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Abstract

The seminal work of DiPerna and Lions (Invent Math 98(3):511–547, 1989)
guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev
vector fields. The latter is a suitable selection of trajectories of the related ODE
satisfying additional compressibility/semigroup properties. A long-standing open
question is whether the uniqueness of the regular Lagrangian flow is a corollary of
the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s
superposition principle, we relate the latter to the uniqueness of positive solutions
of the continuity equation and we then provide a negative answer using tools in-
troduced by Modena and Székelyhidi in the recent groundbreaking work (Modena
and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce
a new class of asymmetric Lusin–Lipschitz inequalities and use them to prove the
uniqueness of positive solutions of the continuity equation in an integrability range
which goes beyond the DiPerna–Lions theory.

1. Introduction

In this paper we study positive solutions of the continuity equation

∂tρ + div (uρ) = 0 (1)

and the related systemof ordinary differential equations γ̇ (t) = u(t, γ (t)). To avoid
technicalities, we restrict our attention to periodic vector fields, i.e. u : I × T

d →
R
d , where T

d is the d-dimensional torus and I ⊂ R. In the sequel we use the
notation L d for the Lebesgue measure on the whole space Rd and on T

d .

Definition 1.1. Let u : (0, T ) × T
d → R

d be a Borel map. We say that γ ∈
AC([0, T ];Td) is an integral curve of u starting at x if γ (0) = x and γ ′(t) =
u(t, γ (t)) for a.e. t ∈ [0, T ].
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Note that in Definition 1.1 it matters how u is defined at every point: differ-
ent pointwise representatives for u might have different integral curves starting at
the same x . When u is smooth (Lipschitz) the trajectories are unique and, after
“bundling them” into a flow map X : (0, T ) × T

d → T
d , solutions of (1) can

be recovered via Liouville’s classical theorem. This fact can be elegantly encoded
using measure theory in the formula (X (t, ·))#(ρ(0, ·)L d) = ρ(t, ·)L d .1 For less
regular vector fields it is customary, after the seminal paper [2,19], to introduce
the notion of regular Lagrangian flows. The latter consists, following one of its
equivalent formulations given in [2], of a measurable selection X of integral curves
of the ODE for which X (t, ·)#L d ≤ CL d .

Definition 1.2. Let u : (0, T ) × T
d → R

d be Borel. X : [0, T ] × T
d → T

d is a
regular Lagrangian flow of u if

(i) forL d -a.e. x ∈ T
d , X (·, x) ∈ AC([0, T ];Td) is an integral curve of u starting

at x ;
(ii) there exists a constant C = C(X) satisfying X (t, ·)#L d ≤ CL d .

The pointwise definition of u matters in Definition 1.2 as well. However, it is
an outcome of the DiPerna-Lions theory that, under suitable Sobolev regularity
assumptions on u, regular Lagrangian flows exist, satisfy a semigroup property, are
unique, stable under approximations, and independent of the pointwise represen-
tative chosen for u.

Such uniqueness and stability result is sometimes inappropriately regarded as
“almost everywhere uniqueness of integral curves”, even though it is well known
among the experts that the DiPerna-Lions theory does not imply the statement “for
a.e. x there is a unique integral curve of u starting at x”. In fact whether such
“classical” uniqueness theorem holds for Sobolev vector fields is a long-standing
open question, see [19, p. 546], [2, p.231], [1, Section 2.3], [3, Open problems, sec-
tion 4]. This question has had a positive answer for specific vector fields, such as
suitable weak solutions of the Navier-Stokes system [26,27], based on estimates
of the dimension of the singular set originally due to [10]. Recently, in [11] the
authors use a suggestion of Jabin to prove almost everywhere uniqueness of the
trajectories when u ∈ C([0, T ],W 1,r (Td ,Rd)) for some r > d. One aim of this
paper is to show that in general, under the assumptions of the DiPerna-Lions theory,
the answer is negative.

Theorem 1.3. For every d ≥ 2, r < d, s < ∞ and every T > 0 there is a
divergence-free vector field u ∈ C([0, T ],W 1,r (Td ,Rd) ∩ Ls) such that the fol-
lowing holds: for every Borel map v with u = v L d+1-a.e. there is a measurable

1 The push-forward ν = (X (t, ·))#μ of a measure μ is defined through the relation

∫
ϕ(y) dν(y) =

∫
ϕ(X (t, x)) dμ(x)

for every test ϕ ∈ Cc.
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A(v) ⊆ T
d with positive Lebesgue measure such that for every x ∈ A(v) there are

at least two integral curves of v starting at x.
Moreover, given v = w = u L d+1-a.e., one has L d(A(v)�A(w)) = 0, and

for any x ∈ A(v) ∩ A(w) there are at least two integral curves of v starting at x
that are also integral curves of w.

Given [11, Theorem 5.2], the above statement covers the optimal range, except
for the endpoint r = d. In fact an improvement of the argument in [11, Theorem
5.2] allows us to prove almost everywhere uniqueness of trajectories for a function
space which shares the same scaling properties ofW 1,d , namely when Du belongs
to the Lorentz space Ld,1, see Corollary 10.1 below.

The theorem above is a consequence of Ambrosio’s superposition principle
(see [3, Theorem 3.2]) and of the following nonuniqueness result at the PDE level,
which in turn will be proved using “convex integration type” techniques borrowed
from a groundbreaking work of Modena and Székelyhidi [24,25], improved later
byModena and Sattig [23](we refer to [8,9,15,17,18,21] and the references therein
for the birth of this and related lines of research).

Theorem 1.4. Let d ≥ 2, p ∈ (1,∞), r ∈ [1,∞] be such that

1

p
+ 1

r
> 1 + 1

d
,

and denote by p′ the dual exponent of p, i.e. 1
p + 1

p′ = 1. Then for every T > 0

there exists a divergence-free vector field u ∈ C([0, T ],W 1,r (Td ,Rd)∩L p′
) and a

nonconstant ρ ∈ C([0, T ], L p(Td)) such that (1) holds with initial dataρ(0, ·) = 1
and for which ρ ≥ c0 for some positive constant c0.

Compared to the results in [24] and [23] the addition (crucial for our application)
is the positivity of the solutionρ.While it is relatively simple tomodify the approach
of Modena and Székelyhidi in [24] in order to achieve Theorem 1.4 when 1

p + 1
r >

1+ 1
d−1 , we have not been able to do the samewith the one in [23] to cover the range

1+ 1
d−1 ≥ 1

p + 1
r > 1+ 1

d . Our proof is therefore relatively different from the one
of [23] and in fact less complicated and shorter. At the technical level we introduce
suitable space-time flows which compared to the basic building blocks of [23] are
more similar to Mikado flows: in a nutshell our flows are a perturbation of point
masses traveling on a space-time line. This approach makes a part of our argument
more similar to [24], but it has the technical drawback that we need to introduce a
suitable partition of unity to discretize the time velocities of the moving particles (a
similar idea was used first in [18]). One subtle part of our proof is a combinatorial
argument to ensure that the supports of the flows are disjoint in 2 space dimensions.
Since in 3 space dimensions and higher the latter can be completely omitted and the
proof is simpler we have decided to first present the full arguments for Theorem 1.4
when d ≥ 3 and then show in Sect. 7 which modifications are necessary in the case
d = 2.

Our interest in Theorem 1.4 was triggered by the gap between the DiPerna-
Lions theory, which guarantees uniqueness for 1

p + 1
r ≤ 1, and the nonuniqueness
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results of [23–25]. In particular we are able to show that in some intermediate range
of exponents (strictly containing the DiPerna-Lions range, but not reaching the full
complement of the Modena-Sattig-Székelyhidi range) positive solutions are in fact
unique.

Theorem 1.5. Let d ≥ 2, p ∈ [1,+∞] and r ∈ [1,+∞] be such that

1

p
+ 1

r
< 1 + 1

d − 1

r − 1

r
. (2)

Let u ∈ L1([0, T ],W 1,r (Td ,Rd))be a vector field satisfying div u ∈ L∞. Then, for
p > 1, (1) admits a unique solution among all nonnegative, weakly continuous in
time densities ρ ∈ L∞([0, T ], L p(Td))with ρ(0, ·) = ρ0. When p = 1 (i.e. r > d)
uniqueness holds in the class of nonnegative weakly-star continuous densities ρ ∈
L∞([0, T ],M (Td))withρ(0, ·) = ρ0L d . In particular, any suchρ is Lagrangian,
i.e.

ρ(t, ·)L d = X (t, ·)#(ρ0L d) for every t ∈ [0, T ],

where X denotes the unique regular Lagrangian flow of Definition 1.2.

Remark 1.6. Observe that, under the above assumptions u ∈ L1([0, T ], L p′
). In-

deed, if r > d Morrey’s embedding guarantees u ∈ L1([0, 1], Lq) for every
q ∈ [1,∞] and if r ≤ d Sobolev’s embedding guarantees u ∈ L1([0, T ], Lq)

for every q < rd
d−r while (2) is equivalent to p′ <

r(d−1)
d−r .

Theorem 1.4 extends [11, Corollary 5.4], in which the case r > d has been
settled as a consequence of theL d -a.e. uniqueness result for trajectoriesmentioned
above. The proofs of the latter and of Theorem 1.5 employ all some suitable Lusin-
Lipschitz type estimates for u, an idea pioneered in [4] and [14] and which has
proved quite fruitful in different contexts (see for instance [5–7,13,16]). As it is
well known, for sufficiently regular domains � ⊂ R

d and when r ∈ (1,∞], a
Borel map u belongs to W 1,r (�,R) if and only if there is a function g ∈ Lr (�)

such that

|u(x) − u(y)| ≤ (g(x) + g(y))|x − y| for a.e. x, y. (3)

In fact g can be taken to be the classical Hardy-Littlewood maximal function of
|Du|. It seems less known (but anyway classical) that for r > d the symmetry in
(3) can be broken to show

|u(x) − u(y)| ≤ g(x)|x − y| . (4)

Theorem 1.5 is based on the idea that an appropriate symmetry-breaking is still
possible for smaller exponents r .More precisely,we have the following proposition,
which has its own independent interest:
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Proposition 1.7. Let 1 < r ≤ d be fixed. For any u ∈ W 1,r (Td) and anyα ∈ (0, r
d )

there exist a negligible set N ⊂ T
d and a nonnegative function g ∈ Lr (Td)

satisfying the inequalities

‖g‖Lr ≤ C(α, r, d)‖Du‖Lr ,
|u(x) − u(y)| ≤ |x − y|

(
g(x) + g(x)αg(y)1−α

)
for any x, y ∈ R

d\N . (5)

Moreover, we can assume N = ∅ providedwe choose an appropriate representative
of u ∈ W 1,r (Td) and there is a continuous selection W 1,r  u �→ g ∈ Lr .

A simple corollary of the latter statement is an inequality of the form |u(x) −
u(y)| ≤ (a(x) + b(y))|x − y| where one function, say b, can be taken more
integrable at the prize of giving up some integrability for the other. Theorem 1.5
follows from the extreme case where the integrability of b is maximized at the
expense of reducing the integrability of a to the bare minimum, namely L1, cf.
Corollary 9.1. We moreover show that in this case the range of exponents for b
obtained in the latter is in fact optimal.

Clearly, it is tempting to advance the conjecture that, for positive solutions of the
continuity equations, well-posedness holds in the range 1+ 1

d > 1
p + 1

r , namely the
complement of the the closure of the range of Theorem 1.4. An even more daring
conjecture is that the latter statement holds for any solution. However nothing is
known without assuming that the density is nonnegative or, as is the case of [11],
some technical property of trajectories of the ODEs. Recently, it was proved in
[12] that the complement of the Di Perna Lions range, namely 1 > 1

p + 1
r can be

reached at the price of diminishing the integrability in time of both the solution
and the vector field to L1. This leaves open the question in our setting, or in the
intermediate setting in which the density is L∞ in time (a natural assumption in
applications) while the gradient of the vector field is only L1 (a natural assumption
in the theory of the continuity equation, where positive existence results require the
spacetime integral of |ρ||Du| to be finite).

2. Iteration and Continuity-Reynolds System

As in [24] we consider the following system of equations in [0, T ] × T
d

⎧⎪⎨
⎪⎩

∂tρq + div (ρquq) = −div Rq

div uq = 0.

(6)

We then fix three parameters a0, b > 0 and β > 0, to be chosen later only in terms
of d, p, r , and for any choice of a > a0 we define

λ0 = a, λq+1 = λbq and δq = λ−2β
q .
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The next proposition builds a converging sequence of functions with the inductive
estimates

max
t

‖Rq (t, ·)‖L1 ≤ δq+1 (7)

max
t

(
‖ρq (t, ·)‖C1 + ‖∂tρq (t, ·)‖C0 + ‖uq (t, ·)‖W 1,p′ + ‖uq (t, ·)‖W 2,r + ‖∂t uq (t, ·)‖L1

)

≤ λα
q , (8)

where α is yet another positive parameter which will be specified later.

Proposition 2.1. There exist α, b, a0, M > 5, 0 < β < (2b)−1 such that for every
a ≥ a0, if (ρq , uq , Rq) solves (6) and enjoys the estimates (7), (8), then there exist
(ρq+1, uq+1, Rq+1) which solves (6), enjoys the estimates (7), (8) with q replaced
by q + 1 and also the following properties:

(a) maxt [‖(ρq+1−ρq)(t, ·)‖p
L p+‖(uq+1−uq)(t, ·)‖rW 1,r +‖(uq+1−uq)(t, ·)‖p′

L p′ ] ≤
Mδq+1

(b) inf(ρq+1 − ρq) ≥ −δ
1/p
q+1

(c) if for some t0 > 0 we have that ρq(t, ·) = 1, Rq(t, ·) = 0 and uq(t, ·) = 0 for
every t ∈ [0, t0], then ρq+1(t, ·) = 1, Rq+1(t, ·) and uq+1(t, ·) = 0 for every
t ∈ [0, t0 − λ−1−α

q ].
Compared to [24] we are using a slightly different notation and a more specific

choice of the parameters. None of that is however substantial: the really relevant
differences are in estimate (b) and in the range of exponents, which is the same
as the one in [23]. In the same range of exponents of [24] the positivity could be
achieved by a slight tweak in the approach of [24]. However we have not been able
to find a similar modification of the arguments of [23]. For this reason our proof
of Proposition 2.1 differs from both that of [24] and that of [23]. However we still
make use of some crucial discoveries in [24] and we will refer to that paper for the
proofs of some relevant lemmas. From now on, in order to simplify our notation,
for any function space X and any map f which depends on t and x , we will write
‖ f ‖X meaning maxt ‖ f (t, ·)‖X .

3. Preliminary Lemmas

3.1. Geometric Lemma

We start with an elementary geometric fact, namely that every vector inRd can
be written as a “positive” linear combination of elements in a suitably chosen finite
subset  ofQd ∩ ∂B1. This is reminiscent of the geometric lemma in [18]. In both
[24] and [23] the positivity of the coefficients is not needed and hence the authors
can choose  as the standard basis of Rd .

Lemma 3.1. There exists a finite set {ξ}ξ∈ ⊆ ∂B1 ∩Q
d and smooth nonnegative

coefficients aξ (R) such that for every R ∈ ∂B1

R =
∑
ξ∈

aξ (R)ξ .
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Proof. For each vector v consider a collection (v) = {ξ1(v), . . . , ξd(v)} ⊂ ∂B1
of linearly independent unit vectors inQd with the property that the d-dimensional
open symplex �(v) with vertices 0, 2ξ1(v), . . . , 2ξd(v) contains v. Since {�(v) :
v ∈ ∂B1} is an open cover of ∂B1, we consider a finite subcover and the corre-
sponding collections 1 = (v1), . . . , (vN ), each one consisting of the d unit
vectors {ξ j,1, ...ξ j,d}. We set

 =
N⋃
j=1

 j = {
ξ j,i : 1 ≤ j ≤ N , 1 ≤ i ≤ d

}
.

For each fixed j each vector R ∈ R
d can be written in a unique way as linear

combination of the vectors ξ j,1, . . . ξ j,d . If we denote by b j,i (R) the corresponding
coefficients (which obviously depend linearly on R), then the latter are all strictly
positive if R belongs to �(v j ). We consider a partition of unity χ j on the unit
sphere ∂B1 associated to the cover {�(v j )} and for every ξ j,i = ξ ∈  we set

aξ (R) := χ j (R)b j,i (R).

The coefficients aξ are then smooth nonnegative functions of R.

Remark 3.2. With Lemma 3.1 at hand, it is easy to generate a finite number of
disjoint families (1), ..., (k) where each one enjoys the property of Lemma 3.1:
it is enough to take suitable rational rotations of one fixed set .

3.2. Antidivergences

We recall that the operator ∇�−1 is an antidivergence when applied to smooth
vector fields of 0 mean. As shown in [24, Lemma 2.3] and [23, Lemma 3.5],
however, the following lemma introduces an improved antidivergence operator, for
functions with a particular structure:

Lemma 3.3. (Cp. with [23, Lemma 3.5]) Let λ ∈ N and f, g : T
d → R be

smooth functions, and gλ = g(λx). Assume that
∫
g = 0. Then if we setR( f gλ) =

f ∇�−1gλ − ∇�−1(∇ f · ∇�−1gλ + ∫
f gλ), we have that divR( f gλ) = f gλ −∫

f gλ and, for some C := C(k, p),

‖DkR( f gλ)‖L p ≤ Cλk−1‖ f ‖Ck+1‖g‖Wk,p for every k ∈ N, p ∈ [1,∞]. (9)
Proof. It is enough to combine [23, Lemma 3.5] and the remark in [23, page 12].

3.3. Slow and Fast Variables

Finally we recall the following improved Hölder inequality, stated as in [24,
Lemma 2.6] (see also [9, Lemma 3.7]): if λ ∈ N and f, g : Td → R are smooth
functions, then we have

‖ f (x)g(λx)‖L p ≤ ‖ f ‖L p‖g‖L p + C(p)
√
d‖ f ‖C1‖g‖L p

λ1/p
(10)
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and ∣∣∣
∫

f (x)g(λx) dx
∣∣∣ ≤

∣∣∣
∫

f (x)
(
g(λx) −

∫
g
)
dx

∣∣∣ +
∣∣∣
∫

f
∣∣∣ ·

∣∣∣
∫

g
∣∣∣

≤
√
d‖ f ‖C1‖g‖L1

λ
+

∣∣∣
∫

f
∣∣∣ ·

∣∣∣
∫

g
∣∣∣. (11)

4. Building Blocks

Let 0 < ρ < 1
4 be a constant . We consider ϕ ∈ C∞

c (Bρ) and ψ ∈ C∞
c (B2ρ)

which satisfy ∫
ϕ = 1, ϕ ≥ 0, ψ ≡ 1 on Bρ.

Given 1 � μ we define the 1-periodic functions

ϕ̄μ(x) :=
∑
k∈Zd

μd/pϕ(μ(x + k))

ψ̄μ(x) :=
∑
k∈Zd

μd/p′
ψ(μ(x + k)) .

Let ω : R
d → R be a smooth 1-periodic function such that ω(x) = x · ξ ′ on

B2ρ(0).
Given as in Lemma 3.1, for any ξ ∈ we chose ξ ′ ∈ ∂B1 such that ξ ·ξ ′ = 0

and we define

�
μ
ξ (x) := μ−1ω(μ x)(ξ ⊗ ξ ′ − ξ ′ ⊗ ξ).

Notice that div�
μ
ξ is divergence free since �

μ
ξ is skew-symmetric and div�

μ
ξ = ξ

on supp(ψ̄μ) and supp(ϕ̄μ).
For σ > 0 we set

W̃ξ,μ,σ (t, x) := σ 1/p′
div

[
(�

μ
ξ ψ̄μ)(x − μd/p′

σ 1/p′
tξ)

]

�̃ξ,μ,σ (t, x) := σ 1/pϕ̄μ(x − μd/p′
σ 1/p′

tξ) .

Notice that W̃ξ,μ,σ is divergence free since it is also the divergence of the skew-
symmetric matrix �

μ
ξ ψ̄μ. By construction we have

W̃ξ,μ,σ (t, x) = σ 1/p′ [
ψ̄μξ + �

μ
ξ · ∇ψ̄μ

]
(x − μd/p′

σ 1/p′
tξ),

hence the following properties are easily verified:

Lemma 4.1. We have

∂t�̃ξ,μ,σ + div (W̃ξ,μ,σ �̃ξ,μ,σ ) = 0,

div W̃ξ,μ,σ = 0, (12)∫
W̃ξ,μ,σ = 0, (13)
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W̃ξ,μ,σ �̃ξ,μ,σ (t, x) = σμd/p′
ϕ̄μ(x − μd/p′

σ 1/p′
tξ)ξ , in particular,

∫
W̃ξ,μ,σ �̃ξ,μ,σ = σξ

∫
ϕ = σξ. (14)

For any k ∈ N and any s ∈ [1,∞] one has

‖Dk�̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ 1/pμk+d(1/p−1/s),

‖∂kt �̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ
1+ k−1

p′ μ
k+d( k−1

p′ +1− 1
s )

(15)

‖DkW̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ 1/p′
μk+d(1/p′−1/s),

‖∂kt W̃ξ,μ,σ ‖Ls ≤ C(d, k, s)σ
k+1
p′ μ

k+d( k+1
p′ − 1

s )
. (16)

Finally, supp�ξ,μ,σ ∪ suppWξ,μ,σ ⊆ {(x, t) : x − μd/p′
σ 1/p′

tξ ∈ B2ρμ−1 + Z
d}

and the support in space is contained in a periodized cylinder

{
x : W̃ξ,μ,σ (x, t) �= 0 or �̃ξ,μ,σ (x, t) �= 0 for some t ≥ 0

}
⊆ B2ρμ−1 + Rξ + Z

d . (17)

In our construction ξ will take values in a finite set of ξ ’s, which will be fixed
throughout the iteration, i.e. it is independent of the step q in Proposition 2.1.
The parameter σ will also vary in a finite set, but the cardinality of the latter will
depend (and in fact diverge to infinity) on the iteration step q. In dimension d ≥ 3
we consider suitable translations of W̃ξ,μ,σ and �̃ξ,μ,σ which guarantee that, as ξ

varies in these fixed set of directions, pairs of (W̃ , �̃)with distinct ξ ’s have disjoint
supports. The precise statement is given in the following lemma:

Lemma 4.2. Let d ≥ 3 and  ⊆ S
d−1 ∩ Q be a finite number of vectors. Then

there exists μ0 := μ0(d,) > 0 and a family of vectors {vξ }ξ∈ ⊆ R
d such that

the periodized cylinders vξ + B2ρμ−1 + Rξ + Z
d are disjoint as ξ varies in ,

provided μ ≥ μ0.

Proof. Set �(v, ξ) := v + Rξ + Z
d . It is enough to find {vξ }ξ∈ ⊂ R

d such
that �(vξ , ξ) ∩ �(vξ ′ , ξ ′) = ∅ whenever ξ �= ξ ′. This claim follows from a simple
induction argument along with the observation that

L d(Rd\{v′ ∈ R
d : �(v, ξ) ∩ �(v′, ξ ′) = ∅}) = 0

for any v ∈ R
d and any ξ, ξ ′ ∈ S

d−1 ∩ Q
d , ξ �= ξ ′. (18)

To verify (18) we notice that �(v, ξ) ∩ �(v′, ξ ′) = ∅ if and only if for every
s, t ∈ R, k ∈ Z

d the inequality v′ − v �= tξ − sξ ′ + k holds. In particular any
v′ = v + αξ + βξ ′ + γ ξ ′′ with α, β ∈ R, γ ∈ R\Q and ξ ′′ ∈ Q

d\{0} orthogonal
to ξ and ξ ′, has this property. Indeed, if we assume by contradiction the existence
of s, t, k, α, β, γ, ξ ′′ as above such that αξ + βξ ′ + γ ξ ′′ = tξ − sξ ′ + k we get
γ |ξ ′′|2 = k · ξ ′′ ∈ Q that contradicts γ ∈ R\Q and ξ ′′ ∈ Q

d\{0}.
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By the previous lemma and by (17)we notice that, if we consider the translations
of

Wξ,μ,σ (t, x) = W̃ξ,μ,σ (t, x − vξ ), �̃ξ,μ,σ (t, x) = �̃ξ,μ,σ (t, x − vξ )

for ξ in a suitable finite set of directions, these functions satisfy the same properties
as in Lemma 4.1 (with the exception of the description of the support, which is now
translated) and moreover they have disjoint support for μ sufficiently large and for
every σ . Notice finally that in fact both μ and σ could vary for different ξ and the
supports would still remain disjoint, as long as μ(ξ) is larger than μ0 for every ξ .

The latter approach is clearly not feasible in dimension d = 2. In that case
we will need to take advantage of the discreteness in the parameter σ as well.
As already mentioned this is more delicate, since the set of values taken by σ

depends on the step q. At each step q we need to choose rather carefully the set
of parameters σ which enter the construction: for distinct values of σ we need to
ensure that their ratio is not too close to 1, compared to the size ofμ−1. The relevant
statements depend thus on how the building blocks enter in the definition of the
maps (uq+1, ρq+1, Rq+1). For this reason we detail next the definition of the maps
when d ≥ 3 and show first how to prove Proposition 2.1 in that case. We then give
a detailed description on how to modify the arguments to handle the case d = 2.

5. Iteration Scheme

5.1. Choice of the Parameters

We define first the constant

γ :=
(
1 + 1

p

) (
min

{ d
p
,
d

p′ ,−1 − d
( 1

p′ − 1

r

)})−1

> 0,

where we have used, crucially, that

−1 − d
( 1

p′ − 1

r

)
= d

(
1

p
+ 1

r
− 1 − 1

d

)
> 0 .

Notice that, up to enlarging r , we can assume that the quantity in the previous line
is less than 1/2, namely that γ > 2. Hence we set α := 4 + γ (d + 1),

b := max{p, p′}(3(1 + α)(d + 2) + 2),

and

β := 1

2b
min

{
p, p′, r, 1

b + 1

}
= 1

2b(b + 1)
. (19)

Finally,we choose a0 andM sufficiently large (possibly depending on all previously
fixed parameters) to absorb numerical constants in the inequalities. We set

� := λ−1−α
q , (20)

μq+1 := λ
γ
q+1. (21)
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5.2. Convolution

We first perform a convolution of ρq and uq to have estimates on more than
one derivative of these objects and of the corresponding error. Let φ ∈ C∞

c (B1) be
a standard convolution kernel in space-time, � as in (20) and define

ρ� := ρq ∗ φ�, u� := uq ∗ φ�, R� := Rq ∗ φ�, (ρquq)� := (ρquq) ∗ φ�.

We observe that (ρ�, u�, R� + (ρquq)� − ρ�u�) solves system (6) and by (7), (19)
enjoys the following estimates:

‖R�‖L1 ≤ δq+1,

‖ρ� − ρq‖L p ≤ C�‖ρq‖C1 ≤ C�λα
qC ≤ Cδ

1/p
q+1,

‖u� − uq‖L p′ ≤ C�λα
q ≤ Cδ

1/p′
q+1 ,

‖u� − uq‖W 1,r ≤ C�λα
q ≤ Cδ

1/r
q+1 . (22)

Indeed note that by (19)

�λα
q = λ−1

q = δ
1

2bβ
q+1 ≤ δ

max{1/p,1/p′,1/r}
q+1 .

Next observe that

‖∂N
t ρ�‖C0 + ‖ρ�‖CN + ‖u�‖W 1+N ,r + ‖∂N

t u�‖W 1,r

≤ C(N )�−N+1(‖ρq‖C1 + ‖uq‖W 2,r )

≤ C(N )�−N+1λα
q

for every N ∈ N\{0}. Using the Sobolev embedding Wd,r ⊂ Wd,1 ⊂C0 we then
conclude

‖∂N
t u�‖C0 + ‖u�‖CN ≤ C(N )�−N−d+2λα

q .

By Young’s inequality we estimate the higher derivatives of R� in terms of ‖Rq‖L1

to get

‖R�‖CN + ‖∂N
t R�‖C0 ≤ ‖DNρ�‖L∞‖Rq‖L1 ≤ C(N )�−N−d

≤ C(N )λ(1+α)(d+N )
q (23)

for every N ∈ N. Finally, for the last part of the error we show below that

‖(ρquq)� − ρ�u�‖L1 ≤ C�2λ2αq ≤ 1

4
δq+2, (24)

(where we have assumed that a is sufficiently large). The claim follows a well-
known bilinear trick used often and originating (at least in the context of fluid
dynamics) from the proof of Constantin, E and Titi of the positive part of the
Onsager conjecture. We include a proof for the reader’s convenience.
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Lemma 5.1. Consider a mollification kernel φ compactly supported in time and
space. Then there is a constant C = C(φ) such that for every smooth functions u
and ρ depending on time and space

‖(uρ) ∗ φ� − u ∗ φ� ρ ∗ φ�‖L1

≤ C�2
(‖∂t u‖L1 + ‖Du‖L1

) (‖Dρ‖C0 + ‖∂tρ‖C0
)

.

Proof. To simplify our notation we introduce the variable z = (x, t) and set � :=
(uρ)∗φ�−u∗φ� ρ∗φ�. Assumewithout loss of generality that supp(φ) ⊂ Bd+1

1 ⊆
R
d+1. Simple computations lead to the formula

�(z) := 1

2

∫ ∫
(u(z − z′) − u(z − z′′))(ρ(z − z′) − ρ(z − z′′))φ�(z

′)φ�(z
′′) dz′ dz′′ ,

which in turn implies that

|�(z)| ≤ C�−2d−1‖Dzρ‖C0

∫
Bd+1

�

∫
Bd+1

�

|u(z − z′) − u(z − z′′)| dz′ dz′′ .

Using |u(z − z′) − u(z − z′′)| ≤ |u(z − z′) − u(z)| + |u(z) − u(z − z′′)| and
integrating in the space variable x we reach

‖�(t, ·)‖L1 ≤ C�−d‖Dzρ‖C0

∫
Bd+1

�

∫
|u(t − t ′, x − x ′) − u(t, x)| dx dt ′ dx ′ .(25)

We then use |u(t − t ′, x − x ′)−u(t, x)| ≤ |u(t − t ′, x − x ′)−u(t − t ′, x)|+ |u(t −
t ′, x) − u(t, x)| and estimate separately

∫
Bd+1

�

∫
|u(t − t ′, x − x ′) − u(t − t ′, x)| dx dt ′ dx ′ ≤ C�d+2‖Du‖L1

and
∫

Bd+1
�

∫
|u(t − t ′, x) − u(t, x)| dx dt ′ dx ′ ≤ C�d+2‖∂t u‖L1

Combining these last estimates with (25) we infer the desired conclusion.

5.3. Definition of the Perturbations

Letμq+1 > 0 be as in (21) and let χ ∈ C∞
c (− 3

4 ,
3
4 ) such that

∑
n∈Z χ(τ −n) =

1 for every τ ∈ R. Let χ̄ ∈ C∞
c (− 4

5 ,
4
5 ) be a nonnegative function satisfying χ̄ = 1

on [− 3
4 ,

3
4 ]. Notice that

∑
n∈Z χ̄ (τ − n) ∈ [1, 2] and χ · χ̄ = χ .

Fix a parameter κ = 20
δq+2

and consider twodisjoint sets1,2 as inLemma3.1.
Next, define [i] to be 1 or 2 depending on the congruence class of i . Finally, consider
the building blocks introduced in Sect. 4 in such a way that, for ξ ∈ ∪2

i=1
i , their
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spatial supports are disjoint. We define the new density and vector field by adding
to ρ� and u� a principal term and a smaller corrector, namely we set

ρq+1 := ρ� + θ
(p)
q+1 + θ

(c)
q+1 ,

uq+1 := u� + w
(p)
q+1 + w

(c)
q+1 .

The principal perturbations are given, respectively, by

w
(p)
q+1(t, x) =

∑
n≥12

χ̄(κ|R�(t, x)| − n)
∑

ξ∈[n]
Wξ,μq+1,n/κ (λq+1t, λq+1x),

θ
(p)
q+1(t, x) =

∑
n≥12

χ(κ|R�(t, x)| − n)

∑
ξ∈[n]

aξ

(
R�(t, x)

|R�(t, x)|
)

�ξ,μq+1,n/κ (λq+1t, λq+1x) ,

where we understand that the terms in the second sum are all 0 at points where R�

vanishes. In the definition of w(p) and θ(p) the first sum runs for n in the range

12 ≤ n ≤ 10C�−dδ−1
q+2 ≤ Cλd(1+α)+2βb2

q ≤ Cλd(1+α)+1
q . (26)

Indeed χ(κ|R�(t, x)| − n) = 0 if n ≥ 20δ−1
q+2‖R�‖C0 + 1 and by (23) we obtain

an upper bound for n.
The aim of the corrector term for the density is to ensure that the overall addition

has zero average:

θ
(c)
q+1 := −

∫
θ

(p)
q+1(t, x) dx .

The aim of the corrector term for the vector field is to ensure that the overall
perturbation has zero divergence. Thanks to (13), we can apply Lemma 3.3 to
define

w
(c)
q+1 := −

∑
n≥12

∑
ξ∈[n]

R [∇χ̄ (κ|R�(t, x)| − n) · Wξ,μq+1,n/κ (λq+1t, λq+1x)
]
.

Moreover, sinceWξ,μq+1,n/κ is divergence-free, the argument insideRhas 0 average
for every t ≥ 0.

Notice finally that the perturbation equals 0 on every time slice where R� van-
ishes identically.

6. Proof of the Proposition 2.1 in the Case d ≥ 3

Before coming to the main arguments, we record some straightforward esti-
mates for the “slowly varying coefficients”.
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Lemma 6.1. For m ∈ N, N ∈ N\{0} and n ≥ 2 we have

‖∂mt χ(κ|R�| − n)‖CN + ‖∂mt χ̄ (κ|R�| − n)‖CN

≤ C(m, N )δ
−2(N+m)
q+2 �−(N+m)(1+d) ≤ C(m, N )λ(N+m)(d+2)(1+α)

q

‖∂mt (aξ (
R�|R�| ))‖CN

≤ C(m, N )δ−N−m
q+2 �−(N+m)(1+d) ≤ C(m, N )λ(N+m)(d+2)(1+α)

q

on {χ(κ|R�| − n) > 0}.

6.1. Estimate on ‖θq+1‖L p and on infTd θq+1

We apply the improved Hölder inequality of (10), Lemma 6.1 and (26) to get

‖θ(p)
q+1‖L p ≤

∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�(t, x)| − n)aξ

(
R�(t,x)|R�(t,x)|

)
‖L p

‖�ξ,μq+1,n/κ (λq+1t, λq+1x)‖L p

+ 1

λ
1/p
q+1

∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�(t, x)| − n)aξ

(
R�(t,x)|R�(t,x)|

)
‖C1

‖�ξ,μq+1,n/κ (λq+1t, λq+1x)‖L p

≤ C
∑
n≥12

‖(n/k)1/pχ(κ|R�(t, x)| − n)‖L p

+ Cλ
−1/p
q+1 δ

1/p
q+2λ

(d+2)(1+α)+(1+1/p)((d(1+α)+1))
q

≤ C‖R�‖1/pL1 + Cλ
−1/p
q+1 δ

1/p
q+2λ

3(d+2)(1+α)
q

≤ Cδ
1/p
q+1,

(27)

provided that in the second last inequality we use (d+2)(1+α)+(1+1/p)((d(1+
α) + 1)) ≤ 3(1 + α)(d + 2) and in the last inequality we use (22).

Next, by means of (11) applied to the λ−1
q+1-periodic function (�ξ,μq+1,n/κ

(λq+1t, λq+1x), by (15) (precisely ‖�ξ,μq+1,n/κ‖L1 ≤ ( n
κ
)1/pμ

−d/p′
q+1 ), Lemma 6.1

and (26), we estimate

|θ(c)
q+1(t)| ≤ Cλ−1

q+1

∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖C1‖�ξ,μq+1,n/κ‖L1

+
∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖L1‖�ξ,μq+1,n/κ‖L1

≤ Cλ−1
q+1μ

−d/p′
q+1 λ3(1+α)(d+2)

q

+ Cμ
−d/p′
q+1

∑
n≥12

‖χ((n/κ)1/pκ|R�| − n)aξ

(
R�|R�|

)
‖L1

≤ 1

2
δ
1/p
q+1 + μ

−d/p′
q+1 ‖R�‖1/pL1 ≤ δ

1/p
q+1.
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From the latter inequality, since θ
(p)
q+1 is nonnegative, we also deduce that

inf
Td

θq+1(t) ≥ −θ
(c)
q+1(t) ≥ −δ

1/p
q+1 ,

namely Statement (b) of Proposition 2.1.

6.2. Estimate on ‖wq+1‖L p′ and on ‖Dwq+1‖Lr

Exactly with the same computation as in (27), replacing p with p′, we have
that

‖w(p)
q+1‖L p′ ≤ C‖R�‖1/p

′
L1 + Cλ

−1/p′
q+1 δ

1/p′
q+2λ

3(d+2)(1+α)
q ≤ Cδ

1/p′
q+1 .

Concerning the corrector term w
(c)
q+1, we use (16) (precisely ‖Wξ,μq+1,n/κ‖L p′ ≤

( n
κ
)1/p

′ ≤ λ
(d+2)(1+α)
q ) Lemma 3.3 and (26) to get

‖w(c)
q+1‖L p′ ≤ 1

λq+1

∑
n≥12

∑
ξ∈[n]

‖χ̄ (κ|R�| − n)‖C2‖Wξ,μq+1,n/κ‖L p′

≤ Cλ−1
q+1

∑
n≥12

λ2(d+2)(1+α)
q (n/κ)1/p

′

≤ Cλ−1
q+1δ

1/p′
q+2λ

4(d+2)(1+α)
q ≤ δ

1/p′
q+2 ≤ δ

1/p′
q+1 .

(28)

Computing the gradient of w
(p)
q+1 and combining Lemma 6.1 with (16) we have

‖Dw
(p)
q+1‖Lr ≤

∑
n≥12

∑
ξ∈[n]

‖χ̄ (κ|R�| − n)‖C1‖Wξ,μq+1,n/κ‖Lr

+
∑
n≥12

∑
ξ∈[n]

λq+1‖DWξ,μq+1,n/κ‖Lr

≤ Cδ
1/p′
q+2λ

3(1+α)(d+2)+2+bγ d(1/p′−1/r)
q

+ Cδ
1/p′
q+2λ

b+3(1+α)(d+2)+bγ (1+d(1/p′−1/r))
q

≤ δ
1/p′
q+2 ≤ δ

1/r
q+1.

Concerning the corrector, by Lemma 3.3 and computations similar to those above,

‖Dw
(c)
q+1‖Lr ≤ C

∑
n≥12

∑
ξ∈[n]

‖χ̄ (κ|R�| − n)‖C3‖Wξ,μq+1,n/κ‖Lr

≤ Cδ
1/p′
q+2λ

5(1+α)(d+2)
q μ

d( 1r − 1
p′ )

q+1 ≤ δ
1/p′
q+2λ

5(1+α)(d+2)−b(1+1/p)
q

≤ δ
1/r
q+1.
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6.3. New Error Rq+1

By definition the new error Rq+1 must satisfy

−div Rq+1 = ∂tρq+1 + div (ρq+1uq+1)

= div (θ
(p)
q+1w

(p)
q+1 − R�) + ∂tθ

(p)
q+1 + ∂tθ

(c)
q+1

+ div (θ
(p)
q+1u� + ρ�wq+1 + θ

(p)
q+1w

(c)
q+1) + div ((ρquq)� − ρ�u�)

(29)

In the second equality abovewe have used that (ρ�, u�, R�+(ρquq)�−ρ�u�) solves

(6), that div u� = divwq+1 = 0, and that θ(c)
q+1 is constant in space.

Let us write

∂tθ
(p)
q+1 =

∑
n≥12

∑
ξ∈[n]

χ(κ|R�| − n)aξ

(
R�|R�|

)
∂t

[
�ξ,μq+1,n/κ (λq+1t, λq+1x)

]

+
∑
n≥12

∑
ξ∈[n]

∂t

[
χ(κ|R�| − n)aξ

(
R�|R�|

)]
�ξ,μq+1,n/κ (λq+1t, λq+1x)

=: (∂tθ
(p)
q+1)1 + (∂tθ

(p)
q+1)2,

by using that �ξ,μq+1,n/κ and Wξ,μq+1,n/κ solve the transport equation (12) and
Lemma 3.1 we get the cancellation of the error R� up to lower order terms

div (θ
(p)
q+1w

(p)
q+1) + (∂tθ

(p)
q+1)1 − div R�

=
∑
n≥12

∑
ξ∈[n]

∇
[
χ(κ|R�| − n)aξ

(
R�|R�|

)]

× (�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − div R�

+
∑
n≥12

∑
ξ∈[n]

χ(κ|R�| − n)aξ

(
R�|R�|

)
λq+1

× [
∂t�ξ,μq+1,n/κ + div (�ξ,μq+1,n/κWξ,μq+1,n/κ )

]
(λq+1t, λq+1x)

=
∑
n≥12

∑
ξ∈[n]

∇
[
χ(κ|R�| − n)aξ

(
R�|R�|

)]

×
[
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − n

κ
ξ
]

+
∑
n≥12

∑
ξ∈[n]

∇
[
χ(κ|R�| − n)aξ

(
R�|R�|

)] n

κ
ξ − div R�

=
∑
n≥12

∑
ξ∈[n]

∇
[
χ(κ|R�| − n)aξ

(
R�|R�|

)]

×
[
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − n

κ
ξ
]

+ div (R̃� − R�), (30)

where

R̃� :=
∑
n≥12

χ(κ|R�| − n)
R�

|R�|
n

k
.
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We have

|R� − R̃�| ≤
∣∣∣

11∑
n=−1

χ(κ|R�| − n)R�

∣∣∣ +
∣∣∣ ∑
n≥12

χ(κ|R�| − n)

(
R�

|R�|
n

k
− R�

) ∣∣∣

≤ 13

κ
+

∑
n≥12

χ(κ|R�| − n)

∣∣∣|R�| − n

κ

∣∣∣

≤ 13

20
δq+2 + 3

40
δq+2 ≤ 15

20
δq+2. (31)

We can now define Rq+1 which satisfies (29) as

−Rq+1 :=Rquadr + (R̃� − R�) + Rtime + θ
(p)
q+1u� + ρ�wq+1 + θ

(p)
q+1w

(c)
q+1

+ [(ρquq)� − ρ�u�],
where

Rquadr :=
∑
n≥12

∑
ξ∈[n]

R
[
∇

(
χ(κ|R�| − n)aξ

(
R�|R�|

))

·
(
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − n

κ
ξ
)]

,

Rtime := ∇�−1((∂tθ
(p)
q+1)2 + ∂tθ

(c)
q+1 + m),

m :=
∑
n≥12

∑
ξ∈[n]

∫
∇

[
χ(κ|R�| − n)aξ

(
R�|R�|

)]

×
[
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − n

κ
ξ
]
dx .

Notice that Rquadr is well defined since by (14) the function
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x)− n

κ
ξ has 0 mean. We now estimate in L1

each term in the definition of Rq+1. From the second equality in (29) and since

the average of (∂tθ
(p)
q+1)2 is m by integration by parts, we deduce that (∂tθ

(p)
q+1)2 +

∂tθ
(c)
q+1 + m has 0 mean, so that Rtime is well defined. Recall that the estimate on

‖(ρquq)� − ρ�u�‖L1 has been already established in (24).
By the property (9) of the antidivergence operator R, Lemma 6.1 and (26) we

have

‖Rquadr‖L1 ≤ C

λq+1

∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖C2

× ‖�ξ,μq+1,n/κWξ,μq+1,n/κ‖L1

≤ Cδq+2
λ
4(1+α)(d+2)+2
q

λq+1
≤ δq+2

20
.

To estimate the terms which are linear with respect to the fast variables, we take
advantage of the concentration parameterμq+1. First of all, by Calderon-Zygmund
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estimates we get

‖Rtime‖L1 ≤ C‖(∂tθ(p)
q+1)2 + ∂tθ

(c)
q+1 − m‖L1 ≤ ‖(∂tθ(p)

q+1)2‖L1 + |∂tθ(c)
q+1| + |m|.

Next, notice that

‖(∂tθ(p)
q+1)2‖L1 ≤ C

∑
n≥12

∑
ξ∈[n]

‖∂t
[
χ(κ|R�| − n)aξ

(
R�|R�|

)]‖C0‖�ξ,μq+1,n/κ‖L1

≤ Cδ
1/p
q+2λ

3(1+α)(d+2)
q μ

−d/p′
q+1 ≤ δq+2

20
. (32)

From (32), (12) and (11) we get

|∂tθ(c)
q+1| + |m|

≤ ‖(∂tθ(p)
q+1)2‖L1

+
∣∣∣∣∣∣
∑
n≥12

∑
ξ∈[n]

∫
χ(κ|R�| − n)aξ

(
R�|R�|

)
∂t

[
�ξ,μq+1,n/κ (λq+1t, λq+1x)

]
dx

∣∣∣∣∣∣
+ |m|

≤ δq+2

20

+
∣∣∣∣∣∣
∑
n≥12

∑
ξ∈[n]

∫
χ(κ|R�| − n)aξ

(
R�|R�|

)
div

× [
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x)

]
dx

∣∣ + |m|

= δq+2

20
+ 2

∣∣∣∣∣∣
∑
n≥12

∑
ξ∈[n]

∫
∇

[
χ(κ|R�| − n)aξ

(
R�|R�|

)]

·
[
(�ξ,μq+1,n/κWξ,μq+1,n/κ )(λq+1t, λq+1x) − n

k
ξ
]
dx

∣∣∣
≤ δq+2

20
+ 2

√
d

λq+1

∑
n≥12

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖C2

‖�ξ,μq+1,n/κWξ,μq+1,n/κ‖L1

≤ δq+2

20
+ Cλ−1

q+1δq+2λ
4(1+α)(d+2)
q ≤ 1

10
δq+2.

Similarly, we have that

‖θ(p)
q+1u� + ρ�w

(p)
q+1‖L1 ≤ ‖θ(p)

q+1‖L1‖u�‖L∞ + ‖ρ�‖L∞‖w(p)
q+1‖L1

≤
∑
n≥10

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖L∞‖�ξ,μq+1,n/κ‖L1‖u�‖L∞

+ ‖ρ�‖L∞‖χ̄ (κ|R�| − n)‖L∞‖Wξ,μq+1,n/κ‖L1

≤ Cδ
1/p
q+2λ

2(1+α)(d+2)
q μ

−d/p′
q+1 + Cδ

1/p′
q+2λ

2(1+α)(d+2)
q μ

−d/p
q+1 ≤ δq+2

20
.
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In the last inequality we used 2βb2 ≤ 1, the definition of γ , and b(1 + 1/p) ≥
2(1 + α)(d + 2) + 1.

Finally, from (27) and (28)

‖(ρ� + θ
(p)
q+1)w

(c)
q+1‖L1 ≤ (‖ρ�‖C1 + ‖θ(p)

q+1‖L p )‖w(c)
q+1‖L p′

≤ Cλ4(1+α)(d+2)+α
q λ−1

q+1 ≤ 1

20
δq+2.

6.4. Estimates on Higher Derivatives

By the choice of α, since in particular α ≥ 2 + γ (d + 1), we have that

‖ρq+1‖C1 ≤ ‖ρ�‖C1 + ‖θq+1‖C1

≤ ‖ρq‖C1 +
∑
n≥10

∑
ξ∈[n]

‖χ(κ|R�| − n)aξ

(
R�|R�|

)
‖C1

‖�ξ,μq+1,n/κ (λq+1x)‖C1

≤ Cλα
q + Cλ3(1+α)(d+2)

q λq+1μ
1+d/p
q+1 ≤ λα

q+1.

Anentirely similar estimate is valid for ‖∂tρq+1‖C0 and the one for ‖u�+w
(p)
q+1‖W 2,r

is analogous. Concerning w
(c)
q+1, we use Lemma 3.3 and (26)

‖w(c)
q+1‖W 2,r ≤

∑
n≥12

∑
ξ∈[n]

λq+1‖χ̄ (κ|R�| − n)‖C4‖Wξ,μq+1,n/κ‖W 2,r

≤ Cλ6(1+α)(d+2)
q λ2q+1μ

2+d(1/p′−1/r)
q+1 ≤ λα

q+1.

It remains just to estimate

‖∂t uq‖L1 ≤ ‖∂t u�‖L1 + ‖∂tw(p)
q+1‖L1 + ‖∂tw(c)

q+1‖L1 .

From (16) and Lemma 6.1

‖∂tw(p)
q+1‖L1 ≤

∑
n≥12

∑
ξ∈[n]

λq+1‖∂tWξ,μq+1,n/κ‖L1

+ ‖∂t χ̄ (κ|R�| − n)‖L∞‖Wξ,μq+1,κ/n‖L1

≤ Cδ
2/p′
q+2λ

(1+2/p′)(d(1+α)+1)
q λq+1μ

1+γ (1+d(2/p′−1))
q+1

≤ λ
2+γ (d+1)
q+1 ≤ λα

q+1.

A similar computation is valid for ‖∂tw(c)
q+1‖L1 .
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7. The Building Blocks and the Iterative Scheme in Dimension d = 2

We describe in this section how the proof of Proposition 2.1, concluded above in
dimension d ≥ 3, should bemodified to cover the case d = 2. Themain obstruction
in this regard is that the building blocks in Sect. 4 cannot be translated, as we did in
dimension d ≥ 3 in Lemma 4.2, to make sure that their support is disjoint in space.
In dimension d = 2, we need to make them disjoint in space-time, observing that
they are described by a small ball which translates at constant speed according to
a translating vector field which is supported on a slightly larger ball.

7.1. Iteration Scheme and Definition of the Perturbations

We choose the parameters as in Sect. 5.1 and we perform the convolution step
as in Sect. 5.2. Similarly, the cutoffs χ ∈ C∞

c (− 3
4 ,

3
4 ) and χ̄ ∈ C∞

c (− 4
5 ,

4
5 ) are

chosen as in Sect. 5.3, as well as κ = 20
δq+2

and the sets 1, 2.
Starting from the building blocks introduced in Sect. 4 we will choose positive

real numbers vn (which will satisfy |vn −n| ≤ 1) and real numbers aξ,n and define

Wξ,μq+1,vn/κ (t, x) := W̃ξ,μq+1,vn/κ (t, x − aξ,nξ),

�ξ,μq+1,vn/κ (t, x) := �̃ξ,μq+1,vn/κ (t, x − aξ,nξ)

for any n ≥ 1 and ξ ∈ [n]. The difficult part will be to choose vn and aξ,n so that

Wξ,μq+1,vn/κ · �ξ ′,μq+1,vm/κ (t, x) = 0 for any (x, t) ∈ T
2 × R

+, (33)

whenever ξ �= ξ ′, |n − m| ≤ 1 and n,m ≤ Cλ
d(1+α)+1
q .

Assuming for the moment that this can be done, we define the new density
and vector field as we did in Sect. 5.3 up to replacing all functions �ξ,μq+1,n/κ and
Wξ,μq+1,n/κ with�ξ,μq+1,vn/κ andWξ,μq+1,vn/κ . The proof of the propositionwould
then follow the same arguments: we only need to modify sligthly the definition of
Rq+1 . Most of this section will be devoted to choose vn and aξ,n so that (33) holds.
Once we have achieved the latter, we will then show how to change the definition
of Rq+1.

7.2. Geometric Arrangement

Themain geometric construction is given by the following proposition.1∪2
is the set of possible space directions for the building blocks, while the sequence

{wn} is in fact the set of values μ
d/p′
q+1

( n
κ

)1/p′
. Observe that ,when wn

wn−1
is a rational

number, the relative position of the space supports of the building blocks is time-
periodic. If each space support were merely a point we could easily make them
always disjoint and in fact we could identify their minimum distance. If we write
wn

wn−1
= 1 + A(n)

N (n)
with A(n) and N (n), intuitively such minimum distance should

be made comparable to 1
N (n)

.
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Proposition 7.1. Consider two disjoint sets 1,2 ⊂ R
2 as in Lemma 3.1. Let

{wn}n∈N\{0} ⊂ R satisfy

wn

wn−1
= 1 + A(n)

N (n)
< 10 for every n ≥ 2,

where N (n) ≤ C̄n, for a given C̄ > 0.
Then there exists a constant c0 := c0(C̄,1,2) > 0 with the following

property. For every ξ ∈ k and n ∈ N there exists aξ,n ∈ [0, 1] such that the family
of curves

xξ,n(t) := (wnt + aξ,n)ξ with ξ ∈ k, n ≡ k mod 2 and k ∈ {1, 2}

satisfies

dT2(xξ,n(t), xξ ′,m(t)) ≥ c0
n

for every t ≥ 0, when |n − m| ≤ 1 and ξ �= ξ ′.

The proof of the proposition is based on the following elementary lemma:

Lemma 7.2. Fix two different vectors ξ, ξ ′ ∈ S
1 ∩Q

2 and a number w = 1+ A
N <

10, with A and N positive integers and coprime. Then there exists C = C(ξ, ξ ′)
such that

(i) L 1([0, 1]\{s : dT2(tξ, (t + s)ξ ′) ≥ ε ∀ t ≥ 0}) < Cε;
(ii) L 1([0, 1]\{s : dT2(tξ, (tw + s)ξ ′) ≥ εN−1 ∀ t ≥ 0}) < Cε.

Proof. Set Tint := {(t, t ′) : ξ t = ξ ′t ′ onT2} and observe that Tint ⊂ Q
2 since the

matrix with columns ξ and ξ ′ is invertible with rational coefficients. Moreover Tint
is an additive discrete subgroup ofR2, hence it is a free group of rank k ∈ {0, 1, 2}.
Denoting by T and T ′ the period of, respectively, t → ξ t and t → ξ ′t one has that
(T, 0), (0, T ′) ∈ Tint . This implies that the rank of Tint is two, hence we can find
two generators (t1, t ′1), (t2, t ′2) ∈ Tint .

Let us finally introduce A := {ξ t ∈ T
2 : (t, s) ∈ Tint for some s ∈ R} to

denote the set of points in T2 where the supports of the curves t → tξ and t → tξ ′
intersect.

Let us now prove (i). Let s ∈ [0, 1] be such that there exists t ≥ 0 satisfying
dT2(tξ, (t + s)ξ ′) < ε. There exists q ∈ A such that dT2(tξ, q) ≤ c̄ε, where
c̄ = c̄(ξ, ξ ′) > 1, hence up to modifying t we can assume that tξ =: q ∈ A and
dT2(q, (t + s)ξ ′) ≤ 2c̄ε. Since tξ ∈ A there exists t ′ such that (t, t ′) ∈ Tint and,
exploiting the fact that (t1, t ′1), (t2, t ′2) ∈ Tint are generators, we can find k1, k2 ∈ Z

such that t = k1t1 + k2t2 and t ′ = k1t ′1 + k2t ′2. The following identity holds on T2

(t + s)ξ ′ = (k1t1 + k2t2)ξ
′ + sξ ′ = (k1(t1 − t ′1) + k2(t2 − t ′2))ξ ′ + q + sξ ′,

therefore dT2((k1(t1 − t ′1) + k2(t2 − t ′2) + s)ξ ′, 0) ≤ 2c̄ε. This implies −s ∈
B2c̄ε(k1(t1−t ′1)+k2(t2−t ′2))+ZT ′.Notice that the set E := {k1(t1−t ′1)+k2(t2−t ′2) :
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k1, k2 ∈ Z} is discrete since t1−t ′1, t2−t ′2 are rational numbers. Any two consecutive
points in E have a fixed distance c = c(ξ, ξ ′) > 0 and E +ZT ′ = E . In particular

L 1([0, 1]\{s : dT2(tξ, (t + s)ξ ′) ≥ ε ∀ t ≥ 0})

≤ L 1

(
[−1, 1] ∩

⋃
r∈E

B2c̄ε(r)

)
≤ 4c̄

c
ε.

Let us now pass to the proof of (ii). Let s ∈ [0, 1] be such that dT2(tξ, (t +
s)wξ ′) < ε

N for some t ≥ 0. Arguing as above we can assume that tξ = q ∈ A,
dT2(q, (tw + s)ξ ′) ≤ 10c̄εN−1 and we can find t ′ ∈ R and k1, k2 ∈ Z such that
(t, t ′) ∈ Tint and k1t1 + k2t2 = t , k1t ′1 + k2t ′2 = t ′. We have the following identity
on T

2:

(tw + s)ξ ′ = tξ ′ + (t (w − 1) + s)ξ ′ = (k1t1 + k2t2)ξ
′ + (t (w − 1) + s)ξ ′

= q + (k1(t1 − t ′1) + k2(t2 − t ′2) + t (w − 1) + s)ξ ′

= q + (k1(wt1 − t ′1) + k2(wt2 − t ′2) + s)ξ ′.

Thus, arguing as above we deduce−s ∈ B10c̄εN−1((k1(wt1− t ′1)+k2(wt2− t ′2)))+
ZT ′.

Notice now that the set E := {k1(wt1 − t ′1) + k2(wt2 − t ′2) : k1, k2 ∈ Z} is
discrete, any two consecutive points in E have a fixed distance c ≥ c′(ξ, ξ ′)N−1 >

0 and E + ZT ′ = E . In particular,

L 1([0, 1]\{s : dT2(tξ, (tw + s)ξ ′) ≥ ε ∀ t ≥ 0})

≤ L 1

(
[0, 1] ∩

⋃
r∈E

B10c̄εN−1(r)

)

≤ 2

c′(ξ, ξ ′)N−1 10c̄εN
−1 ≤ 20c̄

c′(ξ, ξ ′)
ε.

Proof of Proposition 7.1. Let us write

k = {ξm,k : m = 1, ...,m0} for k = 1, 2 .

The key ingredient is Lemma 7.2 and indeed the constant c0 is chosen such that

2CC̄c0m0 < 1 , (34)

where C is the constant appearing in Lemma 7.2(i)&(ii).
Notice that we are interested in pairs (ξm,k, n) such that k ≡ n mod 2. Without

loss of generality we can thus assume that k is a function of n and takes the values
1 or 2 depending on the congruence class of n modulo 2. In particular we will use
the shorthand notation am,n for the point aξm,k ,n . We will find am,n inductively, after
endowing the set {1, . . . ,m0}×N\{0}with the lexicographic order. More precisely
we write (m, n) ≤ (m′, n′) if
• either n < n′
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• or n = n′ and m < m′.

At the starting point of the induction we set a1,1 = 0. For the inductive step, we fix
(m′, n′) and assume that am,n has been already defined for any (m, n) ≤ (m′, n′).
If m′ < m0 we need to define am′+1,n′ , otherwise we have m′ = m0 and we need
to define a1,n′+1. We explain how to proceed just in the case m′ < m0, since the
other case follows from the same argument. To fix ideas, let us assume that the
congruence class of n′ is 1, so that the congruence class of n′ − 1 is 2. We look for
am′+1,n′ ∈ [0, 1] such that

dT2((twn′ + am′+1,n′)ξm′+1,1, x
n′
ξm,1

(t)) ≥ c0 ≥ c0
n′

for every t > 0, when 1 ≤ m < m′ + 1

and

dT2((twn′ + am′+1,n′)ξm′+1,1, x
n′−1
ξm,2

(t)) ≥ c0
n′

for every t > 0, when 1 ≤ m ≤ m0

(we interpret the latter condition as empty when n′ = 1). Define the setsG1
m,G2

m ⊆
[0, 1] as

G1
m := {a : dT2(twn′ξm′+1,1 + aξm′+1,n′ , xn

′
ξm,1

(t)) ≥ c0 for every t > 0}
G2

m := {a : dT2(twn′ξm′+1,1 + aξm′+1,n′ , xn
′−1

ξm,2
(t)) ≥ c0

n′ for every t > 0} .

Finally, let G := G1
1 ∩ . . . ∩ G1

m′ ∩ G2
1 ∩ . . . ∩ G2

m0
be their intersection. Note that

the existence of am′+1,n′ is equivalent to the fact that G is not empty. According to
Lemma 7.2(i) L 1([0, 1]\G1

m) ≤ Cc0 for every m ∈ {1, . . . ,m′}, while according
to Lemma 7.2(ii) L 1([0, 1]\G2

m) ≤ CC̄c0 for every m ∈ {1, . . . ,m0}. In partic-
ular, by our choice of c0 in (34) we have L 1([0, 1]\G) ≤ C(C̄m0 + m′)c0 ≤
2CC̄m0c0 < 1, which in turn implies that G is not empty and completes the proof.

7.3. Suitable Discretized Speeds

Clearlywe cannot apply the geometric arrangement of the previous section ifwe

choose vn = n for the values of the parameter σ since the rations of μ
d/p′
q+1

( n
κ

)1/p′

are not even guaranteed to be rational. The aim of the next lemma is to show that
it suffices to perturb {n}n∈N\{0} slightly to a new sequence {vn}n∈N\{0} in order to
achieve that the wn+1

wn
are rational numbers with a denominator which is not too

large (in fact comparable to n).

Lemma 7.3. Fix 1 ≤ p′ < ∞. Then there exist C̄ > 0, N̄ ∈ N depending only on
p′, functions A : N\{0, 1} → {0, N̄ }, N : N\{0, 1} → N\{0} and v : N\{0} → R

+
such that, for every n ≥ 1 the following holds:

(i) |vn − n| ≤ 1;
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(ii)
(

vn
vn−1

)1/p′
= 1 + An

Nn
;

(iii) Nn < C̄n.

Proof of Proposition 7.1. We prove the statement by induction on n. For n = 1
and n = 2 we set v1 = v2 = 1, A2 = 0, N2 = 1, and the statement is satisfied.
Suppose now that the claim is verified for n̄. If vn̄ ≥ n̄, we set vn̄+1 = vn̄ , An̄+1 = 0,
Nn̄+1 = Nn̄ and the claim is verified. Hence we can assume that vn̄ < n̄. We claim
that we can choose An̄+1 = N̄ , vn̄+1 and Nn̄+1 with

vn̄+1 ∈ [n̄ + 1, n̄ + 2] and Nn̄+1 = N̄
[(vn̄+1

vn̄

)1/p′
− 1

]−1 ∈ N. (35)

Indeed, considering the continuous, decreasing function

f (t) = N̄
[( t

vn̄

)1/p′
− 1

]−1
,

it is enough to show that

1 ≤ f (n̄ + 1) − f (n̄ + 2)

= N̄v
1/p′
n̄

(n̄ + 2)1/p
′−1/p′

n̄+1

((n̄ + 1)1/p′ − v
1/p′
n̄ )((n̄ + 2)1/p′ − v

1/p′
n̄ )

=: N̄ g(n̄, vn̄)

to find t ∈ [n̄ + 1, n̄ + 2] such that f (t) ∈ N. Since the function g(n̄, vn̄) is
increasing with respect to the variable vn̄ ,

N̄ g(n̄, vn̄) ≥ N̄ g(n̄, n̄ − 1)

= N̄
[((

1 + 2

n̄ − 1

)1/p′
− 1

)−1 −
((

1 + 3

n̄ − 1

)1/p′
− 1

)−1]
.

We finally choose N̄ := N̄ (p′) in such a way that inf n̄≥2 g(n̄, n̄ − 1) ≥ N̄−1; we
notice that this infimum is positive since the function g(n̄, n̄ − 1) is positive for
every n̄ ≥ 2 and, by a simple Taylor expansion, it grows linearly as n̄ → ∞. This
proves the claim (35).

With this choice of vn̄+1 and Nn̄+1, recalling also that vn̄ < n̄, we get that the
statement (iii) is satisfied:

Nn̄+1 ≤ N̄
[(

1 + 1

n̄

)1/p′
− 1

]−1 ≤ C̄n̄.
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7.4. Disjointness of the Supports

Set wn := μ
d/p′
q+1

(
vn
κ

)1/p′
where {vn}n≥1 is given by Lemma 7.3. We apply

Proposition 7.1 to 1, 2 and {wn}n≥1 (notice that the assumptions are satisfied in
view of Lemma 7.3) obtaining the family {aξ,n : ξ ∈ [n]}. Finally, starting from
the building blocks introduced in Sect. 4 we define

Wξ,μq+1,vn/κ (t, x) := W̃ξ,μq+1,vn/κ (t, x − aξ,nξ),

�ξ,μq+1,vn/κ (t, x) := �̃ξ,μq+1,vn/κ (t, x − aξ,nξ)

for any n ≥ 1 and ξ ∈ [n], as already explained.
We therefore now show (33), namely that

Wξ,μq+1,vn/κ · �ξ ′,μq+1,vm/κ (t, x) = 0 for any (x, t) ∈ T
2 × R

+,

whenever ξ �= ξ ′, |n − m| ≤ 1 and n,m ≤ Cλ
d(1+α)+1
q .

Indeed for any fixed t ≥ 0 one has the inclusions

suppWξ,μq+1,vn/κ (t, ·) ⊂ B2ρμ−1
q+1

(twnξ + aξ,nξ),

supp�ξ ′,μq+1,vm/κ (t, ·) ⊂ B
ρμ−1

q+1
(twmξ ′ + aξ ′,mξ ′),

hencewe just need to check that B2ρμ−1
q+1

(twnξ+aξ,nξ)∩B
ρμ−1

q+1
(twmξ ′+aξ ′,mξ ′) =

∅. Proposition 7.1 guarantees

dT2(twnξ + aξ,nξ, twmξ ′ + aξ ′,mξ ′) ≥ c0
n

,

hence the claim is proven provided that

3

4
μ−1
q+1 ≤ c0

Cλ
d(1+α)+1
q

. (36)

The proof of (36) follows from the choice of μq+1 = λ
bγ
q , and since γ > 1,

b > d(1 + α) + 1.

7.5. Proof of the Proposition 2.1 in the Case d=2

The estimates up to Sect. 6.2 are done in the same exact way, up to observing
that vn/κ is comparable to n/κ up to a factor 2. In Sect. 6.3, we compute in (30)
the product of θ

(p)
q+1 and w

(p)
q+1 in order to see the cancellation of the old error R�;

now it has the expression

θ
(p)
q+1w

(p)
q+1 =

∑
n≥12

∑
ξ∈[n]

χ(κ|R�| − n)aξ

(
R�

|R�|
)

�ξ,μq+1,vn/κWξ,μq+1,vn/κ (λq+1t, λq+1x),
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as a consequence of (33), (26), the fact that χ · χ̄ = χ and χ(κ|R�|−n) ·χ(κ|R�|−
n) = 0 when |n − m| > 1.

Since the average of �ξ,μq+1,n/κWξ,μq+1,n/κ which appears from the forth line
of formula (30), in the definition of Rquadr and inm is now vn/κξ rather than n/κξ ,
the definition of R̃� should now be replaced by

R̃� :=
∑
n≥12

χ(κ|R�| − n)
R�

|R�|
vn

κ
,

and the obvious modification takes place for the definition of Rquadr and m. The
estimate (31) now works analogously to give |R� − R̃�| ≤ 17

20δq+2. The rest of the
estimates work as in Sects. 6.3 and 6.4.

8. Proof of the Ill-Posedness Theorems

8.1. Proof of Theorem 1.4

Without loss of generality we assume T = 1. Let α, b, a0, M > 5, β > 0 be
fixed as in Proposition 2.1. Let a ≥ a0 be chosen such that

∞∑
q=0

δ
1/p
q+1 ≤ 1

32M
.

Let χ0 be a smooth time cutoff which equals 1 in [0, 1/3] and 0 in [2/3, 1],
We set λ = 20a and define the starting triple (ρ0, u0, R0) of the iteration as

follows:

ρ0 = χ0(t) +
(
1 + sin(λx1)

4

)
(1 − χ0(t)), u0 = 0,

R0 = −∂tχ0
cos(λx1)

4λ
e1 .

Simple computations show that the tripe enjoys (6)withq = 0.Moreover‖R0‖L1 ≤
Cλ−1 = Cλ−1

0 and thus (7) is satisfied because 2β < 1 (again we need to assume
a0 sufficiently large to absorb the constant). Next ‖∂tρ0‖C0+‖ρ0‖C1 ≤ Cλ ≤ Cλ0.
Since u0 ≡ 0 and α > 1, we conclude that (8) is satisfied as well.

Next use Proposition 2.1 to build inductively (ρq , uq , Rq) for every q ≥ 1. The
sequence {ρq}q∈N is Cauchy in C(L p) and we denote by ρ ∈ C([0, 1], L p) its
limit. Similarly the sequence of divergence-free vector fields {uq}q∈N is Cauchy in
C([0, 1], L p′

) and C([0, 1],W 1,r ); hence, we define u ∈ C0([0, 1], L p′ ∩ W 1,r )

as its (divergence-free) limit.
Clearly ρ and u solve the continuity equation and ρ is nonnegative on T

d by

inf
Td

ρ ≥ inf ρ0 +
∞∑
q=0

inf(ρq+1 − ρq) ≥ 3

4
−

∞∑
q=0

δ
1/p
q+1 ≥ 1

4
.
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Moreover, ρ does not coincide with the solution which is constantly 1, because

‖ρ − 1‖L p ≥ ‖1 − ρ0‖L p −
∞∑
q=0

‖ρq+1 − ρq‖L p ≥ 1

16
− M

∞∑
q=0

δq+1 > 0.

Finally, since ρ0(t, ·) ≡ 1 for t ∈ [0, 1/3], point (c) in Proposition 2.1 ensures that
ρ(t, ·) ≡ 1 for every t sufficiently close to 0.

8.2. Proof of Theorem 1.3

Let u ∈ C([0, T ],W 1,r (Td ,Rd) ∩ L p′
) and ρ ∈ C([0, T ], L p(Td)) for some

p′ ≥ s be given by Theorem 1.4. Since ρ is nonnegative we are in position to
apply Ambrosio’s superposition principle (see e.g. [3, Theorem 3.2]) that provides
a probability measure η on AC([0, T ],Td), supported on the integral curves of the
vector field u in the sense of Definition 1.1, such that ρ(t, ·)L d = (et )#η for any
t ∈ [0, T ]. Above it is not necessary to specify a pointwise representative of u,
indeed given two Borel maps v, w such that v = w = u L d+1-a.e. it holds that

∫ (∫ T

0
|v(γ (s)) − w(γ (s))| ds

)
dη(γ )

=
∫ T

0

(∫
Td

|v(y) − w(y)|ρ(s, y) dL d(y)

)
ds = 0,

hence η is concentrated on integral curves of v if and only if it is concentrated on
integral curves of w.

Let us now consider the disintegration {ηx }x∈Td of η with respect to the map
e0, which isL d -a.e. well defined, and a pointwise defined regular lagrangian flow
X (t, x) associated to u. Given v, a representative of u, we set

A(v) := {x ∈ T
d | t → X (t, x) is an integral curve of v and ηx is not a Dirac delta on t → X (t, x)}.

Notice that, for any x ∈ A(v) there exist at least two integral curves of v starting
at x and

L d(A(v)�A(w)) = 0 whenever v = w = uL d+1-a.e.,

since t → X (t, x) is an integral curve of both v and w forL d -a.e. x ∈ T
d .

We need to prove that L d(A(v)) > 0. Assume by contradiction that A(v) is
negligible. Then one has the identities

ρ(t, ·)L d = (et )#η = X (t, ·)#L d = L d ,

which lead to a sought contradiction being ρ non constant.
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9. Asymmetric Lusin–Lipschitz Estimates

9.1. Proof of Proposition 1.7

We will prove the inequality up to constants and we assume α ≥ 1/d, since for
any α ∈ (0, 1/d) a simple application of the Young inequality gives

g(x) + g(x)
1
d g(y)1−

1
d = g(x) + g(x)

1−αd
(1−α)d

(
g(x)

α(d−1)
(1−α)d g(y)

d−1
d

)

≤ C(α, d)(g(x) + g(x)αg(y)1−α).

We next introduce the following localized Hardy Littlewood maximal function:
regarding any integrable function f : Td → R as a periodic function on R

d , we
set

M f (x) := sup
0≤R≤3

1

Rd

∫
BR(x)

| f |(z) dz .

We will show below that the conclusion of the proposition holds for

g(x) := (M |Du|q)1/q(x),
where q = αd. In particular the map Lr  Du �→ g ∈ Lr is continuous.

Note first that it suffices to prove the estimate for x, y ∈ {g < ∞} ⊂ {M |Du| <

∞}. On {g = ∞} we can arbitrarily define u to be 0: this will not matter for our
purposes because when one of the two points x, y belong to {g = ∞} the right hand
side of (5) is infinite, making the inequality trivial. On {g < ∞} we wish instead to
define u everywhere in a sensible way. We fix thus a smooth convolution kernel ϕ
supported in the ball of radius 1, assume x ∈ {g < ∞} and consider uk := u ∗ϕ2−k .
Recalling the Poincaré inequality

1

2kd

∫
B2−k (x)

|u(z) − uk(x)| dz ≤ C2−kM |Du(x)| ≤ C2−kg(x)

(where the constant depends on ϕ), we infer |uk+1(x) − uk(x)| ≤ C2−kg(x). This
implies that {uk(x)}k is a Cauchy sequence and has a limit: we define then u(x) to
be such limit.

We next fix x, y ∈ {g < ∞}, regard u as a periodic function defined on the
whole Rd and set R := |x − y|. W.l.o.g. R ≤ 1. Moreover we recall the classical
inequality

|u(x) − u(y)| ≤ C(d)

(∫
BR(x)

|Du(z)|
|x − z|d−1 dz +

∫
BR(y)

|Du(z)|
|x − z|d−1 dz

)
. (37)

When u ∈ C1 we refer the reader to [22, Lemma 3.1] for a proof. Otherwise,
the inequality can be validated passing to the limit on the respective ones for the
approximating functions uk’s (using that limk uk(x) = u(x), limk uk(y) = u(y)
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and standard facts about convolutions). Then a classical telescoping argument gives
that

∫
BR(x)

|Du(z)|
|x − z|d−1 dz =

+∞∑
k=0

∫
B2−k R(x)\B2−k−1R(x)

|Du(z)|
|x − z|d−1 dz

≤ C(d)RM |Du|(x) . (38)

Recall that α ∈ (1/d, r/d) and fix ε ∈ (0, 1] to be chosen later. We write

∫
BR(y)

|Du(z)|
|y − z|d−1 dz =

∫
BR(y)\BεR(y)

|Du(z)|
|y − z|d−1 dz

+
∫

BεR(y)

|Du(z)|
|y − z|d−1 dz := I + I I.

Let us study I and I I separately. Using the Hölder inequality, we get

I ≤
(∫

BR(y)
|Du(z)|q dz

)1/q (
C(d)

∫ R

εR

1

s(d−1)q ′−d+1
ds

)1/q ′

≤ C(d, q)Rd/q
(

1

Rd

∫
B3R(x)

|Du(z)|q dz
)1/q 1

(Rε)d−1−d/q ′

≤ C(d, q)Rg(x)εd/q ′−d+1 = C(d, q)Rg(x)ε−d/q+1,

where 1
q ′ = 1− 1

q and q = αd. For what concerns I I , we argue as in (38) getting

I I ≤ C(d)RεM |Du|(y) ≤ C(d)Rεg(y).

Putting the two estimates together and choosing

ε =
⎧⎨
⎩

(
g(x)
g(y)

)q/d
for g(y) ≥ g(x)

1 otherwise,

we obtain
∫

BR(y)

|Du(z)|
|y − z|d−1 dz ≤ C(d, α)R(g(x) + g(x)αg(y)1−α),

which, along with (38), gives the desired conclusion.

9.2. A Second Version of the Asymmetric Lusin–Lipschiz Estimate

A simple application of the Young inequality gives the following linear version
of (5):
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Corollary 9.1. Let u ∈ W 1,r (Td) for some 1 < r ≤ d. Then, for any q ∈ [r, r d−1
d−r )

there exist a positive constant C := C(r, d, q) and nonnegative functions a ∈ L1

and b ∈ Lq satisfying

‖a‖L1 ≤ C‖Du‖Lr and ‖b‖Lq ≤ C‖Du‖Lr , (39)

together with

|u(x) − u(y)| ≤ |x − y|(a(x) + b(y)) for any x, y ∈ R
d\N .

Moreover, we can take N = ∅ provided we choose a suitable representative of u,
a and b and the latter can be selected so that the respective map W 1,r  u →
(a, b) ∈ L1 × Lq is continuous.

Proof of Proposition 7.1. Assume without loss of generality ‖Du‖Lr = 1 and
q > r . Given q ∈ (r, r d−1

d−r ) we consider α ∈ (0, r/d) such that q = r−α
1−α

. Let g be
as in Proposition 1.7. We apply Young’s inequality with exponents (r/α, r/(r−α))

to get

|u(x) − u(y)| ≤ |x − y|(g(x) + g(x)αg(y)1−α)

≤ |x − y|(g(x) + g(x)rα/r + g(y)r
1−α
r−α (1 − α/r)) .

Setting

a(x) := g(x) + g(x)rα/r, b(x) := g(x)r
1−α
r−α (1 − α/r) = g(x)r/q(1 − α/r),

one can easily check that ‖a‖L1 ≤ C(r, d, q) and ‖b‖Lq ≤ C(r, d, q).

We will now show that the range of exponents above is optimal. First of all we
prove the following simple proposition:

Proposition 9.2. Let d ≥ 2, 0 < β < d and q > 1. If there exist g ∈ L1(B1) and
h ∈ Lq(B1) such that∣∣∣∣ 1

|x |β − 1

|y|β
∣∣∣∣ ≤ |x − y|(g(x) + h(y)) ∀x, y ∈ B1 ⊂ R

d , (40)

then q ≤ d−1
β

.

Proof of Proposition 7.1. Fix α > 0. Plugging y = |x |αx in (40), dividing by
|x |(1 − |x |α) and integrating in B1/2(0), we get∫

B1/2(0)

1 − |x |βα

1 − |x |α
1

|x |β(α+1)+1
dx ≤

∫
B1/2(0)

g(x) dx

+
∫

B1/2(0)
h(x |x |α) dx .

By changing variables in the last integral, according to y = x |x |α , we end up with∫
B1/2(0)

1

|x |β(α+1)+1
dx ≤ C

∫
B1/2(0)

g(x) dx + C
∫

B1(0)
h(y)

1

|y|d α
α+1

dy. (41)

ByHölder’s inequality, the last integral in (41) is finite for any α < q−1; therefore,
(41) implies β(α + 1) < d − 1 for any α < q − 1. This easily gives q ≤ d−1

β
.
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Let us now fix 1 ≤ r < d. For any β < d/r − 1 consider the function
u(x) := |x |−β ∈ W 1,r

loc (Rd) and cut it off with a smooth cut-off function so that it is
compactly supported in (−1/2, 1/2)d . Extend then the function by periodicity and
regard it as a function in W 1,r (Td). Proposition 9.2 ensures that the exponent q in
Corollary 9.1, associated to u, must satisfy q ≤ d−1

β
and therefore q ≤ r d−1

d−r + ε

with ε → 0 when β → d/r − 1.

9.3. The Critical Case p = d

We discuss here possible improvements of (5) in the critical case p = d. First
of all observe that, in general, we cannot expect (4) to hold for u ∈ W 1,d(Td)

since it would in turn imply u ∈ L∞. However, following closely the proof of
Proposition 1.7, one can show that

|u(x) − u(y)| ≤ C(d)|x − y|
(
1 + M |Du|(x)

(
1 + log

(
M |Du|d(y)

) d−1
d

))

for any x, y ∈ R
d\N , (42)

where N ⊂ R
d is negligible. We do not give the details since (42) does not play

any role in the sequel. We instead show a generalization of (5) for maps with Du in
the Lorentz space Ld,1; as a corollary we get theL d -a.e. uniqueness of trajectories
of vector fields enjoying such regularity.

For the reader’s convenience we recall that the Lorentz spaces are defined for
r ∈ [1,∞), q ∈ [1,∞] in the following way. For every measurable function
f : Td → R we set

‖ f ‖Lr,q := r1/q
∥∥λL d({| f | ≥ λ})1/r‖Lq ((0,∞), dλ

λ
)

(see e.g. [20]) and hencewe define Lr,q as the space of functions f such that ‖ f ‖Lr,q
is finite.2 Notice that L p,p = L p, that the inclusion Lq(Td) ⊂ Ld,1(Td) ⊂ Ld(Td)

holds for any q > d and that the Hölder inequality (for Lorentz spaces) implies
in particular that ‖ f g‖L1 ≤ C(d)‖ f ‖Ld,1‖|g‖

L
d

d−1 ,∞ . We recall finally that the

assumption Du ∈ Ld,1 in Proposition 9.3 below implies, by a result of Stein, the
continuity of u.

Proposition 9.3. Assume u ∈ W 1,1(Td) satisfy Du ∈ Ld,1. Then there exists
g ∈ Ld,∞ such that

‖g‖Ld,∞ ≤ C(d)‖Du‖Ld,1 ,

|u(x) − u(y)| ≤ (C(d)M |Du|(x) + g(x))|x − y| for any x, y ∈ R
d\N (43)

2 Note that, in spite of the notation, ‖ · ‖Lr,q is in general not a norm. Indeed it can be
shown that for (r, q) �= (1,∞) the topological vector space Lr,q is locally convex and
there exists a norm ||| · |||r,q which is equivalent to ‖ · ‖Lr,q in the sense that the inequality
C−1||| f |||r,q ≤ ‖ f ‖Lr,q ≤ C ||| f |||r,q holds for every f . On the other hand L1,∞ is not
locally convex.
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for some negligible set N . The latter can be assumed to be empty if u is appropriately
defined pointwise and moreover there is a continuous selection map Ld,1  Du �→
g ∈ Ld,∞.

Proof of Proposition 7.1. Fix x, y ∈ R
d with |x− y| ≤ 3/2 and set R := 2|x− y|

and argue as in the proof of Proposition 1.7. Our conclusion will follow from (37)
and (38) provided we show that∫

BR(y)

|Du(z)|
|y − z|d−1 dz ≤ R g(x)

for some g ∈ Ld,∞(Rd) satisfying (43).
The Hölder inequality for Lorentz spaces gives∫

BR(y)

|Du(z)|
|y − z|d−1 dz ≤ C(d)‖|Du|1BR(y)‖Ld,1‖|x − ·|1−d‖

L
d

d−1 ,∞

= C(d)‖|Du|1BR(y)‖Ld,1 .

Observe that

‖|Du|1BR(y)‖Ld,1 ≤ ‖|Du|1B3R(x)‖Ld,1 ≤ 3R sup
0<t<9

t−1‖|Du|1Bt (x)‖Ld,1 .

Let us set g(x) := sup0<t<9 t
−1‖|Du|1Bt (x)‖Ld,1 and check (43). First, notice that

g(x) = sup
0<t<9

t−1‖|Du|1Bt (x)‖Ld,1

= sup
0<t<9

∫ ∞

0

(
1

td
L d({|Du| > λ} ∩ Bt (x))

)1/d

dλ

≤C(d)

∫ ∞

0

[
M(1|Du|>λ)(x)

]1/d
dλ,

where in the latter estimates we regard |Du| as a function on the torus.

Now we argue by duality. Fix h ∈ L
d

d−1 ,1. Recall that ‖gd‖L1,∞ = ‖g‖d
Ld,∞ for

any nonnegative g ∈ Ld,∞. Hence, using the weak (1, 1) estimate for the maximal
function, we get∫

Td
g(x)h(x) dx ≤C(d)

∫ ∞

0

∫
Td

[
M(1|Du|>λ)(x)

]1/d
h(x) dx dλ

≤C(d)

∫ ∞

0
‖ [

M(1|Du|>λ)
]1/d ‖Ld,∞‖h‖

L
d

d−1 ,1 dλ

=C(d)

∫ ∞

0
‖M(1|Du|>λ)‖1/dL1,∞ dλ ‖h‖

L
d

d−1 ,1

≤C(d)

∫ ∞

0
L d({|Du| > λ})1/d dλ ‖h‖

L
d

d−1 ,1

=C(d)‖Du‖Ld,1‖h‖
L

d
d−1 ,1 .

Since h ∈ L
d

d−1 ,1 is arbitrary, by duality we get the desired estimate (see e.g. [20,
Theorem 1.4.17]).
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10. Well Posedness Theorems

First of all we observe that, arguing as in [11, Corollary 5.4], Proposition 9.3
implies the following result:

Corollary 10.1. Let u ∈ L1([0, T ],W 1,1(Td)) satisfy |Du| ∈ L1([0, T ], Ld,1(Td))

and div u ∈ L1([0, T ], L∞(Td)). ForL d-a.e. x ∈ T
d there exists a unique trajec-

tory of u starting at x at time t = 0.

Proof of Proposition 7.1. Let X be the regular Lagrangian flow associated to u,
which exists by the DiPerna-Lions theory. We wish to show that for a.e. x the curve
t → X (t, x) is in fact the unique trajectory of the ODE. Consider the function
h(t, x) := M |Du|(t, x) + g(t, x), where g(t, ·) is the map given by Proposi-
tion 9.3 when applied to u(t, ·) (we choose u �→ g continuously in order to avoid
measurability issues). Observe that, by the usual change of coordinates formula,

∫
Td

∫ T

0
h(t, X (t, x)) dt dx ≤ C

∫ T

0

∫
Td
h(t, x) dx dt < ∞ .

In particular, for a.e. x , we have that that t �→ γ (t) := X (t, x) is an absolutely
continuous trajectory solving γ̇ (t) = u(t, γ (t)) and that a(t) := h(t, γ (t)) =
M |Du|(t, γ (t)) + g(t, γ (t)) ∈ L1((0, T )). Fix such an x and assume γ̄ is another
absolutely continuous trajectory solving ˙̄γ (t) = u(t, γ̄ (t)) and γ̄ (0) = x . It then
follows that f (t) := |γ (t) − γ̄ (t)| is absolutely continuous and that

f ′(t) ≤ |u(t, γ (t)) − u(t, γ̄ (t))| ≤ C(M |Du|(t, γ (t)) + g(t, γ (t))) f (t)

= Ca(t) f (t) .

Since f (0) = 0 and a ∈ L1, it follows from Gronwall’s Lemma that f ≡ 0 on
[0, T ].
Proof of Theorem 1.5. ByAmbrosio’s superpositionprinciple (see [3,Theorem3.2])
there exists a family of probability measures {ηx }x∈Rd ⊂ Pr(AC([0, T ],Td)) con-
centrated on integral curves of u, starting from x ∈ T

d at time t = 0, such that
∫

Rd
φ(x)ρ(t, x)dx =

∫
Rd

(∫
φ(γ (t)) dηx (γ )

)
ρ0(x) dx

for anyφ ∈ Cc(R
d). (44)

Let us also recall that under our assumptions on u there exists a unique regular
Lagrangian flow X associated to it (see [19]). The desired conclusion follows from
the following claim: for ρ0L d -a.e. x ∈ R

d , ηx is concentrated on the curve t →
X (t, x).

We prove the claim just in the case 1 < r ≤ d. The case r > d follows from
the fact that we have classical uniqueness of the trajectories for a.e. initial data,
as observed by [11, Corollary 5.2] (we can of course use Corollary 10.1 as well,
since L p ⊂ Ld,1 for every p > d). For any t ∈ [0, T ] we consider a representative
of u(t, ·) ∈ W 1,r (Td ,Rd) such that Corollary 9.1 holds with N = ∅ for some



1088 E. Brué et al.

at ∈ L1
loc and bt ∈ L p′

satisfying (39) (note that (2) guarantees p′ ∈ (r, r d−1
d−r )).

Note that by the last statement of Corollary 9.1 we can ignore any measurability
issue in the variable t .

For any γ ∈ AC([0, T ],Rd) integral curve of u, and any x ∈ R
d one has

d

dt
|X (t, x) − γ (t)| ≤ |u(t, X (t, x)) − u(t, γ (t))|

≤ |X (t, x) − γ (t)|(at (X (t, x)) + bt (γ (t)))

for a.e. t ∈ [0, T ]. Therefore Gronwall’s lemma guarantees X (·, x) = γ , provided
that

γ (0) = x and
∫ T

0
(at (X (t, x)) + bt (γ (t))) dt < ∞.

Therefore our claim follows from
∫ T

0
at (X (t, x)) dt < ∞ and

∫ t

0
bt (γ (t)) dt < ∞ for ηx -a.e. γ (45)

for ρ0L d -a.e. x ∈ T
d .

The first one is a consequence of
∫

Td

(∫ T

0
at (X (t, x))dt

)
dx ≤ C

∫ T

0

∫
Td
at (x) dx dt ≤ C

∫ T

0
‖Dut‖Lr dt < ∞,

where the constantC > 0 depends on the compressibility constant inDefinition 1.2.
Here we have used (39). The second inequality in (45) follows from

∫
Td

(∫ ∫ T

0
bt (γ (t)) dtdηx (γ )

)
ρ0(x) dx =

∫ T

0

∫
Td
bt (x)ρ(t, x) dx dt

≤
(∫ T

0
‖bt‖L p′ dt

)
‖ρ‖L∞(L p)

≤C‖Du‖L1(Lr )‖ρ‖L∞(L p) < ∞,

where we have used (44) and (39).
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