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Abstract

We rigorously derive pressureless Euler-type equations with nonlocal dissipa-
tive terms in velocity and aggregation equations with nonlocal velocity fields from
Newton-type particle descriptions of swarmingmodelswith alignment interactions.
Crucially, we make use of a discrete version of a modulated kinetic energy together
with the bounded Lipschitz distance for measures in order to control terms in its
time derivative due to the nonlocal interactions.

1. Introduction

In this work, we analyse the evolution of an indistinguishable N -point particle
system given by

ẋi = vi , i = 1, . . . , N , t > 0,

εN v̇i = −γ vi − ∇x V (xi ) − 1

N

N∑

j=1

∇xW (xi − x j ) + 1

N

N∑

j=1

ψ(xi − x j )(v j − vi )

(1.1)

subject to the initial data

(xi , vi )(0) =: (xi (0), vi (0)), i = 1, . . . , N . (1.2)

Here xi = xi (t) ∈ R
d and vi = vi (t) ∈ R

d denote the position and velocity of i-
particle at time t , respectively. The coefficientγ � 0 represents the strength of linear
damping in velocity, εN > 0 the strength of inertia, V : Rd → R+ and W : Rd →
R stand for the confinement and interaction potentials, respectively. ψ : Rd → R+
is a communication weight function. Throughout this paper, we assume thatW and
ψ satisfy W (x) = W (−x) and ψ(x) = ψ(−x) for x ∈ R

d . They include basic
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particle models for collective behaviors, see [12,20,25,34,36,46,47,63] and the
references therein.

Our main goal is to derive the macroscopic collective models rigorously gov-
erning the evolution of the particle system (1.1) as the number of particles goes to
infinity. On one hand, we will derive hydrodynamic Euler-alignment models given
by

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x · (ρu ⊗ u) = −γρu − ρ∇x V − ρ∇xW � ρ

+ ρ

∫

Rd
ψ(x − y)(u(y) − u(x)) ρ(y) dy

(1.3)

in the mean-field limit: when initial particles are close to a monokinetic distribution
ρ0(x)δu0(x)(v) in certain sense and εN = O(1) as N → ∞. On the other hand, we
will show that the particle system can be described by aggregation equations of the
form

∂t ρ̄ + ∇x · (ρ̄ū) = 0, (1.4)

where

γ ρ̄ū = −ρ̄∇x V − ρ̄∇xW � ρ̄ + ρ̄

∫

Rd
ψ(x − y)(ū(y) − ū(x))ρ̄(y) dy (1.5)

in the combined mean-field/small inertia limit when initial particles are close to
a monokinetic distribution ρ0(x)δu0(x)(v), γ > 0 and εN → 0 as N → ∞. For
simplicity of notations when dealing with the mean-field limit, we will take εN = 1
in the sequel.

1.1. Mean-field limits: from particles to continuum

As the number of particles N tends to infinity, microscopic descriptions given
by the particle system (1.1) become more and more computationally unbearable.
Reducing the complexity of the system is of paramount importance in any practical
application. The classical multiscale strategy in kinetic modelling is to introduce
the number density function f = f (x, v, t) in phase space (x, v) ∈ R

d × R
d at

time t ∈ R+ and study the time evolution of that density function. Then at the
formal level, we can derive the following Vlasov-type equation from the particle
system (1.1) as N → ∞:

∂t f + v · ∇x f − ∇v · (
(γ v + ∇x V + ∇xW � ρ f ) f

) + ∇v · (Fa( f ) f ) = 0,

(1.6)

where ρ f = ρ f (x, t) is the local particle density and Fa( f ) = Fa( f )(x, v, t)
represents a nonlocal velocity alignment force given by

ρ f (x, t) :=
∫

Rd
f (x, v, t) dv
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and

Fa( f )(x, v, t) :=
∫∫

Rd×Rd
ψ(x − y)(w − v) f (y, w, t) dy dw,

respectively. Let us briefly recall the reader the basic formalism leading to the
kinetic equation (1.6) as the limiting system of (1.1). We first define the empirical
measure μN associated to a solution to the particle system (1.1), that is,

μN
t (x, v) := 1

N

N∑

i=1

δ(xi (t),vi (t)).

As long as there exists a solution to (1.1), the empirical measure μN satisfies (1.6)
in the sense of distributions. To be more specific, for any ϕ ∈ C10(Rd ×R

d), we get

d

dt

∫∫

Rd×Rd
ϕ(x, v) μN

t (dxdv) = d

dt

1

N

N∑

i=1

ϕ(xi (t), vi (t))

= 1

N

N∑

i=1

(∇xϕ(xi (t), vi (t)) · vi (t) + ∇vϕ(xi (t), vi (t)) · v̇i (t)) .

(1.7)

Notice that the particle velocity can also be rewritten in terms of the empirical
measure μN as

v̇i (t) = −γ vi − ∇x V (xi ) −
∫∫

Rd×Rd
∇xW (xi − y) μN

t (dydw)

+
∫∫

Rd×Rd
ψ(xi − y)(w − vi ) μN

t (dydw).

This implies that the right-hand side of (1.7) can also be written in terms of the
empirical measure μN as

d

dt

∫∫

Rd×Rd
ϕ(x, v) μN

t (dxdv) =
∫∫

Rd×Rd
∇xϕ(x, v) μN

t (dxdv)

−
∫∫

Rd×Rd
∇vϕ(x, v) ·

(
γ v + ∇x V (x) +

∫∫

Rd×Rd
∇xW (x − y) μN

t (dydw)

)
μN
t (dxdv)

+
∫∫

Rd×Rd
∇vϕ(x, v) ·

(∫∫

Rd×Rd
ψ(x − y)(w − v) μN

t (dydw)

)
μN
t (dxdv).

This concludes that μN is a solution to (1.6) in the sense of distributions as
long as particle paths are well defined. In fact, if the interaction potential W and
the communication weight function ψ in the classical Cucker–Smale alignment
model are regular enough, for instance, bounded Lipschitz regularity, then the
global-in-time existence of measure-valued solutions can be obtained by estab-
lishing a weak-weak stability estimate for the empirical measure, see [46, Sec-
tion 5] for more details. The mean-field limit has attracted lots of attention in the
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last years in different settings depending on the regularity of the involved poten-
tials V,W and communication function ψ . Different approaches to the deriva-
tion of the Vlasov-like kinetic equations with alignments/interaction terms or the
aggregation equations have been taken leading to a very lively interaction be-
tween different communities of researchers in analysis and probability. We refer to
[3,4,10,20,30,31,35,44,47,50,54–56,64,67] for the classical references and non-
Lipschitz regularity velocity fields in kinetic cases, to [48,49] for very related in-
compressible fluid problems, and to [7,9,16,17,37,43,45,51,52,61,63,65,66] for
results with more emphasis on the singular interaction kernels both at the kinetic
and the aggregation-diffusion equation cases.

1.2. Local balanced laws, the mono-kinetic ansatz, and the small inertia limit

The classical procedure in kinetic theory of deriving equations for the first 3
moments of the distribution function f leads to the standard problem of how to
close the moment system since the equation for the second moment will depend on
higher order moments. Suitable closure assumptions are not known so far even in
cases where noise/diffusion is added to the system. However, at the formal level, we
can take into account the mono-kinetic ansatz for f , as done in [18,21], leading to

f (x, v, t) � ρ(x, t)δu(x,t)(v) , (1.8)

where ρ and u are the macroscopic density and the mean velocity of particles, that
is, the first two moments of f in velocity variable

ρ :=
∫

Rd
f dv and ρu :=

∫

Rd
v f dv.

It is standard to check that the strain tensor and heat flux become zero and the
moment system closes becoming the pressureless Euler equations with nonlocal
interaction forces (1.3):

∂tρ + ∇x · (ρu) = 0, (x, t) ∈ R
d × R+,

∂t u + u · ∇xu = −γ u − ∇x V − ∇xW � ρ +
∫

Rd
ψ(x − y)(u(y) − u(x))ρ(y) dy,

(1.9)

and

∂t
|u|2
2

+ u · ∇x
|u|2
2

= −γ |u|2 − u · ∇x V − u · ∇xW � ρ

+
∫

Rd
ψ(x − y)

(
u(x) · u(y) − |u(x)|2

)
ρ(y) dy

on the support of ρ. The last equation coming from the closed equation on the evolu-
tion of the secondmoment is redundant but it gives a nice information about the total
energy of the system. Although the monokinetic assumption is not fully rigorously
justified and it does not have a direct physical motivation, it is observed by particle
simulations that the derived hydrodynamic system shares some qualitative behavior
with the particle system, see [12,18,20–22,33]. Note that (1.3) conserves only the
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total mass in time in this generality. However, the total free energy is dissipated due
to the linear damping and the velocity alignment force as pointed out in [19] for
weak solutions of this system. The hydrodynamic system (1.9) has a rich variety of
phenomena compared to the plain pressureless Euler system. This fact is due to the
competition between attraction/repulsion and alignment leading to sharp thresholds
for the global existence of strong solutions versus finite time blow-up and decay to
equilibrium, see [13–15,26,63,68]. We emphasize that the additional alignment,
linear damping and attraction/repulsion terms can promote the existence of global
solutions depending on the intial data. We will show that these hydrodynamical
solutions can be obtained directly from particle descriptions as long as they exist,
so their physical relevance is dictated by the time of existence of these solutions.

It is worth noticing as in [18] that the mono-kinetic ansatz for f is a measure-
valued solution of the kinetic equation (1.6). More precisely, one can show that
ρ(x, t)δu(x,t)(v) is a solution to the kinetic equation (1.6) in the sense of distri-
butions as long as (ρ, u)(x, t) is a strong solution to the hydrodynamic equations
(1.3). Indeed, for any ϕ ∈ C10(Rd × R

d), we obtain

d

dt

∫∫

Rd×Rd
ϕ(x, v)ρ(x, t) δu(x,t)(dv) dx

= d

dt

∫

Rd
ϕ(x, u(x, t))ρ(x, t) dx =

∫

Rd
ϕ(x, u(x, t))∂tρ dx

+
∫

Rd
(∇vϕ)(x, u(x, t)) · (∂t u)ρ dx =: I1 + I2.

Using the continuity equation in (1.3), I1 can be easily rewritten as

I1 =
∫

Rd
∇x (ϕ(x, u(x, t))) · (ρu) dx

=
∫∫

Rd×Rd
(∇xϕ)(x, v) · (ρv)δu(x,t)(dv) dx +

∫

Rd
(∇vϕ)(x, u(x, t)) · ρ(u · ∇x )u dx .

By multiplying the velocity equation in (1.3) by ρ and using (∇vϕ)(x, u(x, t)) as
a test function to the resulting equation yields

I2 = −
∫

Rd
(∇vϕ)(x, u(x, t)) · (∂t u)ρ dx

−
∫

Rd
(∇vϕ)(x, u(x, t)) · (γ u + ∇x V + ∇xW � ρ) ρ dx

+
∫∫

Rd×Rd
(∇vϕ)(x, u(x, t)) · (u(y) − u(x))ψ(x − y)ρ(x)ρ(y) dxdy.
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Then similarly as before, we can rewrite the second and third terms on the right
hand side of the equality by using the mono-kinetic ansatz (1.8). This implies

I2 = −
∫

Rd
(∇vϕ)(x, u(x, t)) · (∂t u)ρ dx

−
∫∫

Rd×Rd
(∇vϕ)(x, v) · (γ v + ∇x V + ∇xW � ρ) ρδu(x,t)(dv) dx

+
∫∫∫∫

Rd×Rd×Rd×Rd
(∇vϕ)(x, v)

· (w − v)ψ(x − y)ρ(x)δu(x,y)(dv)ρ(y)δu(y,t)(dw) dxdy.

Combining all of the above estimates yields

d

dt

∫∫

Rd×Rd
ϕ(x, v)ρ(x, t)δu(x,t)(dv) dx =

∫∫

Rd×Rd
((∇xϕ)(x, v) · v)ρδu(x,t)(dv) dx

−
∫∫

Rd×Rd
(∇vϕ)(x, v) · (γ v + ∇x V + ∇xW � ρ) ρδu(x,t)(dv) dx

+
∫∫∫∫

Rd×Rd×Rd×Rd
(∇vϕ)(x, v)

· (w − v)ψ(x − y)ρ(x)δu(x,y)(dv)ρ(y)δu(y,t)(dw) dxdy.

This shows that ρ(x, t)δu(x,t)(v) satisfies the kinetic equation (1.6) in the sense of
distributions.

Finally, we will be also dealing with the small inertia limit for both the kinetic
equation (1.6) and the hydrodynamic system (1.3) combined with the mean field
limit. In the small inertia asymptotic limit, we want to describe the behavior of the
scaled kinetic equation

ε(∂t f + v · ∇x f ) − ∇v · (
(γ v + ∇x V + ∇xW � ρ f ) f

) + ∇v · (Fa( f ) f ) = 0,

(1.10)

and the scaled hydrodynamic system

∂tρ + ∇x · (ρu) = 0,

ε(∂t (ρu) + ∇x · (ρu ⊗ u)) = −γρu − ρ∇x V − ρ∇xW � ρ

+ ρ

∫

Rd
ψ(x − y)(u(y) − u(x)) ρ(y) dy,

(1.11)

in the limit of small inertia ε → 0. At the formal level, the equations (1.11) will
be replaced by (1.4)–(1.5) as ε → 0. The limiting nonlinearly coupled aggrega-
tion equations (1.4)–(1.5) have been recently studied in [39,40]. Several authors
have studied particular choices of interactions V,W and comunication functions
ψ for some of the connecting asymptotic limits from the kinetic description (1.10)
with/without noise to the hydrodynamic system (1.11) in [8,11,42,57], from the
hydrodynamic system (1.11) to the aggregation equation (1.4)–(1.5) in [23,59,60],
and for the direct limit from the kinetic equation to the aggregation equation (1.4)–
(1.5) in [8,53].
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1.3. Purpose, mathematical tools and main novelties

Summarizing the main facts of the mean-field limit and the monokinetic ansatz
in Sections 1.1 and 1.2, both the empirical measure μN (t) associated to the parti-
cle system (1.1) and the monokinetic solutions ρ(x, t)δu(x,t)(v), with (ρ, u)(x, t)
satisfying the hydrodynamic equations (1.3) in the strong sense, are distributional
solutions of the same kinetic equation (1.6). In order to analyse the convergence
of the empirical measure μN to ρ(x, t)δu(x,t)(v), the goal is to establish a weak-
strong stability estimatewhere the strong role is played by the distributional solution
ρ(x, t)δu(x,t)(v) associated to the strong solution of the hydrodynamic system (1.3).
Our main goal is then to quantify the following convergence

μN
t (x, v) → ρ(x, t)δu(x,t)(v) as N → ∞

in the sense of distributions for both the mean-field and the combined mean-
field/small inertia limit for well prepared initial data. Our main mathematical tools
are the use of a modulated kinetic energy combined with the bounded Lipschitz
distance in order to control terms between the discrete particle system and the
hydrodynamic quantities. Let us first introduce the modulated kinetic energy as

1

2

∫∫

Rd×Rd
f |v − u|2 dxdv, (1.12)

where f is a solution of kinetic equation (1.6) and u is the velocity field as part of
the solution of the pressureless Euler equations (1.3). Modulated kinetic energies
were used in conjunction with relative potential energy terms for quasineutral limits
of Vlasov like equations [5,6,62] for instance. We would like to emphasize that
the quantity (1.12) gives a sharper estimate compared to the classical modulated
macroscopic energy. Indeed, the macro energy of the system (1.3) is given by

E(U ) := |m|2
2ρ

with U :=
(

ρ

m

)
, m = ρu.

Thus its modulated energy, also often refereed to as relative energy, can be defined
as

E(U f |U ) := E(U f ) − E(U ) − DE(U )(U f −U ) with U f :=
(

ρ f

m f

)
, m f = ρ f u f .

A straightforward computation gives

∫

Rd
E(U f |U ) dx = 1

2

∫

Rd
ρ f |u f − u|2 dx . (1.13)

On the other hand, by Hölder inequality, we easily find that

ρ f |u f |2 �
∫

Rd
|v|2 f dv.
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This yields
∫∫

Rd×Rd
f |v − u|2 dxdv −

∫

Rd
ρ f |u f − u|2 dx

=
∫∫

Rd×Rd
|v|2 f dxdv −

∫

Rd
ρ f |u f |2 dx � 0.

In fact, we can easily show that
∫∫

Rd×Rd
f |v − u|2 dxdv =

∫

Rd
ρ f |u f − u|2 dx

+
∫∫

Rd×Rd
f |v − u f |2 dxdv. (1.14)

This shows that the convergence of the modulated kinetic energy (1.12) implies the
convergence of themodulatedmacro energy (1.13).We notice that if f is a monoki-
netic distribution, f (x, v, t) = ρ f (x, t)δu f (x,t)(v), then the second term on the
right hand side of (1.14) becomes zero, and the two modulated energies (1.12) and
(1.13) coincide. For notational simplicity,wedenote byZN (t) = {(xi (t), vi (t))}Ni=1
the set of trajectories associated to the particle system (1.1). Then let us define the
first important quantity that will allow us to quantify the distance between parti-
cles (1.1) and hydrodynamics (1.3), it is just the discrete version of the modulated
kinetic energy (1.12) defined as

EN (ZN (t)|U (t)) := 1

2

∫∫

Rd×Rd
|u − v|2 μN

t (dxdv)

= 1

2N

N∑

i=1

|u(xi (t), t) − vi (t)|2. (1.15)

The second quantity that will allow us our quantification goal combined with
the discrete modulated energy (1.15) is a classical distance between probability
measures, the bounded Lipschitz distance, used already by the pioneers in kinetic
theory [4,64,67] in the earlyworks for themean-field limit. Notice that the pressure-
less Euler system (1.3) includes the nonlocal position and velocity interaction and
alignment forces. Furthermore, its relative energy/entropy has no strict convexity in
terms of density variable due to the lack of pressure term. In order to overcome these
difficulties, ideas of combining the modulated macro energy and the first or second
order Wasserstein distance have been recently proposed in [8,11,32] quantifying
the hydrodynamic limit from kinetic equation to the pressureless Euler type system.
More recently, in [24], a general theory providing some relation between a modu-
lated macro energy-type function and p-Wasserstein distance is also developed. In
particular, in [24, Proposition 3.1], it is discussed that the p-Wasserstein distance
with p ∈ [1, 2] can be controlled by the modulated macro energy functional.

In the present work, we will employ the bounded Lipschitz distance to provide
stability estimates between the empirical particle density ρN defined as

ρN
t (x) :=

∫

Rd
μN
t (dv) = 1

N

N∑

j=1

δx j (t)(x)
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with μN
t be the empirical measure associated to the particle system (1.1), and the

hydrodynamic particle density ρ solution to (1.3).More precisely, letM(Rd) be the
space of signed Radon measures on R

d , which can be considered as nonnegative
bounded linear functionals on C0(Rd). Let μ, ν ∈ M(Rd) be two Radon mea-
sures. Then the bounded Lipschitz distance, which is denoted by dBL : M(Rd) ×
M(Rd) → R+, between μ and ν is defined by

dBL(μ, ν) := sup
φ∈�

∣∣∣∣
∫

Rd
φ(x)(μ(dx) − ν(dx))

∣∣∣∣ ,

where the admissible set � of test functions are given by

� :=
{

φ : Rd → R : ‖φ‖L∞ � 1, Lip(φ) := sup
x 	=y

|φ(x) − φ(y)|
|x − y| � 1

}
.

We also denote by Lip(Rd) the set of Lipschitz functions on R
d . In Proposition

2.2 below, we provide a relation between the bounded Lispchitz distance and the
discrete version of themodulated kinetic energy (1.15). This key observation allows
us to overcome the difficulties mentioned above.

1.4. Main results and Plan of the paper

We will first assume that the particle system (1.1), the pressureless Euler-type
equations (1.3), and the aggregation equations (1.4)–(1.5) have existence of smooth
enough solutions up to a fixed time T > 0. We postpone further discussion at the
end of this subsection, although we make precise now the assumptions needed on
these solutions for our main results.

Our first main result shows the rigorous passage from Newton’s equation (1.1)
to pressureless Euler equations (1.3) via the mean-field limit as N → ∞.

Theorem 1.1. Let T > 0, ZN (t) = {(xi (t), vi (t))}Ni=1 be a solution to the particle
system (1.1), and let (ρ, u) be the unique classical solution of the pressureless
Euler systemwith nonlocal interaction forces (1.3) satisfying ρ > 0 onRd ×[0, T ),
ρ ∈ C([0, T ];P(Rd)) and u ∈ L∞(0, T ;W1,∞(Rd)) up to time T > 0with initial
data (ρ0, u0). Suppose that the interaction potential W and the communication
weight function ψ satisfy ∇xW ∈ W1,∞(Rd) and ψ ∈ W1,∞(Rd), respectively. If
the initial data for (1.1) and (1.3) are chosen such that

∫∫

Rd×Rd
|v − u0(x)|2μN

0 (dxdv) + d2BL(ρN
0 , ρ0) → 0 as N → ∞,

then we have

∫

Rd
v μN (dv) = 1

N

N∑

i=1

vi δxi ⇀ ρu weakly in L∞(0, T ;M(Rd )),

∫

Rd
(v ⊗ v) μN (dv) = 1

N

N∑

i=1

(vi ⊗ vi ) δxi ⇀ ρu ⊗ u weakly in L∞(0, T ;M(Rd )), and

μN ⇀ ρδu weakly in L∞(0, T ;M(Rd × R
d ))
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as N → ∞. In fact, we have the following quantitative bound estimate:

∫∫

Rd×Rd
|v − u(x, t)|2μN

t (dxdv) + d2BL(ρN
t (·), ρ(·, t))

� C

(∫∫

Rd×Rd
|v − u0(x)|2μN

0 (dxdv) + d2BL(ρN
0 , ρ0)

)
,

where C > 0 only depends on ‖u‖L∞(0,T ;W1,∞), ‖ψ‖W1,∞ , ‖∇xW‖W1,∞ , and T .

The main novelty of this first result resides in how to control the alignment
terms via the modulated energy combined with the bounded Lipschitz distance.

Remark 1.1. (Singular repulsive interaction) The previous result also applies to
singular repulsive interaction potentials. In particular, it holds for the Coulomb
interaction potential on Rd given by

N (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−|x |
2

for d = 1,

− 1

2π
log |x | for d = 2,

1

d(d − 2)αd

1

|x |d−2 for d � 3,

and for Riesz potentials in a sense to be specified in Section 2.3. Here αd denotes
the volume of the unit ball in Rd . In order to deal with the singularity on the inter-
action potential, the diagonal term should be eliminated in the modulated energy
functional. This has been recently solved in the recent breakthrough result in [66]
by introducing a different relative potential energy avoiding the diagonal terms.
The details for singular interaction potentials cases are postponed to Section 2.3,
see Theorem 2.1.

Section 2 is devoted to the proof of Theorem 1.1 and the generalization to
singular repulsive potentials using [66] in its last subsection.

Our second main result is devoted to the asymptotic analysis for the particle
system (1.1) under the small inertia regime: εN → 0 as N → ∞. By Theorem 1.1,
we expect that for sufficiently large N 
 1, the system (1.1) in themean-field/small
inertia limit can be well approximated by

∂t ρ̄ + ∇x · (ρ̄ū) = 0,

εN ∂t (ρ̄ū) + εN∇x · (ρ̄ū ⊗ ū)

= −γ ρ̄ū − ρ̄∇x V − ρ̄∇xW � ρ̄ + ρ̄

∫

Rd
ψ(x − y)(ū(y) − ū(x)) ρ̄(y) dy.

At the formal level, since εN → 0 as N → ∞, it follows from the momentum
equations in the above system that the hydrodynamic system (1.3) should be re-
placed by (1.4)–(1.5) as N → ∞. In order to apply our strategy above, we rewrite
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the equations (1.4)–(1.5) as

∂t ρ̄ + ∇x · (ρ̄ū) = 0,

εN ∂t (ρ̄ū) + εN∇x · (ρ̄ū ⊗ ū) = −γ ρ̄ū − ρ̄∇x V − ρ̄∇xW � ρ̄

+ ρ̄

∫

Rd
ψ(x − y)(ū(y) − ū(x)) ρ̄(y) dy + εN ρ̄ē,

(1.16)

where ē := ∂t ū + ū · ∇x ū.
We can now state our second main result related to a weak-strong stability

estimate in the combined mean-field/small inertia limit.

Theorem 1.2. Let T > 0 and d � 1. LetZN (t) = {(xi (t), vi (t))}Ni=1 be a solution
to the particle system (1.1), and let (ρ̄, ū) be the unique classical solution of the
aggregation-type equation (1.4)–(1.5) satisfying ρ̄ ∈ C([0, T ];P(Rd)) and ρ̄ > 0
onRd ×[0, T ), ū ∈ L∞(0, T ;W1,∞(Rd)) and ∂t ū ∈ L∞(Rd × (0, T )) up to time
T > 0 with the initial data ρ̄0. Suppose that the interaction potential W and the
communication weight functionψ satisfy∇xW ∈ W1,∞(Rd) andψ ∈ W1,∞(Rd),
respectively, and the strength of damping γ > 0 is large enough. If the initial data
for (1.1) and (1.4) are chosen such that

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + dBL(ρN
0 , ρ̄0) → 0 as N → ∞,

then we have

∫

Rd
v μN (dv) = 1

N

N∑

i=1

vi δxi ⇀ ρ̄ū weakly in L1(0, T ;M(Rd)) (1.17)

and

μN ⇀ ρ̄δū weakly in L1(0, T ;M(Rd × R
d)) (1.18)

as N → ∞ (and thus εN → 0). In fact, we have the following quantitative bound
estimate:

d2BL(ρN
t (·), ρ̄(·, t)) +

∫ t

0

∫∫

Rd×Rd
|v − ū(x, s)|2μN

s (dxdv) ds

� CεN

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + Cd2BL(ρN
0 , ρ̄0) + Cε2N

and

1

εN
d2BL(ρN

t (·), ρ̄(·, t)) +
∫∫

Rd×Rd
|v − ū(x, t)|2μN

t (dxdv)

� C(1 + εN )

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + C

εN
d2BL(ρN

0 , ρ̄0) + CεN

for all t ∈ [0, T ], where C > 0 is independent of both εN and N but depending on
‖ū‖L∞(0,T ;W1,∞), ‖∂t ū‖L∞ , ‖∇xW‖W1,∞ , ‖ψ‖W1,∞ , and γ .
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Remark 1.2. Theorem 1.2 implies that if the initial data satisfies

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + dBL(ρN
0 , ρ̄0) � C0 εN

for some C0 > 0 which is independent of both εN and N , then we have

d2BL(ρN
t (·), ρ̄(·, t)) +

∫ t

0

∫∫

Rd×Rd
|v − ū(x, s)|2μN

s (dxdv) ds � Cε2N

and

∫∫

Rd×Rd
|v − ū(x, t)|2μN

t (dxdv) � CεN

for all t ∈ [0, T ], whereC > 0 is independent of both εN and N . This further yields
that the convergences (1.17) and (1.18) hold in weakly in L∞(0, T ;M(Rd)) and
L∞(0, T ;M(Rd × R

d)), respectively.

Remark 1.3. If V ≡ 0 and γ > 0 is sufficiently large, then we can check that
‖ū‖L∞(0,T ;W1,∞) and ‖∂t ū‖L∞ can be bounded from above by some constant,
which depends only on ‖∇xW‖W1,∞ , ‖ψ‖W1,∞ , ‖ρ̄‖L∞(0,T ;L1), and γ . We refer to
[24] for details. For general confinement potentials, we can also deal with general
strong solutions for compactly supported initial data since their support remains
compact for all times. We refer to [1,15] for particular instances of these results.

Remark 1.4. One may follow a similar argument as in [40, Theorem 2.4] to have
the existence and uniqueness of classical solutions (ρ̄, ū) to the equations (1.4)–
(1.5) satisfying the regularity properties and assumptions of Theorem 1.2. For the
Coulomb or Riesz interaction, an idea of proof proposed in [28] would be employed
to establish the local-in-time existence and uniqueness of classical solutions to the
equations (1.4)–(1.5) without the confinement potential.

Section 3 is devoted to the proof of Theorem 1.2 and the generalizations to
singular repulsive potentials. Finally, we complement these results by showing the
existence of solutions to the particle system (1.1) in Appendix A, and the existence
and uniqueness of classical solutions stated in Theorem 1.1 for the hydrodynamic
system (1.3) in Section 4.

2. Mean-Field Limit: From Newton to Pressureless Euler

In this section,weprovide thedetails of the proof forTheorem1.1.Asmentioned
before, one of our main mathematical tools is the discrete version of the modulated
kinetic energy EN (ZN (t)|U (t)) defined in (1.15).
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2.1. Modulated kinetic energy estimate

In this part, our main purpose is to give the quantitative bound estimate of the
discrete modulated kinetic energy EN (ZN (t)|U (t)).

Proposition 2.1. Let T > 0, ZN (t) = {(xi (t), vi (t))}Ni=1 be a solution to the
particle system (1.1), and let (ρ, u) be the unique classical solution of the pres-
sureless Euler system with nonlocal interaction forces (1.3) under the assumptions
of Theorem 1.1 up to time T > 0. Suppose that the interaction potential W and the
communication weight functionψ satisfy∇xW ∈ W1,∞(Rd) andψ ∈ W1,∞(Rd),
respectively. Then we have

d

dt
EN (ZN (t)|U (t)) + 2γ EN (ZN (t)|U (t)) + 1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2

� CEN (ZN (t)|U (t)) + Cd2BL(ρN
t (·), ρ(·, t)),

(2.1)

where C > 0 is independent of N and γ .

Proof. By the notion of our classical solution, we obtain from the momentum
equation in (1.3) that

∂t (u(xi (t), t)) = vi (t) · ∇xu(xi (t), t) + (∂t u)(xi (t), t)

= (vi (t) − u(xi (t), t)) · ∇xu(xi (t), t) − γ u(xi (t))

−∇x V (xi (t)) − (∇xW � ρ)(xi )

+
∫

Rd
ψ(xi (t) − y)(u(y, t) − u(xi (t), t))ρ(y, t) dy.

Then using this and (1.1), we estimate the discrete modulated kinetic energy func-
tional as

d

dt
EN (ZN (t)|U (t)) = 1

N

N∑

i=1

(u(xi (t), t) − vi (t))

· (∂t u(xi (t), t) + vi (t) · ∇xu(xi (t), t) − v̇i (t))

= 1

N

N∑

i=1

(u(xi (t), t) − vi (t)) · ((vi (t) − u(xi (t), t)) · ∇x )u(xi (t), t)

− γ

N

N∑

i=1

|u(xi (t), t) − vi (t)|2

− 1

N

N∑

i=1

(u(xi (t), t) − vi (t)) ·
(
(∇xW � ρ)(xi ) − (∇xW � ρN )(xi )

)
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+ 1

N

N∑

i=1

(u(xi (t), t) − vi (t)) · F(xi (t), vi (t))

=:
4∑

i=1

Ii , (2.2)

where

F(xi (t), vi (t)) :=
∫

Rd
ψ(xi (t) − y)(u(y, t) − u(xi (t), t))ρ(y, t) dy

− 1

N

N∑

j=1

ψ(xi (t) − x j (t))(v j (t) − vi (t)).

Here I1 can be easily estimated as

I1 = 1

N

N∑

i=1

∇xu(xi (t), t) : (u(xi (t), t) − vi (t)) ⊗ (vi (t) − u(xi (t), t))

� ‖∇xu(·, t)‖L∞
1

N

N∑

i=1

|u(xi (t), t) − vi (t)|2

= 2‖∇xu(·, t)‖L∞EN (ZN (t)|U (t)).

By definition, we obtain I2 = −2γ EN (ZN (t)|U (t)). We next estimate I3 as

I3 = − 1

N

N∑

i=1

(u(xi (t), t)−vi (t)) ·
(
(∇xW � ρ)(xi (t), t)−(∇xW � ρN )(xi (t), t)

)

= 1

N

N∑

i=1

(vi (t) − u(xi (t), t)) · (∇xW � (ρ − ρN ))(xi (t), t).

On the other hand, the fact ∇xW ∈ W1,∞ gives

‖(∇xW � (ρ − ρN ))(·, t)‖L∞ � ‖∇xW‖W1,∞dBL(ρN , ρ),

and subsequently this asserts

I3 � ‖∇xW‖W1,∞dBL(ρN , ρ)

(
1

N

N∑

i=1

|vi (t) − u(xi (t), t)|
)

� ‖∇xW‖W1,∞dBL(ρN , ρ)

(
1

N

N∑

i=1

|vi (t) − u(xi (t), t)|2
)1/2

= ‖∇xW‖W1,∞dBL(ρN , ρ)

√
EN (ZN (t)|U (t)).
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For the estimate of I4, we note that

1

N

N∑

j=1

ψ(xi (t) − x j (t))(v j (t) − vi (t))

= 1

N

N∑

j=1

ψ(xi (t) − x j (t))(v j (t) − u(x j (t), t))

+ 1

N

N∑

j=1

ψ(xi (t) − x j (t))(u(x j (t), t) − vi (t))

=: J1 + J2.

Then we rewrite J2 as

J2 =
∫

Rd
ψ(xi (t) − y)(u(y, t) − vi (t))ρ

N (y, t) dy.

This yields

I4 = 1

N

N∑

i=1

(u(xi ) − vi ) · 1

N

N∑

j=1

ψ(xi − x j )(u(x j ) − v j )

+ 1

N

N∑

i=1

(u(xi ) − vi )

·
(∫

Rd
ψ(xi − y)(u(y) − u(xi ))ρ(y) dy −

∫

Rd
ψ(xi − y)(u(y) − vi )ρ

N (y) dy

)

=: I 14 + I 24 .

Here we can easily estimate I 14 as

I 14 � ‖ψ‖L∞

(
1

N

N∑

i=1

(u(xi ) − vi )

)2

� ‖ψ‖L∞
1

N

N∑

i=1

|u(xi ) − vi |2

= 2‖ψ‖L∞EN (ZN (t)|U (t)).

Note that

1

N

N∑

i=1

∫

Rd
ψ(xi − y)(vi − u(xi ))(ρ

N (y) − ρ(y)) · (u(y) − u(xi )) dy

= 1

N

N∑

i=1

∫

Rd
ψ(xi − y)(vi − u(xi ))ρ

N (y) · (u(y) − u(xi )) dy

+ I 24 − 1

N

N∑

i=1

∫

Rd
ψ(xi − y)(vi − u(xi ))ρ

N (y) · (u(y) − vi ) dy

= I 24 + 1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2,
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that is,

I 24 = 1

N

N∑

i=1

∫

Rd
ψ(xi − y)(vi − u(xi ))(ρ

N (y) − ρ(y)) · (u(y) − u(xi )) dy

− 1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2.

On the other hand, we can estimate

1

N

N∑

i=1

∫

Rd
ψ(xi − y)(vi − u(xi ))(ρ

N (y) − ρ(y)) · (u(y) − u(xi )) dy

= 1

N

N∑

i=1

(vi − u(xi )) ·
∫

Rd
ψ(xi − y)u(y)(ρN (y) − ρ(y)) dy

− 1

N

N∑

i=1

(vi − u(xi )) · u(xi )
∫

Rd
ψ(xi − y)(ρN (y) − ρ(y)) dy

=: K1 + K2,

where

|K1| � 1

N

N∑

i=1

|vi − u(xi )|
∣∣∣∣
∫

Rd
ψ(xi − y)u(y)(ρN (y) − ρ(y)) dy

∣∣∣∣

� ‖ψu‖W1,∞
1

N

N∑

i=1

|vi − u(xi )| dBL(ρN , ρ)

� ‖ψu‖W1,∞

(
1

N

N∑

i=1

|vi − u(xi )|2
)1/2

dBL(ρN , ρ)

� ‖ψu‖W1,∞
√
2
√
EN (ZN (t)|U (t)) dBL(ρN , ρ).

Similarly, we also find that

|K2| � 1

N

N∑

i=1

|vi − u(xi )||u(xi )|
∣∣∣∣
∫

Rd
ψ(xi − y)(ρN (y) − ρ(y)) dy

∣∣∣∣

� ‖u‖L∞‖ψ‖W1,∞
√
2
√
EN (ZN (t)|U (t)) dBL(ρN , ρ).
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Combining all of the above estimates, we have

d

dt
EN (ZN (t)|U (t)) + 2γ EN (ZN (t)|U (t)) + 1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2

� 2 (‖∇xu(·, t)‖L∞ + ‖ψ‖L∞) EN (ZN (t)|U (t))

+ √
2

(‖ψu‖W1,∞ + ‖u(·, t)‖L∞‖ψ‖W1,∞ + ‖∇xW‖W1,∞
)

√
EN (ZN (t)|U (t)) dBL(ρN

t (·), ρ(·, t)).
This completes the proof. �
Remark 2.1. We assumed that the communication weightψ is nonnegative, which
takes into account the velocity alignment forces, however a similar bound estimate
for the discrete kinetic energy EN to that in Proposition 2.1 can be obtained. Indeed,
if ψ can be negative, but bounded, then the third term on the left hand side of (2.1)
can be estimated as

∣∣∣∣∣∣
1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2
∣∣∣∣∣∣
� 2‖ψ‖L∞EN (ZN |U ).

This yields

d

dt
EN (ZN (t)|U (t)) + 2γ EN (ZN (t)|U (t)) � CEN (ZN (t)|U (t)) + Cd2BL (ρN

t (·), ρ(·, t)),

where C > 0 is independent of N and γ .

In order to close the estimate in Proposition 2.1,we need to estimate the bounded
Lipschitz distance between ρN and ρ. In the proposition below, we provide the
relation between the bounded Lipschitz distance and the discrete modulated kinetic
energy.

Proposition 2.2. Let ρN and ρ be defined as above. Then we have

d2BL(ρN (·, t), ρ(·, t)) � Cd2BL(ρN
0 , ρ0) + C

∫ t

0
EN (ZN (s)|U (s)) ds,

where C > 0 depends only on ‖u‖L∞(0,T ;Lip) and T .

Proof. Consider a forward characteristics η = η(x, t) for the system (1.3) satisfy-
ing the following ODEs:

dη(x, t)

dt
= u(η(x, t), t) (2.3)

subject to the initial data: η(x, 0) = x ∈ R
d .The characteristic η is well-defined be-

cause of the Lipschitz continuous regularity of u. Note that along the characteristic,
the solution ρ can be written in the mild form

ρ(η(x, t), t) = ρ0(x) exp

(
−

∫ t

0
(∇x · u)(η(x, s), s) ds

)
,
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and thus we get

ρ0(x) = ρ(η(x, t), t) exp

(∫ t

0
(∇x · u)(η(x, s), s) ds

)
= ρ(η(x, t), t)det ((∇xη)(x, t)) .

This together with using the change of variables yields
∫

Rd
φ(η(x, t))ρ0(x) dx =

∫

Rd
φ(η(x, t))ρ(η(x, t), t)det ((∇xη)(x, t)) dx

=
∫

Rd
φ(x)ρ(x, t) dx (2.4)

for φ ∈ W1,∞(Rd). Moreover, we find from (2.3) that

|η(x, t) − η(y, t)| =
∣∣∣∣x − y +

∫ t

0
(u(η(x, s), s) − u(η(y, s), s)) ds

∣∣∣∣

� |x − y| + ‖u‖Lip
∫ t

0
|η(x, s) − η(y, s)| ds,

(2.5)

and applying Grönwall’s lemma to the above gives

|η(x, t) − η(y, t)| � C |x − y|,
where C > 0 depends only on ‖u‖L∞(0,T ;Lip) and T , that is, η is Lipschitz contin-
uous in Rd . We also get

|xi (t) − η(x, t)| � |xi (0) − x | +
∫ t

0
|vi (s) − u(η(x, s), s)| ds.

Here the second term on the right hand side of the above inequality can be estimated
as

∫ t

0
|vi (s) − u(η(x, s), s)| ds

�
∫ t

0
|vi (s) − u(xi (s), s)| ds +

∫ t

0
|u(xi (s), s) − u(η(x, s), s)| ds

�
∫ t

0
|vi (s) − u(xi (s), s)| ds + ‖u‖Lip

∫ t

0
|xi (s) − η(x, s)| ds.

Thus we get

|xi (t) − η(x, t)| � |xi (0) − x | +
∫ t

0
|vi (s) − u(xi (s), s)| ds + ‖u‖Lip

∫ t

0
|xi (s) − η(x, s)| ds,

and applying Grönwall’s lemma to the above deduces

|xi (t) − η(x, t)| � C |xi (0) − x | + C
∫ t

0
|vi (s) − u(xi (s), s)| ds,
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whereC depends only on ‖u‖L∞(0,T ;Lip) and T . In particular, by taking x = xi (0),
we get

|xi (t) − η(xi (0), t)| � C
∫ t

0
|vi (s) − u(xi (s), s)| ds. (2.6)

Then for any φ ∈ W1,∞(Rd) we use (2.4) to estimate
∣∣∣∣
∫

Rd
φ(x)(ρN − ρ) dx

∣∣∣∣

=
∣∣∣∣∣
1

N

N∑

i=1

φ(xi (t))−
∫

Rd
φ(η(x, t))ρ0 dx

∣∣∣∣∣

=
∣∣∣∣∣
1

N

N∑

i=1

(φ(xi (t))−φ(η(xi (0), t)))+ 1

N

N∑

i=1

φ(η(xi (0), t))−
∫

Rd
φ(η(x, t))ρ0 dx

∣∣∣∣∣

� 1

N

N∑

i=1

|φ(xi (t)) − φ(η(xi (0), t))|+
∣∣∣∣∣
1

N

N∑

i=1

φ(η(xi (0), t))−
∫

Rd
φ(η(x, t))ρ0 dx

∣∣∣∣∣

=: L1 + L2.

(2.7)

For L1, we use the Lipschitz continuity together with (2.6) to obtain

L1 � ‖φ‖Lip
N

N∑

i=1

|xi (t) − η(xi (0), t)| � ‖φ‖Lip
N

∫ t

0

N∑

i=1

|vi (s) − u(xi (s), s)| ds

� ‖φ‖Lip
√
T

(∫ t

0

1

N

N∑

i=1

|vi (s) − u(xi (s), s)|2 ds
)1/2

= ‖φ‖Lip
√
T

(∫ t

0
EN (ZN (s)|U (s)) ds

)1/2

.

(2.8)

For the estimate of L2, we notice that

1

N

N∑

i=1

φ(η(xi (0), t)) =
∫

Rd
φ(η(x, t))ρN

0 dx .

Using this identity, theLipschitz estimate forη in (2.5), and the factφ ∈ W1,∞(Rd),
we find

L2 =
∣∣∣∣
∫

Rd
φ(η(x, t))(ρN

0 − ρ0) dx

∣∣∣∣ �
(‖φ‖L∞ + ‖φ‖Lip‖η‖Lip

)
dBL(ρN

0 , ρ0).

(2.9)

Putting (2.8) and (2.9) into (2.7) yields

dBL(ρN
t (·), ρ(·, t)) � CdBL(ρN

0 , ρ0) + C

(∫ t

0
EN (ZN (s)|U (s)) ds

)1/2

for 0 � t � T , where C > 0 depends only on ‖u‖L∞(0,T ;Lip) and T . �
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2.2. Proof of Theorem 1.1

2.2.1. Quantitative bound estimates Applying Grönwall’s lemma and Young’s
inequality to the differential inequality in Proposition 2.1 yields

EN (ZN (t)|U (t)) � CEN (ZN
0 |U0) + C

∫ t

0
d2BL(ρN

s (·), ρ(·, s)) ds,

where C > 0 is independent of N . We then use Proposition 2.2 to have

EN (ZN (t)|U (t)) + d2BL(ρN
t (·), ρ(·, t)) � CEN (ZN

0 |U0) + Cd2BL(ρN
0 , ρ0)

+ C
∫ t

0
d2BL(ρN

s (·), ρ(·, s)) ds + C
∫ t

0
EN (ZN (s)|U (s)) ds.

We finally apply Grönwall’s to the above to conclude the desired result.

2.2.2. Convergence estimates For the convergence estimates, it suffices to prove
the following lemma:

Lemma 2.1. (i) Convergence of local moment:

dBL

(∫

Rd
v μN (dv), ρu

)
�

(∫∫

Rd×Rd
|v − u(x)|2μN (dxdv)

)1/2

+ CdBL (ρN , ρ).

(ii) Convergence of local energy:

dBL

(∫

Rd
(v ⊗ v) μN (dv), ρu ⊗ u

)

�
∫∫

Rd×Rd
|v − u(x)|2μN (dxdv) + C

(∫∫

Rd×Rd
|v − u(x)|2μN (dxdv)

)1/2

+ CdBL (ρN , ρ).

(iii) Convergence of empirical measure:

d2BL(μN , ρδu) � C
∫∫

Rd×Rd
|v − u(x)|2 μN (dxdv) + Cd2BL(ρN , ρ).

Here C > 0 is independent of N .

Proof. (i) For any φ ∈ W1,∞(Rd), we get
∣∣∣∣
∫

Rd
φ(x)

(∫

Rd
v μN (x, dv) − (ρu)(x)

)
dx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
φ(x)(v − u(x)) μN (dxdv) +

∫

Rd
φ(x)u(x)(ρN (x) − ρ(x)) dx

∣∣∣∣

� ‖φ‖L∞
(∫∫

Rd×Rd
|v − u(x)| μN (dxdv)

)
+ ‖φu‖W1,∞ dBL(ρN , ρ)

� ‖φ‖L∞
(∫∫

Rd×Rd
|v − u(x)|2 μN (dxdv)

)1/2

+ (‖φ‖L∞‖u‖L∞ + ‖φ‖L∞‖u‖Lip + ‖u‖L∞‖φ‖Lip
)
dBL(ρN , ρ).
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(ii) Adding and subtracting, we notice that
∫

Rd
(v ⊗ v)μN (dv) − ρu ⊗ u

=
∫

Rd
(v − u) ⊗ (v − u) μN (dv) + u ⊗

(∫

Rd
vμN (dv) − ρu

)

+
(∫

Rd
vμN (dv) − ρu

)
⊗ u + (ρ − ρN )u ⊗ u.

This yields for φ ∈ W1,∞(Rd)

∣∣∣∣
∫

Rd
φ(x)

(∫

Rd
(v ⊗ v) μN (dv) − (ρu)(x) ⊗ u(x)

)
dx

∣∣∣∣

� ‖φ‖L∞
∫∫

Rd×Rd
|v − u|2 μN (dxdv) + 2‖φu‖L∞∩Lip dBL

(∫

Rd
v μN (dv), ρu

)

+ ‖φ|u|2‖W1,∞ dBL (ρN , ρ).

(iii) For any ϕ ∈ W1,∞(Rd × R
d), we find that

∣∣∣∣
∫∫

Rd×Rd
ϕ(x, v)

(
μN (dxdv) − ρ(x)dx ⊗ δu(x)(dv)

)∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
ϕ(x, v) μN (dxdv) −

∫

Rd
ϕ(x, u(x))ρ(x) dx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
(ϕ(x, v) − ϕ(x, u(x))) μN (dxdv) +

∫

Rd
ϕ(x, u(x))(ρN − ρ)(x) dx

∣∣∣∣

� ‖ϕ‖Lip
∫∫

Rd×Rd
|v − u(x)| μN (dxdv) + (‖ϕ‖L∞ + ‖ϕ‖Lip‖u‖Lip)dBL (ρN , ρ)

� C

(∫∫

Rd×Rd
|v − u(x)|2 μN (dxdv)

)1/2

+ CdBL (ρN , ρ).

�

2.3. Singular interaction potential cases: Coulomb and Riesz potentials

In this part, we discuss the singular interaction potentials. Let d � 1 and
consider a potential W̃ has the form

W̃ (x) = |x |−α max{d − 2, 0} � α < d ∀ d � 1 (2.10)

or

W̃ (x) = − log |x | for d = 1 or 2. (2.11)

Note that the case α = d − 2 with d � 3 or (2.11) with d = 2 corresponds to
the Coulomb potential, and the other cases are called Riesz potentials. With these
types of singular potentials, in a recent work [66], the quantitative mean-field limit
from the particle system (1.1) to the pressureless Euler-type system when γ = 0,
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V ≡ 0 and ψ ≡ 0. More precisely, in [66], the following modulated free energy is
employed to measure the error between particle and continuum systems:

FN (ZN (t)|U (t)) := 1

2

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy,

where � denotes the diagonal in Rd × R
d .

Theorem 2.1. Let T > 0 and ZN (t) = {(xi (t), vi (t))}Ni=1 be a solution to the
particle system (1.1), and let (ρ, u) be the unique classical solution of the pres-
sureless Euler system (1.3) with nonlocal interaction forces W̃ , which is appeared
in (2.10) or (2.11), instead of W up to time T > 0 with initial data (ρ0, u0).
Suppose that the communication weight function ψ satisfies ψ ∈ W1,∞(Rd). As-
sume that the classical solution (ρ, u) satisfies ρ ∈ L∞(0, T ; (P ∩ L∞)(Rd))

and u ∈ L∞(0, T ;W1,∞(Rd)). In the case α � d − 1, we further assume that
ρ ∈ L∞(0, T ; Cσ (Rd)) for some σ > α −d +1. Then there exists β < 2 such that

∫∫

Rd×Rd
|v − u(x, t)|2 μN

t (dxdv) + d2BL(ρN
t (·), ρ(·, t))

+
∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy

� C
∫∫

Rd×Rd
|v − u0(x)|2 μN

0 (dxdv) + Cd2BL(ρN
0 , ρ0)

+ C
∫∫

Rd×Rd\�
W̃ (x − y)(ρN

0 − ρ0)(x)(ρ
N
0 − ρ0)(y) dxdy + CNβ−2,

(2.12)

where C > 0 is independent of N .

Remark 2.2. If the interaction potential W is singular at the origin, then the term
related to W in (1.1) should be replaced by 1

N

∑
j : j 	=i ∇xW (xi − x j ) since W (0)

can not be well defined. This is why the diagonal � is excluded in the integration
in the modulated potential energy.

Remark 2.3. If the right hand side of (2.12) converges to zero as N → ∞, then
we also have the same convergence estimates in Theorem 1.1.

Remark 2.4. Our quantifiedmean-field limit estimate from (1.1) to (1.3) also apply
with a simple combination of Theorems 1.1 and 2.1 for interaction potentials of
the form W := W + W̃ with W satisfying ∇W ∈ W1,∞(Rd) and W̃ appeared in
(2.10) or (2.11).

Proof of Theorem 2.1. For the proof, we only need to reestimate I3 term in the
proof of Proposition 2.1. Although this proof is almost the same with that of [66],
we provide the details here for the completeness of our work. Let us denote by

I := − 1

N

N∑

i=1

∫

Rd
(u(xi (t), t) − vi (t)) · ∇x W̃ (xi (t) − y)ρ(y, t) dy

+ 1

N 2

∑

i 	= j

(u(xi (t), t) − vi (t)) · ∇x W̃ (xi (t) − x j (t)).
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On the other hand, we find that

d

dt
FN (ZN (t)|U (t)) = 1

2

d

dt

⎛

⎝ 1

N 2

∑

i 	= j

W̃ (xi − x j )

⎞

⎠

− d

dt

(
1

N

N∑

i=1

∫

Rd
W̃ (xi − y)ρ(y) dy

)

+ 1

2

d

dt

(∫∫

Rd×Rd
W̃ (x − y)ρ(x)ρ(y) dxdy

)

= 1

N 2

∑

i 	= j

∇x W̃ (xi − x j ) · vi − 1

N

N∑

i=1

∫

Rd
∇x W̃ (xi − y) · viρ(y) dy

− 1

N

N∑

i=1

∫

Rd
∇x W̃ (xi − y) · (ρu)(y) dy

+
∫∫

Rd×Rd
∇x W̃ (x − y)(ρu)(x)ρ(y) dxdy.

Here we used

∇x W̃ (−x) = −∇x W̃ (x) for x ∈ R
d \ {0}. (2.13)

This implies

I := −1

2

d

dt

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy

+ 1

N 2

∑

i 	= j

u(xi ) · ∇x W̃ (xi − x j ) − 1

N

N∑

i=1

∫

Rd
∇x W̃ (xi − y) · (u(xi ) − u(y))ρ(y) dy

+
∫∫

Rd×Rd
∇x W̃ (x − y)(ρu)(x)ρ(y) dxdy.

We next use (2.13) to get

1

N 2

∑

i 	= j

u(xi ) · ∇x W̃ (xi − x j ) = 1

2

1

N 2

∑

i 	= j

(
u(xi ) − u(x j )

) · ∇x W̃ (xi − x j )

and
∫∫

Rd×Rd ∇x W̃ (x − y)(ρu)(x)ρ(y) dxdy

= 1
2

∫∫
Rd×Rd ∇x W̃ (x − y) (u(x) − u(y)) ρ(x)ρ(y) dxdy.

Thus we obtain

I := −1

2

d

dt

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy

+ 1

2

∫∫

Rd×Rd\�
(u(x) − u(y)) · ∇x W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy.
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This together with the estimates in Proposition 2.1 yields

d

dt

(
EN (ZN (t)|U (t))+FN (ZN (t)|U (t))

)

+ 2γ EN (ZN (t)|U (t)) + 1

N 2

N∑

i, j=1

ψ(xi − x j )|vi − u(xi )|2

� CEN (ZN (t)|U (t)) + Cd2BL(ρN , ρ)

+ 1

2

∫∫

Rd×Rd\�
(u(x) − u(y)) · ∇x W̃ (x − y)(ρN − ρ)(x)(ρN − ρ)(y) dxdy.

We then apply [66, Proposition 1.1] to have that the last term on the right hand side
of the above inequality can be bounded from above by

CFN (ZN (t)|U (t)) + CNβ−2

for someβ < 2, whereC > 0 is independent of N . Applying theGrönwall’s lemma
to the resulting inequality concludes the desired quantitative bound estimate. The
convergence result can be directly obtained by using Lemma 2.1. This completes
the proof. �

3. Combined Small Inertia & Mean Field Limits: From Newton to
Aggregation

3.1. Proof of Theorem 1.2

Wefirst start with the case of smooth interaction potentials as in previous section
and apply a similar strategy to the proof of Proposition 2.1 to the system (1.16).
Then we get

d

dt
EN (ZN (t)|Ū (t)) =: 1

εN

(
4∑

i=1

Īi

)
+ Ī5,

where Īi , i = 1, 2, 3, 4 are the terms Ii , i = 1, 2, 3, 4 in (2.2) with replacing (ρ, u)

by (ρ̄, ū), and Ī5 is given by

Ī5 := 1

N

N∑

i=1

(ū(xi ) − vi ) · ē,

where ē = ∂t ū + ū · ∇x ū. This can be simply estimated as

| Ī5| � ‖ē‖L∞
1

N

N∑

i=1

|ū(xi ) − vi |

� C

εN

1

N

N∑

i=1

|ū(xi ) − vi |2 + CεN � C

εN
EN (ZN (t)|Ū (t)) + CεN .
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where C > 0 depends only ‖ē‖L∞ , independent of N and εN . For the rest, we
employ almost the same arguments as before to have

1

εN

(
4∑

i=1

Īi

)
� −2γ

εN
EN (ZN (t)|Ū (t)) − 1

εN N 2

N∑

i, j=1

ψ(xi − x j )|vi − ū(xi )|2

+ C

εN
EN (ZN (t)|Ū (t)) + Cd2BL(ρN

t (·), ρ(·, t)),

where C > 0 is independent of N , εN , and γ > 0. This yields

d

dt
EN (ZN (t)|Ū (t)) + 2γ − C

εN
EN (ZN (t)|Ū (t)) � C

εN
d2BL (ρN

t (·), ρ(·, t)) + CεN ,

(3.1)

whereC > 0 is independent of N , εN , and γ > 0.On the other hand, by Proposition
2.2, we can bound the first term on the right hand side of the above inequality from
above by

C

εN
d2BL(ρN

0 , ρ̄0) + C

εN

∫ t

0
EN (ZN (s)|Ū (s)) ds,

where C > 0 is independent of N , εN , and γ > 0. This together with integrating
(3.1) in time implies

EN (ZN (t)|Ū (t)) + 2γ − C

εN

∫ t

0
EN (ZN (s)|Ū (s)) ds

+ 1

εN N 2

N∑

i, j=1

∫ t

0
ψ(xi (s) − x j (s))|vi (s) − ū(xi (s), s)|2 ds

� EN (ZN
0 |Ū0) + C

εN
d2BL(ρN

0 , ρ̄0) + CεN .

We finally apply Grönwall’s lemma to conclude the desired result in Theorem 1.2.

3.2. Singular interaction potential cases

Similarly as before, Theorem 1.2 can be also easily extended to the case with
Coulomb or Riesz potentials W̃ defined in (2.10) or (2.11). More specifically, we
have the following theorem.

Theorem 3.1. Let T > 0 andZN (t) = {(xi (t), vi (t))}Ni=1 be a solution to the par-
ticle system (1.1), and let (ρ̄, ū) be the unique classical solution of the aggregation-
type equation (1.4)–(1.5) with W̃ , which is appeared in (2.10) or (2.11), instead of
W, under the assumptions of Theorem 1.2 up to time T > 0 with the initial data
ρ̄0. Suppose that the strength of damping γ > 0 is large enough and (ρ̄, ū) satisfies
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ρ̄ ∈ L∞(Rd × (0, T )). We further assume that ρ̄ ∈ L∞(0, T ; Cσ (Rd)) for some
σ > α − d + 1 in the case s � d − 1. Then there exists β < 2 such that

d2BL(ρN
t (·), ρ̄(·, t)) +

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ̄)(x)(ρN − ρ̄)(y) dxdy

+
∫ t

0

∫∫

Rd×Rd
|v − ū(x, s)|2μN

s (dxdv) ds

� Cd2BL(ρN
0 , ρ̄0) + C

∫∫

Rd×Rd\�
W̃ (x − y)(ρN

0 − ρ̄0)(x)(ρ
N
0 − ρ̄0)(y) dxdy

+ CεN

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + Cε2N + CNβ−2

and

1

εN
d2BL(ρN

t (·), ρ̄(·, t)) + 1

εN

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ̄)(x)(ρN − ρ̄)(y) dxdy

+
∫∫

Rd×Rd
|v − ū(x, t)|2μN

t (dxdv)

� C

εN
d2BL(ρN

0 , ρ̄0) + C

εN

∫∫

Rd×Rd\�
W̃ (x − y)(ρN

0 − ρ̄0)(x)(ρ
N
0 − ρ̄0)(y) dxdy

+ C(1 + εN )

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) + CεN + C
Nβ−2

εN

for all t ∈ [0, T ], where C > 0 is independent of εN and N. In particular if

∫∫

Rd×Rd
|v − ū0(x)|2μN

0 (dxdv) � CεN

and

d2BL(ρN
0 , ρ̄0) +

∫∫

Rd×Rd\�
W̃ (x − y)(ρN

0 − ρ̄0)(x)(ρ
N
0 − ρ̄0)(y) dxdy � Cε2N

for some C > 0 which is independent of εN , then we have

d2BL(ρN
t (·), ρ̄(·, t)) +

∫∫

Rd×Rd\�
W̃ (x − y)(ρN − ρ̄)(x)(ρN − ρ̄)(y) dxdy

� Cε2N + CNβ−2

and

∫∫

Rd×Rd
|v − ū(x, t)|2μN

t (dxdv) � CεN + C
Nβ−2

εN

for all t ∈ [0, T ], where C > 0 is independent of εN and N.
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4. Local Cauchy Problem for Pressureless Euler Equations with Nonlocal
Forces

In order to make the analysis for the mean-field limit from the particle system
(1.1) to the pressureless Euler-type equations (1.3) fully rigorous, we need to have
the existence of solutions for both systems. As mentioned in Introduction, we
postpone the existence theory for the particle system (1.1) in Appendix A, and here
we provide local-in-time existence and uniqueness of classical solutions for the
system (1.3). For the reader’s convenience, let us recall our limiting system:

∂tρ + ∇x · (ρu) = 0, (x, t) ∈ R
d × R+,

∂t (ρu) + ∇x · (ρu ⊗ u) = −ρu − ρ∇x V − ρ∇xW � ρ

+ ρ

∫

Rd
ψ(x − y)(u(y) − u(x)) ρ(y) dy,

(4.1)

with the initial data

(ρ(x, t), u(x, t))|t=0 =: (ρ0(x), u0(x)), x ∈ R
d .

Here we set the coefficient of linear damping γ = 1.
For the one dimensional problem, the well-posedness and singularity formation

for the system (4.1) without the linear damping, the confinement and interaction
potentials, called Euler-alignment system, are discussed in [13]. To bemore precise,
the sharp critical threshold which distinguishes the global-in-time regularity of
classical solutions and finite-time breakdown of smoothness is analyzed. The sharp
critical threshold estimate is also obtained in [15] for the pressureless damped
Euler–Poisson system with quadratic confinement potential in one dimension, that
is the system (4.1) with replacing W by N , V = |x |2/2, and ψ ≡ 0. For the
pressureless Euler–Poisson system, the critical threshold is also discussed in [2,38],
see also [69] for the case with pressure. More recently, in [27], the local-in-time
existence of classical solutions and finite-time singularity formation are taken into
account.

We introduce the exact notion of strong solution to the system (4.1) that we will
deal with.

Definition 4.1. Let s > d/2 + 1. For given T ∈ (0,∞), the pair (ρ, u) is a strong
solution of (4.1) on the time interval [0, T ] if and only if the following conditions
are satisfied:

(i) ρ ∈ C([0, T ]; Hs(Rd)), u ∈ C([0, T ]; Lip(Rd) ∩ L2
loc(R

d)), and ∇2
x u ∈

C([0, T ]; Hs−1(Rd)),
(ii) (ρ, u) satisfy the system (4.1) in the sense of distributions.

Notice that due to the choice of s in the previous definition, these strong solutions
are also classical solutions to (4.1). Our main result of this section is the following
local Cauchy problem for the system (4.1).
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Theorem 4.1. Let s > d/2+ 1 and R > 0. Suppose that the confinement potential
V is given by V = |x |2/2, the interaction potential ∇xW ∈ (W1,1 ∩ W1,∞)(Rd),
and the communication weight function ψ satisfies

ψ ∈ C1c (Rd) and supp(ψ) ⊆ B(0, R), (4.2)

where B(0, R) ⊂ R
d denotes a ball of radius R centered at the origin. For any

N < M, there is a positive constant T ∗ depending only on R, N, and M such that
if ρ0 > 0 on R

d and

‖ρ0‖Hs + ‖u0‖L2(B(0,R)) + ‖∇xu0‖L∞ + ‖∇2
x u0‖Hs−1 < N ,

then the Cauchy problem (4.1) has a unique strong solution (ρ, u), in the sense of
Definition 4.1, satisfying

sup
0�t�T ∗

(
‖ρ(·, t)‖Hs + ‖u(·, t)‖L2(B(0,R)) + ‖∇x u(·, t)‖L∞ + ‖∇2

x u(·, t)‖Hs−1

)
� M.

Remark 4.1. The assumption on the communication weight function (4.2) implies
ψ ∈ W1,p(Rd) for any p ∈ [1,∞].

Remark 4.2. By the standard Sobolev embedding theorem, the solution (ρ, u)

constructed as in Theorem 4.1 is a classical solution, that is (ρ, u) ∈ C1(Rd ×
(0, T ∗)).

Remark 4.3. The L2-norm of u on the ball is introduced due to the confinement
potential V . In fact, if we ignore the confinement potential V in the momentum
equation in (4.1), then under the following assumption on the initial data

‖ρ0‖Hs + ‖u0‖Hs+1 < N ,

we have the unique strong solution (ρ, u) to the system (4.1) satisfying

sup
0�t�T ∗

(‖ρ(·, t)‖Hs + ‖u(·, t)‖Hs+1
)

� M.

Remark 4.4. In case of a singular interaction potential beyond the Coulomb case,
we refer to [27] for the well-posedness theory for the Euler–Riesz system. More
precisely, in [27], the local-in-time existence and uniqueness of classical solutions
to the system (4.1) with W̃ defined in (2.10) instead of the regular W , γ = 0,
V ≡ 0, and ψ ≡ 0 are discussed. One may extend the arguments used in [27] to
study the well-posedness for the system (4.1) with W̃ .
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4.1. Linearized system

In this part, we construct approximate solutions (ρn, un) for the system (4.1)
and provide some uniform bound estimates of it.

Let us first take the initial data as the zeroth approximation:

(ρ0(x, t), u0(x, t)) = (ρ0(x), u0(x)), (x, t) ∈ R
d × R+.

We next suppose that the nth approximation (ρn, un) with n � 1 is given. Then
we define the (n + 1)th approximation (ρn+1, un+1) as a solution to the following
linear system.

∂tρ
n+1 + un · ∇ρn+1 + ρn+1∇ · un = 0, (x, t) ∈ R

d × R+,

ρn+1∂t u
n+1 + ρn+1un · ∇un+1 = −ρn+1un+1 − ρn+1(∇x V + ∇xW � ρn+1)

+ ρn+1
∫

Rd
ψ(x − y)(un(y) − un(x))ρn+1(y) dy, (4.3)

with the initial data

(ρn(x, 0), un(x, 0)) = (ρ0(x), u0(x)) for all n � 1, x ∈ R
d .

Let us introduce a solution space Ys,R(T ) with s > d/2 + 1 as

Ys,R(T ) :=
{
(ρ, u) : ρ ∈ C([0, T ]; Hs(Rd)), u ∈ C([0, T ];

L2(B(0, R))) ∩ C([0, T ]; Ẇ1,∞(Rd)),

∇2
x u ∈ C([0, T ]; Hs−1(Rd))

}
.

Then by the standard linear solvability theory [58], for any T > 0 we have that the
approximation {(ρn, un)}∞n=0 ⊂ Ys,R(T ) is well-defined.

For notational simplicity, in the rest of this section, we drop x-dependence of
the differential operator ∇x .

Proposition 4.1. Suppose that the initial data (ρ0, u0) satisfies ρ0 > 0 on Rd and

‖ρ0‖Hs + ‖u0‖L2(B(0,R)) + ‖∇u0‖L∞ + ‖∇2u0‖Hs−1 < N ,

and let (ρn, un) be a sequence of the approximate solutions of (4.3) with the initial
data (ρ0, u0). Then for any N < M, there exists T ∗ > 0 such that

sup
n�0

sup
0�t�T ∗

(‖ρn(·, t)‖Hs + ‖un(·, t)‖L2(B(0,R))

+‖∇un(·, t)‖L∞ + ‖∇2un(·, t)‖Hs−1

)
� M.
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Proof. For the proof, we use the inductive argument. Since we take the initial data
for the first iteration step, it is clear to find

sup
0�t�T

(
‖ρ0(·, t)‖Hs + ‖u0(·, t)‖L2(B(0,R)) + ‖∇u0(·, t)‖L∞ + ‖∇2u0(·, t)‖Hs−1

)

= ‖ρ0‖Hs + ‖u0‖L2(B(0,R)) + ‖∇u0‖L∞ + ‖∇2u0‖Hs−1 < N < M.

We now suppose that

sup
0�t�T0

(
‖ρn(·, t)‖Hs + ‖un(·, t)‖L2(B(0,R)) + ‖∇un(·, t)‖L∞ + ‖∇2un(·, t)‖Hs−1

)
� M

for some T0 > 0. In the rest of the proof, upon mollifying if necessary we may
assume that the communication weight function ψ is smooth. Since this proof is a
rather lengthy, we divide it into four steps:

• In Step A, we provide the positivity and Hs(Rd)-estimate of ρn+1:

ρn+1(x, t) > 0 ∀ (x, t) ∈ R
d × [0, T ] and ‖ρn+1(·, t)‖Hs � ‖ρ0‖Hs eCMt

for t � T0, where C > 0 is independent of n.
• In Step B, we show Ẇ1,∞(Rd)-estimate and L2(B(0, R))-estimate of un+1:

‖∇un+1(·, t)‖L∞ + ‖un+1(·, t)‖L2(B(0,R))

� ‖∇u0‖L∞e(CM−1)t + ‖u0‖L2(B(0,R)) + E(t)

for t � T0, where C > 0 is independent of n, and E : [0, T0] → [0,∞) is
continuous on [0, T0] satisfying E(t) → 0 as t → 0+.

• In Step C, we estimate the higher order derivative of un+1:

‖∇2un+1‖Hs−1 � ‖∇2u0‖Hs−1eCMt + E(t)

for t � T0, where C > 0 is independent of n, and E satisfies the same property
as in Step B.

• In Step D, we finally combine all of the estimates in Steps A, B, & C to con-
clude our desired result.

Step A.- We first show the positivity of ρn+1. Consider the following charac-
teristic flow ηn+1 associated to the fluid velocity un by

∂tη
n+1(x, t) = un(ηn+1(x, t), t) for t > 0 (4.4)

with the initial data ηn+1(x, 0) = x ∈ R
d . Since un is globally Lipschitz, the

characteristic equations (4.4) are well-defined. Then by using the method of char-
acteristics, we obtain

∂tρ
n+1(ηn+1(x, t), t) = −ρn+1(ηn+1(x, t), t)(∇ · un)(ηn+1(x, t), t),

and applying Grönwall’s lemma yields
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ρn+1(ηn+1(x, t), t) = ρ0(x) exp

(
−

∫ t

0
(∇ · un)(ηn+1(x, τ ), τ ) dτ

)
� ρ0(x)e

−MT0 > 0.

We next estimate Hs-norm of ρn+1. We first easily find

d

dt
‖ρn+1‖2L2 � C‖∇un‖L∞‖ρn+1‖2L2 � CM‖ρn+1‖2L2 ,

d

dt
‖∇ρn+1‖2L2 � C‖∇un‖L∞‖∇ρn+1‖2L2

+ C‖∇2un‖L2‖ρn+1‖L∞‖∇ρn+1‖L2 � CM‖ρn+1‖Hs‖∇ρn+1‖L2 ,

and

1

2

d

dt

∫

Rd
|∇kρn+1|2 dx

= −
∫

Rd
∇kρn+1 · (un · ∇k+1ρn+1) dx

−
∫

Rd
∇kρn+1 · (∇k(∇ρn+1 · un) − un · ∇k+1ρn+1) dx

−
∫

Rd
∇ρn+1 · (∇k(∇ · un))ρn+1 dx

−
∫

Rd
∇kρn+1 · (∇k(ρn+1∇ · un) − ρ∇k(∇ · un)) dx

=:
4∑

i=1

Ii

for 2 � k � s. Here we use Moser-type inequality to estimate Ii , i = 1, · · · , 4 as

I1 � ‖∇un‖L∞‖∇kρn+1‖2L2 � CM‖∇kρn+1‖2L2 ,

I2 � ‖∇k(∇ρn+1 · un) − un · ∇k+1ρn+1‖L2‖∇kρn+1‖L2

� C
(
‖∇kun‖L2‖∇ρn+1‖L∞ + ‖∇un‖L∞‖∇kρn+1‖L2

)
‖∇kρn+1‖L2

� CM‖∇ρn+1‖Hs−1‖∇kρn+1‖L2 ,

I3 � ‖ρn+1‖L∞‖∇kρn+1‖L2‖∇k+1un‖L2 � CM‖ρn+1‖Hs‖∇kρn+1‖L2 ,

I4 � ‖∇k(ρn+1∇ · un) − ρn+1∇k(∇ · un)‖L2‖∇kρn+1‖L2

� C
(
‖∇kρn+1‖L2‖∇un‖L∞ + ‖∇ρn+1‖L∞‖∇kun‖L2

)
‖∇kρn+1‖L2

� CM‖∇ρn+1‖Hs−1‖∇kρn+1‖L2 .

Combining all of the above estimates entails

d

dt
‖ρn+1‖Hs � CM‖ρn+1‖Hs , that is ‖ρn+1(·, t)‖Hs � ‖ρ0‖Hs eCMt

(4.5)
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for t � T0, where C > 0 is independent of n.
Step B.- Due to the positivity of ρn+1, it follows from the momentum equation

in (4.3) that un+1 satisfies

∂t u
n+1 + un · ∇un+1 = −un+1 − ∇V − ∇W � ρn+1

+
∫

Rd
ψ(x − y)(un(y) − un(x))ρn+1(y) dy.

(4.6)

Taking the differential operator ∇ to (4.6) gives

∂t∇un+1 + un · ∇2un+1 = −∇un ∇un+1 − ∇un+1 − Id − ∇W � ∇ρn+1

+
∫

Rd
(un(y) − un(x)) ⊗ ∇xψ(x − y)ρn+1(y) dy

− ∇un
∫

Rd
ψ(x − y)ρn+1(y) dy, (4.7)

where we used ∇V = x and Id denotes the n × n identity matrix. Note that

|∇un ∇un+1| � M‖∇un+1(·, t)‖L∞

and

‖∇W � ∇ρn+1‖L∞ � ‖∇W‖L2‖∇ρn+1‖L2 .

We also estimate the last terms on the right hand side of (4.7) as
∣∣∣∣
∫

Rd
(un(y) − un(x)) ⊗ ∇xψ(x − y)ρn+1(y) dy

∣∣∣∣

�
∫

|x−y|�R
|un(y) − un(x)||∇xψ(x − y)|ρn+1(y) dy

� ‖∇un‖L∞
∫

|x−y|�R
|y − x ||∇xψ(x − y)|ρn+1(y) dy

� ‖∇un‖L∞ R‖∇ψ‖L2‖ρn+1‖L2

� CM‖∇ψ‖L2‖ρn+1‖L2

and
∣∣∣∣∇un

∫

Rd
ψ(x − y)ρn+1(y) dy

∣∣∣∣ � ‖∇un‖L∞‖ψ‖L2‖ρn+1‖L2 � CM‖ψ‖L2‖ρn+1‖L2 .

These estimates together with integrating (4.7) along the characteristic flow ηn+1

implies

et‖∇un+1(·, t)‖L∞ � ‖∇u0‖L∞ + CM
∫ t

0
eτ‖∇un+1(·, τ )‖L∞ dτ

+ C(1 + M)

∫ t

0
eτ‖ρn+1(·, τ )‖Hs dτ.
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By using Grönwall’s lemma, we obtain

et‖∇un+1(·, t)‖L∞ � ‖∇u0‖L∞eCMt + C(1 + M)

∫ t

0
eτ‖ρn+1(·, τ )‖Hs dτ

+ CM(1 + M)eCMt
∫ t

0
e−CMξ

∫ ξ

0
eτ‖ρn+1(·, τ )‖Hs dτdξ.

This together with (4.5) asserts

‖∇un+1(·, t)‖L∞ � ‖∇u0‖L∞e(CM−1)t + E1(t), (4.8)

where E1 : [0, T0] → [0,∞) is continuous on [0, T0] satisfying E1(t) → 0 as
t → 0+.

For the L2-estimate of un+1 on B(0, R), wemultiply (4.6) by un+1 and integrate
it over B(0, R) to yield

1

2

d

dt

∫

B(0,R)

|un+1|2 dx

=
∫

B(0,R)

un+1 ·
(
−un · ∇un+1 − un+1 − ∇V − ∇W � ρn+1

)
dx

+
∫

B(0,R)

un+1 ·
(∫

Rd
ψ(x − y)(un(y) − un(x))ρn+1(y) dy

)
dx

� ‖∇un+1‖L∞‖un‖L2(B(0,R))‖un+1‖L2(B(0,R)) − ‖un+1‖2L2(B(0,R))

+ R‖un+1‖L1(B(0,R)) + C(‖ρn+1‖L2 + ‖ρn+1‖L∞)‖un+1‖L1(B(0,R))

+ ‖∇un‖L∞ R‖ψ‖L2‖ρn+1‖L2‖un+1‖L1(B(0,R)).

Here we used
∣∣∣∣
∫

Rd
ψ(x − y)(un(y) − un(x))ρn+1(y) dy

∣∣∣∣

�
∫

|x−y|�R
ψ(x − y)|un(y) − un(x)|ρn+1(y) dy

� ‖∇un‖L∞
∫

|x−y|�R
ψ(x − y)|x − y|ρn+1(y) dy

� ‖∇un‖L∞ R‖ψ‖L2‖ρn+1‖L2 .

Thus we obtain

d

dt
‖un+1‖L2(B(0,R)) � CM‖∇un+1‖L∞ + C(1 + (1 + M)‖ρn+1‖Hs ),

whereC > 0 depends only on R and ‖ψ‖L2 . Integrating this over [0, t]with t � T0
and using the estimates (4.5) and (4.8) imply

‖un+1‖L2(B(0,R)) � ‖u0‖L2(B(0,R)) + E2(t), (4.9)
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where E2 : [0, T0] → [0,∞) is continuous on [0, T0] satisfying E2(t) → 0 as
t → 0+.

Step C.- For 2 � k � s + 1, we find

1

2

d

dt

∫

Rd
|∇kun+1|2 dx

= −
∫

Rd
∇kun+1 · (un · ∇k+1un+1) dx

−
∫

Rd
∇ku · (∇k(un · ∇un+1) − un · ∇k+1un+1) dx

−
∫

Rd
|∇kun+1|2 dx −

∫

Rd
∇kun+1 · ∇k(∇W � ρn+1) dx

+
∫

Rd
∇kun+1 · ∇k

∫

Rd
ψ(x − y)(un(y) − un(x))ρn+1(y) dydx

=:
5∑

k=1

Jk,

where J1 and J2 can be estimated as

J1 � ‖∇un‖L∞‖∇kun+1‖2L2 � M‖∇kun+1‖2L2

and

J2 � C
(
‖∇kun‖L2‖∇un+1‖L∞ + ‖∇un‖L∞‖∇kun+1‖L2

)
‖∇kun+1‖L2

� CM(‖∇un+1‖L∞ + ‖∇kun+1‖L2)‖∇kun+1‖L2 .

For the estimate of J4, we use the fact thatW is the Coulombian potential to deduce

|J4| =
∣∣∣∣
∫

Rd
|∇kun+1||∇2W � ∇k−1ρn+1| dx

∣∣∣∣ � ‖∇kun+1‖L2‖∇2W‖L1‖∇k−1ρn+1‖L2 .

We next divide J5 into two terms:

J5 =
∑

0���k

(
k

�

) ∫∫

Rd×Rd
∇kun+1(x)∇�

xψ(x − y)∇k−�
x (un(y) − un(x))ρn+1(y) dydx

= −
∑

0���k−1

(
k

�

) ∫∫

Rd×Rd
∇kun+1(x)∇�

xψ(x − y)∇k−�
x un(x)ρn+1(y) dydx

+
∫∫

Rd×Rd
∇kun+1(x)∇k

xψ(x − y)(un(y) − un(x))ρn+1(y) dydx

=: J 15 + J 25 .
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Note that
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇�

xψ(x − y)∇k−�
x un(x)ρn+1(y) dydx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇�

yψ(x − y)∇k−�
x un(x)ρn+1(y) dydx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
ψ(x − y)∇kun+1(x)∇k−�

x un(x)∇�
yρ

n+1(y) dydx

∣∣∣∣ .

Thus for � = k − 1 we get
∣∣∣∣
∫∫

Rd×Rd
ψ(x − y)∇kun+1(x)∇un(x)∇k−1

y ρn+1(y) dydx

∣∣∣∣

� ‖∇un‖L∞
∫∫

Rd×Rd
ψ(x − y)|∇kun+1(x)||∇k−1ρn+1(y)| dydx

� ‖∇un‖L∞‖ψ‖L1‖∇kun+1‖L2‖∇k−1ρn+1‖L2

� CM‖∇kun+1‖L2‖∇k−1ρn+1‖L2 ,

and for 0 � � � k − 2 we obtain
∣∣∣∣
∫∫

Rd×Rd
ψ(x − y)∇kun+1(x)∇k−�

x un(x)∇�
yρ

n+1(y) dydx

∣∣∣∣

� ‖∇kun+1‖L2‖∇k−�un‖L2‖ψ‖L2‖∇�ρn+1‖L2

� CM‖∇kun+1‖L2‖∇�ρn+1‖L2 .

This asserts

J 15 � CM‖∇kun+1‖L2

∑

0���k−2

(
k

�

)
‖∇�ρn+1‖L2 + CM‖∇kun+1‖L2‖∇k−1ρn+1‖L2

� CM‖∇kun+1‖L2‖ρn+1‖Hk−1 .

Similarly, by integration by parts, we notice that
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇k

xψ(x − y)(un(y) − un(x))ρn+1(y) dydx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇k−1

y ∇xψ(x − y)(un(y) − un(x))ρn+1(y) dydx

∣∣∣∣

=
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇xψ(x − y)∇k−1

y

(
(un(y) − un(x))ρn+1(y)

)
dydx

∣∣∣∣

=
∣∣∣∣∣∣

∑

0���k−1

(
k − 1

�

)∫∫

Rd×Rd
∇kun+1(x)∇xψ(x − y)∇k−1−�

y (un(y)

−un(x))∇�
yρ

n+1(y) dydx
∣∣∣ .
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On the other hand, we find that
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇xψ(x − y)(un(y) − un(x))∇k−1

y ρn+1(y) dydx

∣∣∣∣

� ‖∇un‖L∞
∫

|x−y|�R
|∇kun+1(x)||∇xψ(x − y)||x − y||∇k−1

y ρn+1(y)| dydx

� R‖∇un‖L∞‖ψ‖L1‖∇kun+1‖L2‖∇k−1ρn+1‖L2

� CM‖∇kun+1‖L2‖∇k−1ρn+1‖L2

and
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇xψ(x − y)∇yu

n(y)∇k−2
y ρn+1(y) dydx

∣∣∣∣

� ‖∇un‖L∞
∫∫

Rd×Rd
|∇kun+1(x)||∇xψ(x − y)||∇k−2

y ρn+1(y)| dydx
� ‖∇un‖L∞‖∇ψ‖L1‖∇kun+1‖L2‖∇k−2ρn+1‖L2

� CM‖∇kun+1‖L2‖∇k−2ρn+1‖L2 .

Moreover, for 0 � � � k − 3 we obtain
∣∣∣∣
∫∫

Rd×Rd
∇kun+1(x)∇xψ(x − y)∇k−1−�

y un(y)∇�
yρ

n+1(y) dydx

∣∣∣∣

� ‖∇kun+1‖L2‖∇ψ‖L2‖∇k−1−�un‖L2‖∇�ρn+1‖L2

� CM‖∇kun+1‖L2‖∇�ρn+1‖L2 .

Thus we have

J 25 � CM‖∇kun+1‖L2

∑

0���k−3

(
k − 1

�

)
‖∇�ρn+1‖L2 + CM‖∇kun+1‖L2‖∇k−2ρn+1‖H1

� CM‖∇kun+1‖L2‖ρn+1‖Hk−1 ,

and subsequently we get

J5 � CM‖∇kun+1‖L2‖ρn+1‖Hk−1 .

We finally combine all of the above estimate to have

d

dt
‖∇2un+1‖Hs−1 + ‖∇2un+1‖Hs−1 � CM‖∇2un+1‖Hs−1

+CM‖∇un+1‖L∞ + CM‖ρn+1‖Hs ,

and applying Grönwall’s lemma gives

‖∇2un+1‖Hs−1 � ‖∇2u0‖Hs−1eCMt + E3(t), (4.10)

where we used the estimates in Steps B & C and E3 : [0, T0] → [0,∞) is
continuous on [0, T0] satisfying E3(t) → 0 as t → 0+.
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Step D.-We now combine (4.5), (4.8), (4.9), and (4.10) to have

‖ρn+1(·, t)‖Hs + ‖∇un+1(·, t)‖L∞ + ‖un+1(·, t)‖L2(B(0,R)) + ‖∇2un+1‖Hs−1

� ‖ρ0‖Hs eCMt + ‖∇u0‖L∞e(CM−1)t + ‖u0‖L2(B(0,R)) + ‖∇2u0‖Hs−1eCMt + E(t)
(4.11)

for t � T0, where C > 0 is independent of n, and E : [0, T0] → [0,∞) is
continuous on [0, T0] satisfying E(t) → 0 as t → 0+. On the other hand, the right
hand side of (4.11) converges to‖ρ0‖Hs+‖u0‖L2(B(0,R))+‖∇u0‖L∞+‖∇2u0‖Hs−1

as t → 0+ and that is strictly less than N . This asserts that there exists T∗ � T0
such that

sup
0�t�T∗

‖ρn+1(·, t)‖Hs + ‖∇un+1(·, t)‖L∞ + ‖un+1(·, t)‖L2(B(0,R))

+‖∇2un+1‖Hs−1 � M.

This completes the proof. �

4.2. Proof of Theorem 4.1

Wefirst show the existence of a solution (ρ, u) ∈ Ys,R(T∗). Note that ρn+1−ρn

and un+1 − un satisfy

∂t (ρ
n+1 − ρn) + (un − un−1) · ∇ρn+1 + un−1 · ∇(ρn+1 − ρn)

+ (ρn+1 − ρn)∇ · un + ρn∇ · (un − un−1) = 0
(4.12)

and

∂t (u
n+1 − un) + (un − un−1) · ∇un+1 + un−1 · ∇(un+1 − un)

= −(un+1 − un) − ∇W � (ρn+1 − ρn)

+
∫

Rd
ψ(x − y)(un(y) − un−1(y))ρn+1(y) dy

− (un(x) − un−1(x))
∫

Rd
ψ(x − y)ρn+1(y) dy

+
∫

Rd
ψ(x − y)(un−1(y) − un−1(x))(ρn+1 − ρn)(y) dy,

respectively. Then multiplying (4.12) by ρn+1−ρn and integrating it overRd gives

‖(ρn+1 − ρn)(·, t)‖2L2 � C
∫ t

0

(
‖(ρn+1 − ρn)(·, τ )‖2L2 + ‖(un − un−1)(·, τ )‖2H1

)
dτ,

(4.13)
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where C > 0 is independent of n. On the other hand, for k = 0, 1, we find that

1

2

d

dt

∫

Rd
|∇k(un+1 − un)|2 dx

= −
∫

Rd
∇k(un+1 − un)∇k

(
(un − un−1) · ∇un+1

)
dx

−
∫

Rd
∇k(un+1 − un)∇k

(
un−1 · ∇(un+1 − un)

)
dx

−
∫

Rd
|∇k(un+1 − un)|2 dx −

∫

Rd
∇k(un+1 − un)∇k(∇W � (ρn+1 − ρn)(x)) dx

+
∫

Rd
∇k(un+1 − un)∇k

x

(∫

Rd
ψ(x − y)(un(y) − un−1(y))ρn+1(y) dy

)
dx

−
∫

Rd
∇k(un+1 − un)∇k

x

(
(un(x) − un−1(x))

∫

Rd
ψ(x − y)ρn+1(y) dy

)
dx

+
∫

Rd
∇k(un+1 − un)∇k

x

(∫

Rd
ψ(x − y)(un−1(y) − un−1(x))(ρn+1 − ρn)(y) dy

)

dx =:
7∑

i=1

Ki ,

where we easily estimate

3∑

i=1

Ki � C‖un+1 − un‖2H1 + C‖un − un−1‖2H1 .

Here C > 0 is independent of n. We next use the following estimates
∣∣∣∣
∫

Rd
(un+1 − un)(x) · (∇W � (ρn+1 − ρn)(x)) dx

∣∣∣∣

� C‖un+1 − un‖L2‖∇W‖L1‖ρn+1 − ρn‖L2

� C‖un+1 − un‖L2‖ρn+1 − ρn‖L2

and
∣∣∣∣
∫

Rd
∇(un+1 − un)(x) : (∇2W � (ρn+1 − ρn)(x)) dx

∣∣∣∣

� ‖∇2W‖L1‖∇(un+1 − un)‖L2‖ρn+1 − ρn‖L2

to have K4 � C‖un+1 − un‖2
H1 + C‖ρn+1 − ρn‖2

L2 . For the rest, if k = 0, then

K5 � ‖un+1 − un‖L2‖ψ‖L2‖un − un−1‖L2‖ρn+1‖L2

� C‖un+1 − un‖2L2 + C‖un − un−1‖2L2 ,

K6 � ‖un+1 − un‖L2‖un − un−1‖L2‖ψ‖L2‖ρn+1‖L2

� C‖un+1 − un‖2L2 + C‖un − un−1‖2L2 ,

K7 � R‖∇un−1‖L∞‖ψ‖L1‖un+1 − un‖L2‖ρn+1 − ρn‖L2

� C‖un+1 − un‖2L2 + C‖ρn+1 − ρn‖2L2 .



Mean-Field Limits: From Particle Descriptions to Macroscopic Equations 1567

On the other hand, if k = 1, we obtain

K5 � ‖∇(un+1 − un)‖L2‖∇ψ‖L2‖un − un−1‖L2‖ρn+1‖L2

� C‖∇(un+1 − un)‖L2 + C‖un − un−1‖2L2 ,

K6 � ‖∇(un+1 − un)‖L2
(
‖∇(un − un−1)‖L2‖ψ‖L2 + ‖un − un−1‖L2‖∇ψ‖L2

)
‖ρn+1‖L2

� C‖∇(un+1 − un)‖L2 + C‖un − un−1‖2H1 ,

K7 � ‖∇(un+1 − un)‖L2
(
R‖∇un−1‖L∞‖∇ψ‖L1 + ‖ψ‖L1‖∇un−1‖L∞

)
‖ρn+1 − ρn‖L2

� C‖∇(un+1 − un)‖L2 + C‖ρn+1 − ρn‖2L2 .

We now combine all of the above estimates to have

d

dt
‖un+1 − un‖2H1 � C‖un+1 − un‖2H1 + C‖un − un−1‖2H1 + C‖ρn+1 − ρn‖2L2 ,

and subsequently this yields

‖(un+1 − un)(·, t)‖2H1 � C
∫ t

0

(
‖(ρn+1 − ρn)(·, τ )‖2L2 + ‖(un − un−1)(·, τ )‖2H1

)
dτ,

where C > 0 is independent of n. This together with (4.13) asserts that (ρn, un) is
a Cauchy sequence in C([0, T ]; L2(Rd)) × C([0, T ]; H1(Rd)). Interpolating this
strong convergences with the above uniform-in-n bound estimates gives

ρn → ρ in C([0, T∗]; Hs−1(Rd)),

un → u in C([0, T∗]; H1(B(0, R))) as n → ∞,

∇un → ∇u in C(Rd × [0, T∗]), and

∇2un → ∇2u in C([0, T∗]; Hs−2(Rd)) as n → ∞,

due to s > d/2 + 1. We then use a standard functional analytic arguments, see for
instances [29, Section 2.1], to have that the limiting functions ρ and u satisfy the
regularity in Theorem 4.1. We easily show that the limiting functions ρ and u are
solutions to (4.1) with regularity properties and assumptions of Theorem 1.2.

We finally provide the uniqueness of strong solutions. Let (ρ, u) and (ρ̃, ũ) be
the strong solutions obtained above with the same initial data (ρ0, u0). Set �(t) a
difference between two strong solutions:

�(t) := ‖ρ(·, t) − ρ̃(·, t)‖L2 + ‖u(·, t) − ũ(·, t)‖H1 .

Then by using almost the same argument as above, we have

�(t) � C
∫ t

0
�(s) ds with �(0) = 0.

This concludes that �(t) ≡ 0 on [0, T∗] and completes the proof.
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Appendix A. Well-Posedness of the Particle System

In this appendix, we study the global existence and uniqueness of classical solutions to the
particle system (1.1)–(1.2).
Let us first consider the case with singular interaction potentials with d � 2. In this case,
we can use the repulsive effect from the interaction forces, and this also enables us to have
the uniqueness of solutions.

Theorem A.1. Let d � 2. Suppose that W̃ is of the form (2.10) or (2.11) and the confinement
potential V satisfies either V → +∞ as |x | → ∞ or ∇x V has linear growth as |x | → ∞.
If the initial data x0 satisfy

min
1�i 	= j�N

|xi0 − x j0| > 0.

Then there exists a unique global smooth solution to the system (1.1)–(1.2) with W̃ instead
of W satisfying

C � max
1�i 	= j�N

|xi (t) − x j (t)| � min
1�i 	= j�N

|xi (t) − x j (t)| > 0

for t � 0, where C > 0 is independent of t .

Proof. For the proof, we first introduce the maximal life-span T0 = T (x0) of the initial data
data x0 as

T0 := sup {s > 0 : solution (x(t), v(t)) for the system (1.1) exists up to the time s} .

Then by the assumption and continuity of solutions, we get T0 > 0. We now claim that
T0 = ∞ and for this it suffices to show that there is no collision between particles for all
t � 0 and that particles cannot escape to infinity in finite time.
A straightforward computation yields

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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1

2

d

dt

N∑

i=1

|vi |2 = −γ

N∑

i=1

|vi |2 −
N∑

i=1

vi · ∇x V (xi )

− 1

N

N∑

i 	= j

vi · ∇x W̃ (xi − x j ) + 1

N

N∑

i, j=1

ψ(xi − x j )(v j − vi ) · vi

for t ∈ [0, T0). Note that

d

dt

N∑

i=1

V (xi ) =
N∑

i=1

vi · ∇x V (xi )

and

1

2N

d

dt

N∑

i 	= j

W̃ (xi − x j ) = 1

2N

N∑

i 	= j

∇x W̃ (xi − x j ) · (vi − v j ) = 1

N

N∑

i 	= j

∇x W̃ (xi − x j ) · vi ,

where we used ∇W̃ (−x) = −∇W̃ (x). Similarly, we also find

1

N

N∑

i, j=1

ψ(xi − x j )(v j − vi ) · vi = − 1

2N

N∑

i, j=1

ψ(xi − x j )|v j − vi |2.

Combining all of the above estimates, we obtain

d

dt
FN (x, v) + γ

N∑

i=1

|vi |2 + 1

2N

N∑

i, j=1

ψ(xi − x j )|v j − vi |2 = 0

for t ∈ [0, T0), where FN (x, v) denotes the discrete free energy given by

FN (x, v) := 1

2

N∑

i=1

|vi |2 +
N∑

i=1

V (xi ) + 1

2N

N∑

i 	= j

W̃ (xi − x j ).

If d = 2, then we have either

1

2N

N∑

i 	= j

1

|xi − x j |α � FN (x0, v0) or − 1

2N

∑

i 	= j

log |xi (t) − x j (t)| � FN (x0, v0),

where α ∈ (0, 2). On the other hand, if d � 3, we obtain

1

2N

∑

i 	= j

1

|xi (t) − x j (t)|α � FN (x0, v0)

for all t ∈ [0, T0), where α ∈ (d − 2, d). Since the right hand side of the above inequality
is uniformly bounded in t , we conclude T0 = ∞ for the case d � 2. An upper bound
estimate of the distance between particles is a simple consequence of the uniform-in-time
bound estimate of the free energyFN due to the confinement potential whenever is present.
If V = 0, one can obtain that particles cannot escape to infinity in finite time as soon as
∇x V has linear growth as |x | → ∞. �
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Remark A.1. If the interaction and confinement potentials W and V are regular enough,
that is ∇xW ∈ W1,∞(Rd ) and ∇x V ∈ W1,∞(Rd ), we have global-in-time existence and
uniqueness of solutions by the standard Cauchy-Lipschitz theory. Moreover, an uniform-
in-time bound of the distance between particles can also obtained due to the confinement
potential if V → +∞ as |x | → ∞.

Let us finally comment on the one dimensional case. If d = 1 and the interaction potential
W̃ is given by (2.11), then we apply Theorem A.1 to get the global unique classical solution
and uniform-in-time bound estimate. If W is given by the Coulomb potential, that is

W ′(x) = 1

2
sgn(x), where sgn(x) :=

{ x

|x | if x 	= 0

0 if x = 0
. (A.1)

Thus the interaction force −W ′ is discontinuous, but bounded. In this sense, it is not so
singular compared to the other cases. Since the velocity alignment force is regular, we can
use a similar argument as in [50, Proposition 1.2], see also [10,41], to have the following
proposition.

Proposition A.1. Let d = 1. For any initial configuration ZN (0), there exists at least one
global-in-time solution to the system of (1.1) with (A.1) in the sense that (xi (t), vi (t))
satisfies the integral system:

xi (t) = xi (0) +
∫ t

0
vi (s) ds, i = 1, . . . , N , t > 0,

vi (t) = vi (0) − γ

∫ t

0
vi (s) ds −

∫ t

0
V ′(xi (s)) ds − 1

N

∑

j 	=i

∫ t

0
W ′(xi (s) − x j (s)) ds

+ 1

N

N∑

j=1

∫ t

0
ψ(xi (s) − x j (s))(v j (s) − vi (s)) ds.

Even though Proposition A.1 does not provide the uniqueness of solutions, it is not necessary
for the analysis of mean-field limit or mean-field/small inertia limit from the particle system
(1.1) to the pressureless Euler system (1.3) or the aggregation equation (1.4).
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the relaxation limit of hydrodynamic models. Netw. Heterog. Media 15, 369–387, 2020

24. Choi, Y.-P.: Large friction limit of pressureless Euler equations with nonlocal forces,
preprint

25. Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent dynamics of the Cucker–Smale flocking model
and its variants, Active particles. Vol. 1. Advances in Theory, Models, and Applications.
Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, pp. 299–331, 2017

26. Choi, Y.-P.,Haskovec, J.: Hydrodynamic Cucker–Smale model with normalized com-
munication weights and time delay. SIAM J. Math. Anal. 51, 2660–2685, 2019

27. Choi, Y.-P., Jeong, I.-J.: On well-posedness and singularity formation for the Euler–
Riesz system, preprint

28. Choi, Y.-P., Jeong, I.-J.: Classical solutions to the fractional porous medium flow.
Nonlinear Anal. 210, 112393, 2021

29. Choi, Y.-P., Kwon, B.: The Cauchy problem for the pressureless Euler/isentropic
Navier–Stokes equations. J. Differ. Equ. 261, 654–711, 2016



1572 José A. Carrillo & Young-Pil Choi

30. Choi, Y.-P., Salem, S.: Propagation of chaos for aggregation equations with no-flux
boundary conditions and sharp sensing zones. Math. Models Methods Appl. Sci. 28,
223–258, 2018

31. Choi, Y.-P., Salem, S.: Collective behavior models with vision geometrical constraints:
truncated noises and propagation of chaos. J. Differential Equations. 266, 6109–6148,
2019

32. Choi, Y.-P., Yun, S.-B.: Existence and hydrodynamic limit for a Paveri–Fontana type
kinetic traffic model. SIAM J. Math. Anal. 53, 2631–2659, 2021

33. Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.:
State transitions and the continuum limit for a 2D interacting, self-propelled particle
system. Physica D 232, 33–47, 2007

34. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control. 52,
852–862, 2007

35. Dobrushin, R.: Vlasov equations. Funct. Anal. Appl. 13, 115–123, 1979
36. D’Orsogna, M.R., Chuang, Y.-L., Bertozzi, A.L., Chayes, L.: Self-propelled parti-

cles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 9696,
104302-1/4, 2006

37. Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J.
Math. Anal. 48, 2269–2300, 2016

38. Engelberg, S., Liu, H., Tadmor, E.: Critical thresholds in Euler–Poisson equations.
Indiana Univ. Math. J. 50, 109–157, 2001

39. Fetecau, R., Sun, W.: First-order aggregation models and zero inertia limits. J. Differ.
Equ. 259, 6774–6802, 2015

40. Fetecau, R.,Sun,W.,Tan, C.: First-order aggregationmodelswith alignment.Physica
D 325, 146–163, 2016

41. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathemat-
ics Applications Soviet Series, vol. 8. Kluwer, Dordrecht, 1988

42. Figalli, A., Kang, M.-J.: A rigorous derivation from the kinetic Cucker–Smale model
to the pressureless Euler systemwith nonlocal alignment.Anal. PDE 12, 843–866, 2019

43. Fournier, N., Hauray, M., Mischler, S.: Propagation of chaos for the 2d viscous
vortex model. J. Eur. Math. Soc. 16, 1423–1466, 2014

44. Golse, F.: The mean-field limit for the dynamics of large particle systems. Journées
équations aux dérivées partielles 9, 1–47, 2003

45. Golse, F.: On the Dynamics of Large Particle Systems in the Mean Field Limit, in
Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and
Ergodicity. LecturerNotesAppliedMathematics andMechanics, vol. 3. Springer,Cham,
pp. 1–144, 2016

46. Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and
mean-field limit. Commun. Math. Sci. 7, 297–325, 2009

47. Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of
flocking. Kinet. Relat. Models 1, 415–435, 2008

48. Han-Kwan, D., Iacobelli, M.: From Newton’s second law to Euler’s equations of
perfect fluids. Proc. Am. Math. Soc., to appear

49. Hauray, M.: Wasserstein distances for vortices approximation of Euler-type equations.
Math. Models Methods Appl. Sci. 19, 1357–1384, 2009

50. Hauray, M.: Mean field limit for the one dimensional Vlasov–Poisson equation. In:
Sém. Laurent Schwartz 2012–2013, exp. 21, 16 pp. ,2014

51. Hauray, M., Jabin, P.-E.: N -particles approximation of the Vlasov equations with
singular potential. Arch. Ration. Mech. Anal. 183, 489–524, 2007

52. Hauray, M., Jabin, P.-E.: Particle approximations of Vlasov equations with singular
forces: propagation of chaos. Ann. Sci. École Norm. Sup. 48, 891–940, 2015

53. Jabin, P.-E.: Macroscopic limit of Vlasov type equations with friction. Ann. Inst. H.
Poincaré Anal. Non Linéaire. 17, 651–672, 2000

54. Jabin, P.-E., Wang, Z.: Mean field limit and propagation of chaos for Vlasov systems
with bounded forces. J. Funct. Anal. 271, 3588–3627, 2016



Mean-Field Limits: From Particle Descriptions to Macroscopic Equations 1573

55. Jabin, P.-E., Wang, Z.: Mean Field Limit for Stochastic Particle Systems, Active Par-
ticles. Vol. 1. Advances in Theory, Models, and Applications. Model. Simul. Sci. Eng.
Technol., Birkhäuser/Springer, Cham, pp. 379–402, 2017

56. Jabin, P.-E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic
systems with W−1,∞ kernels. Invent. Math. 214, 523–591, 2018

57. Karper, T.K., Mellet, A., Trivisa, K.: Hydrodynamic limit of the kinetic Cucker–
Smale flocking model.Math. Models Methods Appl. Sci. 25, 131–163, 2015

58. Kato, T.: Linear evolution equations of “hyperbolic” type II. J. Math. Soc. Jpn. 25,
648–666, 1973

59. Lattanzio, C.,Tzavaras, A.E.: Relative entropy in diffusive relaxation. SIAMJ.Math.
Anal. 45, 1563–1584, 2013

60. Lattanzio, C., Tzavaras, A.E.: From gas dynamics with large friction to gradient
flows describing diffusion theories. Commun. Partial Differ. Equ. 42, 261–290, 2017

61. Lazarovici, D., Pickl, P.: A mean field limit for the Vlasov–Poisson system. Arch.
Ration. Mech. Anal. 225, 1201–1231, 2017

62. Masmoudi, N.: FromVlasov–Poisson system to the incompressible Euler system.Com-
mun. Partial Differ. Equ. 26, 1913–1928, 2001

63. Minakowski, P., Mucha, P. B., Peszek, J., Zatorska, E.: Singular Cucker–Smale
Dynamics, Active Particles. Vol. 2. Advances in Theory, Models, and Applications.
Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, pp. 201–243, 2019

64. Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation, In Ki-
netic theories and the Boltzmann equation (Montecatini Terme, 1981), Lecture Notes
in Mathematics, vol. 1048. Springer, Berlin, 1984

65. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz
interactions. J. Inst. Math. Jussieu. 16, 501–569, 2017

66. Serfaty, S.: Mean field limit for coulomb-type flows. Duke Math. J. 169, 2887–2935,
2020

67. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in
Physics. Springer, Berlin 1991

68. Tadmor, E.,Tan, C.: Critical thresholds in flocking hydrodynamicswith nonlocal align-
ment. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130401, 2014

69. Tadmor, E., Wei, D.: On the global regularity of subcritical Euler–Poisson equations
with pressure. J. Eur. Math. Soc. 10, 757–769, 2008

José A. Carrillo
Department of Mathematics Mathematical Institute,

University of Oxford,
Oxford

OX2 6GG UK.
e-mail: carrillo@maths.ox.ac.uk

and

Young-Pil Choi
Department of Mathematics,

Yonsei University,
50 Yonsei-Ro, Seodaemun-Gu,

Seoul
03722 Republic of Korea.

e-mail: ypchoi@yonsei.ac.kr

(Received July 31, 2020 / Accepted May 14, 2021)
Published online June 1, 2021

© The Author(s) (2021)


	Mean-Field Limits: From Particle Descriptions to Macroscopic Equations
	Abstract
	1 Introduction
	1.1 Mean-field limits: from particles to continuum
	1.2 Local balanced laws, the mono-kinetic ansatz, and the small inertia limit
	1.3 Purpose, mathematical tools and main novelties
	1.4 Main results and Plan of the paper

	2 Mean-Field Limit: From Newton to Pressureless Euler
	2.1 Modulated kinetic energy estimate
	2.2 Proof of Theorem 1.1
	2.2.1 Quantitative bound estimates
	2.2.2 Convergence estimates

	2.3 Singular interaction potential cases: Coulomb and Riesz potentials 

	3 Combined Small Inertia & Mean Field Limits: From Newton to Aggregation
	3.1 Proof of Theorem 1.2
	3.2 Singular interaction potential cases

	4 Local Cauchy Problem for Pressureless Euler Equations with Nonlocal Forces
	4.1 Linearized system
	4.2 Proof of Theorem 4.1

	Acknowledgements.
	References




