ζ,−ρ) := Bζ (ζ, ρ),

Bρ(ζ,−ρ) := − Bρ(ζ, ρ),

}

(ζ, ρ) ∈ H. (2.2)

Note that (2.1)2 implies (if defined) Bρ(ζ, 0) = 0.
On R

2 also polar coordinates (r, ϕ) ∈ (0,∞) × (−π, π ] with basis vectors er
and eϕ are useful. They are related to (ζ, ρ) by

ζ = r cosϕ , ρ = r sin ϕ (2.3)

(see Fig. 2). In these coordinates, condition (2.2) takes the form

B̃ζ (r,−ϕ) = B̃ζ (r, ϕ),

B̃ρ(r,−ϕ) = −B̃ρ(r, ϕ),

}

(2.4)

whereB(r cosϕ, r sin ϕ) =: B̃(r, ϕ). Harmonic fields are associatedwith harmonic
potentials ϒ(r, ϕ) by

B̃ = ∇ϒ = ∂rϒ er + 1

r
∂ϕϒ eϕ,
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Fig. 2. Various coordinates in the meridional cross section AR

and these potentials have well-known series representations in A∞, which is a
cross-section of the exterior space E through the symmetry axis:

ϒ(r, ϕ) =
∞∑

n=δ̃−2

cn
rn+1 Pn(cosϕ) , cδ̃−2 �= 0 , δ̃ ∈ N\{1, 2}

(see, for example, [6], p. 144). Here Pn is the Legendre polynomial of order n and
δ̃ ∈ N\{1, 2} is the exact decay order of the associated magnetic field2:

B̃(r, ϕ) = B̃δ̃ (r, ϕ) = ∇ϒ(r, ϕ) = −
∞∑

n=δ̃−2

cn
rn+2 D

n(ϕ)

= − cδ̃−2

r δ̃
Dδ̃−2(ϕ) + O(r−(δ̃+1)) for r → ∞,

(2.5)

where

Dn(ϕ) := (n + 1)Pn(cosϕ) er + P ′
n(cosϕ) sin ϕ eϕ

is the exterior axisymmetric 2n-pole field restricted to the unit circle. These series
are converging uniformly and absolutely for any r > 1.

Axisymmetric harmonic fields have only a finite number of isolated zeroes
with finite negative indices (“x-points”) in A∞. Let these zeroes be contained in
the annulus AR := {(ζ, ρ) ∈ R

2 : 1 < ζ 2 + ρ2 < R2} ⊂ A∞, then its number
ν(B, AR) can be computed by

ν = ν(B, AR) = ro− r̂o , (2.6)

where ro and r̂omean the rotation numbers of B along the circles S1 and SR of radii
1 and R, respectively.3 The rotation number ro ∈ Z counts the number of turns, the
field vector makes when circling once around S1. In ν zeroes are counted as often
as indicated by its index. Equation (2.6) is clearly an analogue of the argument
principle in complex analysis and it has likewise some invariance properties with

2 Exact decay orders are often denoted by δ̃ as opposed to δ for decay orders in general.
3 Henceforth we skip the upper index 1 at S indicating the dimension of the “sphere”.
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respect to continuous deformations (see Section 9); in particular, r̂o is constant in
the limit R → ∞, which yields, for A∞, the relation

ν = ν(B, A∞) = ro− δ̃ + 1 . (2.7)

As in the two-dimensional case a complex formulation of the (signed) axisym-
metric direction problem is promising as it allows us to view the direction of B as
the argument of a complex function f . With the identifications

�z := ζ , z := ρ , � f := Bζ ,  f := − Bρ , (2.8)

Equations (2.1) then take the form

∂z f − 1

2

f − f

z − z
= 0 (2.9)

and the symmetry condition (2.2) amounts to

f (z, z) = f (z, z) . (2.10)

We made there use of the Wirtinger derivatives ∂z := 1
2 (∂ζ − i∂ρ) and ∂z := 1

2 (∂ζ +
i∂ρ) acting on functions f : C × C → C, (z, z) �→ f (z, z). Other than in two di-
mensions, where harmonic fields satisfy ∂z f = 0 (that is, f is an analytic function),
we are here left with the solution of the singular equation (2.9).

Direction fields D : S1 → R
2, ϕ �→ D(ϕ) are called symmetric if

Dζ (ϕ) = Dζ (−ϕ) , Dρ(ϕ) = −Dρ(−ϕ) , (2.11)

and fields B and functions f are called symmetric if they satisfy (2.2) and (2.10),
respectively. Symmetry implies, obviously, Dρ(0) = Dρ(π) = 0, and hence, as
D �= 0, Dζ (0) > 0 or Dζ (0) < 0. The condition Dζ (0) > 0 is no restriction in
problem (1.1) and is henceforth considered as implied by symmetry. The axisym-
metric direction problem PD = PD(A∞) then reads as follows:

Problem. PD(A∞): Let D ∈ C(S1, R
2) be a symmetric direction field and δ ∈

N\{1, 2}. Determine all symmetric solutions B ∈ C1(A∞) ∩ C(A∞) of (2.1) with
decay order δ and boundary condition

∃ a ∈ C(S1, R+) : B∣∣S1 = aD . (2.12)

Equivalent is the following complex formulation:

Problem. Pc
D(A∞): Let D ∈ C(S1, R

2) be a symmetric direction field and δ ∈
N\{1, 2}. Determine all symmetric solutions f ∈ C1(A∞) ∩ C(A∞) of (2.9) with
decay order δ and boundary condition

arg f
∣
∣
S1

= arg Dc , (2.13)

where Dc := Dζ − i Dρ .4

4 Note that the definitions of Dc here and in Ref. [13] differ by complex conjugation.
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The ambiguity in the arg-function is removed by the condition that ϕ �→ arg Dc is
continuous on (−π, π). We then have arg Dc(0) = 0 and arg Dc(±π) = ∓roπ .
A bounded version of the problem reads as follows:

Problem. Pc
D,D̂

(AR): LetD ∈ C(S1, R
2) and D̂ ∈ C(SR, R

2) be symmetric direc-

tion fields. Determine all symmetric solutions f ∈ C1(AR) ∩ C(AR) of (2.9) with
boundary conditions

arg f
∣
∣
S1

= arg Dc , arg f
∣
∣
SR

= arg D̂c , (2.14)

where Dc := Dζ − i Dρ and D̂c := D̂ζ − i D̂ρ .

The basic idea to solve the direction problem is to extend the direction field
from the boundary to the entire annulus and to replace the boundary value problem
for the harmonic field by one for the direction field. The direction field, however,
is in general multivalued and not well-defined at the zeroes of the harmonic field.
This suggests for the harmonic field an ansatz with a given field describing the
zeroes and by (2.6) the rotation numbers at the boundaries, and a further zero-free
field with well-defined directions on the entire annulus. For the bounded complex
problem Pc

D,D̂
(AR) such an ansatz is

f (z, z) = h(z) eg(z,z) (2.15)

with the analytic function

h(z) :=
ro−r̂o∏

n=1

(z − zn) z
−ro (2.16)

and the exponential function eg with well-defined argument function g on AR .
Note that for given direction fields D and D̂ and hence rotation numbers ro and
r̂o, the number of zeroes in AR is fixed by (2.6), so that the ansatz (2.15) does not
restrict the solution set of Pc

D,D̂
(AR). However, there is a (preliminary) restriction:

in order that h(z) is a symmetric function, the set S of zeroes must be symmetric,
that is z ∈ S implies z ∈ S. If zeroes on the symmetry axis are not allowed (as
it will be the case in the subsequent solution procedure), ro − r̂o must be an even
number (a restriction that is lifted in Section 9).

When inserting (2.15) into (2.9), one obtains

− ∂z g = 1

2

1

z − z

(h

h
e−2ig − 1

)
, (2.17)

which, by further differentiation, can be reduced to a semilinear elliptic equation
in the variable 2g =: q alone:

− ∂z∂z q = 
{

∂z

[ 1

z − z

(h

h
e−iq − 1

)]}

. (2.18)
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As |h/h| = 1, an angle-type variable � may be introduced by h/h =: ei� , where
� is a bounded but discontinuous function on AR (see Appendix A). Using the real
variables (ζ, ρ) in AR , Equation (2.18) then takes the real form

�q − ∂ζ

( 1

ρ

(
cos(q − �) − 1

))+ ∂ρ

( 1

ρ
sin(q − �)

)
= 0 , (2.19)

where � := ∂2ζ + ∂2ρ . Boundary values for q on S1 arise from (2.14)–(2.16) as
follows:

arg Dc = arg f |S1 =
( ro−r̂o∑

n=1

arg(z − zn) − ro arg z + g
)∣
∣
∣
∣
S1

,

which give rise to the definition

φ(ϕ) := q̃(1, ϕ) = 2

(

ro ϕ −
ro−r̂o∑

n=1

arg
(
eiϕ − zn

)+ arg Dc(ϕ)

)

, (2.20)

and analogously, on SR ,

φ̂(ϕ) := q̃(R, ϕ) = 2

(

ro ϕ −
ro−r̂o∑

n=1

arg
(
R eiϕ − zn

)+ arg D̂c(ϕ)

)

.5 (2.21)

Note that by construction φ(π) = φ(−π) = φ̂(π) = φ̂(−π) = 0, i.e. Dc ∈ C(S1)
implies φ ∈ C(S1), and analogously for φ̂.

Once q is determined, the real part p := 2�g of g is given by the other half of
Equation (2.17) up to a constant p0:

− ∂z p = i∂z q + 1

z − z

(
e−i(q−�) − 1

)
. (2.22)

It is useful, in particular for a weak formulation of the problem, to transform
to zero boundary conditions. To this end let Φ be a harmonic interpolation of the
boundary functions, that is a solution of the (standard) boundary value problem

�Φ = 0 in AR ,

Φ
∣
∣
S1

= φ , Φ
∣
∣
SR

= φ̂ ,

}

(2.23)

and define u := q − Φ, � :=� − Φ. In these variables Equation (2.19) takes the
form

�u + ∂ζ

( 1

ρ

(
1− cos(u − �)

))+ ∂ρ

( 1

ρ
sin(u − �)

)
= 0 (2.24)

or

∇ ·
(
∇u + a[u − �] u

ρ

)
= ∇ ·

(
a[u − �] �

ρ

)
(2.25)

5 The tilde denotes, again, dependence on polar coordinates: q̃(r, ϕ) := q(r cosϕ, r sin ϕ).
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with

aζ [x] := 1− cos x

x
, aρ[x] := sin x

x
(2.26)

and

u
∣
∣
∂AR

= 0 . (2.27)

The symmetry of f and h implies

p(ζ,−ρ) = p(ζ, ρ) , q(ζ,−ρ) = −q(ζ, ρ) , (2.28)

andby (2.20), (2.21),φ(−ϕ) = −φ(ϕ), φ̂(−ϕ) = −φ̂(ϕ), andhence (seeAppendix
B),

�(ζ,−ρ) = −�(ζ, ρ) , �(ζ,−ρ) = −�(ζ, ρ) , (2.29)

which implies, finally,

u(ζ,−ρ) = −u(ζ, ρ) , �(ζ,−ρ) = −�(ζ, ρ) . (2.30)

The boundary value problem (2.25)–(2.27), and (2.30) for u with given� is hence-
forth called problem P�(AR).

The divergence structure of Equation (2.25) and its non-smooth coefficients
suggest a weak formulation of P�(AR): a function u ∈ H1

0,as(AR) is called weak
solution of P�(AR), if u satisfies

∫

AR

∇u · ∇ψ dζdρ+
∫

AR

u

ρ
a[u−�] · ∇ψ dζdρ =

∫

AR

�

ρ
a[u−�] · ∇ψdζdρ

(2.31)

for all antisymmetric testfunctions ψ ∈ C∞
0,as(AR), where

C∞
0,as(AR) = {ψ ∈ C∞

0 (AR) : ψ(ζ,−ρ) = −ψ(ζ, ρ)
}

and

H1
0,as(AR) = clos

(
C∞
0,as(AR) , ‖∇ · ‖L2(AR)

)
.

Note that in the bounded domain AR by (1.4) ‖∇ · ‖L2 is equivalent to the usual
H1-norm ‖ · ‖2

H1 = ‖ · ‖2
L2 + ‖∇ · ‖2

L2 ; C
∞
0 (AR) denotes as usual the space of

infinitely differentiable functions compactly supported in AR . In the unbounded
case a function u ∈ H1

loc,as(A∞) with trace u|S1 = 0 is called a weak solution of
problem P�(A∞), if u satisfies (2.31) (with AR replaced by A∞) for every test
function ψ ∈ C∞

0,as(A∞). The following theorems assert the existence of unique
weak solutions in bounded annuli AR and in the exterior plane A∞:
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Theorem 2.1. Let R > 1 and � ∈ L∞(AR) with bound

|�̃(·, ϕ)| � K | sin ϕ| in AR (2.32)

for some constant K > 0, then problem P�(AR) has a unique weak (in the sense
of Equation (2.31)) solution u ∈ H1

0,as(AR) with bound
∫

AR

|∇u|2 |ρ|−β dζdρ � C , (2.33)

where β = 1/5 and C is some constant that depends on K , but does not depend on
R.

Theorem 2.2. Let � ∈ L∞(A∞) with bound

|�̃(·, ϕ)| � K | sin ϕ| in A∞ (2.34)

for some constant K > 0. Then problem P�(A∞) has a unique weak solution
u ∈ H1

loc,as(A∞) with trace u
∣
∣
S1

= 0 and the bound
∫

A∞
|∇u|2 |ρ|−β dζdρ � C (2.35)

with β = 1/5 and some constant C > 0.

Based on these results the subsequent Theorems (2.3)–(2.5) give answers to the
direction problems Pc

D,D̂
(AR), PD(AR), and Pu

D(A∞), respectively. To this end
recall that for any continuous, symmetric direction field the ρ-component vanishes
by (2.11)2 at the symmetry axis. The more precise condition

Dρ(ϕ) = O(ϕ) for ϕ → 0 , Dρ(ϕ) = O(π − ϕ) for ϕ ↗ π (2.36)

or, equivalently with Dc = Dζ − i Dρ ,

arg Dc(ϕ) = O(ϕ) for ϕ → 0, arg Dc(ϕ)+roπ = O(π−ϕ) for ϕ ↗ π

(2.37)

turns out to be more appropriate in the following. Moreover, Hölder continuity of
D will help to establish continuity of the solution up to the boundary.

Theorem 2.3. Let D and D̂ be Hölder continuous, symmetric direction fields with
rotation numbers ro and r̂o ∈ N\{1}, respectively, ro − r̂o � 0 and even, and
satisfying condition (2.36) at the symmetry axis. Let, furthermore, {z1, . . . , zro−r̂o}
be a symmetric set of points in AR. Then, problem Pc

D,D̂
(AR) has a unique solution

f = Bζ − i Bρ � B vanishing at z1, . . . , zro−r̂o and nowhere else.

Theorem 2.4. LetD be aHölder continuous, symmetric direction fieldwith rotation
number ro ∈ N\{1} and satisfying condition (2.36) at the symmetry axis. Let,
furthermore, δ̃ ∈ N\{1, 2}, δ̃ � ro + 1, and {z1, . . . , zro−δ̃+1} be a symmetric set

of points in A∞. Then, problem Pc
D(A∞) has a unique solution f � B with exact

decay order δ̃ vanishing at z1, . . . , zro−δ̃+1 and nowhere else.
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When the zeroes of a solution do not matter, the total set of solutions (with un-
specified zeroes) of the signed direction problem can best be “counted” by means
of the unsigned problem. Let D be a Hölder continuous, symmetric direction field
with rotation number ro satisfying the axis-condition (2.36) and let Sδ̃

D and Cδ
D be

the solution sets of the signed direction problem Ps
D(A∞) with exact decay order

δ̃ and (not necessarily exact) order δ, respectively. Let furthermore, Lδ
D be the set

of solutions of the unsigned problem Pu
D(A∞), then we clearly have

Sδ̃
D ⊂ Cδ

D ⊂ Lδ
D , Cδ

D =
⋃

δ�δ̃�ro+1

Sδ̃
D ,

where 3 � δ � δ̃ � ro + 1. Moreover, Lδ
D is a linear space, whose dimension is

determined by ro and δ. More precisesly, the following theorem holds:

Theorem 2.5. Let Sδ
D, C

δ
D, and Lδ

D be the solution sets of the signed direction
problem with exact decay order δ, of the signed problem with decay order δ, and of
the unsigned problem with decay order δ, respectively. If 3 � δ � ro+ 1, we have

Lδ
D = 〈Cδ

D〉 = 〈Sδ
D〉 , (2.38)

dim Lδ
D = ro− δ + 2 , (2.39)

where ro is the rotation number of D and 〈S〉 denotes the real linear span of the set
S. If δ > ro+ 1 we have Lδ

D = {0}.
Some comments are in order:

1. Theorems 2.1 and 2.2 are robust in the sense that the theorems still hold for
weights β that vary in some interval around 1/5.

2. The restriction to an even number of zeroes in Theorem 2.3 can supposedly
be removed. The physically relevant case, however, is the unbounded one, where
this restriction does not apply, and we saved us this effort.

3. In viewof the regularity of the data� (seeAppendixA),muchmore regularity
than u ∈ H1

loc can not be expected.
6 However, when inserting q = u+� into (1.2)

the result will be more regular (by exponentiation of q and by multiplication by
the zeroes of h). In fact, the harmonic vector field B is known to be analytic in the
exterior space E .

4. According to Theorems 2.3 and 2.4, all the nonuniqueness of the signed
direction problem is encoded in the arbitrary positions of the zeroes. Uniqueness
(up to a positive constant factor) in A∞ is thus only guaranteed if δ = δ̃ = ro+ 1;
if the direction field is the only data (and hence δ = 3) this requires ro = 2, which
holds, for example, for “dipole-type” direction fields.

5. The unsigned direction problem prescribes the direction of the field vector
only up to a sign at S1. Arbitrary linear combinations of different solutions for the
same direction field D are thus again solutions for D, forming the linear space Lδ

D.

6 Hölder continuity of u, q , and p is shown in Section 9.
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Fig. 3. Graphs of the functions aζ : x �→ (1− cos x)/x and aρ : x �→ sin x/x

As to the signed problem only positive linear combinations are admissible, that is
Cδ
D has the representation

Cδ
D =

{ N∑

n=1

λn Bn : Bn ∈ Cδ
D , λn > 0 , n = 1, . . . , N , N ∈ N

}
, (2.40)

which is a cone in Lδ
D.

As to the solution of problem P�(AR) note that it does neither have a variational
form nor does it have (obvious) monotonicity properties, but a favourable feature
clearly is the boundedness of the nonlinear term. The method of choice to obtain
global solutions of P�(AR) is thus to solve a suitably linearized version and to define
thereby a compactmapping towhich Schauder’s fixed point principle applies. In the
weak setting of Equation (2.31), linearized by replacing a[u−�] by a[w−�]with
given function w , the Lax-Milgram criterion provides easily general solvability,
if only (besides boundedness) some coercivity condition is satisfied. This latter
condition amounts to

∣
∣
∣
∣

∫

AR

u

ρ
a · ∇u dζdρ

∣
∣
∣
∣ � C ‖∇u‖2L2(AR)

for some C < 1. A superficial estimate of the left-hand side by (1.4) with γ = 0
and |aζ | � 0.73, |aρ | � 1 (see Fig. 3), however, fails:

∣
∣
∣
∣

∫

AR

u

ρ
a · ∇udζdρ

∣
∣
∣
∣ � 2

(
0.73‖∂ζ u‖L2(AR)‖∂ρu‖L2(AR)+‖∂ρu‖2L2(AR)

)
. (2.41)

A great deal of the present work is devoted to overcoming this problem by the
combined effect of three measures:
(i) We introduce the variable v := ραu in A+

R with suitable α > 0, which has
the effect that aρ is shifted by α and allows a bound better than 1. Note that by
antisymmetry it is sufficient to do calculations on A+

R := AR ∩ {ρ > 0}.
(ii) A ρ-dependent weight can improve the optimal constant in the Hardy inequality
(1.4). But this requires a generalized (ρ-weighted) version of the Lax-Milgram
criterion.
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(iii) ∂ζu and ∂ρu do not appear symmetrically in inequality (2.41). A weighted
gradient ∇d := d eζ ∂ζ + eρ ∂ρ , d > 0 can exploit this for further improvement.

Unfortunately, in the generalized Lax-Milgram criterion the coercivity con-
dition is now governed by constants Cc and C̃c, which are defined by min-max
problems, viz.

Cc := inf
v

sup
ψ

∫

A+R
∇v · ∇ψ ρ−α dζdρ

( ∫

A+R
|∇d v|2 ρ−α−γ dζdρ

)1/2( ∫

A+R
|∇e ψ |2 ρ−α+γ dζdρ

)1/2

(2.42)

and similarly for C̃c. Here v andψ vary in differentlyweighted versions of H1
0 (A+

R ).
The case γ = 0, d = e = 1 corresponds to the ordinary coercivity constant
Cc = 1; increasing γ leads to decreasing Cc-values thus strengthening the coerciv-
ity condition. It needs a subtle balance of all involved parameters (α, γ , d, and e)
to meet, finally, the coercivity condition of the generalized Lax-Milgram criterion.

To obtain sufficiently sharp lower bounds on Cc we proceed as follows. Firstly
the annular region AR is replaced by a rectangle Q, which allows us to split the two-
dimensional problem in a sequence of one-dimensional problems in the variable ρ.
The Euler–Lagrange equations for these problems amount to low-dimensional sys-
tems of ordinary linear differential equations, which constitute eigenvalue problems
whose minimum eigenvalue bounds Cc. The numerical solution of these equations
has heuristic value in that it allows us to identify appropriate values of the above
parameters. A special case can be solved fully analytically and this solution hints to
the kind of test function that, finally, yields rigorous lower bounds on Cc sufficient
for our needs.

Once the solution of the linearized problem is established, a successful iteration
depends crucially on the underlying space, which is here an L p-space that is again
suitably weighted by some power of ρ. L p-generalizations of (1.4) of the form

∥
∥
∥

f

ρδ

∥
∥
∥
2

L p(A+R )
� C

∫

A+R
|∇d f |2 dζdρ

ρβ

with as large as possible values of p and δ for given β play here a major role.
Optimal estimates of this type in two dimensions for “small” and “large” values of
p are the key to prove continuity of the nonlinear iteration mapping. Compactness
of themapping then is a comparatively easy consequence ofwell-known embedding
theorems.

Schauder’s fixed point principle does not provide uniqueness; so, this issue has
to be faced separately. A heuristic consideration exploiting the divergence-character
of Equation (2.25) suggests the kind of test function that would exclude nontrivial
solutions of the corresponding equation for the difference of two solutions. In fact,
in order to prove rigorously uniqueness in H1

0 (AR) it takes a whole sequence of
test functions and special attention has to be given to the behaviour at the symmetry
axis. In A∞ the weight |ρ|−β in (2.35) cannot be neglegted. Starting point is now
a formulation of Equation (2.25) that incorporates the weight while keeping the
divergence structure. The proof then proceeds quite analogously to the bounded case
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providing, finally, uniqueness for functions in H1
loc,as(A∞) satisfying the bound

(2.35) for 0 < β < 1. Recall that all the nonuniqueness that is typical for the
solutions B of the direction problem is encoded in the zero-positions angle �,
which is part of the data in Equation (2.25).

The transition from AR to the unbounded region A∞ proceeds by a suitable
sequence of solutions (un) defined on An with boundary values on Sn that are
obtained from the exterior harmonic potential with boundary function φ on S1.
Restricting un on Am ,m � n yields actually a double sequence (um,n)with uniform
bound (2.33). A suitably defined diagonal sequence (u(k)) then has the favourable
property that u(k+1) extends u(k) defined on Ak onto Ak+1. Thus (u(k)) allows for
the definition of a function u on A∞ that satisfies the bound (2.35) and that is in fact
a weak solution of P�(A∞). Once u and hence q are known, p is determined by
(2.22) up to a constant p0. By substitution into the ansatz (2.15) one obtains, finally,
f , which corresponds to a weakly harmonic field B. Higher interior regularity
then follows from standard elliptic regularity theory, whereas continuity up to the
boundary requires somemore subtle arguments depending on the Hölder continuity
of the boundary data.

So far zeroes on the symmetry axis are not allowed mainly for the technical rea-
son not to loose favourable properties of the zero-positions angle� at the symmetry
axis. So the number of zeroes in AR must be even, which means, for example for
δ = 3, a restriction of possible direction fields to those with even rotation numbers
(see (2.7)). This limitation can be overcome by taking suitable linear combinations
of “even solutions”. The coefficients of a linear combination can be viewed as “de-
formation parameters” that govern the positions of the zeroes. Based on invariance
properties of the degree ofmappingwith respect to continuous deformations (which
are recalled in this context), single zeroes can be eliminated from A∞ by “pushing”
them to infinity. A crucial point is here to keep control over the other zeroes, which
will move but which had to avoid the boundary.

Finally, we characterize and, in particular, determine the dimension of the solu-
tion space of the unsigned direction problem. The presentation follows here largely
the corresponding one in the two-dimensional case in [13]. The basic result is that
Lδ
D is generated by an arbitrary set of ro − δ + 2 solutions of the signed problem

with precisely 0, 1, . . . , ro − δ + 1 zeroes. In this sense no fundamentally new
solutions appear in the unsigned problem and Lδ

D can be viewed as a convenient
way to quantify the nonuniqueness of the direction problem.

The material just described is organized in the following sections: Section 3
collects the various Hardy-type inequalities we make use of in the course of the
proof. Uniqueness in the problem P�, an issue that is independent of the rest of
the paper, is proved in Section 4. Sections 5 and 6 are devoted to the linearized
problem and, as an essential part of it, to the min-max problem. Sections 7 and 8
present solutions of P� in annuli AR and in the exterior plane A∞, respectively. The
direction problem itself, again in AR and in A∞, is solved in Section 9 under the
restriction that no zeroes are lying on the symmetry axis. Zeroes on the symmetry
axis are discussed in Section 10 and the unsigned problem in Section 11. Some
more technical estimates and some additional material are deferred to a number
of appendices: appendices A and B contain estimates of the zero-positions angle
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� and of the boundary function �, respectively. Appendix C contains a proof of
the generalized Lax-Milgram criterion. Appendices D and E contain the analytic
solution of a special one-dimensional min-max problem and numerical solutions
of the general one-dimensional problem, respectively. Finally, Appendix F con-
tains an explicit exemplary solution of the 2D-direction problem that illustrates the
migration of a zero.

3. Hardy-type inequalities

The results 3.1–3.3 are formulated for (not necessarily bounded) domains G in
the n + 1-dimensional half-space

H (n+1) := {(x1, . . . , xn, y) ∈ R
n+1 : y > 0} , n ∈ N ,

without causing additional effort. All other results hold for bounded domains G ⊂
H with

H := H (2) = {(x, y) ∈ R
2 : y > 0} .

Note for subsequent applications the correspondence (x, y) � (ζ, ρ).
yγ -weighted L p-norms, especially with p = 2, play in this paper a dominant

role. Here the following notation is useful:

‖ · ‖p,γ :=
(∫

G
| · |p dμγ

)1/p

, dμγ := y−γ dx1 . . . dxndy, (3.1)

with given domain G ⊂ H (n+1), p � 1, and γ ∈ R. For p = 2 we use the
simplified notation: ‖ · ‖2,γ =: ‖ · ‖γ , and for p = ∞: ‖ · ‖∞,0 =: ‖ · ‖∞. The
following function spaces are associated to these norms:

H(c)
p,γ (G) := clos

(
C∞
0 (G) , ‖∇c · ‖p,γ

)
, H(c)

γ (G) :=H(c)
2,γ (G) (3.2)

where

∇c := (c∇x , ∂y) , c � 0 .

For bounded G ⊂ H (n+1) we have the well-known inclusion

H(c)
p,γ (G) ⊂ H(c)

q,γ (G) for p � q ,

as well as

H(c)
p,γ (G) ⊂ H(c)

p,δ(G) for γ � δ , (3.3)

where the latter inclusion is in fact an equivalence in the case G � H , that is that G
is compactly contained in H . With respect to c only the difference between c = 0
and c > 0 matters:

H(c)
p,γ (G) = H(d)

p,γ (G) ⊂ H(0)
p,γ (G) , c, d > 0 .7
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The following proposition is a weighted L p-version of Hardy’s inequality (see [10],
p. 175) suitable to our needs.

Proposition 3.1. Let G ⊂ H (n+1) be a domain and f ∈ H(c)
p,γ (G) with γ �= 1− p

and p � 1. Then, the following inequalities hold:
∥
∥
∥
f

y

∥
∥
∥
p,γ

� p

|p + γ − 1| ‖∂y f ‖p,γ (3.4)

and, especially for p = 2,
∥
∥
∥
f

y

∥
∥
∥

γ
� 2

|1+ γ | ‖∂y f ‖γ . (3.5)

Proof. Let ψ ∈ C∞
0 (G) ⊂ C∞

0 (H) and let us define ψ̃ ∈ C∞
0 (R+) by fixing

(x1, . . . , xn) = x ∈ R
n in ψ :

ψ̃ = ψ̃x : R+ → R , y �→ ψ(x, y) .

Integrating by parts then yields
∫

R+

|ψ̃ |p
y p+γ

dy = −1

p + γ − 1

∫

R+
|ψ̃ |p

( 1

y p+γ−1

)′
dy

= p

p + γ − 1

∫

R+
|ψ̃ |p−2 ψ̃ ψ̃ ′ 1

y p+γ−1 dy

� p

|p + γ − 1|
∫

R+

|ψ̃ |p−1

y(p+γ )(p−1)/p

|ψ̃ ′|
yγ /p

dy

� p

|p + γ − 1|
(∫

R+

|ψ̃ |p
y p+γ

dy

) p−1
p
(∫

R+

|ψ̃ ′|p
yγ

dy

) 1
p

,

where in the last line we applied Hölder’s inequality. By cancellation one obtains
∫

R+

∣
∣
∣
ψ̃

y

∣
∣
∣
p
y−γ dy �

(
p

|p + γ − 1|
)p ∫

R+
|ψ̃ ′|p y−γ dy .

Finally, applying Fubini’s theorem in the form
∫

H
χ(x, y) dx1 . . . dxndy =

∫

Rn

(∫

R+
χ̃x(y) dy

)

dx1 . . . dxn

yields the assertion for ψ ∈ C∞
0 (G) and by approximation for f ∈ H(c)

p,γ . ��
Remark. In the case that G is contained in the half-ball B+

R ⊂ H (n+1) of radius
R centered at the origin, inequality (3.4) provides immediately a Poincaré-type
inequality:

‖ f ‖p,γ � R
p

|p + γ − 1| ‖∂y f ‖p,γ � R
p

|p + γ − 1| ‖∇c f ‖p,γ . (3.6)

7 To simplify the notation we sometimes omit the upper index c, which means that c > 0,
or omit the indication of G if the underlying domain is clear from the context.
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The following lemma demonstrates that the constant in inequality (3.5) cannot
be improved in the case that G contains a box that touches the symmetry axis:

Lemma 3.2. (box-criterion) Let G ⊂ H (n+1) be a domain and Q ⊂ G a box of
the form Q = Q(n) × (a, b) ⊂ R

n × R+ with 0 < a < b. Then, any admissible
constant c in inequality (3.5) satisfies

c �
[(1+ γ

2

)2 +
( π

ln(b/a)

)2
]−1/2

. (3.7)

In particular, if G contains a box of the form Q(n) × (0, b), the constant in (3.5) is
the smallest possible.

Proof. The smallest constant cmin in (3.5) is associated to a variational problem,
viz.,

c−2
min = inf

ψ∈C∞
0 (G)

∫

G |∂yψ |2 dμγ
∫

G |ψ/y|2 dμγ

. (3.8)

It suffices for our purposes to consider the following simpler, one-dimensional
version:

inf
f ∈H1

0 ((a,b))

∫ b
a f ′2 y−γ dy

∫ b
a ( f/y)2 y−γ dy

=: λmin . (3.9)

Problem (3.9) is in fact a standard problem in the calculus of variation. The asso-
ciated Euler–Lagrange equations,

f ′′ − γ

y
f ′ + λ

y2
f = 0 in (a, b) ,

f = 0 at {a, b} ,

constitute an eigenvalue problem in λ, which can explicitly be solved. The mini-
mizer in (3.9) is the eigenfunction with smallest eigenvalue:

fmin(y) = y(1+γ )/2 sin
(
π
ln(y/a)

ln(b/a)

)
,

λmin =
(1+ γ

2

)2 +
( π

ln(b/a)

)2
.

Let now Q̃ := Q̃(n)× (a, b) be an extension of Q := Q(n)× (a, b) such that Q(n) �
Q̃(n) and |Q̃\Q| < ε. Let, furthermore, f : Q → R be given by f (·, y) = fmin(y)
and f̃ be a C1-extension onto Q̃ such that f̃ |∂ Q̃ = 0 and

max
Q̃

|∂y f̃ | � max
Q

|∂y f | = max[a,b] | f
′
min| .
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For f̃ we then have the estimate

∫

Q̃ |∂y f̃ |2 dμγ
∫

Q̃ | f̃ /y|2 dμγ

�
∫

Q |∂y f |2 dμγ + ∫Q̃\Q |∂y f̃ |2dμγ
∫

Q | f/y|2 dμγ

�
∫ b
a f ′ 2min y

−γ dy
∫ b
a ( fmin/y)2 y−γ dy

+ ε
max[a,b]{ f ′ 2min y

−γ }
∫

Q | f/y|2 dμγ

� λmin + ε
b2(b/a)γ

|Q(n)|
max[a,b] f ′ 2min
∫ b
a f 2

min dy
.

(3.10)

AsC∞
0 (Q̃) is dense in H1

0 (Q̃)we can approximate f̃ on the left-hand side of (3.10)
by ψ ∈ C∞

0 (Q̃) ⊂ C∞
0 (G) and find the infimum in (3.8) be bounded from above

by the right-hand side in (3.10). As ε > 0 is arbitrary we thus obtain

c−2
min � λmin ,

which is (3.7).
If G contains a box of the form Q(n) × (0, b), the first assertion holds for any

a ∈ (0, b), that is

2

|1+ γ | � cmin � 2

|1+ γ | ,

which is the second assertion of the box-criterion. ��
Inequality (3.5) allows for some alternative characterizations ofH(c)

γ (G), which
will be useful when dealing with the min-max problem.

Lemma 3.3. Let G ⊂ H (n+1) be a domain and−1 �= γ ∈ R. OnH(c)
γ (G) we then

have the equivalence of norms

C̃γ ‖∇c · ‖γ � ‖∇c (y−γ /2 · )‖0 � Cγ ‖∇c · ‖γ (3.11)

with constants

Cγ := 1+
∣
∣
∣

γ

1+ γ

∣
∣
∣ , C̃γ := min

{
1 ,

1

|1+ γ |
}
.

Proof. By

|∂y(y−γ /2ψ)|2 =
[
|∂yψ |2 − γ

ψ

y
∂yψ + γ 2

4

(ψ

y

)2 ]
y−γ ,

and repeated use of (3.5) one obtains for ψ ∈ C∞
0 (G):

‖∇c(y
−γ /2ψ)‖20 � ‖∇c ψ‖2γ + |γ |

∥
∥
∥
ψ

y

∥
∥
∥

γ
‖∂yψ‖γ + γ 2

4

∥
∥
∥
ψ

y

∥
∥
∥
2

γ

�
(
1+ 2 |γ |

|1+ γ | +
γ 2

(1+ γ )2

)
‖∇c ψ‖2γ =

(
1+ |γ |

|1+ γ |
)2‖∇c ψ‖2γ .
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Similarly, by

−γ

∫

G
ψ ∂yψ y−(γ+1)dydx1 . . . dxn = −1

2
γ (γ + 1)

∫

G
ψ2y−(γ+2)dydx1 . . . dxn,

and again by (3.5), one obtains

‖∇c(y
−γ /2ψ)‖20 =

∫

G

(
c2|∇x ψ |2 + 1

(1+ γ )2
|∂yψ |2

)
y−γ dx1 . . . dxndy

+
(
1− 1

(1+ γ )2

)
‖∂yψ‖2γ − 1

2
γ (γ + 1)

∥
∥
∥
ψ

y

∥
∥
∥
2

γ
+ γ 2

4

∥
∥
∥
ψ

y

∥
∥
∥
2

γ

� min
{
1, (1+ γ )−2} ‖∇c ψ‖2γ + 1

4

(
(1+γ )2−1−2γ (γ+1)+γ 2)

∥
∥
∥
ψ

y

∥
∥
∥
2

γ

= min
{
1 , (1+ γ )−2} ‖∇c ψ‖2γ .

��
H1
0 (G) denotes the usual Sobolev space clos

(
C∞
0 (G), ‖ · ‖H1

)
with

‖ψ‖2H1 =
∫

G

(|ψ |2 + |∇x ψ |2 + |∂yψ |2) dx1 . . . dxndy .

By (3.6) we have thus the norm equivalence ‖ · ‖H1 ∼ ‖∇c · ‖0 and hence the
identity

H1
0 (G) = H(c)

0 (G) ,

provided that G is bounded and that c > 0. More generally, for γ �= −1, (3.6) and
(3.11) imply, under these conditions,

H(c)
γ (G) = clos

(
C∞
0 (G) , ‖y−γ /2 · ‖H1

) = {ψ : y−γ /2ψ ∈ H1
0 (G)

}

= {yγ /2χ : χ ∈ H1
0 (G)

}
,

(3.12)

and (3.3) implies

H(c)
γ (G) ⊂ H1

0 (G) for γ � 0 . (3.13)

Note, finally, that H(c)
γ (G), c > 0 equipped with the scalar product

(ψ, χ) �→
∫

G
∇c ψ · ∇c χ y−γ dx1 . . . dxndy (3.14)

is a Hilbert space, which implies in particular that H(c)
γ (G) is a reflexive space.

The rest of this section is devoted to inequalities of type
∥
∥
∥

f

yδ

∥
∥
∥
p,0

� C ‖∇c f ‖q,β , (3.15)

which will be necessary in Section 7. G is now a bounded domain contained in
some half-ball B+

R ⊂ H ⊂ R
2 andwe suppose c > 0. The focus is now on “optimal

values” of p and δ for given values of q, especially for q = 2, and β.
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We start with some one-dimensional inequalities, which are comparatively easy
to derive. Let f ∈ H1((0, R)) with f (0) = 0. By the fundamental theorem of
calculus and by Hölder’s inequality one obtains

| f (y)| �
∫ y

0
| f ′| dz �

(∫ y

0
zβ/(q−1) dz

)1− 1
q
(∫ y

0
| f ′|q z−βdz

) 1
q

�
(
1+ β

q − 1

) 1
q−1

y1+
β−1
q

(∫ y

0
| f ′|q z−βdz

) 1
q

,

that is
∥
∥
∥

f

yδ

∥
∥
∥∞,0

�
(
1+ β

q − 1

)−
(
1− 1

q

)

‖ f ′‖q,β , (3.16)

where

δ = 1+ β − 1

q
, 1 < q < ∞ , β > 1− q .

Inequality (3.16) contains the special case

‖ f y−(1+β)/2‖∞,0 � (1+ β)−1/2 ‖ f ′‖β , β > −1 , (3.17)

and (formally) the limit cases

‖ f/y‖∞,0 � ‖ f ′‖∞,0 ,

‖ f/yβ‖∞,0 � ‖ f ′‖1,β . (3.18)

Inequality (3.18) is clear for β = 0. Otherwise we have

f (y) y−β =
∫ y

0
f ′z−βdz − β

∫ y

0
f z−1−βdz ,

f (y) y−β = −
∫ R

y
f ′z−βdz + β

∫ R

y
f z−1−βdz .

Thus, by summation and using (3.4) with p = 1, one obtains

2 | f (y)| y−β �
∫ R

0
| f ′| z−βdz + |β|

∫ R

0
(| f |/z) z−βdz � 2

∫ R

0
| f ′| z−βdz ,

which is (3.18). Finally, interpolation between (3.17) and (3.5)8 yields a (one-
dimensional) inequality of type (3.15):

∫ R

0
| f/yδ|p dy =

∫ R

0

∣
∣ f y−(1+β)/2

∣
∣p−2 | f/y|2 y−βdy �

� ‖ f y−(1+β)/2‖p−2
∞,0 ‖ f/y‖2β � (1+ β)

2−p
2 22(1+ β)−2 ‖ f ′‖pβ ,

δ := (1+ β)/2+ 1/p ,

8 Note that the proof of Proposition 3.1 works as well for functions f : (0, R) → R

without zero-boundary-condition at R.



350 Ralf Kaiser & Tobias Ramming

that is

∥
∥
∥

f

yδ

∥
∥
∥
p,0

� 2
2
p

( 1

1+ β

) p+2
2p ‖ f ′‖β (3.19)

with

δ = 1+ β

2
+ 1

p
, 2 � p � ∞ , β > −1 .

Inequalities (3.16) and (3.19) are optimal in the sense that δ cannot be enlarged as
can easily be seen by testing the inequalities with f (y) = yα .

In 2 dimensions we must proceed differently since a result of type (3.16) with
q = 2 cannot be achieved (not even for δ = β = 0). We thus assume p < ∞ and
distinguish, moreover, between “small p” and “large p”.

Proposition 3.4. (small-p-case) Let G be a domain contained in B+
R ⊂ H ⊂ R

2

and f ∈ H(c)
β (G) with β > −1 and c > 0. Then, the following inequality holds

∥
∥
∥

f

yδ

∥
∥
∥
p,0

�
( 2

1+ β

) 6−p
2p
( R

c2

) p−2
2p ‖∇c f ‖β (3.20)

with

δ = β

2
+ 6− p

2p
, 2 � p � 4 , β > −1 .

Proof. It is sufficient to prove (3.20) for functionsψ ∈ C∞
0 (G). By (3.17) we have

|ψ(x, y)|2 y−(1+β) � (1+ β)−1
∫ R

0
|∂yψ |2 y−βdy

and by the fundamental theorem

|ψ(x, y)|2 � 2R

c2

∫ R

−R
|c ∂xψ |2 dx .

With these estimates one obtains

∫

G
|ψ |4 y−(1+β)dμβ =

∫ R

0

∫ R

−R
|ψ |4 y−(1+2β)dxdy

�
∫ R

−R
sup
y

{|ψ(x, y)|2 y−(1+β)
}
dx ×

∫ R

0
sup
x

|ψ(x, y)|2 y−βdy

� 1

1+ β

∫ R

−R

∫ R

0
|∂yψ |2 y−β dydx × 2R

c2

∫ R

0

∫ R

−R
|c ∂xψ |2 y−βdxdy

� 2R

(1+β)c2

(∫ R

0

∫ R

−R
|∇c ψ |2 y−βdxdy

)2

= 2R

(1+β)c2

(∫

G
|∇c ψ |2 dμβ

)2

.



Axisymmetric Solutions in the Geomagnetic Direction Problem 351

Interpolation with (3.5) then yields

∫

G
|ψ/yδ|p dxdy =

∫

G

∣
∣ψ y−(1+β)/4

∣
∣2(p−2) |ψ/y|4−p dμβ

�
(∫

G
|ψ |4 y−(1+β)dμβ

) p−2
2
(∫

G
|ψ/y|2 dμβ

) 4−p
2

�
( 2R

(1+ β)c2

) p−2
2
( 2

1+ β

)4−p
(∫

G
|∇c ψ |2 dμβ

) p
2

,

where we set δ :=β/2 + (6 − p)/2p and made use of Hölder’s inequality in the
second line. This is (3.20). ��

Proposition 3.5. (large-p-case) Let G be a domain contained in B+
R ⊂ H ⊂ R

2

and f ∈ H(c)
2p
2+p ,β̃

(G) with p � 2, β̃ > 0 and c > 0. Then, the following inequality

holds:

∥
∥
∥

f

y δ̃

∥
∥
∥
p,0

� p

2
√
c
‖∇c f ‖ 2p

2+p ,β̃
, (3.21)

with

δ̃ = β̃
2+ p

2p
, p � 2 , β̃ > 0 .

Moreover, for f ∈ H(c)
β (G) with β > −2/p it holds that

∥
∥
∥

f

yδ

∥
∥
∥
p,0

� p

2
√
c

(2

ε
R1+ε

) 1
p ‖∇c f ‖β (3.22)

with

δ = β

2
+ 1− ε

p
, p � 2 , β > − 2

p
, ε > 0 .

Proof. Let ψ ∈ C∞
0 (G). We proceed similarly as in the proof of Proposition 3.4,

starting this time, however, with (3.18), that is

|ψ(x, y)| y−β �
∫ R

0
|∂yψ | y−βdy

and

|ψ(x, y)| �
∫ R

−R
|∂xψ | dx .
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We then obtain

∫

G
|ψ |2 y−βdμβ =

∫ R

0

∫ R

−R
|ψ |2 y−2βdxdy

�
∫ R

−R
sup
y

{|ψ(x, y)| y−β
}
dx ×

∫ R

0
sup
x

|ψ(x, y)| y−βdy

�
∫ R

−R

∫ R

0
|∂yψ | y−β dydx × 1

c

∫ R

0

∫ R

−R
|c ∂xψ | y−βdxdy

� 1

c

(∫

G
|∇c ψ | dμβ

)2

.

(3.23)

By approximation, inequality (3.23) holds for any g ∈ H(c)
1,β(G). Inserting

g =: | f |p/2 and 2β =: β̃(p/2 + 1) and using Hölder’s inequality, we further
obtain that

(∫

G

∣
∣ f y−β̃/2

∣
∣p dμβ̃

) 1
2

� 1√
c

∫

G

∣
∣∇c | f |p/2

∣
∣2 y−(β̃/2)(p/2−1) dμβ̃

� p

2
√
c

∫

G

∣
∣ f y−β̃/2

∣
∣p/2−1|∇c f | dμβ̃

� p

2
√
c

(∫

G

∣
∣ f y−β̃/2

∣
∣p dμβ̃

) p−2
2p
(∫

G
|∇c f | 2p

2+p dμβ̃

) 2+p
2p

.

After cancellation we have

(∫

G

∣
∣ f y−β̃

2+p
2p
∣
∣p dxdy

) 1
p

� p

2
√
c

(∫

G
|∇c f | 2p

2+p dμβ̃

) 2+p
2p

,

which is (3.21).
Using once more Hölder’s inequality, the right-hand side in (3.21) can be linked

up with the L2-norm:

‖∇c f ‖ 2p
2+p ,β̃

=
(∫

G
|∇c f | 2p

2+p y−β̃ dxdy

) 2+p
2p

�
(∫

G
y−(1−ε) dxdy

) 1
p
(∫

G
|∇c f |2 y−β dxdy

) 1
2

�
(2R Rε

ε

) 1
p ‖∇c f ‖β

,(3.24)

with ε := 1 − β + (2 + p)(β − β̃)/2. The necessary condition ε > 0 implies
β̃ < β+2(1−β)/(2+ p), which in turn by β̃ > 0 implies β > −2/p. Combining
(3.21) with (3.24) yields, finally, (3.22) with δ :=β/2+ (1− ε)/p. ��
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4. Uniqueness in the problems P�(AR) and P�(A∞)

Uniqueness for fixed function � means, in particular, uniqueness for fixed
boundary values represented by the harmonic function � and fixed set of zero-
positions represented by the angle �. Together with the (up to a constant p0)
unique solution of (2.22) for given q, this implies by (2.15) an (up to a positive
constant factor) unique solution f of the direction problem.

Let u1 and u2 be weak solutions of P�(AR), R > 1. Then, δu := u1 − u2
satisfies, weakly, the following “perturbation equation”:

∇ ·
(
∇ δu + a′ δu

ρ

)
= 0 in AR , δu

∣
∣
∂AR

= 0 (4.1)

with

a′ζ := − cos(u1 − �) + cos(u2 − �)

= sin
(1

2
(u1 + u2) − �

) sin
(
(u1 − u2)/2

)

(u1 − u2)/2
,

a′ρ := sin(u1 − �) − sin(u2 − �)

= cos
(1

2
(u1 + u2) − �

) sin
(
(u1 − u2)/2

)

(u1 − u2)/2
.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.2)

Note that given u1 and u2, a′ is here considered as a given (bounded) vector field
on AR and (4.1) is thus a linear equation in δu.

Proposition 4.1. Let u1, u2 ∈ H1
0,as(AR) be weak solutions of problem P�(AR)

with R > 1 and � ∈ L∞(AR) satisfying the bound (2.32). Then

u1 = u2 a. e. in AR .

Proof. For functions f ∈ H1
0,as(AR) we have by definition trace f

∣
∣{ρ=0} = 0; it is

thus sufficient to consider functions f ∈ H1
0 (A+

R ), where A+
R := AR ∩ {ρ > 0} ⊂

H .
Let us start with a heuristic consideration that motivates the choice of test

functions wewill make use of in the following. Let δu+ := max{δu, 0} and integrate
(4.1) over supp δu+ to get

∫

supp δu+
∇ ·
(
∇ δu+ + a′ δu+

ρ

)
dζdρ = 0 . (4.3)

On the assumption that δu+ and supp δu+ are such that Gauss’ theorem is applicable
one obtains

∫

∂(supp δu+)

n · ∇ δu+ds +
∫

∂(supp δu+)

n · a′ δu+

ρ
ds = 0 , (4.4)

Where n denotes the exterior normal at ∂(supp δu+). By definition we have
δu+
∣
∣
∂(supp δu+)

= 0 and n · ∇ δu+
∣
∣
∂(supp δu+)

� 0 and thus from (4.4) we conclude:

δu+ = ∇ δu+ = 0 on ∂(supp δu+) . (4.5)
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This conclusion continues even in the case that ∂(supp δu+) ∩ {ρ = 0} �= ∅. On
that portion of {ρ = 0} the second term in (4.4) need not vanish, but it exhibits a
sign that fits to that of the first term:

lim
ρ→0

n · a′ δu+

ρ
= −a′ρ

∣
∣
ρ=0 ∂ρδu+

∣
∣
ρ=0 = −∂ρδu+

∣
∣
ρ=0 � 0 .

At least in the real-analytic framework, (4.5) then implies by Cauchy-Kovalevs-
kaya’s theorem δu+ ≡ 0 (end of the heuristics).

Equation (4.3) suggests a test function that is constant on supp δu+. The se-
quence

(ψn) :=
( n δu+

n δu++ 1

)
=
( δu+

δu++ 1/n

)

approximates for n → ∞ such a test function. Note that with δu ∈ H1
0 (A+

R ) we
also have δu+ and ψn ∈ H1

0 (A+
R ) (see, for example, [8], p. 152f). Testing of (4.1)

by ψn yields

0 =
∫

A+R

(
∇δu + a′ζ

δu

ρ
eζ + a′ρ

δu

ρ
eρ

)
· ∇ψn dζdρ

= 1

n

∫

A+R

( |∇δu+|2
(δu++ 1/n)2

+ a′ζ
ρ

δu+ ∂ζ δu+

(δu++ 1/n)2

+
(a′ρ − 1

ρ
+ 1

ρ

) δu+ ∂ρδu+

(δu++ 1/n)2

)

dζdρ ,

(4.6)

where we made use of

∇ψn =
⎧
⎨

⎩

1

n

∇δu+

(δu++ 1/n)2
on supp δu+ ,

0 else .

By rearrangement, use of Cauchy-Schwarz’s inequality and some more estimates,
(4.6) takes the form

∫

A+R

|∇δu+|2
(δu++ 1/n)2

dζdρ +
∫

A+R

1

ρ

δu+ ∂ρδu+

(δu++ 1/n)2
dζdρ

�
[(∫

A+R

(a′ζ
ρ

)2
dζdρ

) 1
2 +

(∫

A+R

(a′ρ − 1

ρ

)2
dζdρ

) 1
2
]

×
(∫

A+R

|∇δu+|2
(δu++ 1/n)2

dζdρ

) 1
2

.

(4.7)
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By (4.2), (3.5), (A.7), and (B.4) the a′-related terms have the n-independent bound

∫

A+R

(a′ζ
ρ

)2
dζdρ �

∫

A+R

[ 1

ρ
sin
(1

2
(u1 + u2) − �

)]2
dζdρ

�
∫

A+R

1

ρ2

(1

2
(u1 + u2) − �

)2
dζdρ

�
∫

A+R

[(u1
ρ

)2 +
(u2

ρ

)2]
dζdρ + 2

∫

A+R

(�

ρ

)2
dζdρ

� 4
∫

A+R

(|∇u1|2 + |∇u2|2
)
dζdρ + 4π K 2R2 =: Ca′ ,

and similarly,
∫

A+R

(a′ρ − 1

ρ

)2
dζdρ

�
∫

A+R

1

ρ2

[

1− cos
(1

2
(u1 + u2) − �

)( sin
(
(u1 − u2)/2

)

(u1 − u2)/2

)]2

dζdρ

�
∫

A+R

1

ρ2

[

1− cos
(1

2
(u1 + u2) − �

)

+ cos
(1

2
(u1 + u2) − �

)(

1− sin
(
(u1 − u2)/2

)

(u1 − u2)/2

)]2

dζdρ

�
∫

A+R

2

ρ2

[(1

2
(u1 + u2) − �

)2 + 1

4
(u1 − u2)

2
]
dζdρ � 3Ca′ .

The second term on the left-hand side of (4.7) is finite by (3.5) for any n ∈ N:
∫

A+R

1

ρ

δu+ ∂ρδu+

(δu++ 1/n)2
dζdρ � 2n2

∫

A+R
|∇δu+|2dζdρ < ∞ ,

and, moreover, by integrating by parts, it turns out to be nonnegative (see Fig. 4):
∫

A+R

1

ρ

δu+ ∂ρδu+

(δu++ 1/n)2
dζdρ

=
∫

A+R

1

ρ
∂ρ

[ 1/n

δu++ 1/n
− 1+ ln

(
δu++ 1

n

)
− ln

1

n

]
dζdρ

=
∫

A+R

1

ρ2

[
ln
(
n δu++ 1

)− n δu+

n δu++ 1

]
dζdρ � 0 .

(4.8)

We therefore conclude from (4.7) that

∫

A+R

|∇δu+|2
(δu++ 1/n)2

dζdρ � 3
√
Ca′
(∫

A+R

|∇δu+|2
(δu++ 1/n)2

dζdρ

) 1
2

,
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Fig. 4. Graph of the function f : x �→ ln(1+ x) − x/(x + 1), x � 0

and, furthermore, by (3.6) that

9Ca′ �
∫

A+R

|∇δu+|2
(δu++ 1/n)2

dζdρ �
∫

A+R

∣
∣∇ ln(1+ n δu+)

∣
∣2dζdρ

� 1

4R2

∫

A+R

(
ln(1+ n δu+)

)2dζdρ .

(4.9)

The monotonically increasing sequence
(
ln(1 + n δu+)

)

n∈N thus has a bounded
sequence of integrals, and Levi’s theorem implies convergence almost everywhere,
which in turnmeans δu+ = 0 almost everywhere. This argumentworks for−δu− :=
−min{δu, 0} as well, which completes the proof. ��

In the unbounded case we deal with solutions u ∈ H1
loc,as(A∞) of the problem

P�(A∞) that satisfy a bound of the form

‖∇u‖2β =
∫

A∞
|∇u|2|ρ|−β dζdρ � C , 0 < β < 1 (4.10)

withweight |ρ|−β that cannot be neglected. To incorporate theweightwhile keeping
the divergence-character of the governing equation, we rewrite Equation (2.24) in
the region A+∞ in the variable v := ρβu:

∇ · (ρ−β∇v
)+∂ζ

[ 1

ρ

(
1− cos(ρ−βv−�)

)]+∂ρ

[ 1

ρ

(
sin(ρ−βv−�)−βρ−βv

)]
=0.

(4.11)

From (4.11) follows a perturbation equation for δv := v1 − v2 analogous to (4.1):

∇ ·
[
ρ−β

(
∇δv+(a′ζ eζ+(a′ρ−β) eρ

)δv

ρ

)]
= 0 in A+∞, δv

∣
∣
∂A+∞ = 0 (4.12)

with a′ given by (4.2) and again considered as a given vector field on A+∞.

Proposition 4.2. Let u1, u2 ∈ H1
loc,as(A∞) be weak solutions of problem P�(A∞)

with vanishing trace on S1 and bound (4.10); let � ∈ L∞(A∞) satisfy the bound
(2.34). Then

u1 = u2 a. e. in A∞ .
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Proof. Based on Equation (4.12) the proof proceeds quite analogously to that of
Proposition 4.1; we skip thus the details. With the sequence of test functions

(ψn) :=
( δv+

δv++ 1/n

)

one obtains instead of (4.6)

0 =
∫

A+∞

( |∇δv+|2
(δv++1/n)2

+a′ζ
ρ

δv+∂ζ δv
+

(δv++1/n)2
+
(a′ρ − 1

ρ
+1−β

ρ

) δv+∂ρδv+

(δv++1/n)2

)

dμβ.

(4.13)

The a′-related estimates are now done by (A.8) and (B.5):

∫

A+∞

(a′ζ
ρ

)2
dμβ �

∫

A+∞

[(u1
ρ

)2 +
(u2

ρ

)2]
dμβ + 2

∫

A+∞

(�

ρ

)2
dμβ

�
( 2

1+ β

)2(‖∇u1‖2β + ‖∇u2‖2β
)+ 4π K 2

β(1− β)
=: C̃ã′ ,

and analogously for a′ρ . The fourth term in (4.13) is still nonnegative,

(1− β)

∫

A+∞

1

ρ

δv+ ∂ρδv+

(δv++ 1/n)2
dμβ = (1− β)(1+ β)

∫

A+∞

1

ρ2 f (n δv+) dμβ � 0 ,

and (4.9) takes the form

9 C̃ã′ �
∫

A+∞

|∇δv+|2
(δv++ 1/n)2

dμβ �
∫

A+R

∣
∣∇ ln(1+ n δv+)

∣
∣2dμβ

� (1+ β)2

4R2

∫

A+R

(
ln(1+ n δv+)

)2dμβ

with arbitrary R > 1. By n → ∞ we can thus again conclude that δv+ = 0 and
hence δu+ = 0 almost everywhere in A+

R for any R > 1. ��

5. The Linearized Problem

This section is devoted to the solution of Equation (2.31) for given right-
hand side and given coefficients aζ [·] and aρ[·] of type (2.26) with measurable
but otherwise not further specified argument. Let us start with the observation
that by antisymmetry it is sufficient to consider (2.31) in A+

R = AR ∩ {ρ > 0}.
Given �, u ∈ H1

0 (A+
R ) is called a weak solution of the problem P�(A+

R ) if u
satisfies (2.31), with AR replaced by A+

R , for any test function ψ ∈ C∞
0 (A+

R ). The
equivalence with P�(AR) is clear when observing the one-to-one correspondence
between elements of H1

0 (A+
R ) and H1

0,as(AR) (by antisymmetric continuation and
restriction, respectively).
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The general solution strategy for equations of type
∫

A+R
∇u · ∇ψ dζdρ +

∫

A+R

u

ρ
a · ∇ψ dζdρ =

∫

A+R

�

ρ
a · ∇ψ dζdρ , (5.1)

where a abbreviates a[ f ]with some measurable function f : A+
R → R, is to apply

a Lax-Milgram type criterion, which requires, in particular, coerciveness of the
bilinear form on the left-hand side of (5.1). In this situation as sharp as possible
bounds on a play a crucial role. A first step in this direction is to introduce the
variable v := ραu that allows us to shift aρ by α and thus to take advantage of the
asymmetry between upper and lower bounds on aρ (see Fig. 3). In fact, expressing
(5.1) by v, one obtains

∫

A+R
∇v · ∇ψ dμα +

∫

A+R

v

ρ
aα · ∇ψ dμα =

∫

A+R

�

ρ
a · ∇ψ dζdρ (5.2)

with dμα = ρ−αdζdρ and aα = (aζ , aρ − α). Proper choice of α “centers” aρ

with the effect of an improved bound:

‖aα
ρ‖∞ = ‖aρ − α‖∞ � 0.61 for α = 0.39 . (5.3)

Obviously the bound

‖aζ‖∞ � 0.73 (5.4)

on the antisymmetric function aζ cannot be improved this way.
In a second step we want to take advantage of the improved constant in the

Hardy inequality (3.5) when weighted by a factor ρ−γ , γ > 0. Note that by the box
criterion 3.2 this constant is optimal in A+

R . The Lax-Milgram criterion must now
be adapted to this weighted situation. A suitable version is given in the following
proposition whose proof is deferred to Appendix C.

Proposition 5.1. (generalized Lax-Milgram criterion) Let B and B̃ be reflexive
Banach spaces and B : B× B̃ → R be a continuous bilinear form, that is for some
K > 0 holds

B(u, ũ) � K ‖u‖B‖ũ‖B̃ for all u ∈ B , ũ ∈ B̃ . (5.5)

Let, furthermore, B̃′ be the dual space of B̃ with norm

‖w‖B̃′ := sup
0 �=ũ∈B̃

〈w, ũ〉
‖ũ‖B̃

, (5.6)

where 〈·, ·〉 denotes the dual pairing between B̃ and B̃′. Let, finally, c > 0 and
c̃ > 0 be constants such that

sup
0 �=ũ∈B̃

B(u, ũ)

‖ũ‖B̃
� c ‖u‖B for all u ∈ B , (5.7)

sup
0 �=u∈B

B(u, ũ)

‖u‖B � c̃ ‖ũ‖B̃ for all ũ ∈ B̃ . (5.8)
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Then, the equation

B(u, ũ) = 〈w, ũ〉 for all ũ ∈ B̃ (5.9)

with w ∈ B̃′ has a unique solution u ∈ B with bound

‖u‖B � 1

c
‖w‖B̃′ . (5.10)

Obviously, conditions (5.7) and (5.8) replace the coercivity condition B(u, u) �
c ‖u‖2 of the ordinary Lax-Milgram criterion for a single (Hilbert) space.

To apply the criterion we set

B :=H(d)
α+γ (A+

R ) , B̃ :=H(e)
α−γ (A+

R ) ,

withH(c)
β (G) defined in (3.2) and with parameters

α � 0 , γ � α , 0 < d � 1 , e � 1 (5.11)

yet to be fixed. The bilinear form B is given by

B[v,ψ] := B0[v,ψ]+B1[v,ψ] :=
∫

A+R
∇v · ∇ψdμα+

∫

A+R

v

ρ
aα ·∇ψdμα (5.12)

with

v ∈ H(d)
α+γ (A+

R ) ⊂ H2α(A+
R ) ⊂ H1

0 (A+
R ) , ψ ∈ H(e)

α−γ (A+
R ) ⊃ H1

0 (A+
R ) . (5.13)

Condition (5.5) may easily be checked by Cauchy-Schwarz’s inequality and (3.5):

|B[v,ψ]| �
∫

A+R
|∇v| ρ−(α+γ )/2 |∇ψ | ρ−(α−γ )/2 dζdρ

+
∫

A+R
|v/ρ| ρ−(α+γ )/2

√
2 |∇ψ | ρ−(α−γ )/2 dζdρ

� ‖∇v‖α+γ ‖∇ψ‖α−γ +√
2 ‖v/ρ‖α+γ ‖∇ψ‖α−γ

�
( 1

d
+ 2

√
2

1+ α + γ

)
‖∇d v‖α+γ ‖∇eψ‖α−γ .

(5.14)

As to conditions (5.7), (5.8) note that there is no useful information about aα other
than the bounds (5.3), (5.4). In (5.12), B1 is thus considered as a perturbation of
B0. The optimal (� largest possible) constants in (5.7), (5.8) with respect to B0
then are determined by the following min-max problems:

inf
0 �=v∈H(d)

α+γ (A+R )

sup
0 �=ψ∈H(e)

α−γ (A+R )

∫

A+R
∇v · ∇ψ dμα

‖∇d v‖α+γ ‖∇e ψ‖α−γ

=: Cc , (5.15)

inf
0 �=ψ∈H(e)

α−γ (A+R )

sup
0 �=v∈H(d)

α+γ (A+R )

∫

A+R
∇v · ∇ψ dμα

‖∇d v‖α+γ ‖∇e ψ‖α−γ

=: C̃c . (5.16)



360 Ralf Kaiser & Tobias Ramming

On the other side, B1 may be estimated similarly as in (5.14):
∣
∣
∣
∣

∫

A+R

v

ρ
aα · ∇ψ dμα

∣
∣
∣
∣

� ‖aα
ρ‖∞

∫

A+R

∣
∣
∣
v

ρ

∣
∣
∣ ρ

−(α+γ )/2 (|e ∂ζ ψ | + |∂ρψ |)ρ−(α−γ )/2 dζdρ

� ‖aα
ρ‖∞

2

1+ α + γ
‖∂ρv‖α+γ

√
2 ‖∇eψ‖α−γ

�
2
√
2 ‖aα

ρ‖∞
1+ α + γ

‖∇d v‖α+γ ‖∇eψ‖α−γ ,

(5.17)

where we have set

e := ‖aζ ‖∞
‖aα

ρ‖∞
. (5.18)

It is this estimate that profits by the introduction of the parameters d and e; note that
any d > 0 is allowed in (5.17). Combining (5.12), (5.15), and (5.17) one obtains
for any v ∈ H(d)

α+γ (A+
R ):

sup
0 �=ψ∈H(e)

α−γ (A+R )

B[v,ψ]
‖∇eψ‖α−γ

� sup
0 �=ψ∈H(e)

α−γ (A+R )

{
B0[v,ψ]

‖∇eψ‖α−γ

− 2
√
2 ‖aα

ρ‖∞
1+ α + γ

‖∇d v‖α+γ

}

�
(

Cc −
2
√
2 ‖aα

ρ‖∞
1+ α + γ

)

‖∇d v‖α+γ ,

(5.19)

which is condition (5.7), provided that

Cc >
2
√
2 ‖aα

ρ‖∞
1+ α + γ

. (5.20)

An analogous estimate yields

sup
0 �=v∈H(d)

α+γ (A+R )

B[v,ψ]
‖∇d v‖α+γ

�
(

C̃c −
2
√
2 ‖aα

ρ‖∞
1+ α + γ

)

‖∇eψ‖α−γ ,

which is (5.8), provided that

C̃c >
2
√
2 ‖aα

ρ‖∞
1+ α + γ

. (5.21)

By (5.20) and (5.21) the generalized Lax-Milgram criterion 5.1 provides a solution
v ∈ H(d)

α+γ (A+
R ) of Equation (5.2), which by (5.6) and (5.10) satisfies the bound

‖∇v‖α+γ � 1

d
‖∇d v‖α+γ � 1

d

1

�
sup

0 �=ψ∈H(e)
α−γ (A+R )

∫

A+R
�
ρ
aα · ∇ψ dζdρ

‖∇eψ‖α−γ

� 1

d

1

�

∥
∥
∥
�

ρ
aα
∥
∥
∥

γ−α
�

√
2

� d
‖�‖2+γ−α
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with

� :=Cc −
2
√
2 ‖aα

ρ‖∞
1+ α + γ

. (5.22)

Having in mind problem P�(A+
R ) we call a function v ∈ H2α(A+

R ) solution of
Equation (5.2) with given measurable functions aζ , aα

ρ , � : A+
R → R, if v satisfies

(5.2) for anyψ ∈ C∞
0 (A+

R ). By (5.13), Proposition5.1obviously provides a solution
of this type. We summarize these results in the following proposition.

Proposition 5.2. Let aζ , aα
ρ be bounded, measurable functions on A+

R , satisfying
(5.3) and (5.4), and let α, γ , d, e, and R be such that conditions (5.11), (5.20), and
(5.21) are satisfied, where Cc and C̃c are given by (5.15) and (5.16), respectively.
Let, furthermore, � : A+

R → R be such that ‖�‖2+γ−α < ∞. Then, Equation

(5.2) has a unique solution v ∈ H(d)
α+γ (A+

R ) ⊂ H2α(A+
R ) satisfying the bound

‖∇d v‖α+γ �
√
2

� d
‖�‖2+γ−α (5.23)

with � given by (5.22).

By Lemma 3.3 the grad-norms of u and v are related by

C̃γ+α

Cγ−α

‖∇v‖α+γ � ‖∇u‖γ−α � Cγ+α

C̃γ−α

‖∇v‖α+γ . (5.24)

The following corollary is thus an immediate consequence of the preceeding propo-
sition:

Corollary 5.3. Under the conditions ofProposition5.2,Equation (5.1) has aunique
solution u ∈ H1

0 (A+
R ) with bound

‖∇u‖γ−α � Ĉ ‖�‖2+γ−α , (5.25)

where the constant Ĉ depends on α, γ , d, e, and R.

Remark. Inequality (3.4) offers yet another possibility to improve the Hardy con-
stant: higher L p-spaces. The generalized Lax-Milgram criterion then is applied to
conjugate L p-spaces (see [13]). However, the determination of the constants cor-
responding to (5.15) and (5.16) requires now the solution of systems of nonlinear
partial differential equations as opposed to the linear systems associated to (5.15)
and (5.16), which are considered and solved in Section 6.
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6. A Minimum-Maximum Problem

In this section the min-max problems (5.15) and (5.16) are studied in some
detail with the goal to establish parameter sets {α, γ, d, e} that satisfy the suffi-
cient conditions (5.20) and (5.21) for solvability of the linearized equation (5.2).
Proposition 6.1 allows us to relate the problem posed in A+∞ to one posed in some
finite rectangle Q ⊂ H . The rectangular geometry then allows the reduction of
the two-dimensional problem to a sequence of one-dimensional ones (Proposition
6.3). We determine the Euler–Lagrange equations for the two-dimensional as well
as for the one-dimensional problems and find a common lower bound on Cc and
C̃c in terms of the minimum eigenvalue associated to these equations (Proposition
6.2). The analytic solution of even the one-dimensional problems succeeds only in
a special (the x-independent) case either directly (see Appendix D) or via Euler–
Lagrange equations (see subsection 6.3). Finally, based on the analytic solution, we
derive explicit rigorous lower bounds on Cc and C̃c (Proposition 6.4), which are
corroborated by the numerical solution of the general one-dimensional equations
(see Appendix E).

Let us start with some simple observations. Using the notation

F[v,ψ] :=F[v,ψ;G] :=
∫

G ∇v · ∇ψ dμα

‖∇d v‖α+γ ‖∇eψ‖α−γ

=

∫

G

(
∂xv ∂xψ + ∂yv ∂yψ

)
y−α dxdy

(∫

G

(
(d ∂xv)2 + (∂yv)2

)
y−(α+γ )dxdy

)1/2

× 1
(∫

G

(
(e ∂xψ)2 + (∂yψ)2

)
y−(α−γ )dxdy

)1/2

(6.1)

and

Cc :=Cc(G) :=Cc(G;α, γ, d, e) := inf
0 �=v∈H(d)

α+γ (G)

sup
0 �=ψ∈H(e)

α−γ (G)

F[v,ψ;G] , (6.2)

C̃c := C̃c(G) := C̃c(G;α, γ, d, e) := inf
0 �=ψ∈H(e)

α−γ (G)

sup
0 �=v∈H(d)

α+γ (G)

F[v,ψ;G] , (6.3)

where G ⊂ H and α, γ , d, and e satisfy (5.11), one obtains, by Cauchy-Schwarz’s
inequality,

F[v,ψ] � ‖∇1/e v‖α+γ ‖∇eψ‖α−γ

‖∇d v‖α+γ ‖∇eψ‖α−γ

= ‖∇1/e v‖α+γ

‖∇d v‖α+γ

. (6.4)

Let Ix × Iy ⊂ G some rectangle, β ∈ R, 0 �≡ χx ∈ C∞
0 (Ix ), and (χn) ⊂ C∞

0 (Iy)
a sequence of test functions with

∫

Iy
χ2
n y−βdy = 1 , lim

n→∞

∫

Iy
χ ′
n
2 y−βdy = ∞ .
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Setting vn(x, y) :=χx (x) χn(y) ∈ C∞
0 (G) and β :=α + γ we find

lim
n→∞

‖∇1/e vn‖α+γ

‖∇d vn‖α+γ

= 1 , (6.5)

which implies Cc � 1. The lower bound Cc � 0 follows for given v and ψ by
proper choice of the relative sign.

In the case γ = 0 by the choice ψ := v we obtain the lower bound

C2
c � inf

0 �=v∈Hα(G)

( ∫

G

(
(∂xv)2 + (∂yv)2

)
dμα

)2

∫

G

(
(d ∂xv)2 + (∂yv)2

)
dμα

∫

G

(
(e ∂xv)2 + (∂yv)2

)
dμα

� inf
0�s<∞

(1+ s)2

(d2 + s)(e2 + s)
,

where s denotes the ratio
∫

G(∂yv)2dμα/
∫

G(∂xv)2dμα . By the condition

e2d2 <
d2 + e2

2
< 1, (6.6)

it is easily checked that Cc � 1 and hence Cc(G;α, 0, d, e) = 1.
Concerning G the following scaling property of F plays an important role. Let

Gλ := {(λx, λy) ∈ H : (x, y) ∈ G} and
Sλ : Hβ(G) → Hβ(Gλ) , f �→ fλ := f (λ−1 · ) , λ > 0 . (6.7)

Obviously we then have

F[v,ψ;G] = F[vλ, ψλ;Gλ] (6.8)

andhenceCc(G) = Cc(Gλ). In particular, applying Sλ on B
+
R and A+

r0,∞ := {(x, y) ∈
H : x2 + y2 > r20 } we find in the limits λ → ∞ and λ → 0, respectively,

Cc(B
+
R ) = Cc(H) = Cc(A

+
r0,∞) (6.9)

for any R > 0, r0 � 0. Similary, for any rectangle Q := (−a, a) × (0, b) ⊂ H
holds

Cc(Q) = Cc(H) . (6.10)

The same or similar arguments apply to C̃c with identical results. We summarize
these results in the following proposition:

Proposition 6.1. Let G ⊂ H and let α, γ , d, and e satisfy the conditions (5.11)
and (6.6). Then, the variational constants Cc and C̃c given by (6.1)–(6.3) satisfy
the bounds

0 � Cc � 1 , 0 � C̃c � 1 . (6.11)

For γ = 0 holds

Cc(G;α, 0, d, e) = 1 = C̃c(G;α, 0, d, e) , (6.12)

and Cc(H) and C̃c(H) coincide with Cc and C̃c, respectively, for some (bounded
and unbounded) standard domains such as Q, B+

R , or A
+
r0,∞.
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6.1. Euler–Lagrange Equations

Critical points of the variational expression (6.1) are (weak) solutions of the
associated Euler–Lagrange equations. We derive these equations in two steps. First
we fix v ∈ Hα+γ (G) and vary the functional

∫

G
∇v · ∇ψ y−α dxdy (6.13)

with respect to ψ under the constraint ‖∇eψ‖α−γ = ‖∇d v‖α+γ . Introducing the
Lagrange parameter λ ∈ R, this is equivalent to the variation of the extended
functional

∫

G
∇v · ∇ψ y−α dxdy − λ

(‖∇eψ‖2α−γ − ‖∇d v‖2α+γ

)

with respect toψ and λ (see, for example, [4], vol. I, p. 216 ff). Setting this variation
to zero one obtains

∇ · (y−α∇v) − 2 λ∇e · (y−(α−γ )∇eψ) = 0 ,

‖∇eψ‖α−γ = ‖∇d v‖α+γ .

}

(6.14)

In the second step we vary (6.13) under the differential constraint (6.14)1 and
‖∇d v‖α+γ = 1 with respect to v and ψ . Introducing the Lagrange multipliers p,
where y−(α−γ )/2 p ∈ H1(G), and μ ∈ R, this is equivalent to the variation of the
extended functional

∫

G
∇v · ∇ψ y−α dxdy

+
∫

G
∇ p · ∇v y−α − 2 λ∇e p · ∇eψ y−(α−γ ) dxdy

−μ
(‖∇d v‖2α+γ − 1

)

(6.15)

with respect to v, ψ , p, and μ. Setting again the variation to zero one obtains
together with (6.14)2:

∇ · (y−α∇ψ) − 2μ∇d · (y−(α+γ )∇d v) +∇ · (y−α ∇ p) = 0 ,

∇ · (y−α∇v) − 2 λ∇e · (y−(α−γ )∇e p) = 0 ,

∇ · (y−α∇v) − 2 λ∇e · (y−(α−γ )∇eψ) = 0 ,

y−(α−γ )/2 p
∣
∣
∂G = 0 ,

‖∇eψ‖α−γ = ‖∇d v‖α+γ = 1 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.16)

This system is yet somewhat redundant. By (6.16)4 and (3.12) one finds p ∈
Hα−γ (G); setting thus p :=ψ makes Equations (6.16)2,3 equivalent. Furthermore,
multiplying (6.16)1 by v and (6.16)3 by ψ and integrating over G one finds by
(6.16)5 that μ = 2 λ. Finally, when discarding conditions (6.16)5, we end up with
the eigenvalue problem

∇ · (y−α∇ψ) − μ∇d · (y−(α+γ )∇d v) = 0 ,

∇ · (y−α∇v) − μ∇e · (y−(α−γ )∇eψ) = 0 ,

}

(6.17)
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whose eigenvalue μ is related to the critical point (v, ψ) by

μ =
∫

G ∇v · ∇ψ y−α dxdy

‖∇d v‖α+γ ‖∇eψ‖α−γ

. (6.18)

Note that stationarity of the functional (6.1) is only a necessary condition for min-
max-points. Comparing (6.18) with (5.15) we can thus only conclude that

Cc � μmin

where

μmin := inf {μ : μ eigenvalue of(6.17) } . (6.19)

Repeating this procedure with v and ψ interchanged yields instead of (6.14)

∇ · (y−α∇ψ) − 2 λ∇d · (y−(α+γ )∇d v) = 0 ,

‖∇d v‖α+γ = ‖∇eψ‖α−γ .

}

(6.20)

Therefore, in the second step we vary instead of (6.15) the functional
∫

G
∇v · ∇ψ y−α dxdy

+
∫

G
∇ p · ∇ψ y−α − 2 λ∇d p · ∇d v y−(α+γ ) dxdy

−μ
(‖∇eψ‖2α−γ − 1

)

(6.21)

with respect to v, ψ , p, and μ. Instead of (6.16) one obtains

∇ · (y−α∇ψ) − 2 λ∇d · (y−(α+γ )∇d p) = 0 ,

∇ · (y−α∇v) − 2μ∇e · (y−(α−γ )∇eψ) − ∇ · (y−α∇ p) = 0 ,

∇ · (y−α∇ψ) − 2 λ∇d · (y−(α+γ )∇d v) = 0 ,

y−(α+γ )/2 p
∣
∣
∂G = 0 ,

‖∇d v‖α+γ = ‖∇eψ‖α−γ = 1 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.22)

Here, p ∈ Hα+γ (G) and setting p := v makes (6.22)1,3 equivalent. As before we
find μ = 2 λ with the result that v, ψ , and μ satisfy precisely the Equations (6.17).
We summarize these findings in the following proposition.

Proposition 6.2. Let (6.15) and (6.21) be the extended functionals associated to the
variational problems (5.15) and (5.16), respectively. Then both functionals share
the same set of critical points and their min-max-related critical values Cc and C̃c

satisfy the common lower bound

Cc � μmin , C̃c � μmin (6.23)

with μmin given by (6.19). In the case of a unique critical value μ we have

Cc = μ = C̃c . (6.24)
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Fig. 5. The rectangle Q in the half space H

6.2. One-Dimensional Min-Max Problems

Let us now specialize to the rectangular domain Q = (−a, a)× (0, b) (see Fig.
5), which suggests the following product ansatz for the variational functions v and
ψ :

v(x, y) = sn(x) vn(y) ψ(x, y) = sn(x) ψn(y) (6.25)

with

sn(x) := 1√
a
sin kn(x + a) , kn := n

π

2a
, n ∈ N . (6.26)

Note that sn obeys the boundary conditions sn(±a) = 0. Inserting (6.25) into the
two-dimensional variational expression (6.1) yields a sequence of one-dimensional
expressions. The following proposition relates the associated min-max problems
with each other.

Proposition 6.3. Let sn as in (6.26) and let vn, ψn : (0, b) → R such that snvn ∈
Hα+γ (Q), snψn ∈ Hα−γ (Q) for any n ∈ N. Let, furthermore, F[v,ψ;G], Cc,
and C̃c as given in (6.1)–(6.3). Then

Cc(Q) = inf
n∈N inf

snvn∈Hα+γ (Q)
sup

snψn∈Hα−γ (Q)

F[snvn, snψn; Q] , (6.27)

C̃c(Q) = inf
n∈N inf

snψn∈Hα−γ (Q)
sup

snvn∈Hα+γ (Q)

F[snvn, snψn; Q] . (6.28)

Proof. Let us start with the observation that {sn : n ∈ N} is a complete orthonormal
set in L2((−a, a)). We may thus assume for v andψ L2–expansions in the variable
x with coefficients vn(y) and ψn(y), respectively:

v(x, y) =
∞∑

n=1

sn(x) vn(y) , ψ(x, y) =
∞∑

n=1

sn(x) ψn(y) . (6.29)
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Inserting (6.29) into F[v,ψ] and performing the x–integration one obtains

F[v,ψ] =

∞∑

n=1

Nn[vn, ψn]
( ∞∑

n=1

(D+
n [vn]

)2
)1/2( ∞∑

n=1

(D−
n [ψn]

)2
)1/2

(6.30)

with

Nn[vn, ψn] :=
∫ b

0

(
v′nψ ′

n + k2n vnψn
)
y−αdy ,

D+
n [vn] :=

(∫ b

0

(
v′n2 + d2k2n v2n

)
y−(α+γ )dy

) 1
2

,

D−
n [ψn] :=

(∫ b

0

(
ψ ′
n
2 + e2k2n ψ2

n

)
y−(α−γ )dy

) 1
2

.

Fixing v(x, y), that is now fixing {vn(y) : n ∈ N}, and using Cauchy-Schwarz’s
inequality in the form

∞∑

n=1

an

( ∞∑

n=1

b2n
)1/2

�
( ∞∑

n=1

(an
bn

)2
)1/2

, bn > 0 , n ∈ N

we may estimate:

sup
{ψn : n∈N}

∞∑

n=1

Nn[vn, ψn]
( ∞∑

n=1

(D−
n [ψn]

)2
)1/2

�
( ∞∑

n=1

(

sup
ψn

Nn[vn, ψn]
D−

n [ψn]
)2)1/2

. (6.31)

Inequality (6.31) is in fact an equality as can be seen by amore careful consideration
that makes use of an optimal choice of the relative amplitudes of the ψn . Let us
demonstrate this by just two terms. Replacing ψ2 by λ ψ2 one obtains

sup
{ψ1,ψ2}

sup
λ∈R+

N1[v1, ψ1] +N2[v2, λψ2]
((D−

1 [ψ1]
)2 + (D−

2 [λ ψ2]
)2
)1/2

= sup
{ψ1,ψ2}

sup
λ∈R+

N1[v1, ψ1] + λN2[v2, ψ2]
((D−

1 [ψ1]
)2 + λ2

(D−
2 [ψ2]

)2
)1/2

=
(

sup
ψ1

(N1[v1, ψ1]
D−

1 [ψ1]
)2

+ sup
ψ2

(N2[v2, ψ2]
D−

2 [ψ2]
)2)1/2

,
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as

sup
λ∈R+

a1 + λ a2
(
b21 + λ2b22

)1/2 =
((a1

b1

)2 +
(a2
b2

)2
)1/2

,

where w.l.o.g. we may assume a1 > 0, a2 > 0, b1 > 0, b2 > 0. Iterating this
argument yields (6.31) as equality.

Applying (6.31) as equality to (6.30) yields

inf
v∈Hα+γ (Q)

sup
ψ∈Hα−γ (Q)

F[v,ψ]

= inf{vn : n∈N}
1

( ∞∑

n=1

(D+
n [vn]

)2
)1/2

sup
{ψn : n∈N}

∞∑

n=1

Nn[vn, ψn]
( ∞∑

n=1

(D−
n [ψn]

)2
)1/2

= inf{vn : n∈N}

( ∞∑

n=1

(D+
n [vn]

)2

∞∑

m=1

(D+
m [vm]

)2

(

sup
ψn

Nn[vn, ψn]
D+

n [vn]D−
n [ψn]

)2)1/2

� inf
n∈N inf

vn
sup
ψn

Nn[vn, ψn]
D+

n [vn]D−
n [ψn] .

(6.32)

On the other hand, let
(
(vn, ψn)

)

n∈N be an optimizing sequence for the right-hand
side of (6.32). The sequence

(
(snvn, snψn)

)

n∈N, when inserted into F[· , ·], clearly
satisfies

F[snvn, snψn] = sup
ψ

F[snvn, ψ] ,

and hence demonstrates that

inf
v

sup
ψ

F[v,ψ] � inf
n∈N inf

vn
sup
ψn

Nn[vn, ψn]
D+

n [vn]D−
n [ψn] .

Inequality (6.32) is thus an equality, too. By (6.2) this is the assertion (6.27). With
obvious modifications these arguments apply to (6.28) as well. ��

6.3. A One-Dimensional Analytical Test Case

An especially simple one-dimensional problem is the x-independent case. It
allows a direct analytic solution of the min-max problem (see Appendix D). Here
we consider the corresponding Euler–Lagrange equations, which allow likewise
an analytic solution. This solution is useful to estimate the min-max value and its
dependence on the parameters also in the general case and, even more important, it
gives the decisive clue how to obtain the sufficient lower bounds in subsection 6.4.

Let us introduce new variables, viz.,

w := y−β+v := y−(α+γ )/2 v , χ := y−β−ψ := y−(α−γ )/2 ψ , (6.33)



Axisymmetric Solutions in the Geomagnetic Direction Problem 369

which by (3.12) have the advantage to be both in H1
0 . In the x-independent case

system (6.17) then takes the form

χ ′′
0−

β+−β−
y

χ ′
0−

(β++1)β−
y2

χ0 = μ0

[
w′′
0−

(β++1)β+
y2

w0

]
,

w′′
0 +

β+ − β−
y

w′
0 −

(β− + 1)β+
y2

w0 = μ0

[
χ ′′
0 − (β− + 1)β−

y2
χ0

]
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.34)

A power ansatz of type
(
w0
χ0

)

=
(
a
b

)

yδ, a, b, δ ∈ R

is here successful and yields without difficulty 4 linear independent solutions:
(
1
0

)

y−β+ ,

(
0
1

)

y−β− ,

(
μ0 β0

2 β+ + 1

)

yβ++1 ,

(
2 β− + 1
μ0 β0

)

yβ−+1 ,

where β0 :=β+ + β− + 1. Implementing the boundary conditions

w0(b0) = χ0(b0) = 0 , w0(b1) = χ0(b1) = 0 , 0 � b0 < b1

yields a homogeneous 4 × 4 system in the amplitudes, whose determinant must
vanish:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b−β+
0 0 μ0 β0 b

β++1
0 (2 β− + 1) bβ−+1

0

0 b−β−
0 (2 β+ + 1) bβ++1

0 μ0 β0 b
β−+1
0

b−β+
1 0 μ0 β0 b

β++1
1 (2 β− + 1) bβ−+1

1

0 b−β−
1 (2 β+ + 1) bβ++1

1 μ0 β0 b
β−+1
1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 . (6.35)

Equation (6.35) determines a unique nonnegative eigenvalue μ0, viz.

μ2
0 =

(

1−
( β+ − β−
β+ + β− + 1

)2
) (

1− (b0/b1)β++β−+1
)2

(
1− (b0/b1)2 β++1

)(
1− (b0/b1)2 β−+1

)

=
(

1−
( γ

1+ α

)2
) (

1− (b0/b1)1+α
)

(
1− (b0/b1)1+α+γ

)

(
1− (b0/b1)1+α

)

(
1− (b0/b1)1+α−γ

)

= (1+ γ̃ )(1− B)

1− B1+γ̃

(1− γ̃ )(1− B)

1− B1−γ̃
,

(6.36)

where in the last line we have set

γ̃ := γ

1+ α
, B :=

(b0
b1

)1+α

.

As can be read off (6.36),μ0 depends only on the ratio b0/b1, which is in accordance
with the scaling property (6.8); B �→ μ0 is a monotonically increasing function
on [0, 1] taking its minimum value (1− γ̃ 2)1/2 at B = 0, which corresponds to an
interval that touches the origin or stretches up to infinity. γ̃ �→ μ0 is amonotonically
decreasing function on [0,∞) with μ0 = 1 at γ̃ = 0 in accordance with (6.12).
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Fig. 6. μ0 versus γ for α = 0.39 and b0/b1 = 0, 10−6, 10−4, 10−2 (from bottom to top)

Figure 6 shows curves μ0 versus γ for some ratios b0/b1; note that γ > 1 + α

makes sense in the case that b0/b1 > 0.
Computing w0 and χ0 explicitly we find up to positive factors and a global sign

the unique optimal pair

w0 = (1− B)
( y

b1

)1+(α+γ )/2 − (1− B1+γ̃
)( y

b1

)1+(α−γ )/2

+B
(
1− B γ̃

)( y

b1

)−(α+γ )/2
,

χ0 =
(
1− B1−γ̃

)( y

b1

)1+(α+γ )/2 − (1− B)
( y

b1

)1+(α−γ )/2

−B
(
1− B−γ̃

)( y

b1

)−(α−γ )/2

,

with the remarkable property that w0 and χ0 conicide in the limit B = 0:

w0 =
( y

b1

)1+(α+γ )/2 −
( y

b1

)1+(α−γ )/2 = χ0 on (0, b1) . (6.37)

Note, by the way, that the uniqueness of the solution according to (6.24) implies
Cc = μ0 = C̃c for the x-independent versions of problems (6.2) and (6.3).

6.4. Lower Bounds on Cc and C̃c

Lower bounds onCc and C̃c are obtained by replacing the maximizing function
by a test function leaving us with a pure minimization problem. When using the
“symmetrical” variablesw andχ , the test case of the preceeding subsection suggests
the kind of test function that yields sharp bounds – at least for large domains. Note,
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moreover, that differently to min-max values a pure minimum has the advantage to
depend monotonically on the domain.

Let us start with rewriting the functional (6.1) in the variables (6.33). The v-
related denominator then takes the form

D+[v] :=
(∫

G

(
(d ∂xv)2 + (∂yv)2

)
y−(α+γ )dxdy

)1/2

=
(∫

G

(
(d ∂xw)2 +

(
∂yw + β+

w

y

)2 )
dxdy

)1/2

=
(∫

G

(
|∇d w|2 + δ+

(w

y

)2 )
dxdy

)1/2

=: D̃+[w] ,

where we made use of the notation β± := (α ± γ )/2 and δ± :=β±(β± + 1). In the
last line we applied integration by parts. Similarly, one obtains

D−[ψ] :=
(∫

G

(
(e ∂xψ)2 + (∂yψ)2

)
y−(α−γ )dxdy

)1/2

=
(∫

G

(
|∇e χ |2 + δ−

(χ

y

)2 )
dxdy

)1/2

=: D̃−[χ ] ,

N [v,ψ] :=
∫

G

(
∂xv ∂xψ + ∂yv ∂yψ

)
y−αdxdy

=
∫

G

(
∂xw ∂xχ +

(
∂yw + β+

w

y

)(
∂yχ + β−

χ

y

))
dxdy =: Ñ [w,χ ] ,

and hence,

F[v,ψ;G] = Ñ [w,χ ]
D̃+[w] D̃−[χ ] =: F̃[w,χ;G] .

In view of (6.37) we now replace χ by w and obtain thus a lower bound on Cc:

Cc(A
+
R ) = inf

w∈H1
0 (A+R )

sup
χ∈H1

0 (A+R )

F̃[w,χ; A+
R ]

� inf
w∈H1

0 (A+R )

F̃[w,w; A+
R ] � inf

w∈H1
0 (A+∞)

F̃[w,w; A+∞]
= inf

w∈H1
0 (H)

F̃[w,w; H ] = inf
w∈H1

0 (Q)

F̃[w,w; Q] .
(6.38)

Here, in the last line we made use of the scaling property (6.8). As in subsection
6.2 the two-dimensional variational problem can be reduced to one dimension by
expanding w into the complete orthonormal system {sn(x) : n ∈ N} with sn(x)
given by (6.26):

w(x, y) =
∞∑

n=1

sn(x) wn(y) . (6.39)
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Inserting (6.39) into D̃+[w] yields

D̃+[w] =
( ∞∑

n=1

∫ b

0

(
d2k2n w2

n + w′
n
2 + δ+

(wn

y

)2 )
dy

)1/2

=
( ∞∑

n=1

kn

∫ knb

0

(
d2w̃2

n + w̃′
n
2 + δ+

( w̃n

z

)2 )
dz

)1/2

=:
( ∞∑

n=1

kn
(
D̃+

n [w̃n]
)2
)1/2

,

where we have introduced the variables z := kn y and w̃n(z) :=wn(y). An ana-
logous calculation holds for D̃−[w], whereas Ñ [w,w] can be further simplified
by integration by parts:

Ñ [w,w] =
∞∑

n=1

∫ b

0

(
k2n w2

n +
(
w′
n + β+

wn

y

)(
w′
n + β−

wn

y

))
dy

=
∞∑

n=1

∫ b

0

(
k2n w2

n + w′
n
2 + δ0

(wn

y

)2 )
dy

=
∞∑

n=1

kn

∫ knb

0

(
w̃2
n + w̃′

n
2 + δ0

( w̃n

z

)2 )
dz

=:
∞∑

n=1

kn Ñn[w̃n]

with the abbreviation δ0 :=β+β−+ (β++β−)/2. Using the elementary inequality

∞∑

n=1

an

( ∞∑

n=1

b2n
)1/2( ∞∑

n=1

c2n
)1/2

� inf

{
an

bn cn
: n ∈ N

}

, an � 0 , bn > 0 , cn > 0 ,

(6.38) can thus be further estimated as

Cc(A
+
R ) � inf

w∈H1
0 (Q)

Ñ [w,w]
D̃+[w] D̃−[w] � inf

n∈N inf
w̃n∈H1

0 ((0,knb))

Ñn[w̃n]
D̃+

n [w̃n] D̃−
n [w̃n]

� inf
w̃∈H1

0 ((0,∞))

Ñ∞[w̃]
D̃+∞[w̃] D̃−∞[w̃] ,

where the index “∞” indicates the interval (0,∞) of integration. Introducing the
ratios

s :=

∫ ∞

0
w̃2 dz

∫ ∞

0
w̃′2 dz

, t := 1

4

∫ ∞

0

( w̃

z

)2
dz

∫ ∞

0
w̃′2 dz

,
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we obtain the final lower bound on Cc(A
+
R ):

Cc(A
+
R ) � inf

0 � s < ∞
0 � t � 1

f (s, t), (6.40)

with

f (s, t) := 1+ s + 4 δ0 t

(1+ d2s + 4 δ+ t)1/2(1+ e2s + 4 δ− t)1/2

and

δ± = (α + 1± γ )2 − 1 , δ0 = (α + 1)2 − γ 2 − 1 .

Note that the range of t is restricted by inequality (3.5). The minimization in (6.40)
is elementary with minima obtained either at s = 0 or t = 1 (depending on the
parameters α, γ , d, and e). Denoting this lower bound by LB = LB(α, γ, d, e), it
obviously holds for C̃c(A

+
R ) as well and, moreover, for any R > 1.

According to (5.20), (5.21) this bound has to be comparedwith the “comparison
function”

CF(α, γ ) := 2
√
2 ‖aρ − α‖∞
1+ α + γ

.

Figure 7 displays the curves γ �→ LB(0.39, γ, d, 1.2) for d = 1 and 0.1 together
with γ �→ CF(0.39, γ ), where α and e have been fixed according to (5.3), (5.4),
and (5.18).

For d = 1 the bounding curve lies strictly below the comparison function, for
d = 0.1, however, a “γ -window”opens up, where the lower bound LB on Cc(A

+
R )

and C̃c(A
+
R ) clearly exceeds its comparison values. Further lowering of d does not

improve LB in a significant way. Also shown in Fig. 7 is the exact x-independent
curve γ �→ μ0 in the limit B = 0, which coincides with LB(0.39, γ, 0.1, 1.2) up
to γ ≈ 0.56; this is in accordance with the fact that up to this value the minimum
in (6.40) is taken at s = 0 and

inf
0�t�1

f (0, t) =
(
1−

( γ

1+ α

)2 )1/2
.

Above γ ≈ 0.56 the minimum is located at t = 1.
To be definite let us fix γ = 0.6 and d = 0.1. We then have the proposition:

Proposition 6.4. Let

(α, γ, d, e) = (0.39, 0.6, 0.1, 1.2) , (6.41)

then inequalities (5.20) and (5.21) are satisfied for any R > 1 and for the quantity
� from (5.22) holds the lower bound

� � 0.027 > 0 . (6.42)

Better lower bounds on Cc, C̃c can be obtained according to Proposition 6.2 by
a numerical evaluation of the Euler–Lagrange equations (6.17) (see Appendix E)
corroborating on one side the lower bound LB and demonstrating on the other side
that LB generally is not sharp.
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Fig. 7. The lower bound LB(α, γ, d, e) with e = 1.2 and d = 1 (dashed line) or d = 0.1
(solid thin line) together with the comparison function CF(α, γ ) (solid thick line) and the

exact x-independent curve μ0 = (1 − (γ /(1 + α))2
)1/2 (dotted line). α = 0.39 has been

set throughout

7. Solution of P� in Annuli

This section contains the proof of Theorem 2.1 based on Schauder’s fixed point
principle and the general solution of the linearized problem in Section 5.

The next proposition provides a suitable version of Schauder’s theorem (see
[5], p. 504, Theorem 4), which is often attributed to [23].

Proposition 7.1. (fixed point principle) Let T : B → B be a continuous, compact
(or completely continuous) mapping of the Banach space B into itself and let the
set

{
u ∈ B : u = λ Tu for some λ ∈ [0, 1]} (7.1)

be bounded. Then, T has a fixed point u0 ∈ B, that is
T u0 = u0 . (7.2)

In order to find a (nonlinear) mapping T suitable for our purpose let us fix the
parameters α, γ , d, and e according to Proposition 6.4 such that conditions (5.11),
(6.6), (5.20), and (5.21) are satisfied for any R > 1. Let B :=Lp,δ(A

+
R ) with

Lp,δ(G) := clos
(
C∞
0 (G) , ‖ · y−δ‖p,0

)
, G ⊂ H

and p and δ yet to be fixed. With w ∈ Lp,δ(A
+
R ) and

aα := (aζ [wρ−α − �] , aρ[wρ−α − �] − α
)
, (7.3)
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where aζ [·] and aρ[·] are given by (2.26), we solve Equation (5.2) and obtain by

Proposition 5.2 a solution v ∈ H(d)
α+γ (A+

R ) with bound

‖∇d v‖α+γ �
√
2

� d
‖�‖2+γ−α �

(
4π

(γ − α)(1+ α − γ )

)1
2 K

� d
. (7.4)

The last inequality in (7.4) follows by condition (2.32) as in LemmaA.1. Supposing
that

δ <
α + γ

2
+ 1

p
, (7.5)

we find by (3.22) that

H(d)
α+γ (A+

R ) ⊂ Lp,δ(A
+
R ) for any p � 2 . (7.6)

The mapping

T : Lp,δ(A
+
R ) → Lp,δ(A

+
R ) , w �→ v (7.7)

is thus well defined and, moreover, continuous and compact.
To see the continuity of T let v and ṽ be two solutions of Equation (5.2) with

(7.3) and

ãα := (aζ [w̃ρ−α − �] , aρ[w̃ρ−α − �] − α
)
,

respectively, w and w̃ ∈ Lp,δ(A
+
R ), ψ ∈ C∞

0 (A+
R ), and � ∈ H2+γ−α(A+

R ). The
difference of (5.2) for v and ṽ reads
∫

A+R
∇(v−ṽ) · ∇ψdμα+

∫

A+R

( v

ρ
aα[wρ−α−�]− ṽ

ρ
aα[w̃ρ−α−�]

)
· ∇ψdμα

=
∫

A+R

�

ρ

(
a[wρ−α − �] − a[w̃ρ−α − �]

)
· ∇ψ dζdρ ,

or, after some rearrangement,
∫

A+R

(
∇(v − ṽ) + v − ṽ

ρ
aα[wρ−α − �]

)
· ∇ψ dμα

= −
∫

A+R

( ṽ

ρ
− �

ρ
ρα
)(
a[wρ−α − �] − a[w̃ρ−α − �]) · ∇ψ dμα .

Using (5.12) on the left-hand side and estimating the right-hand side by Cauchy-
Schwarz’s and Hölder’s inequality one obtains

B[v − ṽ, ψ] �
∫

A+R
L |w − w̃| |ṽ/ρ1+α − �/ρ| |∇ψ | dμα

� L
∥
∥|w − w̃| |ṽ/ρ1+α − �/ρ|∥∥

α+γ
‖∇ψ‖α−γ

� ‖(w − w̃)ρ−(α+γ )/2‖p,0
(‖ṽ/ρ1+α‖q,0 + ‖�/ρ‖q,0

) ‖∇eψ‖α−γ ,

(7.8)
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where 1
p + 1

q = 1
2 and L � 1 is some Lipschitz constant for a[·]. The critical step is

to find a bound on the parantheses in the last line. A bound on � is easy by (2.32):

∥
∥
∥
�

ρ

∥
∥
∥
q,0

� |A+
R |

1
q

∥
∥
∥
�

ρ

∥
∥
∥∞ � |A+

R |
p−2
2p K . (7.9)

A bound on ṽ, however, requires the refined inequality (3.20) for “small q”:

∥
∥
∥

ṽ

ρ1+α

∥
∥
∥
q,0

� C ‖∇d ṽ‖α+γ (7.10)

provided that

1+ α � α + γ

2
+ 6− q

2q
⇐⇒ 1

q
� 1

2
− γ − α

6
⇐⇒ p � 6

γ − α
,

which means for the parameter set (6.41) that

p � 29 . (7.11)

By (7.4), inequality (7.8) may thus be rewritten as

B[v − ṽ, ψ]
‖∇eψ‖α−γ

� C̆ K ‖(w − w̃)ρ−(α+γ )/2‖p,0 , (7.12)

where C̆ denotes a constant depending on p, α, γ , d, e, and R. By approximation
(7.12) holds for any ψ ∈ H(e)

α−γ (A+
R ). In view of (7.12) and (7.5) we choose

δ := (α + γ )/2 in (7.6) and find by combination of (3.22), (5.19) with (5.22), and
(7.12):

‖(v − ṽ)ρ−(α+γ )/2‖p,0 � Ĉ ‖∇d (v − ṽ)‖α+γ

� Ĉ

�
sup
ψ �=0

B[v − ṽ, ψ]
‖∇eψ‖α−γ

� Ĉ C̆K

�
‖(w − w̃)ρ−(α+γ )/2‖p,0 ,

which implies continuity of T in Lp,(α+γ )/2 (A+
R ).

To see the compactness of T it is sufficient to prove compactness of the em-
bedding (7.6). This, however, is equivalent to the well-known compact emded-
ding H1

0 (G) � L p(G) for bounded G ⊂ R
2 and 1 � p < ∞. In fact, by

(3.12) we can conclude that a bounded sequence (vn) ⊂ Hβ(A+
R ) implies bound-

edness of the sequence (vn ρ−β/2) ⊂ H1
0 (A+

R ) and convergence of a sequence
(vm ρ−β/2) ⊂ L p(A+

R ) is equivalent to convergence of (vm) ⊂ Lp,β/2 (A+
R ).

Finally, boundedness of the set (7.1) is immediate by (3.22) and (7.4):

‖wρ−(α+γ )/2‖p,0 � Ĉ ‖∇d w‖α+γ = Ĉ ‖∇d(λ Tw)‖α+γ

� Ĉ ‖∇d v‖α+γ �
(

4π

(γ − α)(1+ α − γ )

)1
2 Ĉ K

� d

for any w ∈ Lp,(α+γ )/2 (A+
R ) and any λ ∈ [0, 1] satisfying w = λ Tw.
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The fixed point v0 = w0 according to Proposition 7.1 is a solution of Equation
(5.2) with

aα := (aζ [v0ρ−α − �] , aρ[v0ρ−α − �] − α
)
,

hence u0 := v0ρ
−α is a solution of the (nonlinear) equation (2.31) in A+

R , and by
antisymmetric continuation in AR .

The bound (2.33) follows by (5.24), (6.41), (6.42), and (7.4). Note that this
bound depends (besides the in (6.41) fixed parameters) on K but not on R. This
together with Proposition 4.1 concludes the proof of Theorem 2.1.

8. Solution of P� in the Exterior Plane

The construction of solutions in the last section heavily depended on estimates
that involved the diameter R of the underlying domain, the bound (2.33), however,
does not (see the discussion at the very end of the preceeding section). This allows us
to construct the solution of problem P�(A∞) by suitably manipulating a sequence
of solutions on AR with R → ∞, and to prove this way Theorem 2.2.

More precisely let �n :=�
∣
∣
An

for n ∈ N \ {1} and � ∈ L∞(A∞) satisfying
the bound (2.32) for some K > 0. By Theorem 2.1 we then have a sequence of
solutions (un) ⊂ H1

0,as(An) of the problems P�n (An), n ∈ N \ {1}, with bounds
‖∇un‖β �

√
C , n ∈ N \ {1} . (8.1)

Restricting un onto A2, the sequence (un|A2)n∈N\{1} is bounded by (8.1). There
is thus a subsequence (n(1)) ⊂ N such that

(
u
n(1)
i
|A2

)

i∈N coverges weakly to

some u(1) ∈ Hβ(A2) with bound ‖∇u(1)‖β �
√
C . Applying this argument

to the sequence
(
u
n(1)
i
|A3

)

i∈N one obtains a further subsequence (n(2)) ⊂ (n(1))

such that
(
u
n(2)
i
|A3

)

i∈N converges weakly to some u(2) ∈ Hβ(A3) with bound

‖∇u(2)‖β �
√
C . Repeating this process one obtains a sequence

(
(n(k))

)

k∈N of

sequences with each element being a subsequence of its predecessor. Let n(k)
k de-

note the kth element of the subsequence (n(k)) and (n(k)
k )k∈N =: n∗ the diagonal

sequence. By construction we have (n∗i )i�k ⊂ (n(k)) and hence

un∗i
∣
∣
A1+k

‖∇ · ‖β−−−−⇀
i → ∞ u(k) ∈ Hβ(A1+k) for any k ∈ N (8.2)

with

‖∇u(k)‖β �
√
C , k ∈ N . (8.3)

As u(k)|A1+l = u(l) for any l � k, the definition

u : A∞ → R , u|A1+k := u(k) , k ∈ N

is unique and yields by (8.3) a function ∈ Hβ(A∞) ⊂ H1
loc,as(A∞) with bound

(2.35).
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In order to see that u satisfies Equation (2.31) in A∞ recall that by antisymmetry
it is enough to satisfy (2.31) in A+∞. So, let ψ ∈ C∞

0 (A+∞) and l ∈ N \ {1} such
that in fact ψ ∈ C∞

0 (A+
l ). For un∗i then holds

∫

A+l
∇un∗i · ∇ψ dζdρ +

∫

A+l

un∗i
ρ

a[un∗i − �] · ∇ψ dζdρ

=
∫

A+l

�

ρ
a[un∗i − �] · ∇ψ dζdρ .

(8.4)

Letting i → ∞ the passage to u in the first term on the left-hand side of (8.4) is
justified by weak convergence. For the other two terms recall that by compactness
weak convergence in H1

0 (A+
l ) implies strong convergence in L2(A+

l ). Therefore,
by the estimate
∣
∣
∣
∣

∫

A+l

(un∗i
ρ

a[un∗i − �] − u

ρ
a[u − �]

)
· ∇ψ dζdρ

∣
∣
∣
∣

�
∫

A+l

(
|un∗i |

∣
∣a[un∗i − �] − a[u − �]∣∣+ |a[u − �]| |un∗i − u|

)∣
∣
∣
∇ψ

ρ

∣
∣
∣ dζdρ

� M L ‖un∗i ‖0 ‖un∗i − u‖0 + M
√
2 |A+

l |1/2‖un∗i − u‖0 ,

where L denotes aLipschitz constant fora[·] andM a boundon |∇ψ/ρ| in suppψ �
A+
l , the passage to u in the second term on the left-hand side is justified, too, and a

similar argument applies to the right-hand side. This together with Proposition 4.2
concludes the proof of Theorem 2.2.

9. Solution of the Signed Direction Problem Without Zeroes on the
Symmetry Axis

In this section we prove Theorems 2.3 and 2.4 (with the stated restriction),
which contain the solution of the axisymmetric signed direction problem (1.1) in
spherical shells and in exterior space, respectively, by applying the results gathered
so far and formulated essentially in Theorems 2.1 and 2.2 and theAppendices A and
B. This application is straight forward; only to establish continuity of the solution
up to the boundary requires some additional considerations.

To apply Theorem 2.1 let R > 1 and let D and D̂ be continuous symmetric
direction fields with rotation numbers ro and r̂o along the boundaries S1 and SR
of the annulus AR , respectively. Let ro � r̂o � 2 and ro − r̂o be an even number
(including zero). Let, furthermore, {z1, . . . , zro−r̂o} be a symmetric set of points in
AR , which do not lie on the symmetry axis.9 By (A.6) the associated zero-positions
angle � then satisfies condition (2.32). By (2.20) and (2.21), direction fields D
and D̂, which satisfy the axis condition (2.36) give rise to boundary functions φ

and φ̂, respectively, that satisfy (B.1). By (B.3) the harmonic interpolation � then
satisfies condition (2.32) as well. By Theorem 2.1 we thus obtain a weak solution

9 In the case ro− r̂o = 0 the set is empty.
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u ∈ H1
0,as(AR) of Equation (2.24), which implies a weak solution q = u + � ∈

H1
as(AR) of Equation (2.19). Given q, the function p is determined by (2.22) up to

a constant p0. In fact, writing (2.22) in Cartesian coordinates in the form

∂ζ p = ∂ρ q + sin(q − �)

q − �

q − �

ρ
,

∂ρ p = −∂ζ q + cos(q − �) − 1

q − �

q − �

ρ
,

⎫
⎪⎪⎬

⎪⎪⎭

(9.1)

we find by (3.5) the right-hand side in L2(AR). The integrability condition for (9.1)
is just (2.19), which takes the weak form

∫

AR

{[
∂ζ q − cos(q − �) − 1

q − �

q − �

ρ

]
∂ζ ψ

+
[
∂ρ q + sin(q − �)

q − �

q − �

ρ

]
∂ρψ

}

dζdρ = 0

for any ψ ∈ C∞
0 (AR). We obtain thus a symmetric function p ∈ H1(AR) that

solves (2.22) (see, for example, [7], Lemma 1.1, p. 101, and corollary 4.1, p. 53).
Inserting h as given by (2.16) and g = (p+iq)/2 into (2.15) then yields a symmetric
weak solution f ∈ H1(AR) of Equation (2.9) with boundary condition (2.14),
which by (2.8) is equivalent to an axisymmetric magnetic field (Bρ, Bζ ) satisfying
(2.1) almost everywhere in AR . To obtain higher (interior) regularity let us switch
from cylindrical to Cartesian coordinates in R

3. The field

BC := (B1, B2, B3) := (Bρ cos θ, Bρ sin θ, Bζ ) ∈
(
H1(SSR)

)3

then satisfies the system

∇ × BC = 0 , ∇ · BC = 0 almost everywhere in SSR ,

where SSR denotes the spherical shell BR \ B1 ⊂ R
3 corresponding to AR ⊂ R

2.
By the vector analysis identity

∫

D
∇ × BC · ∇ × ψ dv +

∫

D
∇ · BC ∇ · ψ dv =

3∑

i=1

∫

D
∇Bi · ∇ψi dv ,

where ψ = (ψ1, ψ2, ψ3) ∈ (C∞
0 (D))3, one finds each component to be a weakly

harmonic and hence harmonic function in SSR . Bi and hence Bζ and Bρ are thus
smooth functions in their respective domains.

Improved boundary regularity, in particular B ∈ C(AR), needs some more
subtle arguments, which in part are specific for two dimensions. As to the variable
q we rely on a boundary-regularity theorem asserting Hölder continuity of a weak
solution up to the boundary provided that the boundary values themselves satisfy
a Hölder condition ([17], Theorem 14.1, p. 201f.). For this purpose let us write
Equation (2.19) in the form

�q = ∂ζ

( 1

ρ

(
cos(q − �) − 1

))− ∂ρ

( 1

ρ
sin(q − �)

)
=: ∂ζ Fζ + ∂ρFρ
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Fig. 8. A+R,ε
and the curved boundary components S+1,ε and S+R,ε

with bounded F on A+
R,ε:

|Fζ | <
2

ε
, |Fρ | <

1

ε
.

Here, A+
R,ε := A+

r ∩ {ρ > ε} denotes that part of A+
R , which has a distance ε > 0

to the symmetry axis, and S+1,ε and S+R,ε denote the corresponding curved boundary
components (see Fig. 8).

The direction fields D and D̂ are now assumed to be of Hölder class C0,β(S1)
and C0,β(SR), respectively, for some 0 < β � 1, which implies the boundary
functions φ and φ̂ to be of the same class. By q − � ∈ H1

0 (AR) we thus have

trace q|S+1,ε = φ|S+1,ε , trace q|S+R,ε
= φ̂|S+R,ε

.

To this situation the boundary-regularity theorem may be applied asserting q ∈
C0,α(A+

R,ε) for some 0 < α � 1, which depends on ε, R, ‖q‖0, and β, ‖φ‖C0,β ,
‖φ̂‖C0,β . This implies, in particular, continuous assumption of the boundary values
on S+1,ε ∪ S+R,ε for any ε > 0, and hence on S+1 ∪ S+R .

This argument does not apply to p since a-priori no boundary values are pre-
scribed for this quantity. However, according to the governing equations for p,
Equations (9.1), the variables p and q are complex conjugate variables up to a (in
A+
R,ε) bounded “perturbation”. Without this perturbation Privaloff’s theorem guar-

antees uniform Hölder continuity of both variables in a disc if only one variable
takes continuously boundary values that are in some Hölder class at the boundary
(see [2], p. 279 or [13], Lemma 2.4). In order to take advantage of Privaloff’s theo-
rem the following representation theorem (slightly adapted to our needs) is useful
(see [3] or [2], p. 259).

Theorem 9.1. (Bers and Nirenberg) Let G ⊂ BR ⊂ C and let w ∈ H1(G) be a
solution of the equation

∂z w = γ almost everywhere in G (9.2)
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with γ ∈ L∞(G). Then w has the representation

w(z, z) = f (z) + s0(z, z) in G , (9.3)

where f is complex analytic in G and where s0 is uniformly Hölder continuous in
BR and real on SR.

With

�z := ζ , z := ρ , �w := p , w := q , �γ := Fρ , γ := Fζ ,

Equations (9.1) are clearly of type (9.2) in G := A+
R,ε/2; (9.3) then yields, on S+R,ε,

q|S+R,ε
= w|S+R,ε

=  f |S+R,ε
.

 f is thus of class C0,α on S+R,ε and even analytic on (say) ∂( Ã+
R,ε) \ S+R,ε, where

Ã+
R,ε :=

{
(ζ, ρ) ∈ H : (1+ ε)2 < ζ 2 + ρ2 < R2, ρ > ε

}
.

Applying Privaloff’s theorem on f in the Lipschitz-domain10 Ã+
R,ε yields f ∈

C0,α( Ã+
R,ε), which implies, in particular,

p = �w = � f +�s0
to be Hölder continuous up to the boundary component S+R,ε. To see continuity up

to the other boundary component S+1,ε let us apply the inversion z �→ 1
z to (9.2),

which yields an equation of the same type in the inverted half-annulus

Ã−
1/R ,1 :=

{
(ζ, ρ) ∈ H : (1/R2 < ζ 2 + ρ2 < 1, ρ < 0

}

with outer boundary S−1 . The above argument can thus be repeated establishing,
finally, continuity of p up to the boundary S+1 ∪ S+R .

Concerning uniqueness let us remind that the number of zeroes is fixed by
(2.6) for any solution f of problem Pc

D,D̂
(AR). Two solutions f1 and f2 with the

same boundary direction fields Dc and D̂c and the same set of zeroes are thus
represented by u1 = q1 − � and u2 = q2 − � satisfying (2.25) with the same
boundary function � and zero-positions angle �, and hence the same � = �−�.
According to Proposition 4.1 there is u1 = u2 and the only nonuniqueness left is
due to p0, which in (9.1) remains free. Therefore, f1 and f2 differ by the positive
factor ep0/2. This proves Theorem2.3 in the case of no zeroes lying on the symmetry
axis.

With some obvious modifications all these arguments work in the unbounded
case as well: r̂o + 1 has to be replaced by the exact decay order δ̃, D̂ and φ̂ can
be discarded, and H1

as(AR) is replaced by H1
loc,as(A∞), existence and uniqueness

of q then follow from Theorem 2.2 and Proposition 4.2, p is again determined
by Equations (9.1), and all the regularity arguments, local in character, apply to
the unbounded case as well. This proves Theorem 2.4 (again with the mentioned
restriction on the zeroes).

10 By a conformal transformation with Lipschitz-continuous extension on the boundary,
Ã+R,ε

is equivalent to a disc.



382 Ralf Kaiser & Tobias Ramming

10. Zeroes on the Symmetry Axis

Zeroes on the symmetry axis are so far excluded. Overcoming this restriction
by continuous deformation of known solutions is the subject of this section.

Let us start with a lemmaon a general invariance property of the rotation number
that is tailored to our needs (see, for example, [11], Theorem 3 or [13], Lemma
3.2).

Lemma 10.1. (deformation invariance) Let Bλ be a continuous vector field on
AR× I , where λ varies in the closed interval I . LetBλ �= 0 on SR̃× I , 1 � R̃ � R,
and let r̃oλ be the rotation number of Bλ along SR̃. Then, r̃oλ = const =: r̃o for
any λ ∈ I .

In the case thatBλ is a harmonic vector field in AR or A∞, by (2.6) and (2.7) we can
draw from Lemma 10.1 some consequences, which in a somewhat lax formulation
can be summarized as follows:

(i) In the case that Bλ|(S1∪SR)×I �= 0, zeroes of Bλ can shift with λ, can split or
coalesce, but they can never spring up or vanish in AR .

(ii) If a zero with index −n, n ∈ N, crosses SR̃ , 1 < R̃ < R, at (say) λ = λ0,
according to (2.6), r̃oλ jumps at λ0 by +n in the case of “emigration” and by −n
in the case of “immigration” into AR̃ .

(iii) In A∞ zeroes can vanish at infinity or originate from infinity at (say)λ = λ0;
according to (2.7) the exact decay order δ̃ increases or decreases at λ0 according to
the index of the zero.

(iv) If r̃o is fixed (as is the case in the direction problem for ro along S1 and
r̂o along SR), zeroes cannot cross SR̃ (cannot originate or vanish at S1 or SR).
However, zeroes can migrate from AR onto S1 (or SR), split there and migrate as
“border zeroes” along S1 (or SR), and they can coalesce again and reenter into AR

(see Appendix E for a (two-dimensional) example of this behaviour).
In the following we denote by

B = Bδ̃ = Bδ̃[z1, . . . , zro−δ̃+1]
the unique solutions of problem PD(A∞) according to Theorem 2.4 with rotation
number ro, exact decay order δ̃, and zeroes z1, . . . , zro−δ̃+1, which do not lie on the
symmetry axis. In particular, let

Bδ̃[. . . , z, z] , B̃δ̃[. . . , z̃, z̃] , Bδ̃+2[. . .]
be three solutions of PD(A∞) with ro − δ̃ − 1 common zeroes indicated by “. . .”
and, additionally, the simple zeroes z, z in the first case and z̃, z̃ in the second case.
Let Bλ = B

(λ,λ̃,λ̂)
be the linear combination

Bλ := λBδ̃ + λ̃ B̃δ̃ + λ̂Bδ̃+2 ;
let, furthermore, zS = ζS and z̃S = ζ̃S be two positions on the symmetry axis in
A∞, and let cδ̃−2 and c̃δ̃−2 be the leading coefficients in the representation (2.5) of

Bδ̃ and B̃δ̃ , respectively.



Axisymmetric Solutions in the Geomagnetic Direction Problem 383

For z �= z̃ the fields Bδ̃ , B̃δ̃ , and Bδ̃+2 are clearly linearly independent and the
linear systems (in the variables λ, λ̃, λ̂)

Bζ,λ(ζS, 0) = 0 , λ cδ̃−2 + λ̃ c̃δ̃−2 = 0 (10.1)

and

Bζ,λ(ζS, 0) = 0 , Bζ,λ(ζ̃S, 0) = 0 (10.2)

have each up to (for the present arbitrary) factors unique solutions λ1 and λ2 such
that Bλ1 has the ro − δ̃ − 1 common zeroes outside the symmetry axis and the
simple zero zS on the symmetry axis, and Bλ2 has, besides the common zeroes, the
simple zeroes zS and z̃S on the symmetry axis. Note that by (10.1)b Bλ1 has the
decay order δ̃ + 1, and by (10.1)a and (2.7) this decay order is exact.

There is one question left open: DoBλ1,2 satisfy the boundary conditionBλ1,2 |S1
= a1,2 D for some positive amplitudes a1,2? A-priori the linear combinations Bλ1,2

can have additional zeroes on S1. To refute this presumption let μ �→ λ(μ), μ ∈
[0, 1] be a continuous path in λ-space connecting λ = (1, 0, 0) with λ1; μ �→
Bλ(μ) is thus a continuous deformation of Bλ(0) = Bδ̃[. . . , z, z] with final state

Bλ(1) = Bδ̃+1
λ1

[. . . , zS]. During the deformation the common zeroes remain fixed,
whereas z, zwillmove. They can possibly enter S1 and leave again; finally, however,
one zero migrates to zS , whereas the other vanishes at infinity. Additional zeroes
cannot emerge, neither from S1 (see (iv)) nor from infinity (see (iii)11). Therefore,
Bλ1 |S1 �= 0, that is, Bλ1 is a signed solution of the direction problem. A similar
argument applies to Bλ2 , which is thus a signed solution of the direction problem,
too.

Further zeroes can be shifted to the symmetry axis just by repeating the proce-
dure with solutions, which possess already common zeroes on the symmetry axis.
In the case that ro− δ̃+1 = ν is even, this way all zeroes can be shifted to arbitrary
positions at the symmetry axis. In the case that ro − δ̃ + 1 = ν is odd, one simply
solves the direction problem with δ̃ − 1 instead of δ̃; we are then again in the even
case and solution of the system (10.1) provides us with a field that has an odd
number of zeroes on the symmetry axis, an even number � 0 of zeroes outside,
and the original exact decay order δ̃.

In the case of a bounded domain AR , solutions of type (10.2) still exist, that
is, an even number of zeroes can likewise be shifted to the symmetry axis; (10.1),
however, does no longer work: zeroes cannot be expelled from AR with its fixed
direction fields at the boundaries S1 and SR (see (iv)).

In conclusion, these remarks remove the limitation in Theorems 2.3 and 2.4 we
had to impose in Section 9.

11. The Unsigned Direction Problem

This concluding section discusses the unsigned direction problem, its relation
to the signed problem, and proves, in particular, Theorem 2.5.

11 Observe that by construction the decay order of Bλ(μ) cannot fall below δ̃.
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Let us start with recalling some definitions given in Section 2: Sδ̃
D means the set

of all solutions of the signed direction problem Ps
D(A∞) with direction field D and

exact decay order δ̃ and Lδ
D means the linear space of all solutions of the unsigned

problem Pu
D(A∞) with decay order δ. Taking arbitrary linear combinations does

clearly not respect the positivity of the amplitude function nor the exact decay order,
but it respects the boundary condition up to a (locally varying) sign and the decay
order. When taking only positive linear combinations, which defines a cone in Lδ

D,
positivity of the amplitude and decay order are preserved, exactness of the decay
order, however, can get lost. The set Cδ

D of all solutions of Ps
D(A∞) with decay

order δ is of this type.
The proof of Theorem 2.5 is based on the following relations between these

sets:

Cδ
D =

⋃

δ�δ̃�ro+1

Sδ̃
D , (11.1)

Lδ
D =

{ 〈Cδ
D〉 if ro � δ − 1

{0} if 2 � ro < δ − 1
, (11.2)

Sδ̃
D ⊂ 〈Sδ

D〉 for 3 � δ � δ̃ � ro+ 1 , (11.3)

dim 〈Sδ
D〉 = ro− δ + 2 if 3 � δ � ro+ 1 . (11.4)

Here ro denotes again the rotation number of D and 〈S〉 the real linear span of the
set S.

(11.1) is obvious by definition and (2.7).
As to (11.2): Let ro � δ − 1. To prove the nontrivial inclusion Lδ

D ⊂ 〈Cδ
D〉,

let B ∈ Lδ
D with B|S1 = aD and a ∈ C(S1). By Theorem 2.4 we have Cδ

D �= ∅.
Let B̃ ∈ Cδ

D with B̃|S1 = ãD and continuous ã > 0. Choosing λ > 0 such that
a + λã > 0 on S1, we have

Bλ :=B+ λ B̃ ∈ Cδ
D ,

which implies, for B the representation,

B = Bλ − λ B̃ ,

that is, B ∈ 〈Cδ
D〉.

In the case 2 � ro < δ − 1 let B ∈ Lδ
D and let B̃ro+1 be the unique solution

∈ Sro+1
D . Choose as above λ > 0 such that a + λã > 0 on S1. Then, by ro+ 1 < δ

the linear combination

B+ λ B̃ro+1 =: Bro+1
λ

has exact decay order ro+ 1, that is, we find Bro+1
λ ∈ Sro+1

D as well. By uniqueness
we have Bro+1

λ = μ B̃ro+1 for some μ > 0, which implies B = (μ − λ)B̃ro+1.
Thus, either B has the exact decay order ro + 1, which contradicts B ∈ Lδ

D with
δ > ro+ 1, or B ≡ 0, hence Lδ

D = {0}.
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As to (11.3): Choose arbitrary Bi ∈ SiD, i = δ, . . . , ro + 1; then, the set
S := {Bi : δ � i � ro+ 1} is linearly independent as the Bi differ pairwise by their
asymptotic terms in the representation (2.5). Defining

B̃δ
i :=Bi + Bδ ,

the set S̃ := {B̃i : δ � i � ro + 1} is likewise linearly independent and, moreover,

we have S̃ ⊂ Sδ
D. To prove (11.3) we show that anyBδ̃ ∈ Sδ̃

D for any δ � δ̃ � ro+1
has a representation in S̃:

Bδ̃ =
ro+1∑

i=δ

λi B̃δ
i , λi ∈ R . (11.5)

As Bδ̃ has exact decay order δ̃ and precisely ro− δ̃+1 zeroes, say z1, . . . , zro−δ̃+1,
the λi have to satisfy the following linear system of equations:

ro+1∑

i=δ

λi B̃δ
i (zn) = 0 , n = 1, . . . , ro− δ̃ + 1 ,

ro+1∑

i=δ

λi c̃i,n = 0 , δ � n � δ̃ − 1 .

Here c̃i,n is the coefficient cn in the representation (2.5) of B̃δ
i . These (ro− δ̃+1)+

(δ̃ − δ) = ro− δ + 1 equations for ro− δ + 2 unknowns have always a nontrivial
solution, say {μi : δ � i � ro+ 1}. Let

B̂δ̃ :=
ro+1∑

i=δ

μi B̃δ
i .

If B̂δ̃|S1 �= 0 either B̂δ̃ or −B̂δ̃ belongs to Sδ̃
D and has, moreover, the same zeroes

as Bδ̃ . By uniqueness we thus have Bδ = μ B̂δ̃ with μ �= 0, that is, (11.5) holds. If
B̂δ̃ has zeroes on S1 consider

B̆δ̃ := B̂δ̃ + λBδ̃

with λ > 0 such that B̆δ̃|S1 �= 0, that is, B̆δ̃ ∈ Sδ̃
D. Again by uniqueness we find

Bδ̃ = μ B̆δ̃ ⇐⇒ (1− μλ)Bδ̃ = μ B̂δ̃

with μ > 0 and hence 1− μλ �= 0, that is, (11.5) holds again.
As to (11.4): This is an immediate consequence of the preceeding arguments:

the set S̃ is linearly independent by construction and generates Sδ
D according to

(11.5). S̃ with its ro− δ + 2 elements is thus a basis of Sδ
D.

The proof of Theorem 2.5 now follows by (11.1)–(11.4) and the following
concluding remark.
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Remark. In the “trivial case” δ > ro+1, the condition ro � 2 as stated in (11.2)2 is
not necessary; the argument given there, however, must be altered. Equation (2.7)
holds in fact for any ro ∈ Z, which implies immediately Sδ

D = ∅. To prove Lδ
D = ∅

assume 0 �≡ B ∈ Lδ
D, which then has necessarily zeroes on S1. Let ε > 0 such that

B �= 0 on B1+ε \ B1 and compare ro with the rotation number roε of B along S1+ε.
For ε → 0, roε remains constant; however, it will differ from ro by − 1

2×number
of sign reversals of B along S1 (for an illustration see Fig. 14). Thus, roε < ro and
applying (2.7) on B in R

2 \ B1+ε yields a contradiction. The assumption B �≡ 0 has
thus to be dismissed.
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A. The Zero-Positions Angle �

Let us write the analytic function (2.16) in the form

h(z) = z−ro
N∏

n=1

(z − zn)(z − zn) = z−r̂o
N∏

n=1

(
1− zn

z

)(
1− zn

z

)
,

ro− r̂o = 2 N , N ∈ N0

(A.1)

with points {z1, . . . , zN } ⊂ A+∞, which satisfy, in particular, zn = ρn > 0. Decomposing
h/h into real and imaginary parts one obtains

h

h
= v(ζ, ρ) + i w(ζ, ρ) , (ζ, ρ) ∈ A∞ (A.2)

with

v = h
2 + h2

2 |h|2 , w = h
2 − h2

2i |h|2 , v2 + w2 = 1 . (A.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 9. Lines of discontinuity of � for ro = r̂o = 2

We now define

�(ζ, ρ) := arctan
w(ζ, ρ)

v(ζ, ρ)
, (A.4)

where arctan means the principal branch of the inverse tan function with arctan 0 = 0. This
definition resolves the ambiguity in the choice of � and fixes the discontinuities of � at the
zeroes of v. Let us illustrate this by the special case h0 = z−ro. With z = reiϕ one obtains

h0
h0

= e2iroϕ = cos 2ro ϕ + i sin 2ro ϕ

and hence,

�̃0 = arctan(tan 2ro ϕ) ;
�̃0 jumps by π along all rays with angles ϕν = π

4ro (1 + 2ν), where ν is an integer and

ϕν ∈ (−π, π) (see Fig. 9).12

Moreover, by the reflection symmetry �̃0(·, π − ϕ) = −�̃0(·, ϕ) and the estimate ϕ �
π
2 sin ϕ on [0, π/2], one finds the estimate

|�̃0(·, ϕ)| � πro | sin ϕ| in AR . (A.5)

According to the following lemma inequality (A.5) (and some consequences) hold for general
�.

Lemma A.1. Let � as given by (A.1)–(A.4). Then the following inequalities hold:

|�̃(·, ϕ)| � K | sin ϕ| in A∞ , (A.6)
|�(·, ρ)/ρ| � K in A∞ , (A.7)
∫

A∞
�2 ρ−(2+β) dζdρ � 2πK 2

β(1− β)
, 0 < β < 1 (A.8)

for some K > 0.

12 Recall that tilde denotes dependence on polar coordinates:
�̃(r, ϕ) :=�(r cosϕ, r sin ϕ).
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Fig. 10. The decomposition A+∞ = A1 ∪ A2 ∪ A3

Proof. Inequality (A.7) is an immediate consequence of (A.6):

|�(·, ρ)/ρ| = |�̃(r, ϕ)/r sin ϕ| � K/r � K in A∞ ,

and (A.8) follows by integration:
∫

A∞
�2 ρ−(2+β) dζdρ = 2

∫ π

0

∫ ∞
1

�̃2(r, ϕ)

r2+β | sin ϕ|2+β
r drdϕ

� 4K 2
∫ ∞
1

r−(1+β) dr
∫ π/2

0
| sin ϕ|−βdϕ � 2πK 2

β(1− β)
.

Here we made use of sin ϕ � 2ϕ/π on [0, π/2].
It remains to prove (A.6). For this purpose we decompose A+∞ into wedge-type components
A1 ∪ A2 ∪ A3 with

A1 :=
{
(r, ϕ) : 1 < r < ∞ , ϕ0 � ϕ � π − ϕ0

}
,

A2 :=
{
(r, ϕ) : 1 < r < R̃ , 0 < sin ϕ < sin ϕ0

}
,

A3 :=
{
(r, ϕ) : r � R̃ , 0 < sin ϕ < sin ϕ0

}

(see Fig. 10).
Here R̃ (and ε) are chosen such that

R̃ >
1

ε
max

1�n�N
|zn | , 8ε

1− 3ε
<

1

2C(N )
< 1 , (A.9)

where C(N ) is some combinatorial constant that appears in inequality (A.12). Note that by
(A.3) v(ζ, ρ) and w(ζ, ρ) are real analytic functions in a neighbourhood of the symmetry
axis {ρ = 0} with v(·, 0) = 1 and w(·, 0) = 0. ϕ0 can thus be chosen such that v � 1/2 and
|w| � c ρ in A2 for some c > 0. Moreover, it is assumed that

ϕ0 <
π

8 r̂o
. (A.10)

Under these conditions, inequality (A.6) then holds trivially in A1 ∪ A2:

|�̃(·, ϕ)| � π

2 sin ϕ0
sin ϕ in A1 ,

|�̃(·, ϕ)| � w

v
� 2c R̃ sin ϕ in A2 .
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For A3 we need a more careful consideration. Let

gn :=
(
1− (zn/z)

)(
1− (zn/z)

)

(
1− (zn/z)

)(
1− (zn/z)

) , n = 1, . . . , N .

By z = reiϕ , zn = rn eiϕn , gn may be expressed as

gn = 1− 2 (rn/r) eiϕ cosϕn + (rn/r)2 e2iϕ

1− 2 (rn/r) e−iϕ cosϕn + (rn/r)2 e−2iϕ

= 1+ i
−4 (rn/r) sin ϕ cosϕn + 2(rn/r)2 sin 2ϕ

1− 2 (rn/r) e−iϕ cosϕn + (rn/r)2 e−2iϕ
,

which allows, by (A.9), the estimate

|gn − 1| � 8ε

1− 3ε
sin ϕ = η sin ϕ . (A.11)

By (A.11) and the abbreviation 8ε/(1− 3ε) =: η it follows for gN := ∏N
n=1 gn :

∣
∣g2N − 1

∣
∣ =

∣
∣
∣
∣

N∏

n=1

g2n − 1

∣
∣
∣
∣ =

∣
∣
∣
∣

N∏

n=1

(
(gn − 1)(gn + 1) + 1

)− 1

∣
∣
∣
∣

� (3η sin ϕ + 1)N − 1 � C(N ) η sin ϕ <
1

2
sin ϕ � 1

2

(A.12)

and, furthermore,

∣
∣
∣
∣

g2N − 1

g2N + 1

∣
∣
∣
∣ �

(1/2) sin ϕ

2− 1/2
= 1

3
sin ϕ � 1

3
. (A.13)

Expressing now w/v by gN , using at that (A.1) and (A.3), one obtains

w

v
= −i

(h/h)2 − 1

(h/h)2 + 1
= −i

e4i r̂o ϕg2N − 1

e4i r̂o ϕg2N + 1

= (g2N + 1) sin 2r̂o ϕ − i (g2N − 1) cos 2r̂o ϕ

(g2N + 1) cos 2r̂o ϕ + i (g2N − 1) sin 2r̂o ϕ

= tan 2r̂o ϕ − i (g2N − 1)/(g2N + 1)

1+ i tan 2r̂o ϕ (g2N − 1)/(g2N + 1)
.

(A.14)

Combining (A.4), (A.13), and (A.14) yields, finally, the desired estimate for � in A3:

|�| �
∣
∣
∣
w

v

∣
∣
∣ �

tan 2r̂o ϕ + (1/3) sin ϕ

1− (1/3) tan 2r̂o ϕ
� 3

2

(
2
√
2 r̂o+ 1

3

)
sin ϕ ,

where in the last estimate we made use of (A.10). ��
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B. Harmonic Interpolation of the Boundary Data

The solution of the Dirichlet problem in bounded domains with regular boundary for con-
tinuous boundary data is a standard problem (see, for example, [8], p. 26). The only not
quite standard issue is antisymmetry and some estimates related to it. We summarize useful
properties in the following proposition:

Proposition B.1. Let φ and φ̂ : [−π, π ] → R be continuous, antisymmetric functions with
φ(−π) = φ(π) and axis condition

φ(ϕ) = O(ϕ) for ϕ → 0 , φ(π − ϕ) = O(ϕ) for ϕ ↘ 0 (B.1)

and analogously for φ̂. Then there is a unique antisymmetric solution� ∈ C2(AR)∩C(AR)
of the Dirichlet problem

�� = 0 in AR ,

�̃(1, ·) = φ , �̃(R, ·) = φ̂ ,

}

(B.2)

which, moreover, satisfies the estimates

|�̃(·, ϕ)| � K | sin ϕ| in AR , (B.3)
|�(·, ρ)/ρ| � K in AR , (B.4)
∫

AR

�2 ρ−(2+β) dζdρ � 2πK 2

β(1− β)
, 0 < β < 1 (B.5)

for some K > 0, which does not depend on R. 13

Proof. Let �+ be the unique solution of the Dirichlet problem

��+ = 0 in A+R ,

�̃+(1, ϕ) = φ(ϕ) , �̃+(R, ϕ) = φ̂(ϕ) for 0 � ϕ � π ,

�̃+(r, 0) = �̃+(r, π) = 0 for 1 � r � R

in the half-annulus A+R := AR ∩ {ρ > 0} with continuous boundary data on the regular

boundary ∂A+R . By antisymmetric continuation onto AR one obtains a function that is har-

monic in A+R ∪ A−R and, by means of the mean-value characterization of harmonic functions,
in fact in AR . This is the asserted antisymmetric solution of (B.2).
The bound (B.3) holds by (B.1) on the boundaries S1 and SR with some constant K > 0.
To extend this bound onto AR consider the comparison function

�
+

(r, ϕ) := K

1+ R

(
r + R

r

)
sin ϕ ,

which satisfies the Dirichlet problem

��
+ = 0 in A+R ,

�
+

(1, ϕ) = �
+

(R, ϕ) = K sin ϕ for 0 � ϕ � π ,

�
+

(r, 0) = �
+

(r, π) = 0 for 1 � r � R .

13 Recall that tilde denotes dependence on polar coordinates:
�̃(r, ϕ) :=�(r cosϕ, r sin ϕ).
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Applying the maximum principle to �̃+ ∓ �
+
then yields

|�̃+(r, ϕ)| � K

1+ R

(
r + R

r

)
sin ϕ � K sin ϕ in A+R ,

which is (B.3). (B.4) and (B.5) follow from (B.3) as in Appendix A. ��
Analogous results hold in the unbounded case, which by Kelvin’s transformation (see, for
example, [1], p. 54f) can be reduced to a bounded problem.

Proposition B.2. Let φ : [−π, π ] → R be a continuous, antisymmetric function with
φ(−π) = φ(π) and axis condition (B.1). Then there is a unique antisymmetric solution
� ∈ C2(A∞) ∩ C(A∞) of the exterior Dirichlet problem

�� = 0 in A∞ ,

�̃(1, ·) = φ , |�̃(r, ·)| → 0 for r → ∞ ,

which, moreover, satisfies the estimates (B.3)–(B.5) (with AR replaced by A∞) for some
K > 0.

Proof. The most simple way to obtain a solution of the asserted kind is to solve again a
bounded problem, viz.,

��′+ = 0 in B+1 ,

�̃′+(1, ϕ) = −φ(ϕ) for 0 � ϕ � π ,

�̃′+(r, 0) = �̃′+(r, π) = 0 for 0 � r � 1 ,

to continue the solution �′+ antisymmetrically onto B1, and to reflect �′ by Kelvin’s trans-
formation into A∞. The estimates (B.3)– (B.5) are proved as in the bounded case, where
�
′+ := (K/r) sin ϕ is a suitable comparison function in A+∞. ��

C. Proof of the Generalized Lax–Milgram Criterion

The proof of Proposition 5.1 is an exercise in standard functional analysis and is given here
for completeness.
Fixing some u ∈ B in the bilinear form B(·, ·) yields a linear form on B̃. The mapping

A : B → B̃′ , u �→ B(u, ·)
is thus well defined with Au acting on B̃ according to

〈Au, ũ〉 = B(u, ũ) for any ũ ∈ B̃ . (C.1)

This mapping is bounded by (C.1), (5.6), and (5.5):

‖Au‖B̃′ = sup
0 �=ũ∈B̃

B(u, ũ)

‖ũ‖B̃
� K ‖u‖B ,

and injective by (5.7):

‖Au‖B̃′ = sup
0 �=ũ∈B̃

B(u, ũ)

‖ũ‖B̃
� c ‖u‖B . (C.2)
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The range A(B) of A is thus a closed set.
In order to prove A(B) = B̃′ let us assume A(B) � B̃′. According to a well-known conse-
quence of Hahn-Banach’s principle there is a nontrivial functional F0 ∈ (B̃′)′ vanishing on
A(B) (see, for example, [16], p. 135). By reflexivity of B̃, F0 is associated to some ũ0 ∈ B̃
such that

〈F0, f 〉 = 〈 f, ũ0〉 for any f ∈ B̃′ . (C.3)

By ‖F0‖B̃′′ �= 0 and (C.3), we find for ũ0:

0 < ‖F0‖B̃′′ = sup
0 �= f ∈B̃′

〈F0, f 〉
‖ f ‖B̃′

= sup
0 �= f ∈B̃′

〈 f, ũ0〉
‖ f ‖B̃′

� ‖ũ0‖B̃ . (C.4)

On the other hand, by F0
∣
∣
A(B)

= 0 and (C.1) we have for any u ∈ B:

0 = 〈F0, Au〉 = 〈Au, ũ0〉 = B(u, ũ0) ,

and hence, by (5.8),

‖ũ0‖B̃ = 0 ,

which contradicts (C.4).
A : B → B̃′ is thus an isomorphism, which guarantees the unique solvability of the equation

Au = f ,

which by (C.1) is equivalent to Equation (5.9). Finally, the estimate (5.10) follows from
(C.2). ��

D. The x-independent min-max problem

We give here a direct (that is without use of Euler–Lagrange techniques) solution of the
min-max problem (6.1), (6.2) corroborating the result (6.36).
In the x-independent case problem (6.1), (6.2) in the interval (b0, b1) reads

inf
v �=0

sup
ψ �=0

F0[v,ψ] =: μ0 (D.1)

with

F0[v, ψ] :=

∫ b1

b0
v′ ψ ′ y−α dy

( ∫ b1

b0
v′ 2 y−(α+γ ) dy

)1/2(
∫ b1

b0
ψ ′ 2 y−(α−γ ) dy

)1/2
(D.2)

and

y−(α+γ )/2 v ∈ H1
0 ((b0, b1)) , y−(α−γ )/2 ψ ∈ H1

0 ((b0, b1)) . (D.3)

(D.2) may be simplified by the substitution (y/b1)
1+α =: z; F0 then takes the form

F̃0[v, ψ] :=

∫ 1

B
v′ ψ ′ dz

( ∫ 1

B
v′ 2 z−γ̃ dz

)1/2(
∫ 1

B
ψ ′ 2 zγ̃ dz

)1/2
(D.4)
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with γ̃ := γ /(1+α) and B := (b0/b1)
1+α , and prime denoting derivation with respect to z.

To determine the maximizing ψ for given v let us estimate the numerator in (D.4) in the
form

∫ 1

B
v′ψ ′dz =

∫ 1

B
(v′ + C)ψ ′dz �

(∫ 1

B
(v′+C)2z−γ̃ dz

) 1
2
(∫ 1

B
ψ ′2zγ̃ dz

) 1
2
, (D.5)

where we made use of the boundary conditions on ψ . The maximum is reached if (D.5) is
an equality, that is

zγ̃ /2 ψ ′ = λ z−γ̃ /2(v′ + C)

with some λ ∈ R. Given v with z−γ̃ /2 v ∈ H1
0 ((B, 1)), which corresponds to (D.3)a , the

choice

ψ[v](z) := λ

∫ 1

z
(v′ + C) z̃−γ̃ dz̃ , C := − 1− γ̃

1− B1−γ̃

∫ 1

B
v′z−γ̃ dz (D.6)

is admissible, that is zγ̃ /2 ψ[v] ∈ H1
0 ((B, 1)).14 Inserting (D.6) into (D.5) yields

sup
ψ �=0

∫ 1

B
v′ψ ′ dz

( ∫ 1

B
ψ ′ 2 zγ̃ dz

)1/2
=

∫ 1

B
v′ψ[v]′ dz

( ∫ 1

B
ψ[v]′ 2 zγ̃ dz

)1/2
=
(∫ 1

B
(v′ + C)2 z−γ̃ dz

) 1
2

=
(∫ 1

B
v′ 2z−γ̃ dz − 1− γ̃

1− B1−γ̃

( ∫ 1

B
v′z−γ̃ dz

)2
) 1

2

,

and hence,

inf
v �=0

sup
ψ �=0

F̃0[v, ψ] = inf
v �=0

(

1− 1− γ̃

1− B1−γ̃

( ∫ 1

B
v′z−γ̃ dz

)2

∫ 1

B
v′ 2z−γ̃ dz

) 1
2

=
(

1− 1− γ̃

1− B1−γ̃
sup
v �=0

( ∫ 1

B
v′z−γ̃ dz

)2

∫ 1

B
v′ 2z−γ̃ dz

) 1
2
.

(D.7)

Similarly, using the boundary conditions on v, we can estimate
∫ 1

B
v′z−γ̃ dz =

∫ 1

B
v′z−γ̃ /2(z−γ̃ /2 − C zγ̃ /2)dz

�
(∫ 1

B
v′ 2z−γ̃ dz

) 1
2
(
1− B1−γ̃

1− γ̃
− 2C(1− B) + C2 1− B1+γ̃

1+ γ̃

) 1
2
.

(D.8)

Choosing C := (1− B)(1+ γ̃ )/(1− B1−γ̃ ), (D.8) implies

sup
v �=0

( ∫ 1

B
v′z−γ̃ dz

)2

∫ 1

B
v′ 2z−γ̃ dz

� 1− B1−γ̃

1− γ̃
− (1− B)2

1+ γ̃

1− B1+γ̃
, (D.9)

14 In the case that B = 0, γ̃ < 1 is assumed.
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and the admissible function

v0 := 1− z − 1− B

1− B1+γ̃
(1− z)1+γ̃

demonstrates that inequality (D.9) is in fact an equality. Combining (D.1), (D.7), and (D.9)
we thus obtain

μ2
0 = 1− 1− γ̃

1− B1−γ̃

(1− B1−γ̃

1− γ̃
− (1− B)2

1+ γ̃

1− B1+γ̃

)

= (1− B)2
1− γ̃

1− B1−γ̃

1+ γ̃

1− B1+γ̃
,

which is (6.36).

E. Numerical Solution of the Euler–Lagrange Equations Associated to the
Min-Max Problem

In subsection 6.2 the product ansatz (6.25), (6.26) in the rectangular domain Q allowed
the reduction of the two-dimensional min-max problem to a sequence of one-dimensional
problems labeled by the index n ∈ N. The corresponding one-dimensional Euler–Lagrange
equations are obtained by inserting (6.25) into (6.17). Moreover, using the symmmetric
variables w and χ as given by (6.33), one obtains the following second-order system of
ordinary differential equations on the interval (0, b):

χ ′′
n − γ

y
χ ′
n −

( (α + γ + 2)(α − γ )

4 y2
+ k2n

)
χn

−μn

[
w′′
n −

( (α + γ + 2)(α + γ )

4 y2
+ d2k2n

)
wn

]
= 0 ,

w′′
n + γ

y
w′
n −

( (α − γ + 2)(α + γ )

4 y2
+ k2n

)
wn

−μn

[
χ ′′
n −

( (α − γ + 2)(α − γ )

4 y2
+ e2k2n

)
χn

]
= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E.1)

together with the boundary conditions

wn(0) = χn(0) = 0 , wn(b) = χn(b) = 0 (E.2)

and eigenvalue μn .
For a numerical treatment of system (E.1) two more transformations are appropriate. Intro-
ducing the variable z := kn y yields the system

χ ′′ − γ

z
χ ′ −

( (α + γ + 2)(α − γ )

4 z2
+ 1
)
χ

−μ
[
w′′ −

( (α + γ + 2)(α + γ )

4 z2
+ d2

)
w
]
= 0 ,

w′′ + γ

z
w′ −

( (α − γ + 2)(α + γ )

4 z2
+ 1
)
w

−μ
[
χ ′′ −

( (α − γ + 2)(α − γ )

4 z2
+ e2

)
χ
]
= 0 ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E.3)

where we omitted the index n at χ , w, and μ and where prime denotes differentiation with
respect to the variable z ∈ [0, knb]. Note that the parameters a, b, and n are now combined
into the single parameter

b̃ := knb = n
π

2

b

a
,
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Fig. 11. μ0 versus γ for α = 0.39 and b0/b1 = 0, 10−6 (cross), 10−4 (square), 10−2

(asterisk). Solid lines denote analytical curves, symbols denote numerical values

which limits the interval [0, b̃] of integration in (E.3). Finally, the change of variables
f± :=w ± χ separates the highest (� second) derivatives; in these variables (E.3) takes
the form

(1− μ) f ′′+ = (1− μ)
α(α + 2)

4 z2
f+ − (1+ μ)

γ 2

4 z2
f+ +

(
1− μ

2
(d2 + e2)

)
f+

−γ

z
f ′− + (1− μ(α + 1)

) γ

2 z2
f− − μ

2
(d2 − e2) f− ,

(1+ μ) f ′′− = (1+ μ)
α(α + 2)

4 z2
f− − (1− μ)

γ 2

4 z2
f− +

(
1+ μ

2
(d2 + e2)

)
f−

−γ

z
f ′+ + (1+ μ(α + 1)

) γ

2 z2
f+ + μ

2
(d2 − e2) f+ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E.4)

Equations (E.4), together with the boundary conditions

f±(b0) = f±(b̃) = 0, (E.5)

are solved in the interval [b0, b̃] by a shooting method. To this end, trajectories are calculated
starting from both ends of the interval towards the center for a given value of μ. The integra-
tion is done with the standard Runge-Kutta-Fehlberg method, consisting of a fourth-order
Runge-Kutta solver with fifth-order error prediction to control the stepsize. The matching
of the trajectories at the center of the interval amounts to the vanishing of a 4× 4 determi-
nant computed from the trajectories at the center. The search for zeroes of this determinant
depending on μ is done by an interval method with respect to μ: we scan systematically
the interval [ε, 1] for subintervals exhibiting a sign change at the endpoints and refine in
the positive case the subinterval subsequently. In order not to miss higher-order zeroes we
looked, additionally, for minima of the modulus of the determinant. These zeroes correspond
to the eigenvalues of μ and, in particular, the lowest one corresponds to μmin.
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Fig. 12. μmin versus γ (crosses) togetherwith the comparison functionCF(α, γ ) (thick line)
and the lower bound LB(α, γ, d, e) (thin line) for α = 0.39, d = 0.1, e = 1.2, b0 = 10−3,
and b̃ = 102

To validate the numerical code let us first consider the x-independent case as described
by Equations (6.34). These can be obtained from (E.4) just by dropping the coefficients
1 ∓ μ

2 (d2 + e2) and μ
2 (d2 − e2). Figure 11 demonstrates good agreement of this way

numerically determined points in a γ –μ0–diagram with curves γ �→ μ0 as described by
the analytical result (6.36) for α = 0.39 and three representative ratios b0/b1. For all three
ratios the deviation of the numerical data from the analytical curve is beyond the resolution
of the plot.

The full equations (E.4) with boundary conditions (E.5) have been run with α = 0.39,
e = 1.2, and a variety of values for d , b0, and b̃. With respect to b̃ we find μmin to be
a monotonically decreasing function. Figure 12 displays results in a γ –μmin–diagram for
d = 0.1, b0 = 10−3, and b̃ = 102 together with the comparison function CF(0.39, γ ) and
the lower bound LB(0.39, γ, 0.1, 1.2). For γ � 0.6, μmin is above LB, which means an
improvement of the lower bound LB.

Further decreasing b0 or increasing b̃ does not lower μmin in a significant way, which
indicates that (10−3, 102) is a sufficient approximation of the interval (0,∞). For 0.5 �
μmin � 0.6, μmin and LB coincide within numerical accuracy. No results are shown for γ
below 0.5 because of numerical instability of our code in this range (a problem that we did
not further pursue).

Let us finally recall that in the case thatμmin is unique, which holds in the x-independent case
but has not been proven in the general case, μmin represents the (in the limits of numerical
accuracy) exact value Cc = C̃c of the min-max problem.
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Fig. 13. The two-dimensional direction field (F.1) with rotation number ro = 3

F. An Analytic Solution with Single Zero in Two Dimensions

This appendix presents the explicit solution of the direction problem for a simple direction
field in two dimensions.15 The solution contains a single zero, whose position is governed by
a parameter λ. The example illustrates the migration of this position with λ and, in particular,
the splitting of the zero when hitting the boundary.
Let (r, φ) be polar coordinates inR

2 with basis vectors er and eϕ , and A∞ the exterior plane
with boundary S1. Furthermore, let

D := cos 2ϕ er + sin 2ϕ eϕ (F.1)

be a (symmetric) direction field on S1 (see Fig. 13) and

B̃λ(r, ϕ) :=∇ϒλ(r, ϕ) :=∇
(

3λ
cos 2ϕ

2r2
− (1− λ2)

(cosϕ

r
+ cos 3ϕ

3r3

))

=
[
(1− λ2)

( cosϕ

r2
+ cos 3ϕ

r4

)
− 3λ

cos 2ϕ

r3

]
er

+
[
(1− λ2)

( sin ϕ

r2
+ sin 3ϕ

r4

)
− 3λ

sin 2ϕ

r3

]
eϕ

(F.2)

a vector field on A∞.
An elementary calculation shows that

�ϒλ = 0 in A∞
and

B̃λ(1, ϕ) = [(1− λ2)(cosϕ + cos 3ϕ) − 3λ cos 2ϕ
]
er

+[(1− λ2)(sin ϕ + sin 3ϕ) − 3λ sin 2ϕ
]
eϕ

= [2(1− λ2) cosϕ cos 2ϕ − 3λ cos 2ϕ
]
er

+[2(1− λ2) cosϕ sin 2ϕ − 3λ sin 2ϕ
]
eϕ

= (2(1− λ2) cosϕ − 3λ
)
D =: aλ(ϕ)D .

B̃λ is thus a harmonic vector field in A∞ that solves the (unsigned) direction problem.

15 The two-dimensional field mimics an axisymmetric field in three dimensions, where
polynomial solutions of type (F.2) are not at our disposal.
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Fig. 14. Zeroes of B̃λ for 5 different values of λ. Arrows at the zeroes indicate in- and
outgoing field lines

Let us consider the parameter range λ ∈ (−1, 1) , where B̃λ has the exact decay order δ̃ = 2.
As long as aλ �= 0 the 2D-analogue of Equation (2.7) predicts ro− δ̃ = 3−2 = 1 zero of B̃λ
in A∞, where ro is the rotation number of D (see [13]). From (F.2), one obtains, explicitly,
for z0 = x0 + iy0 = r0(cosϕ0 + i sin ϕ0), that

(r0, ϕ0) =

⎧
⎪⎨

⎪⎩

(μ +
√

μ2 − 1 , 0) μ > 1
(1 , arccosμ) −1 � μ � 1

(−μ +
√

μ2 − 1 , π) μ < −1

,

where μ := 3λ/(2 − 2λ2). With λ running through the interval [−1, 1] from 1 to −1 one
finds the following behaviour of z0 (see Fig. 14): z0 moves from +∞ (λ = 1) along the
x-axis, hits the boundary at x = 1 (λ = 1/2), splits into two “boundary-zeroes”, which
move symmetrically along S1 and coalesce again at x = −1 (λ = −1/2); for λ < −1/2, z0
enters again A∞ and moves along the negative x-axis up to −∞ (λ = −1).
Note that Equation (2.7) remains valid in the presence of boundary-zeroes, if these are
included on the left-hand side, however weighted by a factor 1/2.
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