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Abstract

We consider an analogue of the Lieb–Thirring inequality for quantum sys-
tems with homogeneous repulsive interaction potentials, but without the antisym-
metry assumption on the wave functions. We show that in the strong-coupling
limit, the Lieb–Thirring constant converges to the optimal constant of the one-body
Gagliardo–Nirenberg interpolation inequality without interaction.

1. Introduction

The celebrated Lieb–Thirring inequality is a combination of the uncertainty and
exclusion principles, two of the most important concepts in quantum mechanics.
In the context of the kinetic energy of Fermi gases, it states that for any dimension
d ≥ 1, the lower bound〈

�,

N∑
i=1

−�xi �

〉
≥ KLT(d)

∫
Rd

ρ
1+ 2

d
� (x) dx (1)

holds true for any wave functions � ∈ L2(RdN ) that is normalized and anti-
symmetric, namely, ‖�‖L2(RdN ) = 1 and

�(x1, . . . , xi , . . . , x j , . . . , xN ) = −�(x1, . . . , x j , . . . , xi , . . . , xN ),

∀i �= j, ∀xi , x j ∈ R
d . (2)

For any normalized wave function � ∈ L2(RdN ), the function

ρ�(x) :=
N∑
j=1

∫
R(d−1)N

∣∣�(x1, . . . , x j−1, x, x j+1, . . . , xN )
∣∣2 ∏

i :i �= j

dxi
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is called the one-body density of�. We can interpret
∫
�

ρ� as the expected number
of particles in � ⊂ R

d , in particular
∫
Rd ρ� = N is the total number of particles.

We ignore the spin of particles for simplicity.
It is important that the constant KLT(d) > 0 in (1) is independent of not only

the wave function� but also the particle number N . The inequality (1) was derived
by Lieb and Thirring in 1975 as an essential tool in their proof of the stability of
matter [23,24]. Thanks to a standard duality argument, the kinetic bound (1) is
equivalent to a lower bound on the sum of negative eigenvalues of Schrödinger
operators −� + V (x) on L2(Rd), making it very useful to semiclassical analysis
(see [22, Chapter 12] for a connection toWeyl’s law). In fact, up to a constant factor,
the right side of (1) agrees with the Thomas–Fermi approximation for large N :〈

�,

N∑
i=1

−�xi �

〉
≈ Kcl(d)

∫
Rd

ρ
1+ 2

d
� (x) dx,

where

Kcl(d) := d

d + 2
· 4π2

|B(0, 1)|2/d
is called the semiclassical constant (|B(0, 1)| is the volume of the unit ball in Rd ).

Note that the anti-symmetry condition (2) is crucial for (1) to hold. Without
Pauli’s exclusion principle, the best bound one can get from the kinetic energy is〈

�,

N∑
i=1

−�xi �

〉
≥ CGN(d)

N 2/d

∫
Rd

ρ
1+ 2

d
� (x) dx, (3)

where CGN(d) is the sharp constant in the Gagliardo–Nirenberg interpolation in-
equality ( ∫

Rd
|∇u(x)|2dx

)( ∫
Rd

|u(x)|2dx
)2/d

≥ CGN(d)

∫
Rd

|u(x)|2(1+2/d)dx, ∀u ∈ H1(Rd) (4)

(see e.g. [27]). One can think of (4) as a quantitative version of the uncertainty
principle. Clearly the lower bound (3) is optimal when N = 1, but it is not very
useful when N becomes large because the factor N−2/d on the right side becomes
very small. The appearance of this small factor is due to the fact that the particles
are allowed to be stacked on top of each other, in which case the left side of (3)

scales like N while the integral on the right side scales like N 1+ 2
d . Intuitively, for

an inequality similar to (1) to hold one needs some conditions to control such an
overlapping of the particles, namely some version of the exclusion principle.

Computing the sharp constant KLT in the Lieb–Thirring inequality (1) is an
important open problem in mathematical physics. In [24], Lieb and Thirring con-
jectured that

KLT(d) = min{Kcl(d),CGN(d)} =
{
Kcl(d) if d ≥ 3,

CGN(d) if d = 1, 2.
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We refer to the recent work [13] for the best known estimate on KLT(d). See
also [12] for a recent investigation on the conjectured bounds on eigenvalues of
Schrödinger operators.

As regards to the semiclassical constant, it was proved in [33] that for all d ≥ 1
and for all δ ∈ (0, 1) one has〈

�,

N∑
i=1

−�xi �

〉
≥ (1 − δ)Kcl(d)

∫
Rd

ρ
1+ 2

d
� (x) dx − Cd

δ3+4/d

∫
Rd

|∇√
ρ� |2

(5)

for any anti-symmetric normalized wave function � in L2(RdN ) and for any N .
This bound implies the Lieb–Thirring inequality (1) with a non-sharp constant
because the gradient term is bounded by the kinetic energy, thanks to theHoffmann–
Ostenhof inequality [18]. See [21] for a related upper bound and the application in
local density approximation, and see [5,6] for discussions on related interpolation
inequalities.

In the present paper, we will focus on the one-body Gagliardo–Nirenberg con-
stant and study its relation to a Lieb–Thirring inequality with repulsive interactions.
In 2015, Lundholm, Portmann and Solovej [28] showed that for any dimension
d ≥ 1 and any constant λ > 0, the Lieb–Thirring inequality

〈
�,

⎛
⎝ N∑

i=1

−�xi +
∑

1≤i< j≤N

λ∣∣xi − x j
∣∣2
⎞
⎠�

〉
≥ CLT(d, λ)

∫
Rd

ρ
1+ 2

d
� dx . (6)

holds true with a constant CLT(d, λ) > 0 depending only on d and λ. Remarkably,
(6) holds true for any normalized wave function � in L2(RdN ), even without the
anti-symmetry condition (2). Later, the bound (6) was extended in [27, Theorem 1]
to the fractional case, namely for all λ > 0 and s > 0, one has the Lieb–Thirring
inequality

〈
�,

⎛
⎝ N∑

i=1

(−�xi )
s +

∑
1≤i< j≤N

λ∣∣xi − x j
∣∣2s

⎞
⎠�

〉
≥ CLT(s, d, λ)

∫
Rd

ρ
1+ 2s

d
� dx

(7)

with a constantCLT(s, d, λ) > 0.Here the power 2s in the interaction potential is the
natural parameter such that the interaction energy and the kinetic energy scale the
same under dilations. In [27], the authors also discussed briefly the behavior of the
optimal constant CLT(s, d, λ) in (7). They conjectured that in the strong-coupling
limit λ → ∞, the Lieb–Thirring constant CLT(s, d, λ) in (7) converges to the
optimal constant in the corresponding one-body Gagliardo–Nirenberg inequality.
Heuristically, this conjecture is easy to understand because in the strong-coupling
limit each particle is forced to stay away from the others and the many-body inter-
acting system reduces to a one-body non-interacting system. However, proving this
rigorously is nontrivial since we have to prove estimates uniformly in the number of
particles. In the present paper, we will justify this conjecture rigorously. Moreover,
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in the case 2s < d, we also obtain a similar result when the fractional Laplacian is
replaced by the Hardy operator (−�)s − Cs,d |x |−2s . The precise statements of our
results are presented in the next section.

Toour knowledge, there are very rare rigorous results connecting theGagliardo–
Nirenberg constant to Lieb–Thirring inequalities. In a remarkable paper in 2004
[4], Benguria and Loss noticed that the Lieb–Thirring conjecture in the special case
d = 1 and N = 2 is related to an open problem concerning a sharp isoperimetric
inequality for the lowest eigenvalue of a Schrödinger operator defined on a closed
planar curve (see also [7,25] for related results). This is an illustration for the
difficulty of the Lieb–Thirring conjecture when the Gagliardo–Nirenberg constant
is expected to emerge. We hope that our approach will give new insights to this
challenging question.

2. Main Results

As usual, for any constant s > 0 the operator (−�)s on L2(Rd) is defined via
the Fourier transform

̂(−�)su(p) = |p|2s û(p), û(p) := 1

(2π)
d
2

∫
Rd

u(x)e−i p·x dx .

The domain of (−�)s is denoted by Hs(Rd) with the corresponding norm

‖u‖2Hs (Rd )
:= ‖u‖2L2(Rd )

+ ‖u‖2
Ḣ s (Rd )

= ‖u‖2L2(Rd )
+ 〈

u, (−�)su
〉
.

2.1. Lieb–Thirrring Inequality with Strong Interactions

Our first main result is

Theorem 1. (Lieb–Thirring constant in the strong-coupling limit) Fix d ≥ 1 and
s > 0. For any λ > 0, let CLT(s, d, λ) be the optimal constant in the Lieb–Thirring
inequality (7), namely

CLT(s, d, λ) := inf
N≥2

inf
�∈Hs (RdN )
‖�‖L2=1

〈
�,

(
N∑
i=1

(−�xi )
s + ∑

1≤i< j≤N

λ

|xi − x j |2s
)

�

〉

∫
Rd ρ

1+ 2s
d

�

.

Then we have

lim
λ→∞CLT(s, d, λ) = CGN(s, d),

where

CGN(s, d) := inf
u∈Hs (Rd )
‖u‖L2=1

〈u, (−�)su〉∫
Rd |u|2(1+ 2s

d )
.
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Remarks.

1. For the general power s > 0, the Lieb–Thirring inequality for fermions〈
�,

N∑
i=1

(−�xi )
s�

〉
≥ KLT(s, d)

∫
Rd

ρ
1+ 2s

d
� (8)

with KLT(s, d) > 0 was proved by Daubechies in 1983 [8]. The optimal con-
stantKLT(s, d) is unknown; see [13, Theorem 2] for a recent estimate. Without
the anti-symmetry condition (2), the best replacement for (8) is〈

�,

N∑
i=1

(−�xi )
s�

〉
≥ CGN(s, d)

N 2s/d

∫
Rd

ρ
1+ 2s

d
� , (9)

with the Gagliardo–Nirenberg constant CGN(s, d) given in Theorem 1 (see e.g.
[27]). In Theorem 1, we do not assume the anti-symmetry condition (2) but we
save the factor N 2s/d on the right side of (9) provided that the interacting term
is sufficiently strong.

2. The upper bound CLT(s, d, λ) ≤ CGN(s, d) can be seen easily by putting each
of the N particles far from the others; see [27, Proposition 10] for details. The
difficult direction of Theorem 1 is the lower bound. Here in the definition of
CLT(s, d, λ) in Theorem 1 we put infN≥2, but the result remains the same if we
put infN≥m for anym ≥ 1 (form = 1 we recover CGN(s, d) trivially as there is
no interaction term). In general, if we introduce the constant CLT(s, d, λ, N ),
with obvious definition, then it is decreasing in N , and hence the infimum is
always attained in the limit N → ∞.

3. Theorem 1 establishes a conjecture in [27]. As also conjectured in [27] and
proved recently in [20], limλ→0+ CLT(s, d, λ) is nontrivial (i.e. strictly positive)
if and only if 2s > d. Theorem 1 thus completes the picture on the range of the
Lieb–Thirring constant CLT(s, d, λ) with λ ∈ (0,∞).

4. When d = 1 and s = 1, the interaction potential is so singular that the wave
functions in its quadratic form domain must vanish on the diagonal set [20,27].
Therefore, by the well-known bosonic-fermionic correspondence in one di-
mension [17], we obtain limλ→0+ CLT(1, 1, λ) = KLT(1), the fermionic Lieb–
Thirring constant in (1). Thus given Theorem 1, in order to prove the Lieb-
Thirring conjecture KLT(1) = CGN(1), it remains to show that the constant
CLT(1, 1, λ) is independent of λ. Note that CLT(s, d, λ) is always increasing in
λ.

5. One may ask about other types of interactions which would be sufficient for
exclusion (e.g. a nearest-neighbor type interaction) as well as the λ dependence
of the constant CLT(s, d, λ). In principle our method is constructive and could
be adapted to address these issues, but we do not pursue these directions.

2.2. Hardy–Lieb–Thirring Inequality with Strong Interactions

Now we focus on the case 0 < 2s < d, where we have the Hardy inequality

(−�)s − Cs,d |x |−2s ≥ 0 on L2(Rd)



1174 K. Kögler & P. T. Nam

with the sharp constant

Cs,d := 22s
(

	((d + 2s)/4)

	((d − 2s)/4)

)2

.

The following improvement of (7) has been proved in [27, Theorem 2]:〈
�,

⎛
⎝ N∑

i=1

(
(−�i )

s − Cs,d
|xi |2s

)
+

∑
1≤i< j≤N

λ

|xi − x j |2s

⎞
⎠�

〉

≥ CHLT(s, d, λ)

∫
Rd

ρ
1+ 2s

d
� .s (10)

This inequality holds for any normalized wave function � ∈ L2(RdN ) (without
the anti-symmetry condition) and the constant CHLT(s, d, λ) > 0 is independent
of N and �. For s = 1/2 and d = 3, the left side of (10) can be interpreted as the
energy of a system of N relativistic quantum electrons moving around a classical
nucleus fixed at the origin and interacting via Coulomb forces.

As explained in [27, Theorem 4], the Hardy–Lieb–Thirring inequality (10) with
a non-sharp constant is equivalent to the one-body interpolation inequality〈

u,
(
(−�)s − Cs,d |x |−2s

)
u
〉1−2s/d

(∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s dxdy

)2s/d

≥ C(s, d)

∫
Rd

|u(x)|2(1+2s/d) dx, ∀u ∈ Hs(Rd). (11)

Aslightlyweaker versionof (11),when theHardypotential−Cs,d |x |−2s is removed,
has been proved by Bellazzini, Ozawa and Visciglia for the case s = 1/2, d = 3
[3], and by Bellazzini, Frank and Visciglia for the general case 0 < s < d/2 [2].

In the present paperwe consider the asymptotic behavior of the optimal constant
CHLT(s, d, λ) in (10) when λ → ∞. Similarly to Theorem 1, we have

Theorem 2. (Hardy–Lieb–Thirring constant in the strong-coupling limit) Fix 0 <

2s < d. For any λ > 0, let CHLT(λ) be the optimal constant in the Hardy–Lieb–
Thirring inequality (10), namely

CHLT(s, d, λ) := inf
N≥2

inf
�∈Hs (RdN )
‖�‖L2=1〈

�,

(
N∑
i=1

(
(−�xi )

s − Cs,d
|xi |2s

)
+ ∑

1≤i< j≤N

λ

|xi − x j |2s
)

�

〉

∫
Rd ρ

1+ 2s
d

�

.

Then we have

lim
λ→∞CHLT(s, d, λ) = CHGN(s, d),
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where

CHGN(s, d) := inf
u∈Hs (Rd )
‖u‖L2=1

〈
u,
(
(−�)s − Cs,d |x |−2s

)
u
〉

∫
Rd |u|2(1+ 2s

d )
.

Remarks.

1. The Hardy–Lieb–Thirring inequality for fermions

〈
�,

N∑
i=1

(
(−�xi )

s − Cs,d |x |−2s
)
�

〉
≥ KHLT(s, d)

∫
Rd

ρ
1+ 2s

d
� (12)

withKHLT(s, d) > 0 was proved for the non-relativistic case s = 1 by Ekholm
and Frank in 2006 [11], for the fractional powers 0 < s ≤ 1 by Frank, Lieb
and Seiringer in 2008 [14], and for the full range 0 < s < d/2 by Frank in
2009 [15]. The sharp constant KHLT(s) > 0 is unknown.

2. The upper bound CHLT(s, d, λ) ≤ CHGN(s, d) is easy to see by putting one
particle close to the origin and putting N − 1 particles at infinity such that each
particle is far from the others. The main point of Theorem 2 is the lower bound.

3. From our proof, it is possible to extract an explicit error estimate for the con-
vergence limλ→∞ CHLT(s, d, λ) = CHGN(s, d) in Theorem 2 (as well as the
convergence limλ→∞ CLT(s, d, λ) = CGN(s, d) in Theorem 1) in terms of λ.
We will not do it here in order to keep the proof ideas more transparent.

2.3. Proof Strategy

We will use the method of microlocal analysis. The idea goes back to the
seminal work of Dyson and Lenard in 1967 [9,10] where they proved the stability
of matter using only a local formulation of the exclusion principle which is a
relatively weak consequence of (2). In 2013, Lundholm and Solovej [29] found
that one can actually obtain the Lieb-Thirring inequality (1) (with a non-sharp
constant) by combining the local exclusion in [9,10] with a local formulation of the
uncertainty principle. They used this method to derive the Lieb–Thirring inequality
for particles with fractional statistics in one and two dimensions [29–31]. Later, this
method has been developed by many authors to derive several new Lieb–Thirring-
type inequalities [16,19,20,27,28,32,33]. We refer to Lundholm’s lecture notes
[26] for a pedagogical discussion. All of the existing results are not concerned with
the optimal constants, except the fermionic semiclassical bound (5) in [33].

In the present paper, we will revisit and improve the microlocal analysis for
interacting systems developed in [20,27–29].We follow the overall strategy in [27],
by combining some local uncertainty and exclusion on an appropriate covering of
the support of ρ� . In order to recover the sharp Gagliardo–Nirenberg constant in
the strong-coupling limit, we need three new ingredients.
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• For an open bounded set � ⊂ R
d , consider the localized kinetic operator

(−�)s|� on L2(Rd) defined by

〈u, (−�)s|�u〉L2(Rd ) = ‖u‖2
Ḣ s (�)

(see Section 3 for details). The uncertainly principle in [27, Lemma 8] states
that

〈
�,

N∑
i=1

(−�xi )
s|��

〉
≥ 1

C(s, d)

∫
�

ρ
1+2s/d
�( ∫

�
ρ�

)2s/d − C(s, d)

|�|2s/d
∫

�

ρ�. (13)

When the mass
∫
�

ρ� is not small, the desired term
∫
�

ρ
1+2s/d
� in (13) will be

coupled with a small factor. In the present paper, we improve this by making the
optimal constant CGN(s, d) appear explicitly. Roughly speaking, in Lemma 4
we prove that for bounded domains � ⊂⊂ �̃ ⊂ R

d , which up to translation
and dilation belong to a finite collection of sets, and for any δ > 0 small,

〈
�,

N∑
i=1

(−�xi )
s
|�̃�

〉
≥ CGN(s, d)(1 − δ)

∫
�

ρ
1+2s/d
�( ∫

�̃
ρ�

)2s/d − C(s, d, δ)

|�|2s/d
∫

�̃

ρ�.

(14)

This bound is useful when the mass
∫
�̃

ρ� is smaller than 1 + δ.
• In order to control the error in the local uncertainty principle, namely the last
term of (14), we need to use the interaction energy. A lower bound for the
interaction energy in cubes is given in [27, Lemma 6] (see also [28, Theorem
2]). In Lemma 6, we prove a refined version of the local exclusion principle
which allows the flexibility of the diameter of the sets; i.e. the bound is good
for not only cubes, but also for “clusters of cubes”. More precisely, we prove
that if {�n,m}n,m≥1 is a collection of sets in Rd such that

diam(�n,m) ≤ εn,

∫
�n,m

ρ� ≥ 1 + δ,
∑
m

1�n,m ≤ M,

with fixed parameters ε, δ ∈ (0, 1) and M > 0, then〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉
≥
∑
n≥1

1

C(s, ε, δ, M)ε2sn

∑
m≥1

∫
�n,m

ρ�. (15)

Heuristically, it is clear that we can extract a nontrivial contribution from the
interaction energy in a set with a small diameter (i.e. diam(�n,m) ≤ εn) if the
local mass is large enough (i.e.

∫
�n,m

ρ� ≥ 1 + δ). The significance of (15) is
that we can count the interaction contribution from all sets of different length
scales, provided that the sets of each length scale do not overlap too much (i.e.∑

m 1�n,m ≤ M). In this way, we allow a huge overlap from the sets of different
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length scales (i.e.
∑

n,m 1�n,m can be arbitrarily large), which is important in
application. The smallness factor of 1/C(s, ε, δ, M) will be compensated by
the large coupling constant λ in the interaction potential.

• Most importantly, we introduce a new construction of covering sub-cubes for
the support of ρ� , which is very flexible and hopefully will be useful in other
contexts. In [27], the support of ρ� is covered by disjoint cubes which are
obtained by a standard stopping time argument: any cube Q with the mass∫
Q ρ� bigger than a given quantity will be divided into 2d sub-cubes. In this

way, the masses in final sub-cubes may differ up to a factor 2d , leading to a
similar factor loss in the Lieb–Thirring constant. In the present paper, in order
to have access to the optimal constant CGN(s, d), we apply the stopping time
argument to “clusters of cubes” rather than to individual cubes. More precisely,
by induction, in the n-th step we obtain a collection Gn of cubes of side length
εn with a fixed parameter ε ∈ (0, 1), which can be decomposed further into
three disjoint sub-collections

Gn = Gn,0
⋃

Gn,1
⋃

Gn,2.

Heuristically, Gn,0⋃Gn,1 contains “good sets” concerning the uncertainty
principle. More precisely, Gn,0 contains the cubes such that the mass in each
cube is less than δ, making (13) useful. Moreover, Gn,1 contains the cubes that
can be distributed to “disjoint clusters” such that the mass in each cluster is
smaller than 1 + δ, making (14) useful. Technically, thanks to the removal of
the cubes in Gn,0, all clusters in Gn,1, up to translation and dilation, must be-
long to a finite collections of sets which is important to apply Lemma 4. On the
other hand, Gn,2 contains disjoint clusters such that the mass in each cluster
is bigger than 1 + δ, making the exclusion principle in (15) useful. Finally, in
order to estimate the kinetic energy of the cubes in Gn,0, we have to divide
them further and obtain a collection Gn+1 of cubes of side length εn+1. Since
the cubes in Gn,0 cover the cubes in Gn+1,0⋃Gn+1,1, the interaction energy
from Gn,0 can be used to compensate for the error resulted from applying the
uncertainty principle to Gn+1,0⋃Gn+1,1.

The paper is structured as follows: we discuss the local uncertainty principle
in Section 3 and the local exclusion principle in Section 4. Then in Section 5 we
explain the construction of covering sub-cubes and prove Theorem 1. In Section 6
we provide the proof of Theorem 2, which follows the same overall approach of
Theorem 1 but the detailed analysis is more complicated because we have to deal
with the singularity of the negative external potential.

In the rest of the paper wewill denote byC a general large constant whose value
may change from line to line. In some cases, the dependence on a given parameter
will be noted, e.g. Cδ depends on δ. We will often ignore the dependence of the
dimension d and the power s to simplify the notation (e.g. we will simply write
CLT(λ) and CGN for the constants CLT(s, d, λ) and CGN(s, d) in Theorem 1). On
the other hand, it is important that all constants are always independent of the wave
function � and the number of particles N .
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3. Local Uncertainty

In this section we discuss Gagliardo–Nirenberg inequalities on bounded do-
mains.

Let us recall the definition of the fractional Sobolev space; classical references
are [1,35]. For any power s > 0, we write s = m + σ with m ∈ N and 0 ≤ σ < 1.
Then by working in the Fourier space it is straightforward to check that

〈
u, (−�)su

〉 = ∑
|α|=m

m!
α!

〈
Dαu, (−�)σ Dαu

〉
.

Here, for α = (α1, . . . , αd) ∈ {0, 1, 2, . . .}d and x = (x (1), . . . , x (d)) ∈ R
d , we

denoted

α! = α1!α2! . . . αd !, Dα = ∂
α1
x (1)∂

α2
x (2) . . . ∂

αd
x (d) .

If σ = 0, then (−�)σ = 1 (the identity). Moreover, for 0 < σ < 1 we have the
well-known identity (see e.g. [14, Lemma 3.1])

〈
u, (−�)σ u

〉 = cd,σ

∫
Rd

∫
Rd

|u(x) − u(y)|2
|x − y|d+2σ dxdy, cd,σ := 22σ−1

πd/2

	(d/2 + σ)

|	(−σ)| ,

and hence

〈
u, (−�)su

〉 = cd,σ

∑
|α|=m

m!
α!

∫
Rd

∫
Rd

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy

For a domain � ⊂ R
d we introduce the seminorm ‖ · ‖Ḣ s (�) by

‖u‖2
Ḣ s (�)

=
∑

|α|=m

m!
α!

∫
�

∣∣Dαu
∣∣2 dx, ifσ = 0(i.e.s = m)

and

‖u‖2
Ḣ s (�)

= cd,σ

∑
|α|=m

m!
α!

∫
�

∫
�

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy, if 0 < σ < 1.

We define the operator (−�)s|� on L2(Rd) via the quadratic form formula

〈u, (−�)s|�u〉L2(Rd ) = ‖u‖2
Ḣ s (�)

, ∀u ∈ Hs(Rd)

and Friedrichs’ extension. Note that ‖u‖2
Ḣ s (�)

depends only on u|�, and hence we
can also restrict (−�)s|� to L2(�) using the same quadratic form formula. (The

reason we want to think of (−�)s|� as an operator on L2(Rd) is that later we can

write 〈�, (−�xi )
s|��〉 for wave functions � in L2(RdN ).) We denote by Hs(�)

the space of all functions u : � → C such that the norm

‖u‖2Hs (�) := ‖u‖2
Ḣ s (�)

+
∑

|α|≤m

∫
�

∣∣Dαu
∣∣2 dx
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is finite. Note that for disjoint domains {�i }i of Rd we have the monotonicity

∑
i

‖u‖2
Ḣ s (�i )

≤ ‖u‖2
Ḣ s (

⋃
�i )

.

Recall the Gagliardo–Nirenberg inequality (9): for any normalized wave func-
tion � ∈ L2(RdN ) we have

〈
�,

N∑
i=1

(−�xi )
s�

〉
≥ CGN

N 2s/d

∫
Rd

ρ
1+ 2s

d
� ,

where CGN is the optimal constant in the one-body case

CGN := inf
u∈Hs (Rd )
‖u‖L2=1

〈u, (−�)su〉∫
Rd |u|2(1+ 2s

d )
.

The bound (9) is not very useful when N becomes large. However, we can derive
its local versions which are more powerful. Let us recall a key estimate from [27,
Proof of Lemma 8].

Lemma 3. (Local uncertainty principle I) Let d ≥ 1, s > 0. Let� be a normalized
wave function in L2(RdN ). Then for any cube Q ⊂ R

d we have

〈
�,

N∑
i=1

(−�xi )
s
|Q�

〉
≥ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d − C

|Q|2s/d
∫
Q

ρ�.

Here the constant C = C(d, s) > 0 is independent of Q, � and N.

In [27], the bound in Lemma 3 is used for the cubes Q such that
∫
Q ρ� is

bounded independently of Q and N , leading to estimates uniform in N . In the
present paper, we need a refined version of Lemma 3 which gives access to the
optimal Gagliardo-Nirenberg constant CGN.

We will state our results here for a general s-extension domain �, namely an
open subset of Rd such that there exists a linear operator T mapping functions
defined a.e. in � to functions defined a.e. in Rd satisfying that for all 0 ≤ t ≤ s,

T : Ht (�) → Ht (Rd) is a bounded linear operator, Tu|� = u, ∀u ∈ Ht (�).

For our application, a cube or a finite union of connected cubes is a s-extension
domain for all s > 0 (see e.g. [1, Theorem 7.41] or [35, Theorem 4.2.3]). Our new
result is
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Lemma 4. (Local uncertainty principle II)Let d ≥ 1, s > 0. Consider two domains
� ⊂⊂ �̃ ⊂ R

d where �̃ is a s-extension domain. Then for any normalized wave
function � in L2(RdN ) and any constant δ ∈ (0, 1) we have

〈
�,

N∑
i=1

(−�xi )
s
|�̃�

〉
≥ CGN(1 − δ)

∫
�

ρ
1+2s/d
�( ∫

�̃
ρ�

)2s/d − Cδ,�,�̃

∫
�̃

ρ�.

The constant Cδ,�,�̃ > 0 is independent of � and N; moreover, it scales as

Cδ,�,�̃ = Cδ,L�,L�̃L2s, ∀L > 0.

Here we write � ⊂⊂ �̃ when � ⊂ �̃ and dist(�,Rd\�̃) > 0. As usual
L� := {Lx, x ∈ �}. The scaling property Cδ,�,�̃ = Cδ,L�,L�̃L2s follows by a
change of variables.

We will deduce Lemma 4 from its one-body version

‖u‖2
Ḣ s (�̃)

≥ CGN(1 − δ)

∫
�

|u|2(1+2s/d)( ∫
�̃

|u|2
)2s/d − Cδ,�,�̃

∫
�̃

|u|2, ∀u ∈ Hs(Rd).

(16)

Proof of Lemma 4 using (16). We follow the proof strategy in [27, Lemma 8]. We
introduce the one-body densitymatrix γ� : L2(Rd) → L2(Rd) given by the kernel

γ�(x, y) :=
N∑
j=1

∫
R(d−1)N

�(x1, . . . , x j−1, x, x j+1, . . . , xN )

�(x1, . . . , x j−1, y, x j+1, . . . , xN )
∏
i �= j

dxi .

Since γ� is a non-negative trace class operator on L2(Rd), we can write

γ�(x, y) =
∑
n≥1

un(x)un(y)

with an orthogonal family {un}n≥1 ⊂ L2(Rd) (the functions un’s are not necessarily
normalized in L2(Rd)). From this representation one obtains ρ� = ∑

n≥1 |un|2 and〈
�,

N∑
i=1

(−�xi )
s
|�̃�

〉
= Tr

[
(−�)s|�̃γ�

]
=
∑
n≥1

〈
un, (−�)s|�̃un

〉
=
∑
n≥1

‖un‖2Ḣ s (�̃)
.
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Using the triangle inequality, the one-body bound (16) and Hölder inequality for
sums we can bound[

CGN(1 − δ)
]1/(1+2s/d)‖ρ�‖L1+2s/d (�) =

[
CGN(1 − δ)

]1/(1+2s/d)

‖
∑
n≥1

|un|2‖L1+2s/d (�)

≤
∑
n≥1

[
CGN(1 − δ)

]1/(1+2s/d)‖|un|2‖L1+2s/d (�)

≤
∑
n≥1

[
‖un‖2Ḣ s (�̃)

+ Cδ,�,�̃

∫
�̃

|un|2
]d/(d+2s)[ ∫

�̃

|un|2
]2s/(d+2s)

≤
[∑
n≥1

‖un‖2Ḣ s (�̃)
+ Cδ,�,�̃

∑
n≥1

∫
�̃

|un|2
]d/(d+2s)[∑

n≥1

∫
�̃

|un|2
]2s/(d+2s)

=
[〈

�,

N∑
i=1

(−�xi )
s
|�̃�

〉
+ Cδ,�,�̃

∫
�̃

ρ�

]d/(d+2s)[ ∫
�̃

ρ�

]2s/(d+2s)
.

This is equivalent to the desired inequality in Lemma 4. ��
It remains to prove (16). We will need the following general estimates for

Sobolev norms on extension domains.

Lemma 5. (Comparison of Sobolev norms) Let d ≥ 1 and s > 0. For any s-
extension domain � ⊂ R

d and u ∈ Hs(�) we have

‖u‖2Hs (�) ≤ C(‖u‖2
Ḣ s (�)

+ ‖u‖2L2(�)
). (17)

Moreover, for any t ∈ (0, s) and δ > 0 we have

‖u‖2Ht (�) ≤ δ ‖u‖2
Ḣ s (�)

+ C ‖u‖2L2(�)
. (18)

The constant C = C(�, δ) is independent of u.

Proof. Proof of (17) Write s = m +σ with m ∈ N and 0 ≤ σ < 1. We only prove
the case σ > 0, namely s > m (the case s = m is easier). Note that by Hölder’s
inequality in Fourier space we have for all f ∈ Hs(Rd):

‖ f ‖2Hm (Rd )
≤ C

∫
Rd

(1 + |p|2)m | f̂ (p)|2dp

≤ C
( ∫

Rd
(1 + |p|2)s | f̂ (p)|2dp

)m
s
( ∫

Rd
| f̂ (p)|2dp

)1−m
s

≤ C ‖ f ‖2
m
s

Hs (Rd )
‖ f ‖2(1−

m
s )

L2(Rd )
.

Let T be an extension operator, namely T : Ht (�) → Ht (Rd) is a bounded linear
operator for all 0 ≤ t ≤ s and Tu|� = u. For any u ∈ Hs(�), using the above
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estimate with f = Tu and Young’s Inequality we obtain, for every ε > 0,

‖u‖2Hm (�) ≤ ‖Tu‖2Hm (Rd )

≤ C ‖Tu‖2
m
s

Hs (Rd )
‖Tu‖2(1−

m
s )

L2(Rd )

= C(ε ‖Tu‖2Hs (Rd )
)
m
s (ε− m

s−m ‖Tu‖2L2(Rd )
)1−

m
s

≤ C(ε ‖Tu‖2Hs (Rd )
+ Cε ‖Tu‖2L2(Rd )

)

≤ C(ε ‖u‖2Hs (�) + Cε ‖u‖2L2(�)
).

Rearranging the terms we find that

(1 − Cε) ‖u‖2Hm (�) ≤ C(ε ‖u‖2
Ḣ s (�)

+ Cε ‖u‖2L2(�)
).

By choosing ε > 0 small enough we arrive at (17).
Proof of (18). Let T be an extension operator. Then for any ε > 0

‖u‖2
Ḣ t (�)

≤ ‖Tu‖2
Ḣ t (Rd )

≤ C ‖Tu‖2
t
s

Ḣ s (Rd )
‖Tu‖2(1−

t
s )

2

= C(ε ‖Tu‖2
Ḣ s (Rd )

)
t
s (ε− t

s−t ‖Tu‖22)1−
t
s

≤ C(ε ‖Tu‖2
Ḣ s (Rd )

+ ε− t
s−t ‖Tu‖22)

≤ C(ε ‖u‖2Hs (�) + ε− t
s−t ‖u‖22)

where the second step follows from Hölder’s inequality in Fourier space and the
third step follows from Young’s Inequality. Now (18) follows from (17). ��

Now we provide

Proof. (Proof of (16))

Step 1. Let χ, η : Rd → [0, 1] be two smooth functions such that

χ2 + η2 = 1, χ(x) = 1 if x ∈ �, suppχ ⊂ �̃.

By the definition

CGN := inf
u∈Hs (Rd )
‖u‖L2=1

〈u, (−�)su〉∫
Rd |u|2(1+ 2s

d )
.

we have

‖χu‖2
Ḣ s (Rd )

≥ CGN

∫
Rd |χu|2(1+2s/d)( ∫

Rd |χu|2
)2s/d ≥ CGN

∫
�

|u|2(1+2s/d)( ∫
�̃

|u|2
)2s/d . (19)

It remains to compare ‖χu‖2
Ḣ s (Rd )

with ‖u‖2
Ḣ s (�̃)

.
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Step 2. Now we prove that for any δ ∈ (0, 1)

‖χu‖2
Ḣ s (Rd )

≤ (1 + δ)‖χu‖2
Ḣ s (�̃)

+ Cδ‖u‖2
L2(�̃)

. (20)

If s ∈ N, then ‖χu‖2
Ḣ s (Rd )

= ‖χu‖2
Ḣ s (�̃)

since supp(χu) ⊂ �̃ (thus (20) is

trivial). Consider the case for s = m + σ with m ∈ N and 0 < σ < 1. Since
suppχ ⊂⊂ �̃ we have

� := dist(suppχ,Rd\�̃) > 0.

Therefore,

‖χu‖2
Ḣ s (Rd )

= ‖χu‖2
Ḣ s (�̃)

+
∑

|α|=m

2cd,σ

m!
α!

∫
�̃

∫
Rd\�̃

|Dα(χu)(x) − Dα(χu)(y)|2
|x − y|d+2σ dxdy

= ‖χu‖2
Ḣ s (�̃)

+
∑

|α|=m

2cd,σ

m!
α!

∫
�̃

∫
Rd\�̃

|Dα(χu)(y)|2
|x − y|d+2σ dxdy

≤ ‖χu‖2
Ḣ s (�̃)

+
∑

|α|=m

2cd,σ

m!
α!

∫
�̃

∣∣Dα(χu)(y)
∣∣2 dy ∫

Rd\B�(0)

1

|x |d+2σ dx

= ‖χu‖2
Ḣ s (�̃)

+ Cd,σ,m,� ‖χu‖2
Ḣm (�̃)

.

In the second equality we used Dα(χu)(x) = 0 when x /∈ �̃. By (18) we have

‖χu‖2
Ḣm (�̃)

≤ δ ‖χu‖2
Ḣ s (�̃)

+ Cδ‖χu‖2
L2(�̃)

.

Thus (20) holds true. It remains to bound ‖χu‖2
Ḣ s (�̃)

from above.

Step 3. Now we prove that for any δ ∈ (0, 1)

‖χu‖2
Ḣ s (�̃)

≤ (1 + δ) ‖u‖2
Ḣ s (�̃)

+ Cδ‖u‖2
L2(�̃)

. (21)

We use the fractional IMS localization formula from [27, Lemma 14]:∣∣∣‖u‖2
Ḣ s (�̃)

− ‖χu‖2
Ḣ s (�̃)

− ‖ηu‖2
Ḣ s (�̃)

∣∣∣ ≤ C
(
‖χu‖2

Ht (�̃)
+ ‖ηu‖2

Ht (�̃)

)
,

for some t ∈ (0, s). By (18) again we have, for any δ ∈ (0, 1),

‖χu‖2
Ht (�̃)

≤ δ ‖χu‖2
Ḣ s (�̃)

+ Cδ‖χu‖2
L2(�̃)

,

‖ηu‖2
Ht (�̃)

≤ δ ‖ηu‖2
Ḣ s (�̃)

+ Cδ‖ηu‖2
L2(�̃)

.

Therefore, for any δ ∈ (0, 1),∣∣∣‖u‖2
Ḣ s (�̃)

− ‖χu‖2
Ḣ s (�̃)

− ‖ηu‖2
Ḣ s (�̃)

∣∣∣
≤ δ

(
‖χu‖2

Hs (�̃)
+ ‖ηu‖2

Hs (�̃)

)
+ Cδ‖u‖2

L2(�̃)

and hence

‖u‖2
Ḣ s (�̃)

≥ (1 − δ)
(

‖χu‖2
Ḣ s (�̃)

+ ‖ηu‖2
Ḣ s (�̃)

)
− Cδ‖u‖2

L2(�̃)
.

The latter bound implies (21). The inequality (16) follows from (19), (20) and (21).
��
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4. Local Exclusion

We now prove our local exclusion bound which will allow us to control the error
terms from the local uncertainty bounds. Here we have to refine the local exclusion
in [27, Lemma 6] (see also [28, Theorem 2]) as the existing bound is only good
for a cube, and it becomes very weak for a set with small volume to length ratio,
for example a long chain of cubes. In the following, we will deal with general sets
which can be decomposed into several pieces with small diameters. Also, we allow
that the sets in different length scales may be overlapping.

Lemma 6. (Local exclusion principle) Let d ≥ 1 and s > 0. Let {Rn}n≥1 be
a decreasing sequence of positive numbers. Let {�n,m}n,m≥1 be a collection of
subsets of Rd such that

diam(�n,m) ≤ Rn,
∑
m

1�n,m ≤ Cn .

Then for any normalized wave function � ∈ L2(RdN ) we have

〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉

≥
∑
n≥1

1

2Cn

( 1

R2s
n

− 1

R2s
n−1

)∑
m≥1

( ∫
�n,m

ρ�

)( ∫
�n,m

ρ� − 1
)
. (22)

Here we use the convention R0 = +∞.

Proof. We start from an elementary but very useful formula

1

|x |2s ≥
∑
n≥1

1

|x |2s 1(Rn+1 < |x | ≤ Rn)

≥
∑
n≥1

1

R2s
n

(
1(|x | ≤ Rn) − 1(|x | ≤ Rn+1)

)

=
∑
n≥1

( 1

R2s
n

− 1

R2s
n−1

)
1(|x | ≤ Rn)

with the convention R0 = +∞. Moreover, from the assumption

diam(�n,m) ≤ Rn,
∑
m

1�n,m ≤ Cn .

we can bound

1(|xi − x j | ≤ Rn) ≥ 1

Cn

∑
m

1�n,m (xi )1�n,m (x j ).
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Consequently, we have the pointwise estimate

1

|xi − x j |2s ≥
∑
n≥1

( 1

R2s
n

− 1

R2s
n−1

)
1(|xi − x j | ≤ Rn)

≥
∑
n≥1

∑
m≥1

1

Cn

( 1

R2s
n

− 1

R2s
n−1

)
1�n,m (xi )1�n,m (x j ).

Next, similarly to [27, Lemma 6], by the Cauchy–Schwarz inequality we have〈
�,

∑
1≤i< j≤N

1�n,m (xi )1�n,m (x j )�
〉

= 1

2

〈
�,

( N∑
i=1

1�n,m (xi )
)2

�
〉
− 1

2

〈
�,

N∑
i=1

1�n,m (xi )�
〉

≥ 1

2

∣∣∣〈�,

N∑
i=1

1�n,m (xi )�
〉∣∣∣2 − 1

2

〈
�,

N∑
i=1

1�n,m (xi )�
〉

= 1

2

( ∫
�n,m

ρ�

)2 − 1

2

∫
�n,m

ρ�.

This ends the proof of Lemma 6. ��

5. Proof of Theorem 1

Proof. By a standard density argument, we can assume that the normalized wave
function� ∈ L2(RdN ) is smoothwith compact support. By scaling, we can assume
that � is supported in [−1/2, 1/2]dN . Consequently, the one-body density ρ� is
supported in [−1/2, 1/2]d .
Step 1: A decomposition of covering sub-cubes.We fix constants δ ∈ (0, 1) and
ε = n−1

0 with an integer number n0 ≥ 2 (we can choose n0 = 2). We divide
[−1/2, 1/2]d into disjoint sub-cubes by induction: in the n-th step we obtain a
collection Gn of sub-cubes of side length εn , which can be decomposed further
into three disjoint sub-collections

Gn = Gn,0
⋃

Gn,1
⋃

Gn,2.

Heuristically, Gn,0⋃Gn,1 contains “good sets” concerning the uncertainty princi-
ple whileGn,2 contains “good sets” concerning the exclusion principle. The precise
construction is as follows.

Initial step. When n = 0, we simply take

G0 = G0,2 = {[−1/2, 1/2]d}, G0,0 = G0,1 = ∅.

Induction step. Let

Gn−1 = Gn−1,0
⋃

Gn−1,1
⋃

Gn−1,2
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be the collection of sub-cubes of side length εn−1 obtained from the (n−1)-th step.
In the n-th step, we divide each sub-cube in Gn−1,2 into ε−d sub-cubes of the same
size. Thus each new sub-cube has the side length εn . Let Gn be the collection of
all these new sub-cubes. We decompose

Gn = Gn,0
⋃

Gn,1
⋃

Gn,2

as follows:

• We denote by Gn,0 the collection of all sub-cubes Q in Gn such that∫
Q

ρ� ≤ δ.

• We can think of the sub-cubes in Gn\Gn,0 as a graph where we put edges
between neighboring sub-cubes (a cube Q1 neighbours to a cube Q2 if dist
(Q1, Q2) = 0). Thus the sub-cubes inGn\Gn,0 canbedecomposed into disjoint
connected components that we call clusters (here the connectivity is considered
in the graphical sense, which is different from the topological sense). For any
cluster K ⊂ Gn\Gn,0, we define

�K :=
⋃
Q∈K

Q, �̃K :=
{
x ∈ R

d , dist(x,�K ) <
εn

4

}
. (23)

Note that each closure �̃K is topologically connected and the closures {�̃K } of
different clusters K are disjoint (the sub-cubes in Gn,0 serve to separate these
components).

• We denote by Gn,1 the union of all clusters K such that∫
�̃K

ρ� < 1 + δ,

and Gn,2 the union of all clusters K such that∫
�̃K

ρ� ≥ 1 + δ.

Only the sub-cubes in Gn,2 will be divided further in the (n + 1)-step.

Since ρ� ∈ L1([0, 1]d) the construction terminates after finitely many steps.
We now have a division of [0, 1]d as the disjoint union of sub-cubes

suppρ� ⊂ [0, 1]d =
⋃
n≥1

( ⋃
Q∈Gn,0∪Gn,1

Q
)
. (24)

Step 2: Uncertainty principle for Gn,0. For any sub-cube Q ∈ Gn,0, we have
|Q| = εnd and ∫

Q
ρ� ≤ δ.
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Therefore, the local uncertainty principle in Lemma 3 implies that

〈
�,

N∑
i=1

(−�xi )
s
|Q�

〉
≥ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d − C

|Q|2s/d
∫
Q

ρ�

≥ 1

Cδ2s/d

∫
Q

ρ
1+2s/d
� − C

ε2sn

∫
Q

ρ�, ∀Q ∈ Gn,0. (25)

Since the sub-cubes {Q}Q∈Gn,0,n≥1 are disjoint, we have

δs/d
〈
�,

N∑
i=1

(−�xi )
s
|Rd�

〉
≥
∑
n≥1

∑
Q∈Gn,0

δs/d
〈
�,

N∑
i=1

(−�xi )
s
|Q�

〉

≥
∑
n≥1

∑
Q∈Gn,0

( 1

Cδs/d

∫
Q

ρ
1+2s/d
� − Cδs/d

ε2sn

∫
Q

ρ�

)
.

(26)

Step 3: Uncertainty principle for Gn,1. Let n ≥ 1. For any cluster K ⊂ Gn,1,∫
Q

ρ� ≥ δ, ∀Q ∈ K ,

while ∑
Q∈K

∫
Q

ρ� =
∫

�K

ρ� ≤
∫

�̃K

ρ� < 1 + δ.

Here �̃K is the closure defined in (23). Thus the cluster K is the union of at most
(δ−1 + 1) disjoint sub-cubes. Consequently, the rescaled set

ε−n�K :=
⋃
Q∈K

(ε−nQ)

is the union of at most (δ−1 + 1) disjoint unit cubes in R
d . Moreover, these sub-

cubes are connected in the graphical sense (recall that a cube Q1 neighbours to a
cube Q2 if dist(Q1, Q2) = 0). Therefore, up to translation (such that there exists
one cube in K centered at 0), ε−n�K belongs to a finite collection of subsets of
R
d and the collection depends only on d and δ (but independent of ε, n). By the

definition of the closure, we have

ε−n�̃K :=
{
x ∈ R

d , dist(x, ε−n�K ) <
1

4

}
.

This implies that up to translation ε−n�̃K also belongs to a finite collection of
subsets of Rd which depends only on d and δ.

Now we apply the local uncertainty principle in Lemma 4 with �K ⊂⊂ �̃K ⊂
R
d . Recall that up to translation, ε−n�K and ε−n�̃K belong to a finite collection

of subsets of Rd which depends only on d, δ. Since the kinetic operator (−�)s
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is translation-invariant, we deduce that the constant Cδ,ε−n�K ,ε−n�̃K
in Lemma 4

depends only on d, s, δ. Combining with the bound
∫
�̃K

ρ� < 1 + δ we get

〈
�,

N∑
i=1

(−�xi )
s
|�̃K

�
〉
≥ CGN(1 − δ)

∫
�K

ρ
1+2s/d
�( ∫

�̃K
ρ�

)2s/d − Cδ,�K ,�̃K

∫
�̃K

ρ�

≥ CGN
(1 − δ)

(1 + δ)2s/d

∫
�K

ρ
1+2s/d
� − Cδ

ε2sn

∫
�̃K

ρ�. (27)

Since the sets {�̃K }n≥1,K⊂Gn,1 are disjoint, we find that

(1 − δs/d)
〈
�,

N∑
i=1

(−�xi )
s
|Rd�

〉
≥
∑
n≥1

∑
K⊂Gn,1

(1 − δs/d)
〈
�,

N∑
i=1

(−�xi )
s
|�̃K

�
〉

≥
∑
n≥1

∑
K⊂Gn,1

(
CGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

∫
�K

ρ
1+2s/d
� − Cδ

ε2sn

∫
�̃K

ρ�

)
. (28)

Here the sum is taken over all clusters K ⊂ Gn,1.

Step 4:Local exclusionprinciple forGn,2. Let n ≥ 1. For any sub-cube Q ∈ Gn,2,
we denote cQ the center of Q. Our key observation is that∫

B(cQ ,Rn/2)
ρ� ≥ 1 + δ, ∀Q ∈ Gn,2, (29)

where

Rn := 2
√
d(δ−1 + 2)εn .

Indeed, any sub-cube Q ∈ Gn,2 must belong to a cluster K . The set �K is a
connected union of sub-cubes of diameter

√
dεn . Therefore, the ball B(cQ, Rn/2)

contains either the whole set �̃K , or at least (δ−1 + 1) disjoint sub-cubes. Thus
(29) follows from the facts that ∫

�̃K

ρ� ≥ 1 + δ.

and ∫
Q′

ρ� ≥ δ, ∀Q′ ∈ K .

On the other hand, since the sub-cubes in Gn,2 are disjoint, the distances of the
centers of the sub-cubes are at least

√
dεn . Therefore,∑

Q∈K
1B(cQ ,Rn/2) ≤ Cδ (30)

for a constant Cδ > 0 depending only on d, δ.
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Now we apply the local exclusion principle in Lemma 6 for the balls {B(cQ,

Rn/2)}Q∈Gn,2 with n = 0, 1, 2, . . . Using

diamB(cQ, Rn/2) = Rn = 2
√
d(δ−1 + 2)εn

together with (29) and (30) we obtain〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉

≥
∑
n≥1

1

2Cδ

( 1

R2s
n

− 1

R2s
n−1

) ∑
Q∈Gn,2

( ∫
B(cQ ,Rn/2)

ρ�

)( ∫
B(cQ ,Rn/2)

ρ� − 1
)

≥
∑
n≥1

1

Cδε2sn

∑
Q∈Gn,2

∫
B(cQ ,Rn/2)

ρ�, (31)

where the constant Cδ depends only on d, s, δ.
Next, recall that for any n ≥ 1 the sub-cubes in Gn,2 will be divided further to

get the smaller sub-cubes in Gn+1,0, Gn+1,1, Gn+1,2. Consequently,⋃
Q∈Gn,2

B(cQ, Rn/2) ⊃
( ⋃

Q∈Gn+1,0

Q
)⋃( ⋃

K⊂Gn+1,1

�̃K

)
.

Here the last union is taken over all clusters K ⊂ Gn+1,1. Recall that all sub-cubes
in Gn+1,0 are disjoint, and all the closures �̃K of the clusters K ⊂ Gn+1,1 are
disjoint. Therefore,∑

Q∈Gn,2

∫
B(cQ ,Rn/2)

ρ� ≥ max
{ ∑

Q∈Gn+1,0

∫
Q

ρ�,
∑

K⊂Gn+1,1

∫
�̃K

ρ�

}
.

Hence, we deduce from (31) that〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉

≥
∑
n≥1

1

Cδε2sn
max

{ ∑
Q∈Gn+1,0

∫
Q

ρ�,
∑

K⊂Gn+1,1

∫
�̃K

ρ�

}

for a constant Cδ > 0 depending only on d, s, δ but independent of n. By shifting
n �→ n − 1 and redefine Cδ , we obtain〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉
≥
∑
n≥2

1

Cδε2sn
max

{ ∑
Q∈Gn,0

∫
Q

ρ�,
∑

K⊂Gn,1

∫
�̃K

ρ�

}

for a constant Cδ > 0 depending only on d, s, ε, δ but independent of n. Moreover,
since supp�N ⊂ [0, 1]dN and N ≥ 2, we have the obvious bound〈

�,
∑

1≤i< j≤N

1

|xi − x j |2s �
〉

≥ N (N − 1)

2
≥ 1

2
max

{ ∑
Q∈G1,0

∫
Q

ρ�,
∑

K⊂G1,1

∫
�̃K

ρ�

}
.
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Thus in summary, we have the local exclusion bound

〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉
≥
∑
n≥1

1

Cδε2sn

( ∑
Q∈Gn,0

∫
Q

ρ� +
∑

K⊂Gn,1

∫
�̃K

ρ�

)
(32)

for a constant Cδ > 0 depending only on d, s, ε, δ but independent of n (the value
ofCδ has been changed from line to line). Here the last sum is taken over all clusters
K ⊂ Gn,1.

Step 5: Conclusion. By summing (26), (28) and (32) we have

〈
�,

N∑
i=1

(−�xi )
s
Rd�

〉
+ λ

N∑
i=1

〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s �
〉

≥
∑
n≥1

∑
Q∈Gn,0

( 1

Cδs/d

∫
Q

ρ
1+2s/d
� − Cδs/d

ε2sn

∫
Q

ρ�

)

+
∑
n≥1

∑
K⊂Gn,1

(
CGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

∫
�K

ρ
1+2s/d
� − Cδ

ε2sn

∫
�̃K

ρ�

)
.

+
∑
n≥1

λ

Cδε2sn

( ∑
Q∈Gn,0

∫
Q

ρ� +
∑

K⊂Gn,1

∫
�̃K

ρ�

)

=
∑
n≥1

( ∑
Q∈Gn,0

1

Cδs/d

∫
Q

ρ
1+2s/d
� + CGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

)

+
∑
n≥1

( λ

Cδ

− Cδs/d
) 1

ε2sn

∑
Q∈Gn,0

∫
Q

ρ� +
∑
n≥1

( λ

Cδ

− Cδ

) 1

ε2sn

∑
K⊂Gn,1

∫
�̃K

ρ�.

For any given δ ∈ (0, 1), we can choose λ > 0 sufficiently large such that

λ

Cδ

− Cδs/d ≥ 0,
λ

Cδ

− Cδ ≥ 0.

Then the above estimate reduces to

〈
�,

N∑
i=1

(−�xi )
s
Rd �

〉
+ λ

N∑
i=1

〈
�,

∑
1≤i< j≤N

1

|xi − x j |2s
�
〉

≥
∑
n≥1

( ∑
Q∈Gn,0

1

Cδs/d

∫
Q

ρ
1+2s/d
� + CGN

(1 − δ)(1 − δs/d )

(1 + δ)2s/d

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

)

≥ min
{ 1

Cδs/d
,CGN

(1 − δ)(1 − δs/d )

(1 + δ)2s/d

}∑
n≥1

( ∑
Q∈Gn,0

∫
Q

ρ
1+2s/d
� +

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

)

= min
{ 1

Cδs/d
,CGN

(1 − δ)(1 − δs/d )

(1 + δ)2s/d

} ∫
Rd

ρ
1+2s/d
� .

In the last equality we have used the covering property (24).
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Thus for every δ ∈ (0, 1), with λ > 0 sufficiently large we have

CLT(λ) ≥ min
{ 1

Cδs/d
,CGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

}
.

This implies that

lim inf
λ→∞ CLT(λ) ≥ CGN.

Togetherwith the known upper boundCLT(λ) ≤ CGN (see [27, Proposition 10]), we
conclude that CLT(λ) → CGN as λ → ∞. This completes the proof of Theorem 1.

��

6. Proof of Theorem 2

First, we adapt the local uncertainty principle for Hardy operator (−�xi )
s −

Cs,d |x |−2s .

Lemma 7. (Local uncertainty principle for Hardy operator) Let d ≥ 1, s > 0. Let
� be a normalized wave function in L2(RdN ). Then for any cube Q ⊂ R

d centered
at 0 we have

〈
�,

N∑
i=1

((−�xi )
s
|Q − Cs,d |xi |−2s1Q(xi ))�

〉
≥ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d − C

|Q|2s/d
∫
Q

ρ�.

(33)

The constantC is indepdent of Q, �, N.Moreover, for two domains� ⊂⊂ �̃ ⊂ R
d

where �̃ is a s-extension domain, we have

〈
�,

N∑
i=1

((−�xi )
s
|�̃ − Cs,d |xi |−2s1�(xi ))�

〉

≥ CHGN(1 − δ)

∫
�

ρ
1+2s/d
�( ∫

�̃
ρ�

)2s/d − Cδ,�,�̃

∫
�̃

ρ� (34)

for any δ ∈ (0, 1). The constant Cδ,�,�̃ > 0 is independent of �, N and it scales
as

Cδ,�,�̃ = Cδ,L�,L�̃L2s, ∀L > 0.

Proof. The first bound (33) is taken from [27] ([27, Lemma 13] contains the one-
body version and the N -body version follows from a general argument explained
in the proof of Lemma 4).
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For the second bound (34), by following the proof of Lemma 4, we only need
to prove the following one-body counterpart: for any u ∈ Hs(�̃) and δ ∈ (0, 1),

‖u‖2
Ḣ s (�̃)

− Cs,d
∫

�

|u(x)|2
|x |2s dx

≥ CHGN(1 − δ)

∫
�

|u|2(1+2s/d)( ∫
�̃

|u|2
)2s/d − Cδ,�,�̃

∫
�̃

|u|2. (35)

Note that the scaling propertyCδ,�,�̃ = Cδ,L�,L�̃L2s follows froma simple change
of variables. In the following, we will prove (35) for fixed (�, �̃), and hence we
will write Cδ instead of Cδ,�,�̃ for simplicity.

Step 1. We start by proceeding as in the proof of (16). Let χ, η : Rd → [0, 1] be
two smooth functions such that

χ2 + η2 = 1, χ(x) = 1 if x ∈ �, suppχ ⊂ �̃.

By the definition

CHGN := inf
u∈Hs (Rd )
‖u‖L2=1

〈
u,
(
(−�)s − Cs,d |x |−2s

)
u
〉

∫
Rd |u|2(1+ 2s

d )
.

we have

‖χu‖2
Ḣ s (Rd )

− Cs,d
∫
Rd

|χu|2
|x |2s dx ≥ CHGN

∫
Rd |χu|2(1+2s/d)( ∫

Rd |χu|2
)2s/d , ∀u ∈ Hs(Rd).

(36)

Moreover, we will use the following powerful improvement of Hardy’s inequality:
for all s > t > 0 and � > 0,

(−�)s − Cs,d
|x |2s ≥ �s−t (−�)t − Cd,s,t�

s on L2(Rd).

This bound was first proved for s = 1/2, d = 3 by Solovej, Sørensen and Spitzer
[34, Lemma 11] and then generalized to the full range 0 < s < d/2 by Frank [15,
Theorem 1.2]. Consequently, for any fixed s > t > 0 and δ ∈ (0, 1) we have

δ
(
‖χu‖2

Ḣ s (Rd )
− Cs,d

∫
Rd

|χu|2
|x |2s dx

)
≥ δ−1‖χu‖2

Ḣ t (Rd )
− Ct,δ‖χu‖2L2(Rd )

. (37)

Multiplying (36) with (1− δ) and then summing with (37), we deduce that for any
fixed s > t > 0 and δ ∈ (0, 1),

‖χu‖2
Ḣ s (Rd )

− Cs,d
∫
Rd

|χu|2
|x |2s dx

≥ (1 − δ)CHGN

∫
Rd |χu|2(1+2s/d)( ∫

Rd |χu|2
)2s/d + δ−1‖χu‖2

Ḣ t (Rd )

− Ct,δ‖χu‖2L2(Rd )
, ∀u ∈ Hs(Rd).
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Since 1� ≤ χ ≤ 1�̃ the latter estimate reduces to

‖χu‖2
Ḣ s (Rd )

− Cs,d
∫

�

|χu|2
|x |2s dx

≥ (1 − δ)CHGN

∫
�

|u|2(1+2s/d)( ∫
�̃

|χu|2
)2s/d + δ−1‖χu‖2

Ḣ t (Rd )

− Ct,δ‖u‖2
L2(�̃)

, ∀u ∈ Hs(Rd). (38)

Step 2. Now let us compare ‖χu‖2
Ḣ s (Rd )

with ‖u‖2
Ḣ s (�̃)

.

We can compare ‖χu‖2
Ḣ s (Rd )

with ‖χu‖2
Ḣ s (�̃)

as in the proof of (20). Recall

that if s ∈ N, then ‖χu‖2
Ḣ s (Rd )

= ‖χu‖2
Ḣ s (�̃)

since supp(χu) ∈ �̃. If s = m + σ

with m ∈ N and 0 < σ < 1, then from proof of (20), we find that

‖χu‖2
Ḣ s (�̃)

≤ ‖χu‖2
Ḣ s (Rd )

≤ ‖χu‖2
Ḣ s (�̃)

+ C ‖χu‖2
Ḣm (�̃)

= ‖χu‖2
Ḣ s (�̃)

+ C ‖χu‖2
Ḣm (Rd )

.

Thus in summary, for any s > 0 we can find 0 ≤ t1 < s such that

‖χu‖2
Ḣ s (�̃)

≤ ‖χu‖2
Ḣ s (Rd )

≤ ‖χu‖2
Ḣ s (�̃)

+ C ‖χu‖2
Ḣ t1 (Rd )

. (39)

Next, we compare ‖χu‖2
Ḣ s (�̃)

with ‖u‖2
Ḣ s (�̃)

as in the proof of (21). Recall that
by the IMS formula in [27, Lemma 14], we can find 0 < t2 < s such that∣∣∣‖u‖2

Ḣ s (�̃)
− ‖χu‖2

Ḣ s (�̃)
− ‖ηu‖2

Ḣ s (�̃)

∣∣∣ ≤ C
(
‖χu‖2

Ht2 (�̃)
+ ‖ηu‖2

Ht2 (�̃)

)
.

Moreover, thanks to (18) we can estimate further

C ‖ηu‖2
Ht2 (�̃)

≤ ‖ηu‖2
Ḣ s (�̃)

+ C ′ ‖ηu‖2
L2(�̃)

and

C ‖χu‖2
Ht2 (�̃)

≤ C ′ ‖χu‖2
Ḣ t2 (�̃)

+ C ′ ‖χu‖2
L2(�̃)

≤ C ′ ‖χu‖2
Ḣ t2 (Rd )

+ C ′ ‖χu‖2
L2(�̃)

.

Thus ∣∣∣‖u‖2
Ḣ s (�̃)

− ‖χu‖2
Ḣ s (�̃)

− ‖ηu‖2
Ḣ s (�̃)

∣∣∣
≤ ‖ηu‖2

Ḣ s (�̃)
+ C ‖χu‖2

Ḣ t2 (Rd )
+ C ‖u‖2

L2(�̃)

for a constant C independent of u. By the triangle inequality, we find that

‖χu‖2
Ḣ s (�̃)

≤ ‖u‖2
Ḣ s (�̃)

+ C ‖χu‖2
Ḣ t2 (Rd )

+ C ‖u‖2
L2(�̃)

. (40)

Combining (39) and (40) we conclude that

‖χu‖2
Ḣ s (Rd )

≤ ‖u‖2
Ḣ s (�̃)

+ C ‖χu‖2
Ḣ t1 (Rd )

+ C ‖χu‖2
Ḣ t2 (Rd )

+ C‖u‖2
L2(�̃)

(41)
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for some constants t1, t2 ∈ (0, s). The constant C is independent of u.

Step 3. Finally, we deduce from (38) and (41) that

‖u‖2
Ḣ s (�̃)

− Cs,d
∫

�

|χu|2
|x |2s dx

≥ (1 − δ)CHGN

∫
�

|u|2(1+2s/d)( ∫
�̃

|χu|2
)2s/d + δ−1‖χu‖2

Ḣ t (Rd )

− C ‖χu‖2
Ḣ t1 (Rd )

− C ‖χu‖2
Ḣ t2 (Rd )

− Ct,δ‖u‖2
L2(�̃)

. (42)

This bound holds for all t ∈ (0, s). Therefore, we can choose max{t1, t2} < t < s
and use the pointwise estimate

δ−1|p|2t − C |p|2t1 − C |p|2t2 ≥ −Cδ, ∀p ∈ R
d

in the Fourier space to get

δ−1‖χu‖2
Ḣ t (Rd )

− C ‖χu‖2
Ḣ t1 (Rd )

− C ‖χu‖2
Ḣ t2 (Rd )

≥ −Cδ‖χu‖2L2(Rd )
≥ −Cδ‖u‖2

L2(�̃)
.

Thus (42) reduces to

‖u‖2
Ḣ s (�̃)

− Cs,d
∫

�

|χu|2
|x |2s dx ≥ (1 − δ)CHGN

∫
�

|u|2(1+2s/d)( ∫
�̃

|χu|2
)2s/d − Cδ‖u‖2

L2(�̃)

(43)

for all δ ∈ (0, 1) and u ∈ Hs(Rd). The constant Cδ depends on δ,�, �̃, but it is
independent of u. Thus (35) holds true. This completes the proof of Lemma 7. ��

We are ready to provide

Proof of Theorem 2. Again we can assume that the normalized wave function � ∈
L2(RdN ) is smooth and supported in [0, 1]dN .
Step 1: Covering sub-cubes.We fix constants δ ∈ (0, 1) and ε = n−1

0 with an odd
integer number n0 ≥ 3 (we can choose n0 = 3). We construct the collections of
sub-cubes

Gn = Gn,0
⋃

Gn,1
⋃

Gn,2

exactly as in the proof of Theorem 1. Thus as in (24), suppρ� is covered by disjoint
sub-cubes:

suppρ� ⊂ [0, 1]d =
⋃
n≥1

( ⋃
Q∈Gn,0∪Gn,1

Q
)
. (44)



Lieb–Thirring Inequality in the Strong-Coupling Limit 1195

The choice ε = n−1
0 with n0 odd gives us an additional property: for any sub-cube

Q ∈ Gn,0 ∪ Gn,1, either 0 is the center of Q, or

dist(0, Q) ≥ |Q|1/d
2

= εn

2
. (45)

Step 2: Uncertainty principle I.We prove that for any sub-cube Q ∈ Gn,0∪Gn,1,

〈
�,

N∑
i=1

(
(−�xi )

s
|Q − Cs,d |xi |−2s1Q(xi )

)
�
〉
≥ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d − C

|Q|2s/d
∫
Q

ρ�.

(46)

Indeed, if 0 is the center of Q, then (46) is exactly the first bound (33) in Lemma 7.
Otherwise, if 0 /∈ Q, then using (45) we have

〈
�,

N∑
i=1

(
(−�xi )

s
|Q − Cs,d |xi |−2s1Q(xi )

)
�
〉

=
〈
�,

N∑
i=1

(−�xi )
s
|Q�

〉
− Cs,d

∫
Q

ρ�(x)

|x |2s dx

≥
〈
�,

N∑
i=1

(−�xi )
s
|Q�

〉
− Cs,d 22s

|Q|2s/d
∫
Q

ρ�,

and hence (46) follows from Lemma 3. Thus (46) always holds true.
From (46) and the covering property (44) we find that

〈
�,

N∑
i=1

(
(−�xi )

s
|Rd − Cs,d |xi |−2s

)
�
〉

≥
∑
n≥1

∑
Q∈Gn,0∪Gn,1

〈
�,

N∑
i=1

(
(−�xi )

s
|Q − Cs,d |xi |−2s1Q(xi )

)
�
〉

≥
∑
n≥1

∑
Q∈Gn,0∪Gn,1

( 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d − C

|Q|2s/d
∫
Q

ρ�

)
.

Recall that |Q| = εn for all Q ∈ Gn,0 ∪ Gn,1. Moreover, if Q ∈ Gn,0, then∫
Q ρ� ≤ δ. Therefore, we obtain the lower bound

〈
�,

N∑
i=1

(
(−�xi )

s
|Rd − Cs,d |xi |−2s

)
�
〉
≥
∑
n≥1

∑
Q∈Gn,0

1

Cδ2s/d

∫
Q

ρ
1+2s/d
�

−
∑
n≥1

∑
Q∈Gn,0∪Gn,1

C

ε2sn

∫
Q

ρ�. (47)
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Step 3: Uncertainty principle II.We prove that for any cluster K ⊂ Gn,1,

〈
�,

N∑
i=1

(
(−�xi )

s
|�̃K

− Cs,d |xi |−2s1�K (xi )
)
�
〉

≥ CHGN(1 − δ)

∫
�K

ρ
1+2s/d
�( ∫

�̃K
ρ�

)2s/d − Cδ

ε2sn

∫
�̃K

ρ�. (48)

We distinguish two cases.

Case 1. If 0 ∈ �K , then as argued in the proof of Theorem 1 (Step 3), ε−n�K

is a union of at most (δ−1 + 1) disjoint unit cubes in R
d which are graphically

connected (recall that a cube Q1 neighbours to a cube Q2 if dist(Q1, Q2) = 0).
Moreover, we know additionally that 0 is the center of one of these sub-cubes.
Therefore, ε−n�K and ε−n�̃K belong to a finite collection of subsets of Rd which
depends only on d, δ. Thus we can use the second bound (34) in Lemma 7 with
the constant Cδ,ε−n�K ,ε−n�̃K

depending only on d, s, δ, which leads immediately
to (48).

Case 2. If 0 /∈ �K , then using (45) we have

|x |−2s ≤ 22s

ε2sn
, ∀x ∈ �K .

Thus

〈
�,

N∑
i=1

((−�xi )
s
|�̃ − Cs,d |xi |−2s1�K (xi ))�

〉

≥
〈
�,

N∑
i=1

(−�xi )
s
|�̃�

〉
− Cs,d 22s

ε2sn

∫
�K

ρ�

and hence (48) follows from Lemma 4 (of course we have CGN ≥ CHGN).
Thus in both cases, (48) always holds true. From (48), we use∫

�̃K

ρ� ≤ 1 + δ, ∀K ∈ Gn,1, ∀n ≥ 1

and then sum over all clusters. This gives

∑
n≥1

∑
K⊂Gn,1

〈
�,

N∑
i=1

(
(−�xi )

s
|�̃K

− Cs,d |xi |−2s1�K (xi )
)
�
〉

≥
∑
n≥1

∑
K⊂Gn,1

(
CHGN

1 − δ

(1 + δ)2s/d

∫
�K

ρ
1+2s/d
� − Cδ

ε2sn

∫
�̃K

ρ�

)
(49)

Step 4: Uncertainty principle III.Note that (49) allows us to control the negative
potential −Cs,d |x |−2s on the clusters K ⊂ Gn,1, but we used a bit more than the
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kinetic energy in �K (we used (−�)s|�̃K
). Therefore, to complement for (49) we

have to deal with the negative potential in the cubes Q ∈ Gn,0 using a bit less than
the kinetic energy in Q. To be precise, we take a sub-cube Q ∈ Gn,0 and distinguish
two cases.

Case 1. If 0 /∈ Q, then we simply use (45) and deduce that

〈
�,

N∑
i=1

(−Cs,d |xi |−2s1Q(xi ))�
〉
= −Cs,d

∫
Q

ρ�

|x |2s dx ≥ −Cs,d 22s

|Q|2s/d
∫
Q

ρ�.

(50)

Case 2. If 0 ∈ Q, then 0 is the center of Q. Denote

Q0 := 1

4
√
d
Q =

{
1

4
√
d
x | x ∈ Q

}
.

Then using the first bound (33) in Lemma 7, we have

〈
�,

N∑
i=1

((−�xi )
s
|Q0

− Cs,d |xi |−2s1Q0(xi ))�
〉
≥ − C

|Q0|2s/d
∫
Q0

ρ�.

(Here we do not need the first term on the right side of (33).) Combining with

|x | ≥ 1

8
√
d

|Q|1/d , ∀x ∈ Q\Q0

we find that

〈
�,

N∑
i=1

((−�xi )
s
|Q0

− Cs,d |xi |−2s1Q(xi ))�
〉
≥ − C

|Q|2s/d
∫
Q

ρ�. (51)

Next, let us show that the set Q0 is disjoint with �̃K for any cluster K ⊂ Gm,1 for
any m ≥ 1. Indeed, for any Q′ ∈ K ⊂ Gm,1, using 0 /∈ Q′ and Q ∩ Q′ = ∅ we
obtain

|x | ≥ max
{1
2
|Q′|1/d , 1

2
|Q|1/d

}
≥ 1

4
|Q′|1/d + 1

4
|Q|1/d , ∀x ∈ Q′.

By the definition of the closure �̃K and the triangle inequality, we deduce that

|x | ≥ 1

4
|Q|1/d , ∀x ∈ �̃K .

On the other hand,

|x | ≤
√
d

2
|Q0|1/d = 1

8
|Q|1/d , ∀x ∈ Q0.

Thus Q0 is disjoint with �̃K for any cluster K ⊂ Gm,1 for any m ≥ 1. Conse-
quently,

(−�)Rd ≥ (−�)s|Q0
+
∑
m≥1

∑
K⊂Gm,1

(−�)s|�̃K
.
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Hence, from (51) we conclude that if 0 ∈ Q ∈ Gn,0 for some n ≥ 1, then

〈
�,

N∑
i=1

((−�xi )
s
|Rd −

∑
m≥1

∑
K⊂Gm,1

(−�xi )
s
|�̃K

− Cs,d |xi |−2s1Q(xi ))�
〉

≥ − C

|Q|2s/d
∫
Q

ρ�. (52)

Combining (50) and (52): Since the sub-cubes in
⋃

n≥1 G
n,0 are disjoint, there

is at most one sub-cube containing 0. Therefore, by summing over all Q ∈ Gn,0,
n ≥ 1 we obtain from (50) and (52) that

〈
�,

N∑
i=1

(
(−�xi )

s
|Rd −

∑
m≥1

∑
K⊂Gm,1

(−�xi )
s
|�̃K

)
�
〉

−
∑
n≥1

∑
Q∈Gn,0

〈
�,

N∑
i=1

Cs,d |xi |−2s1Q(xi )�
〉

≥ −
∑
n≥1

∑
Q∈Gn,0

C

|Q|2s/d
∫
Q

ρ�. (53)

Step 5: Conclusion of the lower bound. Summing (49) and (53) we get

〈
�,

N∑
i=1

(
(−�xi )

s
|Rd − Cs,d |xi |−2s

)
�
〉

≥ CHGN
1 − δ

(1 + δ)2s/d

∑
n≥1

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

−
∑
n≥1

Cδ

ε2sn

( ∑
Q∈Gn,0

∫
Q

ρ� +
∑

K⊂Gn,1

∫
�̃K

ρ�

)
. (54)

Moreover, recall the exclusion bound in (32):

〈
�,

∑
1≤i< j≤N

λ

|xi − x j |2s �
〉
≥
∑
n≥1

λ

Cδε2sn

( ∑
Q∈Gn,0

∫
Q

ρ� +
∑

K⊂Gn,1

∫
�̃K

ρ�

)

Finally, we multiply (47) with δs/d , multiply (54) with (1 − δs/d), and then sum
them with the above exclusion bound. For any given δ ∈ (0, 1), we can choose
λ > 0 sufficiently large such that

λ

Cδ

≥ Cδ
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namely the interaction energy from the exclusion bound dominates the error terms
in (47) and (54). We thus obtain

〈
�,

N∑
i=1

(
(−�xi )

s
|Rd − Cs,d |xi |−2s

)
�
〉

≥ 1

Cδs/d

∑
n≥1

∑
Q⊂Gn,0

∫
Q

ρ
1+2s/d
� + CHGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

∑
n≥1

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

≥ min
{ 1

Cδs/d
,CHGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

}∑
n≥1

×
( ∑

Q⊂Gn,0

∫
Q

ρ
1+2s/d
� +

∑
K⊂Gn,1

∫
�K

ρ
1+2s/d
�

)

= min
{ 1

Cδs/d
,CHGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

} ∫
Rd

ρ
1+2s/d
� . (55)

Here in the last equality we have used the covering property (44). Thus we have
proved that for any constant δ ∈ (0, 1) and for λ > 0 sufficiently large, the optimal
constant in the Hardy–Lieb–Thirring inequality satisfies

CHLT(λ) ≥ min
{ 1

Cδs/d
,CHGN

(1 − δ)(1 − δs/d)

(1 + δ)2s/d

}
.

By taking λ → ∞ and then δ → 0, we get

lim inf
λ→∞ CHLT(λ) ≥ CHGN.

Step 6: Upper bound. To conclude, let us prove that

CHLT(λ) ≤ CHGN, λ > 0.

We construct a 2-body state as follows. Take u, v ∈ C∞
c (Rd) with ‖u‖L2(Rd ) =

‖v‖L2(Rd ) = 1. Then for any z ∈ R
d we consider the trial state

�z(x, y) = u(x)v(y − z).

It is straightforward to see that

CHLT(λ) ≤ lim|z|→∞

〈
�z,

∑2
i=1

(
(−�xi )

s
|Rd − Cs,d |xi |−2s

)
�z

〉
∫
Rd ρ

1+2s/d
�

=
〈
u,
(
(−�)s − Cs,d |x |−2s

)
u
〉
+
〈
v, (−�)sv

〉
∫
Rd |u|2(1+2s/d) + ∫

Rd |v|2(1+2s/d)
.
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Then we replace v by v�(x) = �d/2v(�x). Note that〈
v�, (−�)sv�

〉
= �2s

〈
v, (−�)sv

〉
,

∫
Rd

|v�|2(1+2s/d) = �2s
∫
Rd

|v�|2(1+2s/d).

Therefore, by taking � → 0+ we obtain

CHLT(λ) ≤ lim
�→0+

〈
u,
(
(−�)s − Cs,d |x |−2s

)
u
〉
+
〈
v�, (−�)sv�

〉
∫
Rd |u|2(1+2s/d) + ∫

Rd |v�|2(1+2s/d)

=
〈
u,
(
(−�)s − Cs,d |x |−2s

)
u
〉

∫
Rd |u|2(1+2s/d)

, ∀u ∈ C∞
c (Rd).

Optimizing over u we find that CHLT(λ) ≤ CHGN for all λ > 0.
Thus we conclude thatCHLT(λ) → CHGN as λ → ∞. This completes the proof

of Theorem 2. ��
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