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Abstract

In this paper we prove a conjecture by P.-L. Lions on maximal regularity of
Lq -type for periodic solutions to −�u + |Du|γ = f in R

d , under the (sharp)
assumption that q > d γ−1

γ
.

1. Introduction

We address here the so-called problem of maximal Lq -regularity for equations
of the form

− �u(x) + |Du(x)|γ = f (x) in Rd , (1)

where γ > 1, f : Rd → R is 1-periodic (i.e. f (x + z) = f (x) for all x ∈ R
d ,

z ∈ Z
d ), d � 1; that is,

for all M > 0, there existsK > 0 (possibly depending on M, γ, q, d) such that

− �u + |Du|γ = f in Rd , ‖ f ‖Lq (Q) � M

�⇒ ‖�u‖Lq (Q) + ∥
∥|Du|γ ∥

∥
Lq (Q)

� K ,

(M)

Q being the d-dimensional unit cube (−1/2, 1/2)d . This regularity problem has
been proposed by P.-L. Lions in a series of seminars and lectures (e.g. [31,32]),
where he conjectured its general validity under the assumption that

q > d
γ − 1

γ
(and q > 1). (A)

Some special cases have been addressed in these seminars, but the general problem
has remained so far unsolved, to the best of our knowledge. We present here a proof
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of (M) + (A), under the sole restriction q > 2 (which is always realized when
γ > d/(d − 2)).

Equations of the form (1) are prototypes of semilinear uniformly elliptic equa-
tions with superlinear growth in the gradient, and arise for example in ergodic
stochastic control [4] and in the theory of growth of surfaces [25]. The study of
regularity of their solutions has recently received a renewed interest in the theory of
Mean Field Games [11,28]. There is a vast literature on such equations and more
general quasilinear problems. While the existence of classical (or strong) solu-
tions was investigated first (see for example [3,26,29,38]), the attention has since
been largely focused on the existence (and uniqueness) of solutions u ∈ W 1,γ (Q)

satisfying (1) in the weak or generalized sense (typically with Dirichlet bound-
ary conditions; see, for example, [1,6,8–10,14,18,22,35] and more recent works
[2,7,16,17]. It has been observed that due to the superlinear nature of the problem,
its (weak) solvability requires f ∈ Lq , where

q � d
γ − 1

γ
.

Such a condition has been improved in the finer scale of Lorentz-Morrey spaces, and
end-point situations typically require additional smallness assumptions [19,23]. It
is worth observing that many results in the literature cover the case 1 < γ � 2; that
is, when the gradient term has at most natural growth. General results in the full
range γ > 1, based on methods from nonlinear potential theory, appeared quite
recently in [34,36,37].

Roughly speaking, properties (M)+(A) say that if f belongs to a sufficiently
small Lebesgue space, then solutions should enjoy much better regularity than
W 1,γ , namely, be in W 1,qγ (Q) (and even in W 2,q(Q), by standard Calderón-
Zygmund theory). Still, additional gradient regularity is typically achieved via
methods that require much stronger hypotheses on the summability of f , being
based on the classical or weakmaximum principle: viscosity theory indeed requires
f to be bounded [24], while the Aleksandrov-Bakel’man-Pucci estimate needs
f ∈ Ld , as in [33]. The situation is even worse when γ > 2, as one observes that
general weak solutions are just Hölder continuous [15], so one has to select u in a
suitable class.

Here, we look at solutions to (1) that can be approximated by classical ones.
Therefore, we will prove (M) in the form of an a priori estimate. It is known that
in such a form, (M) cannot be expected in general if

1 < q � d
γ − 1

γ
,

as described in Remark 1. On the other hand, P.-L. Lions indicated that (M)+(A) can
be obtained in some particular cases. First, when γ = 2, the so-called Hopf-Cole
transformation v = e−u reduces (1) to a linear elliptic equation, and one has the
result employing (maximal) elliptic regularity and the Harnack inequality. Special
cases d = 1 and γ < d/(d−1) can be also treated. As a final suggestion, an integral
version of the Bernstein method [30] could be implemented to prove (M) when q is
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close enough to d (see also [27], and [5] for further refinements of this technique),
but the full regime (A) seems to be out of range using these sole arguments.

The Bernstein method is the starting point of our work. It consists in shifting
the attention from the equation (1) for u to the equation for a suitable function of
|Du|2, i.e.w = g(|Du|2); if g is properly chosen, the equation forw enjoys a strong
degree of coercivity with respect to w itself, which stems from uniform ellipticity
and the coercivity of the gradient term in (1). By a delicate combination of these
two regularising effects, it is possible to produce a crucial estimate on superlevel
sets of |Du|, i.e.
[
∫

{|Du|�k}

(

|Du| − k
)γ q

] d−2
d

� ω
(∣
∣{|Du| � k}∣∣

)

+
∫

{|Du|�k}

(

|Du| − k
)γ q

(2)

for any k � 0, where ω(t) → 0 as t → 0. This inequality again reflects the
superlinear nature of the problem, being the exponents in the two sides unbalanced.
Nevertheless, it is possible to control on ‖|Du|γ ‖Lq as follows: (2) guarantees that
∫

{|Du|�k}
(

|Du| − k
)γ q

is either belonging to a neighborhood of zero, or to an

unbounded interval (for k large enough, but independent of ‖|Du|γ ‖Lq ). By the

fact that k �→ ∫

{|Du|�k}
(

|Du| − k
)γ q

is continuous and vanishes as k → ∞, the

second case can be ruled out, and boundedness of
∫

{|Du|�k}
(

|Du| − k
)γ q

can be

then recovered up to k = 0. This second key step has been inspired by an interesting
argument that appeared in [20] (see also [21]), where W 1,2 estimates of (powers
of) u are obtained arguing similarly on superlevel sets of |u|.

Our result reads as follows:

Theorem 1.1. Let f ∈ C1(Q), d � 3, γ > 1 and

q > d
γ − 1

γ
, q > 2.

For all M > 0, there exists K = K (M, γ, q, d) > 0 such that if u ∈ C3(Q) is a
classical solution to (1) and

‖ f ‖Lq (Q) + ‖Du‖L1(Q) � M,

then

‖�u‖Lq (Q) + ∥
∥|Du|γ ∥

∥
Lq (Q)

� K .

We stress that our approach is not perturbative, in the sense that the gradient
term is not treated as a perturbation of a uniformly elliptic operator (which would
be natural under the growth condition γ < 2), nor vice-versa. It applies also to
equations that have the gradient term with reversed sign (since there are no sign
constraints on f , just reverse u �→ −u), and to solutions in a strong sense (Remark
3). As far as periodicity is concerned, it is common in applications to ergodic control
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and Mean Field Games. The study of (M) in cases where u satisfies boundary
conditions, or a local version of the estimate, will be matter of future work. We
also conjecture that (M) holds in the limiting case q = d γ−1

γ
under an additional

smallness assumption on M , which controls the norm of ‖ f ‖q . This would be
coherent with known results on the existence of weak solutions. Nevertheless, it
does not seem evident how to adapt our proof to cover this end-point case.

Finally, our technique does not apply to the parabolic counterpart of (M). In
this direction, some results based on rather different duality methods developed in
[12] to get Lipschitz regularity, have been obtained in [13].

2. Proof of the Main Theorem

∂i , D, D2 will denote the partial derivative in the i-th direction, the gradient,
and the Hessian operator respectively. For the sake of brevity, we will often drop the
x-dependence of u, Du, . . ., and the d-dimensional Lebsesgue measure dx under
the integral sign. (x)+ = max{x, 0} will denote the positive part of x , and for any
p > 1, p′ = p/(p − 1). For any measurable and 1-periodic set � ⊆ R

d , |�| will
be the Lebesgue measure of its representative set, i.e. |�| = ∫

�∩Q dx .
This section is devoted to the proof of Theorem 1.1, which will be based on the

following lemma:

Lemma 2.1. There exists δ ∈ (0, 1) (depending on γ, q, d) and ω : [0,+∞) →
[0,+∞) (depending on M, γ, q, d) such that

lim
t→0

ω(t) = 0,

and for all k � 1,

(
∫

Q

((

(1 + |Du|2) 1+δ
2 − k

)+) qγ
1+δ

) d−2
d

� ω
(

|{1 + |Du|2 > k
2

1+δ }|
)

+
∫

Q

((

(1 + |Du|2) 1+δ
2 − k

)+) qγ
1+δ

. (3)

Wepostpone theproof of the lemma, and showfirst how (3) yields the conclusion

of Theorem 1.1. Setting Yk := ∫

Q

((

(1 + |Du|2) 1+δ
2 − k

)+) qγ
1+δ

, then (3) reads

as

Y
d−2

d
k � Yk + ω

(

|{1 + |Du|2 > k
2

1+δ }|
)

for all k � 1. (4)

Note that the function F : Z �−→ Z
d−2

d − Z has a unique maximizer Z∗ = ( d−2
d

) d
2

whose corresponding value is F(Z∗) = F∗ > 0 (which depends on d only). For
any 0 � ω < F∗ the equation

F(Z) = ω
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has two roots 0 < Z−(ω) < Z∗ < Z+(ω). Since limt→0 ω(t) = 0, pick t∗ =
t∗(M, γ, p, d) such that ω(t) < F∗ for all t < t∗. By Chebyshev’s inequality,

√

k
2

1+δ − 1 >
‖Du‖L1(Q)

t∗
�⇒ |{1 + |Du|2 > k

2
1+δ }| < t∗,

hence (4) yields the alternative

∀k >

(‖Du‖L1(Q)

t∗
+ 1

) 1+δ
2 =: k∗, Yk < Z∗ or Yk > Z∗.

Since u ∈ C3(Q), the function k �−→ Yk is continuous and tends to zero as k → ∞
(it eventually vanishes for k large). Hence we deduce that

∀k > k∗, Yk < Z∗,

and finally,

∥
∥|Du|γ ∥

∥

1+δ
γ

Lq (Q) = ∥
∥|Du|1+δ

∥
∥

L
γ q
1+δ (Q)

�
∥
∥

(

(1 + |Du|2) 1+δ
2 − k∗)+ + k∗∥∥

L
γ q
1+δ (Q)

� (Z∗)
1+δ
γ q + k∗.

The estimate on ‖�u‖L p(Q) is then straightforward.
Having proven Theorem 1.1, we now come back to the main estimate (3).

Proof of Lemma 2.1. Let w(x) := g(|Du(x)|2), where g(s) = gδ(s) = 2
1+δ

(1 +
s)

1+δ
2 , δ ∈ (0, 1) to be chosen later. Note that, for any δ ∈ (0, 1), g enjoys the

following properties: for all s � 0,

g′(s)s
1
2 � (1 + s)

δ
2 , (5)

g′(s) + 2sg′′(s) � δg′(s). (6)

Note also that

g′(|Du(x)|2) = (1 + |Du(x)|2) δ−1
2 =

(
δ + 1

2
w

) δ−1
1+δ

(g, g′, g′′ below will be always evaluated at |Du(x)|2).
Define wk = (w − k)+ ∈ W 1,∞(Q) and set �k := {w > k}. We now use

ϕ = ϕ( j) = −2∂ j (g′ ∂ j u w
β
k ), j = 1, . . . , d and β > 1 to be chosen later as test

functions in the Hamilton–Jacobi equation. First, integrating by parts and substi-
tuting ∂iw = 2g′Du · D∂i u,

∑

j

∫

Q
Du · Dϕ = −2

∑

i, j

∫

Q
∂i u · ∂ j

(

∂i (g
′∂ j u w

β
k )

) = 2
∑

i, j

∫

Q
∂i j u ∂i (g

′∂ j u w
β
k )

= 4
∫

Q
g′′ ∑

j

(Du · D∂ j u)2w
β
k + 2

∫

Q
|D2u|2g′wβ

k + β

∫

Q
w

β−1
k Dwk · Dw.
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Moreover, again integrating by parts,

−2
∑

j

∫

Q
|Du|γ ∂ j (g

′∂ j u w
β
k ) = γ

∑

j

∫

Q
w

β
k |Du|γ−2Du · D∂ j u 2g′ ∂ j u w

β
k

= γ

∫

Q
|Du|γ−2Du · Dw w

β
k .

Noting that wβ−1
k Dw = w

β−1
k Dwk on Q, we end up with

β

∫

Q
w

β−1
k |Dwk |2 +

∫

Q

(

4g′′ ∑

j

(Du · D∂ j u)2 + 2g′|D2u|2
)

w
β
k

+ γ

∫

Q
|Du|γ−2Du · Dwk w

β
k

= −2
∫

Q
f div(g′Du w

β
k ). (7)

Note also that in (7) integrating on Q and on �k is the same, by the fact that wk

vanishes on Q\�k . We use first Cauchy–Schwarz inequality, the equation (1) and
the inequality (a − b)2 � a2

2 − 2b2 for every a, b ∈ R to get

|D2u|2 � 1

d
(�u)2 � 1

2d
|Du|2γ − 2

d
f 2.

Moreover, again by Cauchy–Schwarz inequality (be careful about g′′ < 0) and (6),

g′|D2u|2 + 2g′′ ∑

j

(Du · D∂ j u)2 � (g′ + 2|Du|2g′′)|D2u|2 � δg′|D2u|2.

The above inequalities then yield

2g′|D2u|2 + 4g′′ ∑

j

(Du · D∂ j u)2 � δg′|D2u|2 + δ

2d
|Du|2γ g′ − 2δ

d
f 2g′.

Note that for γ > 1 it holds that

(1 + |Du|2)γ � 2γ−1(1 + |Du|2γ ), so |Du|2γ � (1 + |Du|2)γ
2γ−1 − 1,

and hence, we are allowed to conclude

δ

2d
|Du|2γ g′ � δ

2γ d
(1 + |Du|2)γ g′ − δ

2d
g′ = δ

2γ d
(1 + |Du|2)γ+ δ−1

2 − δ

2d
g′.

This gives, going back to (7) and substituting (1 + |Du|2) 1
2 = (

δ+1
2 w

) 1
1+δ ,

β

∫

�k

w
β−1
k |Dwk |2 + δ

∫

�k

g′wβ
k |D2u|2 + c1

∫

�k

w
2γ+δ−1
1+δ w

β
k

� δ

2d

∫

�k

(1 + 4 f 2)g′wβ
k − 2

∫

�k

f �u g′wβ
k − 4

∫

�k

f g′′Du · (D2u Du)w
β
k
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−2β
∫

�k

f g′Du · Dwkw
β−1
k − γ

∫

�k

|Du|γ−2Du · Dwk w
β
k , (8)

where c1 = c1(δ, d, γ ) > 0.
We now estimate the five terms on the right hand side of the previous inequality.

The first three terms are somehow similar: using Cauchy–Schwarz inequality and
that 2sg′′ � g′, we have for some c2 = c2(δ, d) > 0 that

δ

2d

∫

�k

(1 + 4 f 2)g′wβ
k − 2

∫

�k

f �u g′wβ
k − 4

∫

�k

f g′′Du · (D2u Du)w
β
k

� δ

2d

∫

�k

(1 + 4 f 2)g′wβ
k + (2d + 2)

∫

�k

| f | |D2u|g′wβ
k

� δ

∫

�k

|D2u|2g′wβ
k + c2

∫

�k

(1 + f 2)w
δ−1
1+δ w

β
k . (9)

At this stage, we make some choices for the coefficients. Recalling that d
γ ′ < q,

we take

p = 2

d

d

γ ′ + d − 2

d
q, and β = 1

1 + δ
[γ (p − 2) + 1 − δ]. (10)

Note that d
γ ′ < p < q. Assuming that p > 2 (which is always true when γ > d

d−2 ,
otherwise see the remark at the end of the proof), we have β > 1 whenever δ is
close enough to zero. Moreover,

2γ + δ − 1

1 + δ
= δ − 1

1 + δ

p

p − 2
+ β

2

p − 2
, (11)

(β + 1)
d

d − 2
= γ q

1 + δ
. (12)

Therefore, we applyHölder’s inequality (with conjugate exponents p/2 and p/(p−
2)) and Young’s inequality, and then wk � w together with (11) to obtain

c2

∫

�k

(1 + f 2)w
δ−1
1+δ w

β
k � c2

(∫

�k

(1 + f 2)
p
2

) 2
p
(∫

�k

w
δ−1
1+δ

p
p−2 w

β
p

p−2
k

)1− 2
p

� c3

∫

�k

(1 + | f |)p + c1
3

∫

�k

w
δ−1
1+δ

p
p−2 w

β 2
p−2

k w
β
k

� c3

∫

�k

(1 + | f |)p + c1
3

∫

�k

w
δ−1
1+δ

p
p−2+β 2

p−2 w
β
k

� c3

∫

�k

(1 + | f |)p + c1
3

∫

�k

w
2γ+δ−1
1+δ w

β
k ,

where c3 = c3(δ, d, γ, p) > 0. Plugging the previous inequality into (9) yields

δ

2d

∫

�k

(1 + f 2)g′wβ
k − 2

∫

�k

f �u g′wβ
k − 4

∫

�k

f g′′Du · (D2u Du)w
β
k

� δ

∫

�k

|D2u|2g′wβ
k + c3

∫

�k

(1 + | f |)p + c1
3

∫

�k

w
2γ+δ−1
1+δ w

β
k . (13)
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The fourth term in (8) is a bit more delicate.We first use that s
1
2 g′(s) � (1+s)

δ
2 ,

in conjection with Hölder’s and Young’s inequality, to get

2β
∫

�k

f g′Du · Dwkw
β−1
k � 2β

∫

�k

| f |(1 + |Du|2) δ
2 |Dwk |wβ−1

k

� 2β

(∫

�k

w
β−1
k |Dwk |2

) 1
2
(∫

�k

| f |q
) 1

q

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
pq

(∫

�k

w
(β−1) p

p−2
k

) p−2
2p

� β

3

∫

�k

w
β−1
k |Dwk |2 + c1

3

∫

�k

w
(β−1) p

p−2
k + c4

(∫

�k

| f |q
) p

q

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
q

,

where c4 = c4(δ, d, γ, β) > 0. Since k � 1, we have w � 1 on �k . Hence,
recalling also (11),

∫

�k

w
(β−1) p

p−2
k =

∫

�k

w
β 2

p−2 − p
p−2

k w
β
k �

∫

�k

w
β 2

p−2 − p
p−2 w

β
k �

∫

�k

w
β 2

p−2 − 1−δ
1+δ

p
p−2 w

β
k

=
∫

�k

w
2γ+δ−1
1+δ w

β
k ,

so

2β
∫

�k

f g′Du · Dwkw
β−1
k

� β

3

∫

�k

w
β−1
k |Dwk |2 + c1

3

∫

�k

w
2γ+δ−1
1+δ w

β
k

+c4‖ f ‖p
Lq (Q)

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
q

. (14)

We now focus on the fifth term in (8). By Young’s inequality,

− γ

∫

�k

|Du|γ−2Du · Dwk w
β
k � 3γ 2

4β

∫

�k

|Du|2γ−2 w
β+1
k + β

3

∫

�k

|Dwk |2 w
β−1
k .(15)

Furthermore, letting

η = 2γ + δ − 1

1 + δ
,

(

so that β + η = pγ

1 + δ

)

,

we get (it holds that s
1
2 � g

1
1+δ )
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∫

�k

|Du|2γ−2 w
β+1
k �

∫

�k

w
2γ−2
1+δ w

β+1
k =

∫

�k

wη−1w
β/η′
k w

β/η+1
k

�
(∫

�k

wηw
β
k

) 1
η′ (∫

�k

w
β+η
k

) 1
η

.

Plugging the previous inequality into (15) and using Young’s inequality again leads
to

− γ

∫

�k

|Du|γ−2Du · Dwk w
β
k � c1

3

∫

�k

w
2γ+δ−1
1+δ w

β
k + c5

∫

�k

w
pγ
1+δ

k

+β

3

∫

�k

|Dwk |2 w
β−1
k (16)

for some c5 = c5(δ, d, γ, p) > 0.
Plug now (13), (14) and (16) into (8) to obtain

β

3

∫

�k

w
β−1
k |Dwk |2 � c3

∫

�k

(1 + | f |)p + c4‖ f ‖p
Lq (Q)

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
q

+c5

∫

�k

w
pγ
1+δ

k . (17)

Sobolev’s inequality, related to the continuous embedding of W 1,2(Q) into

L
2d

d−2 (Q), gives (for c6 = c6(d, δ, γ, p))

β

3

∫

Q
w

β−1
k |Dwk |2 � c6

(∫

Q
w

(β+1) d
d−2

k

) d−2
d − β

3

∫

Q
w

β+1
k ,

hence

c6

(∫

�k

w
(β+1) d

d−2
k

) d−2
d

� c3

∫

�k

(1 + | f |)p + c4‖ f ‖p
Lq (Q)

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
q

+ c5

∫

�k

w
pγ
1+δ

k + β

3

∫

�k

w
β+1
k .

We finally choose δ > 0 small enough so that δ
pq

q−p < 1. Recall that p < q, so,
using Hölder’s and Young’s inequalities repeatedly, we obtain

c3

∫

�k

(1 + | f |)p � c3‖1 + | f |‖p
Lq (Q)|�k |

q−p
q ,

c4‖ f ‖p
Lq (Q)

(∫

�k

(1 + |Du|2) δ
2

pq
q−p

) q−p
q

� c4‖ f ‖p
Lq (Q)

∥
∥
∥

√

1 + |Du|2
∥
∥
∥

δp

L1(Q)
|�k |(1−δ

pq
q−p )

q−p
q ,

c5

∫

�k

w
pγ
1+δ

k � c6
2

∫

�k

w
qγ
1+δ

k + c7|�k |,
β

3

∫

�k

w
β+1
k � c6

2

∫

�k

w
(β+1) d

d−2
k + c8|�k |.
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Recalling that (β + 1) d
d−2 = qγ

1+δ
and ‖ f ‖Lq (Q) + ‖Du‖L1(Q) � M , we obtain

(∫

Q
w

qγ
1+δ

k

) d−2
d

�
∫

Q
w

qγ
1+δ

k + c3
c6

‖1 + | f |‖p
Lq (Q)|�k |

q−p
q

+ c4
c6

‖ f ‖p
Lq (Q)

∥
∥
∥

√

1 + |Du|2
∥
∥
∥

δp

L1(Q)
|�k |

(

1−δ
pq

q−p

)
q−p

p + c7 + c8
c6

|�k |

�
∫

Q
w

qγ
1+δ

k + c3
c6

(1 + M)p|�k |
q−p

q + c4
c6

M p(1 + M)δp|�k |
(

1−δ
pq

q−p

)
q−p

p + c7 + c8
c6

|�k |
︸ ︷︷ ︸

=: ω(|�k |)

.

Replacing wk by its definition provides the assertion (up to an additional constant
in front of ω).

If the choice of p in (10) does not satisfy p > 2, just pick p̃ so that p < p̃ < q
and p̃ > 2, and proceed in the same way. Then, (12) becomes

(β + 1)
d

d − 2
>

γ q

1 + δ
, (18)

so it suffices once again to apply Hölder’s and Young’s inequalities to get the same
assertion (with an additional term in ω). ��

3. Further Remarks

Remark. 1. General failure of (M) when q � d γ−1
γ

. In the critical case q = d γ−1
γ

one may consider the family of functions vε defined as follows for ε ∈ (0, 1]: let
χ ∈ C∞

0

(

(1,+∞)
)

be a non-negative cutoff function, χ ≡ 1 on [2,+∞), and
vε(x) = vε(|x |), where

vε(r) = c
∫ 1/2

r
s− 1

γ−1 χ
( s

ε

)

ds, |c|γ = −
(

d − 1 − 1

γ − 1

)

c.

Then, on B1/2 := {|x | < 1/2},

−�vε + |Dvε|γ = c

ε
|x |− 1

γ−1 χ ′(ε−1|x |) + |c|γ (

χγ (ε−1|x |)
−χ(ε−1|x |))|x |− γ

γ−1 =: fε(x),

and vε = 0 on ∂ B1/2. Therefore, there exists M > 0, depending on c, d, γ, χ only,
such that

‖ fε‖
L

d γ−1
γ (B1/2)

= M for all ε ∈ (0, 1/4],
but

∥
∥|Du|γ ∥

∥

L
d γ−1

γ (B1/2)
→ ∞ as ε → 0.

Note that the example is meaningful only if γ > d
d−1 , that is when d γ−1

γ
> 1. Note

also that though vε is not periodic, being smooth on B1/2 and vanishing on ∂ B1/2,
it is straightforward to produce similar examples in the periodic setting. Finally,
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different choices of the truncation χ(|x |) = χε(|x |) lead to counterexamples in the
regime q < d γ−1

γ
.

Note however that existence of weak solutions to the viscous Hamilton–Jacobi
equation (1) can be obtained when f ∈ Lq(Q) and q = d γ−1

γ
(at least for the

Dirichlet problem), provided that ‖ f ‖Lq is small, see e.g. [18,20]. Therefore, we
do not exclude that (M) holds evenwhen q = d γ−1

γ
, under extra smallness assump-

tions on ‖ f ‖Lq .

Remark. 2. d = 1, 2. Theorem 1.1 is stated in dimension d � 3, but the proof for
d = 1, 2 follows identical lines. As it usually happens, the point is that in the latter
case W 1,2(Q) is continuously embedded into L p(Q) for all finite p � 1, and not

only into L
2d

d−2 (Q).

Remark. 3. Less regularity of u. Theorem 1.1 holds more in general for (strong)
solutions u ∈ W 2,q ∩W 1,γ q(Q) of the equation. Indeed, consider a sequenceψε of
standard compactly supported regularizing kernels, and observe that uε = u � ψε

satisfies

−�uε + |Duε|γ = f � ψε + |Duε|γ − |Du|γ � ψε.

For 0 < ε � ε0,

‖ f � ψε + |Duε|γ − |Du|γ � ψε‖Lq (Q) + ‖Duε‖L1(Q) � M + 1,

so applying Theorem 1.1 to uε and passing to the limit ε → 0 yields

‖�u‖Lq (Q) + ∥
∥|Du|γ ∥

∥
Lq (Q)

� K (M + 1, γ, q, d).

More generally, Theorem 1.1 continues to hold for solutions that can be obtained
as limits of smooth approximations.

Remark. 4. More general Hamiltonians. Theorem 1.1 can be easily generalized to
more general equations of the form

− �u + H(Du) = f, (19)

where H : Rd → R satisfies, e.g.,

∣
∣
∣H(r) − c1|r |γ

∣
∣
∣ � c2 for all r ∈ R

d

for some c1, c2 ∈ R and γ > 1. Indeed, any u solving (19) also solves

−�u + c1|Du|γ = f + fH , fH = c1|Du|γ − H(Du).

Since ‖ f + fH ‖Lq (Q) � ‖ f ‖Lq (Q) + c2, and c2 does not depend on u, it suffices to
apply Theorem 1.1 (which is easily proven to hold for any c1 ∈ R) with f + fH .
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