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Abstract

We analyze generic sequences for which the geometrically linear energy
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remains bounded in the limit η → 0. Here e(u) := 1/2(Du + DuT ) is the (lin-
earized) strain of the displacement u, the strains ei correspond to the martensite
strains of a shape memory alloy undergoing cubic-to-tetragonal transformations
and the partition into phases is given by χi : B1 (0) → {0, 1}. In this regime it is
known that in addition to simple laminates, branched structures are also possible,
which if austenite was present would enable the alloy to form habit planes. In an
ansatz-free manner we prove that the alignment of macroscopic interfaces between
martensite twins is as predicted by well-known rank-one conditions. Our proof
proceeds via the non-convex, non-discrete-valued differential inclusion

e(u) ∈
⋃

1≤i �= j≤3
conv{ei , e j },

satisfied by the weak limits of bounded energy sequences and of which we clas-
sify all solutions. In particular, there exist no convex integration solutions of the
inclusion with complicated geometric structures.
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1. Introduction

Due to the many possible applications of the eponymous shape memory effect,
shape memory alloys have attracted a lot of attention of the engineering, materi-
als science and mathematical communities. Their remarkable properties are due to
certain diffusionless solid–solid phase transitions in the crystal lattice of the alloy,
enabling the material to form microstructures. More specifically, the lattice transi-
tions between the cubic austenite phase and multiple lower-symmetry martensite
phases, triggered by crossing a critical temperature or applying stresses; see Bhat-
tacharya [6] for a thorough introduction.

As a result, these materials often formmicrostructures. In shape memory alloys
undergoing cubic-to-tetragonal transformations, see Fig. 1, one frequently observes
the following types of microstructures:

1. Twins: Fine-scale laminates of martensite variants, see Fig. 2a and both sides
of the interface at the center of Fig. 2b.

2. Habit planes:Almost sharp interfaces between austenite, and a twin of marten-
sites, where the twin refines as it approaches the interface, see Fig. 2a.

3. Second-order laminates, or twins within a twin: Essentially sharp interfaces
between two different refining twins, see Fig. 2b.

4. Crossing second-order laminates: Two crossing interfaces between twins and
pure phases, see for example Fig. 2c.

5. Wedges: Materials whose lattice parameters satisfy a certain relation can form
a wedge of two martensite twins in austenite, see [6, Chapter 7.3.1] and Fig. 2d.

Furthermore, at least in Microstructures 1, 2 and 5, all observed interfaces form
parallel to finitely many different hyperplanes relative to the crystal orientation. In
this paper, we present a theorem characterizing all possible microstructures whose
energy is comparable to that of a habit plane in the geometrically linear theory.

Fig. 1. A sketch of the cubic-to-tetragonal transformation. The left-hand side represents the
cubic austenite phase, while the right-hand side represents the martensite variants that are
elongated in the direction of one of the axes of the cube and shortened in the other two.
Adapted from [6, Figure 4.5]
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Fig. 2. a Optical micrograph of a habit plane with austenite on the right-hand side
and twinned martensite on the left-hand side in a Cu–Al–Ni alloy undergoing cubic-to-
orthorhombic transformations. Reprinted by permission from Springer Customer Service
Centre GmbH [17]. b Optical micrograph of a second-order laminate in a Cu–Al–Ni alloy,
by courtesy of C. Chu and R.D. James. c Optical micrograph of two crossing second-order
laminates in an Indium–Thallium crystal. The bottom region is in the austenite phase. All
other regions show twinned martensite variants with the twinning in the left-hand side one
being almost parallel to the surface of the sample. Reprinted from [4], with permission from
Elsevier. d Optical micrograph of a wedge in a Cu–Al–Ni alloy, by courtesy of C. Chu and
R.D. James

1.1. Contributions of the Mathematical Community

1.1.1. Modeling The first use of energy minimization in the modeling of marten-
sitic phase transformations has been made by Khatchaturyan, Roitburd and
Shatalov [24–26,36,37] on the basis of linearized elasticity. This allowed predic-
tion of certain large scale features of the microstructure such as the orientation of
interfaces between phases.

Variational models based on nonlinear elasticity go back toBall and James [2,
3]. They formulated amodel inwhich themicrostructures correspond tominimizing
sequences of energy functionals vanishing on

K =
m
⋃

i=1

SO(3)Ui

for finitely many suitable symmetric matrices Ui with i = 1, . . .m and m ∈ N.
In their theory, the orientations of interfaces arise from a kinematic compatibility
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condition known as rank-one connectedness, see [6, Chapter 2.5]. For cubic-to-
tetragonal transformations, Ball and James prove in an ansatz-free way that the
fineness of the martensite twins in a habit plane is due to only certain mixtures
of martensite variants being compatible with austenite. Their approach is closely
related to the phenomenological (or crystallographic) theory of martensite inde-
pendently introduced by Wechsler, Lieberman and Read [42] and Bowles and
MacKenzie [8,33].

A comparison of the nonlinear and the geometrically linear theories can be
found in an article by Bhattacharya [5]. Formal derivations of the geometrically
linear theory from the nonlinear one have been given by Kohn [28] and Ball and
James [3]. A rigorous derivation via Γ -convergence has been given by Schmidt
[41] with the limiting energy in general taking a more complicated form than the
usually used piecewise quadratic energy densities.

1.1.2. Rigidity of Differential Inclusions The interpretation of microstructure
as minimizing sequences naturally leads to analyzing the differential inclusions

Du ∈ K =
m
⋃

i=1

SO(3)Ui ,

sometimes called the m-well problem, or variants thereof such as looking for se-
quences uk such that dist(Duk, K ) → 0 inmeasure. In fact, the statements ofBall
and James are phrased in this way [2,3]. A detailed discussion of these problems
which includes the theory of Young measures has been provided byMüller [34].

However, differential inclusions in themselves are not accuratemodels:Müller
and Šverák [35] constructed solutions with a complex arrangement of phases of
the differential inclusion Du ∈ SO(2)A ∪ SO(2)B with det(A) = det B = 1, for
which one would naively only expect laminar solutions, in two space dimensions
using convex integration. Later, Conti,Dolzmann andKirchheim [15] extended
their result to three dimensions and the case of cubic-to-tetragonal transformations.

But Dolzmann and Müller [19] also noted that if the inclusion Du ∈
SO(2)A∪SO(2)B is augmented with the information that the set {Du ∈ SO(2)A}
has finite perimeter, then Du is in fact laminar. Also this result holds in the case
of cubic-to-tetragonal transformations as shown by Kirchheim.1 There has been a
series of generalizations including stresses [13,16,22,31,32]. However, these are
more in the spirit of the geometric rigidity theorem due to Friesecke, James and
Müller [21], since they rely on the perimeter being too small for lamination and
as such do not give insight into the rigidity of twins. In the presence of a single
rank-one connection and an additional anisotropic pertubation of the energy, this
problem has more recently been overcome by Davoli and Friedrich [18] by ex-
ploiting a version of the geometric rigidity theorem for matrix fields with non-zero
curl.

1 Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded
variation. Preprint,MaxPlanck Institute forMathematics in the Sciences (1998).URL: http://
www.mis.mpg.de/de/publications/preprints/1998/prepr1998-12.html.

http://www.mis.mpg.de/de/publications/preprints/1998/prepr1998-12.html
http://www.mis.mpg.de/de/publications/preprints/1998/prepr1998-12.html
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In contrast, the differential inclusion arising from the geometrically linear set-
ting

1

2
(Du + DuT ) ∈ {e1, e2, e3},

where ei for i = 1, 2, 3 are the linearized strains corresponding to the cubic-to-tetra-
gonal transformation, see (4), is rigid in the sense that all solutions are laminates
even without further regularizations as proven by Dolzmann and Müller [19].
Quantifying this resultCapella andOtto [10,11] proved that laminates are stable
in the sense that if the energy (1) (including an interfacial penalization) is small
then the geometric structure of the configuration is close to a laminate. Additionally,
there is either only austenite or only mixtures of martensite present. Capella and
Otto also noted that for sequences with bounded energy such a result cannot hold
due to awell-known branching construction of habit planes (Fig. 2a) given byKohn
and Müller [29,30].

Therein, Kohn and Müller used a simplified scalar version of the geometrically
linearmodel with surface energy to demonstrate that compatibility of austenite with
a mixture of martensites only requires a fine mixture close to the interface so that
the interfacial energy coarsens the twins away from the interface. Kohn and Müller
also conjectured that the minimizers exhibit this so-called branching, which Conti
[14] affirmatively answered by proving minimizers of the Kohn–Müller functional
to be asymptotically self-similar.

In view of the results by Kohn and Müller, and Capella and Otto it is natural
to consider sequences with bounded energy in order to analyze the rigidity of
branching microstructures.

1.1.3. SomeRelatedProblems So far,wehavemostly discussed the literature de-
scribing the microstructure of single crystals undergoing cubic-to-tetragonal trans-
formations. However, the variational framework can be used to address related
problems, for which we highlight a few contributions as an exhaustive overview is
outside the scope of this introduction.

An overview ofmicrostructures arising in other transformations can be found in
the book byBhattacharya [6]. Rigorous results for cubic-to-orthorhombic trans-
formations in the geometrically linear theory can be found in a number of works by
Rüland [38,39]. For the much more complicated cubic-to-monoclinic-I transfor-
mations with its twelve martensite variants, Chenchiah and Schlömerkemper
[12] proved the existence of certain non-laminate microstructures in the geometri-
cally linear case without surface energy.

For an overview over the available literature on polycrystalline shape memory
alloys we refer the reader once again to Bhattacharya’s book [6, Chapter 13] and
an article by Bhattacharya and Kohn [7].

Another problem is determining the shape of energy-minimizing inclusions
of martensite with given volume in a matrix of austenite, for which scaling laws
have been obtained by Kohn, Knüpfer and Otto [27] for cubic-to-tetragonal
transformations in the geometrically linear setting.
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1.2. Definition of the Energy

In order to analyze the rigidity properties of branchedmicrostructureswe choose
the geometrically linear setting, since the quantitative rigidity of twins is well
understood due to the results by Capella and Otto [10,11]. In fact, we continue
to work with the same already non-dimensionalized functional, namely

Eη(u, χ) := Eelast,η(u, χ) + Einter,η(u, χ), (1)

where

Eelast,η(u, χ) := η−
2
3

ˆ
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e(u) −

3
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χi ei
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2

dL 3, (2)

Einter,η(u, χ) := η
1
3

3
∑

i=1

|Dχi |(B1 (0)). (3)

Here u ∈ W 1,2(B1 (0);R3) is the displacement and e(u) = 1
2

(

Du + DuT
)

denotes the strain. Furthermore, the partition into the phases is given by χi ∈
L∞(B1 (0); {0, 1}) for i = 1, 2, 3 with

∑3
i=1 χi = 1 and the strains associated to

the phases are given by

e0 := 0, e1 :=
⎛

⎝

−2 0 0
0 1 0
0 0 1

⎞

⎠ , e2 :=
⎛

⎝

1 0 0
0 −2 0
0 0 1

⎞

⎠ , e3 :=
⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ . (4)

In particular, we assume the reference configuration to be in the austenite state, but
that the transformation has occurred throughout the sample, i.e., there is no austenite
present. This simplifying assumption does rule out habit planes, see Fig. 2a, but a
look at Fig. 2b suggests that we can still hope for an interesting result. Besides, the
responsible mechanism for macroscopic rigidity is the rank-one connectedness of
the average strains e(uη) ⇀ e(u) in L2, which cannot distinguish between pure
phases and mixtures.

The condition of the material being a shape memory alloy is encoded in the fact
that tr(ei ) = 0 for all i = 1, 2, 3 as this corresponds to the transformation being
volume-preserving.

Further simplifying choices are using equal isotropic elastic moduli with van-
ishing second Lamé constant for all martensite phases and penalizing interfaces by
the total variation of Dχi for i = 1, 2, 3. Of course, as such it is unlikely that the
model can give quantitatively correct predictions. Bhattacharya for example argues
that assuming equal elastic moduli is not reasonable [5, Page 238].

We still expect our analysis to give relevant insight as we will for the most part
prove compactness properties of generic displacements uη ∈ W 1,2(B1 (0);R3) and
partitions χη for η > 0 such that

lim sup
η→0

Eη(uη, χη) < ∞.
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(a) (b)

Fig. 3. a Geometry of an interface parallel to the plane {x · n = 0} in a laminate joining
the strains M1 and M2. b Sketch relating the martensite strains with the cone C (dotted)
of symmetrized rank-one matrices in the two-dimensional strain space S. Note that C is a
union of three lines parallel to the edges of the triangle K

This regime is the appropriate one to analyze branching microstructures: On the
one hand, (generalizations of) the Kohn–Müller branching construction of habit
planes have bounded energy. On the other hand, the stability result of Capella and
Otto [11] rules out branching in sequences with asymptotically vanishing energy
by ensuring that in a strong topology there is either almost exclusively austenite or
the configuration is close to a laminate. In other words, the branching construction
implies that the stability result is sharp with respect to the energy regime as pointed
out by Capella and Otto in their paper.

1.2.1. Compatibility Properties of the Stress-Free Strains It is well known,
see [6, Chapter 11.1], that for M1, M2 ∈ R

3×3 and n ∈ S
2 the following two

statements are equivalent:

– There exists a continuous function u : R3 → R
3 such that for almost all x ∈ R

3

it holds that

e(u)(x) =
{

M1 if x · n > 0,

M2 if x · n < 0,
(5)

see Fig. 3a.
– The two strains are (symmetrically) rank-one connected in the sense that there
exists a ∈ R

3 such that

M1 − M2 = a � n := 1

2
(a ⊗ n + n ⊗ a).

Note that the condition is symmetric in a and n thus every rank-one connection
generically gives rise to two possible normals. Additionally, as rank-one connected-
ness is also symmetric in M1 and M2 this allows for the construction of laminates.

In order to present the result of applying the rank-one connectedness condition
to the case of cubic-to-tetragonal transformations notice that

e0, . . . e3 ∈ S :=
{

e ∈ R
3×3 : e diagonal, tr e = 0

}

. (6)
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Here, we call the two-dimensional space S strain space. It can be shown, either by
direct computation or an application of [12, Lemma3.1], that all rank-one directions
in S are multiples of e2 − e1, e3 − e2 and e1 − e3; this means that they are parallel
to one of the sides of the equilateral triangle

K :=
3
⋃

i=1

{λei+1 + (1− λ)ei−1 : λ ∈ [0, 1]} (7)

spanned by e1, e2 and e3 shown in Fig. 3b. In particular, the martensite strains
are mutually compatible but austenite is only compatible to certain convex com-
binations of martensites which turn out to be 1

3ei + 2
3e j for i, j = 1, 2, 3 with

i �= j .

1.3. The Contributions of the Paper

We study the rigidity of branchingmicrostructures due to “macroscopic” effects

in the sense that we only look at the limiting volume fractions χi,η
∗
⇀ θi in L∞

after passage to a subsequence, which completely determines the limiting strain
e(uη) ⇀ e(u) in L2.

Similarly to the result of Capella and Otto [11], our main result, Theorem
1, is local in the sense that we can classify the function θ on a smaller ball Br (0)
of universal radius 0 < r < 1. As such, having posed the problem on B1 (0)
instead of a more general domain does not present a significant restriction of the
result. As the characterization of each of the four possible cases is a bit lengthy, we
postpone a detailed discussion to Section 2.3. An important point is that we deduce
all interfaces between different mixtures of martensites to be hypersurfaces whose
normals are as predicted by the rank-one connectedness of the average strains on
either side. In this respect our theorem improves on previously available ones, as
they either explicitly assume the correct alignment of a habit plane, see e.g. Kohn
and Müller [30], or require other ad-hoc assumptions; for example, Ball and
James [2, Theorem 3] show habit planes to be flat under the condition that the
austenite phase defines a connected set.

The broad strategy of our proof is to first ensure that in the limit the displacement
satisfies the non-convex differential inclusion

e(u) ∈ K

encoding that locally at most two variants are involved, see Definition (7) and
Fig. 3, and then to classify all solutions. We strongly stress the point that we do
not need to assume any additional regularity in order to do so. In particular, the
differential inclusion is rigid in the sense that it does not allow for convex integration
solutions with extremely intricate geometric structure. To our knowledge this is the
first instance of a rigidity result for a non-discrete differential inclusion in the
framework of linearized elasticity.

The main idea is that “discontinuity” of e(u) and the differential inclusion
e(u) ∈ K balance each other: If e(u) /∈ V MO , see Definition 1, a blow-up
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argument making use of measures describing the distribution of values e(u) ∈ K ,
similar in spirit to Young measures, proves that the strain is independent of one
direction. If e(u) ∈ V MO the differential inclusion gives us less information, but
we can still prove that throughout some smaller ball Br (0), r ∈ (0, 1), only two
martensite variants are involved by using an approximation argument. Finally, we
classify all solutions which are independent of one direction.

The structure of the paper is as follows: in Section 2 we state and discuss our
main theorem in detail. We then give an in-depth explanation of most necessary
auxilliary results required to prove Theorem 1 in Section 3. All proofs of the state-
ments in Sections 2 and 3 are presented in Section 4 in the order of their appearance.
The “Appendix A” finally contains two lemmas of a technical nature, along with
their proofs.

2. The Main Rigidity Theorem

Theorem 1. There exists universal radii r, r̃ ∈ (0, 1) such that the following
holds: For n ∈ N let ηn > 0 be a sequence with limn→∞ ηn = 0. Let uηn ∈
W 1,2(B1 (0);R3) and χηn ∈ L∞(B1 (0); {0, 1}3) with∑3

i=1 χηn ,i ≡ 1 almost ev-
erywhere be sequences of displacements and partitions such that
lim supn→∞ Eηn (uηn , χηn ) < ∞ and such that there exist u ∈ W 1,2(B1 (0);R3)

and θ ∈ L∞(B1 (0); [0, 1]3) with
uηn ⇀ u in W 1,2(B1 (0);R3), χηn

∗
⇀ θ in L∞(B1 (0);R3)

in the limit n → ∞. Then for almost all x ∈ B1 (0) we have θi (x) ∈ [0, 1] for
i = 1, 2, 3,

e(u)(x) =
3
∑

i=1

θi (x)ei and e(u)(x) ∈ K =
3
⋃

i=1

{λei+1 + (1− λ)ei−1 : λ ∈ [0, 1]}.

Furthermore, all solutions to this differential inclusion are two-variant configu-
rations, planar second-order laminates, planar checkerboards on Br (0) or planar
triple intersections on Br̃ (0), according to Definitions 2–6 below.

Note that after modifying uηn for n ∈ N so that
ˆ
B1(0)

uηn dx = 0,
ˆ
B1(0)

1

2

(

Duηn − (Duηn )
T
)

dx = 0,

any sequencewith asymptotically bounded energy has subsequences (not relabeled)

such that uηn ⇀ u in W 1,2(B1 (0);R3) and χηn

∗
⇀ θ in L∞(B1 (0);R3) due to

Korn’s and Poincaré’s inequalities.
The first part of the conclusion states that the volume fractions θi for i = 1, 2, 3

act as barycentric coordinates for the triangle in strain space with vertices e1, e2
and e3. In terms of these, the differential inclusion e(u) ∈ K boils down to locally
only two martensite variants being present.

In plain words, the classification of solutions states that
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1. only two martensite variants are involved, see Definition 2,
2. or the volume fractions θ only depend on one direction and look like a second

order laminate, see Definition 4,
3. or they are independent of one direction and look like a checkerboard of up to

two second-order laminates crossing, see Definition 5,
4. or they are independent of one direction and macroscopically look like three

second-order laminates crossing in an axis, see Definition 6.

Comparing this list to the list of observed microstructures in the introduction,
we see that three crossing second-order laminates are missing. Indeed, we are
unaware of them being mentioned in the currently available literature. One possible
explanation for the absence of planar triple intersections in observations is that they
could be an artifact of the linear theory.Another one is that their very rigid geometry,
see Definition 6, could lead to them being unlikely to develop during the inherently
dynamic process of microstructure formation.

Furthermore, we see that the theorem of course captures neither wedges (which
are known to bemissing in the geometrically linearized theory anyway [5]) nor habit
planes due to austenite being absent. Unfortunately, an extension of the theorem
including austenite does not seem tractable with the methods used here: The central
step allowing to classify all solutions of the differential inclusion is to show that
most configurations are independent of some direction. Even those that do depend
on all three variables have a direction in which they are very well-behaved, i.e.,
they are affine. However, with austenite being present this property is lost, as the
following example shows:

Lemma 1. There exist solutions u : R3 → R
3 of the differential inclusion e(u) ∈

K ∪ {0} such that e(u) has a fully three dimensional structure.

Note that Theorem 1 strongly restricts the geometric structure of the strain, even
if the four cases exhibit varying degrees of rigidity. Therefore, we can interpret it
as a rigidity statement for the differential inclusion e(u) ∈ K . For example, it can
be used to prove that u(x) ≡ M ∈ K is the only solution of the boundary value
problem

{

e(u) ∈ K in B1 (0),

u(x) ≡ Mx on ∂B1 (0)

with affine boundary data, for which convex integration constructions would give a
staggering amount of solutions with complicated geometric structures. This can be
seen by transporting the decomposition into one-dimensional functions of Defini-
tions 2–6 to the boundary using the fact that they are unique up to affine functions,
see [11, Lemma 5].

2.1. Inferring the Microscopic Behavior

In order to properly interpret the various cases Theorem 1 provides, we first
need a clear idea of precisely what information the local volume fractions contain.
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Fig. 4. Experimental picture of a two-variantmicrostructure in aCu–Al–Ni alloy, by courtesy
of R.D. James and C. Chu

In principle, they have the same downside of using Young measures to describe
microstructures: They do not retain information about the microscopic geometric
properties of the microstructures. In fact, the Young measures generated by finite
energy sequences are fully determined by the volume fractions via the expression
∑3

i=1 θiδei , since the Young measures concentrate on the matrices e1, e2 and e3,
which span a non-degenerate triangle.

As every rank-one connectionhas twopossible normals, seeEquation (8), giving
rise to two different twins, we cannot infer from the volume fractions which twin
is used. Consequently, what looks like a homogeneous limit could in principle be
generated by a patchwork of different twins. In fact, Fig. 4 shows an experimental
picture of such a situation.

Additionally,without knowingwhich twin is present the interpretationof changes
in volume fractions is further complicated by the fact there are at least three mech-
anisms which could be responsible:

1. If there is only one twin throughout B1 (0) then the volume fractions can vary
freely in the direction of lamination because there are no restrictions on the
thickness of martensite layers in twins apart from the very mild control coming
from the interface energy.

2. If there is only one twin, the volume fractions may, perhaps somewhat surpris-
ingly, vary perpendicularly to the direction of lamination in a sufficiently regular
manner. Constructions exhibiting this behavior have been given by Conti [14,
Lemma 3.1] and Kohn, Misiats and Müller2 for the scalar Kohn–Müller model.

3. There is a jump in volume fractions across a habit plane or a second-order twin.
As such a behavior costs energy, one would expect that it cannot happen too
often. However, in the present setting we can only prove, roughly speaking,
that the corresponding set of interfaces has at most Hausdorff-dimension 3− 2

3 ,
which will be presented in a forthcoming paper.3

2.2. Some Notation

The rank-one connections between the martensite strains are

e2 − e1 = 6 ν+3 � ν−3

2 Kohn, R.V., Müller S., Misiats, O.: Zigzag patterns in martensite phase transformations
(2016). In preparation.
3 Simon, T.M.: Quantitative aspects of the rigidity of branching microstructures in shape

memory alloys via H-measures. ArXiv e-prints (2018). arXiv:1801.01338

http://arxiv.org/abs/1801.01338
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e3 − e2 = 6 ν+1 � ν−1 ,

e1 − e3 = 6 ν+2 � ν−2 , (8)

where the possible normals are given by

ν+1 := 1√
2
(011), ν−1 := 1√

2
(011),

ν+2 := 1√
2
(101), ν−2 := 1√

2
(101),

ν+3 := 1√
2
(110), ν−3 := 1√

2
(110). (9)

Here, we use crystallographic notation, meaning we define 1 := − 1. In addition,
we use round brackets “( )” for dual vectors, i.e., normals of planes, while square
brackets “[ ]” are used for primal vectors, i.e., directions in real space.

These normals can be visualized as the surface diagonals of a cube aligned
with the coordinate axes and with side lengths 1√

2
, see Fig. 5a. We group them into

three pairs according to which surface of the cube they lie in, i.e., according to the
relation νi · Ei = 0, where Ei is the standard i-th basis vector of R3: Let

N1 := {ν+1 , ν−1 },
N2 := {ν+2 , ν−2 },
N3 := {ν+3 , ν−3 }.

Note that this grouping is also appears in Equation (8). We will also frequently
want to talk about the set of all possible twin and habit plane normals, which we
will refer to by N := N1 ∪ N2 ∪ N3.

Throughout the paper we make use of cyclical indices 1, 2 and 3 corresponding
to martensite variants whenever it is convenient.

Remark 1. Anessential combinatorial property is that for i ∈ {1, 2, 3} and any νi ∈
Ni , νi+1 ∈ Ni+1 there exists exactly one νi−1 ∈ Ni−1 such that {νi , νi+1, νi−1} is
linearly dependent: Indeed, the linear relation is given by ν j ·d = 0 for j ∈ {1, 2, 3}
and a space diagonal

d ∈ D := {[111], [111], [111], [111]} (10)

of the unit cube; see Fig. 5b. By virtue of |ν · ν̃| = 1
2 for ν ∈ Ni and ν̃ ∈ N j

with i �= j , the two vectors form 60◦ or 120◦ angles. In particular, we have for all
ν ∈ Ni and ν̃ ∈ N j with i �= j , all x ∈ span{ν, ν̃} and r > 0 that

|x · ν| < r and |x · ν̃| < r imply |x | < 2r. (11)

Additionally, for every ν ∈ N there exist precisely two d, d̃ ∈ D such that ν ·d �= 0
and ν · d̃ �= 0, and for every ν̃ ∈ N\{ν}we have ν̃ ·d = 0 or ν̃ · d̃ = 0. Furthermore,
for all ν ∈ Ni and ν̃ ∈ Ni+1 with i ∈ {1, 2, 3} there exists a single d ∈ D such that
ν · d = ν̃ · d = 0. In contrast, for each d ∈ D we have ν+i · d = 0 and ν−i · d �= 0
or vice versa.
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(a) (b)

Fig. 5. a Sketch relating the normals ν+3 , ν−3 ∈ N3 of the gray planes and E3. Primal
vectors are shown as dashed, dual vectors as continuous lines. The picture does not attempt
to accurately capture the lengths of the vectors. b Sketch showing the linearly dependent
normals ν+1 , ν+2 and ν−3 spanning the gray plane. The point p indicates the intersection of
the affine span of the space diagonal [111] ∈ D , see definition (10), with the span of the
normals

Additionally, we will frequently want to express e(u) in terms of barycentric
coordinates with respect to e1, e2 and e3, which are given by the function θ :
B1 (0) → [0, 1]3 due to e(u) =∑3

i=1 θi ei , see Theorem 1 or Lemma 2 below. For
almost all x ∈ B1 (0), the inclusion e(u)(x) ∈ K can then be expressed as

θ(x) ∈ K̃ :=
{

θ̄ ∈ [0, 1]3 :
3
∑

i=1

θ̄i = 1, θ̄1θ̄2θ̄3 = 0

}

. (12)

Furthermore, for ν ∈ N , x ∈ R
3 and α ∈ R we will also set

πν(x) := ν · x and H(α, ν) :=
{

x̃ ∈ R
3 : x̃ · ν = α

}

(13)

to be the projection onto span(ν), respectively the plane normal to ν containing
αν. For x ∈ R

3 and r > 0 the symbol Br (x) denotes the corresponding three-
dimensional ball, while for y ∈ R

2 the symbol B 2
r (y) denotes the two-dimensional

ball. The essential infimum of a function h ∈ L∞(U ) for U ⊂ R
n is defined as

ess infUh := − ess supU − h.
For the convenience of the reader, we also provide a definition of the space

V MO(U ) for an open Lipschitz domain U ⊂ R
n for n ∈ N, which is modeled

after the one given by Sarason [40] in the whole space case.

Definition 1. Let U ⊂ R
n with n ∈ N be an open domain and let f ∈ L1(U ). We

say that the function f is of bounded mean oscillation, or f ∈ BMO(U ), if we
have

sup
x∈U,0<r<1

 
Br (x)∩U

∣
∣
∣
∣
f (y) −

 
Br (x)∩U

f (z) dz

∣
∣
∣
∣
dy < ∞.

If we additionally have

lim
r→0

sup
x∈U

 
Br (x)∩U

∣
∣
∣
∣
f (y) −

 
Br (x)∩U

f (z) dz

∣
∣
∣
∣
dy = 0,
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then f is of vanishing mean oscillation, in which case we write f ∈ V MO(U ).

It can be shown that at least for sufficiently nice sets U the space V MO is
the BMO-closure of the continuous functions on U and as such it serves as a
substitute forC(U ) in our setting. Functions of vanishing mean oscillation need not
be continuous, although they do share some properties with continuous functions,
such as the “mean value theorem”, seeLemma8below.We stress that the uniformity
in x of the convergence as r → 0 is crucial and cannot be omitted without changing
the space, as can be proven by considering a function consisting of very thin spikes
of height one clustering at some point.

Finally, for two real numbers s, t > 0 we use the notation s � t if there exists
a universal constant C > 0 such that s ≤ Ct . In proofs, such constants may grow
from line to line.

2.3. Description of the Limiting Configurations

In what follows we describe all types of configurations we can obtain as weak
limits. We start with those in which globally only two martensite variants are in-
volved.

Definition 2. Let u ∈ W 1,2(B1 (0);R3) solve the differential inclusion e(u) ∈ K ,
i.e., there exists a measurable function θ : B1 (0) → [0, 1]3 such that for almost all
x ∈ B1 (0) we have e(u)(x) ≡∑3

i=1 θi (x)ei and θ(x) ∈ K̃ , see defintion (12).
We say that the configuration e(u) is a two-variant configuration on Br (0)with

r > 0 if there exist i ∈ {1, 2, 3}, λ ∈ R and functions fν+i
, fν−i

∈ L∞(−r, r) for
ν ∈ Ni such that for almost all x ∈ Br (0) we have

θi (x) = 0,

θi+1(x) = fν+i
(

ν+i · x)+ fν−i
(

ν−i · x)+ λxi + 1,

θi−1(x) = − fν+i
(

ν+i · x)− fν−i
(

ν−i · x)− λxi .

For a definition of the normals ν see Section 2.2.

An experimental picture of a two-variant configuration resolving the acutal
microstructure can be found in Fig. 4. In contrast, Fig. 6a only keeps track of the
local volume fractions and indicates how they can vary in space. The deceptively
similar overall geometric structure of both figures is due to the rank-one connections
for the microscopic and macroscopic interfaces coinciding. This is also the reason
why we cannot infer the microscopic structure from the limiting volume fractions.
We can only attribute the affine change in xi to Mechanism 2 from Section 2.1.

In the context of the other structures appearing inTheorem1, two-variant config-
urations are best interpreted as their building blocks, since said structures typically
consist of patches where only two martensite variants are involved. In the follow-
ing, we will see that on these patches the microstructures are much more rigid than
those in Fig. 6a as a result of the non-local nature of kinematic compatibility.

Apart from two-variant configurations, all others will only depend on two vari-
ables. We will call such configurations planar.
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(a) (b)

Fig. 6. a Cross-section through a two-variant configuration with i ∈ {1, 2, 3}. The con-
figuration may be affine in the direction perpendicular to the cross-section. Created using
MATLAB. b The grayscale color code indicates the volume fractions of the martensite
variants e j and ek

Definition 3. In the setting of Definition 2, a configuration e(u) is planar with
respect to d ∈ D , see (10), on a ball Br (0) with r > 0 if the following holds: For
i ∈ {1, 2, 3} let νi be the unique normal νi ∈ Ni with νi · d = 0, see Remark 1.
Then for all i = 1, 2, 3 there exist functions fνi ∈ L∞(−r, r) and affine functions
gi : R3 → R with ∂dgi = 0 such that for almost all x ∈ Br (0) we have

θ1(x) = fν2(x · ν2) − fν3(x · ν3) + g1(x),

θ2(x) = − fν1(x · ν1) + fν3(x · ν3) + g2(x),

θ3(x) = fν1(x · ν1) − fν2(x · ν2) + g3(x). (14)

There will be three cases of planar configurations, which at least in terms of
their volume fractions look like a single second-order laminate, a “checkerboard”
structure of two second order laminates crossing, or three single interfaces of second
order laminates crossing in a common axis.

The first two cases are closely related to each other, the first one being almost
contained in the second. However, the first case has slightly more flexibility away
from macroscopic interfaces. Despite the caveat discussed in Section 2.1, we will
name them planar second-order laminates.

Definition 4. In the setting of Definition 2, a configuration e(u) is a planar second-
order laminate on a ball Br (0) for r > 0 if it is planar and takes the following
form: There exist an index i ∈ {1, 2, 3}, ν ∈ Ni , A ⊂ (−r, r) measurable and a,
b ∈ R such that for almost all x ∈ Br (0) we have

θi−1(x) = (1− ax · ν − b)χAc(x · ν),

θi (x) = ax · ν + b,

θi+1(x) = (1− ax · ν − b)χA(x · ν).
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(a) (b) (c)

Fig. 7. a Cross-section of a planar second-order laminate with i ∈ {1, 2, 3}, a = 0 and
average strains M1 and M2. b Sketch relating the strains M1 and M2 in strain space. c
Second-order laminate in a Cu–Al–Ni alloy, by courtesy of C. Chu and R.D. James

A sketch of a planar second-order laminate can be found in Fig. 7, along with a
matching experimental picture of a Cu–Al–Ni alloy, which, admittedly, undergoes
a cubic-to-orthorhombic transformation.

Indeed, such configurations can be interpreted and constructed as limits of
finite-energy sequences as follows, using Fig. 7 as a guide: for simplicity let us
assume that A is a finite union of intervals, and that i = 1. Then on the interior
of {x · ν ∈ A} the configuration will be generated by twins of variants 1 and 2,
while on the interior of {x · ν ∈ Ac}, it will be generated by twins of variants 1 and
3. At interfaces, a branching construction on both sides will be necessary to join
these twins in a second-order laminate. In order to realize the affine change in the
direction of ν we will need to combine Mechanisms 1 and 2 of Section 2.1 because
ν is neither a possible direction of lamination between variants 1 and 2 or variants
1 and 3, nor is it normal to one of them.

The second case consists of configurations inwhich two second-order laminates
cross. In contrast to the first case, the strains are required to be constant away from
macroscopic interfaces leading to only four different involved macroscopic strains.

Definition 5. In the setting of Definition 2, we will say that a configuration e(u) is a
planar checkerboard on Br (0) for r > 0 if it is planar and takes the following form:
There exist i ∈ {1, 2, 3}, A, B ⊂ (−r, r) measurable, a, b ≥ 0 with a+ b = 1 and
ν j ∈ N j for j ∈ {1, 2, 3}\{i} such that for almost all x ∈ Br (0) we have

θi (x) = −aχA(x · νi+1)− bχB(x · νi−1) + 1,

θi+1(x) = bχB(x · νi−1),

θi−1(x) = aχA(x · νi+1).

For a sketch of such configurations, see Fig. 8. Again, we briefly discuss the
construction of such limiting strains. On {x · νi+1 ∈ Ac} ∩ {x · ν3 ∈ Bc} there is
of course only the martensite variant i present. On all other patches there will be
twinning and the macroscopic interfaces require branching constructions unless the
interface and the twinning normal coincide, which can only happen if both strains
lie on the same edge of K . In particular, on {x · νi+1 ∈ A, x · νi−1 ∈ B} there
has to be branching towards all interfaces, i.e., the structure has to branch in two
linearly independent directions.



Rigidity of Branching Microstructures in Shape Memory Alloys 1723

(a) (b) (c)

Fig. 8. a Sketch of a planar checkerboard with strains M1, …, M4. The cross-section can
be chosen such that the average strains are independent of the direction perpendicular to
the cross-section. b Relation of the the strains in strain space. c Checkerboard structure
in an Indium–Thallium crystal. Note that here the bottom region is in the austenite phase.
Reprinted from [4], with permission from Elsevier

Lastly, we remark on the case of three crossing second-order laminates.

Definition 6. In the setting of Definition 2, a configuration is called a planar triple
intersection on Br (0) for r > 0 if it is planar and the following holds: For i = 1, 2, 3
let νi ∈ Ni and let ν̃i ∈ {νi ,−νi } be oriented such that we have ν̃1 + ν̃2 + ν̃3 = 0,
see Remark 1. For all i = 1, 2, 3, there exist sets Ji ⊂ R and x0 ∈ Br (0) such that
we have either

Ji ∩ (−r, r) = (−r, x0 · ν̃i ] for all i = 1, 2, 3

or

Ji ∩ (−r, r) = [x0 · ν̃i , r) for all i = 1, 2, 3.

Furthermore, for all i = 1, 2, 3 there exist a, bi ∈ R such that
∑3

i=1 bi = 1 such
that for almost all x ∈ Br (0) we have

θ1(x) = (ax · ν̃2 + b2)χJ2c(x · ν̃2) + (ax · ν̃3 + b3)χJ3(x · ν̃3),
θ2(x) = (ax · ν̃1 + b1)χJ1(x · ν̃1) + (ax · ν̃3 + b3)χJ3c(x · ν̃3),
θ3(x) = (ax · ν̃1 + b1)χJ1c(x · ν̃1) + (ax · ν̃2 + b2)χJ2(x · ν̃2).

Asketch of a planar triple intersection can be found in Fig. 9. Note that due to the
requirement x0 ∈ Br (0), i.e., we ask the axis of intersection of the discontinuities
to intersect Br (0), the restriction of a planar triple intersection to a smaller ball
does not necessarily yield a triple intersection again, which is why Theorem 1 is
formulated for two different universal radii.

There are a number of possible choices of microscopic twins for constructing
triple sections. We will only describe the simplest one here, which is depicted in
Fig. 9a. Going around the central axis the macroscopic interfaces alternate between
being a result of Mechanism 1 from Section 2.1, namely varying the relative thick-
ness of layers in a twin, and Mechanism 3, i.e., branching, otherwise. Similarly
to the case of second-order laminates, the affine changes require a combination of
Mechanisms 1 and 2 on the individual patches in Fig. 9a.
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(a) (b)

Fig. 9. a Sketch of a planar triple intersection with a = 0 with average strains M1,…, M6.
Again the cross-section is chosen such that the strains are independent of the direction per-
pendicular to the cross-section. The hatching indicates a possible choice for the microscopic
twins, but does not encode the necessary branching. b Relation of the strains in strain space

3. Outline of the Proof

We will give the ideas behind each individual part of the proof of our main
theorem in its own subsection. The contents of each are organized by increasing
detail, so that the reader may skip to the next subsection once they are satisfied with
the explanations given.

3.1. The Differential Inclusion

We first mention that the inclusion e(u) ∈ K holds.

Lemma 2. For n ∈ N let ηn > 0 be such that limn→∞ ηn = 0. Consider sequences
of displacements and partitions uηn ∈ W 1,2(B1 (0);R3) and χηn ∈ L∞(B1 (0);
{0, 1}3) with

∑3
i=1 χηn ,i = 1 almost everywhere such that lim supn→∞ Eηn

(uηn , χηn ) < ∞ and such that there exist u ∈ W 1,2(B1 (0);R3) and θ ∈ L∞(B1 (0);
[0, 1]3) with

uηn ⇀ u in W 1,2(B1 (0);R3), χηn

∗
⇀ θ in L∞(B1 (0);R3)

in the limit n →∞. Then almost everywhere on B1 (0) we have

e(u) ≡
3
∑

i=1

θi ei , θ ∈ K̃ and e(u) ∈ K .

The statement e(u) ≡ ∑3
i=1 θi ei is an immediate consequence of the elastic

energy vanishing in the limit, while the proof of the non-convex inclusion relies on
the rescaling properties of the energy and the Capella–Otto rigidity result [11]. For
x ∈ R

2 and r > 0 we will set

r x̂ = x , û(x̂) = 1

r
u(x), χ̂ (x̂) = χ(x), r η̂ = η,
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where η needs to be re-scaled as well due to it playing the role of a length scale, to
obtain

Eη̂(û, χ̂) = r−3+ 2
3 Eη(u, χ).

The right-hand side consequently behaves better than just taking averages, which
allows us to locally apply the result by Capella and Otto to get the statement.

3.2. Decomposing the Strain

Next, we link the convex differential inclusion

e(u) ∈ S = {e ∈ R
3×3 : e diagonal, tr e = 0},

see also definition (6), to a decomposition of the strain into simpler objects, namely
functions of onlyonevariable and affine functions.AlreadyDolzmann andMüller
[19] used the interplay of this decomposition with the non-convex inclusion e(u) ∈
{e1, e2, e3} to get their rigidity result. In our case, it will however be more conve-
nient to directly state the decomposition in terms of the barycentric coordinates θ

with respect to e1, e2 and e3. For all cyclical indices i = 1, 2, 3 the relation, valid
almost everywhere in B1 (0),

e(u)i i =
3
∑

j=1

θ j e j = −2θi + θi+1 + θi−1 = 1− 3θi

ensures that both viewpoints are equivalent.

Lemma 3. There exists a universal r ∈ (0, 1) with the following property: Let the
displacement u ∈ W 1,2(B1 (0);R3) and the function θ ∈ L∞(B1 (0);R3) almost
everywhere on B1 (0) satisfy

3
∑

i=1

θi ≡ 1 and e(u) ≡
3
∑

i=1

θi ei .

Then for all ν ∈ N and all cyclical indices i = 1, 2, 3 there exist fν ∈ L∞(−r, r)
and affine functions gi : R3 → R such that for almost all x ∈ Br (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x). (15)

The only (marginally) new aspect of Lemma 3 compared to the previously
knownversions [19, Lemma3.2] and [11, Proposition 3.9] is the statement fν ∈ L∞
for all ν ∈ N . We will thus only highlight the required changes to the proof
of Capella and Otto [11, Proposition 3.9]. Essentially, the strategy here is to
integrate the Saint–Venant compatibility conditions for linearized strains, which in
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our situation take the form of six two-dimensional wave equations, see Lemma 5.
Thus it is not surprising that the decomposition is in fact equivalent to

⎛

⎝

e(u)11 0 0
0 e(u)22 0
0 0 e(u)33

⎞

⎠

being a symmetric gradient.
A central part of the proof of Lemma 3 is uniqueness up to affine functions

of the decomposition [11, Lemma 3.8]. We can apply this result to characterize
two-variant configurations as the only ones with θi ≡ 0 for some i = 1, 2, 3, i.e.,
as the only ones that indeed only combine two variants.

Corollary 1. Almost everywhereon B1 (0), let e(u) ∈ K withu ∈ W 1,2(B1 (0);R3)

be such that the barycentric coordinates θ ∈ L∞(B1 (0); [0, 1]3) satisfy θ ∈ K̃ .
Furthermore, for all ν ∈ N and all cyclical indices i = 1, 2, 3 let there exist
fν ∈ L∞(−1, 1) and affine functions gi : R

3 → R such that for almost all
x ∈ B1 (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x). (16)

If for some i ∈ {1, 2, 3} we have θi ≡ 0 a.e. on B1 (0), then the solution of
the differential inclusion is a two-variant configuration on B1 (0) according to
Definition 2.

Another very useful consequence of the decomposition (15) is that such func-
tions have traces on hyperplanes as long as none of the individual one-dimensional
functions are necessarily constant on them. See Fig. 10 for the geometry in a typical
application.

Lemma 4. Let m, n, k, P ∈ N\{0} with n ≥ 2 and k < n. Let C ⊂ R
m be a

closed, convex set. For i = 1, . . . , P let νi ∈ S
n−1 and fi ∈ L1

loc(R;Rm) be such
that F : Rn → C for almost all x ∈ R

n satisfies the decomposition

F(x) ≡
P
∑

i=1

fi (x · νi ). (17)

Furthermore, let V ⊂ R
n be a k-dimensional subspace such that νi /∈ V⊥ for all

indices i = 1, . . . , P.
Then the decomposition (17) defines a locally integrable trace F |V : V → C ,

and for all δ > 0 and H k-almost all x ∈ V we have

Fδ(x) :=
 
Bδ(x)

F(y) dL n(y) → F(x)

in the limit δ → 0.

Finally, we give the wave equations constituting the Saint–Venant compatibility
conditions.
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Fig. 10. Sketch indicating that θ2 has traces on hyperplanes with normal ν+2 since its de-

composition only involves continuous functions and the normals ν±i for i = 1, 3. As usual
we do not keep track of the lengths of the drawn vectors

Lemma 5. For u ∈ W 1,2(B1 (0);R3) and θ ∈ L∞(B1 (0);R3) such that for al-
most all x ∈ B1 (0) we have

∑3
i=1 θi (x) = 1 and e(u)(x) = ∑3

i=1 θi (x)ei , the
barycentric coordinates θ distributionally satisfy the following wave equations:

∂[111]∂[111]θ1 = 0, ∂[111]∂[111]θ1 = 0,

∂[111]∂[111]θ2 = 0, ∂[111]∂[111]θ2 = 0,

∂[111]∂[111]θ3 = 0, ∂[111]∂[111]θ3 = 0. (18)

3.3. Planarity in the Case of Non-trivial Blow-Ups

While the statements in the previous subsections either rely on rather soft ar-
guments or were previously known, we now come to the main ideas of the paper.
As K̃ , see definition (12), is a connected set, there are no restrictions on varying
single points continuously in K̃ . However, the crucial insight is that two different
points θ(1), θ (2) ∈ K̃ with θ

(1)
1 = θ

(2)
1 > 0 are much more constrained.

To illustrate this rigidity, we first for simplicity assume that there exist func-
tions f1, f2, f3 ∈ L∞(−1, 1) such that for almost all x ∈ B1 (0) we have the
decomposition

θ1(x) = f2(x2) − f3(x3) + 1,

θ2(x) = − f1(x1) + f3(x3),

θ3(x) = f1(x1) − f2(x2).

Furthermore, suppose that f1 is a BV -function with a jump discontinuity of size
δ f1 at x1 = 0 and that the other functions are continuous. Thus the blow-up of
θ at some point (0, x ′) ∈ B1 (0) takes two values θ(1), θ (2) ∈ K̃ , which agree
in their first component. Specifically, we have θ

(1)
1 = θ

(2)
1 = θ1(0, x ′). A look at
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Fig. 11. Illustration of the argument for two-valuedness of θ1 near x1 = 0. The length of
the dotted line has to be 3

√
2 δ f1, where δ f1 > 0 is the size of the jump of f1 at zero.

Consequently, the function θ1 can only take the two values 0 or 1− δ f1

Fig. 11 suggests that θ1(0, x ′) can take at most two values, which furthermore are
independent of x ′. As it is a sum of two one-dimensional functions some well-
known, straightforward combinatorics imply that one of the two functions must be
constant. Consequently θ only depends on two directions.

This can be adapted to our more complex decomposition (15), even without
any a priori regularity of the one-dimensional functions. To this end, we require
a topology for the blow-ups which respects the non-convex inclusion e(u) ∈ K ,
and a quantification of discontinuity for fν which ensures that its blow-up is non-
constant.

In order to keep the non-convexity, we for x ∈ R
3 and ε > 0 consider the

push-forward measures

f �→
 
B1(0)

f (θ(x + εy)) dy for f ∈ C0(R
3)

in the limit ε → 0. This approach is very similar in spirit to using Young-measures,
but without a further localization in the variable y. Positing that fν does not have
a constant blow-up along some sequence then means that fν does not converge
strongly to a constant on average, i.e., it does not converge to its average on average.
If one allows the midpoints x of the blow-ups to depend on ε, we see that this is
equivalent to fν /∈ V MO according to Definition 1 given above.

The resulting statement is

Proposition 1. There exist universal radii r ∈ (0, 1
64 ) and r̃ ∈ (0, r) with the fol-

lowingproperty:Almost everywhereon B1 (0), let e(u) ∈ K withu ∈ W 1,2(B1 (0);
R
3) be such that the barycentric coordinates θ ∈ L∞(B1 (0); [0, 1]3) satisfy

θ ∈ K̃ . Furthermore, for all ν ∈ N and all cyclical indices i = 1, 2, 3 let
there exist fν ∈ L∞(−1, 1) and affine functions gi : R3 → R such that for almost
all x ∈ B1 (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x). (19)

Additionally, let there exist i ∈ {1, 2, 3} and ν ∈ Ni such that fν /∈ V MO(−r̃ , r̃).
Then there exists d ∈ D , see (10), with d · ν = 0 such that the configuration is
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planar with respect to d on Br (0) or we have θi ≡ 0 on on Br̃ (0), i.e., a two-variant
configuration.

Furthermore, in the first case there exist α ∈ [−r̃ , r̃ ], 0 < b < 1 and a Borel-
measurable set B ⊂ H(α, ν)∩B1/8(0)withH 2(B∩Br (0)) > 0 such that the trace
θi |H(α,ν) defined by Lemma 4 satisfies θi |H(α,ν) = bχB on H(α, ν)∩ B1/8(0),H 2-
almost everywhere. (Here, Lemma 4 applies due to ν̃ ·ν �= 0 for all ν̃ ∈ Ni+1∪Ni−1,
which are precisely the normals of the decomposition (15) of θi , see Fig. 10.)

There is another slightly more subtle issue in the proof of Proposition 1: As
already explained, our argument works by looking at a single plane at which we
blow-up. Consequently, we can only distinguish the two cases θi ≡ 0 and θi �≡ 0 on
said hyperplane. Therefore we need a way of transporting the information θi ≡ 0
from the hyperplane to an open ball. Given our combinatorics this turns out to be the
3D analog of the question: “If F(x, y) = f (x)+ g(y) is constant on the diagonal,
is it constant on an non-empty open set?” Looking at the function F(x, y) = x − y
one might think that the argument is doomed since F vanishes on the diagonal but
clearly does not do us the favor of vanishing on a non-empty open set.

However, the fact that 0 is an extremal value for θ1 saves us: If F is constant on
the diagonal of a square and achieves its minimum there, then it has to be constant
on the entire square, see also Fig. 12a. For later use we already state this fact in its
perturbed form.

Lemma 6. Let f, g ∈ L∞(0, 1) and c ∈ R be such that f (x1) + g(x2) ≥ c for
almost all x ∈ (0, 1)2 . Let ε ≥ 0 and let one of the following two statements be
true:

1. For almost all x ∈ (0, 1)2 the sum satisfies f (x1)+ g(x2) ≤ c + ε.
2. For almost all t ∈ (0, 1) the sum satisfies f (t) + g(t) ≤ c + ε.

With the essential infima as defined in Section 2.2, it then holds that

3. Foralmost every t ∈ (0, 1)wehave f (t) ≤ ess inf(0,1) f+ε, g(t) ≤ ess inf(0,1)g+
ε and c ≤ ess inf(0,1) f + ess inf(0,1)g ≤ c + ε .

If ε = 0, then all three statements are equivalent.

This statement can be lifted to three-dimensional domains. Its analogue states
that in order to deduce that θi for some i = 1, 2, 3 is constant and extremal, it
is enough to know that the extremal value is attained on a line parametrized by
l(t) := x0+

√
2t Ei for t ∈ I and some interval I ⊂ R. Here, Ei is the i-th standard

basis vector of R3 and the restriction of θi to the image of l is defined by Lemma
4. It will later be important that we have a precise description of the maximal set
to which the information θi = 0 can be transported, which turns out to be the
polyhedron

P :=
⋂

ν∈Ni+1∪Ni−1

{x ∈ R
3 : ν · x = ν · l(I )};

see Fig. 12b. The general strategy of the proof is described in Fig. 13.
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(a) (b)

Fig. 12. a For f, g ∈ L∞(0, 1), the information f (x1) + g(x2) = c along the dashed
diagonal can be transported to the whole gray square provided f (x1)+ g(x2) ≥ c. b Sketch
of the polyhedron P with normals ν±i for i = 2, 3, which in the setting of Lemma 7 is the
maximal set to which we can propagate the information θ1 ≡ 0 or θ1 ≡ 1 on the dashed line
l(I )

(a) (b)

Fig. 13. a In the setting of Lemma 7 we first transport the information {θ1 ≈ 0} from the
dashed line l(I ) to the gray plane H(0, 1√

2
(011)) ∩ P using the two-dimensional result. b

In a second step, we use {θ1 ≈ 0} along another dashed line l̃( Ĩ ) parallel to E1 to propagate
the information to H(α, 1√

2
(011)) ∩ P for all α ∈ R

There is also a generalization of the one-dimensional functions being almost
constant in two dimensions: In three dimensions, the one-dimensional functions are
close to being affine on P in the sense that the inequality (23) holds. (Lemma 13, see
Appendix A, ensures that then there exists an affine function which is uniformly
close.) As we only need this part of the statement in approximation arguments
we may additionally assume that the one-dimensional functions are continuous to
avoid technicalities.

The resulting statement is the following:
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Lemma 7. There exists a universal radius r ∈ (0, 1) with the following property:
Let θ ∈ L∞(B1 (0); [0, 1]3) be such that for all ν ∈ N and all cyclical indices
i = 1, 2, 3 there exist fν ∈ L∞(−1, 1) affine functions gi : R3 → R such that for
almost all x ∈ B1 (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x). (20)

Let i ∈ {1, 2, 3}. Let I ⊂ R be a closed interval and let x0 ∈ R
3 such that

x0+
√
2I Ei ⊂ Br (0). For t ∈ I we define l(t) := x0+

√
2t Ei and the polyhedron

P to be

P :=
⋂

ν∈Ni+1∪Ni−1

{x ∈ R
3 : ν · x ∈ ν · l(I )},

see also Fig. 12b. For ε > 0 assume that either

θi ◦ l(t) ≤ ε for almost all t ∈ I or 1− θi ◦ l(t) ≤ ε for almost all t ∈ I. (21)

Then it holds that P ⊂ B1 (0) and we in the respective cases have

0 ≤ θi (x) ≤ 9ε for almost all x ∈ P or 1− 9ε ≤ θi (x) ≤ 1 for almost all x ∈ P.

(22)

Furthermore, if additionally for all ν ∈ Ni+1 ∪ Ni−1 the one-dimensional
functions fν are continuous, then they all are almost affine in the sense that for all
(s, h, h̃) ∈ R

3 with s, s + h, s + h̃, s + h + h̃ ∈ ν · l(I ) for all ν ∈ Ni+1 ∪ Ni−1
we have

∣
∣
∣ fν(s + h + h̃) + fν(s) − fν(s + h) − fν(s + h̃)

∣
∣
∣ ≤ 36ε. (23)

3.4. The Case fν ∈ V MO for all ν ∈ N

Having simplified the case where one of the one-dimensional functions is not
of vanishing mean oscillation, we now turn to the case where all of them lie in
V MO . The statement we will need to prove here is the following:

Proposition 2. There exists a universal constant r ∈ (0, 1) such that the following
holds: Almost everywhere on B1 (0), let e(u) ∈ K with u ∈ W 1,2(B1 (0);R3)

be such that the barycentric coordinates θ ∈ L∞(B1 (0); [0, 1]3) satisfy θ ∈ K̃ .
Furthermore, for all ν ∈ N and all cyclical indices i = 1, 2, 3 let there exist
fν ∈ V MO(−1, 1) and affine functions gi : R3 → R such that for almost all
x ∈ B1 (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x). (24)

Then e(u) is a two-variant configuration on Br (0) in the sense of Definition 2.
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Fig. 14. Sketch of how e(u)(x) lies in K . At the boundary of θ−1
1 (0) the strain needs to

take the two values e2 and e3

(a) (b)

Fig. 15. In the setting of Remark 2: a Sketch of a connected component P of θ−1
1 (0) with

normals ν+2 , ν−3 and ν+3 . On the gray face we get the information θ2 ≡ 0 or θ2 ≡ 1. In
particular, we get it along the line l, which is parallel to E2. b Sketch of the polyhedron Q
that transports the information θ2 ≡ 0 or θ2 ≡ 1 along l to the inside of P

Remark 2. To fix ideas, let us first illustrate the argument in the case of continuous
functions in thewhole space:By themean value theorem the case e(u) ∈ {e1, e2, e3}
is trivial. Therefore, we may suppose that there is a point x ∈ R

3 such that e(u)(x)
lies strictly between two pure martensite strains, e.g., we have θ1(x) = 0 and
0 < θ2(x), θ3(x) < 1, see Fig. 14. By continuity of θ2 and θ3, the set {θ1 = 0}
has non-empty interior, and, by the decomposition (15), any connected component
of it should be a polyhedron P whose faces have normals lying in N2 ∪ N3, see
Fig. 15a. Additionally, continuity implies that

e(u) ≡ e2 or e(u) ≡ e3 on each face.

Unfortunately, on a face with normal in Ni for i = 2, 3 only θi will later be a
well-defined function due to Lemmas 3 and 4 after dropping continuity. Therefore
on such a face we can only use the above information in the form

θi ≡ 0 or θi ≡ 1.

Using Lemma 7 we get a polyhedron Q that transports this information back
inside P , see Fig. 15b. The goal is then to show that we can reach x in order to get
a contradiction to e(u)(x) lying strictly between e2 and e3, which we will achieve
by using the face of P closest to x .
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Inorder to turn this stringof arguments into aproof in the case fν ∈ V MO(−1, 1)
for all ν ∈ N the key insight is that non-convex inclusions and approximation by
convolutions interact very nicely for V MO-functions. This elementary, if maybe
a bit surprising fact has previously been used to in the degree theory for V MO-
functions, see Brezis and Nirenberg [9, Inequality (7)], who attribute it to L.
Boutet de Monvel and O. Gabber. For the convenience of the reader, we present a
proof in Section 4.

Lemma 8. (L. Boutet de Monvel and O. Gabber) For n, d ∈ N let U ⊂ R
n be open

and let K ⊂ R
d be compact. Let f ∈ V MO(U ) with f ∈ K almost everywhere.

For δ > 0 and x ∈ U, let fδ(x) :=
ffl
Bδ(x)

f (y) dy, where we extend f by 0 outside
of U. Then fδ is continuous and we have that dist( fδ, K ) → 0 locally uniformly
in U as δ → 0.

Unfortunately, formalizing the set {θ1,δ ≈ 0} in such a way that connected
components are polyhedra is a bit tricky. We do get that they contain polyhedra on
which the one-dimensional functions are close to affine ones, see Lemmas 7 and 13.
(The latter canbe found in theAppendixA.)However,wedonot immediately get the
other inclusion: As the directions in the decomposition are linearly dependent, one
of the one-dimensional functions deviating too much from their affine replacement
does not translate into θ1 deviating too much from zero.

We side-step this issue by first working on hyperplanes H(α, ν+1 ) for some
α ∈ (−r, r) where r ∈ (0, 1). In that case, the decomposition of θ1 simplifies to
two one-dimensional functions and thus we do get that connected components of
{θ1,δ ≈ 0} ∩ H(α, ν+1 ) are parallelograms. The goal is then to prove that at least
some of them do not shrink away in the limit δ → 0. Making use of Lemma 7 we
can go back to a full dimensional ball and get that the set {θ1 = 0} has non-empty
interior. This allows the argument for continuous functions to be generalized to
V MO-functions.

3.5. Classification of Planar Configurations

It remains to exploit the two-dimensionality that was the result of Proposition
1. It allowed us to reduce the complexity of the decomposition (15) to three one-
dimensional functions with linearly dependent normals and three affine functions.
We first deal with the easier case where one of the one-dimensional functions is
affine.

Lemma 9. There exists a universal number r ∈ (0, 1) with the following property:
Almost everywhere on B1 (0), let e(u) ∈ K with u ∈ W 1,2(B1 (0);R3) be such
that the barycentric coordinates θ ∈ L∞(B1 (0); [0, 1]3) satisfy θ ∈ K̃ . Let
the configuration be planar on B1 (0) with respect to the direction d ∈ D , and
let the functions of one variable involved in the decomposition (14) be given by
fνi ∈ L∞(−1, 1) for νi ∈ Ni with νi · d = 0 for all i = 1, 2, 3. Furthermore,
assume that there exists j ∈ {1, 2, 3} with ν j ∈ N j such that the function fν j is
affine on (−1, 1).

Then, on Br (0), the configuration is a two-variant configuration, a planar
second-order laminate or a planar checkerboard.
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While the preceding lemma is mostly an issue of efficient book-keeping to reap
the rewards of previous work, we now have to make a last effort to prove the rather
strong rigidity properties of planar triple intersections:

Proposition 3. There exists a universal radius r ∈ (0, 1
2 ) with the following prop-

erty: Almost everywhere on B1 (0), let e(u) ∈ K with u ∈ W 1,2(B1 (0);R3) be
such that the barycentric coordinates θ ∈ L∞(B1 (0); [0, 1]3) satisfy θ ∈ K̃ . Let
the configuration be planar on B1 (0) with respect to the direction d ∈ D and
let the functions of one variable involved in the decomposition (14) be given by
fνi ∈ L∞(−1, 1) for νi ∈ Ni with νi · d = 0 for all i = 1, 2, 3. Furthermore, let
all fνi for i = 1, 2, 3 be non-affine on (−r, r).

Then the configuration is a two-variant configuration on Br (0) or a planar
triple intersection on B2r (0).

Letting πi (x) := νi · x for i = 1, 2, 3 and x ∈ R
3, the idea is to prove for all

i = 1, 2, 3 that there exist Ji ⊂ (− 1
2 ,

1
2 ) such that we have

θ−1
i (0) ∩ B 1

2
(0) = π−1

i+1(Ji+1) ∩ π−1
i−1(J

c
i−1) ∩ B 1

2
(0),

i.e., they are product sets in suitable coordinates. Note that the condition e(u) ∈ K
almost everywhere is then equivalent to

⋃3
i=1 θ−1

i (0) = B1 (0). Writing this in
terms of Ji with i = 1, 2, 3 allows us to apply Lemma 10 below to conclude that
Ji is an interval for all i = 1, 2, 3. The actual representation of the strain is then
straightforward to obtain.

Lemma 10. Let ν1, ν2, ν3 ⊂ S
1 be linearly dependent by virtue of ν1+ν2+ν3 = 0.

For i = 1, 2, 3 and x ∈ R
2 let πi (x) = x · νi . Let J1, J2, J3 ⊂ (−8, 8) be

measurable such that

1. we have
∣
∣
∣B 2

8 (0) ∩
(

π−1
1 (J1) ∩ π−1

2 (J2) ∩ π−1
3 (J3)

)∣
∣
∣ = 0,

∣
∣
∣B 2

8 (0) ∩
(

π−1
1 (J c1 ) ∩ π−1

2 (J c2 ) ∩ π−1
3 (J c3 )

)∣
∣
∣ = 0, (25)

2. and the two sets J1 and J2 neither have zero nor full measure in (−1, 1) in the
sense that

0 < |J1 ∩ (−1, 1)| < 2,

0 < |J2 ∩ (−1, 1)| < 2. (26)

Then there exist a point x0 ∈ B 2
2 (0) such that

|(Ji�(−2, x0 · νi )) ∩ (−2, 2)| = 0 for all i = 1, 2, 3

or

|(Ji�(x0 · νi , 2)) ∩ (−2, 2)| = 0 for all i = 1, 2, 3.
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(a) (b)

Fig. 16. Sketches illustrating the proof of Lemma 10. The arrows in the middle indicate the
three linearly dependent directions ν1, ν2, ν3. a In the setting of Lemma 10, the set π−1

3 (J3)

(hatched) may only intersect π−1
1 (J1

c) ∩ π−1
2 (J2

c) (light gray) and its complement may

only intersect π−1
1 (J1) ∩ π−1

2 (J2) (dark gray). b The line π−1
3 (s) intersects both a subset

of π−1
1 (J1) ∩ π−1

2 (J2) (dark gray) and a subset of π−1
1 (J1

c) ∩ π−1
2 (J2

c) (light gray)

To illustrate the proof let us first assume that J1 and J2 are intervals of matching
“orientations”, e.g., we have J1 = J2 = (−∞, 0), in which case Fig. 16a suggests
that also J3 = (−∞, 0).

If they are not intervals of matching “orientations”, we will see that, locally and
up to symmetry,more of J1 lies below, for example, the value 0 than above,while the
opposite holds for J2. The corresponding parts of J1 and J2 are shown in Fig. 16b.
One then needs to prove that sufficiently many lines π−1

3 (s) for parameters s ∈ R

close to 0 intersect the “surface” of π−1
1 (J1)∩π−1

2 (J2), see Lemma 11 below. As a
result less than half the parameters around 0 are contained in J3. The same argument
for the complements ensures that also less than half of them are not contained in
J3, which cannot be true.

To link intersecting lines to the “surface area” we use that our sets are of product
structure, i.e., they can be thought of as unions of parallelograms, and that the
intersecting lines are not parallel to one of the sides of said parallelograms. In the
following and final lemma, we measure-theoretically ensure the line π−1

3 (s) for
s ∈ R intersects a product set π−1

1 (J1) ∩ π−1
2 (J2) by asking

ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2) dH 1(x) > 0.

Lemma 11. Let ν1, ν2, ν3 ∈ S
1 with ν1+ ν2 + ν3 = 0. Let J1, J2 ⊂ R be measur-

able with |J1|, |J2| > 0. Then the set

A :=
{

s ∈ R :
ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2) dH 1(x) > 0

}

is measurable and satisfies A ⊂ π3

(

π−1
1 (J1) ∩ π−1

2 (J2)
)

, as well as |A| ≥ |J1|+
|J2|.
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4. Proofs

Proof of Theorem 1. Wefirst use Lemma2 to see that the limiting differential inclu-
sion e(u) ∈ K in fact holds. Furthermore,weobtain a function θ ∈ L∞(B1 (0);R3)

almost everywhere satisfying e(u) = ∑3
i=1 θi ei and θ ∈ K̃ . Next, we apply

Lemma 3 to deduce the existence of a universal radius r1 ∈ (0, 1) such that for
all ν ∈ N and all cyclical indices i = 1, 2, 3 there exist fν ∈ L∞(−r1, r1) affine
functions gi : R3 → R such that for almost all x ∈ Br1 (0) we have

θi (x) =
∑

ν∈Ni+1

fν(x · ν) −
∑

ν∈Ni−1

fν(x · ν) + gi (x).

Let r3 < r2 ∈ (0, 1
2 ) be the two universal radii of Proposition 1. By a rescaling

argument, we may suppose that r2 is also the universal radius of Proposition 3. Let
r4 := r1r2 and r5 := r1r3, so that by another rescaling argument, the conclusions of
Propositions 1 and 3 hold for the respective radii r5 < r4. If fν ∈ V MO(−r5, r5)
for all ν ∈ N , then a rescaling argument and Proposition 2 imply that there exists
a universal r6 ∈ (0, r5) such that the solution of the differential inclusion is a two-
variant configuration on Br6 (0). If fνi /∈ V MO(−r5, r5) for some νi ∈ Ni and
i ∈ {1, 2, 3} we can use the same rescaling argument and Proposition 1 to deduce
that the configuration is planar on Br4 (0) or a two-variant configuration on Br5 (0).

We are thus left with classifying planar configurations on Br4 (0), i.e., there
exists d ∈ D such that for all j = 1, 2, 3 there exist ν j ∈ N j with d · ν j = 0,
functions f̃ν j ∈ L∞(−r4, r4) and affine functions g̃ j : R3 → R with ∂dg j = 0
such that for almost all x ∈ Br4 (0) we have

θ j (x) = f̃ν j+1(x · ν j+1)− f̃ν j−1(x · ν j−1) + g̃ j (x).

If, additionally, one of the functions f̃ν j for j ∈ {1, 2, 3}\{i} is affine on (−r4, r4),
we can apply Lemma 9 after rescaling to see that the configuration is a two-variant
configuration, a planar second-order laminate or a planar checkerboard on Br7 (0)
for some universal r7 > 0. Otherwise fν j is not affine on (−r4, r4) for all j ∈
{1, 2, 3}\{i}, and fνi is not affine on (−r4, r4) by virtue of fνi �∈ V MO(−r5, r5)
and r5 < r4. Therefore, remembering that we can apply Proposition 3 with the
radius r4, we obtain that the configuration is a two-variant configuration on Br4 (0)
or a planar triple intersection on B2r4 (0).

Let r := min{r4, r5, r6, r7} and r̃ := 2r4. Restricting to the smaller ball Br (0)
where possible, we see that we have a two-variant configuration, a planar second-
order laminate or a planar checkerboard on Br (0), or a planar triple intersection
on Br̃ (0), concluding the proof. ��

4.1. Construction of a Fully Three-Dimensional Structure in the Presence of
Austenite

Here we flesh out the previously announced example in Lemma 1. The idea
is to construct a two-variant configuration which can be shifted in strain space to
include austenite, see Fig. 18.
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Fig. 17. Sketch showing the basis {ν+1 , ν−1 , ν3} and, in gray, a plane normal to ν3, parallel
to which the cross-sections of Fig. 18 are chosen

(a) (b) (c)

Fig. 18. a Cross-section of the construction for Lemma 1 with x · ν3 = c. If c ∈ R is such
that χ3(c) = 0 then the strains M1, M2, M3 are as in Subfigure (b) if χ3(c) = 1 they are as
in Subfigure (c)

Proof of Lemma 1. Recall ν+1 = 1√
2
(011), ν−1 = 1√

2
(011) fromSection 2.2 and let

ν3 := ν+3 = 1√
2
(110). It is clear that {ν+1 , ν−1 , ν3} is a basis of R3, see also Fig. 17.

Let χ+
1 , χ−

1 , χ3 : R → {0, 1} be measurable characteristic functions. For x ∈ R
3,

we define the volume fractions to be

θ1(x) := 1

3
χ3(x · ν3),

θ2(x) := 1− 1

3
χ+
1 (x · ν+1 ) − 1

3
χ−
1 (x · ν−1 ) − 1

3
χ3(x · ν3),

θ3(x) := 1

3
χ+
1 (x · ν+1 ) + 1

3
χ−
1 (x · ν−1 ),

which clearly a.e. satisfy 0 ≤ θi ≤ 1 for all i = 1, 2, 3 and θ1 + θ2 + θ3 ≡
1. As {ν+1 , ν−1 , ν3} constitutes a basis of R3, the structure is indeed fully three-
dimensional.

Straightforward case distinctions ensure that θi = 0 for some i = 1, 2, 3 or
θi = 1

3 for all i = 1, 2, 3 almost everywhere. Setting G := ∑3
i=1 θi ei we see that

this implies G ∈ K ∪ {0} almost everywhere. A sketch of cross-sections through
G on H(c, ν−1 ) both with χ−

1 (c) = 0 and χ−
1 (c) = 1 is given in Fig. 18.

Finally, in order to identify G as the symmetric gradient of a displacement we
define functions F+

1 , F−
1 , F3 : R → R such that for almost all s ∈ R we have

(F+
1 )′(s) = √

2χ+
1 (s), (F−

1 )′(s) = √
2χ−

1 (s) and (F3)
′(s) = √

2χ3(s).
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For x ∈ R
3 we then set

u1(x) := − F3(x · ν3) + x1,

u2(x) := F+
1 (x · ν+1 ) + F−

1 (x · ν−1 ) + F3(x · ν3)− 2x2,

u3(x) := − F+
1 (x · ν+1 ) + F−

1 (x · ν−1 ) + x3.

The identity e(u) ≡ G a.e. on R
3 is straightforward to check. ��

4.2. The Differential Inclusion

Proof of Lemma 2. For simplicity, we suppress the sequence parameter in the no-
tation throughout the proof. Let η > 0. For Borel sets B ⊂ B1 (0) we interpret the
energies

Eη(B) := η−
2
3

ˆ
B

∣
∣
∣
∣
∣
e(u) −

3
∑

i=1

χi ei

∣
∣
∣
∣
∣

2

dx + η
1
3

3
∑

i=1

|Dχi |(B)

as finite Radon measures on B1 (0).
Let y ∈ B1 (0) and r > 0 be such that Br (y) ⊂ B1 (0). We rescale Br (y)

to the unit ball by setting η̂ := η
r , and defining ûη̂ ∈ W 1,2(B1 (0);R3) and χ̂η̂ ∈

L∞(B1 (0); {0, 1}3) with∑3
i=1 χ̂η̂,i = 1 a.e. for x̂ ∈ B1 (0) to be

ûη̂(x̂):=1

r
uη

(

r x̂ + y
)

, χ̂η̂(x̂) :=χη

(

r x̂ + y
)

.

By the Capella-Otto rigidity result [11, Theorem 2.2] there exists a universal radius
0 < s < 1 such that

min
{‖χ̂1,η̂‖L1(Bs (0)), ‖χ̂2,η̂‖L1(Bs (0)), ‖χ̂3,η̂‖L1(Bs (0))

}

� Eη̂(ûη̂, χ̂η̂)
1
2 .

The energy of the rescaled functions is

Eη̂(ûη̂, χ̂η̂) =
(η

r

)− 2
3
ˆ
B1(0)

∣
∣
∣
∣
∣
e(uη)(r x̂ + y) −

3
∑

i=1

χi (r x̂ + y)ei

∣
∣
∣
∣
∣

2

dx̂

+
(η

r

) 1
3 |Dχ̂η̂|(B1 (0))

= r−3+ 2
3 Eη(Br (y)),

so that rescaling back to Br (y), we get

1

r3
min

{

‖χ1,η‖L1(Bsr (y)), ‖χ2,η‖L1(Bsr (y)), ‖χ3,η‖L1(Bsr (y))

}

�
(

r−3+ 2
3 Eη(Br (y))

) 1
2

.

After passing to a subsequence (not relabeled), we have Eη
∗
⇀ E as Radon

measures in the limit η → 0. Consequently weak lower semi-continuity of the
L1-norm and upper semi-continuity of the total variation on compact sets imply

1

r3
min

{‖θ1‖L1(Bsr (y)), ‖θ2‖L1(Bsr (y)), ‖θ3‖L1(Bsr (y))

}

�
(

r−3+ 2
3 E(Br (y))

) 1
2
.



Rigidity of Branching Microstructures in Shape Memory Alloys 1739

For T :=
{

y ∈ B1 (0) : lim supr→0 r
−3+ 2

3 E
(

Br (y)
)

> 0
}

and for all ε > 0 we

get H 3− 2
3+ε(T ) = 0 by [1, statement (2.40)]. Using [1, Theorem 2.49 (iii) and

Theorem 2.53], along with Lebesgue point theory we thus for almost all y ∈ B1 (0)
obtain

min {θ1(y), θ2(y), θ3(y)} = 0.

��

4.3. Decomposing the Strain

Proof of Lemma 3. First we notice that for all i = 1, 2, 3 and almost all x ∈ B1 (0)
the relation e(u)(x) = ∑3

i=1 θi (x)ei , the definition (4) of ei and the assumption
∑3

i=1 θi (x) = 1 imply

e(u)i i (x) =
3
∑

j=1

θ j (x)e j = −2θi (x) + θi+1(x) + θi−1(x) = 1− 3θi (x).

Therefore, we only have to argue that for all i = 1, 2, 3 a decomposition for e(u)i i
analogous to the Equation (15) holds.

The remaining proof is essentially a translation of the proofs of Capella and
Otto [11, Lemma 3.7 and Proposition 3.9] into our setting. To this end, we use the
“dictionary”

e(u)11 ←→ χ1,

e(u)22 ←→ χ2,

e(u)33 ←→ χ3,

0 ←→ χ0,

where the left-hand side shows our objects and the right-hand side shows the cor-
responding ones of Capella and Otto. The two main changes are the following:

1. In our case all relevant second mixed derivatives vanish (see Lemma 5), instead
of being controlled by the energy. Furthermore,wheneverCapella andOtto refer
to their “austenitic result”, we just have to use the fact that e(u)11 + e(u)22 +
e(u)33 ≡ 0.

2. We need to check at every step that boundedness of all involved functions is
preserved.

We will briefly indicate how boundedness of all functions is ensured. The func-
tions in [11, Lemma 3.7] are constructed by averaging in certain directions. This
clearly preserves boundedness. The proof of [11, Proposition 3.9] works by apply-
ing pointwise linear operations to all functions,which again preserves boundedness,
and by identifying certain functions as being affine, which are also bounded on the
unit ball. ��



1740 Theresa M. Simon

Proof of Corollary 1. By symmetry we can assume i = 1. Applying [11, Lemma
3.8] to θ1 we see that for every x ∈ B1 (0) there exists r > 0 such that the functions
y �→ fν(y · ν) for ν ∈ N2 ∪ N3 are affine on the ball Br (x). Consequently, they
are affine on B1 (0). Thus we can find affine functions g̃2, g̃3 : R3 → R such that
for almost all x ∈ B1 (0) the decomposition (16) reduces to

θ1(x) = 0,

θ2(x) = − fν+1
(

x · ν+1
)− fν−1

(

x · ν−1
)+ g̃2(x),

θ3(x) = fν+1
(

x · ν+1
)+ fν−1

(

x · ν−1
)+ g̃3(x).

As the vectors ν+1 and ν−1 form a basis of the plane H(0, E1) defined in (13), we
can find functions f̃ν+1

, f̃ν−1
∈ L∞(−1, 1), an affine function ĝ3 : R3 → R and

λ ∈ R such that for almost all x ∈ B1 (0) we have

θ2(x) = − f̃ν+1
(

x · ν+1
)− f̃ν−1

(

x · ν−1
)+ λx1 + 1.

θ3(x) = f̃ν+1
(

x · ν+1
)+ f̃ν−1

(

x · ν−1
)+ ĝ3(x). (27)

Therefore, for almost all x ∈ B1 (0) we have ĝ3(x) = −λx1 due to the assumption
θ(x) ∈ K̃ in the form of

∑3
i=1 θi (x) = 1, and thus the decomposition simplifies

to

θ1(x) = 0,

θ2(x) = − f̃ν+1
(

x · ν+1
)− f̃ν−1

(

x · ν−1
)+ λx1 + 1,

θ3(x) = f̃ν+1
(

x · ν+1
)+ f̃ν−1

(

x · ν−1
)− λx1.

��
Proof of Lemma 4. For t ∈ R and δ > 0 let

φ(t) :=
ˆ
{x1=t}

1

L n(B1 (0))
χB1(0)(t, x

′) dL n−1(x ′) and φδ(t) := 1

δ
φ

(
t

δ

)

.

For all x ∈ V and all δ > 0 we have that

P
∑

i=1

φδ ∗ fi (x · νi ) =
 
Bδ(x)

F(y) dL n(y) ∈ C ,

since B1 (0) is invariant under rotation and C is convex. Let i ∈ {1, . . . , P}. By
[20, Theorem 4.1 (iv)] and [20, Theorem 1.33] we get a measurable set Ti ⊂ R

withL (R\Ti ) = 0 such that for all t ∈ Ti we have φδ ∗ fi (t) → fi (t) in the limit
δ → 0. For all i = 1, . . . , P let ν̃i ∈ V ∩B1 (0)\{0} be the orthogonal projection of
νi onto V . As for all x ∈ V we have x · ν̃i = x ·νi �∈ Ti if and only if x · ν̃i|̃νi | �∈ 1

|̃νi |Ti ,
Fubini’s Theorem for all measurable sets U ⊂ V of finite H k-measure gives

H k ({x ∈ U : x · νi ∈ R\Ti }) = 0.
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Thus for almost all x ∈ V we have in the limit δ → 0 that

 
Bδ(x)

F(y) dL n(y) → F |V (x) :=
P
∑

i=1

fi (x · νi ) ∈ C .

��

Proof of Lemma 5. By symmetry it is sufficient to prove the equations involving
θ1. We calculate

∂[111]∂[111] = −∂21 + ∂1∂2 + ∂1∂3 − ∂1∂2 + ∂22 + ∂2∂3 − ∂1∂3 + ∂2∂3 + ∂23

= −∂21 + ∂22 + ∂23 + 2∂2∂3

and, similarly,

∂[111]∂[111] = ∂21 − ∂22 − ∂23 + 2∂2∂3.

For almost all x ∈ B1 (0) we have due to 1
2 (Du + DuT )(x) = e(u)(x) ∈ S, see

definition (6), the distributional identities

(− ∂21 + ∂22 + ∂23
)

u1 = −∂21u1 − ∂2∂1u2 − ∂3∂1u3
= −∂1 tr Du

= 0.

Distributionally, we also know that

∂2∂3u1 = −∂2∂1u3 = ∂1∂3u2 = −∂2∂3u1,

which gives

∂2∂3u1 = 0.

Taking a further distributional derivative we see

∂[111]∂[111]∂1u1 = 0 and ∂[111]∂[111]∂1u1 = 0.

For almost all x ∈ B1 (0) we have the identity ∂1u1(x) = 1− 3θ1(x), as a result of
the assumptions e(u)(x) = ∑3

i=1 θi (x)ei and
∑3

i=1 θi (x) = 1, so that the above
turns into

∂[111]∂[111]θ1 = 0 and ∂[111]∂[111]θ1 = 0.

��
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4.4. Planarity in the Case of Non-trivial Blow-Ups

Proof of Proposition 1. Step 1: Identification of a suitable plane to blow-up at.
By symmetry, we may assume ν = 1√

2
(011). Recall that for y ∈ R

2 and r > 0
the symbol B 2

r (y) refers to the two-dimensional ball. Additionally, we always drop
the factor 1√

2
in the index of fν̃ for ν̃ ∈ N whenever we explicitly write out ν̃.

Throughout the argument, 0 < r̃ < r < 1
64 are fixed, universal radii we will

determine later.
As f(011) /∈ V MO(−r̃ , r̃) by assumption, there exist sequences αk ∈ (−r̃ , r̃)

and δk > 0 for k ∈ N such that (αk − δk, α + δk) ⊂ (−r̃ , r̃) and
1.

lim
k→∞

 
(αk−δk ,αk+δk )

∣
∣
∣
∣
f(011)(s) −

 
(αk−δk ,αk+δk )

f(011)(s̃) ds̃

∣
∣
∣
∣
ds > 0, (28)

2. limk→∞ δk = 0,
3. limk→∞ αk = α ∈ [−r̃ , r̃ ].

For k ∈ Nwe parametrize the plane H (αk,
1√
2
(011)) at which we will blow-up

using β, γ ∈ R such that (β, γ ) ∈ B 2
1/8(0) and

Xk(β, γ ) :=αk
1√
2
(011) +

(

β − 1

2
αk

)
1√
2
[111] +

(

γ − 1

2
αk

)
1√
2
[111].

Note that Xk(β, γ ) ∈ B1 (0) for all k ∈ N and all (β, γ ) ⊂ B 2
1/8(0) due to r̃ < 1

64 .

It is straightforward to see that then for all k ∈ N and (β, γ ) ∈ B 2
1/8(0)we have

the relations

Xk(β, γ ) · 1√
2
(011) = αk, Xk(β, γ )

1√
2
(011) = γ − β, (29)

Xk(β, γ ) · 1√
2
(101) = β, Xk(β, γ ) · 1√

2
(101) = αk − γ, (30)

Xk(β, γ ) · 1√
2
(110) = γ, Xk(β, γ ) · 1√

2
(110) = β − αk . (31)

Note that they nicely capture the combinatorics we discussed in Remark 1: The
expression Xk(β, γ ) · ν+1 depends on neither β nor γ , while Xk(β, γ ) · ν−1 depends
on both. Furthermore, we see that Xk(β, γ )·ν±i for i = 2, 3 depend on precisely one
of the two. For a sketch relating H

(

αk, ν
+
1

)

with the normals ν ∈ N see Fig. 19a.
For all (β, γ ) ∈ B 2

1/8(0) and k →∞ we get the uniform convergence

Xk(β, γ ) → X (β, γ ) = α
1√
2
(011)

+
(

β − 1

2
α

)
1√
2
[111] +

(

γ − 1

2
α

)
1√
2
[111] (32)

and the relations with the normals turn into

X (β, γ ) · 1√
2
(011) = α, X (β, γ ) · 1√

2
(011) = γ − β, (33)
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(a) (b)

Fig. 19. a Sketch relating planes H(α̃, ν+1 ) for α̃ ∈ R, shown in gray, with all ν ∈ N . b
Planes H(α̃, ν+1 ) for α̃ ∈ R contain lines parallel to E1

X (β, γ ) · 1√
2
(101) = β, X (β, γ ) · 1√

2
(101) = α − γ, (34)

X (β, γ ) · 1√
2
(110) = γ, X (β, γ ) · 1√

2
(110) = β − α. (35)

We still have X (β, γ ) ∈ B1 (0) for all (β, γ ) ∈ B 2
1/8(0).

For i = 1, 2, 3; ν ∈ N ; (β, γ ) ∈ B 2
1/8(0); ξ ∈ B1 (0); and k ∈ N sufficiently

large to have Xk(B 2
1/8(0)) + B2δkξ (0) ⊂ B1 (0) we define the blow-ups

θ
(k)
i (β, γ ; ξ) := θi (Xk(β, γ ) + 2δkξ),

f (k)
ν (β, γ ; ξ) := fν(ν · (Xk(β, γ ) + 2δkξ)),

g(k)
i (β, γ ; ξ) := gi (Xk(β, γ )+ 2δkξ),

where θ(k) ∈ L∞(B 2
1/8(0) × B1 (0); K̃ ), f (k)

ν ∈ L∞(B 2
1/8(0) × B1 (0)), and

g(k)
i : R5 → R is affine. We furthermore remark that for all ν ∈ N\ { 1√

2
(011)} and

(β, γ ) ∈ B 2
1/8(0) the composition fν ◦ X (β, γ ) := fν (ν · X (β, γ )) is well-defined

almost everywhere due to Lemma 4, see also Fig. 19a.
Step 2: There exists a subsequence, which we will not relabel, and a probability

measure μ onR2 such that for almost all (β, γ ) ∈ B 2
1/8(0); all ν ∈ N\ { 1√

2
(011)};

all i = 1, 2, 3; and all ψ ∈ C(R2) we have in the limit k →∞ that

‖ f (k)
ν (β, γ ; •) − fν ◦ X (β, γ )‖L1(B1(0)) → 0

‖g(k)
i (β, γ ; •) − gi ◦ X (β, γ )‖L1(B1(0)) → 0 

B1(0)
ψ
((

− f (k)
(011), f (k)

(011)

)

(β, γ ; ξ)
)

dξ →
ˆ
R2

ψ( f̂ ) dμ( f̂ ). (36)

Additionally, μ is not a Dirac measure.
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For all k ∈ N and all ν ∈ N\ { 1√
2
(011)} we have by definition of f (k)

ν and
Fubini’s Theorem thatˆ

B 2
1/8(0)

 
B1(0)

∣
∣
∣ f (k)

ν (β, γ ; ξ) − fν ◦ X (β, γ )

∣
∣
∣ dξ d(β, γ )

=
ˆ
B 2
1/8(0)

 
B1(0)

| fν (ν · Xk(β, γ ) + 2δkν · ξ)− fν(ν · X (β, γ ))| dξ d(β, γ )

�
ˆ
B 2
1/8(0)

 1

−1
| fν(ν · Xk(β, γ ) + 2δks) − fν(ν · X (β, γ ))| ds d(β, γ ).

As ν · Xk(β, γ ) and ν · X (β, γ ) depend on at least β or γ , see Equations (29)–(31)
and (33)–(35), and we have the uniform convergence Xk → X for k →∞, we can
apply Lemma 12 from the Appendix A to deduce that the integral in the last line
vanishes in the limit. Passing to a subsequence, we get strong L1-convergence in ξ

for almost all (β, γ ) ∈ B 2
1/8(0). Also, for all (β, γ ) ∈ B 2

1/8(0) and all i = 1, 2, 3

we have g(k)
i (β, γ ; •) → gi ◦ X (β, γ ) pointwise and in L1 in the limit k →∞ by

continuity of affine functions.
Due to the fact that Xk(β, γ )· 1√

2
(011) = αk for all (β, γ ) ∈ B 2

1/8(0)we see that
f (k)
(011) does not depend on β and γ . Hencewemay drop them as arguments of f (k)

(011).
As f(011) is a bounded function, the sequence of push-forward measures defined by
the left-hand side of (36) have uniformly bounded supports. Consequently, there
exists a limiting probabilitymeasureμ such that along a subsequence (not relabeled)
we for all ψ ∈ C(R2) have in the limit k →∞ that

ˆ
B1(0)

ψ

((

− f (k)
ν+1

, f (k)
ν+1

)

(ξ)

)

dξ →
ˆ
R2

ψ( f̂ ) dμ( f̂ ).

Finally, towards a contradiction we assume μ = δ f̂ for some f̂ ∈ R
2, inter-

preted as a constant function on R
2. Then for all k ∈ N we would have

 
(αk−δk ,αk+δk )

∣
∣
∣
∣
f(011)(s) −

 
(αk−δk ,αk+δk )

f(011)(s̃) ds̃

∣
∣
∣
∣
ds

=
 

(αk−δk ,αk+δk )

∣
∣
∣
∣
f(011)(s) − f̂2 −

 
(αk−δk ,αk+δk )

(

f(011)(s̃) − f̂2
)

ds̃

∣
∣
∣
∣
ds

≤ 2
 

(αk−δk ,αk+δk )

∣
∣
∣ f(011)(s) − f̂2

∣
∣
∣ ds. (37)

Testing the convergence (36) with the function ψ(ĝ) := |ĝ2 − f̂2| for ĝ ∈ R
2 and

using the assumption μ = δ f̂ we would in the limit k →∞ see that

 
(αk−δk ,αk+δk )

∣
∣
∣ f(011)(s) − f̂2

∣
∣
∣ ds =

ˆ 1
2

− 1
2

∣
∣
∣ f(011)(αk + 2δks) − f̂2

∣
∣
∣ ds

≤ C
 
B1(0)

∣
∣
∣
∣
f (k)
ν+1

(ξ)− f̂2

∣
∣
∣
∣
dξ → 0. (38)
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However, the combination of (37) and (38) would contradict the condition (28).
Before we come to the third step, we for (β, γ ) ∈ B 2

1/8(0) define the two shifts

z2, z3 ∈ L∞(B 2
1/8(0)) via

z2(β, γ ) :=
(

f(110) + f(110) − f(011) + g2
)

◦ X (β, γ ), (39)

z3(β, γ ) :=
(

f(011) − f(101) − f(101) + g3
)

◦ X (β, γ ), (40)

and the push-forward measure μ̄ on R
3 via for Ψ ∈ C(R3) setting

μ̄β,γ (Ψ ) :=
ˆ
R2

ψ
(

(θ1 ◦ X, f̂ + (z2, z3))(β, γ )
)

dμ( f̂ ). (41)

Step 3: For almost all (β, γ ) ∈ B 2
1/8(0) and all ψ ∈ C(R3) we have in the limit

k →∞ that  
B1(0)

ψ
(

θ(k)(β, γ ; ξ)
)

dξ → μ̄β,γ (ψ) , (42)

and the measure μ̄β,γ is supported on K̃ , see definition (12).
The previous calculations immediately give that for almost all (β, γ ) ∈

B 2
1/8(0) the sequence θ

(k)
1 (β, γ ; •) converges strongly in L1(B1 (0)) as k →∞ to

θ1 ◦ X (β, γ ) =
(

f(101) + f(101) − f(110) − f(110) + g1
)

◦ X (β, γ ). (43)

Similarly, for almost all (β, γ ) ∈ B 2
1/8(0) the blow-ups (θ

(k)
2 + f (k)

(011))(β, γ ; •) and
(θ

(k)
3 − f (k)

(011))(β, γ ; •) converge strongly in L1(B1 (0)) to z2(β, γ ) and z3(β, γ )

in the limit k →∞.
As the required convergence (42) is induced by the metrizable weak∗-topology

on compactly-supported measures, we only have to identify the limit along subse-
quences, which may depend on β and γ , of arbitrary subsequences. Let (β, γ ) ∈
B 2
1/8(0). Given a subsequence, we may extract a further subsequence (neither

are relabeled) to upgrade the above convergences in the limit k → ∞ to point-
wise convergence for almost all ξ ∈ B1 (0) of the sequences θ

(k)
1 ◦ X (β, γ ),

(θ
(k)
2 + f (k)

(011))(β, γ ; ξ) and (θ
(k)
3 − f (k)

(011))(β, γ ; ξ) to expressions independent
of ξ . Applying Egoroff’s theorem, for any ε > 0 there exists a measurable set
Kε ⊂ B1 (0) such that |B1 (0)\Kε| < ε and such that on Kε these convergences
are uniform. Consequently, suppressing β and γ , and in the last step exploiting the
definitions (36) and (41) of μ and μ̄, respectively, we get for all ψ ∈ C(R3) that

lim sup
k→∞

∣
∣
∣
∣

 
B1(0)

ψ
(

θ(k)(ξ)
)

dξ −
ˆ
R3

ψ dμ̄

∣
∣
∣
∣

≤ lim sup
k→∞

∣
∣
∣
∣

 
B1(0)

ψ
(

(θ1 ◦ X, z2 − f (k)
(011)(ξ), z3 + f (k)

(011)(ξ)
)

dξ −
ˆ
R3

ψ dμ̄

∣
∣
∣
∣

+ 2‖ψ‖∞|B1 (0)\Kε|
≤ 2‖ψ‖∞ε.
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Fig. 20. For all β, γ ∈ B, the intersection of the dotted line with K is given by the two
points θ1(β, γ )e1 + (1− θ1(β, γ ))e3 and θ1(β, γ )e1 + (1− θ1(β, γ ))e2

As ε > 0was arbitrary, the convergence (42) follows. Testingwithψ = dist
(•, K̃ )

we obtain supp μ̄ ⊂ K̃ .
Step 4: For some 0 < b < 1 and some measurable set B ⊂ B 2

1/8(0) we have
that θ1 ◦ X = bχB almost everywhere. Furthermore, there exist z̃2, z̃3 ∈ R such
that for almost all (β, γ ) ∈ B we have (z2, z3)(β, γ ) = (z̃2, z̃3).

Note that what we claim to prove in Step 4 is an empty statement if θ1 ◦ X ≡ 0
a.e. in B 2

1/8(0). We may thus suppose that

B :=
{

(β, γ ) ∈ B 2
1/8(0) : θ1 ◦ X (β, γ ) > 0

and the conclusions of Steps 2 and 3 hold
}

satisfies |B| > 0. Let Tz for z ∈ R
2 be the translation operator acting onmeasures μ̂

onR2 via the formula (Tzμ̂)(A) = μ̂(A−z) for Borel sets A ⊂ R
2. Let (β, γ ) ∈ B.

We have by Step 3 and definition (41), see also Fig. 20, that

supp μ̄β,γ ⊂ K̃ ∩
{

θ̂ ∈ R
3 : θ̂1 = θ1 ◦ X (β, γ )

}

,

and thus in combination with definition (12) and θ1 ◦ X (β, γ ) > 0 that

supp T−(z2,z3)(β,γ )μ ⊂ {(0, 1− θ1 ◦ X (β, γ )) , (1− θ1 ◦ X (β, γ ), 0)} .
Together with the fact that μ is not a Dirac measure by Step 2 we therefore obtain
0 < λ < 1 and f̂ , ĝ ∈ R

2 with f̂ �= ĝ such that

μ = λδ f̂ + (1− λ)δĝ.

Consequently, we get

{ f̂ , ĝ} − (z2, z3)(β, γ ) = {(0, 1− θ1 ◦ X (β, γ )) , (1− θ1 ◦ X (β, γ ), 0)} . (44)

Calculating the distance of the two points in both representations gives

2 (1− θ1 ◦ X (β, γ )) = | f̂ − ĝ| > 0.

Therefore, we have θ1 ◦ X < 1 on B. Furthermore, as μ is independent of (β, γ )

also f̂ and ĝ are, which implies that there exists b ∈ (0, 1) such that θ1 ◦ X ≡ b
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on B. To see that (z2, z3) is constant on B note that for all (β, γ ), (β̃, γ̃ ) ∈ B the
representation (44) implies

{ f̂ , ĝ} − (z2, z3)(β, γ ) = { f̂ , ĝ} − (z2, z3)(β̃, γ̃ ).

As a non-empty set which is invariant under a single, non-vanishing shift has to
at least be countably infinite, we see that there exists z̃2, z̃3 ∈ R such that for all
(β, γ ) ∈ B we have (z2, z3)(β, γ ) = (z̃2, z̃3).

Step 5: We can choose a sufficiently small, universal number r ∈ (0, 1
64 ) such

that if |B ∩ B 2
r (0)| > 0, then there exists d ∈ D , see definition (10), such that the

configuration is planar on Br (0) with respect to d.
By the decomposition of θ1 ◦ X , see (43), and its interplay with the coordinates

X , see (33)–(35), there exist λ1, λ2, c ∈ R such that for almost all β, γ ∈ (− 1
16 ,

1
16 )

and

F1(β) := f(101)(β) − f(110)(β − α) + λ1β,

F2(γ ) := f(101)(α − γ ) − f(110)(γ )+ λ2γ + c

we have

θ1 ◦ X (β, γ ) = f(101)(β) + f(101)(α − γ ) − f(110)(γ ) − f(110)(β − α)+ λ1β + λ2γ + c

= F1(β) + F2(γ ).

As by Step 4 the function θ1 ◦ X takes at most two values almost everywhere we
have that either F1 is constant or F2 is constant almost everywhere on (− 1

16 ,
1
16 ).

We only deal with the case of F2 being constant. The argument for the other
one works analogously. Consequently, we get a measurable set D ⊂ (−r, r) such
that |D| > 0 and D × (− 1

16 ,
1
16 ) ⊂ B. We will follow the notation of Capella

and Otto [11] in writing discrete derivatives of a function φ : I → R from a
non-empty, open interval I ⊂ R for γ, h ∈ R with γ, γ + h ∈ I as

∂hγ φ(γ ) := φ(γ + h) − φ(γ ). (45)

We proved in Step 4 that the shift (z2, z3) is constant almost everywhere on B.
Thus we get for almost all γ ∈ (− 1

32 ,
1
32 ), β ∈ D and h ∈ (− 1

32 ,
1
32 ) that

0=∂hγ z2 ◦ X (β, γ )
(39)= ∂hγ

(

f(110) + f(110) − f(011) + g2
)

◦ X (β, γ )

(33)−(35)= ∂hγ

(

f(110)(γ ) + f(110)(β − α) − f(011)(γ − β)
)

+ ∂hγ g2 ◦ X (β, γ )

=∂hγ

(

f(110)(γ ) − f(011)(γ − β)
)

+ ∂hγ g2 ◦ X (β, γ ). (46)

The fact that g2 is affine implies that ∂hγ g2 ◦ X is independent of β. Thus, “differ-

entiating” again under the constraint β, β̃ ∈ D we for almost all γ ∈ (− 1
32 ,

1
32 )

and h ∈ (− 1
32 ,

1
32 ) get

0 = ∂hγ f(011)(γ − β) − ∂hγ f(011)(γ − β̃).
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Fixβ ∈ D. Setting t := γ−β and h̃ :=β−β̃ the above turns into ∂ h̃∂h f(011)(t) =
0 for almost all t ∈ (− 1

64 ,
1
64 ), h ∈ (− 1

32 ,
1
32 ) and h̃ ∈ −D + β due to D ⊂

(− 1
64 ,

1
64 ). As a result of | − D + β| > 0, we can choose a sufficiently small,

universal number r ∈ (0, 1
64 ) and apply [11, Lemma 3.11] to get for almost all

t ∈ (−4r, 4r) and shifts h, h̃ ∈ (−4r, 4r) that

∂h∂ h̃ f(011)(t) = 0.

Consequently, the function f(011) is affine on (−4r, 4r), see e.g. Lemma 13 in the
Appendix A. Referring back to Equation (46) we see that also f(110) is affine on
(−2r, 2r).

The upshot is that for x ∈ B2r (0) and with the affine function

g̃2(x) := f(110)

(
1√
2
(110) · x

)

− f(011)

(
1√
2
(011) · x

)

+ g2(x)

the decomposition (19) for θ2 can almost everywhere be re-written as

θ2(x) = − f(011)

(
1√
2
(011) · x

)

+ f(110)

(
1√
2
(110) · x

)

+ g̃2(x). (47)

By Equation (46) we furthermore have ∂γ g̃2 ◦ X = 0 on B 2
2r (0). In the standard

basis of R3 this translates to

∂[111]g̃2 = 0 on B2r (0),

since ∂γ corresponds to differentiating in the direction of [111] by Equation (32)
and ∂[111]g̃2 is constant on B2r (0).

The analogue of (46) using z3 rather than z2 gives that f(101) is affine on (−r, r)
and that we may find an affine function g̃3 with ∂[111]g̃3 = 0 such that for almost
all x ∈ Br (0) we have

θ3(x) = f(011)

(
1√
2
(011) · x

)

− f(101)

(
1√
2
(101) · x

)

+ g̃3(x). (48)

For almost all x ∈ Br (0), the assumption θ1(x)+ θ2(x)+ θ3(x) = 1, see also (12),
and the observations ∂[111]θ2(x) = ∂[111]θ3(x) = 0, due to (47) and (48), imply
∂[111]θ1(x) = 0. Together with the decomposition (19) we see for x ∈ Br (0) that
the affine function

g̃1(x) := f(101)

(
1√
2
(101) · x

)

− f(110)

(
1√
2
(110) · x

)

+ g1(x)

satisfies

∂[111]g̃1(x) = ∂[111]θ1(x) = 0

as well and we almost everywhere get the decomposition

θ1(x) = f(101)

(
1√
2
(101) · x

)

− f(110)

(
1√
2
(110) · x

)

+ g̃1(x). (49)
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Equations (47)–(49) together with the affine function g̃i being independent of the
[111]-direction constitute planarity on Br (0) of the configuration, see Definition
3.

Step 6: There exists a universal constant r̃ ∈ (0, r) such that if we have |B ∩
B 2
r (0)| = 0, i.e., θ1 ◦ X (β, γ ) = 0 for almost all (β, γ ) ∈ B 2

r (0), then the solution
u is a two-variant configuration on Br̃ (0).

As the plane H(α, 1√
2
(011)) contains plenty of lines parallel to E1, see Fig. 19b,

an application of Lemma 7 together with α ∈ [−r̃ , r̃ ] ensures that θ1 ≡ 0 on Br̃ (0)
for some universal r̃ ∈ (0, r). Corollary 1 then implies that we are dealing with a
two-variant configuration on Br̃ (0). ��
Proof of Lemma 6. Without loss of generality, we may assume

ess infx1,x2∈(0,1) f (x1) + g(x2) = 0 ≥ c. (50)

Step 1: We have ess inf f + ess infg ≥ 0.
Let δ > 0. We know that

∣
∣
∣
∣

{

t ∈ (0, 1) : f (t) < ess inf f + δ

2

}∣
∣
∣
∣
> 0

and
∣
∣
∣
∣

{

t ∈ (0, 1) : g(t) < ess infg + δ

2

}∣
∣
∣
∣
> 0.

Consequently, we have that
∣
∣
∣

{

x ∈ (0, 1)2 : f (x1) + g(x2) < ess inf f + ess infg + δ
}∣
∣
∣ > 0.

For all δ > 0 we with (50) thus know −δ ≤ ess inf f + ess infg, which gives the
claim.

Step 2: Statement 1 implies statement 3.
For almost all x ∈ (0, 1)2 we know that

ε + c ≥ f (x1) + g(x2) ≥ ess inf f + g(x2) ≥ ess inf f + ess infg ≥ 0 ≥ c.

In particular, we know

ess inf f + ess infg ≤ ε + c.

By Fubini’s Theorem there exists an x2 ∈ (0, 1) such that for almost all x1 ∈ (0, 1)
we have

ε + c ≥ f (x1) + g(x2) ≥ ess inf f + g(x2) ≥ c.

With such an x2 ∈ (0, 1) we thus we for almost all x1 ∈ (0, 1) see

f (x1) − ess inf f = f (x1)+ g(x2) − (ess inf f + g(x2)) ≤ ε.

A similar argument ensures g ≤ ess infg + ε.
Step 3: Conclusion.
The proof for the implication “2 �⇒ 3” is very similar to Step 2. Lastly, if

ε = 0, the implications “3 �⇒ 1, 2” are trivial. ��
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Proof of Lemma 7. The radius r > 0 is only required to ensure that P ⊂ B1 (0).
After choosing it correspondingly, we may thus translate, re-scale and use the
symmetries of the problem to only work in the case i = 1, x0 = 0 and I = [−1, 1].
For all ν ∈ N2 ∪ N3 these additional assumptions imply

ν · l(I ) = √
2 E1 · ν[−1, 1] = [−1, 1]

and, consequently, P = ⋂

ν∈N2∪N3
{x ∈ R

3 : |ν · x | ≤ 1}. Furthermore, we only
have to deal with the case θ1 ◦ l ≤ ε, as the other one can be dealt with by working
with θ̃ j := 1 − θ j for j = 1, 2, 3. We remind the reader that Fig. 13 depicts the
general strategy of the proof.

Step 1: Extend 0 ≤ θ1 ≤ ε to the plane H
(

0, 1√
2
(011)

)

.

For (α, β) ∈ [−1, 1]2 we parametrize H
(

0, 1√
2
(011)

)

via

X (α, β) :=α
1√
2
[111] + β

1√
2
[111].

As usual, we omit the factor 1√
2
in the index of fν for ν ∈ N , see decomposition

(20). By said decomposition and the existence of traces, see Lemma 4, we have for
almost all (α, β) ∈ [−1, 1]2 that

0 ≤ θ1 ◦ X (α, β) = f(101)(−α) − f(110)(α) + f(101)(β) − f(110)(β) ≤ 1.

As for t ∈ [−1, 1] the line t (1, 1) parametrizes the diagonal and l(t) = X (t, t),
the assumption (21) of θ1 almost achieving its minimum along l and the two-
dimensional statement Lemma 6 imply that for almost all points α, β ∈ [−1, 1]we
have

f(101)(−α) − f(110)(α) ≤ ess inf
α̃∈[−1,1]

(

f(101)(−α̃) − f(110)(α̃)
)

+ ε,

f(101)(β) − f(110)(β) ≤ ess inf
β̃∈[−1,1]

(

f(101)
(

β̃
)

− f(110)

(

β̃
))

+ ε

and

ess inf
β̃∈[−1,1]

(

f(101)
(

β̃
)

− f(110)

(

β̃
))

+ ess inf
α̃∈[−1,1]

(

f(101)(−α̃) − f(110)(α̃)
)

≤ ε.

Adding the first two inequalities and using the assumption (21) we get for almost
all (α, β) ∈ [−1, 1]2 that

0 ≤ θ1 ◦ X (α, β) ≤ 3ε.

Changing coordinates to y := 1
2 (α + β), z := 1

2 (α − β)wesee for almost all (y, z) ∈
R
2 with y + z, y − z ∈ [−1, 1] that

0 ≤ θ1

(√
2(y, z,−z)

)

≤ 3ε.

Step 2: Prove inequality (22) on a subset of P of full measure.



Rigidity of Branching Microstructures in Shape Memory Alloys 1751

For all y ∈ Rwehave y+z, y−z ∈ [−1, 1] if andonly if y ∈ I (z) := [−1+ |z|,
1− |z|]. Therefore, Fubini’s theorem implies for almost all z ∈ [−1, 1] and for
almost all y ∈ I (z) that

0 ≤ θ1

(√
2(y, z,−z)

)

≤ 3ε. (51)

We may thus repeat the above argument for almost all z ∈ [−1, 1] with l̃(t) =√
2t E1 +

√
2(0, z,−z) for t ∈ I (z) and the plane H

(

2z, 1√
2
(011)

)

to see for

almost all α, β ∈ I (z) that

0 ≤ θ1

(√
2(0, z,−z) + α

1√
2
[111] + β

1√
2
[111]

)

≤ 9ε.

It is straightforward to check that the conditions z ∈ [−1, 1] and α, β ∈ I (z) are
equivalent to

√
2(0, z,−z) + α

1√
2
[111] + β

1√
2
[111] ∈ P.

Due to measurability of θ1, another application of Fubini’s theorem implies that for
almost all x ∈ P we have the inequality

0 ≤ θ1(x) ≤ 9ε

Step 3: Prove that for all ν ∈ N2 ∪ N3 the function fν is almost affine in the
sense of estimate (23) if fν̃ ∈ C([−1, 1]) for all ν̃ ∈ N .

Wewill only dealwith ν = 1√
2
(101). The advantage ofworkingwith continuous

functions is that we do not have to bother with sets of measure zero. Let (s, h, h̃) ∈
R
3 be such that s, s + h, s + h̃, s + h + h̃ ∈ [−1, 1]. In order to exploit Remark 1

we set

x1 :=
√
2sE1,

x2 :=
√
2sE1 + h

1√
2
[111],

x3 :=
√
2sE1 + h̃

1√
2
[111],

x4 :=
√
2sE1 + h

1√
2
[111] + h̃

1√
2
[111].

Let j ∈ {1, 2, 3, 4}. To prove x j ∈ P , we check x j · ν̃ ∈ [−1, 1] for all
ν̃ ∈ N2 ∪ N3: For ν̃ = 1√

2
(101), this is clearly the case due to x1 · ν̃ = s and

1√
2
[111]· ν̃ = 1√

2
[111]· ν̃ = 1. In contrast, for the other normal ν̃ = 1√

2
(101) ∈ N2

we have x0 · ν̃ = −s and 1√
2
[111] · ν̃ = 1√

2
[111] · ν̃ = 0, which still implies

x j · ν̃ ∈ [−1, 1].
For ν̃ ∈ N3 we have x0 · ν̃ = s and

{
1√
2
[111] · ν̃,

1√
2
[111] · ν̃

}

= {0, 1},
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which also implies x j · ν̃ ∈ [−1, 1].
By Step 2 we then have

|θ1(x4) + θ1(x1) − θ1(x2) − θ1(x3)| ≤ 36ε.

Inserting the decomposition (20) and the definition of the points x j for j = 1, 2, 3, 4
we see that all functions except f(101) cancel and we get

∣
∣
∣ f(101)(s + h + h̃) + f(101)(s) − f(101)(s + h)− f(101)(s + h̃)

∣
∣
∣ ≤ 36ε.

��

4.5. The Case fν ∈ V MO for all ν ∈ N

Proof of Proposition 2. For ν ∈ N , x ∈ B2/3 (0) and δ ∈ (0, 1
3 ) we define

the convolution θδ ∈ C(B2/3 (0); [0, 1]3) via θδ(x) :=
ffl
Bδ(x)

θ(y)dy and fν,δ ∈
C([− 2

3 ,
2
3 ]) such that

fν,δ(x · ν) =
 
Bδ(x)

fν(y · ν) dy. (52)

For functions u : B1 (0) → R
3 and θ : B1 (0) → K̃ , see definition (12), satisfying

the assumptions of the proposition and r ∈ (0, 1
3 ) we say that (u, θ) ∈ Ur if there

exist η > 0, δ0 ∈ (0, 1
3 ), a function ε(δ) > 0 for δ ∈ (0, δ0) with ε(δ) → 0 as

δ → 0 and i ∈ {1, 2, 3} such that the following holds:

1. The set

Ar,η,δ0,ε,i (u, θ) :=
{

x ∈ Br (0) : θi (x) = 0, η < θi+1(x), θi−1(x) < 1− η,

θi,δ(x) < ε(δ), η < θi+1,δ(x), θi−1,δ(x) < 1− η ∀δ ∈ (0, δ0)

}

(53)

satisfies |Ar,η,δ0,ε,i (u, θ)| > 0.
2. For all δ ∈ (0, δ0) and all x ∈ B2/3 (0) we have that

θδ(x) ∈ K̃ε(δ) :=
(

K̃ + Bε(δ) (0)
) ∩ conv

(

K̃
)

, (54)

Here conv(K̃ ) denotes the convex hull, see Fig. 21.
Similarly, we say that (u, θ) ∈ U 0 if there exist η > 0, δ0 ∈ (0, 1

3 ), a function
ε(δ) > 0 for δ ∈ (0, δ0)with ε(δ) → 0 as δ → 0 and i ∈ {1, 2, 3} such that we have
the inclusion (54) for all δ ∈ (0, δ0) on B1/3 (0) and such that 0 ∈ A1/3,η,δ0,ε,i (u, θ)

is a point of density one. By this we mean that as κ ↘ 0 we have

|A1/3,η,δ0,ε,i (u, θ) ∩ Bκ (0)|
|Bκ (0)| → 1.

Step 1: Let u and θ satisfy the assumptions of the proposition. For r ∈ (0, 1
3 )

assume that (u, θ) /∈ Ur . Then there exists i ∈ {1, 2, 3} such that for almost all
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Fig. 21. Sketch of the strains taking the form e = ∑3
i=1 θi ei for θ ∈ K̃ε . The strain

e(uδ)(0) =
∑3

i=1 θi,δei essentially lies strictly between e2 and e3

x ∈ Br (0) we have e(u)(x) = ei , which in particular implies θi (x) = 1 and
θi+1(x) = θi−1(x) = 0.

We argue by proving the converse, meaning we assume that for all i = 1, 2, 3
we have e(u) �≡ ei on Br (0). As convolutions are convex operations we obtain
θδ ∈ conv(K̃ ) a.e. on B2/3 (0) for δ ∈ (0, 1

3 ). Furthermore, Lemma 8 gives
existence of ε1(δ) > 0 for δ ∈ (0, 1

3 ) such that ε1(δ) → 0 as δ → 0 and such that
the fuzzy inclusion (54) holds on B2/3 (0) with ε1.

Next, we prove that there exists i ∈ {1, 2, 3} such that we have

|{x ∈ Br (0) : θi (x) = 0, 0 < θi+1(x), θi−1(x) < 1}| > 0. (55)

Otherwise, for almost all x ∈ Br (0) we would by the assumption θ ∈ K̃ have
e(u) ∈ {e1, e2, e3}. Using the uniform convergence of averages provided by the
mean value theorem for V MO-functions, Lemma 8, it would hold for some i ∈
{1, 2, 3} that e(u) ≡ ei on Br (0), giving a contradiction.

Let i ∈ {1, 2, 3} be the index such that (55) holds, which implies that there
exists η > 0 with

|{x ∈ Br (0) : θi (x) = 0, 2η < θi+1(x), θi−1(x) < 1− 2η}| > 0. (56)

Lebesgue point theory implies that θδ → θ pointwise almost everywhere as δ → 0.
UsingEgoroff’s theorem,wemayupgrade this convergence to uniformconvergence
on some measurable set

Ã ⊂ {x ∈ Br (0) : θi (x) = 0, 2η < θi+1(x), θi−1(x) < 1− 2η}
with | Ã| > 0. Using both uniform convergences above we get δ0 ∈ (0, 1

3 ) such
that there exists ε2(δ) > 0 for δ ∈ (0, δ0) with ε2(δ) → 0 as δ → 0 and with the
property that for all x ∈ Ã and δ ∈ (0, δ0) we have θ1,δ(x) < ε2(δ) and

η < θ2,δ(x), θ3,δ(x) < 1− η.

For ε(δ) := max{ε1(δ), ε2(δ)} with δ ∈ (0, δ0) we thus have |Ar,η,δ0,ε,i (u, θ)| > 0
and (u, θ) ∈ Ur .
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Step 2: In order to prove the proposition, it is sufficient to prove that there exists
a universal radius r2 ∈ (0, 1

3 ) such that if (u, θ) ∈ U 0 then e(u) is a two-variant
configuration on Br2 (0).

Let r := 1
3r2. By Step 1 we know that if (u, θ) /∈ Ur then e(u) is a two-variant

configuration on Br (0) on account of being a pure phase. If we do have (u, θ) ∈ Ur ,
then by defintion there exist η > 0, δ0 ∈ (0, 1

3 ), a function ε(δ) > 0 for δ ∈ (0, δ0)
with ε(δ) → 0 as δ → 0, and i ∈ {1, 2, 3} such that |Ar,η,δ0,ε,i (u, θ)| > 0.

Let x0 ∈ Ar,η,δ0,ε,i (u, θ) ⊂ Br (0) be a point of density one. For x ∈ B1 (0)
and i = 1, 2, 3 we define

û(x) := 1

1− r
u((1− r)x + x0),

θ̂ (x) := θ((1− r)x + x0),

ĝi (x) := gi ((1− r)x + x0),

and f̂ν ∈ L∞(−1, 1) for ν ∈ N such that

f̂ν(ν · x) = fν (ν · ((1− r)x + x0)) .

Then û satisfies the assumptions of the proposition with θ̂ , f̂ν and ĝi for ν ∈
N and i = 1, 2, 3. Furthermore, for all x ∈ B1/3 (0) and δ ∈ (0, δ0) we have
|(1 − r)x + x0| ≤ 2

3 and θ̂δ(x) = θ(1−r)δ((1 − r)x + x0), so that θ̂δ satisfies
the inclusion (54) on B1/3 (0). Additionally, due to x0 ∈ Ar,η,δ0,ε,i (u, θ) being a
point of density one we get that 0 ∈ A1/3,η,δ0,ε,i (û, θ̂ ) is also a point of density
one. Therefore we have (û, θ̂ ) ∈ U 0. By the assumption of Step 2, e(û) is a two-
variant configuration on Br2 (0) and thus e(u) is a two-variant configuration on
B(1−r)r2 (x0). For x ∈ Br (0) we have |x − x0| ≤ 2

3r2 ≤ (1 − r)r2 due to r ≤ 1
3 .

Therefore e(u) is a two-variant configuration on Br (0).
Throughout the rest of the proof we assume that (u, θ) ∈ U 0 and we accord-

ingly choose η > 0, δ0 ∈ (0, 1
3 ), a function ε(δ) > 0 for δ ∈ (0, δ0) with ε(δ) → 0

as δ → 0, and i ∈ {1, 2, 3} such that 0 ∈ A := A1/3,η,δ0,ε,i (u, θ) is a point of
density one. By symmetry we may furthermore choose i = 1.

Step 3:On the plane H
(

0, ν+1
)

we split up θ1 into two one-dimensional functions
and find maximal intervals on which they are essentially constant.

Similarly to the proof of Proposition 1 we parametrize the plane H
(

0, ν+1
)

for
β, γ ∈ R via

X (β, γ ) :=β
1√
2
[111] + γ

1√
2
[111].

Let r̃ be the universal radius of Lemma 7. For a small enough, universal number
r1 ∈ (0, 1

3 ) ∩ (0, r̃) we have X (β, γ ) ∈ B1/3 (0) ∩ Br̃ (0) for all β, γ ∈ [−r1, r1].
Thus, recalling (54), for all ν ∈ N and δ ∈ (0, δ0) the functions θi,δ ◦ X ∈
C([−r1, r1]2; K̃ε(δ)) and fν,δ ◦ X ∈ C([−r1, r1]2) are well-defined. Furthermore,
for all β, γ ∈ [−r1, r1] we have the relations

X (β, γ ) · ν+1 = X (β, γ ) · 1√
2
(011) = 0, (57)
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X (β, γ ) · ν+2 = X (β, γ ) · 1√
2
(101) = β, (58)

X (β, γ ) · ν+3 = X (β, γ ) · 1√
2
(110) = γ, (59)

X (β, γ ) · ν−1 = X (β, γ ) · 1√
2
(011) = γ − β, (60)

X (β, γ ) · ν−2 = X (β, γ ) · 1√
2
(101) = −γ, (61)

X (β, γ ) · ν−3 = X (β, γ ) · 1√
2
(110) = β. (62)

Absorbing the affine function g1 in decomposition (24) into the four functions
fν ∈ L∞(−1, 1) for ν ∈ N2 ∪ N3 and redefining the affine functions g2 and g3
accordingly, we may, for almost all x ∈ B1 (0), assume that

θ1(x) =
∑

ν∈N2

fν(ν · x) −
∑

ν∈N3

fν(ν · x), (63)

while the decomposition (24) is still valid for θ2 and θ3. As in the proof of Proposi-
tion 1, we exploit the combinatorial structure of the normals discussed in Remark
1 and sort the functions fν with ν ∈ N2 ∪ N3 according to their dependence on
β or γ on the plane H

(

0, ν+1
)

by for β, γ ∈ [−r1, r1] and δ ∈ (0, δ0) defining
F1, F2 ∈ L∞((−r1, r1)) and F1,δ, F2,δ ∈ C([−r1, r1]) via

F1(β) := fν+2
(β) − fν−3

(β),

F1,δ(β) := fν+2 ,δ(β) − fν−3 ,δ(β),

F2(γ ) := fν−2
(−γ ) − fν+3

(γ ),

F2,δ(γ ) := fν−2 ,δ(−γ ) − fν+3 ,δ(γ ).

In particular, by the decomposition (63) we get θ1 ◦ X (β, γ ) = F1(β)+ F2(γ ) for
almost all β, γ ∈ [−r1, r1], which for δ ∈ (0, δ0) then turns into

θ1,δ ◦ X (β, γ ) = F1,δ(β) + F2,δ(γ ) (64)

after averaging.
Let δ ∈ (0, δ0). Due to our assumption that 0 ∈ A and the fact that the inequal-

ities for θδ in the definition (53) are open conditions, continuity of θδ implies that
there exists κ(δ) > 0 such that for all β, γ ∈ [−κ(δ), κ(δ)] we have

θ1,δ ◦ X (β, γ ) < ε(δ),

η < θ2,δ ◦ X (β, γ ) < 1− η

η < θ3,δ ◦ X (β, γ ) < 1− η. (65)
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By (64) and (65), θ1,δ is small and a sum of two one-dimensional functions. Lemma
(6) implies that the individual terms are small, i.e., we for all β, γ ∈ [−κ(δ), κ(δ)]
have

F1,δ(β) − min[−κ(δ),κ(δ)] F1,δ ≤ ε(δ),

F2,δ(γ ) − min[−κ(δ),κ(δ)] F2,δ ≤ ε(δ),

where we used continuity to replace the essential infima by minima. In particular,
for the oscillations on closed intervals I ⊂ [−r1, r1], defined as

oscI F1,δ := max
I

F1,δ − min[−κ(δ),κ(δ)] F1,δ,

oscI F2,δ := max
I

F2,δ − min[−κ(δ),κ(δ)] F2,δ,

we have that

0 ≤ osc[−κ(δ),κ(δ)] F1,δ ≤ ε(δ),

0 ≤ osc[−κ(δ),κ(δ)] F2,δ ≤ ε(δ).

By continuity of F1,δ and F2,δ the oscillations are continuous when varying the
endpoints of the involved intervals. Thus there exist unique maximal, closed inter-
vals

[ − κ(δ), κ(δ)] ⊂ I1,δ ⊂ [−r1, r1] and [−κ(δ), κ(δ)] ⊂ I2,δ ⊂ [−r1, r1]
such that

oscI1,δ F1,δ ≤ ε(δ) and oscI2,δ F2,δ ≤ ε(δ).

For the remainder of the proof, we aim to argue that there exists r ∈ (0, r1)
universal such that [−r, r ] ⊂ I1,δ and [−r, r ] ⊂ I2,δ . However, the goal of the next
couple of steps will be to first make sure the intervals do not shrink away as δ → 0,
see Fig. 22 for an outline of the argument.

Step 4: For all δ ∈ (0, δ0) and all (β, γ ) ∈ ∂
(

I1,δ × I2,δ
)∩ (−r1, r1)2 it holds

that

min{θ2,δ(β, γ ), θ3,δ(β, γ )} < ε(δ).

Let δ ∈ (0, δ0) and let us consider the case β ∈ ∂ I1,δ ∩ (−r1, r1). We then have

F1,δ(β) − min[−κ(δ),κ(δ)] F1,δ = ε(δ).

Together with (64) we obtain for all γ ∈ I2,δ that

θ1,δ(β, γ ) = F1,δ(β) + F2,δ(γ ) = ε(δ) + min[−κ(δ),κ(δ)] F1,δ + F2,δ(γ ).

The same decomposition and (54) in the form of θ1,δ ◦ X ≥ 0 everywhere then for
all γ ∈ I2,δ imply

θ1,δ(β, γ ) = ε(δ) + min[−κ(δ),κ(δ)] F1,δ + F2,δ(γ ) ≥ ε(δ) + min
[−r1,r1]2

θ1,δ ◦ X ≥ ε(δ).
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Fig. 22. Sketch relating I1,δ × I2,δ for δ ∈ (0, δ0) and the line l(t) = t (1, 1) for t ∈ R. Step
4 ensuresmin(θ2,δ, θ3,δ) < ε(δ) on ∂(I2× I3). In Step 5wewill show that θ2 is almost affine
along the dashed part of l, which we will exploit in Step 6 to argue that θ2 ◦ l(tmin,δ) ≈ 0
and θ2 ◦ l(tmax,δ) ≈ 1 or vice versa due to θ2 ◦ l(0) �≈ 0, 1. The function θ2 being of
vanishing mean oscillation allows us then to deduce that tmin,δ and tmax,δ cannot get too
close as δ → 0

Due to the assumption (u, θ) ∈ U 0 and the inclusion (54) we for all parameters
β ∈ ∂ I δ

1 ∩ (−r1, r1) and γ ∈ I2,δ see

min{θ2,δ(β, γ ), θ3,δ(β, γ )} < ε(δ), (66)

which is one part of the claim. Swapping the roles of β and γ we obtain the
remaining part.

In the following we for t ∈ R define l(t) := t (1, 1) and let −r1 ≤ tmin,δ < 0 <

tmax,δ ≤ r1 be the two parameters for which l intersects ∂(I1,δ × I2,δ), see Fig. 22.
Step 5: Let δ ∈ (0, δ0). Then the functions θ2,δ ◦ X and θ3,δ ◦ X are almost

affine along l on [tmin,δ, tmax,δ] in the sense that for all t , h, h̃ ∈ R with t , t + h,
t + h̃, t + h + h̃ ∈ [tmin,δ, tmax,δ] we have

∣
∣θ2,δ ◦ X ◦ l(t + h + h̃) + θ2,δ ◦ X ◦ l(t)
− θ2,δ ◦ X ◦ l(t + h) − θ2,δ ◦ X ◦ l(t + h̃)

∣
∣ < 216ε(δ),

∣
∣θ3,δ ◦ X ◦ l(t + h + h̃) + θ3,δ ◦ X ◦ l(t)
− θ3,δ ◦ X ◦ l(t + h)− θ3,δ ◦ X ◦ l(t + h̃)

∣
∣ < 216ε(δ). (67)

Note that as θ2,δ and θ3,δ are continuous, existence of traces is trivial.
For all points β̄ ∈ arg min[−κ(δ),κ(δ)]F1,δ and γ̄ ∈ arg min[−κ(δ),κ(δ)]F2,δ we

have

θ1,δ ◦ X (β̄, γ̄ ) ≤ ε(δ)

due to decomposition (64) and estimate (65). Consequently, together with the as-
sumption θ1 ≥ 0 almost everywhere, we have for any (β, γ ) ∈ I1,δ × I2,δ that

0 ≤ θ1,δ ◦ X (β, γ ) ≤ θ1,δ ◦ X (β̄, γ̄ ) + oscI1,δ F1,δ + oscI2,δ F2,δ ≤ 3ε(δ). (68)

As we have that X ◦ l(t) = √
2t E1 for all t ∈ [−r1, r1] and we chose r1

sufficiently small at the beginning of Step 3, we can apply Lemma 7 to get for all
ν ∈ N2 ∪ N3 and all t , h, h̃ ∈ R with t , t + h, t + h̃, t + h+ h̃ ∈ [tmin,δ, tmax,δ] that
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∣
∣ fν,δ ◦ X ◦ l(t + h + h̃) + fν,δ ◦ X ◦ l(t)
− fν,δ ◦ X ◦ l(t + h) − fν,δ ◦ X ◦ l(t + h̃)

∣
∣ < 108ε(δ).

We now plug this information into the decomposition (24) of θ2 and θ3. Observing
that affine functions drop out in second discrete derivatives and that fν+1 ,δ and fν−1 ,δ

drop out as the line X ◦ l is parallel to E1, we obtain the claim.
Step 6: There exists δ1 ∈ (0, δ0) such that the following holds: Let δ ∈ (0, δ1).

If we have −r1 < tmin,δ < 0 < tmax,δ < r1, then we either have

θ2,δ ◦ X ◦ l(tmin,δ) < ε(δ),

θ3,δ ◦ X ◦ l(tmin,δ) > 1− 4ε(δ),

θ2,δ ◦ X ◦ l(tmax,δ) > 1− 4ε(δ),

θ3,δ ◦ X ◦ l(tmax,δ) < ε(δ)

or

θ2,δ ◦ X ◦ l(tmin,δ) > 1− 4ε(δ),

θ3,δ ◦ X ◦ l(tmin,δ) < ε(δ),

θ2,δ ◦ X ◦ l(tmax,δ) < ε(δ),

θ3,δ ◦ X ◦ l(tmax,δ) > 1− 4ε(δ).

Once the upper bounds by ε(δ) are proven, the lower bounds by 1− 4ε(δ) follow
from the fact that θ1,δ + θ2,δ + θ3,δ ≡ 1 everywhere (resulting by linearity of
convolutions from

∑3
i=1 θi ≡ 1almost everywhere) and the inequality (68).Aiming

for a contradiction we assume that

θ3,δ ◦ X ◦ l(tmin,δ) < ε(δ),

θ3,δ ◦ X ◦ l(tmax,δ) < ε(δ). (69)

Recalling Step 4 we see that the only other undesirable case is θ2,δ ◦X ◦l(tmin,δ)) <

ε(δ), θ2,δ ◦ X ◦ l(tmax,δ)) < ε(δ), which can be dealt with in the same manner.
In order to transport the information (69) to the point l(0) we use that θ3,δ ◦ X

is almost affine along l: For t := tmin,δ , h := − tmin,δ and h̃ := tmax,δ we have

t + h = 0 ∈ [tmin,δ, tmax,δ],
t + h̃ = tmin,δ + tmax,δ ∈ [tmin,δ, tmax,δ],

t + h + h̃ = tmax,δ .

Therefore estimate (67) implies
∣
∣θ3,δ ◦ X ◦ l(tmax,δ) + θ3,δ ◦ X ◦ l(tmin,δ)

− θ3,δ ◦ X ◦ l(0) − θ3,δ ◦ X ◦ l(tmin,δ + tmax,δ)
∣
∣ < 216ε(δ).

Combining this inequality with θ3,δ ◦ X ◦ l(tmin,δ + tmax,δ) ≥ 0 and the assumption
(69) we arrive at

θ3,δ ◦ X ◦ l(0) < 218ε(δ).
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However, this is in contradiction to the strain lying strictly between two martensite
strains at 0 for all δ ∈ (0, δ1) with δ1 ∈ (0, δ0) sufficiently small, see estimate (65),
which proves the claim.

Step 7: We do not have lim infδ→0(tmax,δ − tmin,δ) = 0.
Towards a contradiction, we assume that the difference does vanish along some

subsequence, which we do not relabel in the following. By tmax,δ < 0 < tmin,δ for
all δ ∈ (0, δ0) we have limδ→0 tmax,δ = limδ→0 tmin,δ = 0. For s ∈ [0, 1], let

Gδ(s) := θ2,δ ◦ X ◦ l((1− s)tmin,δ + stmax,δ). (70)

We can apply estimate (67) and Lemma 13 from the Appendix A to get that the
sequence Gδ converges uniformly on [0, 1] to an affine function G : R → R. Due
to Step 6 and limδ→0 tmax,δ = limδ→0 tmin,δ = 0 we know that the linear part of g
has to be nontrivial, and we thus get that

lim
δ→0

ˆ 1

0

∣
∣
∣
∣
Gδ(s) −

ˆ 1

0
Gδ(s̃) ds̃

∣
∣
∣
∣
ds =

ˆ 1

0

∣
∣
∣
∣
G(s) −

ˆ 1

0
G(s̃) ds̃

∣
∣
∣
∣
ds > 0.

Due to X ◦ l(t) = √
2t E1 for all t ∈ [−r1, r1], the functions fν+1 ,δ ◦ X ◦ l and

fν−1 ,δ◦X◦l are constant. Furthermore, g2 is affine by definition and thus continuous.
Undoing the rescaling in the definition (70) and using (24), (59), and (62) together
with l(t) = t (1, 1) for all t ∈ R, we therefore conclude that

lim
δ→0

 tmax,δ

tmin,δ

∣
∣
∣
∣
∣

(

fν+3 ,δ + fν−3 ,δ

)

(t)−
 tmax,δ

tmin,δ

(

fν+3 ,δ + fν−3 ,δ

)

(t̃) dt̃

∣
∣
∣
∣
∣
dt > 0.

By the analogue of (37) for maps defined on (tmax,δ, tmin,δ), we get for all δ > 0
that

 tmax,δ

tmin,δ

∣
∣
∣
∣
∣

(

fν+3 ,δ + fν−3 ,δ

)

(t)−
 tmax,δ+δ

tmin,δ−δ

(

fν+3
+ fν−3

)

(t̃) dt̃

∣
∣
∣
∣
∣
dt

≥ 1

2

 tmax,δ

tmin,δ

∣
∣
∣
∣
∣

(

fν+3 ,δ + fν−3 ,δ

)

(t)−
 tmax,δ

tmin,δ

(

fν+3 ,δ + fν−3 ,δ

)

(t̃) dt̃

∣
∣
∣
∣
∣
dt.

The above two inequalities, together with Young’s inequality for convolutions, then
imply

lim inf
δ→0

 tmax,δ+δ

tmin,δ−δ

∣
∣
∣
∣
∣

(

fν+3
+ fν−3

)

(t)−
 tmax,δ+δ

tmin,δ−δ

(

fν+3
+ fν−3

)

(t̃) dt̃

∣
∣
∣
∣
∣
dt > 0.

However, this is a contradiction to our assumption that fν+3
, fν−3

∈ V MO(−1, 1)
since we have tmax,δ − tmin,δ + 2δ → 0 as δ → 0.

Step 8: For n ∈ N with n > 1 let δn ∈ (0, δ1) be such that limn→∞ δn = 0 and
such that there exist tmin := limn→∞ tmin,δn and tmax := limn→∞ tmax,δn . Then the
open set

B :=
{

x ∈ B1/3 (0) : lim
n→∞ θ1,δn (x) = 0

}o
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has a connected component P such that 0 ∈ P . Furthermore, for all ν ∈ N2 ∪ N3
there exist open, non-empty intervals Iν ⊂ R such that the set P satisfies

P =
⋂

ν∈N2∪N3

{

x ∈ B 1
3
(0) : ν · x ∈ Iν

}

,

i.e., up to localization it is a polyhedron whose faces’ normals are contained in
N2 ∪ N3.

Let n ∈ N and for r̂ ∈ (0, 1
3 ) let

Pr̂ ,δn :=
⋂

ν∈N2∪N3

{

x ∈ B1/3 (0) : ∃ t ∈ (tmin,δn , tmax,δn ) ∩ (−r̂ , r̂) : ν · x = ν · X ◦ l(t)} .

Estimate (68) gives for all t ∈ (tmin,δn , tmax,δn ) that 0 ≤ θ1,δn ◦X ◦l(t) ≤ 3ε(δn).
For r̂ ∈ (0, 1

3 ) small enough we can thus apply Lemma 7 to obtain 0 ≤ θ1,δn (x) ≤
27ε(δn) for all x ∈ Pr,δn . We have tmin ≤ 0 ≤ tmax and, by Step 7, tmin < tmax, so
that passing to the limit n →∞ the set

Pr̂ :=
⋂

ν∈N2∪N3

{

x ∈ B1/3 (0) : ∃ t ∈ (tmin, tmax) ∩ (−r̂ , r̂) : ν · x = ν · X ◦ l(t)}

is non-empty, open, and satisfies Pr̂ ⊂ B and 0 ∈ Pr̂ . Consequently, we have for
the connected component P of B containing Pr̂ that 0 ∈ P .

Recall that by Equation (63) we for almost all x ∈ P have

∑

ν∈N2

fν(ν · x) −
∑

ν∈N3

fν(ν · x) = θ1(x) = lim
n→∞ θ1,δn (x) = 0.

For every ν ∈ N2 ∪ N3 there exist two different directions d, d̃ ∈ D such that
by distributionally differentiating this identity in the directions d and d̃ only fν
remains, see Remark 1. Therefore, we get that x �→ fν(x · ν) is locally affine on
P . By connectedness of P , there must exist an affine function gν : R → R for all
ν ∈ N2 ∪ N3 such that for almost all x ∈ P we have fν(x · ν) = gν(x · ν). As
we have

∑

ν∈N2
gν(x · ν) −∑

ν∈N3
gν(x · ν) = 0 for all x ∈ R

3, we may for all
ν ∈ N2 ∪ N3 and i = 2, 3 redefine the functions fν ∈ L∞(−1, 1) and the affine
functions gi to satisfy

fν ≡ 0 on P. (71)

and to leave the decompositions (63) and (24) still valid (the latter for θ2 and θ3).
Since P is open and connected, the image Iν := ν · P for all ν ∈ N2 ∪ N3

is open and connected, and thus an interval. It is also clearly non-empty and by
construction we have

P ⊂
⋂

ν∈N2∪N3

{

x ∈ B1/3 (0) : ν · x ∈ Iν
}

.
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(a) (b)

Fig. 23. a Inside Bκ̃ (x0), the polyhedron P looks like a half-space with boundary R
and exterior normal ν+2 . b The dichotomy θ2,δ ≈ 0 or θ2,δ ≈ 1 on the dashed line

H̃ = H(bδ, ν
+
2 ) ∩ Bκ/2 (x0) can be propagated to the gray neighborhood of x0 as long

as dist(x0, H(bδ, ν
+
2 )) is small enough

As by (71) for all ν̃ ∈ N2 ∪ N3 it holds that fν̃ ≡ 0 on
⋂

ν∈N2∪N3
{x ∈ B1/3 (0) :

ν · x ∈ Iν} we get the other inclusion
⋂

ν∈N2∪N3

{

x ∈ B1/3 (0) : ν · x ∈ Iν
} ⊂ P,

which proves the claim.
For ν ∈ N2 ∪ N3 let aν ≤ 0 and bν ≥ 0 with aν < bν be such that Iν =

(aν, bν). Step 9: Let i ∈ {2, 3} and ν ∈ Ni be such that R = H(aν, ν) ∩ P
or R = H(bν, ν) ∩ P , see definition (13), is a face of the polyhedron P with
R ∩ Br1 (0) �= ∅. Then we have θi (x) = 0 for almost all x ∈ R ∩ Br1 (0) or
θi (x) = 1 for almost all x ∈ R ∩ Br1 (0), which is meaningful by decomposition
(24) and Lemma 4.

In order to keep notation simple, we assume that ν = ν+2 and that it is the outer
normal to P at R, i.e., for b := bν+2

we have {b} = ν+2 · R and P ⊂ {x · ν+2 < b}.
A two-dimensional sketch of this situation can be found in Fig. 23a, while a less
detailed three-dimensional one is shown in Fig. 15a. Furthermore, by connectedness
of the convex set R ∩ Br1 (0), we only have to prove the dichotomy locally, i.e., for
all x0 ∈ R ∩ Br1 (0) it is sufficient to find some κ = κ(x0) > 0 with

Bκ (x0) ⊂ Br1 (0),

Bκ (x0) ∩ H(b, ν+2 ) ⊂ R ∩ Br2 (0),

Bκ (x0) ∩ {x · ν+2 < b} ⊂ P (72)

such that on R ∩ Bκ (x0) we have either θ2 ≡ 0 or θ2 ≡ 1 almost everywhere.
Let x0 ∈ R∩Br1 (0) and let κ1 > 0 be such that the inclusions (72) hold.We can

use the identity (71) to get fν+2
(x · ν+2 ) = 0 for almost all x ∈ Bκ1 (x0)∩ {x · ν+2 <

b} ⊂ P . Similarly, for all ν̃ ∈ N2 ∪ N3\
{

ν+2
}

and almost all x ∈ Bκ2 (x0) with
some κ2 ∈ (0, κ1) we obtain fν̃ (x · ν̃) = 0. For all δ ∈ (0, κ2

2

)

we therefore get
after averaging

fν+2 ,δ (b − δ) = 0 (73)
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and fν̃,δ(x · ν̃) = 0 for all ν̃ ∈ N2 ∪ N3\
{

ν+2
}

and almost all x ∈ Bκ2/2 (x0).
In particular, the latter together with the decomposition (63) for almost all x ∈
Bκ2/2 (x0) implies

fν+2 ,δ(x · ν+2 ) = θ1,δ(x) ≥ 0. (74)

Let c ∈ (0, 1
4 ) be a universal number to be chosen later. Towards a contradiction,

assume that for all δ̃ ∈ (0, κ2
2 ) there existed δ ∈ (0, δ̃) with fν+2 ,δ(b

′) < ε(δ) for

all b′ ∈ (b − cκ2, b + cκ2), where ε(δ) → 0 as δ → 0 is as in the definition of
U 0. Then we would have fν+2

(x · ν+2 ) = 0 for almost all x ∈ Bcκ2 (x0), and we
would get Bcκ2 (x0) ⊂ P by the definition of P , see Step 8. As a result, the fact
P ⊂ {x · ν < b} would give the contradiction Bcκ2 (x0) ⊂ {x · ν < x0 · ν}.

Consequently, there exists δ̃ ∈ (0, κ2
2

)

such that for all δ ∈ (0, δ̃) there exists
b′δ ∈ (b − cκ2, b + cκ2) with fν+2 ,δ(b

′
δ) ≥ ε(δ). In the following, let δ ∈ (0, δ̃).

By Equation (73) and continuity there even exists bδ ∈ (b − cκ2, b + cκ2) with
fν+2 ,δ(bδ) = ε(δ). Due to Equation (74) this implies for all x ∈ H̃ := H(bδ, ν

+
2 ) ∩

B κ2
2

(x0), see Fig. 23b, that

θ1,δ(x) = ε(δ). (75)

Combining this with the inclusion θδ ∈ K̃ + Bε(δ) (0) on B1/3 (0), (see (54) and
the definition of U 0) we get, for all x ∈ H̃ ,

min{θ2,δ(x), θ3,δ(x)} < ε(δ),

which, due to the assumption θ1(x) + θ2(x) + θ3(x) = 1, (see also (12)) can be
converted into

min{θ2,δ(x), 1− θ2,δ(x)} < 2ε(δ).

For δ > 0 small enough, continuity then implies the dichotomy

θ2,δ(x) < 2ε(δ) for all x ∈ H̃ or 1− θ2,δ(x) < 2ε(δ) for all x ∈ H̃ . (76)

In order to propagate this information back to x0, see again Fig. 23b, let
xδ := x0 + (bδ − b) ν+2 . The line lδ(t) := xδ +

√
2t E2 for all t ∈ [− 1

4
√
2
κ2,

1
4
√
2
κ2]

satisfies lδ(t) ∈ Bκ2/2 (x0) on account of |xδ− x0| = |bδ−b| < cκ2 and c ∈ (0, 1
4 ).

Furthermore, for all t ∈ [− 1
4
√
2
κ2,

1
4
√
2
κ2] we have

lδ(t) · ν+2 = lδ(t) · 1√
2
(101) = bδ,

by x0 ∈ R ⊂ H(b, ν+2 ). Thus, the dichotomy (76) implies

θ2,δ ◦ lδ(t) ≤ 2ε(δ) for all t ∈
[

− 1

4
√
2
κ2,

1

4
√
2
κ2

]

or 1− θ2,δ ◦ lδ(t) ≤ 2ε(δ) for all t ∈
[

− 1

4
√
2
κ2,

1

4
√
2
κ2

]

.
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As we have lδ(t) ∈ Bκ2/2 (x0) ⊂ Br1 (0) for all t ∈ [− 1
4
√
2
κ2,

1
4
√
2
κ2] and in Step 3

we chose r1 > 0 to be small enough to apply Lemma 7, we get a universal constant
c̃ > 0 such that

θ2,δ(x) < 18ε(δ) for all x ∈ Bc̃κ2 (xδ)

or 1− θ2,δ(x) < 18ε(δ) for all x ∈ Bc̃κ2 (xδ). (77)

Recall |x0− xδ| < cκ2. As a result, the choice c = min{ c̃2 , 1
5 } < 1

4 ensures that
estimate (77) holds on Bκ (x0) for κ = cκ2. In the limit δ → 0 this gives θ2(x) = 0
for almost all x ∈ Bκ (x0) or θ2(x) = 1 for almost all x ∈ Bκ (x0). By Lemma 4
and the decomposition (24) we see that θ2 ≡ 0 or θ2 ≡ 1 on Bκ (x0) ∩ R. As the
inclusions (72) hold for κ < κ1 this concludes Step 9.

Step 10: The universal radius r2 := r1
2 satisfies that for all ν ∈ N2 ∪ N3, the

intervals Iν = (aν, bν) of Step 8 with aν ≤ 0 and bν ≥ 0 satisfy aν ≤ −r2 and
bν ≥ r2, which allows us to conclude the proof by Corollary 1 and Step 2.

Towards a contradiction we assume that there exists ν ∈ N2 ∪ N3 such that
aν > −r2 or bν < r2. For the sake of concreteness we assume that

b := bν+2
= min

ν∈N2∪N3
{−aν, bν} ∈ [0, r2), (78)

so that the combinatorics here match those of the previous step. All other cases
work the same.

Let R := H(b, ν+2 )∩ P . For t ∈ R let l̃(t) := bν+2 +√
2t E2. Let J := l̃−1(R ∩

Br1 (0)) and note that J is an interval with 0 ∈ J due to Equation (78). By Step 9,
decomposition (24) and Lemma 4 we have

θ2 ◦ l̃(t) = 0 for almost all t ∈ J

or θ2 ◦ l̃(t) = 1 for almost all t ∈ J.

At the beginning of Step 3 we chose r1 such that we can apply Lemma 7 on Br1 (0).
Therefore, we get θ2 ≡ 0 or θ2 ≡ 1 on the convex polyhedron

Q :=
⋂

ν∈N1∪N3

{

x ∈ R
3 : ν · x = ν · l̃(t) for some t ∈ J

}

⊂ B1 (0);

see Fig. 15b for a sketch relating P and Q in three dimensions.
Let Ã := {θ1 = 0, 0 < θ2, θ3 < 1}. By definition (53) and (u, θ) ∈ U 0, the

point 0 ∈ A ⊂ Ã is a point of density one of A and, therefore, also of Ã. In order
to arrive at a contradiction, we only have to prove 0 ∈ Q, as all points in Q have
positive density and Q ⊂ B1 (0)\ Ã by virtue of θ2 ≡ 0 or θ2 ≡ 1 on Q.

Step 11: Prove 0 ∈ Q.
In the case b = 0 we have 0 ∈ R, which trivially gives 0 ∈ l̃(J ) ⊂ Q.

Therefore, we only consider the case b > 0 in the following.
As a result of b < r2 = r1

2 we obtain l̃(− 1
2b) = b√

2
(111) ∈ Br1 (0). Further-

more, by 0 < b = minν∈N2∪N3{−aν, bν} we have
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aν+2
< l̃

(

−1

2
b

)

· 1√
2
(101) = b = bν+2

,

aν−2
< l̃

(

−1

2
b

)

· 1√
2
(101) = 0 < bν−1

,

aν+3
< l̃

(

−1

2
b

)

· 1√
2
(110) = 0 < bν+3

,

aν−3
< l̃

(

−1

2
b

)

· 1√
2
(110) = b ≤ bν−3

.

Therefore, for all ε > 0 sufficiently small, we have l̃(− 1
2b) − εE1 ∈ P , which

implies l̃(− 1
2b) ∈ R. Thus we have − 1

2b ∈ J . Computation gives l̃(− 1
2b) · ν+1 =

0 = 0 · ν+1 and l̃(− 1
2b) · ν+3 = 0 = 0 · ν+3 . For ν = ν+1 and ν = ν+3 this proves

0 ∈
{

x ∈ R
3 : ν · x = ν · l̃(t) for some t ∈ J

}

.

Similarly, we have l̃( 12b) = b√
2
(111) ∈ Br1 (0). We also get l̃( 12b) ∈ R by the

computations

aν+2
< l̃

(
1

2
b

)

· 1√
2
(101) = b = bν+2

,

aν−2
< l̃

(
1

2
b

)

· 1√
2
(101) = 0 < bν−1

,

aν+3
< l̃

(
1

2
b

)

· 1√
2
(110) = b ≤ bν+3

,

aν−3
< l̃

(
1

2
b

)

· 1√
2
(110) = 0 < bν−3

,

so that we have b
2 ∈ J . Due to l̃( 12b) ·ν−1 = 0 = 0 ·ν−1 and l̃( 12b) ·ν−3 = 0 = 0 ·ν−3 ,

we get 0 ∈ {

x ∈ R
3 : ν · x = ν · l(t) for some t ∈ J

}

for ν = ν−1 and ν = ν−3 ,
which finally ensures 0 ∈ Q. ��

Proof of Lemma 8. The fact that fδ(x) =
ffl
Bδ(x)

f (y) dy for x ∈ U is continuous
follows from the observation that fδ is the convolution of an extension of f with
the kernel 1

|Bδ(0)|χBδ(0). Let Ũ ⊂⊂ U be open. Let x ∈ Ũ and δ > 0 small enough
to have Bδ (x) ⊂ U . We then have that

dist( fδ(x), K ) = inf
f̂ ∈K

| fδ(x) − f̂ |

=
 
Bδ(x)

inf
f̂ ∈K

| fδ(x) − f̂ | dy ≤
 
Bδ(x)

| fδ(x) − f (y)| dy → 0,

where the convergence in δ → 0 is uniform in Ũ by definition of V MO . ��
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4.6. Classification of Planar Configurations

Proof of Lemma 9. As the configuration is planar, there exist d ∈ D and, for i =
1, 2, 3 and νi ∈ Ni with νi ·d = 0, functions f̃νi ∈ L∞(−1, 1) and affine functions
g̃i : R3 → R with ∂d g̃i = 0 such that for almost all x ∈ B1 (0) we have the
decomposition

θ1(x) = f̃ν2(x · ν2) − f̃ν3(x · ν3) + g̃1(x),

θ2(x) = − f̃ν1(x · ν1) f̃ν3(x · ν3) + g̃2(x),

θ3(x) = f̃ν1(x · ν1) − f̃ν2(x · ν2) + g̃3(x). (79)

Without loss of generality, we may assume that f̃ν1 is affine.
Because ν2 and ν3 span the space {x ∈ R

3 : x · d = 0} and we have ∂d g̃1 = 0,
there exist aν2 , aν3 , c ∈ R such that for all x ∈ R

3 we have g̃1(x) = aν2x · ν2 +
aν3x ·3 +c. For t ∈ (−1, 1) and x ∈ B1 (0) we define fν2 , fν3 ∈ L∞(−1, 1) and
g : B1 (0) → R affine via

fν2(t) := f̃ν2(t) + aν2 t + c − 1,

fν3(t) := f̃ν3(t)− aν3 t,

g(x) := g̃2(x) − f̃ν1(x · ν1) + aν3x · ν3
and note ∂dg(x) = ∂d g̃2(x) = 0 for all x ∈ B1 (0). We thus for all x ∈ B1 (0) get
by the decomposition (79) and the assumption θ ∈ K̃ a.e., (see also (12)) that

g(x) + g̃3(x) + f̃ν1(x · ν1) + aν2x · ν2 + c − 1 = g̃1(x) + g̃2(x) + g̃3(x) − 1

= θ1(x) + θ2(x) + θ3(x) − 1

= 0,

so that in turn the decomposition (79) for almost all x ∈ B1 (0) simplifies to

θ1(x) = fν2(x · ν2) − fν3(x · ν3) + 1,

θ2(x) = fν3(x · ν3) + g(x),

θ3(x) = − fν2(x · ν2) − g(x). (80)

Let 0 < r2 < r1 < 1
64 be the two universal radii of Proposition 1. If we have

fν2 , fν3 ∈ V MO(−r2, r2), then Proposition 2 implies that e(u) is a two-variant
configuration on Br (0) for some universal constant r ∈ (0, r2). Therefore, it is
sufficient to consider the case fν2 �∈ V MO(−r2, r2), the remaining one being
similar. Then Proposition 1 tells us that there exist α ∈ [−r2, r2], b ∈ (0, 1)
and B ⊂ H(α, ν2) ∩ B1/8(0) with H 2(B ∩ Br1(0)) > 0 such that H 2-almost
everywhere on H(α, ν2) ∩ B1/8(0) we have

θ2|H(α,ν2)∩B1/8(0) = bχB . (81)
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As ν2 and ν3 span {x ∈ R
3 : x · d = 0}, we can find two affine functions

ĝ2, ĝ3 : R → R with ĝ2(α) = 0 so that for all x ∈ B1 (0) we have g(x) =
ĝ2(x · ν2) + ĝ3(x · ν3). Thus for H 2-almost all x ∈ H(α, ν2) ∩ B1/8 (0) we have

fν3(x · ν3) + ĝ3(x · ν3) = θ2(x) = bχB(x). (82)

Exploiting (11) and r2 ∈ (0, 1
64 ), we get that for all t ∈ (− 1

16 ,
1
16 ) there exists x̃ ∈

H(α, ν2)∩ B1/8 (0)with x̃ ·ν3 = t . Consequently, there exists a set B̃ ⊂ (− 1
16 ,

1
16 )

with |B̃ ∩ (−r1, r1)| > 0 such that for almost all t ∈ (− 1
16 ,

1
16 ) we have

fν3(t)+ ĝ3(t) = bχB̃(t). (83)

Similarly, for all x ∈ B1/16(0) there exists x̃ ∈ H(α, ν2)∩B1/8 (0)with x̃ ·ν3 = x ·ν3
and we almost everywhere get from (83) that

θ2(x) = fν3(x · ν3) + g(x)

= fν3(x̃ · ν3) + ĝ2(x · ν2) + ĝ3(x̃ · ν3)
= bχB̃(x · ν3) + ĝ2(x · ν2). (84)

Case 1: We have |B̃ ∩ (− 1
32 ,

1
32 )| < 1

16 .
Again by (11), for every t ∈ (− 1

32 ,
1
32 ) we can choose x ∈ B1/16(0) with

x · ν3 ∈ B̃c ∩ (− 1
32 ,

1
32 ) and x · ν2 = t , so that (84) implies ĝ2(t) ≥ 0. Thus it

is an affine function which achieves a local minimum at ĝ2(α) = 0, which in turn
makes sure that ĝ2 ≡ 0 on R. Consequently, for almost all x ∈ B1/16(0), we get
θ2(x) = bχB̃(x · ν3), so that together with the identity (83) the decomposition (80)
becomes

θ1(x) = fν2(x · ν2) − bχB̃(x · ν3) + 1+ ĝ3(x · ν3),
θ2(x) = bχB̃(x · ν3),
θ3(x) = − fν2(x · ν2) − ĝ3(x · ν3). (85)

As we have |B̃ ∩ (−r1, r1)| > 0 and the assumption θ ∈ K̃ a.e. on B1 (0), see
also (12), we have for almost all x ∈ B1/16(0) with x · ν3 ∈ B̃ that

θ1(x) = 1− b, θ3(x) = 0 or θ1(x) = 0, θ3(x) = 1− b. (86)

Looking at all x ∈ B1/16 (0) for which in addition x · ν2 ∈ (− 1
32 ,

1
32 ) is a Lebesgue

point of fν2 , this implies that there exists ĉ ∈ R such that ĝ3 ≡ ĉ. In a second step,
considering all x ∈ B1/16(0) such that x · ν3 ∈ B̃ ∩ (−r1, r1) ⊂ (− 1

64 ,
1
64 ), the

alternative (86) and the third line of (85) imply that there exists a measurable set
A ⊂ (− 1

32 ,
1
32 ) with− fν2(s)− ĉ = (1− b)χA(s) for all s ∈ (− 1

32 ,
1
32 ). Hence the

decomposition (85) can for almost all x ∈ B1/32(0) be written as

θ1(x) = −(1− b)χA(x · ν2) − bχB̃(x · ν3) + 1,

θ2(x) = bχB̃(x · ν3),
θ3(x) = (1− b)χA(x · ν2),
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meaning the configuration is a planar checkerboard on B1/32(0) according to Def-
inition 5.

Case 2: We have |B̃ ∩ (− 1
32 ,

1
32 )| = 1

16 .
In this case, (84) gives that fν3 is affine on (− 1

32 ,
1
32 ) and that there exist

ã, b̃ ∈ R such that for almost all x ∈ B1/32(0) we have θ2(x) = ã(x · ν2) + b̃.
Therefore, if we have |{x ∈ B1/32(0) : θ2(x) = 0}| > 0, then θ2 ≡ 0 on B1/32(0).
By Corollary 1, the strain e(u) then is a two-variant configuration on B1/32(0). In
the following, we may thus assume θ2(x) > 0 for all x ∈ B1/32(0). Due to the
assumption θ ∈ K̃ , we may furthermore also assume

|θ−1
1 (0) ∩ B1/32| > 0 and |θ−1

3 (0) ∩ B1/32| > 0 (87)

as otherwise e(u) is also a two-variant configuration on B1/32(0) by virtue of Corol-
lary 1.

By (87), since fν3 is affine on (− 1
32 ,

1
32 ) and constitutes the only x · ν3-

dependence of θ1 in the decomposition (80), there exists c̃ ∈ R such that fν3(t) = c̃
for all t ∈ (− 1

32 ,
1
32 ). Similarly, we see that θ3 only depends on x · ν2 for x ∈

B1/32(0). Therefore, there exist two functions h1, h3 : (− 1
32 ,

1
32 ) → R such that

(80) for almost all x ∈ B1/32 (0) simplifies to

θ1(x) = h1(x · ν2),
θ2(x) = ãx · ν2 + b̃,

θ3(x) = h3(x · ν2).
For almost all x ∈ B1/32(0), by the facts θ2(x) > 0, θ1(x)θ2(x)θ3(x) = 0 and
θ1(x) + θ2(x) + θ3(x) = 1 resulting from the assumption θ(x) ∈ K̃ , we get that
there exists a measurable set Ã ⊂ (− 1

32 ,
1
32 ) such that

θ1(x) = (1− ãx · ν2 − b̃)χ Ã,

θ2(x) = ãx · ν2 + b̃,

θ3(x) = (1− ãx · ν2 − b̃)χ Ãc .

Consequently, e(u) is a planar second-order laminate on B1/32(0) according to
Definition 4.

Finally, the lemma follows due to r ≤ 1
32 . ��

Proof of Proposition 3. Step 1: Rewrite the problem in a two-dimensional domain
and bring the decomposition (14) into an appropriate form.

We will show that we may take r := 1
16 . Using the specific form of the normals

νi , see Section 2.2, we can find orientations ν̃i = ±νi for i = 1, 2, 3 which satisfy
ν̃1+ ν̃2+ ν̃3 = 0. Furthermore, the strain e(u) and the affine function g only depend
on directions in V := span(ν̃1, ν̃2, ν̃3). Thus we can rotate the domain of definition
such that V = R

2 and treat e(u), θ and g as functions defined on B 2
1 (0) ⊂ R

2. In
the following we will abuse the notation by writing νi for the images of ν̃i under
this rotation.
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It is straightforward to see that the angle between νi and νi+1 for cylical indices
i = 1, 2, 3 is given by 120◦, and hence the two vectors are linearly independent.
Similarly to (11), we therefore have for all x ∈ R

2, r̃ > 0 and i = 1, 2, 3 that

|x · ν| < r̃ and |x · ν̃| < r̃ imply |x | < 2r̃ . (88)

Additionally, for all i, j ∈ {1, 2, 3} with i �= j there exist functions fi, j ∈
L∞(−1, 1) such that for cyclical indices k = 1, 2, 3 the sum fk+1,k + fk−1,k
coincides almost everywhere with an affine function and such that for almost all
x ∈ B 2

1 (0) we can rewrite the decomposition (14) as

θ1(x) = f1,2(x · ν2) + f1,3(x · ν3),
θ2(x) = f2,1(x · ν1) + f2,3(x · ν3),
θ3(x) = f3,1(x · ν1) + f3,2(x · ν2). (89)

The assumption that for all i = 1, 2, 3 the functions fνi are not affine on (−r, r)
then translates into fi, j also not being affine on

(− 1
16 ,

1
16

)

for all i, j ∈ {1, 2, 3}
with i �= j due to the choice r = 1

16 .

Step 2: If k ∈ {1, 2, 3} is such that
∣
∣
∣θ

−1
k (0) ∩ B 2

1/2(0)
∣
∣
∣ > 0, then we can

additionally assume fk,k+1, fk,k−1 ∈ L∞(−1, 1) to satisfy fk,k+1(t), fk,k−1(t) ≥
0 for almost all t ∈ (− 1

2 ,
1
2 ), and fk,k+1(x · νk+1) = fk,k−1(x · νk−1) = 0 for

almost all x ∈ θ−1
k (0) ∩ B 2

1/2(0).
Let k ∈ {1, 2, 3} be as in the claim. As a result of (88), we have for almost all

x ∈ θ−1
k (0) ∩ B 2

1/2(0) that

0 = fk,k+1(x · νk+1) + fk,k−1(x · νk−1)

≥ ess inf(− 1
2 , 12 ) fk,k+1 + ess inf(− 1

2 , 12 ) fk,k−1

≥ ess infy∈B 2
1 (0) fk,k+1(y · νk+1) + fk,k−1(y · νk−1)

≥ 0.

Since the decomposition (89) is invariant under adding a constant to fk,k+1 and
subtracting it from fk,k−1, the claim then follows by arranging for

ess inf(− 1
2 , 12 ) fk,k+1 = ess inf(− 1

2 , 12 ) fk,k−1 = 0.

Step 3: For all k = 1, 2, 3 there exist measurable sets Jk ⊂
(− 1

2 ,
1
2

)

such that
we have

∣
∣
∣

(

θ−1
k (0)�

(

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

))) ∩ B 2
1/2(0)

∣
∣
∣ = 0 (90)

and
∣
∣
∣

(

π−1
1 (J1) ∩ π−1

2 (J2) ∩ π−1
3 (J3)

)

∩ B 2
1/2(0)

∣
∣
∣ = 0,

∣
∣
∣

(

π−1
1 (J c1 ) ∩ π−1

2 (J c2 ) ∩ π−1
3 (J c3 )

)

∩ B 2
1/2(0)

∣
∣
∣ = 0. (91)
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Let k ∈ {1, 2, 3}. If
∣
∣
∣θ

−1
k (0) ∩ B 2

1/2(0)
∣
∣
∣ > 0 we set

Ik,k+1 :=
(

fk,k+1
)−1

(0) ∩
(

−1

2
,
1

2

)

,

Ik,k−1 :=
(

fk,k−1
)−1

(0) ∩
(

−1

2
,
1

2

)

. (92)

Otherwise we set Ik,k+1 := Ik,k−1 := ∅. In any case, by Step 2 we have

∣
∣
∣

(

θ−1
k (0)�

(

π−1
k+1

(

Ik,k+1
) ∩ π−1

k−1

(

Ik,k−1
))) ∩ B 2

1/2(0)
∣
∣
∣ = 0. (93)

Claim 3.1: For all k = 1, 2, 3 we have
∣
∣Ik+1,k ∩ Ik−1,k

∣
∣ = 0.

Let k ∈ {1, 2, 3}. If |θ−1
k+1(0) ∩ B 2

1/2(0)| = 0 or |θ−1
k−1(0) ∩ B 2

1/2(0)| = 0 then
there is nothing to prove. Otherwise we assume towards a contradiction that

∣
∣Ik+1,k ∩ Ik−1,k

∣
∣ > 0.

In that case, the affine function fk+1,k+ fk−1,k vanishes on a set of positivemeasure.
Consequently, we see fk+1,k ≡ − fk−1,k . Since both functions are non-negative
on (− 1

2 ,
1
2 ) by Step 2 we get fk+1,k ≡ fk−1,k ≡ 0 on (− 1

2 ,
1
2 ). However, this

contradicts our assumption that they are non-affine on
(− 1

16 ,
1
16

)

, which proves
Claim 3.1.

As a result of the equality (93) and Claim 3.1 we for all k = 1, 2, 3 get

∣
∣
∣

(

θ−1
k (0)\

(

π−1
k+1

(

Ik,k+1
) ∩ π−1

k−1

(

I ck+1,k−1

))) ∩ B 2
1/2(0)

∣
∣
∣ = 0,

which in terms of

Ji := Ii−1,i for i = 1, 2, 3 (94)

reads
∣
∣
∣

(

θ−1
k (0)\

(

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

))) ∩ B 2
1/2(0)

∣
∣
∣ = 0. (95)

Together with the assumption θ ∈ K̃ almost everywhere on B 2
1/2(0) in the form

of θ1θ2θ3 = 0 we therefore get

∣
∣
∣
∣
∣
∣

B 2
1/2(0)\

⎛

⎝
⋃

k=1,2,3

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

)

⎞

⎠

∣
∣
∣
∣
∣
∣

= 0, (96)

so that some straightforward combinatorics ensure the two equailities (91) by virtue
of
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B 2
1/2(0)\

⎛

⎝
⋃

k=1,2,3

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

)

⎞

⎠

= B 2
1/2(0) ∩

⎛

⎝

⎛

⎝
⋂

k=1,2,3

π−1
k (Jk)

⎞

⎠ ∪
⎛

⎝
⋂

k=1,2,3

π−1
k (J ck )

⎞

⎠

⎞

⎠ .

In order to get the identity (90) we by the equality (95) are only left with for all
k = 1, 2, 3 estimating

∣
∣
∣

((

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

)) \θ−1
k (0)

)

∩ B 2
1/2(0)

∣
∣
∣

≤
∣
∣
∣

((

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

)) ∩ θ−1
k+1(0)

)

∩ B 2
1/2(0)

∣
∣
∣

+
∣
∣
∣

((

π−1
k+1 (Jk+1) ∩ π−1

k−1

(

J ck−1

)) ∩ θ−1
k−1(0)

)

∩ B 2
1/2(0)

∣
∣
∣ ,

where we again used θ1θ2θ3 = 0 almost everywhere on B 2
1/2(0). Together with (95)

and the fact that for all i = 1, 2, 3 the sets π−1
i+1 (Ji+1) ∩ π−1

i−1

(

J ci−1

)

are pairwise
disjoint by definition, we thus obtain the equality (90).

Step 4: The conclusion of the proposition holds.
We now make sure that we can apply Lemma 10. Unless we are dealing with a

two-variant configuration on B 2
1/16(0), by θ1θ2θ3 = 0 almost everywhere and the

identity (90) there exists i, j ∈ {1, 2, 3} with i �= j such that
∣
∣
∣

(

π−1
i+1 (Ji+1) ∩ π−1

i−1

(

J ci−1

)) ∩ B 2
1/16(0)

∣
∣
∣ > 0,

∣
∣
∣

(

π−1
j+1

(

J j+1
) ∩ π−1

j−1

(

J cj−1

))

∩ B 2
1/16(0)

∣
∣
∣ > 0.

By relabeling, we may suppose i = 3 and j = 1. Consequently, we get
∣
∣
∣
∣
J1 ∩

(

− 1

16
,
1

16

)∣
∣
∣
∣
> 0,

∣
∣
∣
∣

(

− 1

16
,
1

16

)

\J2
∣
∣
∣
∣
> 0,

∣
∣
∣
∣
J2 ∩

(

− 1

16
,
1

16

)∣
∣
∣
∣
> 0,

∣
∣
∣
∣

(

− 1

16
,
1

16

)

\J3
∣
∣
∣
∣
> 0,

(97)

which, in particular, implies 0 <
∣
∣J2 ∩

(− 1
16 ,

1
16

)∣
∣ < 1

8 . As a result of (94) and
(92) we have for almost all t ∈ J1 that f3,1(t) = 0, so that the assumption of f3,1
not being affine on

(− 1
16 ,

1
16

)

implies 0 <
∣
∣J1 ∩

(− 1
16 ,

1
16

)∣
∣ < 1

8 . After a rescaling,
Lemma 10 implies that there exists a point x0 ∈ B 2

1/8(0) such that we have either

∣
∣
∣
∣

(

Jk�

(

−1

8
, x0 · νk

))

∩
(

−1

8
,
1

8

)∣
∣
∣
∣
= 0 for all k = 1, 2, 3

or
∣
∣
∣
∣

(

Jk�

(

x0 · νk, 1
8

))

∩
(

−1

8
,
1

8

)∣
∣
∣
∣
= 0 for all k = 1, 2, 3.
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Tracing back the definitions using (94) and (92), we see that for all k = 1, 2, 3
we have fk−1,k = 0 almost everywhere on Jk . From (90), (93) and (94) we get for
all k = 1, 2, 3 that

∣
∣
∣

(

π−1
k−1

(

J ck−1

)

�π−1
k−1

(

Ik,k−1
)) ∩ π−1

k+1 (Jk+1) ∩ B2
1/2(0)

∣
∣
∣ = 0.

Therefore, Fubini’s theorem together with (97) and (92) implies f3,2 = 0 almost
everywhere on

(− 1
8 ,

1
8

) \J2 and f1,3 = 0 almost everywhere on
(− 1

8 ,
1
8

) \J3. As
f1,3 is not affine on

(− 1
16 ,

1
16

)

by assumption we get that |J3 ∩
(− 1

8 ,
1
8

) | > 0,
which in turn implies f2,1 = 0 almost everywhere on

(− 1
8 ,

1
8

) \J1. As a result we
can rewrite the decomposition (89) of θ for almost all x ∈ B 2

1/8(0) to be

θ1(x) = f1,2(x · ν2)χJ c2
(x · ν2) + f1,3(x · ν3)χJ3(x · ν3),

θ2(x) = f2,1(x · ν1)χJ1(x · ν1) + f2,3(x · ν3)χJ c3
(x · ν3),

θ3(x) = f3,1(x · ν1)χJ c1
(x · ν1) + f3,2(x · ν2)χJ2(x · ν2). (98)

The condition that the function fk+1,k + fk−1,k is affine for all k = 1, 2, 3
implies that there exist ak, bk ∈ R such that for almost all t ∈ (− 1

8 ,
1
8 ) we have

(

fk−1,kχJ ck
+ fk+1,kχJk

)

(t) = akt + bk .

Due to the assumption
∑3

k=1 θk ≡ 1, see also (12), summing the equations in the
decomposition (98) gives for all x ∈ B 2

1/8(0) that

3
∑

k=1

akx · νk + bk = 1.

Comparing the coefficients of both polynomials, we see that

3
∑

k=1

bk = 1,
3
∑

k=1

akνk = 0.

Subtracting a1(ν1+ν2+ν3) = 0 from the second equation and remembering from
Step 1 that ν2 and ν3 are linearly independent, we see that a := a1 = a2 = a3. The
decomposition (98) thus for almost all x ∈ B 2

1/8(0) turns into

θ1(x) = (ax · ν2 + b2)χJ c2
(x · ν2) + (ax · ν3 + b3)χJ3(x · ν3),

θ2(x) = (ax · ν1 + b1)χJ1(x · ν1) + (ax · ν3 + b3)χJ c3
(x · ν3),

θ3(x) = (ax · ν1 + b1)χJ c1
(x · ν1) + (ax · ν2 + b2)χJ2(x · ν2),

with
∑3

k=1 bk = 1. ��
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Fig. 24. Graphs of χJ1 (left) and χJ2 (right) in the case that J1 and J2 are intervals such that
one of them has an endpoint at−4 and the other one at 4. In this case we choose p1, p2 and
q1, q2 on opposite sides of the respective other endpoint

Proof of Lemma 10. Claim1: There exist a1, a2 ∈ (−4, 4) such thatwe have either

|(J1�(−4, a1)) ∩ (−4, 4)| = 0 and |(J2�(−4, a2)) ∩ (−4, 4)| = 0

or

|(J1�(a1, 4)) ∩ (−4, 4)| = 0 and |(J2�(a2, 4)) ∩ (−4, 4)| = 0.

Towards a contradiction we assume the negation of Claim 1.
Step 1.1: Up to symmetries of the problem, find Lebesgue points −4 < p1 <

p2 < 4 of χJ1 and −4 < q1 < q2 < 4 of χJ2 such that

χJ1(p1) = χJ2(q2) = 1 and χJ1(p2) = χJ2(q1) = 0.

Wefirst demonstrate that if the negation ofClaim1 holds, thenwe canfindLebesgue
points −4 < p1 < p2 < 4 of χJ1 and −4 < q1 < q2 < 4 of χJ2 such that

χJ1(p1) �= χJ1(p2),

χJ2(q1) �= χJ2(q2),

χJ1(p1) �= χJ2(q1),

χJ1(p2) �= χJ2(q2).

If there exist a1, a2 ∈ (−4, 4) such that

|(J1�(−4, a1)) ∩ (−4, 4)| = 0 and |(J2�(a2, 4)) ∩ (−4, 4)| = 0,

then one may take, for δ > 0 small enough, Lebesgue points p1 ∈ (a1 − δ, a1),
p2 ∈ (a1, a1 + δ) of χJ1 and Lebesgue points q1 ∈ (a2 − δ, a2) and q2 ∈
(a2, a2 + δ) of χJ2 , see Fig. 24. The case |(J1�(a1, 4)) ∩ (−4, 4)| = 0 and
|(J2�(−4, a2)) ∩ (−4, 4)| = 0 works the same.

By the assumption (26) we have neither |J1∩ (−4, 4)| = 0 nor |(−4, 4) \J1| =
0. Thus, if there exists no a1 ∈ (−4, 4) such that

|(J1�(−4, a1)) ∩ (−4, 4)| = 0 or |(J1�(a2, 4)) ∩ (−4, 4)| = 0, (99)

then there exist three Lebesgue points −4 < p̄1 < p̄2 < p̄3 < 4 of χJ1 such that
χJ1( p̄1) �= χJ1( p̄2) �= χJ1( p̄3), see Fig. 25. Since also J2 has neither full nor zero
measure in (−4, 4) by (26), there exist Lebesgue points −4 < q1 < q2 < 4 of χJ2
with χJ2(q1) �= χJ2(q2). In the case χJ2(q1) �= χJ1( p̄1), set p1 := p̄1 and p2 := p̄2.
Otherwise set p1 := p̄2 and p2 := p̄3.
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Fig. 25. Graphs of χJ1 (left) and χJ2 (right) in the case that J1 is not an interval with one
endpoint at −4 or 4. In this specific instance we choose p1 = p̄2 and p2 := p̄3

Fig. 26. The sets J<
1 and J>

1 (both left), and J<
2 and J>

2 (both right) locally split up J1 and
J2. The graphs of their characteristic functions are shown in black

If similarly there exists no a2 ∈ (−4, 4) such that the analogue of (99) holds
for J2, the same reasoning applies.

Furthermore, we may assume χJ1(p1) = 1 because the statement of the lemma
is clearly invariant under replacing all sets by their complements. The above col-
lection of unordered inequalities then turns into χJ1(p1) = χJ2(q2) = 1 and
χJ1(p2) = χJ2(q1) = 0.

Step 1.2: Find δ > 0 and s1, s2 ∈ (−4+ δ, 4− δ) such that for

J<
1 := J1 ∩ (s1 − δ, s1), J>

1 := J1 ∩ (s1, s1 + δ),

J<
2 := J2 ∩ (s2 − δ, s2), J>

2 := J2 ∩ (s2, s2 + δ),

we have

|J<
1 | > |J>

1 | and |J>
2 | > |J<

2 |,
see Fig. 26.

By Step 1.1, there exists δ̃ > 0 such that we have pi ± 3δ̃, qi ± 3δ̃ ∈ (−4, 4)
for all i = 1, 2 and

 p1+δ̃

p1−δ̃

χJ1 dt,
 q2+δ̃

q2−δ̃

χJ2 dt >
3

4
,

 p2+δ̃

p2−δ̃

χJ1 dt,
 q1+δ̃

q1−δ̃

χJ2 dt <
1

4
.

Since the map s �→ ffl s+δ̃

s−δ̃
χJ1 dt with s ∈ [p1, p2] is continuous, there exists

s̃1 := max

{

p1 ≤ s ≤ p2 :
 s+δ̃

s−δ̃

χJ1 dt =
1

2

}

.

Let s1 := s̃1 + δ̃ and δ := 2δ̃. Then we have s1 ∈ (−4+ δ, 4− δ) and

|J1 ∩ (s1 − δ, s1)| = δ

2
> |J1 ∩ (s1, s1 + δ)|,
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which with the notation J<
1 = J1 ∩ (s1 − δ, s1) and J>

1 = J1 ∩ (s1, s1 + δ) reads

|J<
1 | > |J>

1 |.
Using the same reasoning we can find s2 ∈ (−4 + δ, 4 − δ) such that for J<

2 =
J2 ∩ (s2 − δ, s2) and J>

2 = J2 ∩ (s2, s2 + δ) we get

|J>
2 | > |J<

2 |.

Step 1.3: Derive the contradiction.
In Fig. 16b, which illustrates the strategy of the argument, π−1

1 (J<
1 )∩π−1

2 (J>
1 )

is the darker set, while π−1
1 ((s1, s1+ δ)\J>

1 )∩π−1
2 ((s2− δ, s2)\J<

1 ) is the lighter
one. Let

D1 :=π−1
1 (s1 − δ, s1) ∩ π−1

2 (s2, s2 + δ),

D2 :=π−1
1 (s1, s1 + δ) ∩ π−1

2 (s2 − δ, s2),

and note that by s1, s2 ∈ (−4, 4) and the still valid fact (88), we have D1, D2 ⊂
B 2
8 (0). Let

A1 :=
{

s ∈ R :
ˆ
{x ·ν3=s}

χJ<
1

(x · ν1)χJ>
2

(x · ν2) dH 1(x) > 0

}

(100)

and

A2 :=
{

s ∈ R :
ˆ
{x ·ν3=s}

χ(s1,s1+δ)\J>
1

(x · ν1)χ(s2−δ,s2)\J<
2

(x · ν2) dH 1(x) > 0

}

.

By Lemma 11 we have

|A1| ≥ |J<
1 | + |J>

2 |
and

|A2| ≥ |[s1, s1 + δ]\J>
1 | + |[s2 − δ, s2]\J<

2 | = 2δ − |J>
1 | − |J<

2 |.
Summing these two inequalities and using the strict inequalities of Step 1.2 we see
that

|A1| + |A2| ≥ 2δ + |J<
1 | − |J>

1 | + |J>
2 | − |J<

2 | > 2δ = |π3(D1)|.
As we also have A1 ⊂ π3(D1) and A2 ⊂ π3(D2) by Lemma 11, the observation
π3(D1) = (−s1−s2−δ,−s1−s2+δ) = π3(D2), resulting from ν1+ν2+ν3 = 0,
implies

|A1 ∩ A2| > 0. (101)
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By Fubini’s theorem and assumption (25), we have
ˆ
A1∩J3

ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2)χB 2
8 (0)(x) dH

1(x) ds

=
∣
∣
∣π

−1
1 (J1) ∩ π−1

2 (J2) ∩ π−1
3 (A1 ∩ J3) ∩ B 2

8 (0)
∣
∣
∣

= 0. (102)

As a result of π−1
1 (J<

1 )∩ π−1
2 (J>

2 ) ⊂ D1 ⊂ B 2
8 (0) we have, for almost all s ∈ R,

ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2)χB 2
8 (0)(x) dH

1(x)

≥
ˆ
{x ·ν3=s}

χJ<
1

(x · ν1)χJ>
2

(x · ν2) dH 1(x),

so that the inner integral on the left-hand side of (102) is positive on A1, see
definition (100). Consequently, we must have |A1 ∩ J3| = 0, and we similarly also
get |A2 ∩ J c3 | = 0. However, together with (101), this would imply

0 < |A1 ∩ A2| = |A1 ∩ A2 ∩ J3| + |A1 ∩ A2 ∩ J c3 | = 0,

which clearly is a contradiction and allows us to conclude the proof of Claim 1.
Claim 2: There exists x0 ∈ B 2

2 (0)with x0 ·ν1 = a1 and x0 ·ν2 = a2.Depending
on the “orientation” of J1 and J2 we either have

|(J3�(−2, x0 · ν3)) ∩ (−2, 2)| = 0 or |(J3�(x0 · ν3, 2)) ∩ (−2, 2)| = 0.

Here, Fig. 16a offers an illustration of the argument. Assumption (26) together with
Claim 1 gives a1, a2 ∈ (−1, 1). Again using the fact that ν1 and ν2 form a 120◦
angle in the form of (88), there thus exists x0 ∈ B 2

2 (0) with x0 · ν1 = a1 and
x0 · ν2 = a2. This ensures that J1 and J2 have the form advertised in the statement
of the lemma.

Let us assume we are in the case

|(J1�(−4, x0 · ν1)) ∩ (−4, 4)| = 0 and |(J2�(−4, x0 · ν2)) ∩ (−4, 4)| = 0,

the other case being similar. By (88) we have π−1
1 (−4, x0 ·ν1)∩π−1

2 (−4, x0 ·ν2) ⊂
B 2
8 (0), so that using (25) we as before get

ˆ
J3

ˆ
{x ·ν3=s}

χ(−4,x0·ν1)(x · ν1)χ(−4,x0·ν2)(x · ν2) dH 1(x) ds

=
ˆ
J3

ˆ
{x ·ν3=s}

χ(−4,x0·ν1)(x · ν1)χ(−4,x0·ν2)(x · ν2)χB 2
8 (0)(x) dH

1(x) ds

=
∣
∣
∣π

−1
1 (J1) ∩ π−1

2 (J2) ∩ π−1
3 (J3) ∩ B 2

8 (0)
∣
∣
∣

= 0. (103)
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Recall that x0 · ν3 < 2. For s ∈ (x0 · ν3, 2) let σ > 0 such that s − x0 · ν3 > σ

and −4 < x0 · ν1 − σ . Then for all t ∈ (x0 · ν1 − σ, x0 · ν1) and x ∈ R
2 with

x · ν1 = t and x · ν3 = s we have by x0 · ν1 < 1 that

x · ν2 = −t − s ∈ (−x0 · ν1 − 2,−x0 · ν1 + σ − s)

⊂ (−4,−x0 · ν1 − x0 · ν3)
= (−4, x0 · ν2).

Thus we see, for almost all s ∈ (x0 · ν3, 2), that
ˆ
{x ·ν3=s}

χ(−4,x0·ν1)(x · ν1)χ(−4,x0·ν2)(x · ν2) dH 1(x) > 0,

which, together with (103), gives |J3∩(x0 ·ν3, 2)| = 0. A similar argument ensures
|J c3 ∩ (−2, x0 · ν3)| = 0. ��
Proof of Lemma 11. The measurability of

A =
{

s ∈ R :
ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2) dH 1(x) > 0

}

is a consequence of Fubini’s theorem. For all x ∈ R
2 and i = 1, 2, 3 we recall

πi (x) = x · νi , so that the statement A ⊂ π3(π
−1
1 (J1) ∩ π−1

2 (J2)) immediately
follows from the definitions. By monotonicity of the Lebesgue and H 1 measures
it is sufficient to prove the statement for bounded J1 and J2.

Step 1: If t1 is a point of density one of J1 and t2 is point of density one of J2,
then −t1 − t2 is a point of density one of A.

For convenience, we may assume t1 = t2 = 0. Let ε > 0 and let
Dε :=π−1

1 (−ε, ε) ∩ π−1
2 (−ε, ε). As for A, B ⊂ R, sets of the form π−1

1 (A) ∩
π−1
2 (B) are product sets in some transformed coordinates, we can compute

1− 1

|Dε| |π
−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε|

= 1

|Dε|
(

|Dε| −
∣
∣
∣π

−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε

∣
∣
∣

)

= 1

|Dε|
∣
∣
∣

(

π−1
1 (J c1 ) ∩ Dε

)

∪
(

π−1
2 (J c2 ) ∩ Dε

)∣
∣
∣

� 1

ε2

(

ε|J c1 ∩ (−ε, ε)| + ε|J c2 ∩ (−ε, ε)|)

= 1

ε
(|J c1 ∩ (−ε, ε)| + |J c2 ∩ (−ε, ε)|).

As 0 is a point of density one for J1 and J2, we obtain that

lim
ε→0

1− 1

|Dε| |π
−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε| = 0. (104)
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(a) (b)

Fig. 27. a Sketch of Dε = π−1
1 (−ε, ε) ∩ π−1

2 (−ε, ε). b A significant part of the dashed
line l := {x · ν2 = s} for s ∈ (−cε, cε) intersects Dε

By scaling arguments there exist 0 < c < 1 and η > 0 such that for all ε > 0
and all s ∈ (−cε, cε) we haveˆ

{x ·ν3=s}
χDε (x) dH

1(x) ≥ ηε; (105)

see Fig. 27. Let ε > 0 and

Sε :=
{

s ∈ (−cε, cε) :
ˆ
{x ·ν3=s}

χJ1(x · ν1)χJ2(x · ν2) dH 1(x) = 0

}

,

so that (105), together with Fubini’s theorem, implies
∣
∣
∣π

−1
3 (Sε) ∩ Dε

∣
∣
∣ ≥ ηε|Sε|.

By the definition of Sε we furthermore for almost all s ∈ Sε haveˆ
{x ·ν3=s}

χJ1∩(−ε,ε)(x · ν1)χJ2∩(−ε,ε)(x · ν2) dH 1(x) = 0.

Therefore, another application of Fubini’s theorem gives
∣
∣
∣π

−1
3 (Sε) ∩ π−1

1 (J1) ∩ π−1
2 (J2) ∩ Dε

∣
∣
∣ = 0,

and consequently we have

|π−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε| ≤ |Dε| − ηε|Sε|.
By algebraic manipulation of this inequality we see that

|Sε|
2cε

≤ 1

2ηcε2

(

|Dε| − |π−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε|
)

� 1− 1

|Dε| |π
−1
1 (J1) ∩ π−1

2 (J2) ∩ Dε|.

As the right-hand side of this inequality vanishes in the limit ε → 0 due to (104),
we see that 0 is a point of density one for A by definition of Sε.

Step 2: We have |A| ≥ |J1| + |J2|.
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Fig. 28. Sketch of π−1
1 (J1) ∩ π−1

2 (J2) with the corner p ∈ R
2 satisfying p · ν1 = inf J1)

and p · ν2 = sup J2. Lines parallel to l := {x · ν3 = p · ν3} intersecting π−1
1 (J1)∩π−1

2 (J2)
are sorted into A1 if they lie on the left of l or into A2 otherwise

The geometric situation in the following argument can be found in Fig. 28. For
i = 1, 2 let J̃i ⊂ Ji be the points of density one contained in the respective sets.
By Lebesgue point theory we have |Ji | = | J̃i | for i = 1, 2. Let t1 := inf J̃1 and
t2 := sup J̃2. Since both sets are non-empty and bounded, we have for all i = 1, 2
that ti ∈ R. Let n ∈ N. Let t1,n ∈ J̃1 with 0 ≤ t1,n − t1 < 1

n and let t2,n ∈ J̃2 with
0 ≤ t2 − t2,n < 1

n . Let

A1,n := A ∩
(

−∞,−t1 − 1

n
− t2,n

)

and

A2,n := A ∩
(

−t1,n − t2 + 1

n
,∞

)

.

Adding the conditions of closeness for t1,n and t2,n , we see that

t1,n − t1 + t2 − t2,n <
2

n
,

which in turn implies

−t1 − t2,n − 1

n
< −t1,n − t2 + 1

n
.

Thus A1,n and A2,n are disjoint and we have

|A| ≥ |A1,n| + |A2,n|. (106)

As t2,n is a point of density one of J2, we know by Step 1 that there exists a set
Ã1,n ⊂ R of measure zero such that the set

(

−t2,n − J̃1
)

∩
(

−∞,−t1 − 1

n
− t2,n

)

⊂ A1,n ∪ Ã1,n,

consists of points of density one for A.We thus know that |A1,n | ≥ | J̃1∩(t1+ 1
n ,∞)|.

Similarly we obtain |A2,n| ≥ | J̃2 ∩ (−∞, t2 − 1
n )|. Combining both inequalities

with inequality (106), we see that

|A| ≥
∣
∣
∣
∣
J̃1 ∩

(

t1 + 1

n
,∞

)∣
∣
∣
∣
+
∣
∣
∣
∣
J̃2 ∩

(

−∞, t2 − 1

n

)∣
∣
∣
∣
.
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In the limit n →∞, we obtain

|A| ≥ | J̃1| + | J̃2| = |J1| + |J2|.
��
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A Appendix

Here, we present two technical lemmas needed in the main argument. Their
proofs immediately follow their statement. The first provides a replacement of
Lebesgue point theory in situations where the centers of the balls are allowed to
slightly shift as one averages over smaller and smaller balls.

Lemma 12. Let f ∈ L p(Rn) for some dimension n ∈ N and 1 ≤ p < ∞. For
τ > 0 and y, z ∈ R

n we have

lim
τ,|z|→0

ˆ
Rn

 
B1(0)

| f (x + z + τ y) − f (x)|p dy dx = 0.

Proof. Density of continuous functions with compact support in L p implies

lim|h|→0

ˆ
Rn

| f (x + h)− f (x)|p dx = 0.

For z ∈ R
n and y ∈ B1 (0) setting h = z + τ y we thus get

lim|z|,τ→0

ˆ
Rn

| f (x + z + τ y) − f (x)|p dx = 0

uniformly in y. After integration in y we obtain the claim

lim
τ,|z|→0

ˆ
Rn

 
B1(0)

| f (x + z + τ y) − f (x)|p dy dx = 0.

��
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We furthermore need to prove that for any almost affine function in the sense
described below we can find an affine function that is sufficiently close in the L∞-
topology. This is closely related to the so-called Hyers-Ulam-Rassias stability of
additive functions, on which there is a large body of literature determining rates
for the closeness to linear functions, see e.g. Jung [23]. As such, the following
statement may well be already present in the literature. However, as far as we can
see, the corresponding community seems to be mostly concerned with the whole
space case, while we require a statement on bounded intervals.

Lemma 13. There exists a universal constant C > 0 with the following property:
Let G ∈ L∞(0, 1) and

ε := ess supt,t+h,t+h̃,t+h+h̃∈(0,1)|G(t + h + h̃) − G(t + h) − G(t + h̃) + G(t)|.
(107)

Then there exists an affine function G̃ : R → R such that

‖G − G̃‖L∞(0,1) ≤ C

(

‖G‖
1
2
L∞(0,1)ε

1
2 + ε

)

.

Proof. By a limiting argument, it is sufficient to prove that there exists a universal
constant C > 0 such that for all k ∈ N there exists an affine function G̃k with

‖G − G̃k‖L∞(1/k,1−1/k) ≤ C

(

‖G‖
1
2
L∞(0,1)ε

1
2 + ε

)

.

Convolving G and rescaling ( 1k , 1− 1
k ) to (0, 1), we may assume G ∈ C0([0, 1]).

Without loss of generality we may additionally assume G(0) = 0.
By induction, we can prove that for all n ∈ N and x ∈ R

n with xi ≥ 0 for all
i = 1, . . . , n such that

∑n
i=1 xi ≤ 1 we have

∣
∣
∣
∣
∣
G

(
n
∑

i=1

xi

)

−
n
∑

i=1

G(xi )

∣
∣
∣
∣
∣
≤ (n − 1)ε.

Indeed, the case n = 1 is trivial. By continuity, we can complete the induction by
choosing t = 0, h =∑n−1

i=1 xi and h̃ = xn as competitors for (107) to get

∣
∣
∣
∣
∣
G

(
n−1
∑

i=1

xi + xn

)

−
n−1
∑

i=1

G(xi ) − G(xn)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
G

(
n−1
∑

i=1

xi

)

−
n−1
∑

i=1

G(xi )

∣
∣
∣
∣
∣
+ ε.

In particular, for all x ∈ [0, 1] and all n ∈ N such that nx ∈ [0, 1] we have that
|G (nx) − nG(x)| ≤ (n − 1) ε, (108)

which implies
∣
∣
∣
∣
G (x) − 1

n
G(nx)

∣
∣
∣
∣
≤ ε. (109)
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For all |x | ≤ 1
2 choosing n = ⌊ 1

x

⌋

in this inequality gives

|G(x)| ≤
⌊
1

x

⌋−1 ∣
∣
∣
∣
G

(⌊
1

x

⌋

x

)∣
∣
∣
∣
+ ε ≤ 2x‖G‖∞ + ε,

where we used
⌊ 1
x

⌋

x ≥ ( 1
x − 1

)

x = 1 − x ≥ 1
2 . For all x, y ∈ [0, 1] with

|x− y| ≤ 1
2 we can therefore in (107) choose t = 0, h = min{x, y} and h̃ = |x− y|

and get

|G(x) − G(y)| ≤ |G(|x − y|)| + ε ≤ 2|x − y| ‖G‖∞ + 2ε. (110)

Let k,m ∈ N with k ≤ m. Plugging x = 1
m , n = k into estimate (108) and x = 1

m ,
n = m into estimate (109) gives

∣
∣
∣
∣
G

(
k

m

)

− k

m
G(1)

∣
∣
∣
∣
≤
∣
∣
∣
∣
G

(
k

m

)

− kG

(
1

m

)∣
∣
∣
∣
+
∣
∣
∣
∣
kG

(
1

m

)

− k

m
G(1)

∣
∣
∣
∣
≤ (2k − 1)ε ≤ 2mε.

(111)

Additionally note that for all x ∈ [0, 1] and all N ∈ N we have

∣
∣
∣
∣
x − 1

N
!Nx"

∣
∣
∣
∣
≤ 1

N
. (112)

Collecting the inequalities (110), (111) and (112), we see for all N ≥ 2 and all
x ∈ [0, 1] that

|G(x) − xG(1)|

≤
∣
∣
∣
∣
G(x) − G

(
1

N
!Nx"

)∣
∣
∣
∣
+
∣
∣
∣
∣
G

(
1

N
!Nx"

)

− 1

N
!Nx"G(1)

∣
∣
∣
∣
+
∣
∣
∣
∣

1

N
!Nx" − x

∣
∣
∣
∣
|G(1)|

≤ 2

∣
∣
∣
∣
x − 1

N
!Nx"

∣
∣
∣
∣
‖G‖L∞(0,1) + 2(N + 1)ε +

∣
∣
∣
∣
x − 1

N
!Nx"

∣
∣
∣
∣
‖G‖L∞(0,1)

≤ 3

N
‖G‖∞ + 4Nε. (113)

If ‖G‖L∞(0,1) ≥ 4ε we may choose N ∈ N with N ≥ 2 such that

‖G‖
1
2
L∞(0,1)ε

− 1
2 ≤ N < ‖G‖

1
2
L∞(0,1)ε

− 1
2 + 1,

for which (113) together with the choice G̃(x) := xG(1) for x ∈ [0, 1] gives
∥
∥
∥G − G̃

∥
∥
∥∞ � ‖G‖

1
2∞ε

1
2 + ε � ‖G‖

1
2∞ε

1
2 .

If instead we have ‖G‖L∞(0,1) < 4ε we set G̃ ≡ 0 and trivially get
∥
∥
∥G − G̃

∥
∥
∥∞ ≤

4ε. ��
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